
EXTENDED ABSTRACTS

WWW.RLDM.ORG

TABLE OF CONTENTS

Paper # 6: Model-free and model-based learning processes in the
updating of explicit and implicit evaluations

251

Paper # 10: Thompson Sampling for a Fatigue-aware Online
Recommendation System

465

Paper # 11: Privacy-preserving Q-Learning with Functional Noise in
Continuous State Spaces

470

Paper # 12: Count-Based Exploration with the Successor
Representation

67

Paper # 14: The detour problem in a stochastic environment: Tolman
revisited

138

Paper # 20: An empirical evaluation of Reinforcement Learning
Algorithms for Time Series Based Decision Making

72

Paper # 27: Measuring how people learn how to plan 357
Paper # 30: Efficient Count-Based Exploration Methods for
Model-Based Reinforcement Learning

128

Paper # 33: Performance metrics for a physically-situated stimulus
response task

47

Paper # 37: Making Meaning: Semiotics Within Predictive
Knowledge Architectures

226

Paper # 38: Hyperbolic Discounting and Learning over Multiple
Horizons

147

Paper # 40: Rethinking Expected Cumulative Reward Formalism of
Reinforcement Learning: A Micro-Objective Perspective

282

Paper # 43: Momentum and mood in policy-gradient reinforcement
learning

57

Paper # 44: A Bayesian Approach to Robust Reinforcement Learning 113
Paper # 45: Soft-Robust Actor-Critic Policy-Gradient 118
Paper # 47: Graph-DQN: Fast generalization to novel objects using
prior relational knowledge

246

Paper # 49: Learned human-agent decision-making, communication
and joint action in a virtual reality environment

302

Paper # 52: Hacking Google reCAPTCHA v3 using Reinforcement
Learning

37

2

Paper # 56: Sparse Imitation Learning for Text Based Games with
Combinatorial Action Spaces

440

Paper # 58: Action Robust Reinforcement Learning and Applications
in Continuous Control

445

Paper # 59: Inferring Value by Coherency Maximization of Choices
and Preferences

322

Paper # 61: A cognitive tutor for helping people overcome present bias 292
Paper # 63: Model-based Knowledge Representations 277
Paper # 67: Non-Parametric Off-Policy Policy Gradient 450
Paper # 70: Learning Curriculum Policies for Reinforcement Learning 327
Paper # 72: Bandits with Temporal Stochastic Constraints 32
Paper # 76: Scalable methods for computing state similarity in
deterministic Markov Decision Processes

391

Paper # 77: Perception as Prediction using General Value Functions in
Autonomous Driving

172

Paper # 83: An Attractor Neural-Network for Binary Decision Making 417
Paper # 87: Validation of cognitive bias represented by reinforcement
learning with asymmetric value updates

431

Paper # 89: Learning Multi-Agent Communication with
Reinforcement Learning

62

Paper # 90: Skynet: A Top Deep RL Agent in the Inaugural
Pommerman Team Competition

157

Paper # 96: Constrained Policy Improvement for Safe and Efficient
Reinforcement Learning

397

Paper # 103: A continuity result for optimal memoryless planning in
POMDPs

362

Paper # 105: Modeling cooperative and competitive decision-making
in the Tiger Task

7

Paper # 108: Modeling models of others’ mental states: characterizing
Theory of Mind during cooperative interaction

376

Paper # 109: Reinforcement Learning in the Acquisition of
Unintuitive Motor Control Patterns

12

Paper # 113: Learning Temporal Abstractions from Demonstration: A
Probabilistic Approach to Offline Option Discovery

307

Paper # 116: Rate-Distortion Theory and Computationally Rational
Reinforcement Learning

17

Paper # 124: Compositional subgoal representations 152
Paper # 125: Forgetting Process in Model-Free and Model-Based
Reinforcement Learning

455

Paper # 126: On Inductive Biases in Deep Reinforcement Learning 186

3

Paper # 128: Safe Hierarchical Policy Optimization using Constrained
Return Variance in Options

221

Paper # 133: Unicorn: Continual learning with a universal, off-policy
agent

312

Paper # 135: Belief space model predictive control for approximately
optimal system identification

52

Paper # 136: MinAtar: An Atari-inspired Testbed for More Efficient
Reinforcement Learning Experiments

483

Paper # 138: Autonomous Open-Ended Learning of Interdependent
Tasks

162

Paper # 141: Learning Powerful Policies by Using Consistent
Dynamics Model

412

Paper # 149: Habits as a Function of Choice Frequency: A Novel
Experimental Approach to Study Human Habits

332

Paper # 155: ProtoGE: Prototype Goal Encodings for Multi-goal
Reinforcement Learning

352

Paper # 159: Does phasic dopamine signalling play a causal role in
reinforcement learning?

403

Paper # 166: Multi-batch Reinforcement Learning 262
Paper # 170: When is a Prediction Knowledge? 231
Paper # 173: Robust Exploration with Tight Bayesian Plausibility Sets 181
Paper # 174: Event segmentation reveals working memory forgetting
rate

216

Paper # 178: Self-improving Chatbots based on Reinforcement
Learning

371

Paper # 179: Value Preserving State-Action Abstractions 27
Paper # 183: Predicting Human Choice in a Multi-Dimensional
N-Armed Bandit Task Using Actor-Critic Feature Reinforcement
Learning

206

Paper # 188: Contrasting the effects of prospective attention and
retrospective decay in representation learning

103

Paper # 189: A Human-Centered Approach to Interactive Machine
Learning

460

Paper # 193: Searching for Markovian Subproblems to Address
Partially Observable Reinforcement Learning

22

Paper # 198: Symbolic Planning and Model-Free Reinforcement
Learning: Training Taskable Agents

191

Paper # 199: Multi-Preference Actor Critic 342
Paper # 203: DynoPlan: Combining Motion Planning and Deep
Neural Network based Controllers for Safe HRL

42

4

Paper # 208: Optimal nudging 176
Paper # 209: Discrete off-policy policy gradient using continuous
relaxations

87

Paper # 213: Learning from Suboptimal Demonstrations: Inverse
Reinforcement Learning from Ranked Observations

381

Paper # 219: PAC-Bayesian Analysis of Counterfactual Risk in
Stochastic Contextual Bandits

475

Paper # 222: Investigating Curiosity for Multi-Prediction Learning 297
Paper # 224: Modeling the development of learning strategies in a
volatile environment

123

Paper # 225: A Top-down, Bottom-up Attention Model for
Reinforcement Learning

386

Paper # 226: DeepMellow: Removing the Need for a Target Network
in Deep Q-Learning

236

Paper # 228: Robust Pest Management Using Reinforcement Learning 409
Paper # 229: Active Domain Randomization 167
Paper # 230: Hidden Information, Teamwork, and Prediction in
Trick-Taking Card Games

133

Paper # 234: Learning Treatment Policies for Mobile Health Using
Randomized Least-Squares Value Iteration

287

Paper # 237: Variational State Encoding as Intrinsic Motivation in
Reinforcement Learning

241

Paper # 238: Predicting Periodicity with Temporal Difference
Learning

108

Paper # 242: Joint Goal and Constraint Inference using Bayesian
Nonparametric Inverse Reinforcement Learning

347

Paper # 243: Doubly Robust Estimators in Off-Policy Actor-Critic
Algorithms

196

Paper # 246: Off-Policy Policy Gradient Theorem with Logarithmic
Mappings

201

Paper # 250: Generalization and Regularization in DQN 142
Paper # 251: Remediating Cognitive Decline with Cognitive Tutors 98
Paper # 254: Reinforcement learning for mean-field teams 421
Paper # 257: SPIBB-DQN: Safe Batch Reinforcement Learning with
Function Approximation

267

Paper # 260: Penalty-Modified Markov Decision Processes: Efficient
Incorporation of Norms into Sequential Decision Making Problems

317

Paper # 261: A Value Function Basis for Nexting and Multi-step
Prediction

211

Paper # 264: Improving Generalization over Large Action Sets 82

5

Paper # 265: Approximate information state for partially observed
systems

426

Paper # 267: Temporal Abstraction in Cooperative Multi-Agent
Systems

77

Paper # 268: Modelling Individual Differences in Exploratory
Strategies: Probing into the human epistemic drive

93

Paper # 275: Batch Policy Learning under Constraints 272
Paper # 277: Posterior Sampling Networks 366
Paper # 285: Pseudo-Learning Rate Modulation by the Forgetting of
Action Value when Environmental Volatility Changes

337

Paper # 288: Inverse Reinforcement Learning from a Learning Agent 436
Paper # 289: A Comparison of Non-human Primate and Deep
Reinforcement Learning Agent Performance in a Virtual
Pursuit-Avoidance Task

256

6

Modeling cooperative and competitive decision-making in the Tiger
Task

Saurabh Kumar Tessa Rusch
Institute of Systems Neuroscience Institute of Systems Neuroscience

University Medical Center Hamburg, Germany University Medical Center Hamburg, Germany
s.kumar@uke.de t.rusch@uke.de

Prashant Doshi Michael Spezio Jan Gläscher

Department of Computer Science
University of Georgia, GA, USA

pdoshi@cs.uga.edu

Psychology & Neuroscience
Scripps College, CA, USA;

Institute of Systems Neuroscience
University Medical Center

Hamburg, Germany

Institute of Systems Neuroscience
University Medical Center

Hamburg, Germany
glaescher@uke.de

mspezio@scrippscollege.edu

Abstract

The mathematical models underlying reinforcement learning help us understand how agents navigate the
world and maximize future reward. Partially observable Markov Decision Processes (POMDPs) – an
extension of classic RL – allow for action planning in uncertain environments. In this study we set out to
investigate human decision-making under these circumstances in the context of cooperation and competition
using the iconic Tiger Task (TT) in single-player and cooperative and competitive multi-player versions. The
task mimics the setting of a game show, in which the participant has to choose between two doors hiding
either a tiger (-100 points) or a treasure (+10 points) or taking a probabilistic hint about the tiger location (-1
point). In addition to the probabilistic location hints, the multi-player TT also includes probabilistic
information about the other player's actions. POMDPs have been successfully used in simulations of the
single-player TT. A critical feature are the beliefs (probability distributions) about current position in the state
space. However, here we leverage interactive POMDPs (I-POMDPs) for the modeling choice data from the
cooperative and competitive multi-player TT. I-POMDPs construct a model of the other player’s beliefs,
which are incorporated into the own valuation process. We demonstrate using hierarchical logistic regression
modeling that the cooperative context elicits better choices and more accurate predictions of the other player's
actions. Furthermore, we show that participants generate Bayesian beliefs to guide their actions. Critically,
including the social information in the belief updating improves model performance underlining that
participants use this information in their belief computations. In the next step we will use I-POMDPs that
explicitly model other players as an intentional agents to investigate the generation of mental models and
Theory of Mind in cooperative and competitive decision-making in humans.

Keywords: Theory of Mind, Tiger-task, Cooperation, Competition, Bayesian modeling, I-POMDP

Acknowledgements

J. G. was supported by the Bernstein Award for Computational Neuroscience (BMBF 01GQ1006) and J.G. and
M.S. were supported by a Collaborative Research in Computational Neuroscience (CRCNS) grant (BMBF
01GQ1603; NSF 1608278). T.R. was supported by a PhD scholarship from the German National Merit
Foundation.

Paper # 105 7

Extended Abstract

1 Introduction

Reinforcement learning (RL) has its roots in artificial intelligence, control theory, operation research and has
proven to be a powerful framework for cognitive neuroscience decision-making under uncertainty. Markov
decision processes (MDPs) - the mathematical model underlying RL - help robots to pursue the goal of
maximized total future reward by guiding their decisions when the state space is fully known. The real world,
however, is imperfect with noisy observations and unexpected environment changes, where the current state
of the world is often uncertain. The partially observable Markov decision processes (POMDPs) extend MDPs for
situations of state uncertainty by proposing a belief distribution over possible states and using Bayesian belief
updating for estimating this belief distribution in each moment (Kaelbling, Littman and Cassandra 1998).

The iconic Tiger Task played a crucial role in developing this computational framework by providing a
test bed for simulating decision-making of a single agent in an uncertain world. The task mimics the setting
of a game-show, in which the agent is presented with two doors, one of which hides a tiger (incurring a large
loss) and the other one hides a pot of gold (incurring small win). The POMDP framework has been
subsequently extended for multi-agent settings resulting in interactive partially observable Markov decision
process (I-POMDP) (Gmytrasiewicz und Doshi 2005), in which two or more agent interact in an uncertain
world. A crucial element of this framework is that agent build models of the other players and use them to
predict others’ choices and make better decisions themselves. The Tiger Task was again used in initial
simulations of agents an their mental contents in this interactive setting.

Given the crucial role of the Tiger Task in formulating POMDPs and I-POMDPs it is surprising that
little empirical data exist on this this task. Here, we set out to fill this gap by collecting choice data from human
participants engaging in the single- and multi-agent Tiger Task, the latter being the focus of this paper.
Furthermore, following Doshi (Doshi 2005) we devised a cooperative and a competitive version of the multi-
agent Tiger Task and exposed two groups of subjects to them. In a series of model-free and model-based
analyses of behavioural choice patterns we demonstrate a cooperative context elicits better choices and
accurate predictions of the other player’s actions and that subjects generate Bayesian beliefs to guide their
actions. Critically, including the social information from the other player in the belief updating improves
model performance, which underlines that participants pay attention to the other player and use it in
formulating beliefs about the state of the world.

2 Task and hypothesis

The goal of the Tiger Task is to maximize the reward by opening the door hiding the gold (+10 point) and to
avoid opening the door with the tiger (-100 points). In each step there are 3 actions available to the participant:
open left door (OL), open right door (OR), or listen (L), which results in a probabilistic hint about the location
of the tiger (growl left (GL), or growl right (GR)), but also costs 1 point. Thus, participant can accumulate
evidence about the tiger location through repeated L actions. After each open action the position of the tiger
is reset randomly to one of the two doors (tiger left (TL) or tiger right (TR)).

In the multi-player version the participants receive an additional probabilistic hint about the actions of
the other player: creak left, or creak right (indicating that the other player might have opened one of the
doors), or silence (S) indicating that the other player probably listened. Creaks suggest that the location of the
tiger might have reset and that currently accumulated beliefs about the tiger location are void. Opening the
door reveals the correct location of the tiger and the participant get the associated reward with additional
knowledge of the tiger reset. In our implementation of the Tiger Task participant were also asked to predict
the other player’s actions at each step before choosing their own action (see Figure 1A for task sequence).

The competitive and cooperative versions differ in the structure of the payoff matrix: while the
cooperative version incentivizes concurrent open actions by both players (see Figure 1C bold marking), the
competitive version provides the maximum reward, if the correct door hiding the gold is opened, while the
other player opens the wrong door hiding the tiger (see Figure 1B bold marking). Comparing the two versions,

Paper # 105 8

we expected that participants will take more hints to come to a consensus in cooperative context to avoid
confusing the other player and generate a more predictable behavior. We also expected more identical actions
and more accurate predictions of the other player’s actions during cooperation.

3 Results

We invited 58 participants (30 cooperate, 28 compete) to play the multi-player version of the game. In the
model-free analysis we observed that the participants in the cooperative context took more hints than in the
competitive context. In addition, prediction accuracy was higher during cooperation. These outcomes were
both in line with our expectations. Participants in the competitive version exhibited fewer identical actions
when compared to cooperation (Figure 2A-C).

Participants in the Tiger Task form beliefs about the states of the game (TL or TR) based on the
probabilistic hints (GL or GR) and – in the multi-agent Tiger Task – the information from the other player (CR
or CL). Because there are 3 distinct actions (OL, OR, L) available, we decided to model the action a(t) at each

step t as an ordered logistic regression model: a(t) = ß0 + ß1 * b(t), where b(t) is the belief about the location of

the tiger.
The Tiger Task has only 2 states (TL and TR), which implies a unidimensional belief distribution with

both states at the end of the range of possible beliefs. This belief distribution is updated on every step with
the observations following the current action. We compared two version of belief updating: a simple “beta-
belief” model, which uses the mode of a beta distribution as the point estimate of the belief and is updated by
adjusting the parameters of the beta distribution with the observations (the probabilistic hints following L
actions). The second model is a Bayesian belief updating model with take the previous belief as the prior and
calculates the likelihood based on the observation and transition function. We also tested two versions of the
Bayesian updating model (Eq 1) without and Eq 2) with the inclusion of the social information (also see Figure
3A-B as an example):

b(t) =
𝑝(𝑔𝑐)∗𝑏(𝑡−1)

𝑝(𝑔𝑐)∗𝑏(𝑡−1)+(1−𝑝(𝑔𝑐))∗(1−𝑏(𝑡−1)))
 (1)

Where, p(gc) is the probability of the hint being correct and b(t-1) is the previous belief about the tiger

location.

b(t) =
𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑝(𝑟𝑒𝑠𝑒𝑡) + 1 −

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑏(𝑡 − 1) (2)

Where, p(cc) is the probability of the hint about the partners' action being correct and p(oo) is the

probability of the partner opening the door, while reset is the probability of the tiger being placed after a door
is opened (0.5 for a random placement).

Models were estimated using the Stan software package that implements and hierarchical Bayesian

workflow. Formal model comparison using LOOIC (Leave-one-out information criterion) revealed that the
Bayesian belief update model resulted in a better fit than the beta-belief model (LOOIC (Bayesian belief) =
5107.75, LOOIC (Beta belief) = 8530.70). In control analysis, we expanded the set of predictors in the ordered-
logistic model with additional task variables like the number of hints taken, previous outcome and an
interaction between them (Model 2-5), but found the simpler model with just the belief as a predictor (Model
1) outperforms these more comprehensive predictor sets (Figure 4A-B). Furthermore, we compared the
Bayesian belief update without the social information (Eq 1) to the update with the social information added
(Eq 2) and concluded that the social information adds a significant improvement in the model prediction (see
the scales of LOOIC values in Figure 4A and 4B).

4 Outlook

Paper # 105 9

We used an ordered logistic discrete choice model with Bayesian belief updating and demonstrated that
including the social information is providing a much better model fit to the data. This suggests that
participants in the multi-agent Tiger Task do incorporate the information from the other player into their
valuation process. However, our Bayesian belief model falls short of an important feature that is likely
shaping strategic social decisions: it treats the information from the other players as just another piece of
information from the environment and not as an intentional agent that processes the information in a similar
way.
I-POMDPs are a computational framework that explicitly computes the beliefs of the other player as an
intentional agent as part of the model of the first player. Thus, it is an ideal framework for modeling Theory
of Mind of another player in a quantitative way (his goals, intentions, and beliefs). Following our Bayesian
belief model, we will also model the Tiger Task within the I-POMDP framework and compare belief
computations of the other player in the competitive and cooperative version of the task.

5 References

Doshi, Prashant. „Optimal sequential planning in partially observable multiagent settings.“ Ph.D.

dissertation, University of Illinois at Chicago, 2005.

Gmytrasiewicz, Piotr J., und Prashant Doshi. „A framework for sequential planning in multi-agent

settings.“ Journal of Artificial Intelligence Research, 2005.

Kaelbling, Leslie Pack, Michael L. Littman, und Anthony R. Cassandra. „Planning and acting in partially

observable stochastic domains.“ Artificial Intelligence, 1998.

6 Figures

 Figure 1: (A) An example of
sequence for the multi-player
version of the task. The player
predicts the action of the other player
(indicated by the blue fixation dot)
followed by the players own action
choice (indicted by the yellow
fixation dot). This is followed by the
probabilistic evidence about the
other player's action (CL/CR). The
next screen is either the probabilistic
hint about the tiger location (GL/GR
if L was chosen) or the door is
opened (for OL or OR actions)
revealing the tiger location. (B) The
joint payout matrix in the
competitive context is shown for the
tiger being on the left side. The bold
numbers show the best and worst
choice indicating that the best own
outcome is achieved if the correct
door (with the gold) is opened, while
the other player open the wrong
door (with the tiger). (C) The joint
payout matrix in the cooperative
context is shown when the tiger is on

Paper # 105 10

the left side. The bold numbers showing the best choice indicating that the maximum payoff is achieved,
when both players open the correct door at the same time.

Figure 2: (A) In the multi-player
version of the task the participants
significantly took more hints in the
cooperative context when
compared to the competitive
context. Participants also had
significantly higher prediction
accuracy and identical actions
(showing coordination) in the
cooperative context compared to
the competitive one in (B) and (C)
respectively.

Figure 3: (A) An example
model behavior of the
multi-player version of
the tiger task without the
social information (see Eq
1) is shown here. The bold
red line is the model
prediction while the blue
triangles are the actual
participant action choices
given their computed

beliefs. Green dots, which always lie on the red model curve show the model predictions of the data (blue
triangles). The light-blue area shows the belief region where the ordered logistic model predicts the listen
action. In the red and green areas the ordered logistic model predicts Open Left and Open Right action
respectively. The absence of these areas in this model suggests that the model without the social information
fails to predict the observed open left/right actions. (B) This model behavior shows the prediction made with
the social information (Eq 2). This model predicts most of the OL actions (red area) and OR actions (green
area) correctly demonstrating the importance of the social information (CR/CL) for correctly predicting the
observed data.

Figure 4: (A) Different
models compared of the
multi-player version of the
task. All the models in (B)
without the social
information perform worse
compared with the LOOIC
values of the models with
the social information
added in (C) (see different
scales in (B) and (C)). The
simplest model with just the
belief update (model

number 1) in (C) performed better when compared to extensions of number of hints taken, previous outcome
and an interaction of them.

Paper # 105 11

Reinforcement Learning in the Acquisition of Unintuitive Motor
Control Patterns

Sarah A. Wilterson
Department of Psychology

Princeton Neuroscience Institute
Princeton University
shutter@prineton.edu

Samuel D. McDougle
Department of Psychology

University of California – Berkeley
mcdougle@berkeley.edu

Jordan A. Taylor
Department of Psychology

Princeton Neuroscience Institute
Princeton University

jordanat@princeton.edu

Abstract
Development of a mapping between goals and actions (i.e. learning a motor controller) has been shown to
rely on processes previously associated with decision-making and reinforcement learning. However, the link
between reinforcement learning and motor skill has not been thoroughly explored. Here, we sought to probe
this potential link by biasing learning in a motor task toward model-free and model-based processes to
determine if doing so would shape the eventual motor controller. Subjects were trained to navigate a cursor
across a grid using an arbitrary and unintuitive mapping. We hypothesized that knowledge of the correct
sequence would tip the balance between the reinforcement learning processes, which would be revealed in a
transfer test. When subjects were tasked with navigating to a novel set of start-end locations, those who
learned the sequence without the benefit of explicit instruction far outperformed subjects given the correct
key-press sequence. Consistent with learning arising from a model-free process, the group given additional
information in training did not fully learn the mapping between their finger-presses and the resultant on-
screen movement. In the next experiment, we call into question the ability to use this newly learned controller
to plan future states; however, this may depend on the expertise with the novel mapping. In a follow-up
experiment, the complexity of the newly trained mapping interacted with the amount of prior learning to
determine how far into the future subjects could plan. Additionally, we found that reaction time increased as
a function of the number of planned states, indicative of a computationally-demanding process typically
associated with model-based planning. We conclude that flexibility of a new controller is at least partially
determined by initial learning conditions, and that the ability to plan ahead requires extensive training.

Keywords: Motor Control, Skill Learning, Transfer of Learning
Acknowledgements
This work was supported by the National Institute of Neurological Disorders and Stroke (R01 NS-084948)

Paper # 109 12

1. Introduction

Humans complete a wide variety of motor tasks on a daily basis. Some tasks are relatively simple and familiar,
such as climbing a flight of stairs, while others require learning a complicated set of novel movements, like
learning to play a new piano piece. The effective control of movement is itself a challenging task, and the
challenge only increases as our goals become progressively more variable or complex. The job of specifying
how to coordinate the muscles and limbs in order to achieve a goal is given to the motor controller - a
computational module that takes as its input a desired goal or physical state and returns a plan for realizing
that goal. The complexity of this computation has inspired debate surrounding the rules for establishing and
modifying a feedback controller. Much investigation of motor controllers is predicated on system
identification techniques borrowed from engineering. With these techniques, a system is characterized by
recording its responses to systematic perturbations [1]. This research has been entrenched in showing when
and how an established controller, particularly that responsible for reaching and grasping, adapts in the face
of perturbations (e.g. [2, 3, 4]).

Unlike the adaptation paradigms, tasks which develop a new motor controller must require a novel mapping
of actions onto desirable goal states. This is sometimes referred to as “skill learning,” and has received
relatively little attention from a control theory prospective [5, 6]. It has been proposed that skill learning
begins with effortful, carefully evaluated movements and continues until action sequences are accomplished
without the express need of an agent’s attention [7]. Historically, this has been thought of as a progression,
with early, effortful processing giving way to fast, automatic processes [5]. Although this idea has been
around for over 50 years, we have no real mechanistic understanding for the progression of skill learning.

A parallel to this motor learning progression has been carefully studied in the field of reinforcement learning.
The terminology here is different, but the description of this progression is familiar, with early, goal-directed
behavior consolidating into habitual actions after practice [8, 9, 10]. Indeed, the model-based stage of learning
is often characterized as slow and effortful, requiring a computationally intensive tree search of action choices
[11], echoing the attention-demanding effort of early skill learning. On the other hand, once learning becomes
model-free, it is no longer able to search the decision tree for the best solution. This results in characteristically
rigid performance. Nonetheless, the response is quickly and automatically accessible without need for
effortful processing or attention [11]. We recognize this as a close description of a learned skill, which can be
completed rapidly without effortful control.

There is some experimental evidence suggesting that model-free and model-based learning also underlie
learning of a motor controller. Particularly, imposing time pressure on subjects when they are learning an
unintuitive keyboard-to-cursor mapping results in suppression of their ability to generalize the learning to
new target locations [12]. However, these participants were able to generalize to new target locations when
provided sufficient time to prepare. This suggests that normal use of a motor controller relies on a time-
consuming computation, such as a model-based process. A model-based controller could afford
generalization by rolling out the consequences of various choices using learned action-outcome associations.
However, imposing a time-limit on the motor controller may have forced reliance on faster, but less flexible,
model-free learning.

Over three experiments, we sought to determine parallels between established features of reinforcement
learning and acquisition of a novel controller. We began by biasing learning toward either model-free or
model-based processes and measuring the flexibility of the newly learned controller. In the second and third
experiments, we investigate the ability of the motor system to use a newly learned controller to plan out future
states.

2. Experiments and Results

We modified a task developed by Fermin and colleagues (2010), in which subjects navigate a cursor across a
virtual grid using a keyboard [12]. The mapping between key-presses and movement of the cursor was
arbitrary and unintuitive, which is thought to require learning de novo. In our variant of this task, subjects
navigated a cursor across a grid by pressing keys on a keyboard. The mapping between key-presses and
movement of the cursor was arbitrary and differed across subjects. Subjects practiced navigating between a
single start-end pair (training phase) and were tested on multiple, novel start-end pairings (test phase). The
exact process and number of these tests varied by experiment.

Paper # 109 13

2.1 Experiment 1 – Instruction Biases Learning to Model-Based Processes

In Experiment 1, subjects trained on an arbitrary key-response
mapping deterministically tied to three keyboard keys (e.g. ‘D’
= up, ‘F’ = right, ‘J’ = left). All twenty training trails featured the
same start and end position, which was always a six key-press
path and pseudorandomized across participants. To bias
learning toward model-free or model-based processes, we
manipulated the instruction that subjects were given about how
to solve the task. In the Instruction group, subjects were given
the exact sequence of key-presses which would lead them to the
target (e.g. “Press J-J-J-D-F-F”). In contrast, subjects in the No
Instruction group were not provided with specific instructions
for executing the path, forcing them to explore the mapping
between key-presses and cursor movement during training. We
hypothesized that knowledge of the correct sequence would tip
the balance between different learning processes, which would
be revealed with a transfer test where subjects navigated to a
novel set of start-end locations.

On the transfer test, subjects were given seven novel start/end
location pairs to navigate. One trial with the trained start/end
location was mixed randomly into the transfer test.

We found that providing full knowledge of the required key-
press sequence greatly speeded initial learning (Figure 1A).
However, on the transfer test, subjects who learned the
sequence by trial and error far (Instruction Group)
outperformed subjects given prior knowledge (No Instruction
Group, Figure 1B). We take this as evidence that the No
Instruction group produced a more flexible, model-based
controller. Several control experiments confirmed that
differences between the groups were not attributable to
variability of experience in training, working memory, or
explicit knowledge of the controller.

2.2 Experiment 2 – The Newly Learned Controller Requires State-Space Feedback

Next, we sought to determine how well a newly learned controller could be used to plan out a set of future
states (i.e., a route between novel start-end locations) by removing continuous feedback of the cursor. The
training phase was identical to that of Experiment 1, again with two groups: Instruction and No Instruction.
The only difference from the test phase of Experiment 1 was the
absence of continuous positional feedback. Subjects were able to see
their position at the beginning of each trial, but once they began
moving their curser disappeared and they had to complete the trail
“in the dark”. Positive feedback was given if the subject hit the
target space.

With feedback removed in the test phase, performance on transfer
trials dramatically declined to at or just-above chance (Figure 3).
This finding calls into question the ability to use a novel, feedback
controller to plan future states. This is true of both the group biased
to be model-free and the group biased to be model-based. We
hypothesized that subjects are unable to plan out future states using
the newly learned controller because each blind movement greatly
increases the number of possibilities for one’s current location. Even
a subject with 80% confidence in any given movement would
quickly face an unmanageable level of uncertainty five movements
into the task.

Figure 2. Average points out of a hundred for
fifty subjects on the last five training trials,
the start/end location that was trained, and
the novel, transfer, start/end locations.

Last 5 of Training Trained Transfer

No Instruction
Instruction

Test Performance

7575

60

45

30

15

0

90

C
al
cu
la
te
d
P
er
fo
rm
an
ce

Figure 1. Average points out of a hundred for fifty
subjects; points were lost for not hitting the target
(-100) and taking additional steps past what was
necessary (-5/per). Shaded regions/error bars
represent standard error. Horizontal line represents
chance. (A) Time course of learning during
training. B) Last five training trials, the start/end
location that was trained, and the novel, transfer,
start/end locations.

7575

60

45

30

15

0

90

5 10 15 20

7575

60

45

30

15

0

90
Test Performance

Training Performance

Training Trial

Last 5 of Training Trained Transfer

C
al
cu
la
te
d
P
er
fo
rm
an
ce

Test Performance

No Instruction
Instruction

A

B

Paper # 109 14

2.3 Experiment 3 – Extended Practice allows for Greater Flexibility without Feedback

In Experiment 3, we tested whether the ability to plan without state-space feedback would depend on the
complexity of the mapping and the degree of expertise. Unlike Experiments 1 and 2, the test trials in
Experiment 3 were interleaved through-out training. Subjects would complete five training trails, again with
the same start/end pair, and then be given a single, no-feedback transfer trial. Each transfer trial consisted of
a set of start-end locations pseudorandomly chosen to be 1, 2, 3, or 4 key-presses apart. This was repeated for
140 training trials, with subjects receiving one transfer trial of each length at least once every 20 training trials.
Each subject completed the full experiment once with a 3-key mapping and once with a more difficult 6-key
mapping.

The complexity of the mapping and degree of learning interacted to determine how far in advance subjects
could plan (Figure 4A). What’s more, we found that subjects’ reaction times increased with the number of
planned future states (Figure 4B). We conducted an additional experiment to control for the presence of test
trials during training. This follow-up experiment provided the same results as shown above. These results
suggest that with extended practice a feedback controller can be co-opted to plan ahead, but doing so is
computationally demanding.

3 Discussion

The goal of this study was to determine the extent of the analog between reinforcement learning in decision
making and motor skill acquisition. Across three experiments, we found that participants can leverage both
model-free and model-based processes to improve performance in a novel motor task. In the first experiment,
we reveal that prior knowledge when learning a new motor controller determines behavioral flexibility when
conditions change. Use of the new controller to navigate novel start/end locations was impaired when explicit
knowledge of the correct training sequence was provided. We interpret this inability to transfer knowledge
as the consequence of biasing early learning toward a model-free process, which resulted in weakened
acquisition of the underlying motor controller. In Experiment Two we show that the model-based learning
that allowed transfer in Experiment One is insufficient for a complete tree search of future movements.
However, in Experiment Three we find that the ability to roll-out a complete motor plan is possible, and
dependent on sufficient experience with the motor controller. Completing the full tree search necessary to
formulate this motor plan is computationally taxing, as evidenced by increased reaction times when the
number of planned steps increases. Planning with a controller requires extensive training, which reflects the
commonly arduous experience of mastering a new motor skill. Our results, and a preliminary modeling
analysis, are consistent with the idea that a model-based process underlies effective learning of a motor
controller.

To be entirely consistent with reinforcement learning theory, model-based processes should eventually give-
way to model-free processes in development of a motor controller. We anticipate the next evolution of the
controller to include some caching of responses, such that there isn’t a reaction time cost for its use. This
would represent the highest level of skill in motor control.

Figure 3. Test-trial accuracy
plotted as proportion of hits (A)
and reaction time in seconds (B)
for each target distance. Error
bars represent standard error. In
panel (A) the horizontal lines
represent approximate chance
of hit with random guessing. One Two Three Four

0

0.25

0.5

0.75

1

Accuracy on Test by Target Distance

A
cc
ur
ac
y
(H
it
R
at
e)

R
ea
ct
io
n
Ti
m
e
(s
)

A B

One Two Three Four
0

0.5

1

1.5

2

2.5

3

3.5

4
RT on Test by Target Distance

3-Key Controller
6-Key Controller

Paper # 109 15

References
[1] Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor

primitives. Nature, 407(6805), 742.
[2] Pine, Z. M., Krakauer, J. W., Gordon, J., & Claude, G. C. (1996). Learning of scaling factors and reference

axes for reaching. NeuroReport, 7, 2357-2361.
[3] Fine, M. S., & Thoroughman, K. A. (2006). Motor adaptation to single force pulses: sensitive to direction but

insensitive to within-movement pulse placement and magnitude. Journal of neurophysiology, 96(2), 710-720.
[4] Fine, M. S., & Thoroughman, K. A. (2007). Trial-by-trial transformation of error into sensorimotor

adaptation changes with environmental dynamics. Journal of Neurophysiology, 98(3), 1392-1404.
[5] Fitts, P. M., & Posner, M. I. (1967). Human performance. Wadsworth Publishing Co. Belmont, CA.
[6] Haith, A. M., & Krakauer, J. W. (2013). Model-based and model-free mechanisms of human motor learning.

In Progress in motor control (pp. 1-21). Springer, New York, NY.
[7] Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2(2), 153-166.
[8] Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. The

Quarterly Journal of Experimental Psychology Section B, 34(2b), 77-98.
[9] Dickinson, A. (1985). Actions and habits: the development of behavioural autonomy. Phil. Trans. R. Soc.

Lond. B, 308(1135), 67-78.
[10] Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of

rats. Cerebral cortex, 13(4), 400-408.
[11] Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and

dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12), 1704.
[12] Fermin, A., Yoshida, T., Ito, M., Yoshimoto, J., & Doya, K. (2010). Evidence for model-based action planning

in a sequential finger movement task. Journal of motor behavior, 42(6), 371-379.

Paper # 109 16

Rate-Distortion Theory and Computationally Rational
Reinforcement Learning

Rachel A. Lerch & Chris R. Sims
Department of Cognitive Science
Rensselaer Polytechnic University

Troy, NY 12180
lerchr2@rpi.edu — simsc3@rpi.edu

Abstract

We examine reinforcement learning (RL) in settings where there are information-theoretic constraints placed on the
learner’s ability to encode and represent a behavioral policy. This situation corresponds to a challenge faced by both
biological and artificial intelligent systems that must seek to act in a near-optimal fashion while facing constraints on the
ability to process information. We show that the problem of optimizing expected utility within capacity-limited learning
agents maps naturally to the mathematical field of rate-distortion (RD) theory. RD theory is the branch of information
theory that provides theoretical bounds on the performance of lossy compression. By applying the RD framework to
the RL setting, we develop a new online RL algorithm, Capacity-Limited Actor-Critic (CL-AC), that optimizes a tradeoff
between utility maximization and information processing costs. Using this algorithm in a discrete gridworld environment,
we first demonstrate that agents with capacity-limited policy representations naturally avoid “policy overfitting” and
exhibit superior transfer to modified environments, compared to policies learned by agents with unlimited information
processing resources. Second, we introduce a capacity-limited policy gradient theorem that enables the extension of our
approach to large-scale or continuous state spaces utilizing function approximation. We demonstrate our approach using
the continuous Mountain Car task.

Keywords: Reinforcement Learning, Information Theory,
Rate-Distortion Theory, Computational Rationality

Acknowledgements

This research was supported by NSF grant DRL-1560829 and a grant from the RPI-IBM Artificial Intelligence Research
Collaboration (AIRC). We would like to thank Matt Reimer, Tim Klinger, Miao Lui & Gerald Tesauro at IBM TJ Watson
Research Center for their helpful comments and feedback on this work.

Paper # 116 17

1 Introduction
We consider the problem of capacity-limited RL, in which learning agents lack the ability to store or represent behavioral
policies with perfect fidelity. This work is motivated by the framework of computational rationality [1], an emerging
paradigm for understanding biological and artificial intelligence as optimizing performance subject to constraints on infor-
mation processing. Previous research has identified fundamental information processing limits on human reinforcement
learning [2]. Building on this work, we examine constraints on the policy representation of the learner, formally defined in
the information theoretic sense, and demonstrate the implications of such constraints on self-guided learning.

In the standard RL setting [3], the agent’s goal is to learn an optimal policy, π∗(a | s). In the present work, we consider
this policy function as an information channel, that takes as input a current state, and produces an action to be followed
(e.g., S → A). To limit the amount of information stored about the policy or environment, we apply the framework of
rate-distortion (RD) theory [4]. Within RD theory, an information channel is abstractly modeled as a conditional probability
distribution p(y | x), which describes the probability of an input signal x, drawn from a source distribution p(x), producing
an output signal y. Optimal performance for this channel is defined by a loss function, L(x, y) that quantifies the cost of a
signal x ∈ X being transmitted as the value y ∈ Y . The goal for the channel is to minimize the cost of communication error
specified by the expected loss, E [L(x, y)]. Lastly, for a given source p(x) and channel distribution p(y | x), information
theory provides a measure of the amount of information communicated (on average) by the channel in terms of its mutual
information, I(X,Y).

Any physical communication channel is necessarily limited to transmitting information at a finite rate. Consequently, an
optimally efficient communication channel is one that minimizes expected loss subject to this constraint:

Goal: Minimize E [L(x, y)]w.r.t. p(y | x), subject to I(X,Y) ≤ C. (1)
In [5], Blahut developed an efficient iterative algorithm for solving this problem for channels with discrete input and
output alphabets. The Blahut algorithm minimizes the combined performance objective I(X,Y)+βE [L(x, y)] with respect
to p(y | x), where the parameter β > 0 controls the tradeoff between the expected loss and information rate of the channel.

Rather than being concerned with the mapping of abstract communication signals x and y, in the RL setting we are
interested in a channel that is concerned with the mapping from states to actions (policy mapping). In the present work,
we limit our attention to exploring the impact of capacity limits on the policy mapping, although in principle the same
approach could be extended to the value function as well. A critical component in the application of RD theory to RL
is the specification of an appropriate loss function for a capacity limited policy channel. To that end, we introduce the
Bellman loss function:

L?(s, a) = max
a′

q?(s, a′)− q?(s, a) (2)

= v?(s)−
∑

s′,r

p(s′, r | s, a)(r + γv?(s′)). (3)

This quantity is, by definition, the loss in expected utility associated with starting in state s and following action a, relative
to the best possible action for that state. Intuitively, the Bellman loss function says that when there is little difference
between the long-term cost of actions in a given state, there is no need to precisely encode a policy that distinguishes
between them. As we will demonstrate, minimizing the Bellman loss subject to an information constraint also motivates
exploratory behavior, without requiring an added intrinsic curiosity-based reward signal.

2 Properties of Capacity-Limited Policies
In this section, we demonstrate the implications of adopting a capacity limited policy in a simple 2D gridworld (Figure 1A).
The goal in this task is to navigate from a starting state to a terminal goal position. The states (S) are defined by the current
location of the agent within a 12x12 maze. The available actions (A) correspond to taking a step in one of four cardinal
directions (north, south, east, west). The agent incurs a 1-point penalty per step, and a 10-point penalty for colliding with
walls. Hence the objective is finding a least-cost path to the target.

The Bellman loss function defined in the previous section requires knowledge of the optimal value function. We start
by assuming that V ?(s) is known (solved via dynamic programming). The goal of the demonstration is to explore the
resulting changes in behavior as capacity limits are varied on the policy function π(a | s).
As an intuitive example, one can consider two kinds of behavioral policies for a gridworld environment. In one case, there
are no information constraints, and the agent simply remembers the optimal action associated with each state. As the
size of the state or action space grows, or for physical agents with limited computational resources, such a policy may be
infeasible to store with perfect fidelity. In the case of information constraints, a ‘compressed’ policy might consist of a
general plan (with high probability, move north or east) while storing more detailed instructions for key states where
there are high costs for error.

To explore this idea, we apply the Blahut algorithm to obtain compressed policy channels at various levels of channel
capacity. Figure 1B illustrates the fundamental tradeoff between channel capacity and performance. In this gridworld

1

Paper # 116 18

* * *

0

2

*

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

* *

* i

ii

Information Rate (bits/state)

C
os

t r
el

at
iv

e
to

 o
pt

im
al

 p
ol

ic
y

iii

bits/state bits/state bits/state

En
tro

py
 (b

its
)

!! !! ! !

0

2

bits/state bits/state bits/state

En
tro

py
 (b

its
)

St
at

e
oc

cu
pa

tio
n

pr
ob

ab
ilit

y

0.00

0.04

A

B

C

D

bits/state bits/state bits/state

i

i

ii

ii

iii

iii

Figure 1: A) Optimal deterministic policy for each state. B) Each point along the curve represents an optimal policy that
achieves the maximal expected value at a given rate of information. C) 3 policies illustrated at different points along the
information rate distortion tradeoff curve (i–iii). Colors in the plots illustrate the entropy of the policy in each state of
the maze D) Average probability of occupying each state for learned policies (online) using 3 different information rate
constraints for a similar maze (averaged over 1,000 episodes).

environment, specifying an optimal deterministic policy requires 2 bits per state (the maximum entropy with 4 possible
actions). The results illustrate that behavioral policies can be substantially compressed (by over half) without incurring
significant cost to the agent.

Figure 1C illustrates three different capacity-limited policies (C = 0.1, 0.5, 1.0 bits per state, on average), indicated by
the labeled plot markers in the bottom left plot. The colors for each state indicate the entropy of the policy in that state.
With very limited capacity the agent’s policy is near-random. With increasing capacity, the agent focuses its limited
computational resources on representing important features of the environment with high fidelity (e.g. learning how to
navigate key corridors), while using a stochastic policy in open areas of the maze. Notably, Figure 1C also illustrates that a
form of exploration/exploitation tradeoff also emerges automatically from capacity-limited policies: behavior is naturally
more stochastic (exploratory) in states where the costs of error are unknown, or known to be small. Lastly, Figure 1D
illustrates the probability of occupying each state according to each of the three policies. At very low information rates, a
policy encodes little more than “move up and right”, and consequently becomes trapped in corners of the maze with high
probability (Figure 1D(i)).

3 On-line Learning via Capacity-Limited Actor-Critic (CL-AC)
In this section, we consider the problem of simultaneously learning a value function online, and from it gradually
improving a capacity-limited policy. We develop our algorithm using the Actor-Critic (AC) framework in RL. Because of
the recursive dynamics between an agent’s current policy, future exploration, and updated policy, it is not a priori obvious
that a capacity-limited agent will be able to discover or learn an effective policy.

Computing the Bellman loss function requires knowledge of the optimal value function for the task, v?(s). The approach
we adopt is simply to substitute an estimate of the value function, v(s), which is learned in an on-line manner using
standard temporal difference (TD) learning. The estimated loss functionL(s, a) is updated via the same temporal difference
error. The required elements for learning are a starting state and action, (s, a), the observed sample reward r and resulting
state s′, along with the current estimate of the value function. This yields:

L(s, a)← L(s, a) + η [v(s)− (r + γv(s′))− L(s, a)] . (4)

Note that the first two terms inside the square brackets are online samples of the Bellman loss function (Eq. 3), substituting
the estimated value function in place of the optimal value function. In the current work a common learning rate parameter
is adopted for both the value and loss function. With an estimated loss function (Eq. 4), it is possible to obtain an optimal
capacity-limited channel for that loss function using the Blahut algorithm [5].

The CL-AC algorithm was tested on the gridworld environment introduced previously, with varying values of the
parameter β. For each, performance was averaged across 2,500 randomly generated maze environments. The learning
rate was fixed at η = 0.1, and no temporal discounting was assumed. The results are shown in Figure 2, left panel. As

2

Paper # 116 19

Trained maze

Generalization

Information rate (bits / state)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

M
ea

n
to

ta
l r

ew
ar

d
(1

00
 e

pi
so

de
s)

–1
00

00
0

0

M
ea

n
re

w
ar

d
on

 a
lte

re
d

m
az

e
–2

00
–1

00
0

Information rate (bits / state)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 2: Left: Average accumulated reward for CL-AC across 100 training episodes. Middle: Example training and
generalization environments. Added walls are highlighted in red. Right: Average generalization performance for CL-AC,
as a function of the trade-off parameter β.

before, we demonstrate that the representation of a behavioral policy can be extremely low-fidelity while still allowing
near-optimal performance.

In machine learning, it is commonly understood that complex models run the risk of overfitting: good performance on
a training set, but generalizing poorly to new environments. This raises the question of whether RL agents also suffer
from overfitting in terms of their learned policies, and whether capacity-limited RL could alleviate this problem. To
test this idea, we trained RL agents in randomly constructed gridworlds for 100 episodes. At the end of training, we
modified the maze by adding 8 additional walls placed in random locations, subject to the constraint that a viable path
from the start state to terminal state existed (2, middle). We compared the performance of the CL-AC algorithm using 100
different values of the capacity tradeoff parameter β, averaged across 2,500 random maze environments. Generalization
performance was evaluated in terms of the expected value of the learned policy, as applied to the altered gridworld maze.

Intuitively, one might think that capacity-limited agents should always be outperformed by higher capacity agents that
are able able to represent their policies with greater fidelity. Our results demonstrate that this is not the case. Figure 2,
right panel, illustrates that generalization performance is highest at intermediate levels of channel capacity (0.5 bits per
state). An intuitive account for this result lies in the concept of policy overfitting. Capacity limits force learning agents to
concentrate representational resources on critical states, at the expense of increasing stochasticity in states where the costs
for error are less critical. Consequently, when particular paths are blocked, the capacity-limited agents retain exploratory
policies that are likely to be viable alternative solutions. These results reiterate the benefits imparted by capacity-limited
policies, as they naturally impart regularization in learning systems towards policies that are robust, and more effectively
generalize past experiences to new environments.

4 Extension to Continuous State Spaces
In continuous or complex environments, modern RL approaches require some form of function approximation (such
as a neural network) to represent value functions and policies [3]. In order to extend CL-AC to this setting, we have
developed a novel stochastic gradient descent (SGD) version of the Blahut algorithm. Following the derivation of the
standard policy gradient theorem [3], we introduce a parameterized policy, πθ(a | s), and define a performance objective
that our policy should seek to optimize with respect to θ. The objective function reflects the fundamental RD tradeoff
between information rate and expected loss associated with following the policy: J(θ) = (1− β)I(s, a) + βE [L(s, a)].
Note that we have re-parameterized β, such that when β = 1 the objective is equivalent to unconstrained utility
maximization. Whereas Blahut developed an efficient coordinate descent algorithm for minimizing this objective in the
discrete setting, we instead adjust the continuous parameters of the policy θ via gradient descent: θ ← θ − α∇θJ(θ).
As computing the mutual information requires summing or integrating over the full state space, we instead perform
stochastic gradient descent by sampling states according to the on-policy distribution, and computing the local gradient at
each state. Mathematical analysis (manuscript in preparation) shows that our approach converges in expectation to a
minimum of the objective, corresponding to an optimal, but capacity-limited policy.

In the present paper, we offer an empirical demonstration of the approach using the OpenAI Gym “Mountain Car”
environment1. In this environment, an underpowered car must climb a hill by rocking back and forth in order to build up
sufficient momentum (Fig. 3A). The state space corresponds to the continuous position and velocity of the car. The agent
has three available actions: move left, neutral, or move right. On each time step the agent incurs a cost of −1 until the car
reaches the goal at the top of the hill on the right.

1https://gym.openai.com/envs/MountainCar-v0/

3

Paper # 116 20

0.00

0.25

0.50

0.75

1.00

1.25

-1.0 -0.5 0.0 0.5

Position

H
ei

gh
t

−0.04

0.00

0.04

−1.0 −0.5 0.0 0.5

Position

Ve
lo

ci
ty

−1.0 −0.5 0.0 0.5

Position
−1.0 −0.5 0.0 0.5

Position
−1.0 −0.5 0.0 0.5

Position

−0.04

0.00

0.04

−1.0 −0.5 0.0 0.5

Position

Ve
lo

ci
ty

−1.0 −0.5 0.0 0.5

Position
−1.0 −0.5 0.0 0.5

Position
−1.0 −0.5 0.0 0.5

Position

A
C

D
B

-250

-200

-150

0.25 0.50 0.75 1.00

A
vg

. r
ew

ar
d

/ e
pi

so
de

0.00

0.25

0.50

0.75

1.00

Figure 3: A: The Mountain Car task environment. B: Policy performance (expected reward per episode) after 500 training
episodes with varying levels of β. C: Learned policies (shown as the probability of selecting the action ’right’ in each state)
at 4 levels of the parameter β. D: 100 sample episode trajectories generated from the policies illustrated in C.

Our model for the Mountain Car task used a radial basis function (RBF) network to encode the state, with a grid of
50 × 50 Gaussian units uniformly tiling the state space. A state-action value function q(s, a) was represented using a
linear combination of these features, with feature weights learned using the standard SARSA learning rule [3]. The
policy πθ(a | s) was implemented as a softmax layer with three output units corresponding to the three actions, receiving
input from the same underlying RBF feature representation. Paralleling the standard Actor-Critic framework, the policy
parameters were updated via gradient descent on each time step to minimize the (capacity-limited) performance objective.

Figure 3B illustrates the expected reward associated with varying levels of the parameter β after completing 500 training
episodes. As with the gridworld environment, the results show that the fidelity of an agent’s policy can be substantially
reduced without incurring excessive cost. We believe this may reflect a common property of natural environments, where
there are often large regions of the state space where optimal policies are either irrelevant or no better than random
choice. Computationally rational agents can capitalize on and exploit these natural task statistics, analogous to the idea of
efficient coding in perception. Figure 3C illustrates four different policies, for agents with β = {0.25, 0.5, 0.75, 1.0}, the
latter corresponding to an unlimited capacity agent. Panel D, below, illustrates 100 trajectories through the state space
generated by each of these policies. Much as in the gridworld environment, higher information rates yield increasingly
deterministic policies, but without an accompanying increase in utility to the agent. In future work we plan to explore the
generalization ability of capacity-limited policies in the mountain car environment, as well as in larger scale environments.

5 Summary
This paper describes the application of RD theory to the learning of limited yet efficient behavioral policies. We show that
such policies enable superior generalization, and naturally impart principled exploratory behavior. RD theory enforces
a budget on deterministic (exploitative) policies, and channels exploration intelligently. We further demonstrate the
extension of our approach to continuous state spaces. In aggregate, this body of work demonstrates the value of a
principled framework for the development and specification of computationally rational learning agents.

References
[1] S. J. Gershman, E. J. Horvitz, and J. B. Tenenbaum, “Computational rationality: A converging paradigm for intelligence

in brains, minds, and machines,” Science, vol. 349, no. 6245, pp. 273–278, 2015.
[2] A. G. Collins and M. J. Frank, “How much of reinforcement learning is working memory, not reinforcement learning?

A behavioral, computational, and neurogenetic analysis,” European J. of Neuroscience, vol. 35, no. 7, pp. 1024–1035, 2012.
[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2nd ed., 2018.
[4] T. Berger, Rate distortion theory: A mathematical basis for data compression. Prentice-Hall, 1971.
[5] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE transactions on Information Theory,

vol. 18, no. 4, pp. 460–473, 1972.

4

Paper # 116 21

Searching for Markovian Subproblems
to Address Partially Observable Reinforcement Learning

Rodrigo Toro Icarte
Department of Computer Science

University of Toronto & Vector Institute
Toronto, Ontario, Canada

rntoro@cs.toronto.edu

Ethan Waldie
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

ethan.waldie@mail.utoronto.ca

Toryn Q. Klassen
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada
toryn@cs.toronto.edu

Richard Valenzano
Element AI

Toronto, Ontario, Canada
rick.valenzano@elementai.com

Margarita P. Castro
Department of Mechanical and Industrial Engineering

University of Toronto
Toronto, Ontario, Canada

mpcastro@mie.utoronto.ca

Sheila A. McIlraith
Department of Computer Science

University of Toronto & Vector Institute
Toronto, Ontario, Canada

sheila@cs.toronto.edu

Abstract

In partially observable environments, an agent’s policy should often be a function of the history of its interaction with the
environment. This contradicts the Markovian assumption that underlies most reinforcement learning (RL) approaches.
Recent efforts to address this issue have focused on training Recurrent Neural Networks using policy gradient methods.
In this work, we propose an alternative – and possibly complementary – approach. We exploit the fact that in many
cases a partially observable problem can be decomposed into a small set of individually Markovian subproblems that
collectively preserve the optimal policy. Given such a decomposition, any RL method can be used to learn policies for
the subproblems. We pose the task of learning the decomposition as a discrete optimization problem that learns a form
of Finite State Machine from traces. In doing so, our method learns a high-level representation of a partially observable
problem that summarizes the history of the agent’s interaction with the environment, and then uses that representation
to quickly learn a policy from low-level observations to actions. Our approach is shown to significantly outperform
standard Deep RL approaches, including A3C, PPO, and ACER, on three partially observable grid domains.

Keywords: Partial Observability
Reinforcement Learning
Automata Learning
Reward Machines

Acknowledgements

We gratefully acknowledge funding from CONICYT (Becas Chile), the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), and Microsoft Research.

Paper # 193 22

1 Introduction

Partially observable environments remain very challenging for RL agents because they break the Markovian assumption
with respect to the agent’s observations. As a result, agents in these environments require some form of memory to
summarize past observations. Recent approaches either encode the observation history using recurrent neural networks
[5, 10, 7] or use memory-augmented neural networks to provide the agent access to external memory [6]. We propose an
alternative approach that searches for a decomposition of the task into a small set of individually Markovian subtasks.

For example, consider the 2-keys domain shown in Figure 1c. The agent (purple triangle) receives a reward of +1 when it
reaches the coffee machine, which is always in the yellow room. To do so, it must open the two doors (shown in brown).
Each door requires a different key to open it, and the agent can only carry one key at the time. At the beginning of each
episode, the two keys are randomly located in either the blue room, the red room, or split between them. Since the agent
can only see what is in the current room, this problem is partially observable.

This problem is quite difficult for current RL approaches: A2C, ACER, and PPO performed poorly on this task even after
5 million training steps (Section 4). However, it is decomposable into a small set of Markovian subproblems. The first
involves searching for the keys. Notice that if the agent finds only one key in the red room, then (if it has learned enough
about the domain) it can deduce that the second key is in the blue room. The next subproblem is to pick up a key. This
is followed by a subproblem involving opening a door and retrieving the other key. Crucially, this last subproblem is
Markovian because the agent already knows which room the key is in based on which key they previously picked up.

Main contributions: We propose a discrete optimization-based approach that finds a high-level decomposition of a
partially observable RL problem. This decomposition splits the problem into a set of Markovian subproblems and takes
the form of a reward machine (RM) [8]. We also extend an existing method for exploiting RMs to the partially observable
case, so that we can use a found RM to quickly learn a policy from low-level observations to actions. Finally, we show that
our approach significantly outperforms several well-known policy gradient methods on three challenging grid domains.

Related work includes some early attempts to tackle partially observability in RL based on automata learning, e.g. [3, 4].
Both works rely on learning finite state machines at a low-level (over the environment observations). In contrast, our
approach relies on learning a decomposition of the problem at the abstract level given by a labelling function. This allows
our approach to also work over problems with continuous (or very large) observation spaces.

2 Preliminaries

A Markov Decision Process (MDP) is a tupleM = 〈S,A, r, p, γ〉, where S is a finite set of states, A is a finite set of actions,
r : S × A → R is the reward function, p(s, a, s′) is the transition probability distribution, and γ is the discount factor. The
objective ofM is to find a policy π∗ : S → Pr(A) that maximizes the expected discounted reward for every state s ∈ S.
When r or p are unknown but can be sampled, an optimal policy can be found using RL approaches like q-learning. This
off-policy method uses sampled experience of the form (s, a, s′, r) to update q̃(s, a), an estimate of the optimal q-function.

A Partially Observable Markov Decision Process (POMDP) is a tuple PO = 〈S,O,A, r, p, ω, γ〉, where S, A, r, p, and γ are
defined as in an MDP, O is a finite set of observations, and ω(s, o) is the observation probability distribution. At every time
step t, the agent is in exactly one state st ∈ S, executes an action at ∈ A, receives an immediate reward rt+1 = r(st, at),
and moves to the next state st+1 according to p(st, at, st+1). However, the agent does not observe st+1, and only receives
an observation ot+1 ∈ O via ω, where ω(st+1, ot+1) is the probability of observing ot+1 from state st+1 [1]. As such, many
RL methods cannot be immediately applied to POMDPs because the transition probabilities and reward function are not
necessarily Markovian w.r.t. O.

3 Learning to Decompose Partially Observable Problems

Our approach to RL in a partially observable environment has two stages. In the first, the agent solves an optimization
problem over a set of traces to find a “good” reward machine (RM)-based [8] decomposition of the environment. In
particular, we look for an RM R that can be used to make accurate one-step Markovian predictions over the traces in
the training set. In the second stage, the agent uses any standard RL algorithm to learn a policy directly from low-level
observations to actions for each subtask identified in R. If at some point R is found to make incorrect predictions,
additional traces are added to the training set and a new RM is learned. This process continues for as long as is desired.

Reward Machines under Partial Observability

Let us begin by defining RMs and identifying how a given RM can be used by an RL agent in a partially observable
environment. RMs are finite state machines that give reward on every transition, and were recently proposed as a way to
expose the structure of a reward function to an RL agent [8]. In the case of partial observability, RMs are defined over a
set of propositional symbols P that correspond to a set of high-level features the agent can detect using a labelling function

1

Paper # 193 23

L : O∅ × A∅ × O → 2P where X∅ = X ∪ {∅}. L assigns truth values to symbols in P given an environment experience
e = (o, a, o′) where o′ is the next observation after executing action a from observation o. We use L(∅, ∅, o) to assign
truth values to the initial observation. We call a truth value assignment over P an abstract observation since it provides a
high-level view of the low-level observations via L. We now formally define an RM as follows:

Definition 3.1 (reward machine). Given a set of propositional symbols P , a set of (environment) observations O, and a
set of actions A, a Reward Machine is a tuple RPOA = 〈U, u0, δu, δr〉 where U is a finite set of states, u0 ∈ U is an initial
state, δu is the state-transition function, δu : U × 2P → U , and δr is the reward-transition function, δr : U × 2P → R.

RMs decompose problems into high-level states U and define transitions using conditions defined by δu. These con-
ditions are over a set of binary properties P that the agent can detect using L. For example, consider the RM for the
2-keys domain shown in Figure 1d. We assume that the agent can use L to detect the room color (, , , and), the
objects in the current room (¤, K, and µ, where µ represents a locked door), and whether it is carrying a key (). Each
of these symbols is in P . In the figure, we use “(,)“ to denote that and are true in the current state, and all other
propositions (e.g.) are false. We also use “(,); (,)“ to say that the transition is taken if either of these sets of
propositions is satisfied. Finally, we note the figure only shows propositions sets that induce RM state changes. For all
other sets, the RM simply remains in the same state it was in the last step.

The agent starts at the initial RM state u0 and stays there until it observes the red room with no keys (), one key (,¤) or
two keys (,¤,¤), or similarly for the blue room. Each of these conditions is associated with a unique arrow indicating
the state to which the RM transitions. If the agent enters the blue room and there is one key (,¤), then the RM state
changes from u0 to u1. The transitions in the RM are also associated with a reward via δr.

When learning policies given an RM, one simple approach is to learn a policy π(o, x) that considers the current observa-
tion o ∈ O and the current RM state x ∈ U . While a partially observable problem might be non-Markovian over O, it
can be Markovian over O × U for some RM RPOA. We call such an RM a perfect RM. For example, Figure 1d shows a
perfect RM for the 2-keys domain given a labelling function that detects events , , ¤, and . It is perfect because it can
correctly keep track of the locations of the keys once this is determined, which is all that the agent needs to remember in
order to decompose the problem in a Markovian way. Formally, we define a perfect RM for POMDP PO as follows:

Definition 3.2. An RMRPOA = 〈U, u0, δu, δr〉 is considered perfect for a POMDP PO = 〈S,O,A, r, p, ω, γ〉with respect to
a labelling function L if and only if for every trace o0, a0, . . . , ot, at generated by any policy over PO, the following holds:
Pr(ot+1, rt+1|o0, a0, . . . , ot, at) = Pr(ot+1, rt+1|ot, xt, at) where x0 = u0 and xt = δu(xt−1, L(ot−1, at−1, ot)) .

Interestingly, we can formally show that if the set of belief states [1] for the POMDP PO is finite, then there exists a perfect
RM for PO. In addition, we can show that the optimal policies for perfect RMs are also optimal for PO.

From Traces to Reward Machines

We now consider the problem of learning a perfect RM from traces, assuming one exists w.r.t. the given labelling function
L. Since a perfect RM transforms the original problem into a Markovian problem over O × U , we prefer RMs that
accurately predict the next observation o′ and the immediate reward r from the current observation o, the RM state
x, and the action a. Instead of trying to predict the observations themselves, we propose a low-cost alternative which
focuses on a necessary condition for a perfect RM: the RM must correctly predict what is possible and impossible at the
abstract level given by L. It is impossible, for instance, to be at u3 in the RM from Figure 1d and observe (,¤), because
the RM is at u3 iff the agent saw that the red room was empty or that both keys were in the blue room.

This idea is formalized in our optimization model (Figure 1e). Let T = {T0, . . . , Tn} be a set of traces, where each trace
Ti is a sequence of observations, actions, and rewards: Ti = {oi,0, ai,0, ri,0, . . . , oi,ti , ai,ti , ri,ti}. We now look for an RM
〈U, u0, δu, δr〉 that can be used to predict L(ei,t+1) from L(ei,t) and the current RM state xi,t, where ei,t+1 is the experience
(oi,t, ai,t, oi,t+1) and ei,0 is (∅, ∅, oi,0) by definition. The model parameters are the set of traces T , the set of propositional
symbols P , the labelling function L, and a maximum number of states in the RM umax. The model also uses the sets
I = {0 . . . n} and Ti = {0 . . . ti − 1}, where I contains the index of the traces and Ti their time steps. The model has two
auxiliary variables xi,t and Nu,l. Variable xi,t ∈ U represents the state of the RM after observing trace Ti up to time t.
Variable Nu,l ⊆ 2P is the set of all the next abstract observations seen from the RM state u and the abstract observations
l at some point in T . In other words, l′ ∈ Nu,l iff u = xi,t, l = L(ei,t), and l′ = L(ei,t+1) for some trace Ti and time t.

Constraints (2) and (3) ensure that we find a well-formed RM, while constraints (4) to (6) ensure that the found RM
satisfies the current set of traces. Constraint (7) and (8) ensure that the Nu,l sets contain at least every L(ei,t+1) that has
been seen right after l and u in P . The objective function (1) comes from maximizing the log-likelihood for predicting
L(ei,t+1) using a uniform distribution over all the possible options given by Nu,l. A key property of this formulation is
that any perfect RM is optimal with respect to the objective function in equation (1) when the number of traces (and their
lengths) tends to infinity, if the traces are collected by a policy π such that π(a|o) > ε for all o ∈ O and a ∈ A.

For solving this optimization problem, we found the local search algorithm Tabu search [2] to be effective. This method
starts from an arbitrary feasible solution. It then iteratively examines all feasible “neighbouring” solutions, and moves

2

Paper # 193 24

♣ ♠ �

♣ ♠ �

N

♣

(a) Symbol domain.

(b) Cookie domain.

K

¤

¤

(c) 2-keys domain.

u0

u1 u2u3

u4 u5

u6

(,¤);(,¤) (,¤,¤);
()

(,¤,¤);
()

, , , ,¤, ,¤

, ,

(d) A perfect RM.

minimize
〈U,u0,δu,δr〉

∑

i∈I

∑

t∈Ti

log(|Nxi,t,L(ei,t)|) (1)

s.t. 〈U, u0, δu, δr〉 ∈ RPOA (2)
|U | ≤ umax (3)
xi,t ∈ U ∀i ∈ I, t ∈ Ti (4)
xi,0 = u0 ∀i ∈ I (5)
xi,t+1 = δu(xi,t, L(ei,t+1)) ∀i ∈ I, t ∈ Ti (6)

Nu,l ⊆ 2P ∀u ∈ U, l ∈ 2P (7)
L(ei,t+1) ∈ Nxi,t,L(ei,t) ∀i ∈ I, t ∈ Ti (8)

(e) Optimization model for learning RMs.

Figure 1: Our domains, a perfect RM for the keys domain, and our optimization model.

to the neighbour with the best evaluation according to the objective function. For us, neighbouring RMs are defined as
those that differ by exactly one transition. When a time limit is hit, the best seen solution is returned. Tabu search also
maintains a set of states, the Tabu list, and prunes them from the “neighbouring” solutions to avoid revisiting them.

Finding Policies For Learned Reward Machines

Once we have learned an RM, we can use any RL algorithm to learn a policy π(o, u), by treating the combination of o
and u as the current state. However, doing so does not exploit the problem structure that is exposed by the RM. To this
end, an approach called Q-Learning for RMs (QRM) was proposed [8]. QRM learns one q-function q̃u (i.e., policy) per RM
state u ∈ U . Then, given any sample transition, the RM can be used to emulate how much reward each q-value would
receive from every RM state. Formally, experience e = (o, a, o′) is transformed into a valid experience (〈o, u〉, a, 〈o′, u′〉, r)
for training q̃u for each u ∈ U , where u′ = δu(u, L(e)) and r = δr(u, L(e)). Hence, any off-policy learning method can
take advantage of these “synthetically” generated experiences to train every q-function q̃u. When q-learning is used to
learn each policy, QRM is guaranteed to converge to an optimal policy when the problem is fully-observable.

To apply QRM on a learned RM in a partially observable environment, we must first learn values for the RM’s reward
function δr from the set of training traces T . We do so by setting δr(u, l) as its empirical expectation over T . In addition,
we must handle an issue related to importance sampling. An experience (o, a, o′) might be more or less likely depending
on the RM state that the agent was in when the experience was collected. For example, experience (o, a, o′) might be
possible in one RM state ui but not in uj . Updating the policy for uj using (o, a, o′) would then introduce an unwanted
bias to q̃uj . We handle this issue by only “transferring” an experience (o, a, o′) from ui to uj , if the current RM indicates
that experience is possible in uj . For example, if some experience in Figure 1c consists of entering the red room and
seeing only one key, then this experience will not be used to update the policies for states u2, u3, u4, and u6 of the perfect
RM in Figure 1d. While this approach will not address the problem in all environments, we leave that as future work.

Simultaneously Learning a Reward Machine and a Policy

We now describe our overall approach for simultaneously finding an RM and exploiting that RM to learn a policy. Our
approach starts by collecting a training set of traces T generated by a random policy during tw “warmup” steps. This set
of traces is used to find an initial RMR using Tabu search. The algorithm then initializes policy π, sets the RM state to the
initial state u0, and sets the current label l to the initial abstract observation L(∅, ∅, o). The standard RL learning loop is
then followed: an action a is selected following π(o, x), and the agent receives the next observation o′ and the immediate
reward r. The RM state is then updated to x′ = δu(x, L(o, a, o

′)) and the policy π is improved using whatever RL method
is being deployed using the last experience (〈o, x〉, a, r, 〈o′, x′〉). Note that in an episodic task, the environment and RM
are reset whenever a terminal state is reached.

If on any step, there is evidence that the current RM might not be the best one, our approach will attempt to find a new
one. Recall that the RM R was selected using the cardinality of its prediction sets N (1). Hence, if the current abstract
observation l′ is not in Nx,l, adding the current trace to T will increase the size of Nx,l for R. As such, the cost of R will
increase and it may no longer be the best RM. Thus, if l′ 6∈ Nx,l, we add the current trace to T and search for a new RM.
Recall that we use Tabu search, though any discrete optimization method could be applied. Our method only uses the
new RM if its cost is lower thanR’s. If the RM is updated, a new policy is learned from scratch.

4 Evaluation and Discussion

We tested our approach on three partially observable grid domains, each with the same layout of three rooms with a con-
necting hallway. The agent can move in the four cardinal directions and can only see what is in the current room. These
are stochastic domains where the outcome of an action randomly changes with a 5% probability. The first environment is

3

Paper # 193 25

Symbol domain

0 1 · 106 2 · 106

0

200

400

Training steps

R
ew

ar
d

Cookie domain

0 1 · 106 2 · 106 3 · 106
0

50

100

150

200

Training steps

R
ew

ar
d

2-keys domain

0 2 · 106 4 · 106
0

50

100

Training steps

R
ew

ar
d

Symbol domain

103.7 103.8 103.9

103.7

103.8

103.9

Perfect RM cost

L
ea

rn
ed

R
M

co
st

Cookie domain

103.7 103.8 103.9 104
103.7

103.8

103.9

104

Perfect RM cost

L
ea

rn
ed

R
M

co
st

2-keys domain

103.8 104 104.2

103.8

104

104.2

Perfect RM cost

L
ea

rn
ed

R
M

co
st

Legend: DDQN A2C PPO ACER LRM + DDQN LRM + DQRM

Figure 2: Left: Total reward collected every 10, 000 training steps. It shows the median performance over 30 runs and percentile 25 to
75 in the shadowed area for LRM approaches. The maximum performance is reported for the other approaches. Right: Comparison
between the cost of the perfect RM and the cost of RMs found by Tabu search.

the symbol domain (Figure 1a). It has three symbols♣,♠, and � in the red and blue rooms. One symbol from {♣,♠,�} and
possibly an up or down arrow are randomly placed at the yellow room. Intuitively, that symbol and arrow tell the agent
where to go (e.g., ♣ and ↑ tell the agent to go to ♣ in the north room). If there is no arrow, the agent can go to the target
symbol in either room. An episode ends when the agent reaches any symbol in the red or blue room, at which point they
receive a reward of +1 if they reached the correct symbol and −1 for an incorrect symbol. The second environment is
the cookie domain (Figure 1b). It has a button in the yellow room that, when pressed, makes a cookie randomly appear in
the red or blue room. The agent receives reward +1 for reaching the cookie and may then go back to the button to make
another one appear. Each episode is 5, 000 steps long, during which the agent should attempt to get as many cookies as
possible. The final environment is the 2-keys domain (Figure 1c) that was described in Section 1.

We tested two versions of our Learned Reward Machine (LRM) approach: LRM+DDQN and LRM+DQRM. Both learn
an RM from experience as described in Section 3, but LRM+DDQN learns a policy using DDQN [9] while LRM+DQRM
uses the modified version of QRM. In all domains, we used umax = 10, tw = 200, 000, an epsilon greedy policy with
ε = 0.1, and a discount factor γ = 0.9. The size of the Tabu list and the number of steps that the Tabu search performs
before returning the best RM found is 100. We compared against 4 baselines: DDQN [9], A2C [5], ACER [10], and PPO
[7]. To provide DDQN some memory, its input is set as the concatenation of the last 10 observations, as commonly done
by Atari playing agents. In contrast, A2C, ACER, and PPO already use an LSTM to summarize the observation history.

The left side of Figure 2 shows the total reward that each approach gets every 10, 000 training steps. The figure shows that
the LRM approaches largely outperform all the baselines. We also note that LRM+DQRM learns faster than LRM+DDQN,
but is more unstable. In particular, LRM+DQRM converged to a considerably better policy than LRM+DDQN in the 2-
keys domain. We believe this is due to QRM’s experience sharing mechanism that allows for propagating sparse reward
backwards faster. In contrast, all the baselines outperformed a random policy, but none make much progress on any of
the domains, even when run much longer (5, 000, 000 steps).

A key factor in the strong performance of the LRM approaches is that Tabu search finds high-quality RMs in less than
100 search steps (Figure 2, right side). In each plot, a point compares the cost of a handcrafted perfect RM with that of
an RM R that was found by Tabu search while running our LRM approaches, where the costs are evaluated relative to
the training set used to find R. Being on or under the diagonal line (as in most of the points in the figure) means that
Tabu search is finding RMs whose values are at least as good as the handcrafted RM. Hence, Tabu search is either finding
perfect reward machines or discovering that our training set is incomplete and our agent will eventually fill those gaps.

For future work, we plan on exploring the use of recurrent neural networks for finding policies for each RM subtask.
Doing so would mean that we might not have to find a perfectly Markovian high-level decomposition. We expect this
will allow us to solve problems with less informative labelling functions, and using RMs with fewer states.

References
[1] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In AAAI, pages 1023–1028, 1994.

[2] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization, pages 2093–2229. Springer, 1998.

[3] M. Mahmud. Constructing states for reinforcement learning. In ICML, pages 727–734, 2010.

[4] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite-state controllers for partially observable environments. In UAI, pages 427–436, 1999.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In ICML,
pages 1928–1937, 2016.

[6] J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and action in minecraft. In ICML, pages 2790–2799, 2016.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for high-level task specification and decomposition in reinforcement learning.
In ICML, pages 2112–2121, 2018.

[9] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In AAAI, pages 2094–2100, 2016.

[10] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224,
2016.

4

Paper # 193 26

Value Preserving State-Action Abstractions

David Abel
Department of Computer Science

Brown University
david abel@brown.edu

Nate Umbanhowar
Department of Computer Science

Brown University
umbanhowar@brown.edu

Khimya Khetarpal
Department of Computer Science

McGill University
khimya.khetarpal@mail.mcgill.ca

Dilip Arumugam
Department of Computer Science

Stanford University
dilip@stanford.edu

Doina Precup
Department of Computer Science

McGill University
dprecup@cs.mcgill.ca

Michael L. Littman
Department of Computer Science

Brown University
mlittman@cs.brown.edu

Abstract

We here introduce combinations of state abstractions and options that preserve representation of near-
optimal policies. We define φ-relative options, a general formalism for analyzing the value loss of options
paired with a state abstraction, and prove that there exist classes of φ-relative options that preserve near-
optimal behavior in any MDP.

Keywords: State Abstraction, Options, Hierarchical Reinforcement Learning

Acknowledgements

We would like to thank Silviu Pitis and Philip Amortila for helpful discussions. This work was supported
by a grant from the DARPA L2M program and an ONR MURI grant.

Paper # 179 27

r

s

�

a

MDP

Agent
o 2 O

<latexit sha1_base64="OJ96en1OwZE/9vJzlVY5ie2ZbcU=">AAAIKXicfVVbj9w0FE7LZUq4tfDIi8UIqaDsKkl3O2ylkaptK3gAdUG7bcVkunISJ2PGl2A7ux1M/gav8M6v4Q145Y9wnGR2drJbohn75JzPx9+52EkrRrUJw79v3HzjzbfeHt16x3/3vfc/+PD2nY+eaVmrjJxkkkn1IsWaMCrIiaGGkReVIpinjDxPl4+c/fkZUZpKcWxWFZlzXApa0AwbUCUSJVSghGf2aXN6exzuhu2DrgpRL4y9/jk6vTMaJbnMak6EyRjWehaFlZlbrAzNGGn8z9DOzg46wtkSl0S7Fz+pNak6xYxjVVIxDXdjKua2JJITo1bNZYwlAtwrbEiAODYLpQsdIAgoBf48QJhrp24Fs+gUesVTEFgpFe10rKw0qYGqzMFPRQspTIB0nRa0DFBRM1bBXgHK9E+1NAR2yLFeqJqBztDlzwFKU/CTSrk0OAWze9uQqBUL0Ku2FlvkZ4XCnEBQC5lPj+nyh7nleavLGx+S01ZH+0lOCqheu97mKatJY7//6rCxURgHKIpDGCb3mm0cp1vIaAKg/QMYDg4GyLxUhIgL4JeAue/Q8f4QKBUW5dplfM9tPolgCCdDpMFrh/He/SDeC4M4HjJ0+6561MFe0P6GkPMFNRcb7kOg6wHy4yeCnGeScyxym5BKNzY5wwoEyqRwzXW8qqCPGWKUU/NgGy9ACQtqkUPzE2OhyRUtFwYrJc9d0xcGyCUO1QxW6tqthPHUUjRFUfNSDCGVkjlg3HQZBJy+hW50nADXymm6vZRnzSyaw9zh7Dga7k9FTrOmQ0Db2SuA9MmF1T4ZGhUG4ybSgZU5KyPF2rhtzaE2zSyeWz9JCZzMTbfOlIRMZlIJoqZRBYcnhRYvey2UctpWcu4nZxqan9iI88YHqgV67OpN3WXToLvj6PMHCEI0aBwDNQK7bk6Eo/OYwEWiiMvc08qde6m+sAncE5xCx8GcBE76PyB+tQaCNMgcBT95nz1FmE0OaflL0+fBLIhUhNtMih9JZmoFnfloI880CBDGfAsMf6yW0MLdfD2onxt73AvXwyC/kkFUK7fvWpz11m0oIxDSxma/ad8H9WxL4W4xiLgraAY3NVFNsljfbzbOgBZUtBvaivSgQVaogNpntTaSw6W6CaUFEXFGlRTuQ2A3GGh0H0G5FdmwSsDftit3BJKB93YZcLmifh0lSJ26nLXXsGph19Ia+BqSahdew6rT+/DpjIYfyqvCs3g3Cnej7/bGDw/7j+gt7xPvU++uF3kT76H3tXfknXiZV3m/er95v4/+GP05+mv0Twe9eaNf87G39Yz+/Q8NOupZ</latexit><latexit sha1_base64="OJ96en1OwZE/9vJzlVY5ie2ZbcU=">AAAIKXicfVVbj9w0FE7LZUq4tfDIi8UIqaDsKkl3O2ylkaptK3gAdUG7bcVkunISJ2PGl2A7ux1M/gav8M6v4Q145Y9wnGR2drJbohn75JzPx9+52EkrRrUJw79v3HzjzbfeHt16x3/3vfc/+PD2nY+eaVmrjJxkkkn1IsWaMCrIiaGGkReVIpinjDxPl4+c/fkZUZpKcWxWFZlzXApa0AwbUCUSJVSghGf2aXN6exzuhu2DrgpRL4y9/jk6vTMaJbnMak6EyRjWehaFlZlbrAzNGGn8z9DOzg46wtkSl0S7Fz+pNak6xYxjVVIxDXdjKua2JJITo1bNZYwlAtwrbEiAODYLpQsdIAgoBf48QJhrp24Fs+gUesVTEFgpFe10rKw0qYGqzMFPRQspTIB0nRa0DFBRM1bBXgHK9E+1NAR2yLFeqJqBztDlzwFKU/CTSrk0OAWze9uQqBUL0Ku2FlvkZ4XCnEBQC5lPj+nyh7nleavLGx+S01ZH+0lOCqheu97mKatJY7//6rCxURgHKIpDGCb3mm0cp1vIaAKg/QMYDg4GyLxUhIgL4JeAue/Q8f4QKBUW5dplfM9tPolgCCdDpMFrh/He/SDeC4M4HjJ0+6561MFe0P6GkPMFNRcb7kOg6wHy4yeCnGeScyxym5BKNzY5wwoEyqRwzXW8qqCPGWKUU/NgGy9ACQtqkUPzE2OhyRUtFwYrJc9d0xcGyCUO1QxW6tqthPHUUjRFUfNSDCGVkjlg3HQZBJy+hW50nADXymm6vZRnzSyaw9zh7Dga7k9FTrOmQ0Db2SuA9MmF1T4ZGhUG4ybSgZU5KyPF2rhtzaE2zSyeWz9JCZzMTbfOlIRMZlIJoqZRBYcnhRYvey2UctpWcu4nZxqan9iI88YHqgV67OpN3WXToLvj6PMHCEI0aBwDNQK7bk6Eo/OYwEWiiMvc08qde6m+sAncE5xCx8GcBE76PyB+tQaCNMgcBT95nz1FmE0OaflL0+fBLIhUhNtMih9JZmoFnfloI880CBDGfAsMf6yW0MLdfD2onxt73AvXwyC/kkFUK7fvWpz11m0oIxDSxma/ad8H9WxL4W4xiLgraAY3NVFNsljfbzbOgBZUtBvaivSgQVaogNpntTaSw6W6CaUFEXFGlRTuQ2A3GGh0H0G5FdmwSsDftit3BJKB93YZcLmifh0lSJ26nLXXsGph19Ia+BqSahdew6rT+/DpjIYfyqvCs3g3Cnej7/bGDw/7j+gt7xPvU++uF3kT76H3tXfknXiZV3m/er95v4/+GP05+mv0Twe9eaNf87G39Yz+/Q8NOupZ</latexit><latexit sha1_base64="OJ96en1OwZE/9vJzlVY5ie2ZbcU=">AAAIKXicfVVbj9w0FE7LZUq4tfDIi8UIqaDsKkl3O2ylkaptK3gAdUG7bcVkunISJ2PGl2A7ux1M/gav8M6v4Q145Y9wnGR2drJbohn75JzPx9+52EkrRrUJw79v3HzjzbfeHt16x3/3vfc/+PD2nY+eaVmrjJxkkkn1IsWaMCrIiaGGkReVIpinjDxPl4+c/fkZUZpKcWxWFZlzXApa0AwbUCUSJVSghGf2aXN6exzuhu2DrgpRL4y9/jk6vTMaJbnMak6EyRjWehaFlZlbrAzNGGn8z9DOzg46wtkSl0S7Fz+pNak6xYxjVVIxDXdjKua2JJITo1bNZYwlAtwrbEiAODYLpQsdIAgoBf48QJhrp24Fs+gUesVTEFgpFe10rKw0qYGqzMFPRQspTIB0nRa0DFBRM1bBXgHK9E+1NAR2yLFeqJqBztDlzwFKU/CTSrk0OAWze9uQqBUL0Ku2FlvkZ4XCnEBQC5lPj+nyh7nleavLGx+S01ZH+0lOCqheu97mKatJY7//6rCxURgHKIpDGCb3mm0cp1vIaAKg/QMYDg4GyLxUhIgL4JeAue/Q8f4QKBUW5dplfM9tPolgCCdDpMFrh/He/SDeC4M4HjJ0+6561MFe0P6GkPMFNRcb7kOg6wHy4yeCnGeScyxym5BKNzY5wwoEyqRwzXW8qqCPGWKUU/NgGy9ACQtqkUPzE2OhyRUtFwYrJc9d0xcGyCUO1QxW6tqthPHUUjRFUfNSDCGVkjlg3HQZBJy+hW50nADXymm6vZRnzSyaw9zh7Dga7k9FTrOmQ0Db2SuA9MmF1T4ZGhUG4ybSgZU5KyPF2rhtzaE2zSyeWz9JCZzMTbfOlIRMZlIJoqZRBYcnhRYvey2UctpWcu4nZxqan9iI88YHqgV67OpN3WXToLvj6PMHCEI0aBwDNQK7bk6Eo/OYwEWiiMvc08qde6m+sAncE5xCx8GcBE76PyB+tQaCNMgcBT95nz1FmE0OaflL0+fBLIhUhNtMih9JZmoFnfloI880CBDGfAsMf6yW0MLdfD2onxt73AvXwyC/kkFUK7fvWpz11m0oIxDSxma/ad8H9WxL4W4xiLgraAY3NVFNsljfbzbOgBZUtBvaivSgQVaogNpntTaSw6W6CaUFEXFGlRTuQ2A3GGh0H0G5FdmwSsDftit3BJKB93YZcLmifh0lSJ26nLXXsGph19Ia+BqSahdew6rT+/DpjIYfyqvCs3g3Cnej7/bGDw/7j+gt7xPvU++uF3kT76H3tXfknXiZV3m/er95v4/+GP05+mv0Twe9eaNf87G39Yz+/Q8NOupZ</latexit><latexit sha1_base64="OJ96en1OwZE/9vJzlVY5ie2ZbcU=">AAAIKXicfVVbj9w0FE7LZUq4tfDIi8UIqaDsKkl3O2ylkaptK3gAdUG7bcVkunISJ2PGl2A7ux1M/gav8M6v4Q145Y9wnGR2drJbohn75JzPx9+52EkrRrUJw79v3HzjzbfeHt16x3/3vfc/+PD2nY+eaVmrjJxkkkn1IsWaMCrIiaGGkReVIpinjDxPl4+c/fkZUZpKcWxWFZlzXApa0AwbUCUSJVSghGf2aXN6exzuhu2DrgpRL4y9/jk6vTMaJbnMak6EyRjWehaFlZlbrAzNGGn8z9DOzg46wtkSl0S7Fz+pNak6xYxjVVIxDXdjKua2JJITo1bNZYwlAtwrbEiAODYLpQsdIAgoBf48QJhrp24Fs+gUesVTEFgpFe10rKw0qYGqzMFPRQspTIB0nRa0DFBRM1bBXgHK9E+1NAR2yLFeqJqBztDlzwFKU/CTSrk0OAWze9uQqBUL0Ku2FlvkZ4XCnEBQC5lPj+nyh7nleavLGx+S01ZH+0lOCqheu97mKatJY7//6rCxURgHKIpDGCb3mm0cp1vIaAKg/QMYDg4GyLxUhIgL4JeAue/Q8f4QKBUW5dplfM9tPolgCCdDpMFrh/He/SDeC4M4HjJ0+6561MFe0P6GkPMFNRcb7kOg6wHy4yeCnGeScyxym5BKNzY5wwoEyqRwzXW8qqCPGWKUU/NgGy9ACQtqkUPzE2OhyRUtFwYrJc9d0xcGyCUO1QxW6tqthPHUUjRFUfNSDCGVkjlg3HQZBJy+hW50nADXymm6vZRnzSyaw9zh7Dga7k9FTrOmQ0Db2SuA9MmF1T4ZGhUG4ybSgZU5KyPF2rhtzaE2zSyeWz9JCZzMTbfOlIRMZlIJoqZRBYcnhRYvey2UctpWcu4nZxqan9iI88YHqgV67OpN3WXToLvj6PMHCEI0aBwDNQK7bk6Eo/OYwEWiiMvc08qde6m+sAncE5xCx8GcBE76PyB+tQaCNMgcBT95nz1FmE0OaflL0+fBLIhUhNtMih9JZmoFnfloI880CBDGfAsMf6yW0MLdfD2onxt73AvXwyC/kkFUK7fvWpz11m0oIxDSxma/ad8H9WxL4W4xiLgraAY3NVFNsljfbzbOgBZUtBvaivSgQVaogNpntTaSw6W6CaUFEXFGlRTuQ2A3GGh0H0G5FdmwSsDftit3BJKB93YZcLmifh0lSJ26nLXXsGph19Ia+BqSahdew6rT+/DpjIYfyqvCs3g3Cnej7/bGDw/7j+gt7xPvU++uF3kT76H3tXfknXiZV3m/er95v4/+GP05+mv0Twe9eaNf87G39Yz+/Q8NOupZ</latexit>

⇡o
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s 2 S, s� 2 S�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(a) State and Action Abstraction in RL.

 36

s� 2 S�s
�

ao 2 O�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ⇡o

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇡�,O�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇡+
�,O�

: S ! A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b) Forming a ground policy from a policy over abstract
states and φ-relative options.

Figure 1: Reinforcement Learning with state abstraction and options: (a) an augmentation of the traditional
RL loop wherein an agent reasons in terms of abstract states and chooses among options, and (b) the process
for inducing π⇓φ,Oφ , a Markov policy in the ground MDP, from a (φ,Oφ, πφ,Oφ) triple.

1 Introduction

We here explore the role of state and action abstractions in the context of Reinforcement Learning (RL) [24],
as pictured in Figure 1a. Our main objective is to clarify which combinations of state and action abstractions
support representation of near-optimal policies in Markov Decision Processes (MDPs) [22].

A state abstraction defines an aggregation function that translates the environmental state space S into Sφ,
where usually |Sφ| � |S|. With a smaller state space, learning algorithms can learn with less computation,
space, and even samples [10, 3, 23, 13, 14]. However, throwing away information about the state space
might destroy representation of good policies. An important direction for research is to clarify which state
abstractions can preserve near-optimal behavior [9, 17, 14, 1, 2].

We take an action abstraction to be a replacement of the actions of an MDP, A, with a set of options [25], O,
which encode long-horizon sequences of actions. Options are known to aid in transfer [16, 6, 28], encourage
better exploration [4, 12, 18, 27], and make planning more efficient [20, 21].

The primary contribution of this work introduces combinations of state abstractions and options that pre-
serve representation of near-optimal behavior. We define φ-relative options, a general formalism for ana-
lyzing the value loss of pairs (φ,Oφ), and prove there are classes of φ-relative options that preserve near-
optimal behavior in any MDP.

1.1 Background

We first provide brief background on state abstractions and options.

Definition 1 (State Abstraction): A state abstraction φ : S → Sφ maps each ground state, s ∈ S into an abstract
state, sφ ∈ Sφ. We denote policies over abstract states as πφ, defined as a mapping Sφ → A.

Critically, a policy over abstract states induces a unique policy over ground states:
Remark 1. Any deterministic policy defined over abstract states, πφ : Sφ → A induces a unique policy in the
original MDP. We denote this ground policy as π⇓φ(s), and the space of all policies representable in this manner as Π⇓φ.

For each s ∈ S , we may pass it through the abstraction to yield sφ = φ(s). To specify an action, we then
query πφ(sφ). Using this mapping process we can evaluate a given abstract policy, πφ, by the value of its
induced ground policy, π⇓φ . We now define the sub-optimality induced by a given state abstraction φ.

Definition 2 (φ-Value Loss): The value loss associated with a state abstraction φ denotes the degree of sub-optimality
attained by applying the best abstract policy. More formally:

L(φ) := min
π⇓φ∈Π⇓φ

max
s∈S

V ∗(s)− V π
⇓
φ (s). (1)

1

Paper # 179 28

Next we introduce options, a popular formalism for empowering the action space of an agent.

Definition 3 (Option [25]): An option o ∈ O is a triple 〈Io, βo, πo〉, where Io ⊆ S is a subset of the state space
denoting where the option initiates; βo ⊆ S, is a subset of the state space denoting where the option terminates; and
πo : S → A is a deterministic policy prescribed by the option o.

Options define abstract actions; the three components indicate where the option o can be executed (Io),
where the option finishes (βo), and what to do in between these two conditions (πo).

2 State-Action Abstractions

Together, state and action abstractions can distill complex problems into simple ones [15, 8, 5]. Our treat-
ment of state-action abstraction is related to generating options from a bisimulation metric [11] as pro-
posed by Castro and Precup [7], but distinct from state-action homomorphisms, as explored by Ravindran
[23], Taylor et al. [26] and Majeed and Hutter [19]. We here introduce a novel means of combining state
abstractions with options, defined as follows:

Definition 4 (φ-Relative Option): For a given φ, an option is said to be φ-relative if and only if there is some
sφ ∈ Sφ such that, for all s ∈ S:

Io(s) ≡ s ∈ sφ, βo(s) ≡ s 6∈ sφ, πo ∈ Πsφ , (2)

where Πsφ : {s | φ(s) = sφ} → A is the set of ground policies defined over states in sφ. We denote Oφ as any non-
empty set that 1) contains only φ-relative options, and 2) contains at least one option that initiates in each sφ ∈ Sφ.

Intuitively, this means we define options that initiate in each abstract state and terminate once the option
leaves the abstract state. For example, in the classical Four Rooms domain, if the state abstraction turns each
room into an abstract state, then any φ-relative option in this domain would be one that initiates anywhere
in one of the rooms and terminates as soon as the option leaves that room. This gives us a powerful
formalism for seamlessly combining state abstractions and options.

We henceforth denote (φ,Oφ) as a state abstraction paired with a set of φ-relative options. We first show
that, similar to Remark 1, any (φ,Oφ) gives rise to an abstract policy over Sφ and Oφ that also induces a
unique policy in the ground MDP (over the entire ground state space). We do not here present proofs due
to space constraints.
Theorem 1. Every deterministic policy defined over abstract states and φ-relative options, πφ,Oφ : Sφ → Oφ,
induces a unique Markov policy over the original MDP, π⇓φ,Oφ : S → A. We denote Π⇓φ,Oφ as the set of policies in the
ground MDP representable by the pair (φ,Oφ) via this mapping.

This theorem gives us a means of translating a policy over φ-relative options into a ground policy over S
andA (this process is visualized in Figure 1b). Consequently, we can define the value loss associated with a
set of options paired with a state abstraction: every (φ,Oφ) pair yields a set of policies in the ground MDP,
Π⇓φ,Oφ . The value loss of φ,Oφ, then, is just the value loss of the best policy in this set.

Definition 5 ((φ,Oφ)-Value Loss): The value loss of (φ,Oφ) is the smallest degree of suboptimality achievable:

L(φ,Oφ) := min
π⇓φ,Oφ

∈Π⇓φ,Oφ

max
s∈S

V ∗(s)− V π
⇓
φ,Oφ (s). (3)

To characterize the loss of various options, we require a final definition that clarifies what is meant by
an option class. We adopt a new formalism that characterizes sets of options as containing representative
options, defined as follows.

Definition 6 (Option Class): Let Oallφ denote the set of all possible φ relative options for a given φ. For every sφ,
consider a two-place predicate on options of this set, psφ : Oallφ ×Oallφ → {0, 1}. A set of φ-relative options is said to
belong to the class defined by psφ , which we denote Oφ,p, if and only if:

∀sφ∈Sφ∀o1∈Oallφ ∃o2∈Oφ,p : psφ(o1, o2). (4)

2

Paper # 179 29

Intuitively, a class of options consists of choosing a small set of representative options from the set of all
possible options, where the other options that the representatives are intended to account for are defined
by the predicate. In the trivial case, the predicate defines equivalence; if the two options are the same, it is
true. In this case, we just recover the set of all options. Instead, we might describe a class of options as those
that transition to the same next abstract state from the given sφ; then, we need only retain one such option
to adhere to this class. Shortly, we will define two classes that possess desirable theoretical properties.

With our definitions in place, we now pose the central question of this work:

Central Question: Are there classes of options that, when paired with well-behaved state abstractions
(that is, L(φ) = εφ), yield a relatively small L(φ,Oφ)?

Our main result answers this question in the affirmative; the following two option classes preserve near-
optimality. The option classes we introduce guarantee ε closeness of values or models, building off of state
abstraction classes from prior work [9, 17, 1]. More concretely:

1. Similar Q∗-Functions (Oφ,Q∗ε): The ε-similar Q∗ predicate defines an option class where, for all sφ:

psφ(o1, o2) ≡ max
s∈S
|Q∗sφ(s, o1)−Q∗sφ(s, o2)| ≤ εQ, (5)

where:

Q∗sφ(s, o) := R(s, πo(s)) + γ
∑

s′∈S
T (s′ | s, πo(s))

(
1(s′ ∈ sφ)Q∗sφ(s′, πo) + 1(s′ 6∈ sφ)V ∗(s′)

)
. (6)

2. Similar Models (Oφ,Mε
): The ε-similar T and R predicate defines an option class where, for all sφ:

psφ(o1, o2) ≡ ||T s′s,o1 − T s
′
s,o2 ||∞ ≤ εT AND ||Rs,o1 −Rs,o2 ||∞ ≤ εR, (7)

where Rs,o and T s
′
s,o are shorthand for the reward model and multi-time model of Sutton et al. [25].

Our main result establishes the bounded value loss of these two classes.
Theorem 2. (Main Result) For any φ such that L(φ) ≤ εφ, the two introduced classes of φ-relative options satisfy:

L(φ,Oφ,Q∗ε) ≤ εφ +
εQ

1− γ , L(φ,Oφ,Mε
) ≤ εφ +

εR + |S|εTVMAX

1− γ . (8)

2.1 Discussion

We introduce φ-relative options, a simple but expressive formalism for combining state aggregation func-
tions with options. These offer analysis of the quantity L(φ,Oφ), a coherent notion of value loss extended
to capture the value loss of joint state-action abstractions. We introduce two classes of φ-relative options
that are guaranteed to preserve near-optimality in any MDP. We take this to serve as a concrete path toward
principled option discovery and use; our main direction for future work is to develop a practical option dis-
covery algorithm that 1) offers synergy with state abstraction, and 2) is guaranteed to retain near-optimal
behavior.

References
[1] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. Near optimal behavior via approximate

state abstraction. In ICML, pages 2915–2923, 2016.
[2] David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, and Lawson L.S. Wong.

State abstraction as compression in apprenticeship learning. In AAAI, 2019.
[3] David Andre and Stuart J Russell. State abstraction for programmable reinforcement learning agents.

In AAAI, pages 119–125, 2002.
[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

3

Paper # 179 30

[5] Aijun Bai and Stuart Russell. Efficient reinforcement learning with hierarchies of machines by lever-
aging internal transitions. In IJCAI, 2017.

[6] Emma Brunskill and Lihong Li. PAC-inspired option discovery in lifelong reinforcement learning. In
ICML, pages 316–324, 2014.

[7] Pablo Samuel Castro and Doina Precup. Automatic construction of temporally extended actions for
MDPs using bisimulation metrics. In EWRL, 2011.

[8] Kamil Ciosek and David Silver. Value iteration with options and state aggregation. arXiv:1501.03959,
2015.

[9] Thomas Dean and Robert Givan. Model minimization in Markov decision processes. In AAAI, 1997.
[10] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-

sition. Journal of Artificial Intelligence Research, 2000.
[11] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes.

In UAI, 2004.
[12] Ronan Fruit and Alessandro Lazaric. Exploration–exploitation in MDPs with options. AISTATS, 2017.
[13] Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in MCTS. In AAAI, 2014.
[14] Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement

learning. In ICML, pages 179–188, 2015.
[15] Anders Jonsson and Andrew G Barto. Automated state abstraction for options using the U-tree algo-

rithm. In NeurIPS, pages 1054–1060, 2001.
[16] George Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement

learning. In IJCAI, 2007.
[17] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for

MDPs. In ISAIM, 2006.
[18] Marlos C Machado, Marc G Bellemare, and Michael Bowling. A Laplacian framework for option

discovery in reinforcement learning. In ICML, 2018.
[19] Sultan Javed Majeed and Marcus Hutter. Performance guarantees for homomorphisms beyond

Markov decision processes. AAAI, 2019.
[20] Timothy Mann and Shie Mannor. Scaling up approximate value iteration with options: Better policies

with fewer iterations. In ICML, pages 127–135, 2014.
[21] Timothy A Mann, Shie Mannor, and Doina Precup. Approximate value iteration with temporally

extended actions. Journal of Artificial Intelligence Research, 2015.
[22] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &

Sons, 2014.
[23] Balaraman Ravindran. SMDP homomorphisms: An algebraic approach to abstraction in semi Markov

decision processes. 2003.
[24] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[25] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.
[26] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approximate

MDP homomorphisms. In NeurIPS, 2008.
[27] Saket Tiwari and Philip S Thomas. Natural option critic. AAAI, 2019.
[28] Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, James MacGlashan, et al. Portable

option discovery for automated learning transfer in object-oriented Markov decision processes. In
IJCAI, 2015.

4

Paper # 179 31

Bandits with Temporal Stochastic Constraints

Priyank Agrawal∗
Indian Institute of Science

Bangalore, India
priyank.93.agrawal@gmail.com

Theja Tulabandhula
University of Illinois at Chicago

Chicago, IL 60607
theja@uic.edu

Abstract

We study the effect of impairment on stochastic multi-armed bandits and develop new ways to mitigate it. Impairment
effect is the phenomena where an agent only accrues reward for an action if they have played it at least a few times in the
recent past. It is practically motivated by repetition and recency effects in domains such as advertising (here consumer
behavior may require repeat actions by advertisers) and vocational training (here actions are complex skills that can only
be mastered with repetition to get a payoff). Impairment can be naturally modelled as a temporal constraint on the
strategy space, we provide a learning algorithm that achieves sublinear regret. Our regret bounds explicitly capture the
cost of impairment and show that it scales (sub-)linearly with the degree of impairment. Beyond the primary objective
of calculating theoretical regret guarantees, we also provide experimental evidence supporting our claims.

In Summary, our contributions are three-folds: Modeling arm pull history dependent impairment effect; designing a
sublinear regret learning algorithm and showing its relevance in the past literature of reward corruption and delay and
finally, supporting our theoretical guarantees with experimental validation.

Keywords: Multi-armed-bandits, Stochastic Impairments, Stochastic History,
Doob’s Martingale

∗Additional details can be found in the full version of this work, Bandits with Temporal Stochastic Constraints available at
https://arxiv.org/abs/1811.09026

Paper # 72 32

Figure 1: Bandit learning with stochastic impairment.

1 Introduction

In the space of advertising and consumer behavior models, repetition effect [Machleit and Wilson, 1988, Campbell and
Keller, 2003] has been well studied, under which, an advertiser’s payoff (for instance, click through rate) depends on
how frequently they have presented the same ad to the same audience in the recent past. If the advertiser presents a
specific ad sporadically, then the aggregated payoff is much lower. If this ad is the best among a collection of ads, then
the advertiser will not be able to deduce this from their observations. Further, different ads may need different levels
of repetition to obtain payoffs, and this may not be known a priori to the advertiser. This phenomenon also translates
to recommendations, such as for products and movies, where repeated display of item(s) can cause positive reinforce-
ment to build over time, culminating in a conversion. And since conversions depend on the past recommendations, they
interfere with learning the true underlying (mean) payoffs of different recommendations. In the domain of skill acquisi-
tion [DeKeyser, 2007], especially those which are complex [Bosse et al., 2015], a learner may have to repeatedly try each
action several times to advance or acquire a reward. Further, they may have to repeat these actions frequently enough so
as to not lose the acquired skill [Kang, 2016].

Motivated by the above discussion, we define a new class of problems, which we call bandit learning with stochastic
impairment, to address the need for repetitions. The defining characteristic here is that a learning algorithm can only
accrue rewards if it has played the same arm enough number of times in the recent past. The amount by which the
algorithm needs to replay the same arm is a measure of impairment. The reward for playing that arm at the current time
is instantaneous. A diagram illustrating this is shown in Figure 1.

As the impairment effect is based on the history of arm pulls which is stochastic, usual multi-armed-bandits (MAB)
algorithms such as UCB1, SE, MOSS or Thompson Sampling are ineffective because one cannot directly control the
number of times an arm is played in a given time window. In fact, if we have an instance in which a couple of arms
have almost equal mean payoffs, then the aforementioned algorithms may switch between these very frequently (see
Section 4), potentially causing linear regret. We also observe that impairment setting is closely related to delay [Pike-
Burke et al., 2018, Cesa-Bianchi et al., 2018] and corruption [Lykouris et al., 2018, Gajane et al., 2017] in the reward
accrual process. As an unifying view, in all three works one can assume that there is a intermediate function that allows
an MAB algorithm to accrue some transformation of the rewards instead of the rewards themselves.

Owing to the nature of impairment effect, learning algorithms necessarily have to ensure that the arms still under con-
sideration are played frequently, perhaps in batches. In particular, if one plays an arm for a sufficiently long period of
time, then they can ensure that the instantaneous rewards are always accrued (except some at the beginning). Phase
based algorithms are a natural choice given these considerations. This family of algorithms date back to [Agrawal et al.,
1988], who considered arm switching costs. To address these issues, we develop UCB-REVISITED+, which expands on
the phase-based algorithmic template to mitigate impairments in reward accrual. In particular, UCB-REVISITED+ is
based on UCB-REVISITED [Auer and Ortner, 2010] and works under the setting when the expected impairment effect is
known. Naturally, the algorithm also works when the impairment is deterministic.

To analyze regret upper bounds for our proposed algorithm, UCB-REVISITED+, we rely on its phased operation to
distill reward sequences for each of its arm. We first consider zero-mean sequences by subtracting the mean from each
reward, then we segregate portions of the sequence corresponding to the impairment effect. Further, we construct a
version of Doob’s martingales with the associated filtration set being the entire history of rewards and arm pulls on
these sequences. Following the analysis techniques of [Auer and Ortner, 2010] and [Pike-Burke et al., 2018],where the
latter uses Freedman’s inequality and the Azuma-Hoeffding inequality based Doob’s optimal skipping theorem (see
Section 3), we finally calculate high probability bounds on the regret and show that the influence of impairment is at
best only additive. While our analysis partially overlaps with these two previous works, the random variables related to
impairment in our setting do need a qualitatively different treatment.

1

Paper # 72 33

2 Problem Definition

There are K > 1 arms in the set K. Each arm j ∈ K is associated with a reward distribution ξj , which has support [0, 1].
The mean reward for arm j is µj . µ∗ is the maximum of all µj and corresponds to the arm j∗. Define ∆j = µ∗ − µj .
One of the key aspects of this work is a novel modeling of impairment that temporally correlates the rewards accrued by
any algorithm with its past sequence of actions. Let Rt,j be the reward that would be generated if the jth arm is played
at time t. Further, let Jt ∈ K represents the arm that is played at time t. Each arm j is associated with an i.i.d. stochastic
process (impairment process) {dt,j} that controls reward accrual in the following way: the learner can only observe the
reward Rt,j if the arm j was pulled at least dt,j times in the N -most recent time steps, as:

Xt,j = Rt,jI

t∑

k=max(t−N,0)

I[Jk = j]

 ≥ dt,j

 ,

where I[] is the indicator function. For simplicity, we demonstrate our solution assuming the mean of each random
variable dt,j is equal to E[d]. The tuple 〈K, ξj , {dt,j}, N〉 completely defines a problem instance.

With this context, the learning goal is to design an online algorithm that minimizes (pseudo-) regret for a given time
horizon T , as:

RT = max
k∈[K]

E

[
T∑

t=1

Xt,k

]
− E

[
T∑

t=1

Xt,Jt

]
. (1)

Unlike the standard setting, the above terms cannot be further simplified because here the accrued rewards, {Xt,j}
depends both on the reward distribution and stochastic history of the arm pulls.

3 Algorithm and Analysis

Notation: Let m index phases. Let Tj(m) refer to the collection of times when the jth arm is played up to phase m. Xt

is the reward accrued at time t and Rt,j is the reward observed for playing arm j at time t. The sequence of parameters
{nm|m = 0, 1, 2, ...} determine the number of consecutive rounds each active arm is played in the phase m, where active
arms belong to the set Km. The estimated mean reward for arm j at the end of phase m is denoted by Xm,j .

In the mth phase, every arm in the set of active arms is played consecutively for a certain number of times, say nm times.
We creatively design nm such that the confidence gap (∆̃m) of the active arms decreases exponentially with each phase,
while eliminating the arms with ∆i/2 > ∆̃m. Our main idea is that the intelligently designed repetition strategy helps to
negate impairment effects. As nm also depends on the impairment statistics, E[d], we can also incorporate arm specific
impairment parameters by considering a suitable nm,j for the specific arm j. Here, we assume that the algorithm can
distinguish between the two possibilities: zero valued rewards and no rewards received due to impairment.

We give a constructive proof for the choice of nm such that the estimated mean reward for an arm j is atmost ∆̃m from
its true mean with high probability.
Lemma 3.1. [For details refer Lemma 4.3 in Agrawal and Tulabandhula [2018]] There exists a positive nm for which the
estimates Xm,j , calculated by the Algorithm 1 for the active arm j (j ∈ Km) and phase m, satisfy the following with
probability ≥ (1− 2

T 2):
Xm,j − µj ≤ ∆̃m/2.

Proof. We provide a proof sketch here. For any active arm j and phase m , let Sm,j denote the time in this phase
when the algorithm starts playing this arm. Similarly let Um,j denote the time in this phase when the algorithm stops
playing this arm. We define a filtration {Gs}∞s=0 by setting {G0} = {Ω, φ} and defining {Gt} to be the σ-algebra over
(X1, X2....Xt, J1, J2....Jt, d1,J1 , d2,J2dt,Jt , R1,J1 , R2,J2 ...Rt,Jt). Then, it follows that for each arm j:

m∑

i=1

Ui,j∑

t=Si,j

(Xt − µj) ≤ wm =

m∑

i=1

Ui,j∑

t=Si,j

(Rt,Jt − µj)−
m∑

i=1

Ui,j∑

t=Si,j

Rt,JtI{t ≤ Si,j + dt,Jt}. (2)

Define Ai,t := Rt,JtI{t ≤ Si,j + dt,Jt} and also Mt :=
∑m
i=1Ai,tI{Si,j ≤ t ≤ Ui,j}. We rewrite (2) in terms of Mt as:

m∑

i=1

Ui,j∑

t=Si,j

(Xt − µj) ≤ wm =

m∑

i=1

Ui,j∑

t=Si,j

(Rt,Jt − µj)
︸ ︷︷ ︸

Term 1

+

Um,j∑

t=1

(E[Mt|Gt−1]−Mt)

︸ ︷︷ ︸
Term 2

−
Um,j∑

t=1

E[Mt|Gt−1]

︸ ︷︷ ︸
Term 3

. (3)

2

Paper # 72 34

Input: A set of arms K, time horizon T , and parameters {nm|m = 0, 1, 2, ...}.
Initialization: phase index m = 1, Km = K, ∆̃1 = 1, Tj(m) = φ ∀j ∈ K, and time index t = 1.
while t ≤ T do

Play arms:
for each active arm j in Km do

Set Tj(m) = Tj(m− 1) if m > 1.
Play j for nm − nm−1 consecutive rounds. In each round t:
if
(∑t

k=max(t−N,0) I[Jk = j]
)
≥ dt,j then

Observe reward Xt,j and add t to Tj(m).
end

end
Eliminate Suboptimal Arms:
for each active arm j in Km do

Xm,j = 1
nm

∑
t∈Tj(m)Xt,j .

end
Construct Km+1 by eliminating arms j in Km for which

Xm,j + ∆̃m/2 < maxj′∈Km
Xm,j′ − ∆̃m/2.

Update the confidence bound:
Set ∆̃m+1 = ∆̃m

2 .
Increment phase index m by 1.

end
Algorithm 1: UCB-REVISITED+

Now we calculate high probability expression for wm in terms nm, T and impairment statistics, E[d]. In the Term 1,
(Rt,Jt − µj) is a random variable measurable on the filtration {Gt} with E[Rt,Jt − µj] = 0. We apply a version of
Azuma-Hoefdding for Doob’s Martingales (refer Lemma 4.2 in Agrawal and Tulabandhula [2018] or Lemma 11 in Pike-
Burke et al. [2018] for details) to obtain

∑m
i=1

∑Ui,j

t=Si,j
(Rt,Jt − µj) ≤

√
nm log(T). Secondly, for the Term 2, we prove

that
∑Um,j

t=1 (E[Mt|Gt−1] − Mt) is a martingale. Then, we use Bernstein Inequality for Martingales (refer Lemma 4.1
in Agrawal and Tulabandhula [2018] or Theorem 10 in Pike-Burke et al. [2018]) and obtain

∑Um,j

t=1 (E[Mt|Gt−1] −Mt) ≤
2
3 log(T) +

√
4 log2(T)

9 + 4mE[d] log(T) with high probability. Term 3 has a trivial non-negative upper bound. Finally, we
impose the condition wm ≤ ∆̃m/2, ensuring the elimination condition of the Algorithm 1 holds good and obtain:

nm ≤ 1 +
4 log(T)

∆̃2
m

+
16 log(T)

3∆̃m

+
8
√
mE[d] log(T)

∆̃m

. (4)

This completes the proof.

Having accomplished the difficult task of calculating the phase duration, nm, we turn our attention to the regret upper
bounds which are stated in the following theorem:
Theorem 3.1. [Proof follows that of Theorem 4.1 in Agrawal and Tulabandhula [2018]] The expected (pseudo-)regret of
UCB-REVISITED+ (Algorithm 1) is bounded as:

RT ≤
∑

i∈K ′

(
∆i +

64 log(T)

∆i
+

64 log(T)

3
+ 32

√
log

(
4

∆i

)
E[d] log(T)

)
+

∑

i∈K ′:∆i>λ

2∆i

T
+
∑

i∈K ′

32

T
+ max
i∈K ′′:∆i<λ

∆iT,

where K ′′ = {i ∈ K |∆i > 0} and K ′ = {i ∈ K |∆i > λ}.

Corollary 3.1. For all T ≥ K and choosing λ =
√

K log(T)
T , the expected (pseudo-)regret of UCB-REVISITED+ is upper

bounded as:

RT ≤ O

(√
KT log T +K

√
log2 TE[d]

)
.

We note that the effect of impairment only appears as an additive term to the “usual” regret bounds of O(
√
KT log T),

the magnitude of which depends gracefully on
√

E[d]. The primary objective of this work is obtain tractable theoretical
regret upper bounds for effective learning in impairment setting. In the following section we reinforce our result with
relevant simulations.

3

Paper # 72 35

Figure 2: Left: Plot of unnormalized counts versus number of same arm plays in the past 15 rounds by UCB1 for three
different settings. Right: Performance (cumulative regret) of UCB-REVISITED+ as the impairment level is varied.

4 Experiments and Conclusion

We use a simple setup of K = 30 arms and set the reward distributions to be the Bernoulli with randomly chosen
biases. The horizon length T = 5000. We then run UCB1 under three different configurations (1, 3 and 7 optimal arms
respectively). Figure 2(left) shows the unnormalized counts of same arm plays in the past 15 plays. This was computed by
checking how many times the current arm was also played in the past 15 rounds. As expected, as the number of optimal
arms increases, the counts of same arm plays decreases rapidly. This indicates that UCB1 and other related algorithms
may perform poorly in settings with impairment.

We also show the performance of UCB-REVISITED+ (Algorithm 1) for varying levels of impairment. The number of arms
in this experiment is 10. Impairment is stochastic and is simulated using the absolute value normal distribution with
means = {2, 6, 10, 14} and the standard deviation being proportional to the arm index. The fixed impairment parameter
is N = 20, and the time horizon is 10000. From Figure 2(right), we can observe that as the cumulative regret increases as
E[d] is increased. It can also be shown that the regret of UCB-REVISITED+ grows as O(

√
E[d]).

To conclude, we propose a model of impairment and develop new bandit algorithms whose worst case regret depends
(sub)linearly on the impairment level. Some future directions include lower bounds and modelling similar impairment
setting with Contextual Bandits and MDPs. Also, modeling of contrasting “wearing-out” effects together with the rein-
forcing ones due to repetition, is an open problem.

References
Priyank Agrawal and Theja Tulabandhula. Bandits with temporal stochastic constraints. arXiv preprint arXiv:1811.09026,

2018.
Rajeev Agrawal, MV Hedge, and Demosthenis Teneketzis. Asymptotically efficient adaptive allocation rules for the

multiarmed bandit problem with switching cost. IEEE Transactions on Automatic Control, 33(10):899–906, 1988.
Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem.

Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.
Hans Martin Bosse, Jonathan Mohr, Beate Buss, Markus Krautter, Peter Weyrich, Wolfgang Herzog, Jana Jünger, and

Christoph Nikendei. The benefit of repetitive skills training and frequency of expert feedback in the early acquisition
of procedural skills. BMC medical education, 15(1):22, 2015.

Margaret C Campbell and Kevin Lane Keller. Brand familiarity and advertising repetition effects. Journal of consumer
research, 30(2):292–304, 2003.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Nonstochastic bandits with composite anonymous feedback.
In Conference on Learning Theory, pages 750–773, 2018.

Robert DeKeyser. Skill acquisition theory. Theories in second language acquisition: An introduction, 97113, 2007.
Pratik Gajane, Tanguy Urvoy, and Emilie Kaufmann. Corrupt bandits for privacy preserving input. ArXiv preprint

arXiv:1708.05033, 2017.
Sean HK Kang. Spaced repetition promotes efficient and effective learning: Policy implications for instruction. Policy

Insights from the Behavioral and Brain Sciences, 3(1):12–19, 2016.
Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial corruptions. In

ACM SIGACT Symposium on Theory of Computing, pages 114–122. ACM, 2018.
Karen A Machleit and R Dale Wilson. Emotional feelings and attitude toward the advertisement: The roles of brand

familarity and repetition. Journal of Advertising, 17(3):27–35, 1988.
Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits with delayed, aggregated anony-

mous feedback. In International Conference on Machine Learning, pages 4102–4110, 2018.

4

Paper # 72 36

Hacking Google reCAPTCHA v3 using Reinforcement Learning

Ismail Akrout∗
Télécom ParisTech

akrout.ismail@gmail.com

Amal Feriani∗
Ankor AI

amal.feriani@gmail.com

Mohamed Akrout
University of Toronto

makrout@cs.toronto.edu

Abstract

We present a Reinforcement Learning (RL) methodology to bypass Google reCAPTCHA v3. We formulate the problem as
a grid world where the agent learns how to move the mouse and click on the reCAPTCHA button to receive a high score.
We study the performance of the agent when we vary the cell size of the grid world and show that the performance drops
when the agent takes big steps toward the goal. Finally, we use a divide and conquer strategy to defeat the reCAPTCHA
system for any grid resolution. Our proposed method achieves a success rate of 97.4% on a 100× 100 grid and 96.7% on
a 1000× 1000 screen resolution.

Keywords: Reinforcement Learning, reCAPTCHA, Security, Artificial Intelli-
gence, Machine Learning

Acknowledgements

We thank Douglas Tweed for his valuable feedback and helpful discussions.

∗equal contribution

Paper # 52 37

1 Introduction

Artificial Intelligence (AI) has been experiencing unprecedented success in the recent years thanks to the progress
accomplished in Machine Learning (ML), and more specifically Deep Learning (DL). These advances raise several
questions about AI safety and ethics [1]. In this work, we do not provide an answer to these questions but we show
that AI systems based on ML algorithms such as reCAPTCHA v3 [2] are still vulnerable to automated attacks. Google’s
reCAPTCHA system, for detecting bots from humans, is the most used defense mechanism in websites. Its purpose is
to protect against automated agents and bots, attacks and spams. Previous versions of Google’s reCAPTCHA (v1 and
v2) present tasks (images, letters, audio) easily solved by humans but challenging for computers. The reCAPTCHA v1
presented a distorted text that the user had to type correctly to pass the test. This version was defeated by Bursztein
et al. [3] with 98% accuracy using ML-based system to segment and recognize the text. As a result, image-based and
audio-based reCAPTCHAs were introduced as a second version. Researchers have also succeeded in hacking these
versions using ML and more specifically DL. For example, the authors in [4] designed an AI-based system called
UnCAPTCHA to break Google’s most challenging audio reCAPTCHAs. On 29 October 2018, the official third version
was published [5] and removed any user interface. Google’s reCAPTCHA v3 uses ML to return a risk assessment score
between 0.0 and 1.0. This score characterize the trustability of the user. A score close to 1.0 means that the user is human.

In this work, we introduce an RL formulation to solve this reCAPTCHA version. Our approach is programmatic: first,
we propose a plausible formalization of the problem as a Markov Decision Process (MDP) solvable by state-of-the-art
RL algorithms; then, we introduce a new environment for interacting with the reCAPTCHA system; finally, we analyze
how the RL agent learns or fails to defeat Google reCAPTCHA. Experiment results show that the RL agent passes the
reCAPTCHA test with 97.4 accuracy. To our knowledge, this is the first attempt to defeat the reCAPTCHA v3 using RL .

2 Method

2.1 Preliminaries

An agent interacting with an environment is modeled as a Markov Decision Process (MDP) [6]. A MDP is defined as
a tuple (S,A, P, r) where S and A are the sets of possible states and actions respectively. P (s, a, s

′
) is the transition

probabilities between states and r is the reward function. Our objective is to find an optimal policy π∗ that maximizes
the future expected rewards. Policy-based methods directly learn π∗. Let’s assume that the policy is parameterized by a

set of weights w such as π = π(s, w). Then, the objective is defined as: J(w) = Eπ
[∑T

t=0 γ
trt

]
where γ is the discount

factor and rt is the reward at time t.

Thanks to the policy gradient theorem and the gradient trick [7], the Reinforce algorithm [8] estimates gradients using
(1).

∇Eπ
[T∑

t=0

γtrt

]
= Eπ

[T∑

t=0

∇ log π(at|st)Rt
]

(1)

Rt is the future discounted return at time t defined as Rt =
∑T
k=t γ

(k−t) · rk, where T marks the end of an episode.

Usually the equation (1) is formulated as the gradient of a loss function L(w) defined as follows: L(w) =

− 1
N

∑N
i=1

∑T
t=0∇ log π(ait|sit)Rit where N is the a number of collected episodes.

2.2 Settings

To pass the reCAPTCHA test, a human user will move his mouse starting from an initial position, perform a sequence
of steps until reaching the reCAPTCHA check-box and clicking on it. Depending on this interaction, the reCAPTCHA
system will reward the user with a score. In this work, we modeled this process as a MDP where the state space S is the
possible mouse positions on the web page and the action space is A = {up, left, right, down}. Using these settings, the
task becomes similar to a grid world problem.

As shown in Figure 1, the starting point is the initial mouse position and the goal is the position of the reCAPTCHA is
the web page. For each episode, the starting point is randomly chosen from a top right or a top left region representing
2.5% of the browser window’s area (5% on the x-Axis and 5% on the y-Axis). A grid is then constructed where each pixel
between the initial and final points is a possible position for the mouse. We assume that a normal user will not necessary
move the mouse pixel by pixel. Therefore, we defined a cell size cwhich is the number of pixels between two consecutive
positions. For example, if the agent is at the position (x0, y0) and takes the action left, the next position is then (x0− c, y).

1

Paper # 52 38

Figure 1: The agent’s mouse movement in a MDP

One of our technical contributions consists in our ability to simulate the same user experience as any normal reCAPTCHA
user. This was challenging since reCAPTCHA system uses different methods to distinguish fake or headless browsers,
inorganic behaviors of the mouse, etc. Our environment overcomes all these problems. For more details about the
environment implementation, refer to section 6. At each episode, a browser page will open up with the user mouse at a
random position, the agent will take a sequence of actions until reaching the reCAPTCHA or the horizon limit T defined
as twice the grid diagonal i.e. T = 2 ×

√
a2 + b2 where a and b are the grid’s height and width respectively. Once the

episode ends, the user will receive the feedback of the reCAPTCHA algorithm as would any normal user.

3 Experiments and Results

We trained a Reinforce agent on a grid world of a specific size. Our approach simply applies the trained policy to
choose optimal actions in the reCAPTCHA environment. Our results presented are the success rates across 1000 runs.
We consider that the agent successfully defeated the reCAPTCHA if it obtained a score of 0.9. In our experiments, the
discount factor was γ = 0.99. The policy network was a vanilla two fully connected layer network. The parameters were
learned with a learning rate of 10−3 and a batch size of 2000. Figure 3 shows the results for a 100× 100 grid. Our method
successfully passed the reCAPTCHA test with a success rate of 97.4%.

Next, we consider testing our method on bigger grid sizes. If we increase the size of the grid, the state space dimension
|S| increases exponentially and it is not feasible to train a Reinforce algorithm with a very high dimensional state space.
For example, if we set the grid size to 1000 × 1000 pixels, the state space becomes 106 versus 104 for a 100 × 100. This is
another challenge that we address in this paper: how to attack the reCAPTCHA system for different resolutions without
training an agent for each resolution?

4 An efficient solution to any grid size

In this section, we propose a divide and conquer technique to defeat the reCAPTCHA system for any grid size without
retraining the RL agent. The idea consists in dividing the grid into sub-grids of size 100 × 100 and then applying our
trained agent on these sub-grids to find the optimal strategy for the bigger screen (see Figure 2). Figure 3 shows that this
approach is effective and the success rates for the different tested sizes exceed 90%.

Figure 2: Illustration of the divide and conquer approach: the agent runs sequentially on the diagonal grid worlds in
purple. The grid worlds in red are not explored.

2

Paper # 52 39

Figure 3: Reward distribution of the RL agent on different grid resolutions over 1000 episodes

5 Effect of cell size

Here, we study the sensitivity of our approach to the cell size as illustrated in Figure 4.

(a) cell size 1x1 pixel (b) cell size 3x3 pixel

Figure 4: Illustration of the effect of the cell size on the state space

Figure 5 illustrates the obtained performance. We observe that when the cell size increases, the success rate of the agent
decreases. For, cell size of 10, the RL agent is detected as a bot in more than 20% of the test runs. We believe that this
decline is explained by the fact, with a big cell size, the agent scheme will contain more jumps which may be considered
as non-human behavior by the reCAPTCHA system.

6 Details of the reCAPTCHA environment

Most previous works (e.g [4]) used the browser automation software Selenium [9] to simulate interactions with the re-
CAPTCHA system. At the beginning, we adopted the same approach but we observed that the reCAPTCHA system
always returned low scores suggesting that the browser was detected as fake. After investigating the headers of the
HTTP queries, we found an automated header in the webdriver and some additional variables that are not defined in
a normal browser, indicating that the browser is controlled by a script. This was confirmed when we observed that the
reCAPTCHA system with Selenium and a human user always returns a low score.

It is possible to solve this problem in two different ways. The first consists in creating a proxy to remove the automated
header while the second alternative is to launch a browser from the command line and control the mouse using dedicated
Python packages such as the PyAutoGUI library [10]. We adopted the second option since we cannot control the mouse
using Selenium. Hence, unlike previous approches, our environment does not use browser automation tools.

3

Paper # 52 40

Figure 5: Reward distribution for different cell sizes over 1000 episodes

Another attempt to use Tor [11] to change the IP address did not pass the reCAPTCHA test and resulted in low scores
(i.e 0.3). It is possible that the reCAPTCHA system uses an API services such as ExoneraTor [12] to determine if the IP
address is part of the Tor network or not on a specific date.

We also discovered that simulations running on a browser with a connected Google account receive higher scores com-
pared when no Google account is associated to the browser.

To summarize, in order to simulate a human-like experience, our reCAPTCHA environment (1) does not use browser
automation tools (2) is not connected using a proxy or VPN (3) is not logged in with a Google account.

7 Conclusion

This paper proposes a RL formulation to successfully defeat the most recent version of Google’s reCAPTCHA. The main
idea consists in modeling the reCAPTCHA test as finding an optimal path in a grid. We show how our approach achieves
more than 90% success rate on various resolutions using a divide and conquer strategy. This paper should be considered
as the first attempt to pass the reCAPTCHA test using RL techniques. Next, we will deploy our approach on multiple
pages and verify if the reCAPTCHA adaptive risk analysis engine can detect the pattern of attacks more accurately by
looking at the activities across different pages on the website.

References

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané. Concrete problems
in ai safety. CoRR, 2016.

[2] Google. reCAPTCHA v3’s website. https://developers.google.com/recaptcha/docs/v3, 2018. [Online; accessed
15-February-2019].

[3] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John.C Mitchell. The end is nigh: Generic solving of
text-based captchas. USENIX Workshop on Offensive Technologies, 2014.

[4] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. uncaptcha: A low-resource defeat of recaptcha’s audio
challenge. USENIX Workshop on Offensive Technologies, 2017.

[5] Google. reCAPTCHA v3’s official announcement. https://webmasters.googleblog.com/2018/10/
introducing-recaptcha-v3-new-way-to.html, 2018. [Online; accessed 15-February-2019].

[6] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[8] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach.

Learn., 8(3-4):229–256, May 1992.
[9] Selenium. https://www.seleniumhq.org/. [Online; accessed 15-February-2019].

[10] PyAutoGUI. https://pyautogui.readthedocs.io/en/latest/. [Online; accessed 15-February-2019].
[11] Tor. https://www.torproject.org/. [Online; accessed 15-February-2019].
[12] ExoneraTor. https://metrics.torproject.org/exonerator.html. [Online; accessed 15-February-2019].

4

Paper # 52 41

DynoPlan: Combining Motion Planning and Deep Neural
Network based Controllers for Safe HRL

Daniel Angelov
School of Informatics

University of Edinburgh
d.angelov@ed.ac.uk

Yordan Hristov
School of Informatics

University of Edinburgh
y.hristov@ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
s.ramamoorthy@ed.ac.uk

Abstract

Many realistic robotics tasks are best solved compositionally, through control architectures that sequentially invoke prim-
itives and achieve error correction through the use of loops and conditionals taking the system back to alternative earlier
states. Recent end-to-end approaches to task learning attempt to directly learn a single controller that solves an entire
task, but this has been difficult for complex control tasks that would have otherwise required a diversity of local primi-
tive moves, and the resulting solutions are also not easy to inspect for plan monitoring purposes. In this work, we aim to
bridge the gap between hand designed and learned controllers, by representing each as an option in a hybrid hierarchical
Reinforcement Learning framework - DynoPlan. We extend the options framework by adding a dynamics model and
the use of a nearness-to-goal heuristic, derived from demonstrations. This translates the optimization of a hierarchical
policy controller to a problem of planning with a model predictive controller. By unrolling the dynamics of each option
and assessing the expected value of each future state, we can create a simple switching controller for choosing the opti-
mal policy within a constrained time horizon similarly to hill climbing heuristic search. The individual dynamics model
allows each option to iterate and be activated independently of the specific underlying instantiation, thus allowing for a
mix of motion planning and deep neural network based primitives. We can assess the safety regions of the resulting hy-
brid controller by investigating the initiation sets of the different options, and also by reasoning about the completeness
and performance guarantees of the underpinning motion planners.

Keywords: hierarchical options learning; safe motion planning; dynamics
model

Acknowledgements

This research is supported by the Engineering and Physical Sciences Research Council (EPSRC), as part of the CDT
in Robotics and Autonomous Systems at Heriot-Watt University and The University of Edinburgh. Grant reference
EP/L016834/1., and by an Alan Turing Institute sponsored project on Safe AI for Surgical Assistance.

Paper # 203 42

1 Introduction
Open world tasks often involve sequential plans. The individual steps in the sequence are usually quite independent
from each other, hence can be solved through a number of different methods, such as motion planning approaches for
reaching, grasping, picking and placing, or through the use of end-to-end neural network based controllers for a similar
variety of tasks. In many practical applications, we wish to combine such a diversity of controllers. This requires them
to share a common domain representation. For instance the problem of assembly can be represented as motion planning
a mechanical part in proximity to an assembly and subsequently the use of a variety of wiggle policies to fit together
the parts. Alternatively, an end-to-end policy can be warm-started by using samples from the motion planner, which
informs how to bring the two pieces together and the alignment sub-policy needed, as in [1]. The resulting policy is
robust in the sense that the task of bringing together the assembly can be achieved from a large set of initial conditions
and perturbations.

A hybrid hierarchical control strategy, in this sense, allows for different capabilities to be independently learned and
composed into a task solution with multiple sequential steps. We propose a method that allows for these individual
steps to consist of commonly used motion planning techniques as well as deep neural network based policies that are
represented very differently from their sampling based motion planning counterparts. We rely on these controllers
to have a dynamic model of the active part of their state space, and a sense of how close they are to completing the
overall task. This allows the options based controller to predict the future using any of the available methods and then
determine which one would bring the world state to one closest to achieving the desired solution - in the spirit of model
based planning.

(a) Gear Assembly (b) Option 4 of inserting a gear on a peg

Figure 1: The gear assembly problem executed by the robot. The execution of option 4, (Section.5) is shown on the right.

Modern Deep Reinforcement Learning (DRL) approaches focus on generating small policies that solve individual prob-
lems (pick up/grasp/push) [2], or longer range end to end solutions illustrated in modern games. Typically, in order to
provide a good initialization for the optimization algorithm, expert demonstrations are provided either through human
demonstration [3] or through the use of a motion planner as an initial approximation to the solution [1]. In problems
that allow for a simulator to be used as part of the inference and learning procedure, DNN & tree based approaches have
shown great promise in solving Chess, Go, Poker. To extend these methods to more general domains, a world dynamics
model is required to approximate the environment as in [4].

DynoPlan aims at extending the options framework in the following ways:

• We learn a dynamics model st+1 ∼ D(st, at) for each option that predicts the next state of the world given the
current action; and

• We learn a goal heuristic G(st) that gives a distribution as an estimate of how close the state is to completing the
task, based on the demonstrations.

This allows for the higher level controller to perform reasoning about sequentially applying controllers in overlapping
initiation sets for completing a task.

We aim to show that we can use off-the-shelf model-based controllers in parts of the state space, where their performance
is already optimized, and model-free methods for states without correspondingly robust or easily scriptd solutions,
combining these two categories of controllers into a hybrid solution.

2 Related Work
Our method sits between learning policies over options as in [5]; and computing solutions using learning from demon-
stration such as through inverse reinforcement learning [6]. Reinforcement Learning is intrinsically based on the forward
search of good states through experience. The update of the quality of an action at a particular state is performed by the
iterative application of the Bellman equation. Performing updates in a model-free method must overcome the problems
of sparse reward and credit assignment. Introducing a learned model that summarizes the dynamics of the problem can
alleviate some scaling issues as in [4]. However, searching for a general world model remains hard and we are not aware

1

Paper # 203 43

of methods that can achieve the desired performance levels in physical real world tasks. Such problems usually exhibit
a hierarchical sequential structure - e.g. the waking up routine is a sequence of actions, some of which are conditioned on
the previous state of the system.

The options framework provides a formal way to work with hierarchically structured sequences of decisions made by
a set of RL controllers. An option consists of a policy πω(at|st), an initiation set I and termination criteria βω(st) -
probability of terminating the option or reaching the terminal state for the option. A policy over options πΩ(ωt|st) is
available to select the next option when the previous one terminates as shown by [7, 8].

Temporal abstractions have been extensively researched by [9, 7]. The hierarchical structure helps to simplify the control,
allows an observer to disambiguate the state of the agent, and encapsulates a control policy and termination of the policy
within a subset of the state space of the problem. This split in the state space allows us to verify the individual controller
within the domain of operation - [10], deliberate the cost of an option and increase the interpretability - [11]. Our method
borrows this view of temporally abstracting trajectories and extends it by enforcing a dynamics model for each of the
options allowing out agent to incorporate hindsight in its actions.

To expedite the learning process, we can provide example solution trajectories by demonstrating solutions to the prob-
lem. This can be used to learn safe policies [12]. Alternatively, it can be used to calculate the relative value of each
state by Inverse Reinforcement Learning [6]. For instance, we can expect that agents would be approximately rational in
achieving their goal, allowing [13] to infer them. Exploring the space of options may force us to consider ones that are
unsafe for the agent. [14] rephrases the active inverse reinforcement learning to optimize the agents policy in a risk-aware
method. Our work partitions the space of operation of each option, allowing that area to inherit the safety constraints
that come associated with the corresponding policy.

3 Problem Definition
We assume there exists an already learned set of options O = {o1, o2, ..., oN} and a set of tasks K = {K1,K2, . . . ,KL}.
Each option oω is independently defined by a policy πω(s) → a, s ∈ Sω , a ∈ Aω , an initiation set Iω, Iω ⊆ Sω where
the policy can be started, and a termination criteria βω . We extend the options formulation by introducing a forward
dynamics model st+1 ∼ Dω(st), which is a stochastic mapping, and a goal metric g ∼ GKj

(st), 0 ≤ g ≤ 1, that estimates
the progress of the state st with respect to the desired world configuration. We aim for GKj

to change monotonically
through the demonstrated trajectories. The state space of different options S = {S1,S2, ..,SN} can be different, as long
as there exists a direct or learnable mapping between Si and Sj for some part of the space.

We aim to answer the question whether we can construct a hybrid hierarchical policy πΩ(ωt|st) that can plan the next
option oωt

that needs to be executed to bring the current state st to some desired sfinal by using the forward dynamics
model Dω in an n-step MPC look-ahead using a goal metric GK that evaluates how close st+n is to sfinal.

4 Method
At a particular point st when oω is active, we can compute how successful is following the policy given these conditions
up to a particular time horizon. The action given by the policy is at = πω(st), and following the dynamics model we can
write that st+1 = Dω(st, at) = Dω(st, πω(st)). As the dynamics model is conditioned on the policy, we can simplify the
notation to st+1 = Dω(st). Chaining it for n steps in the future we obtain st+n = Dω ◦ Dω ◦ · · · ◦ Dω(st) = Dnω(st). Thus, a
policy over policies can sequentially optimize

πΩ(ωt|st) = arg max
ω

(E [1Iω (st) · G ◦ Dnω(st)]) (1)

After choosing and evaluating the optimal πΩ with respect the above criterion, another controller can be selected until
the goal is reached.

5 Experimental Setup
We perform two sets of experiments to showcase the capability of using the structured hierarchical policy by performing
MPC future predictions at each step on a simulated MDP problem and on a gear assembly task on the PR2 robot.

Simulated MDP In the first we use the standard 19-state random walk task as defined in [15] and seen on Figure. 2(a).
The goal of the agent is to reach past the 19th state and obtain the +1 reward. The action space of the agent is to go “left”
or “right”. There also exist 5 options defined as in Section. 3, with the following policies: (1-3) policies that go “right”
with a different termination probabilities β = {0.9, 0.5, 0.2}; (4) random action; (5) policy with action to go “’left” with
β = 0.5. We assume that there exists a noisy dynamics model Dω and the goal evaluation model GMDP , obtained from
demonstrations, that have probability of mispredicting the current state or its value of 0.2.

Gear Assembly In this task the PR2 robot needs to assemble a part of the Siemens Challenge1, which involves grasping
a compound gear from a table, and placing it on a peg module held in the other hand of the robot. A human operator

1The challenge can be seen https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

2

Paper # 203 44

can come in proximity to the robot, interfering with the policy plan. We have received expert demonstrations of the task
being performed, as well as access to a set of option that (1) picks the gear from the table; (2) quickly moves the left
PR2 arm in proximity to the other arm; (3) cautiously navigates the left PR2 arm to the other avoiding proximity with
humans; (4) inserts the gear on the peg module. Policy (2) relies exclusively on path planning techniques, (4) is fully
neural networks learned and (1, 3) are a mixture between a neural recognition module recognizing termination criteria
and motion planning for the policy. The options share a common state space of the robots’ joint angles. The initiation set
of all policies isR12. The terminal criteria β for o1,2 is inversely proportional to the closeness to a human to the robot; for
o2−4 is the proximity to a desired offset from the other robot hand.

The dynamics model for each option is independent and is represented either as part of the motion planner, or similarly
to the goal estimator - a neural networks working on the joint angle states of both arms of the robot.

In cases of options with overlapping initiation sets (i.e. options 1, 2, 3 all work within R12), we can softly partition the
space of expected operation by fitting a Gaussian Mixture Model FM on the trajectories of the demonstrations, where
s, s ∼ FM is a sample state from the trajectory. F is a set of M Gaussian Mixtures F = {Ni(µi,Σi)|i=1..M}, and Jk is a
subset of FM , where samples from Jk correspond to samples from trajectory of option k, 1 ≤ k ≤ N . We can thus assess
the likelihood of a particular option working in a state s ∼ πj by evaluating L(s|πj ,FM) = maxp [p(s|µi,Σi)]µi,Σi∈J (5),

This gives us the safety region, in which we expect the policy to work. By using the overlap between these regions, we
can move the state of the system in a way that reaches the desired demonstrated configuration.

6 Results
We aim to demonstrate the viability of using the options dynamics as a method for choosing a satisfactory policy. The
dynamics can be learned independently of the task, and can be used to solve a downstream task.

Simulated MDP The target solution shows the feasibility and compares the possible solutions by using different options.
In Figure. 2(b), we can see that we reach the optimal state in just 4 planning steps, where each planning step is a rollout
of an option. We can see the predicted state under the specified time horizon using different options. This naturally
suggests the use of the policy π1 that outperforms the alternatives (π1 reaches state 6, π2 - state 4, π2 - state 3, π3 - state
1, π4 - state 1, π5 - state 0). Even though the predicted state differs from the true rollout of the policy, it allows the
hierarchical controller to use the one, which would progress the state the furthest. The execution of some options (i.e.
option 5 in planning steps 1, 2, 3) reverts the state of the world to a less desirable one. By using the forward dynamics,
we can avoid sampling these undesirable options.

(a) MDP Problem
Planning steps

S
ta

te

0 1 2 3 4

20

10

 0

o1

o1

o1

o1
 Option 1
 Option 2
 Option 3
 Option 4
 Option 5

(b) MDP Solution

Figure 2: (a) The 19-state MDP problem. The action space of the MDP is to move “left” or “right”. The goal of the
MDP problem is to reach past state 19 and obtain the +1 reward, which is equivalent to a termination state 20. (b) MDP
solution. At timestep 0, a rollour of the 5 options is performed with the dynamics model. The expected resulting state
is marked as blue vertical bars. The best performing option is used within the environment to obtain the next state - the
red line at state 5 and planning step 1. This process is iterated until a desired state is reached.

Gear Assembly We obtained 10 demonstrations of the task being performed. In Figure. 3(a), we show the performance
of the goal estimator network on an independent trial. We can observe that the state goal metric estimator closely tracks
the expected ground truth values along the trajectory. This provides reasonable feedback that can be used by πΩ to
choose an appropriate next policy.

Similarly, in Figure. 3(b) we show the t-SNE of the trials of the robot trajectories that have no interruptions and some in
which a human enters the scene and interferes with the motion of robot, forcing a change of policy to occur. We see that
there is natural split in the states in which different options have been activated. We can notice that the overlap of the
region of activation for the different policies allows the robot to grasp, navigate to, and insert the gear into the assembly
by following these basins of the policies initiation. By following Eq.5 we can therefore create state space envelope of
action of each option. The corresponding part of the state space, conditioned on the executed option, can have the safety
constraints enforced by the underlying control method for the option.

3

Paper # 203 45

(a) Goal Heuristic (b) t-SNE visuazlization of the controllers states.

Figure 3: (a) The learned heuristics about how close the current state is to the demonstrated goal state. (b) t-SNE plot
of the controllers state during a set of trajectories. Magenta - o1 for grasping the object, Green - o2 and o3 for navigating
to the assembly with and without a human intervention and Blue - o4 for inserting the gear onto the peg. The shaded
regions illustrate the regions of control for the different policies.

7 Conclusion
We present DynoPlan - a hybrid hierarchical controller where by extending the options framework, we can rephrase the
learning of a top level controller to an MPC planning solution. By unrolling the future states of each option, where each
can be assessed on the contribution of furthering the agents intent based on the goal heuristic, we can choose the one best
satisfying the problem requirements. This method of action selection allows to combine motion planning with neural
network control policies in a single system, whilst retaining the completeness and performance guarantees of the work
space of the associated options.

References
[1] Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel. Learning robotic assembly from

cad. 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018.
[2] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for continuous

action tasks. arXiv preprint arXiv:1712.00004, 2017.
[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demon-

stration. Robotics and Autonomous Systems, 57(5):469 – 483, 2009.
[4] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.
[5] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete event

dynamic systems, 13(1-2):41–77, 2003.
[6] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and progress.

arXiv preprint arXiv:1806.06877, 2018.
[7] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.
[8] Doina Precup. Eligibility traces for off-policy policy evaluation. CS Department Faculty Publication Series, 2000.
[9] Glenn A Iba. A heuristic approach to the discovery of macro-operators. Machine Learning, 3(4):285–317, 1989.

[10] P. Rumschinski S. Streif R. Findeisen P. Andonov, A. Savchenko. Controller verification and parametrization subject
to quantitative and qualitative requirements. IFAC-PapersOnLine, 48(8):1174 – 1179, 2015.

[11] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option: Learning options
with a deliberation cost. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[12] Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. Learning safe policies with expert guidance. arXiv preprint
arXiv:1805.08313, 2018.

[13] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning. Cognition,
113(3):329–349, 2009.

[14] Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement learning. arXiv preprint
arXiv:1901.02161, 2019.

[15] Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowé. Learning with options that
terminate off-policy. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

4

Paper # 203 46

Performance metrics for a
physically-situated stimulus response task

Paul B. Reverdy∗
Department of Aerospace and Mechanical Engineering

University of Arizona
Tucson, AZ 85721

preverdy@mail.arizona.edu

Abstract

Motivated by reactive sensor-based motion control problems that are ubiquitous in robotics, we consider a physically-
situated stimulus response task. The task is analogous to the moving dots task commonly studied in humans, where
subjects are required to determine the sign of a noisy stimulus and respond accordingly. In our physically-situated task,
the robot responds by navigating to one of two predetermined goal locations. Our task is carefully designed to decouple
the robot’s sensory inputs from its physical dynamics. This decoupling greatly facilitates performance analysis of control
strategies designed to perform the task.

We develop two strategies for performing the task: one that attempts to anticipate the correct action and another that
does not. We consider two metrics of task performance; namely, total time required for the robot to reach a goal location
and the total distance traveled in doing so. We derive semi-analytical expressions for the expected values of the two
performance metrics. Using these expressions, we show that the anticipatory strategy reaches the goal location more
quickly but results in the robot traveling a greater average distance, which corresponds to exerting greater physical effort.
We suggest that this tradeoff between reaction time and physical effort is a fundamental tension in physically-situated
stimulus-response tasks.

Keywords: Perceptual decision making, drift-diffusion model, affordance
competition, robotics

Acknowledgements

This work has been supported by US Air Force Research Laboratory grant FA8650-15-D-1845 subcontract 669737-6.

∗Web: https://www.paulreverdy.com

Paper # 33 47

x*2 x*1

x0

2d

ℓ0

x*2 x*1

x0

x*2 x*1

x0

x̄*

vτ

(a) (b) (c)

Figure 1: Task geometry. (a) The robot is initially located at x0 ∈ R2 and needs to travel to either x∗1 or x∗2 depending on
a noisy signal. (b) In strategy 1, the robot only moves after deciding and follows the trajectory shown. (c) In strategy 2,
the robot moves towards x̄∗ at speed v until deciding at time τ , then travels to the chosen goal.

1 Introduction

Robots often need to choose an appropriate behavior in response to some stimulus from the environment. Sensors are
often mounted on the robot itself, so the information gain from sensing depends on the physical state of the robot. This
coupling greatly complicates analysis of the control problem. Here we consider a task with simple sensing that decouples
the sensor from the physical state.

Stimulus response tasks have been extensively studied in the psychology and neuroscience literature. A standard model
with optimality properties is the drift-diffusion model (DDM) [1]. In the psychology literature, studies generally focus
the decision-making process and assume that the action of reporting the decision requires some constant response time
[1, 2]. In contrast, physically-situated tasks require costly movement and different decisions require different physical
actions. The so-called affordance competition hypothesis [3], [4] suggests one mechanism for negotiating decisions in
such physical contexts. In previous work [5], we began to develop a control architecture termed motivation dynamics
for implementing a form of affordance-competition-like decision making in robot systems. In subsequent work [6], we
began to investigate applying the motivation dynamics control architecture to reactive sensor-based motion planning.

2 A physically-situated stimulus response task

Key to developing metrics for physically-situated stimulus response tasks is choosing a task whose analysis is tractable.
We consider a scenario where the robot is a point x in the Euclidean plane R2. The robot is equipped with a sensor which
measures an environmental signal e(t):

e(t) = s(t) + σz(t), (1)
with s(t) ∈ R, σ > 0, and z(t) iid Gaussian noise. Thus, e(t) ∼ N (s(t), σ).

The robot is to perform a stimulus response task. In particular, if s(t) = µ > 0, the robot is to drive to position x = x∗1,
while if s(t) = −µ < 0, it should drive to x = x∗2. Essentially, the robot is to carry out a sign test on its observed signal
data and respond according to the perceived sign of the true stimulus s(t).

We assume that the response locations x∗1, x∗2 are separated by a distance 2d and that the robot’s initial physical state
x(0) = x0 is a distance `0 away from the midpoint x̄∗ = (x∗1 + x∗2)/2 in the transverse direction, as shown in Figure 1.
Note that we have chosen this symmetric initial condition merely to simplify analysis and presentation.

3 Decision-making apparatus

The optimal decision-making scheme is the DDM, i.e., the continuum limit of the SPRT. Let y ∈ R be the accumulator
state of the DDM. Then y obeys the SDE

dy = Adt+ cdW, y(0) = y0 = 0. (2)
Decisions are made when the state y crosses one of two thresholds ±Z ∈ R. Crossing +Z > 0 means go to location 1;
crossing −Z < 0 implies go to location 2. Let τ represent the time at which the decision is made.

Let p+(τ) be the distribution of DT = τ assuming that the positive boundary is associated with the correct response. It
is well known that this distribution can be derived by solving the appropriate backward Kolmogorov or Fokker-Planck
equation. The solution is usually expressed as a power series [2]:

p+(τ) =
π

4α2β
exp (αβ − βτ/2)×

∞∑

k=1

k exp

(
−k

2π2t

8α2β

)
sin

(
kπ

2

)
, (3)

1

Paper # 33 48

where α = Z/A is the scaled threshold and β = (A/c)2 is the signal-to-noise ratio.

Denote the probability of crossing the correct, positive boundary by 1− ER, where

ER =
1

1 + exp(2αβ)
⇒ 1− ER =

exp(2αβ)

1 + exp(2αβ)
(4)

Analogously, let p−(τ) be the distribution of DT = τ assuming that the accumulator crosses the negative (incorrect)
threshold and produces an erroneous response. The two distributions p+ and p− can be related using ER [2]:

p−(τ) =

(
ER

1− ER

)
p+(τ). (5)

Note that both distributions p+ and p− have the same mean 〈DT 〉 = α tanh(αβ) [2].

4 Control strategies

For simplicity in this initial work, we study two explicit strategies: integrate-until-move and integrate-while-hedging.
Whenever the robot chooses to move, it does so at constant speed v. In the first strategy, called integrate-until-move, the
robot performs the task by waiting to move until it has reached a decision. The robot decides by integrating stimulus
information according to the DDM (2) until the accumulator state y crosses a threshold ±Z. Upon reaching a decision,
the robot travels directly to the corresponding goal state: if y crosses through the threshold +Z, the robot travels to goal
1 located at x∗1, while if y crosses through the threshold −Z, the robot travels to goal 2 located at x∗2. See Figure 1(b).

Note that this integrate-until-move control strategy results in the robot traveling the minimal distance required to com-
plete the task. However, the time spent integrating stimulus information is wasted in the sense that the robot does not
move until it has reached its desired level of certainty in its final decision. If the signal-to-noise ratio is low, the decision
time may be significant relative to the the travel time required to carry out the physical action associated with the deci-
sion. In such a scenario, it is likely beneficial to begin moving before a certain decision can be reached. This motivates
the second strategy presented below.

The second strategy we consider, called integrate-while-hedging, seeks to capture the benefit of moving before reaching a
decision in a way that is analytically tractable. Given the geometry of the task shown in Figure 1(a), it is clear that one
can anticipate moving towards either goal location by moving toward the point x̄∗ = (x∗1 + x∗2)/2 that is the midpoint
between the two goals. Therefore, moving towards x̄∗ is a natural way to move while hedging, i.e., without committing
to either decision.

This hedging observation motivates the following integrate-while-hedging control strategy. In this strategy, the robot
performs the hedging action, i.e., moves towards x̄∗, while integrating stimulus information. When the accumulator
variable y crosses a threshold, the robot makes a decision and travels to the corresponding goal. If the robot reaches the
midpoint x∗ before making a decision, it stops moving until a decision can be reached. See Figure 1(c).

Note that, compared to the integrate-until-move strategy, the integrate-while-hedging strategy is likely to result in the
robot traveling a larger distance. The advantage is that, by moving in such a way as to approach both goals while
gathering information, the integrate-while-hedging strategy may result in a shorter overall response time. Quantifying
this tradeoff between total time and travel distance is the subject of the next section.

5 Performance metrics

We analyze performance in terms of the two quantities: total distance traveled and total response time. Note that the
total response time required to perform the task is the sum of decision time and travel time.

For the purposes of analysis, assume that the initial physical state at time t = 0 is as given in Figure 1(a) and that the
initial accumulator state (cf. (2)) y0 = 0. The stimulus e(t) is assumed to be zero for t < 0. At time t = 0, the stimulus
s(t) takes value µ and remains constant for the duration of the task. Without loss of generality, we assume that µ > 0,
so the correct response is to travel to goal 1 located at x∗1. Finally, we assume that the robot travels at a constant speed v
whenever it decides to move.

We consider the task to end either a) when the accumulator state crosses the negative threshold and the robot makes
an incorrect decision, or b) when the robot reaches the correct goal state x∗1. Since the decision-making process is inde-
pendent of the robot’s physical state x, the probability of the task ending due to an incorrect decision is given by the
error rate expression (4) for either of the two control strategies. Note that the error rate can be controlled by selecting
the threshold Z. Therefore, we focus on distance traveled and total response time conditional on the robot selecting the
correct response.

2

Paper # 33 49

5.1 Travel distance

We first consider the total distance traveled. Let τ be the random variable denoting the first passage (i.e., decision) time
for the DDM decision process (2). When using the integrate-then-move control strategy, the robot’s motion is the same
for any correct decision, and will result in traveling a total distance

D1 =
√
d2 + `20. (6)

Conditional on making the correct decision, the quantity D1 is deterministic.

When using the integrate-while-hedging strategy, the robot first travels towards x̄∗ at speed v until it makes a decision
at time τ . The distance traveled before making a decision is given by min(vτ, `0), where the minimum operation results
from the robot stopping at x̄∗ if it reaches that point before making a decision. After deciding, the robot moves directly
to x∗1, which requires traveling a distance

√
(`0 −min(vτ, `0))2 + d2 =

√
max(`0 − vτ, 0)2 + d2.

The total distance traveled in this scenario is

D2 = min(vτ, `0) +
√

max(`0 − vτ, 0)2 + d2. (7)

Note that the quantity D2 is a random variable because it depends on the random decision time τ .

5.2 Total time

Now, consider the total time required for the response using the two strategies. Recall that τ is the random variable
denoting the first passage time of the decision process (2). When using the integrate-then-move strategy, the travel
time is D1/v, which is deterministic conditional on making the correct decision. Thus, the total response time using the
integrate-then-move strategy is

T1 = τ +D1/v = τ +
√
d2 + `20/v, (8)

where the only source of randomness is the decision time τ that appears additively.

When using the integrate-while-hedging strategy, the travel time after making a decision is
√

max(`0 − vτ, 0)2 + d2/v.
The total response time is

T2 = τ +
√

max(`0 − vτ, 0)2 + d2/v, (9)
where the randomness from τ enters in a nonlinear way.

5.3 Expected performance

The total distance and total time metrics evaluated in (7), (8), and (9) are random variables due to their dependence on
the random decision time τ . To facilitate comparison between the two strategies, we consider the expected values of the
various metrics. Consider first the integrate-then-move strategy. Let ED1 and ET1 be the expected values of D1 and T1.
We have

ED1 = D1 =
√
d2 + `20 (10)

since D1 is deterministic. As noted above in (5), the expected value of τ is equal to α tanh(αβ) and this expected value
is also equal to the conditional expected value of τ given that the positive (correct) threshold is the one that is crossed.
Thus, the expected value of T1 is given by

ET1 = α tanh(αβ) +
√
d2 + `20/v. (11)

Now, consider the integrate-while-hedging strategy. LetED2 andET2 be the expected values ofD2 and T2. The nonlinear
way in which τ enters in the expressions for D2 and T2 means that computing their expected values requires evaluating
integrals that do not appear to have analytical solutions. Thus, we resort to numerical approximations. In particular, we
compute the quantities

ED2 = E [D2|correct response] =
1

1− ER

∫ ∞

0

D2p+(τ)dτ, and (12)

ET2 = E [T2|correct response] =
1

1− ER

∫ ∞

0

T2p+(τ)dτ, (13)

where ER is the error rate (4) required to condition on the robot selecting the correct response and p+(τ) is given by (3).

3

Paper # 33 50

0

1

2

3

4

5

6
C

o
st

s
Mean Distance, integrate-then-move
Mean Time, integrate-then-move
Mean Distance, integrate-while-hedging
Mean Time, integrate-while-hedging

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

®

0.0
0.1
0.2
0.3
0.4
0.5

E
rr

o
r

ra
te

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
st

s

Mean Distance, integrate-then-move
Mean Time, integrate-then-move
Mean Distance, integrate-while-hedging
Mean Time, integrate-while-hedging

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

®

0.0
0.1
0.2
0.3
0.4
0.5

E
rr

o
r

ra
te

(a) (b)

Figure 2: Error rate (4); expected total distance (10), (12); and expected total time (11), (13) for the two strategies as
a function of normalized threshold α. Panel (a) shows data from a high signal-to-noise ratio environment with β =
(A/c)2 = 1; (b) a low signal-to-noise ratio environment with β = 0.1. Intuitively, the integrate-while-hedging strategy
results in smaller expected total time (i.e., a faster response) at the cost of a larger expected total distance traveled. The
other problem parameters were set to d = `0 = 1 and v = 1, respectively.

Figure 2 shows the results of numerically evaluating the error rate (4) and cost metrics (10)–(13) in two different environ-
ments. In both panels, the physical problem parameters were set to d = `0 = 1 and v = 1, respectively, and the various
metrics are plotted as functions of the normalized threshold α = Z/A. Panel (a) shows results for an environment with
high signal-to-noise ratio, β = 1, while panel (b) shows results for an environment with low signal-to-noise ratio, β = 0.1.
Intuitively, the integrate-while-hedging strategy results in smaller expected total time (i.e., a faster response) at the cost
of a larger expected total distance traveled.

In future work, we intend to study a more complete set of control strategies for this task in order to find a set of optimal
strategies. It is likely that the set of optimal strategies trade off between the two metrics we consider, much as statistical
hypothesis tests trade off between the probability of type I and type II errors. A single optimal strategy can then be found
by selecting an optimal balance between these two metrics, e.g. in terms of relative costs of movement versus idle time.
We postulate that the motivation dynamics control framework studied in [5, 6] will outperform both the integrate-then-
move and the integrate-while-hedging strategies.

References

[1] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen, “The physics of optimal decision making: a formal
analysis of models of performance in two-alternative forced-choice tasks.” Psychological review, vol. 113, no. 4, p. 700,
2006.

[2] K. F. Wong-Lin, P. Holmes, and T. Broderick, “Closed-Form Approximations of First-Passage Distributions for a
Stochastic Decision-Making Model,” Applied Mathematics Research eXpress, vol. 2009, no. 2, pp. 123–141, 02 2010.
[Online]. Available: https://dx.doi.org/10.1093/amrx/abp008

[3] P. Cisek and J. F. Kalaska, “Neural mechanisms for interacting with a world full of action choices,” Annual review of
neuroscience, vol. 33, pp. 269–298, 2010.

[4] N. F. Lepora and G. Pezzulo, “Embodied choice: how action influences perceptual decision making,” PLoS computa-
tional biology, vol. 11, no. 4, p. e1004110, 2015.

[5] P. B. Reverdy and D. E. Koditschek, “A dynamical system for prioritizing and coordinating motivations,” SIAM
Journal on Applied Dynamical Systems, vol. 17, no. 2, pp. 1683–1715, 2018.

[6] P. B. Reverdy, V. Vasilopoulos, and D. E. Koditschek, “Motivation dynamics for autonomous composition of naviga-
tion tasks,” In preparation, 2019.

4

Paper # 33 51

Belief space model predictive control for approximately optimal
system identification

Boris Belousov
Department of Computer Science

Technische Universität Darmstadt, Germany
belousov@ias.tu-darmstadt.de

Hany Abdulsamad
Department of Computer Science

Technische Universität Darmstadt, Germany
abdulsamad@ias.tu-darmstadt.de

Matthias Schultheis
Department of Computer Science

Technische Universität Darmstadt, Germany
matthias.schultheis@gmail.com

Jan Peters
Department of Computer Science

Technische Universität Darmstadt, Germany
Max Planck Institute for Intelligent Systems

peters@ias.tu-darmstadt.de

Abstract

The fundamental problem of reinforcement learning is to control a dynamical system whose properties are not fully
known in advance. Many articles nowadays are addressing the issue of optimal exploration in this setting by investigat-
ing the ideas such as curiosity, intrinsic motivation, empowerment, and others. Interestingly, closely related questions
of optimal input design with the goal of producing the most informative system excitation have been studied in adja-
cent fields grounded in statistical decision theory. In most general terms, the problem faced by a curious reinforcement
learning agent can be stated as a sequential Bayesian optimal experimental design problem. It is well known that finding
an optimal feedback policy for this type of setting is extremely hard and analytically intractable even for linear systems
due to the non-linearity of the Bayesian filtering step. Therefore, approximations are needed. We consider one type
of approximation based on replacing the feedback policy by repeated trajectory optimization in the belief space. By
reasoning about the future uncertainty over the internal world model, the agent can decide what actions to take at ev-
ery moment given its current belief and expected outcomes of future actions. Such approach became computationally
feasible relatively recently, thanks to advances in automatic differentiation. Being straightforward to implement, it can
serve as a strong baseline for exploration algorithms in continuous robotic control tasks. Preliminary evaluations on a
physical pendulum with unknown system parameters indicate that the proposed approach can infer the correct param-
eter values quickly and reliably, outperforming random excitation and naive sinusoidal excitation signals, and matching
the performance of the best manually designed system identification controller based on the knowledge of the system
dynamics.

Keywords: Bayesian experimental design, active exploration, curiosity, belief
space planning, trajectory optimization

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 640554.

Paper # 135 52

1 Introduction and related work

Adaptation and learning arise as a by-product of optimization in the belief space within the framework of Bayesian
decision theory [Stratonovich, 1968a, Stratonovich, 1968b]. In modern terminology, learning is planning in a partially
observable Markov decision process [Asmuth and Littman, 2011]. We pursue this line of reasoning and frame the prob-
lem of pure exploration (i.e., without any extrinsic reward) as a problem of online belief space trajectory optimization.

Optimal system identification and experimental design [Mehra, 1974, Bombois et al., 2011, Ryan et al., 2016] pursue a
similar objective. They seek an optimal exploration strategy in stochastic sequential decision making problems. Contrary
to the generic solution based on approximate dynamic programming [Feldbaum, 1960, Huan and Marzouk, 2016], we do
not aim to find an optimal parametric policy but instead let a belief space planner choose the most explorative actions.

Approaches to (approximately) optimal system identification based on model predictive control (MPC) have been stud-
ied before [Larsson et al., 2013]. Algorithmically, our method is most closely related to [Kahn et al., 2015], who also used
direct transcription in the belief space for trajectory optimization. However, what is different in our case is the objective
function and its particular decomposition into a sum of terms that facilitates computation. More concretely, since robot
dynamics is linear in the physics parameters [Atkeson, 1989], we can perform Bayesian inference in closed form.

The paper is structured as follows: Section 2 introduces the approach, Section 3 provides evaluations, and Section 4
highlights future directions.

2 Belief space optimization for system identification

Consider a dynamical system of the following form

x′ = Ax+B(x, u)θ (1)

where x ∈ Rn is the current state, u ∈ Rm is the current action, x′ ∈ Rn is the next state, matrix A ∈ Rn×n is constant
and matrix B(x, u) ∈ Rn×m is dependent on the state and action. Many classical continuous control environments can
be written in this way.

2.1 Example: pendulum dynamics

As a concrete instantiation of (1), consider the dynamics of a pendulum

q̈ = φ

((
q
q̇

)
, u

)T
θ = (− sin (q + π) −q̇ u)

3g
2l
3b
ml2
3
ml2

 (2)

with mass m, length l, and gravity g. The state of the pendulum x = (q, q̇) is comprised of the angle q and the angular
velocity q̇. Crucially, the kinematic parameters φ(x, u) and the dynamic parameters θ separate. The system can be
discretized using the implicit Euler integration scheme

x′ =

(
1 h
0 1

)
x+

(
h2

h

)
φ(x, u)T θ. (3)

This representation directly corresponds to the generic form (1), with matrices A and B(x, u) straightforward to identify.

2.2 Propagation of uncertainty

If parameter values θ are uncertain, they should be characterized by a probability distribution p(θ). The full state of the
system should then include it and we have to describe its dynamics. Assuming the initial belief p(θ) = N(θ|µ,Σ) and the
system dynamics p(x′|x, u; θ) = N(x′|Ax + B(x, u)θ,Q) are Gaussian, the posterior after observing a transition (x, u, x′)
is also Gaussian with parameters given by the standard Kalman filter update equations [Bishop, 2006]

K(x, u,Σ) = ΣB(x, u)T
(
Q+B(x, u)ΣB(x, u)T

)−1
, (4)

L(x, u,Σ) = I −K(x, u,Σ)B(x, u), (5)
µ′ = µ+K(x, u,Σ) (x′ −Ax−B(x, u)µ) , (6)
Σ′ = L(x, u,Σ)Σ. (7)

Kalman gain K(x, u,Σ) and matrix L(x, u,Σ) are introduced for convenience to simplify Equations (6) and (7) that de-
scribe the dynamics of the sufficient statistics of the belief state.

1

Paper # 135 53

To plan using the model (6)-(7), future observations x′ need to be integrated out. This results in the maximum likelihood
transition dynamics x′ = Ax + Bµ and the constant mean update µ′ = µ. Intuitively, such constancy is a manifestation
of the fact that the mean of the parameter estimate µ cannot be improved before observing any data. Nevertheless, its
variance Σ can be controlled.

Equation (7) gives the update rule for the covariance matrix and serves as the key to our formulation of the objective
function. Namely, we exploit the fact that the covariance matrix at the next time step is given by a product of matrices.
For example, after two time steps, Σ′′ = L(x′, u′,Σ′)L(x, u,Σ)Σ.

2.3 Entropy minimization objective

What should the objective function be? A conceptually straightforward approach is to minimize the entropy of the
posterior distribution over the parameters at the end of the planning horizon. This objective essentially asks for the most
informative actions and can be identified with the information gain criterion [Lindley et al., 1956]. It also fits nicely with
the multiplicative form of the covariance matrix, turning the product into a sum. For example, for a two-stage problem,

J =
1

2
log det (2πeΣ′′) ∝ log det Σ′′ = log detL(x′, u′,Σ′) + log detL(x, u,Σ) + log det Σ. (8)

Similarly, for an N -step trajectory,

J ∝
N−1∑

k=0

log detL(xk, uk,Σk). (9)

Thus, the summand L(xk, uk,Σk) can be viewed as a running cost. Adding a regularization term uTRu for smoothness,
we arrive at the following optimization problem

minimize
u0:N−1

N−1∑

k=0

log detL(xk, uk,Σk) + uTkRuk (10)

subject to xk+1 = Axk +B(xk, uk)µ, k = 0, 1, . . . , N − 1, (11)
Σk+1 = L(xk, uk,Σk)Σk, k = 0, 1, . . . , N − 1, (12)

where L(x, u,Σ) = I − ΣB(x, u)T
(
Q+B(x, u)ΣB(x, u)T

)−1
B(x, u). This problem can be directly plugged into a trajec-

tory optimizer, e.g., CasADi [Andersson et al., 2012]; state and control constraints can be added if needed.

3 Evaluation

Having solved the problem above, we obtain a sequence of actions u0:N−1 that should reveal the most about the system.
Note that this sequence of actions depends on our prior belief p(θ|µ,Σ) because µ enters the state dynamics and Σ figures
in the covariance cost. Thus, the optimal sequence of actions is a function of the prior together with the initial state x0,
i.e., u0:N−1 = ψ(x0, µ,Σ). We can think of ψ as a call to the trajectory optimizer.

The main question is whether this sequence of actions is better than any other one given that the true value µ? is different
from µ. One way to evaluate this hypothesis is to execute u0:N−1 on the real system with parameters µ? and then find the
posterior p(θ|x0:N , u0:N−1) given the observed trajectory. An even better solution is to replan after every time step. Such
closed loop control should intuitively speed up convergence to the true parameter value. We call this approach belief
space model predictive control for approximately optimal system identification.

We compare the belief space MPC approach (Figure 1) against random and sinusoidal excitations (Figure 2) on the pen-
dulum environment from OpenAI Gym [Brockman et al., 2016]. Optimal exploration performs well and beats random
actions and a naively chosen excitation signal by a large margin (Figure 3). However, a wisely chosen excitation signal
can be as good as the optimal one (Figure 4). The optimization approach was found quite insensitive to the choice of the
action cost R in a reasonable range, although extremely small values were found to cause instability.

4 Conclusion

Although the preliminary results are encouraging, further investigation is required. First, evaluation on more complex
systems must be performed to demonstrate the scalability of the approach. Second, comparison to other exploration
strategies is needed to better understand the trade-offs between optimality and heuristics. Third, the assumption on
the system dynamics (1) can be relaxed to allow for more flexible models; for example, the feature mapping φ can be
learned by exploiting its invariance to dynamics parameters, or a non-parametric model, such as a Gaussian process, can
be employed to represent the system dynamics.

2

Paper # 135 54

0 5 10
2
0
2

u

0 5 10

2.5
5.0

q

0 5 10
Time, sec

5
0
5

qd

2 4
q

7.5

5.0

2.5

0.0

2.5

5.0

7.5

qd

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.1)

(a) high action cost, R = 0.1

0 5 10
2
0
2

u

0 5 10

2.5
5.0

q

0 5 10
Time, sec

5
0
5

qd

2 4 6
q

7.5

5.0

2.5

0.0

2.5

5.0

7.5

qd

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.01)

(b) medium action cost, R = 0.01

0 5 10
2
0
2

u

0 5 10

0
10

q

0 5 10
Time, sec

5
0
5

qd

5 0 5 10
q

5

0

5

qd

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.001)

(c) low action cost, R = 0.001

Figure 1: Effects of the action cost R on the closed-loop system performance. Trajectories are executed on Pendulum-v0
using belief-space MPC with horizon N and replanning every n steps. System noise Q is fixed and the action cost R is
varying. Three scenarios are shown. In (a), the action cost is high, therefore the controller quickly pumps the energy into
the system and fades away to observe the oscillations; this is possible because Pendulum-v0 is frictionless (although the
controller has a non-zero prior on the friction coefficient). In (b), the cost of actions is lower, therefore the controller can
enjoy taking larger actions a bit longer. In (c), the controller gets unstable, probably because the reward function is quite
flat without action regularization and the action limits are too small to escape the flat region.

0 1 2
2
0
2

u

0 1 2

3.00
3.25q

0 1 2
Time, sec

0.5
0.0
0.5

qd

3.0 3.2
q

0.75

0.50

0.25

0.00

0.25

0.50

0.75

qd

Random controls

(a) random actions do not explore

0 5 10
2
0
2

u

0 5 10

3.0
3.5

q

0 5 10
Time, sec

0.5
0.0
0.5

qd

3.0 3.5
q

0.5

0.0

0.5

qd

Sinusoidal controls

(b) slow sinusoid — sufficient excitation

0 5 10
2
0
2

u

0 5 10
0

10

q

0 5 10
Time, sec

5
0
5

qd

0 5 10
q

5

0

5

qd

Sinusoidal controls

(c) fast sinusoid — best coverage

Figure 2: Compared to the optimal controls, random actions (a) perform very badly because they fail to explore the state
space. On the other hand, a naive sinusoidal signal (b) works quite well on the pendulum, making it swing in all kinds
of ways. However, the quality of system identification crucially depends on finding the right frequency of the sinusoid.
A more oscillatory signal (c) turns out to be better for system identification (see convergence plots below).

0 10 20 30 40 50

2

4

|m
-m

_t
ru

e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.1)

0 10 20 30 40 50
Iteration number

5

0

en
t(S

) rand
sin
opt

(a) high action cost, R = 0.1

0 10 20 30 40 50

2

4

|m
-m

_t
ru

e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.01)

0 10 20 30 40 50
Iteration number

5

0

en
t(S

) rand
sin
opt

(b) medium action cost, R = 0.01

0 10 20 30 40 50

2

4

|m
-m

_t
ru

e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.001)

0 10 20 30 40 50
Iteration number

10

5

0

en
t(S

) rand
sin
opt

(c) low action cost, R = 0.001

Figure 3: Convergence plots show how quickly the posterior concentrates around the true parameter value; convergence
in terms of distance from the mean and in terms of entropy of the posterior are shown. The posterior is updated after
every n steps in the environment with the newly obtained data; one iteration on the x-axis corresponds to one posterior
update. Three excitation signals are compared: random actions (blue), slow sinusoid (green), and optimal controls
(red). Three scenarios are displayed from left to right that correspond to different action costs; only the red curve is
different among the subplots, the other two curves are the same and kept for reference. All subplots demonstrate that
the optimal excitation controls are significantly better than random or sinusoidal ones. Subplots (a) and (b) show similar
red curves, which means that optimization is insensitive to the choice of the action cost in a reasonable range. Subplot (c)
demonstrates that extremely low action costs may lead to oscillations; also observe that the final entropy in (c) is lower,
meaning that the controller is more certain in the end.

3

Paper # 135 55

0 10 20 30 40 50

2

4
|m

-m
_t

ru
e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.1)

0 10 20 30 40 50
Iteration number

5

0

en
t(S

) rand
sin
opt

(a) high action cost, R = 0.1

0 10 20 30 40 50

2

4

|m
-m

_t
ru

e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.01)

0 10 20 30 40 50
Iteration number

5

0

en
t(S

) rand
sin
opt

(b) medium action cost, R = 0.01

0 10 20 30 40 50

2

4

|m
-m

_t
ru

e|

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.001)

0 10 20 30 40 50
Iteration number

10

5

0

en
t(S

) rand
sin
opt

(c) low action cost, R = 0.001

Figure 4: A properly chosen excitation signal can yield very good results. These plots show that using a faster sinusoid
(green), one can obtain as good parameter estimates as with an optimal signal. In (a), the fast sinusoid discovers the
correct value faster and in the end it is even more certain than the optimal controller. In (b), both the optimal controls
and the sinusoid perform on par. In (c), the posterior mean found with the optimal actions is further away from the true
value and at the same time the controller is more confident about it; this shows the importance of the choice of costs.

References

[Andersson et al., 2012] Andersson, J., Åkesson, J., and Diehl, M. (2012). Casadi: A symbolic package for automatic
differentiation and optimal control. In Recent advances in algorithmic differentiation, pages 297–307. Springer.

[Asmuth and Littman, 2011] Asmuth, J. and Littman, M. (2011). Learning is planning: near bayes-optimal reinforce-
ment learning via monte-carlo tree search. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, pages 19–26. AUAI Press.

[Atkeson, 1989] Atkeson, C. G. (1989). Learning arm kinematics and dynamics. Annual review of neuroscience, 12(1):157–
183.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
[Bombois et al., 2011] Bombois, X., Gevers, M., Hildebrand, R., and Solari, G. (2011). Optimal experiment design for

open and closed-loop system identification. Communications in Information and Systems, 11(3):197–224.
[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym. arXiv preprint arXiv:1606.01540.
[Feldbaum, 1960] Feldbaum, A. (1960). Dual control theory. i. Avtomatika i Telemekhanika, 21(9):1240–1249.
[Huan and Marzouk, 2016] Huan, X. and Marzouk, Y. M. (2016). Sequential bayesian optimal experimental design via

approximate dynamic programming. arXiv preprint arXiv:1604.08320.
[Kahn et al., 2015] Kahn, G., Sujan, P., Patil, S., Bopardikar, S., Ryde, J., Goldberg, K., and Abbeel, P. (2015). Active

exploration using trajectory optimization for robotic grasping in the presence of occlusions. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 4783–4790. IEEE.

[Larsson et al., 2013] Larsson, C. A., Annergren, M., Hjalmarsson, H., Rojas, C. R., Bombois, X., Mesbah, A., and Modén,
P. E. (2013). Model predictive control with integrated experiment design for output error systems. In 2013 European
Control Conference (ECC), pages 3790–3795. IEEE.

[Lindley et al., 1956] Lindley, D. V. et al. (1956). On a measure of the information provided by an experiment. The Annals
of Mathematical Statistics, 27(4):986–1005.

[Mehra, 1974] Mehra, R. (1974). Optimal input signals for parameter estimation in dynamic systems–survey and new
results. IEEE Transactions on Automatic Control, 19(6):753–768.

[Ryan et al., 2016] Ryan, E. G., Drovandi, C. C., McGree, J. M., and Pettitt, A. N. (2016). A review of modern computa-
tional algorithms for bayesian optimal design. International Statistical Review, 84(1):128–154.

[Stratonovich, 1968a] Stratonovich, R. (1968a). Conditional Markov processes and their application to the theory of optimal
control. Elsevier.

[Stratonovich, 1968b] Stratonovich, R. (1968b). Is there a theory of synthesis of optimal adaptive, self learning and self
adjusting systems? Avtomat. i Telemekh, 29(1):96–107.

4

Paper # 135 56

Momentum and mood in policy-gradient reinforcement learning

Daniel Bennett
Princeton Neuroscience Institute

Princeton University
Princeton, NJ 08544

daniel.bennett@princeton.edu

Guy Davidson
College of Computational Sciences

Minerva Schools at KGI
San Francisco, CA 94103
guy@minerva.kgi.edu

Yael Niv
Princeton Neuroscience Institute and Department of Psychology

Princeton University
Princeton, NJ 08544

yael@princeton.edu

Abstract

Policy-gradient reinforcement learning (RL) algorithms have recently been successfully applied in a number of domains.
In spite of this success, however, relatively little work has explored the implications of policy-gradient RL as a model of
human learning and decision making. In this project, we derive two new policy-gradient algorithms that have implica-
tions as models of human behaviour: TD(λ) Actor-Critic with Momentum, and TD(λ) Actor-Critic with Mood. For the
first algorithm, we review the concept of momentum in stochastic optimization theory, and show that it can be readily
implemented in a policy-gradient RL setting. This is useful because momentum can accelerate policy gradient RL by
filtering out high-frequency noise in parameter updates, and may also confer a degree of robustness against convergence
to local maxima in reward. For the second algorithm, we show that a policy-gradient RL agent can implement an ap-
proximation to momentum in part by maintaining a representation of its own mood. As a proof of concept, we show
that both of these new algorithms outperform a simpler algorithm that has neither momentum nor mood in a standard
RL testbed, the 10-armed bandit problem. We discuss the implications of the mood algorithm as a model of the feedback
between mood and learning in human decision making.

Keywords: actor-critic, policy gradient, momentum, mood

Paper # 43 57

1 Introduction

RL algorithms can be divided into three broad classes: value-based, policy-based, and actor-critic. Algorithms in these
classes are distinguished by whether they learn just a value function, and then use this value function to generate a policy
(value-based algorithms), learn only a policy function and no value function (policy-based algorithms), or learn both a
value function and an independent policy function (actor-critic algorithms). In psychology and neuroscience, recent
studies of learning and decision making have tended to focus on the processes by which humans and other animals
learn a value function. By contrast, comparatively little work has explored the implications for human learning and
decision making of the different methods of policy improvement employed by policy-based and actor-critic algorithms,
despite some evidence that human learning is consistent with policy updating rather than value updating [1].

Policy-gradient RL is a well-studied family of policy improvement methods that uses feedback from the environment
to estimate the gradient of reinforcement with respect to the parameters of a differentiable policy function [2, 3]. This
gradient is then used to adjust the parameters of the policy in the direction of increasing reinforcement. In recent years,
RL algorithms that incorporate a policy-gradient component have been successfully applied to real-time robot control in
a continuous action space [4], to Atari computer games [5], and to the board game Go [6].

Because it uses the gradient of reinforcement to update a policy, policy-gradient RL can be thought of as a form of
stochastic gradient descent (SGD). As a result, theoretical advances in stochastic optimization theory concerning SGD
methods can be applied directly to policy-gradient RL algorithms. For instance, it is known that SGD convergence
can be greatly accelerated by a momentum term [7, 8, 9]. Here, we show that adding a momentum term to policy-
gradient RL improves performance in a standard testbed, the 10-armed bandit problem, and we explore the implications
of momentum as a model of phenomena in human learning and decision making. Specifically, we show that a mood
variable—defined as an exponential moving average of reward prediction errors [10]—can be used to help approximate
a momentum update without ever computing a momentum term explicitly.

2 Theoretical framework and background

2.1 Gradient descent and momentum

Gradient descent tries to find the parameters θ that minimize an objective function J(θ) by incrementally updating θ in
the direction of∇θJ(θ), the gradient of J with respect to θ. The step size is controlled by a learning rate η:

ut = η∇θJ(θ)
θt+1 = θt − ut

(1)

In many cases it may be computationally infeasible to calculate ∇θJ(θ). Stochastic gradient descent therefore uses an
estimated gradient∇θJ̃(θ), typically calculated as the mean of a mini-batch of training samples. In practice, a momentum
term [7, 8] is often also used to help overcome two distinct but related limitations of SGD. These limitations are, first,
that SGD considers only the the slope of the objective function (first derivative) and not its curvature (second derivative).
This can cause difficulty in the presence of ‘ravines’ in the objective function where the curvature of J differs with respect
to different dimensions of θ [11]. Second, SGD’s use of an estimated rather than an exact gradient increases the variance
of parameter updates: although ∇θJ̃(θ) is equal to ∇θJ(θ) in expectation, at any single time-step unsystematic error in
gradient estimation can lead to suboptimal parameter updates.

Momentum addresses both of these limitations by updating parameters according to both the estimated gradient of J at
the current θ and a proportion m of the parameter update at the previous timestep: ut = η∇θJ̃(θ) +mut−1. In this way,
momentum effectively implements a low-pass filter on parameter updates. This filtering resolves the limitations of SGD
described above, because both oscillations resulting from differential curvature of J and unsystematic error in gradient
estimation slow SGD by introducing high-frequency noise to parameter updates. For this reason, momentum has long
been used in machine learning, especially in training neural networks by backpropagation [9].

2.2 Policy-gradient reinforcement learning

A policy-gradient RL algorithm performs gradient ascent on an objective function that evaluates its policy under current
parameters (e.g., the expected future reward under the current policy). This is achieved by updating the parameters θ of
a differentiable policy πθ [2, 3] in the direction of the gradient of the objective function with respect to θ.

In this project we sought to explore the consequences of adding a momentum term to a policy-gradient RL algorithm.
Our starting point was TD(λ) Actor-Critic, which implements policy-gradient RL via a form of advantage updating [4, 5]:

1

Paper # 43 58

TD(λ) Actor-Critic. The critic learns a state-value
function V using a learning rate α, and provides a
scalar reward prediction error δ to the actor at each
timestep. In turn, the actor uses this reward predic-
tion error to improve its policy by updating θ in the
direction of the product of δ and the accumulating eli-
gibility trace et.

�t = r + Vt�1(s
0)� Vt�1(s)

<latexit sha1_base64="FFFKSD0T/AYSloaWsl4pserNQkc=">AAACEHicbVDLSgMxFM3UV62vUZdugkXaIi0zKuhGKLpxWcE+oB2GTJq2oZkHyR2hDP0EN/6KGxeKuHXpzr8xbQfU1gMXTs65l9x7vEhwBZb1ZWSWlldW17LruY3Nre0dc3evocJYUlanoQhlyyOKCR6wOnAQrBVJRnxPsKY3vJ74zXsmFQ+DOxhFzPFJP+A9TgloyTULnS4TQFzAl1jiY9xwEyjb46IqlHD551VyzbxVsabAi8ROSR6lqLnmZ6cb0thnAVBBlGrbVgROQiRwKtg414kViwgdkj5raxoQnyknmR40xkda6eJeKHUFgKfq74mE+EqNfE93+gQGat6biP957Rh6F07CgygGFtDZR71YYAjxJB3c5ZJRECNNCJVc74rpgEhCQWeY0yHY8ycvksZJxT6tWLdn+epVGkcWHaBDVEQ2OkdVdINqqI4oekBP6AW9Go/Gs/FmvM9aM0Y6s4/+wPj4BsZTmeA=</latexit>

Vt(s) = Vt�1(s) + ↵�t
<latexit sha1_base64="mg+CbIJUHMU+nspPmJYxaW0Y6SY=">AAACEHicbZDLSgMxFIYz9VbrbdSlm2ARK2KZUUE3QtGNywr2Am0ZzqRpG5q5kJwRytBHcOOruHGhiFuX7nwb08tCW38IfPnPOSTn92MpNDrOt5VZWFxaXsmu5tbWNza37O2dqo4SxXiFRTJSdR80lyLkFRQoeT1WHAJf8prfvxnVaw9caRGF9ziIeSuAbig6ggEay7MPq16Kw4I+old0hCfu+HJMmyDjHtBmm0sEDz077xSdseg8uFPIk6nKnv3VbEcsCXiITILWDdeJsZWCQsEkH+aaieYxsD50ecNgCAHXrXS80JAeGKdNO5EyJ0Q6dn9PpBBoPQh80xkA9vRsbWT+V2sk2LlspSKME+QhmzzUSSTFiI7SoW2hOEM5MABMCfNXynqggKHJMGdCcGdXnofqadE9Kzp35/nS9TSOLNkj+6RAXHJBSuSWlEmFMPJInskrebOerBfr3fqYtGas6cwu+SPr8wd7uZr+</latexit>

et = �et�1 +r✓ log⇡✓
(s, a)

<latexit sha1_base64="ldkWew57DZj+f+PBLPI/Ya8ivp8=">AAACJXicbVBNa9tAFFwlbZO4H3GSYy5LTcGlrZHaQHNowSSXHl2oP8Ay4mn9bC9ZrcTuU8EI/Zle8ldy6SEmBHLKX+na1qG1O7AwzLzh7Zs4U9KS7z94O7tPnj7b2z+oPX/x8tVh/ei4Z9PcCOyKVKVmEINFJTV2SZLCQWYQklhhP766XPr9n2isTPUPmmc4SmCq5UQKICdF9S8YEf/KQ+UiY+AYFfQhKPk7HmqIFUQhzZDA+ek0KsJMVkLZtO/hbVRv+C1/Bb5Ngoo0WIVOVF+E41TkCWoSCqwdBn5GowIMSaGwrIW5xQzEFUxx6KiGBO2oWF1Z8jdOGfNJatzTxFfq34kCEmvnSewmE6CZ3fSW4v+8YU6T81EhdZYTarFeNMkVp5QvK+NjaVCQmjsCwkj3Vy5mYECQK7bmSgg2T94mvY+t4FPL/37WaF9UdeyzU/aaNVnAPrM2+8Y6rMsE+8Vu2C1beNfeb+/Ou1+P7nhV5oT9A+/xD6ZHpCc=</latexit>

ut = ⌘et�t
<latexit sha1_base64="IlYPsGYfL/+Hw1khKZESXvp+pIY=">AAACAHicbZA9SwNBEIb34leMX1ELC5vFIFiFOxW0EYI2lhGMCSTh2NvMJUv29o7dOSEcafwrNhaK2Poz7Pw3bpIrNPGFhYd3ZpidN0ikMOi6305haXllda24XtrY3NreKe/uPZg41RwaPJaxbgXMgBQKGihQQivRwKJAQjMY3kzqzUfQRsTqHkcJdCPWVyIUnKG1/PJB6iO9oh1ARsFipwcSmY9+ueJW3anoIng5VEiuul/+6vRinkagkEtmTNtzE+xmTKPgEsalTmogYXzI+tC2qFgEpptNDxjTY+v0aBhr+xTSqft7ImORMaMosJ0Rw4GZr03M/2rtFMPLbiZUkiIoPlsUppJiTCdp0J7QwFGOLDCuhf0r5QOmGUebWcmG4M2fvAgPp1XvrOrenVdq13kcRXJIjsgJ8cgFqZFbUicNwsmYPJNX8uY8OS/Ou/Mxay04+cw++SPn8wdefJWf</latexit>

✓t+1 = ✓t + ut
<latexit sha1_base64="P4fo9St2G5hk4N4YsUE/RDJVdfk=">AAACBnicbVDLSsNAFJ3UV62vqEsRBosgFEqigm6EohuXFewD2hAm00k7dDIJMzdCCV258VfcuFDErd/gzr9x2mahrQcunDnnXubeEySCa3Ccb6uwtLyyulZcL21sbm3v2Lt7TR2nirIGjUWs2gHRTHDJGsBBsHaiGIkCwVrB8Gbitx6Y0jyW9zBKmBeRvuQhpwSM5NuHXRgwIH4GFXeMr3D+BFzBqQ++XXaqzhR4kbg5KaMcdd/+6vZimkZMAhVE647rJOBlRAGngo1L3VSzhNAh6bOOoZJETHvZ9IwxPjZKD4exMiUBT9XfExmJtB5FgemMCAz0vDcR//M6KYSXXsZlkgKTdPZRmAoMMZ5kgntcMQpiZAihiptdMR0QRSiY5EomBHf+5EXSPK26Z1Xn7rxcu87jKKIDdIROkIsuUA3dojpqIIoe0TN6RW/Wk/VivVsfs9aClc/soz+wPn8Ahn6X3Q==</latexit>

Calculate reward prediction error

Update state value

Increment eligibility trace

Calculate parameter update

Update parameters

TD(λ) Actor-Critic makes use of a variable called the score function: ∇θ log πθ(s, a). This quantity is a vector defined as
the gradient of the log policy with respect to θ. It quantifies how the policy would change with changes in the different
entries in θ. Then, given a positive or a negative reward prediction error, this vector can be used to adjust the policy
appropriately [2, 5]. The score function is aggregated over time into the eligibility vector e, subject to an eligibility decay
parameter λ. When λ is greater than 0, this permits the algorithm to assign credit for rewards received at the current
timestep to actions taken at previous timesteps [4].

3 Momentum in policy-gradient reinforcement learning

3.1 TD(λ) Actor-Critic with Momentum

Since the algorithm described in Section 2.2 implements a form of SGD, it is amenable to improvement using the mo-
mentum principle described in Section 2.1. Specifically, we can add momentum to policy-gradient RL by augmenting the
update ut from TD(λ) Actor-Critic with a proportionm of the update from the previous timestep ut−1: ut = ηetδt+mut−1.
This produces a new algorithm, TD(λ) Actor-Critic with Momentum.

In addition to helping stabilise learning by filtering out high-frequency noise in parameter updates, another potential
advantage of momentum in policy gradient RL is that it may help the algorithm to find global rather than local maxima
of reinforcement, or at least to find better local maxima. A limitation of SGD in general is that it is guaranteed only to
converge to local optima; this can be especially problematic in RL environments, which are often characterised by non-
convex objective functions. In such settings, adding momentum to a policy-gradient RL algorithm might serve to propel
the algorithm past poor local maxima of reward, and thereby help to produce better overall policies at convergence.

3.2 TD(λ) Actor-Critic with Mood

In animal learning and decision making, one potential impediment to the use of a momentum term is that momentum
requires the algorithm to have access to ut−1, the vector of parameter updates at the previous timestep. We aim to show
here that a reasonable approximation to ut−1 can be constructed using a moving average of reward prediction errors. We
are interested in this moving average because of its psychological interpretation as a mood variable [10]. Specifically, we
follow [10] in defining a mood variable ht that is recursively updated via a simple error-correcting rule (delta rule) with
learning rate ηh and the current prediction error δt as a target:

ht = ht−1 + ηh (δt − ht−1) = ηh

t−1∑

τ=0

[(1− ηh)τδt−τ] (2)

Next, we can unroll the definition of the momentum term and rewrite it as a sum of the products of eligibility traces and
prediction errors at previous timesteps:

mut−1 = mηet−1δt−1 +m2ηet−2δt−2 +m3ηet−3δt−3 + . . .+mt−1ηe1δ1 = η
t−1∑

τ=1

[mτet−τδt−τ] (3)

We now seek to show that this sum of products can be approximated by a moving average of reward prediction errors
(that is, by the mood variable h). To this end, we first approximate the past eligibility traces et−τ from Equation 3 with
the most recent eligibility trace et−1 and move this term outside the sum. Then, by setting the learning rate ηh from
Equation 2 to 1 −m, the mood variable h becomes proportional to the approximated sum in Equation 3. Consequently,
mood from trial t− 1 can be used to approximate momentum at trial t:

mut−1 ≈ ηet−1
t−1∑

τ=1

[mτδt−τ] ≈ ηet−1
m

1−mht−1 (4)

2

Paper # 43 59

Finally, since the approximate momentum update in Equation 4 depends only on quantities available at trial t− 1, it can
be applied in advance at the end of trial t − 1, rather than waiting until the end of trial t (cf. Nesterov momentum [8]).
This produces the TD(λ) Actor-Critic with Mood algorithm, which uses a mood variable to help approximate momentum:

TD(λ) Actor-Critic with Mood. The general structure
of TD(λ) Actor-Critic is retained, except that a mood
variable is calculated on each trial and used to bias
parameter updates according to the recent history of
reward prediction errors.

Calculate reward prediction error

Update state value

Increment eligibility trace

Calculate parameter update

Update parameters

Update mood

�t = r + Vt�1(s
0)� Vt�1(s)

<latexit sha1_base64="FFFKSD0T/AYSloaWsl4pserNQkc=">AAACEHicbVDLSgMxFM3UV62vUZdugkXaIi0zKuhGKLpxWcE+oB2GTJq2oZkHyR2hDP0EN/6KGxeKuHXpzr8xbQfU1gMXTs65l9x7vEhwBZb1ZWSWlldW17LruY3Nre0dc3evocJYUlanoQhlyyOKCR6wOnAQrBVJRnxPsKY3vJ74zXsmFQ+DOxhFzPFJP+A9TgloyTULnS4TQFzAl1jiY9xwEyjb46IqlHD551VyzbxVsabAi8ROSR6lqLnmZ6cb0thnAVBBlGrbVgROQiRwKtg414kViwgdkj5raxoQnyknmR40xkda6eJeKHUFgKfq74mE+EqNfE93+gQGat6biP957Rh6F07CgygGFtDZR71YYAjxJB3c5ZJRECNNCJVc74rpgEhCQWeY0yHY8ycvksZJxT6tWLdn+epVGkcWHaBDVEQ2OkdVdINqqI4oekBP6AW9Go/Gs/FmvM9aM0Y6s4/+wPj4BsZTmeA=</latexit>

Vt(s) = Vt�1(s) + ↵�t
<latexit sha1_base64="mg+CbIJUHMU+nspPmJYxaW0Y6SY=">AAACEHicbZDLSgMxFIYz9VbrbdSlm2ARK2KZUUE3QtGNywr2Am0ZzqRpG5q5kJwRytBHcOOruHGhiFuX7nwb08tCW38IfPnPOSTn92MpNDrOt5VZWFxaXsmu5tbWNza37O2dqo4SxXiFRTJSdR80lyLkFRQoeT1WHAJf8prfvxnVaw9caRGF9ziIeSuAbig6ggEay7MPq16Kw4I+old0hCfu+HJMmyDjHtBmm0sEDz077xSdseg8uFPIk6nKnv3VbEcsCXiITILWDdeJsZWCQsEkH+aaieYxsD50ecNgCAHXrXS80JAeGKdNO5EyJ0Q6dn9PpBBoPQh80xkA9vRsbWT+V2sk2LlspSKME+QhmzzUSSTFiI7SoW2hOEM5MABMCfNXynqggKHJMGdCcGdXnofqadE9Kzp35/nS9TSOLNkj+6RAXHJBSuSWlEmFMPJInskrebOerBfr3fqYtGas6cwu+SPr8wd7uZr+</latexit>

et = �et�1 +r✓ log⇡✓
(s, a)

<latexit sha1_base64="ldkWew57DZj+f+PBLPI/Ya8ivp8=">AAACJXicbVBNa9tAFFwlbZO4H3GSYy5LTcGlrZHaQHNowSSXHl2oP8Ay4mn9bC9ZrcTuU8EI/Zle8ldy6SEmBHLKX+na1qG1O7AwzLzh7Zs4U9KS7z94O7tPnj7b2z+oPX/x8tVh/ei4Z9PcCOyKVKVmEINFJTV2SZLCQWYQklhhP766XPr9n2isTPUPmmc4SmCq5UQKICdF9S8YEf/KQ+UiY+AYFfQhKPk7HmqIFUQhzZDA+ek0KsJMVkLZtO/hbVRv+C1/Bb5Ngoo0WIVOVF+E41TkCWoSCqwdBn5GowIMSaGwrIW5xQzEFUxx6KiGBO2oWF1Z8jdOGfNJatzTxFfq34kCEmvnSewmE6CZ3fSW4v+8YU6T81EhdZYTarFeNMkVp5QvK+NjaVCQmjsCwkj3Vy5mYECQK7bmSgg2T94mvY+t4FPL/37WaF9UdeyzU/aaNVnAPrM2+8Y6rMsE+8Vu2C1beNfeb+/Ou1+P7nhV5oT9A+/xD6ZHpCc=</latexit>

✓t+1 = ✓t + ut
<latexit sha1_base64="P4fo9St2G5hk4N4YsUE/RDJVdfk=">AAACBnicbVDLSsNAFJ3UV62vqEsRBosgFEqigm6EohuXFewD2hAm00k7dDIJMzdCCV258VfcuFDErd/gzr9x2mahrQcunDnnXubeEySCa3Ccb6uwtLyyulZcL21sbm3v2Lt7TR2nirIGjUWs2gHRTHDJGsBBsHaiGIkCwVrB8Gbitx6Y0jyW9zBKmBeRvuQhpwSM5NuHXRgwIH4GFXeMr3D+BFzBqQ++XXaqzhR4kbg5KaMcdd/+6vZimkZMAhVE647rJOBlRAGngo1L3VSzhNAh6bOOoZJETHvZ9IwxPjZKD4exMiUBT9XfExmJtB5FgemMCAz0vDcR//M6KYSXXsZlkgKTdPZRmAoMMZ5kgntcMQpiZAihiptdMR0QRSiY5EomBHf+5EXSPK26Z1Xn7rxcu87jKKIDdIROkIsuUA3dojpqIIoe0TN6RW/Wk/VivVsfs9aClc/soz+wPn8Ahn6X3Q==</latexit>

ut = ⌘et

�t +

m

1�m
ht

�

<latexit sha1_base64="Gk3iPzF1lQhYSDwPv1PsgEvu3Ic=">AAACInicbVDLSgMxFM3UV62vqks3wSIIYplRQV0IohuXCrYKnaFk0jttaDIzJHeEMvRb3Pgrblwo6krwY0wfC209EDg551ySe8JUCoOu++UUZmbn5heKi6Wl5ZXVtfL6Rt0kmeZQ44lM9H3IDEgRQw0FSrhPNTAVSrgLu5cD/+4BtBFJfIu9FALF2rGIBGdopWb5NGsiPaM+IKNgqS8hwgb1WyCR2fse9SPNeK76ubev+p1BRIt2B4NmueJW3SHoNPHGpELGuG6WP/xWwjMFMXLJjGl4bopBzjQKLqFf8jMDKeNd1oaGpTFTYIJ8uGKf7lilRaNE2xMjHaq/J3KmjOmp0CYVw46Z9Abif14jw+gkyEWcZggxHz0UZZJiQgd90ZbQwFH2LGFcC/tXyjvMVoK21ZItwZtceZrUD6reYdW9OaqcX4zrKJItsk12iUeOyTm5ItekRjh5JM/klbw5T86L8+58jqIFZzyzSf7A+f4Bta2jMg==</latexit>

ht = ht�1 + (1�m)(�t � ht�1)
<latexit sha1_base64="3m/pEcLg/73UJiLQ2L6vFsyA5hM=">AAACEnicbVBNS8NAEN3Ur1q/oh69LBahRVoSFfQiFL14rGA/oC1hs922SzebsDsRSuhv8OJf8eJBEa+evPlv3LYRtPXBwOO9GWbm+ZHgGhzny8osLa+srmXXcxubW9s79u5eXYexoqxGQxGqpk80E1yyGnAQrBkpRgJfsIY/vJ74jXumNA/lHYwi1glIX/IepwSM5NnFgQf4Eg+8BEruGB/jglsKioV2lwkgxir9WEXPzjtlZwq8SNyU5FGKqmd/trshjQMmgQqidct1IugkRAGngo1z7ViziNAh6bOWoZIETHeS6UtjfGSULu6FypQEPFV/TyQk0HoU+KYzIDDQ895E/M9rxdC76CRcRjEwSWeLerHAEOJJPrjLFaMgRoYQqri5FdMBUYSCSTFnQnDnX14k9ZOye1p2bs/ylas0jiw6QIeogFx0jiroBlVRDVH0gJ7QC3q1Hq1n6816n7VmrHRmH/2B9fENIPSanw==</latexit>

4 Simulation results

Above, we described one extant policy-gradient RL algorithm (TD(λ) Actor-Critic), and two novel algorithms (TD(λ)
Actor-Critic with Momentum, and TD(λ) Actor-Critic with Mood). Here, we assess the simulated performance of these
three algorithms in a standard reinforcment learning testbed: the 10-armed bandit problem. Our goal is to determine
whether either momentum or mood-approximated momentum help to accelerate learning in this setting.

In the 10-armed bandit problem, the agent can choose
from among 10 choice options (‘arms’), each of which
is characterised by a different mean payout drawn
from a unit normal. An agent’s task in this environ-
ment is to choose arms that maximise the amount of
reward that it receives.

We implemented the three algorithms with a softmax
policy parameterised by the vector θ, which has length
equal to the number of choice options, where the i-th
entry of θ denotes strength of preference for the i-th
choice option. These preferences can be thought of as
analogous to Q-values, in that they denote some mea-
sure of the subjective utility of choosing different op-
tions; unlikeQ-values, however, preferences for differ-
ent options are not interpretable in terms of expected
future return. Each choice option is represented by the
feature vector φ(a), which is a one-hot vector (all 0 ex-
cept for the entry corresponding to a, which is 1). The
exact form of the policy is as below, where A is the set
of bandit arms:

πθ(a) =
eφ(a)

T θ

∑
â∈A

eφ(â)T θ
(5)

With this policy parameterisation, the score function
can be expressed in terms of φ:

∇θ log πθ(a) = φ(a)− Eπθ [φ(·)] (6)

Actor-critic
with momentum
with mood

Gaussian
reward distribution

Bernoulli
reward distribution

Ex
pe

ct
ed

 re
gr

et

Time step Time step

Figure 1: Learning curves (quantified by expected regret av-
eraged across 2000 simulations of 500 timesteps each) on two
variants of the 10-armed bandit testbed for three algorithms:
TD(λ) Actor-Critic (green), TD(λ) Actor-Critic with Momen-
tum (orange), and TD(λ) Actor-Critic with Mood (purple).
Left: testbed with Gaussian payout distribution (payout
standard deviation = 1). Right: testbed with Bernoulli pay-
out distribution. In both settings, an algorithm with momen-
tum performs best, followed by an algorithm with mood,
followed by an algorithm with neither.

Figure 1 displays the performance of the three algorithms for both Gaussian and Bernoulli payout distributions. Param-
eters for simulation are: λ = 0.1, γ = 1, α = 0.01, η = 0.1, m = 0.5. From these results, we can make three primary
observations. First, it is clear that a moderate degree of momentum (m = 0.5, orange line) accelerates learning perfor-
mance relative to an equivalent algorithm without momentum (green). Second, TD(λ) Actor-Critic with Mood (purple
line), which uses a mood term to approximate momentum, captures much of the benefit of momentum without requiring
an explicit representation of previous parameter updates. Third, the relative benefits of momentum are stronger for a
Bernoulli payout distribution than a Gaussian. This is because Bernoulli payouts have greater variance than Gaussian
payouts, such that individual pieces of feedback are less informative regarding the true gradient of reinforcement. As in
SGD, in this context a momentum term allows the algorithm to reduce the variance of updates to the parameters of its
policy, and therefore to learn more quickly.

3

Paper # 43 60

5 Conclusions

It is common practice in optimization by SGD to use a momentum term to accelerate convergence [7, 8, 9]. Here, we
provide a proof-of-concept result showing that momentum can also be used to accelerate policy-gradient RL. The under-
lying reason for this is that momentum helps overcome two limitations of steepest-ascent policy-gradient RL methods:
first, momentum can help prevent parameter oscillation in settings where performance is more sensitive to small changes
in some parameters than in others (e.g., driving in an urban environment, performance is much more sensitive to small
differences in the angle of the wheels than small differences in speed). Second, for on-line RL algorithms in stochastic en-
vironments, individual rewards or state transitions may provide very noisy estimates of the true gradient of reinforcment
with respect to the parameters of the policy. For instance, a single reward from a bandit that pays out probabilistically
gives only a high-variance sample of its underlying reward probability. By averaging parameter updates across multiple
points in time, momentum acts as a low-pass filter on this high-variance quantity, and therefore allows parameters to be
updated using a more stable (and more accurate) gradient estimate.

We also show that a momentum term can be reasonably well approximated in the policy-gradient RL setting by a mood
variable, where mood is defined as an exponential moving average of reward prediction errors [10]. This derivation may
shed light upon the role of mood in human and animal learning and decision making. For instance, [10] found evidence
for a mood-congruent interaction between mood and RL in human participants, such that participants who self-reported
high levels of mood instability tended over-value stimuli that they had encountered in a positive mood, and under-value
stimuli encountered in a negative mood. A mood model such as TD(λ) Actor-Critic with Mood provides one explanation
for this finding, because this algorithm approximates momentum by updating its policy parameters at each timestep in
the direction of the sum of the current reward prediction error and current mood. The effect of this is to boost preferences
for stimuli encountered when mood is positive, as [10] observed in participants high in mood instability.

More broadly, the fact that RL algorithms are improved by the addition of either momentum or mood is a reflection of an
interesting general property of learning: if an agent consistently receives positive reward prediction errors, this can often
be taken as a sign that the policy the agent has lately been following ought to be reinforced. By contrast, the reverse is true
for consistent negative reward prediction errors, which might indicate the necessity of altering the current policy. The two
policy-gradient RL algorithms that we have derived in this project take advantage of this general property of learning.
In the case of TD(λ) Actor-Critic with Momentum, this representation is made explicit in the form of a momentum term;
for TD(λ) Actor-Critic with Mood, it is accomplished implicitly by the use of mood to help approximate momentum.

References

[1] J. Li and N. D. Daw, “Signals in human striatum are appropriate for policy update rather than value prediction,”
The Journal of Neuroscience, vol. 31, no. 14, pp. 5504–5511, 2011.

[2] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine
Learning, vol. 8, pp. 229–256, 1992.

[3] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning
with function approximation,” in Advances in Neural Information Processing Systems, pp. 1057–1063, 2000.

[4] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement learning with continuous action in practice,”
in American Control Conference (ACC), 2012, pp. 2177–2182, IEEE, 2012.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in International Conference on Machine Learning, pp. 1928–1937, 2016.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–489, Jan. 2016.

[7] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Computational Mathemat-
ics and Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[8] Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate O(1
K2),” Dokl. Akad.

Nauk SSSR, vol. 269, pp. 543–547, 1984.
[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature,

vol. 323, no. 6088, p. 533, 1986.
[10] E. Eldar and Y. Niv, “Interaction between emotional state and learning underlies mood instability,” Nature Commu-

nications, vol. 6, p. 6149, 2015.
[11] R. S. Sutton, “Two problems with back propagation and other steepest descent learning procedures for networks,”

in Proceedings of the 8th Annual Conference of the Cognitive Science Society, 1986, pp. 823–832, 1986.

4

Paper # 43 61

Learning Multi-Agent Communication with Reinforcement
Learning

Sushrut Bhalla∗
Department of Computer Engineering

University of Waterloo
Waterloo, ON N2L 3G1

sushrut.bhalla@uwaterloo.ca

Sriram Ganapathi Subramanian
University of Waterloo
Waterloo, ON N2L 3G1

s2ganapathisubrmanian@uwaterloo.ca

Mark Crowley
University of Waterloo
Waterloo, ON N2L 3G1

mcrowley@uwaterloo.ca

Abstract

Deep Learning and back-propagation have been successfully used to perform centralized training with communication
protocols among multiple agents in a cooperative environment. In this paper, we present techniques for centralized
training of Multi-Agent (Deep) Reinforcement Learning (MARL) using the model-free Deep Q-Network (DQN) as the
baseline model and communication between agents. We present two novel, scalable and centralized MARL training
techniques (MA-MeSN, MA-BoN), which separate the message learning module from the policy module. The separa-
tion of these modules helps in faster convergence in complex domains like autonomous driving simulators. A second
contribution uses a memory module to achieve a decentralized cooperative policy for execution and thus addresses the
challenges of noise and communication bottlenecks in real-time communication channels. This paper theoretically and
empirically compares our centralized and decentralized training algorithms to current research in the field of MARL.
We also present and release a new OpenAI-Gym environment which can be used for multi-agent research as it simu-
lates multiple autonomous cars driving cooperatively on a highway. We compare the performance of our centralized
algorithms to DIAL and IMS based on cumulative reward achieved per episode. MA-MeSN and MA-BoN achieve a
cumulative reward of at-least 263% of the reward achieved by the DIAL and IMS. We also present an ablation study of
the scalability of MA-BoN and see a linear increase in inference time and number of trainable parameters compared to
quadratic increase for DIAL.

Keywords: Multi-Agent Reinforcement Learning; Autonomous Driving;
Deep Reinforcement Learning; Multi-Agent Systems

∗Contact Author

Paper # 89 62

1 Introduction

Multi Agent Reinforcement Learning (MARL) deals with the problem of learning optimal policies for multiple inter-
acting agents using RL. MARL algorithms can be applied to cooperative and competitive tasks. The main application for
cooperative MARL algorithms is in safe multi-agent autonomous driving. Training independent agents in multi-agent
cooperative environments leads to instability during training as the environment (consisting of other RL agents) will
exhibit a non-stationary model over time.

To overcome the problem of non-stationarity in the training of MARL agents, the current literature proposes the use of
centralized training using communication, information sharing or unified memory between the agents [7, 2, 4]. Effec-
tive communication between agents in MARL can be trained using backpropagation [7, 2]. Iterative Message Sharing
(IMS) [7] employs a message sharing protocol where an aggregated message is generated by averaging the messages
from all agents. The final policy is computed greedily from the value function which maps the observation z and ag-
gregate message magg to the state-action value, given by, π = argmaxaV (z,magg). Differentiable Inter-Agent Learning
(DIAL) [2] also trains communication channels, through back-propagation, for sequential multi-agent environments.
However, the messages exchanged between the agents are from the past time-steps. This causes a sub-optimal conver-
gence in dynamic environments as we show in our experiments section. Our work differs from these approaches in
two ways. (a) We remove the iterative network structure of communication protocol and replace it with a feed-forward
neural network, which reduces the complexity during training and increases the expressibility of the message. (b) We
use the centralized structure during training only and train a decentralized policy using a memory module for execution
as the communication among agents in autonomous driving environment is not guaranteed.

In this paper, we propose two centralized training algorithms for MARL environments using DQN [5] as the baseline.
The first approach extends the idea of using communication channels for message sharing as proposed in [2] to multi-
agent same discrete time-step communication, where the communication protocol is trained using back propagation [7].
The second approach introduces a broadcast network which generates a single broadcast message for all agents in the
environment and thus reduces channel bandwidth and memory requirements of the approach. We also propose a novel
method of boostrapping the training of independent memory module alongside our policy network to achieve fully
decentralized cooperative policy for execution. We evaluate our methods against current state of the art techniques in
MARL on multi-agent autonomous driving environment. We have developed an OpenAI Gym environment [1] which
simulates multiple autonomous and adversary cars driving on a highway. We also evaluate our results on two more
multi-agent particle environments with a long time to horizon and a cooperative reward structure [6].

2 Methods

Consider a cooperative multi-agent stochastic game G which is modeled by the tuple G = (X,S,A, T,R,Z,O) with N
agents, x ∈ X , in the game. The game environment presents states s ∈ S, and the agents observe an observation z ∈ Z.
The observation is generated using the function Z ≡ O(s, x) which maps the state of each agent to its private observation
z. The game environment is modeled by the joint transition function T (s,ai, s′) where ai represents the vector of actions
for all agents x ∈ X . We use the subscript notation i to represent the properties of a single agent x, a bold subscript
i to represent properties of all agents x ∈ X and −i to represent the properties of all agents other than xi. We use the
superscript t to represent the discrete time-step. The environment provides with a reward function R, which can be a
shared function to enable a cooperative behavior. In Partially Observable Stochastic Games (POSG), the reward function
R : S × A maps each agent’s actions ai to a private reward. In the following paragraphs, we present two methods
for centralized training of cooperative policies in MARL domains, which can be extended to a decentralized execution
paradigm. All the centralized training algorithms exhibit the property of having separate message generation and policy
modules. MA-MeSN and MA-BoN remove the need for iterative message passing, and thus allowing centralized training
with a reduced inference time and still achieving a better cooperative policy than previous approaches.

Multi-Agent Message Sharing Network (MA-MeSN): We present a scalable multi-agent network structure which al-
lows the message generation network f ′ to be optimized using gradients from policy networks of all agents and thus
provides better generalization. Evaluation of IMS in [7] mentions that only one agent is communicating in every iteration
of the message sharing loop. To eliminate the iterative communication, we propose a centralized training network with
communication channels inspired by the work of DIAL [2]. Fig. 1(a) shows the architecture of the MA-MeSN network
where agents are sharing messages and computing the final action-value for the same discrete time-step of the environ-
ment. We use 3 way communication where the messages generated by f ′−i is also conditioned on the communication
from agent xi. The messages m−i are conditioned on the full-state of the observable environment {zti , zt−i}, rather than
the private observation of each agent. A neural network f ′′ is used to evaluate the action-values for agent xi conditioned
on its private observation and messages from other agents in the environment m−i ≡ f ′(zt−i, f(zti)).
This approach has two advantages over DIAL. The messages mt

−i(z
t
−i, f(z

t
i)) are conditioned on the entire observable

state at time t, as opposed to DIAL, where messages mt
−i(z

t−1
−i) are a function of the previous time-step private observa-

1

Paper # 89 63

1

N

f

1

N

f

1

N

f

1

N

f'

O1

t t

A1

θ

π

π

π

A2

A3

O2

O3

1

N

f''

1

N

f''

1

N

f''

μ

μ

μ

τ

τ

τ

Switch

O2

1

N

f'

O3

Concat

Concat

Concat

1

N

f'

O1
1

N

f

1

N

f

1

N

f

1

N

1

N

f'

O1

t t

A1

θ

π

π

π

A2

A3

O2

O3

1

N

g'

1

N

g''

1

N

g'''

μ

μ

μ

τ

τ

τ

Switch

Figure 1: Architecture for Cooperative MARL Network: (a) MA-MeSN (left), (b) MA-BoN (right) with Memory.

0 500 1000 1500 2000 2500 3000 3500
Episode

0

200

400

600

800

1000

Cu
m

ula
tiv

e
Re

wa
rd

Cooperative Centralized Training in Multi-Agent Driving Environment
MA-MeSN
MA-BoN
DIAL
IMS

4000 4500 5000 5500 6000 6500 7000 7500 8000
Episode Number for CoDBC Training

0

200

400

600

800

1000

Cu
m

ula
tiv

e
Re

wa
rd

0 500 1000 1500 2000 2500 3000 3500
Episode for MA-MeSN-MM, DQN and DQN w/ SER

MA-MeSN-MM
CoDBC
DQN w/ SER
DQN

Figure 2: Cumulative reward for (a) Centralized (left), (b) Decentralized (right) training on the Driving Environment.

tion of each agent zt−1−i . This results in improved stability in training and a better final cooperative policy. Secondly, MA-
MeSN can work with a step-based experience replay buffer with uniform sampling for gradient calculations, whereas,
DIAL trains on the samples of current episode to stay current with changing policies of other agents. To achieve decen-
tralized execution using discrete messages, we use Gumbel-Softmax [3] operation on the continuous message generated
by each agent [6] during training as it allows for differentiability of the network. Gumbel-Softmax generates a continuous
approximation of the categorical distribution by replacing the argmax operation with a Softmax operation. To achieve
fully decentralized execution without message sharing, we also propose a LSTM memory module µ associated with each
agent’s policy network. The LSTMµ learns a mapping from agent’s private observation to the message generated by
agents in the environment which can be used during fully decentralized execution. Thus the individual memory mod-
ules along with their policy network can be independently used for fully decentralized execution of cooperative policy
by the agents (MA-MeSN-MM).

Multi-Agent Broadcast Network (MA-BoN) A drawback of MA-MeSN is that the network needs to be individually
evaluated to compute the action-value for each agent. We note that back-propagation could be used to train a single
message (broadcast ≡ f ′(mt

i)) which relays a learned representation of all agent’s private messages mt
i . The Fig. 1(b)

shows the network architecture for Multi-Agent Broadcast Network (MA-BoN). We deploy a feed-forward broadcast
network f ′ surrounded by a symmetric network structure. The NN f ′(mt

i) learns a combined communication message
as the broadcast message. Each agent can now independently evaluate the action-value for their private observation
using the function g′(zti , f

′(mt
i)) which is a function of the complete observed state of the environment. This network

also allows for parallel action-value evaluations with a single forward pass of the network and avoids the |P | iterations
required by IMS and 2 iterations of MA-MeSN. MA-BoN can also be easily decenetralized using discrete messages or by
the use of a memory module LSTMπ trained in parallel to the policy network (MA-BoN-MM).

3 Experiments and Results

Centralized Training on Multi-Agent Driving Environment We have developed a multi-vehicle driving simulator
which simulates multiple autonomous and adversary vehicles driving on a highway. The adversary’s objective is to
hit the closest car and all cooperative autonomous cars must avoid crashes. The MARL agents receive a hidden obser-
vation of the environment and a private reward based on distance from the closest agent but don’t know which car is
autonomous or adversary. The agents can communicate using discrete limited bandwidth channel.

2

Paper # 89 64

Table 1: Comparison of scalability in terms of memory and inference time analysis for MA-BoN (ours), DIAL and IMS.

MA-BoN DIAL IMS
#Cars Time (sec) #Param (M) CRPE Time (sec) #Param (M) CRPE Time (sec) #Param (M) CRPE

2 13.2658 2.826 512.4408 14.5619 1.761 117.1410 21.4447 2.908 194.4888
3 21.1892 3.383 443.5566 25.1714 2.572 89.25467 31.1567 2.924 191.4618
4 31.1815 3.940 409.5076 37.8002 3.383 79.10172 39.2954 2.941 160.3807
5 41.8882 4.497 376.4217 50.6050 4.194 70.96123 47.6846 2.957 109.6350
6 55.3998 5.054 342.8269 64.0858 5.005 68.8291 55.0327 2.974 93.84936
7 71.1721 5.611 279.1121 80.4211 5.816 62.41487 63.5499 2.990 83.25440

The results for centralized training of cooperative multi-agents (averaged over 20 runs) are shown in Fig. 2(a). The policy
is approximated using a neural network with 2 layers of size [4096, 64] for MA-MeSN, MA-BoN and IMS; DIAL uses a
neural network of size [6144, 64]. All agents have a linearly decaying exploration strategy over the first 100K steps. We
updated DIAL to sample from a step-based replay buffer with importance sampling which weighs the newer episodes
with a higher probability of being sampled. For the IMS algorithm, we arrived at using P = 5 for communication
iterations through cross-validation. We achieve the highest cumulative reward with MA-MeSN followed by the MA-
BoN algorithm. The IMS and DIAL algorithm are able to improve on the policy achieved by independent DQN, due
to the shared information using trained communication channels. The MA-BoN and MA-MeSN use step-based replay
memory (zti , a

t
i, r

t
i) along withmt

−i which provides better indexing of the changing policies of other agents over time and
thus allows for a more stable training algorithm. The intuition for sharing messages in the current time-step is that it
provides other agents with an insight into the future action policy of the environment containing other learning agents.
We thus see a stable learning curve with faster convergence properties than DIAL and IMS. The MA-BoN results show
comparative performance to MA-MeSN and provides us with the benefit of reduction in the number of communication
layers needed from |N | × |N | to |N |; along with reduced inference time for state-value prediction.

Ablation Study of scalability of MA-BoN We demonstrate the scalability of the MA-BoN approach compared to IMS
and DIAL through an ablation study where we increase the number of agents in the environment. The table 1 shows
a comparison of the inference time to complete an episode (Time), the total number of parameters required (#Param)
and the average cumulative reward per episode (CRPE) when the number of agents in the environment is increased.
We see that the number of parameters (#Params) and communication connections between agents for MA-BoN grows
linearly compared to DIAL and thus we also see a slower rate of increase in the number of trainable parameters. The
inference time of MA-BON is comparable to IMS and better than DIAL, while achieving better performance than both
DIAL and IMS. We use CRPE as the measure of performance of the algorithm. CRPE are computed by averaging results
of 5 training runs of 15, 000 episodes or 2.5M steps. MA-BoN outperforms DIAL and IMS by a large margin and also
shows better scalability as the message generation network for each agent is optimized using the cumulative gradients
from all agents’ temporal difference loss. Thus, the message is more generalizable in complex settings. DIAL and IMS use
policy gradients to update the current agent’s message and policy joint parameters which leads to reduced robustness of
the message shared between agents.

Decentralized Cooperative Policy on Multi-Agent Driving Environment Decentralized execution could be achieved
by using a discrete channel between agents or by completely removing message sharing between agents. First, we evalu-
ate the performance of MA-MeSN and MA-BoN networks with discrete message sharing. The performance is measured
in terms of cumulative reward achieved in each episode compared to fully centralized training with continuous mes-
sages. MA-MeSN and MA-BoN networks were able to maintain 98.35% and 86.47% of the performance from centralized
policy after 4000 episodes. The distribution of messages in MA-MeSN network varies based on which agent is closer to
an adversary; whereas in the MA-BoN the message varies based on the distance of adversary to the any autonomous
agent. We compare two distributions generated by two different agents using chi-squared distance. We get a value of
0.07457 and 0.00105 for MA-MeSN and MA-BoN respectively. Thus, the generalizability of broadcast messages in MA-
BoN allows us to extend the MA-BoN network to environments with a variable number of agents. We note that the
channels between agents can be unreliable and thus agents must be able to execute a cooperative decentralized policy
without communication.

Centralized Training - Predator Prey All experimental results (Fig 3(a)) for Predator-Prey domain represent the average
over 5 runs and the results were smoothed using a moving average. All algorithms use a linearly decaying exploration
schedule for the first 100K steps from 1.0 to 0.05 and we then use a constant value of 0.05 for the rest of the training. All
experiments are run for 7M steps and 60K episodes. All agents in the environment use parameter sharing of weights
and biases of the neural network with a size of 1 hidden layer with 256 hidden units, with a communication channel
of size 8 units. Our centralized training method MA-MeSN was able to achieve good performance in this environment

3

Paper # 89 65

Figure 3: Cumulative reward for Centralized training on (a.) Predator Prey (left), (b.) Cooperative Communication.

as well (very close to IMS). DIAL performs poorly in dynamic environments as the message is generated based on old
observations of the environment. The results clearly shows that our algorithms are extendable to environments with
sparse cooperative rewards.

Centralized Training - Cooperative Comm. Results in Fig 3(b) for cooperative communication represents an average
over 5 runs with the same hyper-parameters as the previous section and for 7M steps and 100K episodes. To achieve
discrete 2-bit communication between the speaker and the listener, we apply a softmax on the output of the speaker
before feeding it to the listener. MA-BoN and MA-MeSN don’t use parameter sharing and the communication channel
from the listener is masked with dummy values for this experiment. Again the superior performance of MA-BoN is seen.

4 Conclusion and Future Work

We have proposed two novel scalable centralized training algorithms (MA-MeSN, MA-BoN) for training multiple au-
tonomous agents in an environment. The MA-MeSN uses idea of iterative message sharing and trains messages using
back-propagation. The MA-BoN uses back-propagation to train multiple agents using a single broadcast network which
is representative of the full state of the environment. We also propose a method to achieve discrete message decen-
tralized execution and fully decentralized execution using memory module (MA-MeSN-MM). We note that MA-BoN
messages are generalizable and robust. Thus as a natural next step, we will extend the centralized training algorithms to
environments with varying number of agents.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016.

[2] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. In Advances in Neural Information Processing Systems, pages 2137–2145, 2016.

[3] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems, pages 6379–6390,
2017.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[6] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations. arXiv
preprint arXiv:1703.04908, 2017.

[7] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with backpropagation.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2244–2252. Curran Associates, Inc., 2016.

4

Paper # 89 66

Count-Based Exploration with the Successor Representation∗

Marlos C. Machado†
Google Brain

Montreal, QC, Canada
marlosm@google.com

Marc G. Bellemare
Google Brain

Montreal, QC, Canada
bellemare@google.com

Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

mbowling@ualberta.ca

Abstract

In this paper we provide empirical evidence showing that the norm of the successor representation (SR), while it is
being learned, can be used to generate effective exploration bonuses for reinforcement learning algorithms. The SR
is a representation that defines state generalization by the similarity of successor states. In our experiments the agent
maximized the reward functionRt+βrint, whereRt is the reward signal generated by the environment at time step t, β is
a scaling factor, and rint is the exploration bonus such that rint = 1

||ψ(St)||2 , with ψ(St) being the agent’s estimate of the SR
in state St. In the tabular case, when augmenting Sarsa with the proposed exploration bonus, we obtained results similar
to those obtained by theoretically sample-efficient approaches. We evaluated our algorithm in traditionally challenging
tasks such as RiverSwim and SixArms. We also evaluated this idea in hard-exploration Atari games where function
approximation is required. We obtained state-of-the-art performance in a low sample-complexity regime, outperforming
pseudo-count-based methods as well as the recently introduced Random Network Distillation (RND). We used a deep
neural network to approximate both the value function and the SR. In the extended version of this paper we also provide
some theoretical justification to the use of the norm of the SR as an exploration bonus by showing how, while it is being
learned, it implicitly keeps track of state visitation counts. We believe this result might lead to a different and fruitful
research path for exploration in reinforcement learning.

Keywords: Computational reinforcement learning, successor representation,
exploration, function approximation, Atari games.

Acknowledgements

The authors would like to thank Jesse Farebrother for the initial implementation of DQN used in this paper, Georg Os-
trovski for the discussions and for kindly providing us the exact results we report for the pseudo-count-based methods,
and Yuri Burda for kindly providing us the data we used to compute the performance we report for RND. We would also
like to thank Carles Gelada, George Tucker and Or Sheffet for useful discussions, as well as the anonymous reviewers for
their feedback. This work was supported by grants from Alberta Innovates Technology Futures and the Alberta Machine
Intelligence Institute (Amii). Computing resources were provided by Compute Canada through CalculQuébec.

∗This paper is an extended abstract of the following article: “M. C. Machado, M. G. Bellemare, M. Bowling. Count-Based Explo-
ration with the Successor Representation. CoRR abs/1807.11622, 2018.”
† work performed while at the Department of Computing Science at the University of Alberta.

Paper # 12 67

1 Introduction

Reinforcement learning (RL) tackles sequential decision making problems by formulating them as tasks where an agent
must learn how to act optimally through trial and error interactions with a complex, unknown, stochastic environment.
The goal in these problems is to maximize the discounted sum of the numerical reward signal observed at each time step.
The actions taken by the agent influence not just the immediate reward it observes but also the future states and rewards
it will observe, implicitly requiring the agent to deal with the trade-off between short-term and long-term consequences.
Here we focus on the problem of exploration in reinforcement learning, which is the problem of selecting appropriate
actions to explore the state space to gather information while taking the aforementioned trade-off into consideration.

Surprisingly, the most common approach in the field is to select exploratory actions uniformly at random, with even
high-profile success stories being obtained with this strategy (e.g., [10]). However, random exploration often fails in
environments with sparse rewards. In this paper we introduce a novel approach for exploration in reinforcement learning
based on the successor representation [5]. The successor representation is a representation that generalizes between states
using the similarity between their successors, that is, the states that follow the current state given the agent’s policy.

The main contribution of this paper is to show that the norm of the successor representation can be used as an exploration
bonus. We demonstrate this empirically in both tabular and function-approximation cases. For the latter we design a
deep reinforcement learning algorithm that achieves state-of-the-art performance in hard exploration Atari games when
in a low sample-complexity regime. A more thorough discussion about the proposed idea, as well as theoretical results
suggesting that the successor representation, while it is being learned, might encode some notion of state visitation
counts is available in the extended version of this paper [7].

2 Preliminaries

We consider the traditional reinforcement learning framework. We refer the reader to Sutton and Barto’s textbook for a
detailed presentation of the basic formalism [14]. In this paper we assume the reader is familiar with the basic concepts
in the field of reinforcement learning. The ideas presented here are based on the successor representation (SR) [5]. The
successor representation with respect to a policy π, Ψπ , is defined as

Ψπ(s, s′) = Eπ,p
[∞∑

t=0

γtI{St = s′}
∣∣∣S0 = s

]
,

where γ ∈ [0, 1) and I denotes the indicator function. This expectation can be estimated from samples with TD learning:

Ψ̂(St, j) ← Ψ̂(St, j) + η
(
I{St = j}+ γΨ̂(St+1, j)− Ψ̂(St, j)

)
, (1)

for all j ∈ S and η denoting the step-size. The definition of the SR can also be extended to features. Successor features [1]
generalize the SR to the function approximation setting. We use the definition for the uncontrolled case in this paper.

Definition 2.1. For a given 0 ≤ γ < 1, policy π, and for a feature representation φ(s) ∈ Rd, the successor features for a state s are:

ψπ(s) = Eπ,p

[∞∑

t=0

γtφ(St)

∣∣∣∣∣S0 = s

]
.

3 The Norm of the Successor Representation as an Exploration Bonus

It is now well-known that the successor representation incorporates diffusion properties of the environment. These
properties can be used to accelerate learning, for example, with options that promote exploration [9]. Inspired by these
results, in this section we argue that the successor representation can be used in a more direct way to promote exploration.

To demonstrate the usefulness of the norm of the successor representation as an exploration bonus we compare the
performance of traditional Sarsa to Sarsa+SR, an algorithm introduced here that incorporates the norm of the successor
representation as an exploration bonus in the Sarsa update. The update equation for Sarsa+SR is

q̂(St, At) ← q̂(St, At) + α

(
Rt + β

1

||Ψ̂(St)||2
+ γq̂(St+1, At+1)− q̂(St, At)

)
, (2)

where β is a scaling factor and, at each time step t, Ψ̂(St, ·) is updated before q̂(St, At) as per Equation 1.

We evaluted this algorithm in RiverSwim and SixArms [13], traditional domains in the PAC-MDP literature that are used
to evaluate provably sample-efficient algorithms. In these domains it is very likely that an agent will first observe a small

1

Paper # 12 68

Table 1: Comparison between Sarsa and Sarsa+SR. A 95% confidence interval is reported between parentheses.

Sarsa Sarsa + SR
RIVERSWIM 26,526 (2,350) 1,989,479 (167,189)
SIXARMS 284,013 (88,511) 2,625,132 (516,804)

reward generated in a state that is easy to get to. If the agent does not have a good exploration policy it is likely to
converge to a suboptimal behavior, never observing larger rewards available in states that are difficult to get to.

Our results suggest that the proposed exploration bonus has a profound impact in the algorithm’s performance. When
evaluating the agent for 5,000 time steps, Sarsa obtains an average return of approximately 26,000, while Sarsa+SR
obtains an approximate average return of 2 million! Notice that, in RIVERSWIM, the reward that is “easy to get” has
value 5, implying that, different from Sarsa+SR, Sarsa almost never explores the state space well enough. The actual
numbers, which were averaged over 100 runs, are available in Table 1. Details about the task, parameters used, as well
as the empirical methodology are available in the extended version of this paper [7].

4 Counting Feature Activations with the SR

In large environments, where enumerating all states is not an option, directly using Sarsa+SR as described in the previ-
ous section is not viable. Using neural networks to learn a representation while learning to estimate state-action value
function is the approach that currently often leads to state-of-the-art performance in the field. However, learning the SR
becomes more challenging when the representation, φ, is also being learned. In this section we describe an algorithm that
uses the same ideas described so far but in the function approximation setting. Our algorithm was inspired by recent
work that have shown that successor features can be learned jointly with the feature representation itself [6, 9].

An overview of the neural network we used to learn the agent’s value function while also learning the feature repre-
sentation and the SR is depicted in Figure 1. The layers used to compute the state-action value function, q̂(St, ·), are
structured as in DQN [10], but with different numbers of parameters (i..e, filter sizes, stride, and number of nodes). This
was done to match Oh et al.’s architecture, which is known to succeed in the auxiliary task of predicting the agent’s next
observation, which we detail below [11]. From here on, we call the part of our architecture that predicts q̂(St, ·) DQNe to
distinguish between the parameters of this network and DQN. It is trained to minimize the mixed Monte-Carlo return
(MMC), which has been used in the past by the algorithms that achieved succesful exploration in deep reinforcement
learning [3, 12]. The reward signal the agent maximizes isRt+βrint, whereRt denotes the reward signal generated by the
environment and rint denotes the exploration bonus obtained from the successor features of the internal representation,
φ, which will be defined below. Moreover, to ensure all features are in the same range, we normalize the feature vector
so that ||φ(·)||2 = 1. In Figure 1 we highlight with φ the layer in which we normalize its output. Notice that the features
are always non-negative due to the use of ReLU gates.

The successor features, ψ(St), at the bottom of the diagram, are obtained by minimizing the loss

LSR = Eπ,p
[(
φ(St; θ

−) + γψ(St+1; θ−)− ψ(St; θ)
)2]

.

Zero is a fixed point for the SR, which is particularly concerning in settings with sparse rewards. The agent might end
up learning to set φ(·) = ~0 to achieve zero loss. We address this problem by not propagating ∇LSR to φ (this is depicted
in Figure 1 as an open circle stopping the gradient). The distinction between θ and θ− is standard in the field, with θ−

denoting the parameters of the target network, which is updated less often for stability purposes [10]. We also create an
auxiliary task to encourage a representation to be learned before a non-zero reward is observed. As Machado et al. [9],
we use the auxiliary task of predicting the next observation, learned through the architecture proposed by Oh et al. [11],
which is depicted as the top layers in Figure 1. The loss we minimize for this last part of the network is

LRecons =
(
Ŝt+1 − St+1

)2
.

The overall loss minimized by the network is L = wTDLTD + wSRLSR + wReconsLRecons.

The last step in describing our algorithm is to define rint, the intrinsic reward we use to encourage exploration. We
choose the exploration bonus to be the inverse of the `2-norm of the vector of successor features of the current state, as
in Sarsa+SR. That is,

rint(St; θ
−) =

1

||ψ(St; θ−)||2
,

where ψ(St; θ
−) denotes the successor features of state St parametrized by θ−. The exploration bonus comes from the

same intuition presented in the previous section (we observed in preliminary experiments not discussed here that DQN
performs better when dealing with positive rewards).

2

Paper # 12 69

C
on

v
Deconv

At

�

M
LP

M
LP

M
LP

Figure 1: Neural network architecture used by our algorithm when learning to play Atari games.

5 Evaluation of Exploration in the Deep Reinforcement Learning Case

We evaluated our algorithm on the Arcade Learning Environment [2]. Following Bellemare et al.’s taxonomy [3], we
focused on the Atari games with sparse rewards that pose hard exploration problems. We used the evaluation protocol
proposed by Machado et al. [8]. We used the game MONTEZUMA’S REVENGE to tune our parameters. The reported
results are the average over 10 seeds after 100 million frames. We evaluated our agents in the stochastic setting (sticky
actions, ς = 0.25) using a frame skip of 5 with the full action set. The agent uses the game screen as input.

Our results were obtained with the algorithm described in Section 4. We set β = 0.025 after a rough sweep over values in
the game MONTEZUMA’S REVENGE. We annealed ε in DQN’s ε-greedy exploration over the first million steps, starting at
1.0 and stopping at 0.1 as done by Bellemare et al. [3]. We trained the network with RMSprop with a step-size of 0.00025,
an ε value of 0.01, and a decay of 0.95, which are the standard parameters for training DQN [10]. The discount factor, γ,
is set to 0.99 and wTD = 1, wSR = 1000, wRecons = 0.001. The weights wTD, wSR, and wRecons were set so that the loss functions
would be roughly the same scale. All other parameters are the same as those used by Mnih et al. [10].

Table 2 summarizes the results after 100 million frames. The performance of other algorithms is also provided for ref-
erence. Notice we are reporting learning performance for all algorithms instead of the maximum scores achieved by the
algorithm. We use the superscript MMC to distinguish between the algorithms that use MMC from those that do not. When
comparing our algorithm, DQNMMC

e +SR, to DQN we can see how much our approach improves over the most traditional
baseline. By comparing our algorithm’s performance to DQNMMC+CTS [3] and DQNMMC+PixelCNN [12] we compare
our algorithm to established baselines for exploration that are closer to our method. By comparing our algorithm’s per-
formance to Random Network Distillation (RND) [4] we compare our algorithm to one of the most recent papers in the
field with state-of-the-art performance.

As mentioned in Section 4, the parameters of the network we used are different from those used in the traditional DQN
network, so we also compared the performance of our algorithm to the performance of the same network our algorithm
uses but without the additional modules (next state prediction and SR) by setting wSR = wRecons = 0 and without the
intrinsic reward bonus by setting β = 0.0. The column labeled DQNMMC

e contains the results for this baseline. This
comparison allows us to explicitly quantify the improvement provided by the proposed exploration bonus.

We can clearly see that our algorithm achieves scores much higher than those achieved by DQN, which struggles in
games that pose hard exploration problems. Moreover, by comparing DQNMMC

e +SR to DQNMMC
e we can see that the pro-

vided exploration bonus has a big impact in the game MONTEZUMA’S REVENGE, which is probably known as the hardest
game among those we used in our evaluation, and the only game where agents do not learn how to achieve scores greater
than zero with random exploration. Interestingly, the change in architecture and the use of MMC leads to a big improve-
ment in games such as GRAVITAR and VENTURE, which we cannot fully explain. However, notice that the change in
architecture does not have any effect in MONTEZUMA’S REVENGE. The proposed exploration bonus seems to be essen-
tial in games with very sparse rewards. We also compared our algorithm to DQNMMC+CTS and DQNMMC+PixelCNN. We
can observe that, on average, DQNMMC

e +SR outperforms these algorithms while being simpler since it does not require a
density model. Instead, our algorithm requires the SR, which is domain-independent as it is already defined for every
problem since it is a component of the value function estimates [5].

Finally, DQNMMC
e +SR also outperforms RND [4] when it is trained for 100 million frames. Importantly, RND is currently

considered to be the state-of-the-art approach for exploration in Atari games. Burda et al. did not evaluate RND in
FREEWAY, thus we do not report any scores for RND in this game.

A more thorough analysis of the impact of the different components of the proposed algorithm (the importance of the
auxiliary task, the impact of using a different p-norm of the SR, among other things) is available in the extended version
of this paper [7]. It also contains the learning curves of these algorithms and their performance after different amounts
of experience.

3

Paper # 12 70

Table 2: Performance of the proposed algorithm, DQNMMC
e +SR, compared to various agents on Atari games. The DQN

results reported are from Machado et al. [8] while the DQNMMC+CTS and DQNMMC+PixelCNN results were extracted
from Ostrovski et al.’s work and RND results were extracted from Burda et al.’s work. DQNMMC

e is another baseline used
in the comparison. When available, standard deviations are reported between parentheses.

DQN DQNMMC
e DQNMMC+CTS DQNMMC+PIXELCNN RND DQNMMC

e +SR
FREEWAY 32.4 (0.3) 29.5 (0.1) 29.2 29.4 - - 29.5 (0.1)
GRAVITAR 118.5 (22.0) 1078.3 (254.1) 199.8 275.4 790.0 (122.9) 430.3 (109.4)
MONT. REV. 0.0 (0.0) 0.0 (0.0) 2941.9 1671.7 524.8 (314.0) 1778.6 (903.6)
PRIVATE EYE 1447.4 (2,567.9) 113.4 (42.3) 32.8 14386.0 61.3 (53.7) 99.1 (1.8)
SOLARIS 783.4 (55.3) 2244.6 (378.8) 1147.1 2279.4 1270.3 (291.0) 2155.7 (398.3)
VENTURE 4.4 (5.4) 1220.1 (51.0) 0.0 856.2 953.7 (167.3) 1241.8 (236.0)

6 Conclusion

RL algorithms tend to have high sample complexity, which often prevents them from being used in the real-world. Poor
exploration strategies is one of the main reasons for this high sample-complexity. Despite all of its shortcomings, uniform
random exploration is, to date, the most commonly used approach for exploration. This is mainly due to the fact that
most approaches for tackling the exploration problem still rely on domain-specific knowledge (e.g., density models,
handcrafted features), or on having an agent learn a perfect model of the environment. In this paper we introduced a
general method for exploration in RL that implicitly counts state (or feature) visitation in order to guide the exploration
process. It is compatible to representation learning and the idea can also be adapted to be applied to large domains.

References
[1] André Barreto, Will Dabney, Rémi Munos, Jonathan Hunt, Tom Schaul, David Silver, and Hado van Hasselt. Suc-

cessor Features for Transfer in Reinforcement Learning. In NIPS, 2017.
[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Environment: An

Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
[3] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unifying

Count-Based Exploration and Intrinsic Motivation. In NIPS, pages 1471–1479, 2016.
[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random Network Distillation. In

ICLR, 2019.
[5] Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Representation. Neural

Computation, 5(4):613–624, 1993.
[6] Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. Deep Successor Reinforcement

Learning. CoRR, abs/1606.02396, 2016.
[7] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-Based Exploration with the Successor Repre-

sentation. CoRR, abs/1807.11622, 2018.
[8] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael Bowling.

Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents. Journal
of Artificial Intelligence Research, 61:523–562, 2018.

[9] Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray Campbell.
Eigenoption Discovery through the Deep Successor Representation. In ICLR, 2018.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
Control through Deep Reinforcement Learning. Nature, 518:529–533, 2015.

[11] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-Conditional Video Pre-
diction using Deep Networks in Atari Games. In NIPS, pages 2863–2871, 2015.

[12] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Rémi Munos. Count-Based Exploration with Neural
Density Models. In ICML, pages 2721–2730, 2017.

[13] Alexander L. Strehl and Michael L. Littman. An Analysis of Model-based Interval Estimation for Markov Decision
Processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2 edition, 2018.

4

Paper # 12 71

An empirical evaluation of Reinforcement Learning Algorithms
for Time Series Based Decision Making

Alberto C. Chapchap
alberto.chapchap@gscap.com.br

Andre Lawson
andre.lawson@gscap.com.br

Dimas Ramos
dimas.ramos@gscap.com.br

Abstract

In this article, an empirical investigation of several tabular reinforcement learning algorithms is carried out for the prob-
lem of time series decision making with low signal to noise ratio, focusing on the financial domain. Departing from the
empirical finance literature, the main question asked is whether reinforcement learning agents can learn (or hopefully
outperform) the reported heuristics in an online fashion. In this context, the performance of temporal difference meth-
ods (Q-Learning, Sarsa, Expected Sarsa and Value Function prediction based methods) are evaluated and benchmarked
against a widely used strategy from empirical finance. Our contribution is twofold, namely: the empirical evaluation car-
ried out indicates that, when presented with data, the algorithms are able to discover some typical heuristics that have
long been reported in the related literature e.g: momentum and mean reversion but conditioned on the current state;
therefore, an interesting hybrid dynamic behaviour emerges in the value function estimation and the Q values of the
actions. Our second contribution is to note that in this particular setting (small number of discrete actions), the updates
of the Q values at each time step can actually be performed for all the possible actions and not only for the action the
agent took on that state, leading to a full exploitation behaviour. Across the board, the results using a real world data set
suggests that all the tabular methods tested perform better than the strategies reported in the empirical finance literature
as well as long only based strategies.

Keywords: Reinforcement Learning, finance, trading, online learning

Acknowledgements

We are deeply indebted to Google DeepMind and the Weinberg Institute for Cognitive Science for their generous support
of RLDM2019.

Paper # 20 72

1 Introduction

Decision making given a noisy time series turns out to be a very common problem in many areas of research. In the
financial domain, on one hand the efficient market hypothesis (EMH) [1] states that there is no long term structure in
the time series itself. On the other hand, the empirical finance literature has reported evidence of two major anomalies,
namely: momentum [2] and mean reversion (well surveyed in [3] under the follow the loser heuristic). In case some of
these anomalies are present, tabular reinforcement learning agents should be able to learn some of this structure (if any)
from the data in a model free fashion.

Applications of the RL framework to financial time series is not a new subject and the literature is vast. For instance,
in [4] the problem of learning to trade (i.e whether to buy or sell a particular financial instrument) is investigated and
two algorithms, one based on policy search and another based on Q-learning are compared. [5] applied tabular methods
to the problem of finding a policy that leads towards an optimized execution strategy. [6] compares three automated
stock trading agents, one based on SARSA and two others: one based on trend following (or momentum) heuristics
and another based on the combination of momentum and market making. In [7], the work of [4] is extended to a deep
architecture where the problem of learning good representations via autoencoders and act optimally is tackled from
an end to end fashion. Interestingly, the results among these publications are somewhat mixed, with some cases of
successful RL agents, others more in line with the EMH (no structure found at all) and others arguing more in favour
heuristic approaches (due to the low signal to noise ratio, learning is too difficult and a good prior might be the best one
can do). Arguably, the success of a RL agent is intimately related to the information encoded in the state description and
this may be a paramount ingredient in the failure/ success of applications.

That said, the aim of this work is not to propose new state representations for the problem at hand, but rather try to
give insight to the following question: under essentially the same state representations used in the empirical finance
literature, what is the performance obtained across various tabular RL algorithms ?

The paper is organized as follows: section 2 gives a brief introduction to the reinforcement learning problem. Section
3 describes the algorithms used on the evaluation. Section 4 describes the experimental set up and its corresponding
results. In section 5, the present work is concluded.

2 Problem Formulation

In this section, a brief formulation of the problem is presented and the reader is referred to [8] for a thorough presentation.
In the general setting, the reinforcement learning problem can be defined by a tuple (S, A, P(R = r ,S’=s’ | S=s,A =a , Ras ,
γ, λ). Concretely, at each time step ti the agent receives a state representation of the environment S ∈ S, interacts with it
by choosing an action A ∈ A and receives a stochastic reward R(S,A) ∈ Ras , from the action it has taken in state S and
trasitions to a new state S′. The rewards and transitions that the agent incurs are sampled from P(R = r ,S’=s’ | S=s,A
=a). The parameters γ, λ represent the discount factor and the eligibility trace respectively. Based on the experiences
from the interaction with the environment, the agent tries to select its new action in order to maximize the expectation
of the sum of the discounted future rewards from that state onwards. Hence, setting Gt =

∑∞
k=1 γ

k−1Rt+k, the main
idea is to find a policy π(A|S), a probability distribution over actions given states such that the action-value function,
qπ(s, a) = Eπ(Gt|S = s,A = a), is maximized when the agent takes action A in state S and then follows π afterwards. In
this set up, Eπ(.) is the expected value of a random variable under the probability distribution P(R = r ,S’=s’ | S=s,A =a)
when the agent samples its actions according to π. Furthermore, the Markovian property allows the expectation to be
written in a recursive fashion as the expected Bellman equation i.e:

qπ(s, a) = Eπ (R(S,A) + γ
∑

A′
π(A′|S′)Q(S′, A′)|S = s,A = a). (1)

If a policy is given, the value function is the expected return of starting from state S and following the policy π onwards,
i.e: vπ(s) = Eπ(Gt|S = s). In this case the corresponding expected Bellman equation for V π(S) is given by:

vπ(s) = Eπ (R(S, π(S)) + γvπ(s
′)|S = s). (2)

In order to solve the reinforcement learning problem, instead of just predicting the values of qπ(s, a) the aim is to find the
optimal action-value function i.e: q∗(s, a) = maxπ qπ(s, a), which specifies the best possible performance in the problem
at hand. In addtion, q∗(s, a) induces an optimal policy by selecting actions in a greedy fashion. The optimal action-value
function also satisfies the the Bellman optimality equation and can be written as:

q∗(s, a) = E (R(S,A) + γmax
a′

q∗(S
′, a′)|S = s,A = a). (3)

The algorithms proposed in the next section try to solve equations 2 and 3 for the case of value function prediction and
control respectively. Moreover, for the problem of prediction the notion of eligibility trace, unifying the backward and
forward view methods from [9] is added and evaluated empirically in table 1.

1

Paper # 20 73

3 Algorithmic Solutions

Before the first algorithm is introduced some particular aspects of finance are going to be outlined in the hope they can
be used in a constructive way by the agent. Assuming the agent is able to trade only a fixed amount of contracts of the
asset at hand (the bet size is fixed), there are really only 3 possible actions, buying (going long, +1), selling (going short,
-1) or staying neutral (doing nothing, 0). Furthermore, without taking into account transactions costs, the rewards are
symmetrical (what the agent gets for being short is the opposite of what it gets for holding a long position). Therefore in
order to start in a simple fashion, one could try to flatten the reinforcement learning problem into a prediction problem
by fixing a policy (say going long). This way the problem now becomes to predict the value function at each state the
agent visits, go long if it is positive, short if it is negative and staying neutral otherwise. In order to estimate the value
function using the temporal difference method, algorithm 1 from [8], is used.

Algorithm 1 Value Function Prediction
1: Hyperparameters: α, γ, λ
2: Initialize V(S) to 0.0
3: E(S) = 0, for all s in S:
4: for t1, ..., tn do
5: A := action given by π (in this case π = 1)
6: Take action A, observe reward R, and next state S’
7: δ := R+ γV (S′)− V (S)
8: E(S) := (1− α)E(S) + 1 (dutch traces)
9: for all s ∈ S do:

10: V (s) := V (s) + αδE(s)
11: E(s) := γλE(s)
12: end for
13: S := S′

14: end for

Next instead of predicting the value function for a fixed policy in each state, the control problem is tackled. The idea
now is to predict state-actions pairs and from there derive the optimal policy by acting ε - greedy. In addition, it turned
out, that the performance of Algorithm 1 is robust for different values of the eligibility trace parameter λ (Table 1).
Therefore, in order to keep the number of hyper parameters to a minimum, both Q-learning, SARSA and Expected
SARSA Algorithms are investigated by implicitly setting λ = 0.0 and using ε-greedy exploration scheme (Table 2 and 3).
In this context, Q-learning ([8] page 131) , SARSA and expected SARSA ([8] page 133), are investigated in an out of the
shelf fashion for the case of two actions (long and short).

Algorithm 2 can be viewed as a particular extension of Q-learning, with two basic modifications, namely: first, instead
of updating only the state-action pair of the action the agent took, the Q values of all 3 actions (long, short or neutral) in
that state are all updated; secondly, given that for each visited state all actions are updated, the agent can follow a fully
explotiation policy and act greedily. This is possible because in a given state both the rewards and the next state for every
action choosen can be observed by the agent.

Algorithm 2 Modified Q-Learning
1: Hyperparameters: α, γ
2: Initialize Q(S, A) to 0.0
3: for t1, ..., tn do
4: A := argmaxaQ(S, a)
5: Take action A, observe reward R
6: for all Ai ∈ A do:
7: Pretend action Ai was taken, observe reward Ri, and next state S′

i

8: δi := Ri + γ argmaxaQ(S′
i, a)−Q(Si, Ai)

9: Q(Si, Ai) := Q(Si, Ai) + αδi
10: end for
11: end for

4 Empirical Evaluation

In this section the algorithms are applied to a real world data set comprising the daily closing prices of the SP 500 index
from 10 March 1983 to the 31st December 2018. The results are benchmarked against a widely used momentum strategy
and a long only strategy: the long/short (resp. long/neutral) momentum strategy compares the price of today with the

2

Paper # 20 74

moving average of price of the last 180 trading days; in case the price is above a long position (buy the index) is held;
conversely, in case it is below the average a short (neutral resp.) position is held; otherwise the position is kept neutral.
On the other hand, the long only strategy holds the index forever, aiming at long term capital appreciation.

In order to compare the strategies two metrics are addressed, namely: the cumulative return i.e Gt and the annualized
Sharpe ratio [10], i.e S =

√
252 r̂

σ̂r
, where r̂ and σ̂r are the sample average and standard deviation of returns. The

main idea behind the Sharpe ratio is to address the return on risk adjusted basis. In addition, in order to make a ”fair”
comparison the state representation of the tabular algorithms is constructed by calculating the Z score of the prices on
the last 180 trading days (same window used by the momentum strategy) and discretizing the score, yielding 8 states
which are depicted in x axis of figure 1. The rewards are calculated by multiplying the action took (i.e -1, 0 or +1) at time
t by the return of the index at time t+ 1.

In figure 1 the value function value predicted by algorithm is 1 is reported in basis points (i.e one hundredth of one
percent). It is interesting to note that during the years there is some consistency in the value function prediction in each
state. Furthermore, a hybrid behavior between momentum and mean reversion emerges, e.g: in the state where the price
falls below −3σ a momentum strategy would go short whereas a mean reverting strategy would go long, the RL agent
would be long in this case. On the other hand, for price movements in range of (1σ, 2σ), the RL agent would be long (so
would be a momentum strategy whereas a mean reverting strategy would be short). Therefore the behaviour captured
is not only dynamic in time but hybrid across the most common heuristics of the literature.

Table 1: Analysis of the impact of different values of discount factor, γ, and elegibility trace, λ, on the Sharpe ratio of Algorithm [1]. The results
suggest that γ > 0 is not necessarily better, since the performance of a myopic agent turns out to be competitive, this could be related to the low
signal to noise ratio of the series but needs further investigation.

λ | γ 0.00 0.20 0.40 0.60 0.80 0.90 0.99
0.00 0.68 0.67 0.66 0.66 0.68 0.68 0.67
0.20 0.68 0.71 0.72 0.68 0.62 0.58 0.62
0.40 0.68 0.74 0.66 0.66 0.64 0.58 0.55
0.60 0.68 0.67 0.66 0.58 0.45 0.46 0.40
0.80 0.68 0.65 0.65 0.49 0.40 0.20 0.27
0.90 0.68 0.65 0.60 0.47 0.22 0.20 0.25
1.00 0.68 0.66 0.55 0.38 0.24 0.22 0.24

In Tables 2 and 3 the performance of different RL algorithms is compared and benchmarked against the momentum and
long only strategies. The results reported are averages and standard deviations accross 18 runs. Interestingly, there is not
much variability accross the performance of each algorithm and with a decent amount of confidence, say at least in the
2σ region, all RL agents outperform the benchmark strategies in terms of Sharpe ratio.

5 Conclusions

In this work an empirical study of several tabular RL algorithms has been carried out for the problem of time series
based decision making. The experiments on a SP500 data set suggest that the RL agents trained online can outperform
some of the widely used heuristics in the finance literature by learning a hybrid dynamic strategy, conditioned on the
state representation. Furthermore, for this particular problem, it turned out that a simple value function prediction and
a fully exploitation modified Q learning agent are able to provide competitive performance across different algorithms.
That said, the performance of the algorithms is also relatively robust for different discount factors γ, suggesting that long
term planning does not play a major role in this task. In particular for case of value function prediction, the performance
of the algorithm is also investigated for different values of eligibility trace parameters λ and γ.

6 References

[1] Fama, E. F. (1991) Efficient Capital markets: II, Journal of Finance, 46(5), 1575-1617.

Table 2: Cumulative returns, G0, of the algorithms tested for different values of γ compared with the heuristic baselines.

Performance Table (Gt) γ = 0.0 γ = 0.3 γ = 0.6 γ = 0.9 γ = 0.99
Value Function Prediction 2.04 2.00 1.98 2.02 2.01

Q Learning (2 actions, ε =0.01) 1.94± 0.10 1.98± 0.10 2.04± 0.10 2.00± 0.15 2.03± 0.09
Expected Sarsa (2 actions, ε =0.01) 2.02± 0.13 1.95± 0.14 1.90± 0.14 2.03± 0.13 2.03± 0.15

Sarsa (2 actions, ε =0.01) 1.94± 0.16 1.97± 0.18 1.94± 0.18 1.92± 0.13 2.03± 0.14
Modified Qlearning (3 actions ε =0.0) 2.04 2.04 2.04 2.04 2.04

Momentum Long/Short 0.98
Momentum Long/Neutral 1.93

Long Only 1.39

3

Paper # 20 75

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

-3 -(3 ,2) -(2 ,1) (-1 ,0) (0,1) (1 ,2) (2 ,3) 3
1.0

0.5

0.0

0.5

1.0

1.5

Figure 1: The y-axis shows the estimation of V π , in basis points, from Algorithm [1] for every state in the x-axis. In order to visualize the dynamics
time is roughly spaced in 6 year intervals, so the top left is a snapshot of V π on the 15th Feb 89; on the top right on 23rd Jan 95; on the middle
left the estimation corresponds to the 22ond Jan 2000; the middle right displays what V π looked on the 28th Sep 2006. The bottom left and right
correspond to the 7th Sep 2012 and 21st Aug 2018 respectively.

Table 3: Sharpe ratio,S, of the algorithms tested for different values of γ compared with the heuristic baselines.

Performance Table (Sharpe ratio) γ = 0.0 γ = 0.3 γ = 0.6 γ = 0.9 γ = 0.99
Value Function Prediction 0.68 0.68 0.66 0.68 0.67

Q Learning (2 actions, ε =0.01) 0.65± 0.03 0.66± 0.03 0.68± 0.03 0.67± 0.05 0.67± 0.03
Expected Sarsa (2 actions, ε =0.01) 0.68± 0.04 0.65± 0.05 0.64± 0.05 0.68± 0.04 0.69± 0.05

Sarsa (2 actions, ε =0.01) 0.65± 0.05 0.66± 0.06 0.65± 0.06 0.64± 0.05 0.69± 0.04
Modified Qlearning (3 actions ε =0.0) 0.68 0.68 0.68 0.68 0.68

Momentum Long/Short 0.15
Momentum Long/Neutral 0.47

Long Only 0.46

[2] Jegadeesh, N. and Titman, S. (2001) Profitability of momentum strategies: An evaluation of alternative explanations. Journal of
Finance 56(2), 699-720.

[3] Li B, Hoi S.C.H (2014) Online portfolio selection: a survey. ACM Computing Surveys 46(3).

[4] Moody, J. E. & Saffell, M. (2001) Learning to Trade via Direct Reinforcement. IEEE Transactions on Neural Networks Vol 12, No 4.

[5] Nevmyvaka, Y., Feng, Y. & Kearns, M. (2006) Reinforcement learning for optimized trade execution. In 23rd International Conference
on Machine learning, pages 673 - 680.

[6] Shrestov, A. & Stone, P. (2004) Three Automated Stock-Trading Agents: A Comparative Study. Agent Mediated Eletronic Commerce
VI: Theories for and Engineering of Sistributed Mechanisms and Systems AMEC 2004 , Lectures Notes in Artificial Intelligence, pp. 194-205,
Springer Verlag. Berlin, 2005.

[7] Deng, Y., Kong, K., Ren, Z. & Dai, Q. (2016) Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.
Image Processing IEEE Transactions Vol 25, pp. 4209-4221.

[8] Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction, 2nd Edition, Near final Draft - May, 27, 2018 MIT Press

[9] van Seijen, H. & Sutton, R. S. (2014) True online TD(λ). In Proceedings of the 31st International Conference on Machine Learning, pages:
692 - 700.

[10] Sharpe, W. (1994) The Sharpe Ratio. The Journal of Portfolio Management, 21 (1) 49 - 58.

4

Paper # 20 76

Temporal Abstraction in Cooperative Multi-Agent Systems

Jhelum Chakravorty
Department of Computer Science

McGill University/Mila
Montreal

jhelum.chakravorty@mail.mcgill.ca

Sumana Basu
Department of Computer Science

McGill University/Mila
Montreal

sumana.basu@mail.mcgill.ca

Andrei Lupu
Department of Computer Science

McGill University/Mila
Montreal

andrei.lupu@mail.mcgill.ca

Doina Precup
Department of Computer Science

McGill University/Mila
Montreal

dprecup@cs.mcgill.ca

Abstract

In this work we introduce temporal abstraction in cooperative multi-agent systems (or teams), which are essentially
decentralized Markov Decision processes (Dec-MDPs) or dec. Partially Observable MDPs (Dec-POMDPs). We believe that as in
the case of single-agent systems, option framework gives rise to faster convergence to the optimal value, thus facilitating
transfer learning.

The decentralized nature of dynamic teams leads to curse of dimensionality which impedes scalability. The partial observabil-
ity requires minute analysis of the information structure involving private and public or common knowledge. The POMDP
structure entails growing history of agents’ observations and actions that leads to intractability. This calls for proper
design of belief to circumvent such a growing history by leveraging Bayesian update, consequently requiring judicious
choice of Bayesian inference to approximate the posterior. Moreover, in the temporal abstraction, the option-policies of the
agents have stochastic termination, which adds to intricacies in the hierarchical reinforcement learning problem.

We study both planning and learning in the team option-critic framework. We propose Distributed Option Critic1 (DOC)
algorithm, where we leverage the notion of common information approach and distributed policy gradient. We employ the
former to formulate a centralized (coordinated) system equivalent to the original decentralized system and to define the
belief for the coordinated system. The latter is exploited in DOC for policy improvements of independent agents. We
assume that there is a fictitious coordinator who observes the information shared by all agents, updates a belief on the
joint-states in a Bayesian manner, chooses options and whispers them to the agents. The agents in turn use their private
information to choose actions pertaining to the option assigned to it. Finally, the option-value of the cooperative game is
learnt using distributed option-critic architecture.

Acknowledgements

We are indebted to Audrey Durand and Adriana Romero for their critical comments that helped us improve the content.

1We hereby would like to note that we have been unable to provide the proofs and some relevant preliminary ideas due to limitation
of space; they are given in the full paper.

Paper # 267 77

1 J-agent Dec-MDP planning with temporal abstraction

In this work we consider goal-based-event-driven Dec-MDP teams, where the agents know their own states but are unaware
of others’ states. There are some goal states g ∈ G, where G ⊂ S is a set of goal states, which the agents like to explore.
There is a common pool of options O available to all agents, where we assume |O| =: Joption > J . The agents choose an
option o with unique identifier i ∈ {1, . . . , Joption} from the pool without replacement. We write oj = i to indicate that the
option used by Agent j has the identifier i. The agents update their common belief of joint-states via broadcasting. Upon
exploring a goal, the agents receive a common reward, they get penalized for collision and broadcasting involves a cost.

1.1 When to broadcast?

Any agent j at state sjt at time t broadcasts under two circumstances: if it reaches a goal state (i.e. sjt ∈ G) and hence
terminates its current option oj deterministically, or greedily (1). Agent j can terminate its option oj stochastically with
probability βo

j

(sjt), but does not necessarily broadcast. Let s̃jt := (s̃1
t , . . . , s

j
t , . . . , s̃

J
t) be a joint-state sampled from the

common belief (introduced in section 1.2), with the j-th component replaced by Agent j’s true state sjt . At every step t,
Agent j broadcasts if

Qµ(s̃jt ,oBj
) > Qµ(s̃jt ,oB̄j

), (1)

where Qµ is the option-value corresponding to joint-option policy µ. The joint-option oBj implies that its component oj is
broadcast and joint-option oB̄j

implies its component oj is not broadcast. While broadcasting, Agent j sends its state sjt ,
its action ajt and the ID of the option it was executing oj to every other agents.

The aforementioned description tells us that broadcasting depends on the current state sjt of each Agent j and its
current option oj . For ease of exposition, let us denote the event that Agent j broadcasts at state sjt by Broad(sjt , o

j).
Broad(sjt , o

j) = 1 implies that Agent j has broadcast, and Broad(sjt , o
j) = 0 implies that it hasn’t. The vector Broad(st,o) :=

(Broad(s1
t , o

1), . . . ,Broad(sJt , o
J)) denotes the broadcast symbols of all agents. More formally, at time t, Broad(sjt , o

j) is
given by:

Broad(sjt , o
j) :=

{
1, if sjt ∈ G or (1) is true
0, otherwise.

(2)

1.2 Common information based belief state

The Dec-MDP can be viewed from the common information point-of-view as follows [4]. A fictitious coordinator observes the
information available to all the agents, the common information and prescribes a belief on the joint-state and a prescription
(Markov joint-option policy µt), which the agents apply in a decentralized manner (i.e., they apply their respective
action-policies on their local states) to decide on their actions. The common information based belief (coordinator’s state)
on the joint-state st ∈ S at time t is then defined as:

bct(s) := P(st = s | Ic,mt), (3)

where Ic,mt is the common information available to all agents at time instant m. Here m is the instant of the last broadcast.

Recall that when Agent j decides to broadcast, it broadcasts its own state sjt , and own action ajt . Hence, at any time t, the
joint-observation yt = (y1

t , . . . , y
J
t) made by all agents as follows:

yjt :=

{
(sjt , a

j
t), if Broad(sjt , o

j
t) = 1

∅, otherwise.
(4)

We can now express more formally the last instant of broadcast, m, as was introduced in Ic,mt in (3) as m := max{m′ ≤
t : for at least one j, yjm′ 6= ∅}. In other words, m is the last instant when at least one agent broadcast. Then, Ic,mt
can be defined as follows: Ic,mt := {y1:m,Broad1:m}, where Broad1:m is the history of broadcasting of all agents until
time instant m. Note that since the broadcast information can be inferred from the joint-observation, Broad1:t−1 can be
absorbed in y1:t−1 in the conditioning in the definition of bct . Thus, (3) can be rewritten as bct(s) := P(st = s |y1:m). Clearly,
P(st = s |y1:t−1) = P(st = s |y1:m), since no new information is received in times τ ∈ {m+ 1, . . . , t− 1}. Thus,

bct(s) := P(st = s |y1:t−1). (5)

From the common information perspective the coordinator observes the common information, the sequence of joint-
observations until time t, y1:t, and generates prescriptions (in our case this is the joint Markov option-policy) µt, according

1

Paper # 267 78

to some coordination rule ψ such that ψ : Ω→M, j ∈ J (where Ω is the set of all observations andM is the set of Markov
option policies)

µt = ψ(y1:t−1, µ1:t−1). (6)

The prescription µjt is then communicated to Agent j. Note that Agent j then uses the component µjt of this prescription µt,
chooses an option oj ∼ µjt , uses the action-policy πo

j

and termination probability βo
j

corresponding to oj and generates
its action ajt using its local information sjt as per ajt ∼ πo

j

(ajt |sjt). Since by (3), bct is measurable with (y1:t−1, µ1:t−1), we can
infer from (6) that there is no loss of optimality in restricting attention to coordination rules ψ̃ such that the prescription µt
is given by µt = ψ̃(bct).

Denote by bct,t the posterior based on current observation as given by bct,t(s) := P(st = s |y1:t).

Then, the evolution of the common belief is given by:

bct+1(s′) = P(st+1 = s′ |y1:t) =
∑

s∈S
pa(s, s′)bct,t(s), (7)

where pa(s, s′) denotes the one-step transition probability of going from state s to state s′ using action a.

We show that the above described coordinated system is a POMDP with prescriptions µt and observations yt = h̃t(st, µt),
where h̃t is Bayesian filtering update function2. Furthermore, based on a new joint observation received at time t, we show
that the common information based belief bct has a Bayesian update.

The optimal policy of the coordinated centralized system is the solution of a suitable dynamic program, i.e. the fixed
point of which (if it exists) formulates the critic. We first show that the common information based belief state bct is an
information state, which forms a sufficient statistic to form a future belief bct+1 based on the current common belief and the
current joint-option µt. Also, we establish the optimality of joint option-policy. We skip the main theorem involving these
results due to lack of space and instead turn our focus to the learning problem, as described in the subsequent sections.

2 Learning in Dec-MDPs with options

In this section we consider a setup of J-agent cooperative game, where they have decentralized control policies but a
single critic, the option-value, (infinite horizon discounted return) to maximize.

2.1 Common-belief based option-value and distributed gradient descent

We can extend the notion of option-value with full observability to the case with partial observability. Following the
definition of option-value upon arrival with call-and-return option, we have the following:

Uµ(bct ,o) :=
∑

s∈S
Uµ(s,o)bct(s) =

∑

s∈S

[
βo

none(s)Q
µ(s,o)bct(s) + (1− βo

none(s)) max
T ∈Pow(J)

max
o′∈Oavail(T)

Qµ(s,o′)bct(s)
]
, (8)

where βo
none(s) :=

∏
j∈J (1−βoj (sj)) is the probability that no agent has terminated, Oavail(T) is the set of available options

for agents in the set T ⊆ J and Pow(J) is power-set of J .

Qµ in (8) is the solution of the following Bellman update:

Qµ(bct ,o) :=
∑

s∈S
Qµ(s,o)bct(s) =

∑

s∈S

(∑

a∈A
πo(a|s)

[
ra(s) + γ

∑

s′∈S
bct+1(s′)

(
pa(s, s′)Uµ(s′,o)

)]
)
bct(s), (9)

where πo(a|s) is the joint probability of choosing joint-action a in joint-state s. From independence of agents we have
πo(a|s) :=

∏
j∈J π

oj (aj |sj), ra(s) is the common immediate reward of choosing joint-action a in joint-state s.

The optimal values corresponding to (8) and (9) are defined as follows:

U∗(bct ,o) := max
µ∈M

Uµ(bct ,o), Q∗(bct ,o) := max
µ∈M

Qµ(bct ,o). (10)

Define operator B as follows: [BQ∗](bct ,o) := γ

(
∑

a∈A π
o(a|s)∑s′∈S b

c
t+1(s′)

(
pa(s, s′)U∗(s′,o)

)
)
bct(s).

2Bayesian filtering applies Bayesian statistics and Baye’s rule in solving Bayesian inference problems including stochastic filtering
problems. See [3] and references therein for details.

2

Paper # 267 79

Then, Q∗ given by (10) can be rewritten as: with ro is the immediate reward corresponding to joint-option o, we have

Q∗(bct ,o) = ro(bct) + [BQ∗](bct ,o). (11)

We show in the following lemma that B is a contraction. Thus, (11) has a unique solution. Furthermore, since ro is
bounded, so is Q∗.

In this work we assume that the agents are factored, locally fully observable, transition independent and reward independent. For
such agents, it is shown in [5] that distributed gradient descent achieves local optima. In the sequel, we propose the idea of
learning in Dec-POMDP by augmenting the notion of distributed gradient descent of [5] with the spirit of option-critic
algorithm [2]. For Agent j we consider the parameters θj = (θj1 , . . . , θjM) for action-policy πo

j

and φj = (φj1 , . . . , φjM)

for the termination function βo
j

, where M ≥ 1 is the number of parameters. We write πo
j ,θj

and βo
j ,φj

to show the
parameterized action-policy and termination function. We assume the standard Boltzmann function for the action policy
as given by

πo
j ,θj

(aj | sj) =
eQ

oj

intra(s
j ,aj)

∑
aj∈Aj eQ

oj

intra(s
j ,aj)

, (12)

where Qo
j

intra(sj , aj) is the weight of the Boltzmann intra-option policy πo
j ,θj

of Agent j. Given the option oj prescribed by
the coordinator, each agent j maintains its own action-value Qo

j

intra(sj , aj) for their own true state sj , and action aj ∈ Aj .
With fixed oj , the weights Qo

j

intra(sj , aj) are updated using vanilla Q-learning.

2.2 Factored common belief

For large scale systems, the common belief is intractable due to the combinatorial nature of joint state-space. Thus in one
of our experiments we assume that the common belief is factored, i.e.,

bct(s) := P(st = s |y1:t−1) ≈
∏

j∈J
P(sjt = sj |y1:t−1) =:

∏

j∈J
bc,jt (sj) =: bc,fact

t (s). (13)

2.2.1 Update of factored common belief in a consistent way

When the coordinator updates the factored common belief based on the joint-observation yt, it can do so first by iteratively
updating the factored likelihood Lt as given by the following: for each agent j ∈ J

Lt(s
j) := P(brj , aj |sj ,Broad, bc,jt)

∝ Lt−1(sj)
Esjt∼bc,jt

(
1(sjt = sj)1(Broad(sj) = brj)1(πo

j

(sj) = aj)
)

Esjt∼bc,jt
1(sjt = sj)

, (14)

where Broad is the deterministic broadcast function and brj := Broad(sj), is the broadcast symbol of agent j, brj ∈ {0, 1}.
Then, the posterior of the factored common belief can be computed using Bayes update rule (??) using the factored
likelihood (14). But this posterior may not be consistent with the fact that the dynamics of the agents are not transition
independent (e.g., when collision is not allowed as in our case). So, in order to make the posterior consistent, the coordinator
observes the current joint observation yt and re-marginalizes the factored common belief as follows: for inner loop k, do
for all j ∈ J

b0,j = bc,jt , b0 =
∏

j∈J
b0,j (15)

bk+1,j ∝ Es∼bkLt(s
j)P(sj 6= s−j)

∝ Es∼bkLt(s
j)
[
1(y−jt 6= None)P(y−jt 6= sj)] + 1(y−jt = None)

∑

s−j∼bk,−j

P(s−j 6= sj)
]
, (16)

where for any agent j, y−jt , s−j and bk,−j denote respectively the observations, sampled states and the factored beliefs
of other agents. With a slight abuse of notation, the equalities and inequalities in the last line imply for all other agents
k ∈ J \ j.
Using arguments for the convergence of the policy-gradient based algorithms (e.g., [7]) and the local optima achieved by
distributed stochastic gradient descent [5, Theorem 1], we can show the following
Theorem 1 The DOC algorithm given above converges to the optimal option-value Q∗.

3

Paper # 267 80

Figure 1: Option-critic values over iterations

3 Experiments
We validate theoretical results using Four-room environment introduced in [6]. Unlike their setup, we do not have any pre-
specified options in the common pool of options available to all agents. In the first experiment we investigate a navigation
task in a tabular setting with several equivalent targets. In the second experiment we use a Teamgrid [1] environment
with hierarchichal tasks which call for cooperation among the agents. We parameterize the Q-value, intra-option policy,
termination function and the broadcast function with deep neural nets and use factored common belief so that the results
are scalable to large state-spaces. Fig. 1 shows the convergence over 5 runs of option-critic for the tabular set-up.

4 Discussion

This paper investigates the temporal abstraction in dynamic teams (cooperative multi-agent systems) with expensive
broadcast. The main contribution of the paper is the establishment of the theoretical results of the main learning algorithm.
We extend the option-critic architecture to multi-agent systems and provide convergence results. In the underlying
planning problem, we adopt the common-information approach which transforms the decentralized problem into an
equivalent centralized set-up which enables us to leverage the tools from centralized stochastic optimization problems.
Note that similar to option-critic, DOC does not require learning the the options and learning the intra-option policies
and terminations suffices. For simplicity of exposition we have assumed in this work that whenever the agents decide to
broadcast, they broadcast their state and action. This is common in practice in applications such as in communication
networks with collision channels where the alphabet to be transmitted is of a few bits and the action of transmitting or not is
of one bit. For larger bits to be broadcast, one may use techniques like source-coding before transmitting, but that would not
alter the rest of the modeling assumptions and the convergence results will continue to hold. In such applications collision
in the channel causes the packet to drop and so putting collision penalty to discourage collision helps in learning. That the
agents broadcast to everyone can be costly in realistic scenarios. In that case one may learn optimal neighbourhood on top
of learning the policies and terminations and broadcast only to the neighbours.

References
[1] Teamgrid github repo. https://github.com/mila-iqia/teamgrid.
[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.
[3] Zhe Chen. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics, 182(1):1–69, Jan. 2003.
[4] A. Nayyar, A. Mahajan, and D. Teneketzis. Decentralized stochastic control with partial history sharing: A common information

approach. 58(7):1644–1658, jul 2013.
[5] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. Learning to cooperate via policy search. In Proceedings

of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI’00, pages 489–496, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[6] Richard Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

[7] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with
function approximation. In Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99, pages
1057–1063, Cambridge, MA, USA, 1999. MIT Press.

4

Paper # 267 81

Improving Generalization over Large Action Sets

Yash Chandak
University of Massachusetts Amherst

ychandak@cs.umass.edu

Georgios Theocharous
Adobe Research, San Jose

theochar@adobe.com

James E. Kostas
University of Massachusetts Amherst

jekostas@cs.umass.edu

Scott M. Jordan
University of Massachusetts Amherst

sjordan@cs.umass.edu

Philip S. Thomas
University of Massachusetts Amherst

pthomas@cs.umass.edu

Abstract

Most model-free reinforcement learning methods leverage state representations (embeddings) for generalization, but
either ignore structure in the space of actions or assume the structure is provided a priori. We show how a policy can
be decomposed into a component that acts in a low-dimensional space of action representations and a component that
transforms these representations into actual actions. These representations improve generalization over large, finite action
sets by allowing the agent to infer the outcomes of actions similar to actions already taken. We provide an algorithm to
both learn and use action representations and provide conditions for its convergence. The efficacy of the proposed method
is demonstrated on large-scale real-world problems.

Keywords: Large Action Spaces, Action Representations

Acknowledgements

Part of the work was done when YC was an intern at Adobe. Later, the work was supported by Adobe Research Grant.

Paper # 264 82

1 Introduction

Reinforcement learning (RL) methods have been applied successfully to many simple and game-based tasks. However,
their applicability is still limited for problems involving decision making in many real-world settings. One reason is that
many real-world problems with significant human impact involve selecting a single decision from a multitude of possible
choices. For example, maximizing long-term portfolio value in finance using various trading strategies [4], improving
fault tolerance by regulating voltage level of all the units in a large power system [3], and personalized tutoring systems
for recommending sequences of videos from a large collection of tutorials. Therefore, it is important that we develop RL
algorithms that are effective for real problems, where the number of possible choices is large.

In this paper we consider the problem of creating RL algorithms that are effective for problems with large action sets.
Existing RL algorithms handle large state sets (e.g., images consisting of pixels) by learning a representation or embedding
for states (e.g., using line detectors or convolutional layers in neural networks), which allow the agent to reason and learn
using the state representation rather than the raw state. We extend this idea to the set of actions: we propose learning
a representation for the actions, which allows the agent to reason and learn by making decisions in the space of action
representations rather than the original large set of possible actions. This setup is depicted in Figure 1, where an internal
policy, πi, acts in a space of action representations, and a function, f , transforms these representations into actual actions.
Together we refer to πi and f as the overall policy, πo.

Recent work has shown the benefits associated with using action-embeddings [2], particularly that they allow for general-
ization over actions. For real-world problems where there are thousands of possible (discrete) actions, this generalization
can significantly speed learning. However, this prior work assumes that fixed and predefined representations are provided.
In this paper we present a method to autonomously learn the underlying structure of the action set by using the observed
transitions. This method can both learn from scratch and improve upon a provided action representation.

A key component of our proposed method is that it frames the problem of learning an action representation (learning f)
as a supervised learning problem rather than an RL problem. This is desirable because supervised learning methods tend to
learn more quickly and reliably than RL algorithms since they have access to instructive feedback rather than evaluative
feedback [6]. The proposed learning procedure exploits the structure in the action set by aligning actions based on the
similarity of their impact on the state. Therefore, updates to a policy that acts in the space of learned action representation
generalizes the feedback received after taking an action to other actions that have similar representations.

To evaluate our proposed method empirically, we study two real-world recommender system problems using data from
Adobe HelpX and Adobe Photoshop. In both the applications, there are thousands of possible recommendations that
could be given at each time step (e.g., which video to suggest the user watch next on the HelpX portal, or which tool
to suggest to the user next in the Photoshop software). Our experimental results show our proposed system’s ability to
significantly improve performance relative to existing methods for these applications by quickly and reliably learning
action representations that allow for meaningful generalization over the large discrete set of possible actions.

2 Background

We consider problems modeled as discrete-time Markov decision processes (MDPs) with discrete states and finite actions.
An MDP is represented by a tuple,M = (S,A,P,R, γ, d0). S is the set of all possible states, called the state space, and A
is a finite set of actions, called the action set. In this work, we restrict our focus to MDPs with finite action sets, and |A|
denotes the size of the action set. The random variables, St ∈ S, At ∈ A, and Rt ∈ R denote the state, action, and reward
at time t ∈ {0, 1, . . . }. The first state, S0, comes from an initial distribution, d0, and the reward functionR is defined so
thatR(s, a) = E[Rt|St = s,At = a] for all s ∈ S and a ∈ A. The reward discounting parameter is given by γ ∈ [0, 1). P is
the state transition function. A policy π : A× S → [0, 1] is a conditional distribution over actions for each state. For any
policy π, the corresponding state-action value function, qπ(s, a), and the state value function, vπ(s), are defined as in [6].

3 Generalization over Actions

The benefits of capturing the structure in the underlying state space of MDPs is a well understood and a widely used
concept in RL. State representations allow the policy to generalize across states. Similarly, there often exists additional
structure in the space of actions that can be leveraged. We hypothesize that exploiting this structure can enable quick
generalization across actions, thereby making learning with large action sets feasible. To bridge the gap, we introduce
an action representation space, E ⊆ Rd, and consider a factorized policy, πo, parameterized by an embedding-to-action
mapping function, f : E → A, and an internal policy, πi : S × E → [0, 1], such that the distribution of At given St is
characterized by:

Et ∼ πi(·|St), At = f(Et).

1

Paper # 264 83

Figure 1: (Left) The structure of the proposed overall policy, πo, consisting of f and πi, that learns action representations
to generalize over large action sets. (Right) a) Given a state transition tuple, functions g and f are used to estimate the
action taken. The red arrow denotes the gradients of the supervised loss (2) for learning the parameters of these functions.
b) During execution, an internal policy, πi, can be used to first select an action representation, e. The function f , obtained
from previous learning procedure, then transforms this representation to an action. The blue arrow represents the internal
policy gradients (3) obtained using Lemma 1 to update πi.

Here, πi is used to sample Et ∈ E , and the function f deterministically maps this representation to an action in the set A.
Both these components together form an overall policy, πo. With a slight abuse of notation, we use f−1(a) to denote the
set of representations that are mapped to the action a by the function f , i.e., f−1(a) := {e ∈ E : f(e) = a}. With this, we
define the overall policy, πo(a|s) :=

∫
f−1(a)

πi(e|s) de. In the following sections, we present the supervised learning process
for the function f when πi is fixed. Next we give the policy gradient learning process for πi when f is fixed. Finally, we
combine these methods to learn f and πi simultaneously.

Supervised Learning of f For a Fixed πi : We leverage a standard Markov property, often used for learning probabilistic
graphical models, to express P (At|St, St+1) as

∫
EP (At|Et = e)P (Et = e|St, St+1) de. Given an embedding Et we assume

that the action, At, is deterministic and can be represented by a function f : E → A, such that P (At|St, St+1) can be
decomposed in terms of f and P (Et|St, St+1). However, such a function f that maps from representation space to the
actions may not be known a priori. We propose searching for an estimator, f̂ , of f and an estimator, ĝ(Et|St, St+1), of
P (Et|St, St+1) so that a reconstruction of P (At|St, St+1) is accurate. Let this estimate of P (At|St, St+1) based on f̂ and ĝ
be P̂ (At|St, St+1) =

∫
E f̂(At|Et=e)ĝ(Et=e|St, St+1) de. One way to measure the difference between P (At|St, St+1) and

P̂ (At|St, St+1) is using the expected (over states coming from the on-policy distribution) Kullback-Leibler (KL) divergence

=−E

[∑

a∈A
P (a|St, St+1) ln

(
P̂ (a|St, St+1)

P (a|St, St+1)

)]
(1)

Since the observed transition tuples, (St, At, St+1), contain the action responsible for the given St to St+1 transition, an
on-policy sample estimate of the KL-divergence can be computed readily using (1). We adopt the following loss function
based on the KL divergence between P (At|St, St+1) and P̂ (At|St, St+1):

L(f̂ , ĝ) = −E
[
ln
(
P̂ (At|St, St+1)

)]
, (2)

where the denominator in (1) is not included in (2) because it does not depend on f̂ or ĝ. If f̂ and ĝ are parameterized, their
parameters can be learned by minimizing the loss function, L, using a supervised learning procedure. In our experiments,
f contains learnable representations for the actions, and maps an embedding to the closest action. A computational graph
for this model is shown in Figure 1. Note that, while f̂ will be used for f in an overall policy, ĝ is only used to find f̂ , and
will not serve an additional purpose. As this supervised learning process only requires estimating P (At|St, St+1), it does
not require (or depend on) the rewards. This partially mitigates the problems due to sparse and stochastic rewards, since
an alternative informative supervised signal is always available. This is advantageous for making the action representation
component of the overall policy learn quickly and with low variance updates.

Learning πi For a Fixed f : A common method for learning a policy parameterized with weights θ is to optimize the
discounted start-state objective function, J(θ) :=

∑
s∈S d0(s)vπ(s). For a policy with weights θ, the expected performance

of the policy can be improved by ascending the policy gradient, ∂J(θ)∂θ . Let the state-value function associated with the
internal policy, πi, be vπi(s) = E[

∑∞
t=0 γ

tRt|s, πi, f], and the state-action value function qπi(s, e) = E[
∑∞
t=0 γ

tRt|s, e, πi, f].
We then define the performance function for πi as, Ji(θ) :=

∑
s∈S d0(s)vπi(s). Viewing the embeddings as the action for

the agent with policy πi, the policy gradient theorem [7], states that the gradient of Ji(θ) is,

∂Ji(θ)

∂θ
=
∞∑

t=0

E
[
γt
∫

E
qπi(St, e)

∂

∂θ
πi(e|St) de

]
, (3)

2

Paper # 264 84

Figure 2: (a) The maze environment. The star denotes the goal state, the red dot corresponds to the agent and the arrows
around it are the 12 actuators. (b) 2-D representations for the displacements in the Cartesian co-ordinates caused by each
action, and (c) learned action embeddings. In both (b) and (c), each action is colored based on the displacement (∆x,
∆y) it produces. Cartesian actions are plotted on co-ordinates (∆x, ∆y), and learned ones are on the coordinates in the
embedding space. Smoother color transition corresponds to preservation of the relative underlying structure.

where, the expectation is over states from dπ , as defined by [7] (which is not a true distribution, since it is not normalized).
The parameters of the internal policy can be learned by iteratively updating its parameters in the direction of ∂Ji(θ)/∂θ.
Since there are no special constraints on the policy πi, any policy gradient algorithm designed for continuous control can
be used out-of-the-box.

However, note that the performance function associated with the overall policy, πo (consisting of function f and the internal
policy parameterized with weights θ), is, Jo(θ, f) =

∑
s∈S d0(s)vπo(s). The ultimate requirement is the improvement of

this overall performance function, Jo(θ, f), and not just Ji(θ). So, how useful is it to update the internal policy, πi, by
following the gradient of its own performance function? The following lemma answers this question.

Lemma 1. For all deterministic functions, f , which map each point, e ∈ Rd, in the representation space to an action, a ∈ A, the
expected updates to θ based on ∂Ji(θ)

∂θ are equivalent to updates based on ∂Jo(θ,f)
∂θ . That is, ∂Jo(θ,f)∂θ = ∂Ji(θ)

∂θ .

The chosen parameterization for the policy has this special property, which allows πi to be learned using its internal
policy gradient. Since this gradient update does not require computing the value of any πo(a|s) explicitly, the potentially
intractable computation of f−1 required for πo can be avoided. Instead, ∂Ji(θ)/∂θ can be used directly to update the
parameters of the internal policy while still optimizing the overall policy’s performance, Jo(θ, f).

Learning πi and f Simultaneously: Since the supervised learning procedure for f does not require rewards, a few
initial trajectories can contain enough information to begin learning a useful action representation. As more data becomes
available it can be used for fine-tuning and improving the action representations.

Algorithm 1: Policy Gradient with Representations for
Action (PG-RA)
1 Initialize action representations
2 for episode = 0, 1, 2... do
3 for t = 0, 1, 2... do
4 Sample action embedding, Et, from πi(·|St)
5 At = f̂(Et)
6 Execute At and observe St+1, Rt
7 Update πi using any policy gradient algorithm
8 Update critic (if any) to minimize TD error
9 Update f̂ and ĝ to minimize L defined in (2)

If the action representations are held fixed while learning
the internal policy, then as a consequence of Lemma 1, con-
vergence of our algorithm directly follows from previous
two-timescale results [1]. Learning both πi and f simul-
taneously using our PG-RA algorithm can also be shown
to converge. We consider three learning rate sequences,
such that the update recursion for the internal policy is
on the slowest timescale, the critic’s update recursion is
on the fastest, and the action representation module’s has
an intermediate rate. With this construction, we leverage
the three-timescale analysis technique [1] for convergence.
Formal proofs and exact implementation details are left
out due to space constraints.

4 Empirical Analysis

A core motivation of this work is to provide an algorithm that can be used as a drop-in extension for improving the action
generalization capabilities of existing policy gradient methods for problems with large action spaces. We consider two
standard policy gradient methods: actor-critic (AC) and deterministic-policy-gradient (DPG) in our experiments.

Maze: As a proof-of-concept, we constructed a continuous-state maze environment where the state comprised of the
coordinates of the agent’s current location. The agent has n equally spaced actuators (each actuator moves the agent in
the direction the actuator is pointing towards) around it, and it can choose whether each actuator should be on or off.

3

Paper # 264 85

Figure 3: Results for the Maze domain with 28 actions, 212 actions, Adobe HelpX MDP and Adobe Photoshop MDP. AC-RA
(green) and DPG-RA (blue) are the variants of PG-RA algorithm that uses actor-critic (red) and DPG, respectively.

Therefore, the size of the action set is exponential in the number of actuators, that is |A| = 2n. The net outcome of an
action is the vectorial summation of the displacements associated with the selected actuators. The agent is rewarded with
a small penalty for each time step, and a reward of 100 is given upon reaching the goal position. To make the problem
more challenging, random noise was added to the action 10% of the time and the maximum episode length was 150 steps.
This environment is a useful test bed as it requires solving a long horizon task in an MDP with a large action set and a
single goal reward. The visualizations of the learned action representations on the maze domain is provided in Figure 2.

Real-word recommender systems: We consider two real-world applications of recommender systems that require
decision making over multiple time steps. First, Adobe HelpX, a web-based video-tutorial platform, which has a recommen-
dation engine that suggests a series of tutorial videos on various Adobe software products. The second application is
Adobe Photoshop, a professional multi-media editing software. The aim is to meaningfully engage the users in learning
how to use these software products and convert novice users into experts in their respective areas of interest. For both
of these applications, an existing log of user’s click stream data was used to create an n-gram based MDP model for
user behavior [5]. Sequences of user interaction were aggregated to obtain over 29 million clicks and 1.75 billion user
clicks for HelpX and Photoshop, respectively. 1498 tutorials and 1843 tools for the HelpX platform and Adobe Photoshop,
respectively, were used to create the action set for the MDP model. Rewards were chosen based on a surrogate measure for
difficulty level of tutorials on HelpX portal and popularity of final outcomes of user interactions in Photoshop, respectively.

Performance Improvement: The plots in Figure 3 for the Maze domain show how the performance of standard actor-
critic (AC) method deteriorates as the number of actions increases, even though the goal remains the same. However,
with the addition of an action representation module it is able to capture the underlying structure in the action space and
consistently perform well across all settings. Similarly, for both Adobe HelpX and Adobe Photoshop MDPs, standard
AC methods fail to reason over longer time horizons under such an overwhelming number of actions, choosing mostly
one-step actions that have high returns. In comparison, instances of our proposed algorithm are not only able to achieve
significantly higher return, up to 2× and 3× in the respective tasks, but they do so much quicker. These results reinforce
our claim that learning action representations allow implicit generalization of feedback to other actions embedded in
proximity to executed action.

Further, under the PG-RA algorithm, only a fraction of total parameters, the ones in the internal policy, are learned
using the high variance policy gradient updates. The other set of parameters associated with action representations are
learned by a supervised learning procedure. As evident from the plots in the Figure 3, this reduces the variance of updates
significantly, thereby making the PG-RA algorithms learn a better policy faster. These advantages allow the internal policy,
πi, to quickly approximate an optimal policy without succumbing to the curse of large actions sets.

References
[1] V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.

[2] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[3] M. Glavic, R. Fonteneau, and D. Ernst. Reinforcement learning for electric power system decision and control: Past considerations
and perspectives. IFAC-PapersOnLine, 50(1):6918–6927, 2017.

[4] Z. Jiang, D. Xu, and J. Liang. A deep reinforcement learning framework for the financial portfolio management problem. arXiv
preprint arXiv:1706.10059, 2017.

[5] G. Shani, D. Heckerman, and R. I. Brafman. An MDP-based recommender system. Journal of Machine Learning Research, 2005.

[6] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.

4

Paper # 264 86

Discrete off-policy policy gradient using continuous relaxations

Andre Cianflone
Mila - McGill University

Zafarali Ahmed
Mila - McGill University

Riashat Islam
Mila - McGill University

Avishek Joey Bose
Mila - McGill University

William L. Hamilton
Mila - McGill University

Abstract

Off-Policy policy gradient algorithms are often preferred to on-policy algorithms due to their sample efficiency. Al-
though sound off-policy algorithms derived from the policy gradient theorem exist for both discrete and continuous
actions, their success in discrete action environments have been limited due to issues arising from off-policy corrections
such as importance sampling. This work takes a step in consolidating discrete and continuous off-policy methods by
adapting a low-bias, low-variance continuous control method by relaxing a discrete policy into a continuous one. This
relaxation allows the action-value function to be differentiable with respect to the discrete policy parameters, and avoids
the importance sampling correction typical of off-policy algorithms. Furthermore, the algorithm automatically controls
the amount of relaxation, which results in implicit control over exploration. We show that the relaxed algorithm performs
comparably to other off-policy algorithms with less hyperparameter tuning.

Keywords: policy gradient, off-policy actor-critic, continuous relaxation

Acknowledgements

Z.A. is funded by a Canada Graduate Scholarship, A.C. is funded by a Borealis AI Fellowship.

Paper # 209 87

1 Introduction

Policy gradient methods are a class of algorithms used to solve reinforcement learning problems (RL) by directly optimiz-
ing a parameterized policy. On-policy learning uses data collected from this policy to compute gradient updates. Despite
being rather successful [1], they can be sample inefficient as new data needs to be collected for each gradient update.
Consequently, Off-policy learning is preferred due to its ability to re-use data collected from older policies. In particular,
off-policy methods support data re-use from multiple behaviour policies, while learning a desired target policy.

While algorithms such as the Deep Deterministic Policy Gradient (Deep DPG) [2] exist for environments with continuous
actions, there has not been much progress for discrete actions due to the lack of a viable discrete reparameterization
approach. Algorithms like off-policy actor critic (Off-PAC) [3] and Actor Critic with Experience Replay (ACER) [4] can be
derived for discrete action environments. However, the reliance on the importance sampling corrections limits their use
in practice due to its high variance gradient estimate [5]. Recent work introduces Actor-Critic with Emphatic Weightings
(ACE) [6] as another approach to discrete action off-policy learning that introduces the first “off-policy policy gradient
theorem”. However, ACE also requires estimating corrections and has not yet been demonstrated in more complex
domains.

Our work aims to use successful continuous control algorithms [7] for discrete action environments by using continuous
relaxations of samples from a discrete policy [8]. In essence, we convert the learning of a discrete policy into a continuous
control problem. A particularly interesting side effect of the relaxation is the introduction of a temperature parameter, τ ,
that controls the amount of relaxation: The temperature can be automatically tuned [9], thereby controlling the entropy
of the policy and eliminating the need for external exploration noise. We call this approach a Autotuned, Relaxed,
Reparameterized Discrete Domain algorithm (AR2D2). Our contributions are:

1. Using continuous relaxations of discrete categorical samples [10, 8] to find the gradient of the action-value func-
tion, resulting in an algorithm similar to DPG [11].

2. Automatic control of the relaxation allowing sufficient exploration and eventual recovery of the optimal policy
using a novel objective that balances variance reduction [9] and action-value maximization.

2 Background

We start by covering the off-policy reinforcement learning setting before considering the continuous relaxation in Sec-
tion 2.1. Consider a Markov decision process 〈S,A,R, T , γ〉 where S is a set of states, A is a set of discrete actions,
R : S ×A → R is the reward function, T : S ×A× S → [0, 1] is the state-transition probabilities, and γ ∈ [0, 1] is the dis-
count factor. The expected discounted return from a state, s0, is given by the value function: V π(s) = Eπ[

∑
t γ

trt|s0 = s].
In policy gradient methods, we search for a parameterized target policy, πθ, that maximizes J(θ) =

∑
s dπθ (s)V

πθ (s)
where dπθ (s) is the stationary state distribution under the policy πθ.

However, in case of off-policy learning the samples are drawn from the state distribution under the behaviour policy,
µ(s|a) . Therefore, we optimize J(θ) =

∑
s dµ(s)V

πθ (s) where dµ(s) is the stationary state distribution under µ.

Importance sampling techniques (IS) can be used to correct for the discrepancy in the behaviour and target policies [5].
However, IS corrections, being high variance, often make algorithms such as Off-PAC [3] difficult to use in practice.
Alternatively, we can use the deterministic policy gradient theorem [12] to avoid IS corrections by considering determin-
istic policies, πθ(a|s) = a. In particular, DPG proposes a variant of Q-learning for policy gradients, where instead of
taking a greedy policy improvement, we can directly improve the policy in the direction of the gradient of the action-
value function: ∇θJ(θ) =

∑

s

dµ(s)∇θQπθ (s, πθ(s)). One limitation of the DPG is that it requires differentiable samples.

Differentiable reparameterizations exist for continuous distributions like the Gaussian [13, 14] and have been applied to
continuous control problems in RL [11, 7]. While relaxing a categorical distribution has been explored in reinforcement
learning as a action-depentent control variate [9] and a policy [15], it has not been fully developed into a viable alternative
to well-known algorithms such as DQN [16].

2.1 Continuous Relaxations for Discrete Variables

In this section, we cover background material related to discrete reparmetrization of categorical distributions [10, 8].
Consider the general objective of optimizing parameters θ of a probability distribution, pθ, to maximize the function f .
The gradient is defined as ∇θL(θ) = ∇θ Ez∼pθ [f(z)]. When f is not differentiable the log-deriviative identity1 can be
applied to obtain the REINFORCE estimator, ∇θL(θ) = Ez∼pθ(z)[f(z)∇θ log pθ(z)] which can be estimated using Monte-
Carlo sampling [17].

1The log-derivative identity is ∇x = x∇ log x

1

Paper # 209 88

In cases where f is differentiable and pθ can be reparameterized through a deterministic function, z = g(ε, θ), a low variance
gradient estimate can be be computed by shifting the stochasticity from the distributional parameters to a standardized
noise model, ε [13, 14]. Specifically, we can rewrite the gradient computation as∇θL(θ) = Eε[∇gf(g(ε, θ))∇θg(ε, θ)].
The Gumbel-Max trick [18] offers such a reparameterization for the categorical distribution: z = argmaxi[gi + log ηi]
where ηi are the log probabilities for a Categorical distribution and gi are independent and identically distributed noise
variables from the Gumbel(0, 1) distribution. While such a reparametrization shifts the distribution parameters to a
deterministic node, it introduces a non-differentiable argmax. The Gumbel-Softmax (GS) [10] distribution proposes to
replace the argmax with a softmax and temperature parameter τ :

yi =
exp((log ηi + gi)/τ)∑k
j=1 exp((log ηj + gj)/τ)

(1)

where τ → 0 recovers the argmax, and τ → ∞ recovers the uniform distribution. Due to the relaxation, the softmax
operation is differentiable providing continuous differentiable samples from this distribution. Computing argmaxi yi
corresponds to sampling from a categorical distribution and allows execution in a reinforcement learning environment.

3 Off-Policy Policy Gradients with Gumbel Reparameterization

In this section we discuss how to introduce the Gumbel-Softmax as an alternate parameterized policy for discrete actions
in the off-policy setting. We will do this by deriving the gradient for the action-value function to do policy improvement
by following the grading direction.

Recall the off-policy learning setup, where the goal is to learn a target parameterized policy πθ while collecting data from
a behaviour policy µ. Consider the gradient of the action-value function:

∇θJ(πθ) = Es∼dµ(s)[∇aQ(s, a)∇θπθ(s)] (2)

Like in DPG, a = πθ(s), where πθ is implemented using a Gumbel-Softmax policy with a relaxation parameter, τ (Equa-
tion 1). These relaxed discrete actions allow us to take gradients of Q w.r.t. the policy parameters θ, effectively back-
propagating through the sampling process. To execute actions in the environment, continuous samples from relaxed
policies are discretized using argmax so that they correspond to samples from a categorical distribution. In supervised
learning tasks, the Gumbel-Softmax temperature parameter is decayed [10] to reduce the relaxation over time. In re-
inforcement learning, premature annealing may lead to a suboptimal deterministic policy as the policy would fail to
sample a diverse number of trajectories (i.e. reduced exploration). The temperature, τ , must be carefully controlled to
prevent this outcome. In this work we consider τ is learned during optimization.

We now describe an off-policy actor-critic algorithm we call AR2D2 . We first describe the standard critic update to
learn Q, and then describe how the actor parameters are updated. Finally, we discuss how the trainable relaxation
parameter is automatically tuned in our setup for exploration and variance minimization. The algorithm is summarized
in Algorithm 1.

3.1 Critic Update

We use a Q function parameterized by w, where in our case w are the parameters of a neural network. Unlike DPG, our
policy is discrete and allows the Q function to be updated by minimizing the mean squared error (MSE) between Q and
a fixed target. To address overestimation bias [19] in the critic update, we employ Double Clipped Q-Learning [7]. The
target Q in the MSE now consists of taking the minimum of two Q-functions in the critic update:

L(w) =
1

N

∑

i

(ri + γ min
i=1,2

Q′w̃i(si+1, πθ(si+1))−Qw(si, ai))2 (3)

where (si, ai, ri, si+1) are a collection of experiences from the environment.

3.2 Actor Update

Expanding the Gumbel-Softmax policy definition from Equation 1 reveals three sets of variables: the categorical proba-
bilities {η1, . . . , η|A|}, the Gumbel noise {g1, . . . , g|A|} and the temperature parameter τ . The categorical parameters are
implemented with a deep neural network and updated by following the gradient in Equation 2.

3.3 Temperature Update

While the addition of the temperature is added to Gumbel-Softmax as a requirement for being differentiable, its intro-
duction offers a unique opportunity in the reinforcement learning domain to automatically control the balance between

2

Paper # 209 89

(a) Performance on LunarLander-v2 (b) Performance on CartPole-v1 (c) Temperature auto-tuned in training

Figure 1: Evaluation performance for three algorithms on (a) LunarLander-v2 and (b) CartPole-v1. (c) shows the
behaviour of temperature during learning. (a) While all three algorithms solve LunarLander (> 200 reward), AR2D2
displays lower variability between random seeds. (b) While ACER and DDQN show high variance for CartPole, AR2D2
converges quickly even when using the same hyperparameters as Lunar Lander. We plot a smoothed mean-return along
with standard deviation (shaded) for 5 random seeds. (c) The temperature increases at the start of learning and decays
automatically over time.

exploration and exploitation: adjusting the temperature from zero to infinity interpolates the distribution between a
deterministic argmax and a uniform distribution. The role of τ is then similar to the downstream impact of entropy reg-
ularization in that it controls policy stochasticity [20, 21] and avoids the need for external exploration noise often added
to off-policy algorithms [16, 2, 19]. Given τ is part of the same computational graph which optimizes η, we formulate
two separate gradient updates for τ , one to maxizime discounted return and another to minimize variance.

In order to stabilize the changing policy, we minimize the policy gradient variance w.r.t. τ , as proposed in [9], who
optimize the temperature of a relaxed hard threshold control variate. The gradient of the variance in gradient wrto τ is
formulated as:

∂

∂τ
Var(g(πη)) =

∂

∂τ

(
E[g(πη)2]− E[g(πη)]2

)
= E

[
2g(πη)

∂g(πη)

∂τ

]
(4)

where g(πη) is the gradient of Equation 2 w.r.t. the categorical parameters η. The second update takes a gradient ascent
step w.r.t. τ in the direction which maximizes Q. Combining the two, we get the following update for τ :

τt+1 = τt + αQτ [∇aQ(s, a)|a=πθ(s)∇τπθ(s)]− αστ∇τVar(g(πθ)) (5)

where αQτ and αστ are respective learning rates for the gradien updates to maximizeQ and minimize the gradient variance
from Equation 4. We find that a high αQτ learning rate, allowing the policy to quickly interpolate between exploration
and exploitation, is key to quick convergence of the algorithm. The algorithm is summarized in Algorithm 1.

4 Experimental Results

In this section we show the viability of using continuous relaxations by comparing with two state-of-the-art off-policy RL
algorithms: Double Deep-Q Learning (DDQN) [19] and ACER [4] on two discrete action environments, LunarLander-v2
and CartPole-v1 [22]. Algorithms are compared based on rollouts of the greedy policy. We tune hyperparameters on
LunarLander-v2 and transfer them without modification to CartPole-v1.

All methods solve LunarLander-v2 (Figure 1a). Interestingly, the hyperparameters for AR2D2 found on LunarLander-v2
transferred without modification onto CartPole-v1 unlike ACER and DDQN (Figure 1b) for which we had to fine-tune
the learning rate. This suggests that the auto-tuning mechanism might provide increased stability and robustness to
hyperparameters in our algorithm. Additionally, we note the remarkable stability of AR2D2 on CartPole (Figure 1b
compared to ACER and DDQN, despite the simplicity of the domain. A more robust algorithm would be a strong
addition to the current repertoire of RL algorithms and a further exposition of robustness will be left to future work.

In Figure 1c we can see how the temperature parameter increases substantially at the beginning of training, while quickly
decreasing around 100,000 steps. An increase in the temperature τ suggests both increased exploration and smoothing
of the problem early on during training.

5 Conclusion

In this work, we have shown empirical evidence for using continuous relaxations of discrete random variables in an off-
policy policy gradient algorithm. Particularly interesting is the dual purpose of the temperature parameter τ . It controls

3

Paper # 209 90

both the relaxation and the data collected from the environment, i.e. exploration. Specifically, the relaxation can be seen
as a form of smoothing and its relationship to entropy regularization will be explored in future work [21].

In summary, our work has unified discrete and continuous actions in the same off-policy policy gradient algorithm.
We expect that other RL algorithms that have previously faced the “differentiabiliy” requirement can successfully take
advantage of the relaxation. Future work will consider a more thorough theoretical and empirical investigation of per-
formance as well as the robustness of AR2D2 to hyperparameters.

References
[1] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David

Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference
on machine learning, 2016.

[2] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[3] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.
[4] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and Nando de Fre-

itas. Sample efficient actor-critic with experience replay. International Conference on Learning Representations, 2017.
[5] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication

Series, page 80, 2000.
[6] Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic weightings. In

Advances in Neural Information Processing Systems, 2018.
[7] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic meth-

ods. In International Conference on Machine Learning, 2018.
[8] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete

random variables. International Conference on Learning Representations, 2017.
[9] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar: Low-variance,

unbiased gradient estimates for discrete latent variable models. In Advances in Neural Information Processing Systems,
2017.

[10] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. International Conference
on Learning Representations, 2017.

[11] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014.

[12] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014.

[13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate infer-

ence in deep generative models. 31st International Conference on Machine Learning, 2014.
[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for

mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems, 2017.
[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 2015.

[17] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Ma-
chine learning, 1992.

[18] Emil Julius Gumbel. Statistical theory of extreme values and some practical applications. NBS Applied Mathematics
Series, 1954.

[19] Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing Systems, 2010.
[20] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algorithms.

Connection Science, 1991.
[21] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact of

entropy on policy optimization. arXiv preprint arXiv:1811.11214, 2018.
[22] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech

Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

4

Paper # 209 91

6 Appendix

The algorithm derived from the updates in Section 3 is shown below:

Algorithm 1 AR2D2

Input: critic networks Qw1 , Qw2 , and Gumbel-Softmax actor network πη and πτ
Input: update actor step d, temperature learning rate ατ , update weight β
Initialize target networks w′1 ← w1, w

′
2 ← w2, θ

′ ← θ
Initialize replay memory D
for episode = 1 to M do

Initialize st
for t = 1 to T do

Select action a = πθ(st)
Discretize action a using argmax to obtain â.
Observe (r, st+1) = env(â)
Append D with tuple (st, a, r, st+1)
Sample mini-batch of N transitions (s, a, r, s′) from D

y ←
{
r for terminal state s
r + γmini=1,2Qw̃i(s

′, a) for non-terminal states
Update critics wi ← argminwi N

−1∑(y −Qwi(s, a))2
if tmodd then

Update policy gradients:
∇ηJ(η) = N−1

∑∇aQ(s, a)|a=πθ(s)∇ηπθ(s)]
∇τJ(τ) = N−1

∑∇aQ(s, a)|a=πθ(s)∇τπθ(s)]
∇τVar(g(πθ)) = E[2g(πθ)∇τg(πθ)]
Update target networks:
w′i ← βwi + (1− β)w′i
η′ ← βη + (1− β)η′
τ ′ ← βτ + (1− β)τ ′

end if
end for

end for

5

Paper # 209 92

Modelling Individual Differences in Exploratory Strategies:
Probing into the human epistemic drive

Nicolas Collignon
School of Informatics

University of Edinburgh
n.collignon@ed.ac.uk

Christopher Lucas
School of Informatics

University of Edinburgh
clucas2@inf.ed.ac.uk

Abstract

People often navigate new environments and must learn about how actions map to outcomes to achieve their goals. In
this paper, we are concerned with how people direct their search and trade off between selecting informative actions
and actions that will be most immediately rewarding when they are faced with novel tasks. We examine how memory
constraints and prior knowledge affect this drive to explore by studying the exploratory strategies of people across four
experiments. We find that some people were able to learn new reward structures efficiently, selected globally informative
actions, and could transfer knowledge across similar tasks. However, a significant proportion of participants behaved
sub-optimally, prioritizing collecting new information instead of maximizing reward. Our evidence suggests this was
motivated by two types of epistemic drives: 1) to reduce uncertainty about the structure of the task and 2) to observe
new evidence, regardless of how informative they are to the global task structure. The latter was most evident when
participants were familiar with the task structure, hinting that the drive to gather knowledge can be independent of
learning an abstract representation of the environment. This was not the case when observations did not remain visible
to participants, suggesting that participants may adapt their exploratory strategies not only to their environment but also
to the computational resources available to them. Our initial modelling results attempt to explain the different cogni-
tive mechanisms underlying human exploratory behaviour across tasks, and are able to capture and explain systematic
differences across conditions and individuals.

Keywords: active learning; generalization; exploration-exploitation; heuris-
tics; transfer learning;

Paper # 268 93

1 Introduction

In order to act, plan, and achieve goals, people must learn about their environment and the outcome of possible actions.
One reason for human successes in developing new theories and strategies when confronted with new problems is
that people are not passive observers. Indeed, children ask informative questions and can adapt their strategies when
inquiring about things they don’t know [1], and play with new toys in ways that help them disambiguate uncertain
causal relationships and gather information [2, 3]. The idea that humans learn and interact with their environment by
performing intuitive experiments, maximizing information gain, is a popular one [4, 5, 6, 7].

In this work, we are interested in how people learn to select actions that are most rewarding when faced with a sequence
of novel but potentially related tasks. We designed experiments to better understand people’s exploration and reward
maximizing strategies across a sequence of tasks. Do those strategies evolve over time, as they encounter related tasks?
Can people transfer structural knowledge and improve their performance by leveraging similarities between tasks? What
is the relationship between people’s search strategies, their ability to learn and generalize from observations, and how
well they perform?

When faced with new situations, people are often faced with the decision of either gathering more information about the
task to improve the quality of their decision, or choosing an action that has been shown to be rewarding [8]. A doctor
might, for example, want to run more tests to have a better diagnosis for their patient or give them the treatment they
believe will best relieve them from their symptoms. To better understand human decision strategies when dealing with
the explore-exploit trade-off, Multi-armed Bandits (MAB) have been used extensively. In these experiments, participants
have to select between different possible actions yielding stochastic rewards, so as to maximize rewards. In the real
world, an essential part of solving problems lies in discovering the underlying structure of the problem, where each
action can be represented as a set of continuous and discrete features. In a Contextual MAB (CMAB), each arm has a set
of features that may be informative of the arm’s reward distribution. Learning how features relate to rewards allows for
an efficient representation of the environment, and enables the learner to generalize to new events.

We report on two experiments where people have to find rewarding actions in a sequence of tasks, and where the reward
structure is unknown. We compare them to cases where participants were trained on the reward structures prior to the
task. We find evidence that some participants selected actions that resolve uncertainty about the underlying structure of
the task, and traded off between exploration and exploitation in order to maximize reward. These participants were also
able to transfer knowledge across tasks and gradually improved their performance. Conversely, a significant proportion
of participants engaged in pure exploratory behavior, consistently preferring to attend novel information rather than
maximizing rewards. We highlight the importance of studying individual differences when studying human learners
and identify independent factors of epistemic drive that guide human exploration.

2 Experiment 1

We designed our initial experiment to look at how participants adapt to change of reward structure, and detect simi-
larities between tasks, with the hypothesis that people’s behavior would be well accounted by Bayesian models. What
we find instead is that, contrary to previous studies, the behavior of many participants deviated from those models’
predictions.

To better understand this phenomenon, we focused on the first three tasks each participant completed, which shared a
similar underlying reward structure. Participants were given a sequence of grids of 9x9 tiles, with each tile corresponding
to a possible choice. Participants had to select tiles to maximize their cumulative rewards over 20 choices in each grid.
This presents a classical explore-exploit trade-off: Succeeding in the task requires carefully balancing between choosing
new tiles to learn about the underlying reward structure or re-selecting tiles that were observed to be rewarding. In
each grid, contextual features (x,y) predicted for rewards. When a tile is selected, the reward is displayed for a short
period of time and is added to the cumulative score on the current grid. Participants were given no information about
the underlying structure of the grid prior to the task, apart from the fact that there may be patterns behind the rewards
across tiles. In the game, it is possible to re-select a tile repeatedly, and contrary to traditional bandit tasks, rewards were
deterministic for any given tile. This was done to ensure actions were distinctly either exploratory or exploitative (as
opposed to a stochastic case, where one could re-select an option to learn about it’s volatility.).

Experiment 1 showed that some participants were able to learn the underlying task structure when it was new and traded
off between exploration and exploitation to maximize their rewards. These participants transferred knowledge across
tasks that shared similarities in their underlying structure. However, we observed that a large proportion of participants
had a strong tendency to over-explore, preferring unobserved tiles over known tiles with a high reward value. Twenty-
two participants (31 percent) never re-selected tiles more than twice in any of the grids. We call these participants Full
eExplore (FE) participants. We call the other participants (n=49), that traded off exploration and exploitation, Explore-
Exploit (EE) participants. We plot the performance of EE and FE participants across all three grids in Figure 1. Further,

1

Paper # 268 94

(a) Game screenshot (b) Experiment 1 performance

Figure 1: (a) The grid presented to participants after 5 observations. Note that in Experiment 1, the rewards disappear shortly after a
tile has been selected. (b) Performance of FE participants (n=22) and EE participants (n=49) in Experiment 1 across all three grids. The
plotted confidence interval corresponds to the standard error (ci=68%).

participants had overall a strong ‘local bias’ in their sampling. Both EE and FE groups showed this bias, with adjacent
tiles selected in 49% of FE participants’ exploratory choices and 39% for EE participants.

To explain the large proportion of FE participants, we hypothesized participants may have been driven by wanting to
learn more about the reward structure and collect information. This would be consistent with the local search strategies
exhibited in other domains such as causal learning [9], category learning [10], or more generally with people’s inherent
curiosity bias [11, 12]. We hypothesized that this would only be the case for new tasks when participants still had
something to learn about the underlying reward structure of the tasks.

3 Experiment 2

Experiment 2 was identical to Experiment 1, but with the reward displayed continuously once a tile has been observed.
We added comprehension questionnaires and changed the reward scheme to rule out the alternative explanations about
participants’ extreme exploratory behavior. We hypothesized that with participants observations remaining visible, the
overall reward pattern would be more evident. Thus, participants would be more likely to re-select tiles with high
values and perform better than in Experiment 1. Because the underlying structure was more evident, we also assumed
fewer participants would engage in full exploration behavior, since their curiosity drive would be less pronounced. We
also hypothesized that participants would be able to make more globally informative actions (i.e. exploratory selections
would be more distant from each other).

Against our expectations, participants were overall more prone to engage in full exploratory behavior than in Experiment
1. It could be that participants were further motivated to collect more observations when they remained visible, as the
pattern might have been more salient to them and allowed them to learn better. Following our hypothesis that visible
observations allowed participants to generalize better, EE participants in Experiment 2 had more global exploratory
selections at the beginning of each grid. This could explain their better average performance on the first grid when
compared to those in Experiment 1.

4 Experiment 3

In Experiment 3, we tried to understand the large proportion of participants that engaged in full exploratory behavior.
After Experiment 1, we hypothesized that this might have been due to an intrinsic epistemic drive in participants. We
controlled for several alternative hypotheses, such as memory constraints, unclear instructions, or reward incentives, but
this led to more participants engaging in pure exploratory behavior. We designed Experiment 3 to control explicitly for
the potential epistemic drive of FE participants. To do this, we explicitly instructed participants about the relationship
between a tile’s location and the corresponding reward, prior to the task.

By making the structure clear to participants prior to the tasks, our primary prediction for Experiment 3 was that fewer
participants would engage in full exploratory behavior, since the epistemic reward would be largely attenuated. We also
hypothesized there would be weaker or no progress across grids since participants would already be familiar with the
reward structure from the first grid. With this training, we predicted participants would be more efficient at finding and
re-selecting tiles with high values, and would thus perform better overall than in Experiment 1 and 2. Experiment 3 was
set up identically to Experiment 2 except from the addition of a training step where participants were given one practice

2

Paper # 268 95

grid where all the rewards were continuously displayed, then two further practice grids, similar to the actual task grids,
so that they could learn the underlying pattern prior to performing the task.

Contrary to our hypothesis, many participants still engaged in full exploratory behavior. Given this result, we hypothe-
sized that participants might be motivated by observing new rewards rather than learning the underlying reward struc-
ture per se and that this effect might have been emphasized by the fact that rewards remained visible after having been
selected once. Indeed, in Experiment 2, where rewards remained observable, significantly more participants engaged in
full-exploratory behavior than in Experiment 1. We designed Experiment 4 to account for both factors of epistemic mo-
tivation: 1) wanting to learn about the underlying structure or the location of the maximum, and 2) wanting to observe
novel information.

5 Experiment 4

Our main hypothesis for Experiment 4 was that fewer participants would engage in full exploratory behavior, since the
epistemic reward is attenuated by not having the tiles visible after they have been selected and having training grids
prior to the task. We predicted EE participants would perform similarly or slightly worse than in Experiment 3, because
of the constraints of not having previous observations visible, but better than in Experiment 1 and 2. We also predicted
we would observe little or no transfer effect across grids.

In agreement with our hypothesis, only one participant out of 37 engaged in Full Exploration. This was significantly less
than in any other condition. This supports the idea that participants’ strategies were driven by an epistemic drive which
was twofold. First, participants were motivated to reveal the underlying reward structure, e.g., reducing the entropy
about the structure of the task, or about the location of the maximum. Participants were less likely to engage in FE
behavior in Experiment 4 (known structure and disappearing observations) than Experiment 1 (unknown structure and
disappearing observations), and significantly less in Experiment 3 (known structure and visible observations) than Ex-
periment 2 (unknown structure and visible observations). Second, participants were motivated to observe the outcomes
of individual actions, with a preference for actions that were local to their last one

Participants’ drive to reduce local uncertainty was enhanced by the fact that information became available once it has
been observed once. They were engaged less in FE behavior in Experiment 1 (non-visible observations) than Experiment
2 (visible observations), and less in Experiment 4 (non-visible observations) than Experiment 3 (visible observations).

6 Computational Modelling: Initial Results

We are currently investigating how computational models of memory, generalization and search can give us insight into
people’s representations and strategies when learning in new environments. Besides the important differences across ex-
periments, we are also interested in investigating the differences in behaviour of participants from the same experimental
condition. People’s explore-exploit strategies have been shown to carry significant differences across individuals [13].
More generally, advances in statistical and modelling tools has led to an increased interest understanding qualitative
differences in how people think and act [14].

We outline briefly the different components used in our model to capture different mechanisms of human behavior. To
model directed search, we use the predictions of Gaussian Process (GP) with an RBF Kernel. We take a fully Bayesian
treatment of the GP kernel hyperparameters, as presented in [15]. GPs have been successful in explaining human func-
tion learning phenomena [16, 17], unifying conflicting theories about how humans learn functions. More recently they
have also been applied to study decision making in multi-armed bandit problems [18]. We define a greedy weight com-
ponent that assigns a probability weight to reselect the currently maximum known value. To account for the local bias
observed in participants, we use the inverse Manhattan distance (IMD) to the last observation and fit with a softmax tem-
perature parameter to individual participants. We also add a negative weight on previous observations and a random
exploratory term (uniform probability for all observations). Models are fit to individual participants by using a Differen-
tial Evolution algorithm to maximise the maximum likelihood function. We use an L1 penalty on all weight parameters
and an exponential penalty on the local-bias temperature parameter for more interpretable models. We map the result-
ing models in Figure 2 to highlight clusters of behaviours across all four experiments. Table 1 presents the parameters
of cluster centroids obtained after running a Gaussian Mixture Model over all participants, as plotted in Figure 2. The
results show that we can obtain interpretable parameters that are consistent with observed the participant behaviors.

7 Conclusion

In this paper, we focused on the behavioural analysis of participants across four experiments to study how people learn
to select rewarding actions in a sequence of novel tasks. We found that some participants were able to learn the un-
derlying structure while balancing exploration and exploitation to maximize their rewards across tasks. They improved

3

Paper # 268 96

Figure 2: t-SNE visualisation of MLE parameters for individual participants across all 4 experiments. Clusters are obtained via a
Gaussian Mixture Model. Cluster centroids are reported in Table 1.

α directed search
(E[x] under the GP)

β global search
(σ2 under GP)

Greedy weight
(reselecting
max-known)

local-bias
weight

local-bias
temperature

dampen
previous
observations

random
exploration

cluster 1 0.3 0.06 0.22 0.03 75.13 0.15 0.24
cluster 2 0.02 0 0.12 0.35 26.15 0.3 0.21
cluster 3 0.1 0 0.08 0.51 7.21 0.03 0.28
cluster 4 0.22 0.04 0.19 0.19 1.57 0.14 0.18

Table 1: Parameters of cluster centroids of Gaussian Mixture Model. Weight parameters are normalised (i.e. all but the local-bias tem-
perature). These results show that we can obtain interpretable parameters that are consistent with observed the participant behaviors.
E.g. Cluster 1 corresponds to EE participants with global exploration, cluster 3 corresponds to FE participants with a strong local bias.

their performance from one task to the next by transferring abstract knowledge about their environment. However, con-
sistently across tasks, we observed that a significant proportion of participants engaged in purely exploratory behavior,
largely ignoring the reward incentive. We showed that this behavior could be manipulated by controlling the availability
of information as the learner selected actions, and by giving prior knowledge before participants engaged with the task.
We suggest that people are motivated by two types of epistemic drives: 1) to reduce uncertainty and learn about the
structure of the task and 2) to observe new evidence, regardless of its informativeness about the global task structure.
In our study, we highlight that studying individual differences amongst participants can help us better understand the
complex mechanisms at play during active learning in new environments.

References
[1] Azzurra Ruggeri and Tania Lombrozo. Learning by asking: how children ask questions to achieve efficient search. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, pages

1335–1340, 2014.

[2] Laura Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Developmental psychology, 43(4):1045, 2007.

[3] Claire Cook, Noah D Goodman, and Laura E Schulz. Where science starts: Spontaneous experiments in preschoolers? exploratory play. Cognition, 120(3):341–349, 2011.

[4] Anna Coenen, Jonathan D Nelson, and Todd Gureckis. Asking the right questions about human inquiry. 2017.

[5] Todd M Gureckis and Douglas B Markant. Self-directed learning: A cognitive and computational perspective. Perspectives on Psychological Science, 7(5):464–481, 2012.

[6] Jonathan D Nelson. Finding useful questions: On bayesian diagnosticity, probability, impact, and information gain. Psychological review, 112(4), 2005.

[7] Alison Gopnik, Clark Glymour, David M Sobel, Laura E Schulz, Tamar Kushnir, and David Danks. A theory of causal learning in children: causal maps and bayes nets. Psychological review,
111(1):3, 2004.

[8] Thomas T Hills, Peter M Todd, David Lazer, A David Redish, Iain D Couzin, Cognitive Search Research Group, et al. Exploration versus exploitation in space, mind, and society. Trends in cognitive
sciences, 19(1):46–54, 2015.

[9] Neil R Bramley, David A Lagnado, and Maarten Speekenbrink. Conservative forgetful scholars: How people learn causal structure through sequences of interventions. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 41(3):708, 2015.

[10] Douglas B Markant, Burr Settles, and Todd M Gureckis. Self-directed learning favors local, rather than global, uncertainty. Cognitive science, 40(1):100–120, 2016.

[11] Celeste Kidd and Benjamin Y Hayden. The psychology and neuroscience of curiosity. Neuron, 88(3):449–460, 2015.

[12] Alison Gopnik. Explanation as orgasm. Minds and machines, 8(1):101–118, 1998.

[13] Mark Steyvers, Michael D Lee, and Eric-Jan Wagenmakers. A bayesian analysis of human decision-making on bandit problems. Journal of Mathematical Psychology, 53(3):168–179, 2009.

[14] Daniel J Navarro, Thomas L Griffiths, Mark Steyvers, and Michael D Lee. Modeling individual differences using dirichlet processes. Journal of mathematical Psychology, 50(2):101–122, 2006.

[15] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.

[16] Christopher G Lucas, Thomas L Griffiths, Joseph J Williams, and Michael L Kalish. A rational model of function learning. Psychonomic bulletin & review, 22(5):1193–1215, 2015.

[17] Eric Schulz, Josh Tenenbaum, David K Duvenaud, Maarten Speekenbrink, and Samuel J Gershman. Probing the compositionality of intuitive functions. In Advances In Neural Information Processing
Systems, pages 3729–3737, 2016.

[18] Charley M Wu, Eric Schulz, Maarten Speekenbrink, Jonathan D Nelson, and Björn Meder. Generalization guides human exploration in vast decision spaces. Nature Human Behaviour, 2(12):915,
2018.

4

Paper # 268 97

Remediating Cognitive Decline with Cognitive Tutors

Priyam Das
University of California, Irvine

Irvine, CA
priyam.das@uci.edu

Fred Callaway
Princeton University

Princeton, NJ
fredcallaway@princeton.edu

Thomas L. Griffiths
Princeton University

Princeton, NJ
tomg@princeton.edu

Falk Lieder
Max Planck Institute for Intelligent Systems

Tübingen, Germany
falk.lieder@tuebingen.mpg.de

Abstract

As people age, their cognitive abilities tend to deteriorate, including their ability to make complex plans. To remedi-
ate this cognitive decline, many commercial brain training programs target basic cognitive capacities, such as working
memory. We have recently developed an alternative approach: intelligent tutors that teach people cognitive strategies for
making the best possible use of their limited cognitive resources. Here, we apply this approach to improve older adults’
planning skills. In a process-tracing experiment we found that the decline in planning performance may be partly be-
cause older adults use less effective planning strategies. We also found that, with practice, both older and younger adults
learned more effective planning strategies from experience. But despite these gains there was still room for improvement
– especially for older people. In a second experiment, we let older and younger adults train their planning skills with
an intelligent cognitive tutor that teaches optimal planning strategies via metacognitive feedback. We found that prac-
ticing planning with this intelligent tutor allowed older adults to catch up to their younger counterparts. These findings
suggest that intelligent tutors that teach clever cognitive strategies can help aging decision-makers stay sharp.

Keywords: aging; planning; cognitive training; cognitive plasticity

Acknowledgements

This work was supported by grant number ONR MURI N00014-13-1-0341 and a grant from the Templeton World Charity
Foundation to TLG.

Paper # 251 98

1 Introduction

Many cognitive abilities deteriorate with normal aging, including planning. Commercial brain training programs
promised to remediate this cognitive decline by training basic cognitive capacities – especially working memory. But
they have often failed to live up to their promises (A consensus on the brain training industry from the scientific community,
2014). More effective methods for combating this decline or even improving planning abilities have yet to be discovered.
One new approach could be to discover and teach people cognitive strategies that make the best possible use of their
bounded cognitive resources (Lieder, Callaway, Das, et al., 2019; Lieder et al., 2018; Lieder, Krueger, Callaway, & Griffiths,
2017).

Previous studies have found that older adults have trouble formulating plans and updating them in the light of feedback
(Allain et al., 2005; Sorel & Pennequin, 2008). We hypothesized that the reason why older adults perform worse is that
their planning strategies are less effective than those of younger adults. If this is the case, then it should be possible
to mitigate this aspect of cognitive decline by teaching older adults better planning strategies. Here we investigate this
hypothesis using the intelligent cognitive tutor we developed in previous work (Lieder, Callaway, Das, et al., 2019; Lieder
et al., 2018, 2017). In Experiment 1, we characterized the planning strategies used by people of different age groups in
order to determine whether age affects the types of planning strategies used. In Experiment 2, we investigated whether
cognitive tutoring can help close the performance-gap between younger and older adults. Our results suggest that
cognitive tutoring is a promising approach that should be explored as an intervention for improving people’s decision-
making competency and remediating cognitive decline.

2 Experiment 1

2.1 Methods

We recruited participants younger than 25 years old to form our younger adults group (19 − 24 y.o., median = 23,
n = 49) and adults older than 47 years old to form our older adults group (48 − 70 y.o., median = 52, n = 29). The
experiment was conducted online via Amazon Mechanical Turk. In the experiment, participants completed 30 trials of
the Mouselab-MDP paradigm (Callaway, Lieder, Krueger, & Griffiths, 2017) with a three-step route planning task. On
each trial, participants were shown a map of gray circles (Figure 1) and instructed to move the spider in the middle to one
of the outermost nodes, picking up the rewards hidden along the way. For each trial, rewards are independently drawn
from discrete uniform distributions; in the first step the possible values were {−4,−2,+2,+4}; in the second step the
possible values were {−8,−4,+4,+8}; and in the third step the possible values were {−48,−24,+24,+48}. Participants
could uncover rewards beforehand by clicking on the gray circles and paying a cost of −1 for each reveal. Participants
were instructed to maximize their rewards and were incentivized with a monetary bonus based on their in-game score.

Figure 1: A typical Mouselab-MDP
trial used in Experiment 1 and the
control condition of Experiment 2.
Some of the rewards have already
been revealed by the participant.

We use the clicks our participants made to infer which kind of planning strat-
egy they used. We considered six different planning strategies: depth-first search,
breadth-first search, best-first search, progressive deepening, the optimal planning
strategy, and an impulsive strategy that chooses randomly. Depth-first search ex-
plores a single path at a time – from its beginning to its end. Once it reaches the
end of this path, it returns to the most recent unexplored fork in that path and con-
tinues exploring until all nodes have been inspected. Breadth-first search explores
the first nodes of all possible paths, then the second nodes, and so on until all
paths have been explored. Best-first search explores paths in the order of highest
expected sum of rewards. Progressive deepening is a strategy proposed by Newell
and Simon (1972) and is similar to depth-first search. The main difference is that
after exploring a path in its entirety, progressive deepening skips back to the start-
ing node, treating branches as part of another path for later exploration. Callaway
et al. (2018) found that the optimal strategy for the task environment used in this
experiment is to first set a goal by evaluating potential final destinations. As soon
as inspecting a potential final destination uncovers the highest possible reward
(+48), the optimal strategy selects the path that leads to it and terminates plan-
ning. If multiple potential final destinations are good (i.e., +$24) then the optimal
strategy collects additional information about the paths leading to those promis-
ing potential final destinations starting with the nodes right before a potential final

destination.

1

Paper # 251 99

2.2 Modeling Strategies

We modeled participants’ click sequences as a combination of following one of the six strategies described above and
some random moves. Formally, the probability of making click c when following strategy k is defined as

(1− ε) · σ(c;Vb,Mk
, τ) + ε ·Uniform(c;Cb) (1)

where the first term, σ(c;Vb,Mk
, τ), is a softmax over the possible clicks c in state b when following strategy k and τ is

the temperature parameter. The second term, Uniform(c;Cb), can account for actions that are inconsistent with strategy
k; the probability of such “random clicks” is modeled by a uniform distribution over all possible clicks and the action of
stopping planning. Finally, ε is the probability that a random click will be made.

The random strategy can therefore be modeled by the second term alone. The systematic behavior of the other strategies
was modeled in terms of the values Vb,M (c) they assign to different clicks c and the decision to terminate planning. For
example, in the depth-first search model, the preference function Vb,DFS(c) is the depth of the node inspected by click c if
that node lies on a partially explored path and a large negative value otherwise. As a result, deeper nodes are prioritized
and partially explored paths will be explored to the end before others are considered. In the optimal strategy model, the
value assigned to Vb,O is given by the optimal solution to the problem of deciding how to plan. In previous work, we
formalized this problem as a meta-level Markov Decision Process and computed its solution for the environment used
in this study using backwards induction (Callaway et al., 2018). Aside from the random and optimal strategy models, all
of our strategy models also capture previous findings that people often act as soon as they have identified an alternative
they deem good enough (i.e., satisficing; Simon, 1956) and tend to stop considering a course of action when they realize
it would entail a large loss at one point or another (i.e., pruning; Huys et al., 2012). To model satisficing and pruning,
our models include two free parameters for the participant’s aspiration level and pruning threshold respectively. When
the expected reward for terminating in belief state b exceeds the aspiration level, then our models assign a very large
value to the terminate planning action. Conversely, if the expected sum of rewards for any path falls below the pruning
threshold, then clicks on the remaining unobserved nodes on that path are assigned a large negative value such that
the strategy was discouraged from continuing to explore that unprofitable path. We fit all models to each trial for each
participant using maximum likelihood estimation for all model parameters (i.e., τ , ε, and the thresholds for satisficing
and pruning). We then performed model comparisons using the Bayesian Information Criterion (Schwarz et al., 1978) to
determine which strategy each participant is most likely to have used on each trial.

Figure 2: Strategy usage frequencies for younger adults versus older adults over all trials. The strategies we modeled
are (from left to right): Best-first search, breadth-first search, depth-first search, optimal, progressive deepening, and
random.

2.3 Results

In Experiment 1, we found that older adults differed significantly from younger adults in how often they used each of the
six planning strategies introduced above (χ2(5) = 205.43, p < .001). While both age groups used the optimal strategy the
most, older adults also favored the depth-first search strategy, using it almost as much as the optimal strategy (Figure 2).

2

Paper # 251 100

Taking a look at how participants’ strategy usage evolved over time indicates that older adults were adopting the optimal
strategy later in the experiment compared to younger adults (Figure 3). However, by the end of the experiment, the older
adults were still not using the optimal strategy as frequently as the younger adults (avg. frequency in the last five trials:
69.0% vs. 58.6%, χ2(1) = 3.86, p < 0.05). We also found that older adults were performing worse on the task compared
to younger adults, even after discovering the optimal strategy on their own (avg. score in the last five trials: 24.7 vs. 37.4,
t(76) = −2.87, p < 0.01). This is consistent with our expectation that using the optimal strategy less than another group
will lead to lower scores. If this difference in strategy usage is due to older participants being unaware of the existence of
the optimal strategy, then it should be possible to remedy their deficits by teaching them the optimal strategy using our
cognitive tutor. We tested this hypothesis in Experiment 2.

Figure 3: The frequencies of strategy usage for every trial in the experiment for younger adults (left) and older adults
(right). The strategies shown are best-first search (cyan), breadth-first search (red), depth-first search (green), optimal
(yellow), progressive deepening (magenta), and random (dark blue).

3 Experiment 2

3.1 Methods

Figure 4: Example feedback from the cognitive tutor
in the training phase of Experiment 2.

For Experiment 2, we recruited and sorted participants into two
groups: younger than 25 (median = 22 years, n = 41) and older
than 47 (median = 53 years, n = 37). We conducted the experi-
ment via Amazon Mechanical Turk. Participants were randomly
assigned to either train with the cognitive tutor (feedback condi-
tion: 18−69 y.o, nyoung = 24, nold = 23) or to practice the task on
their own (control condition: 18−68 y.o, nyoung = 17, nold = 14).
Participants in the control condition performed 30 trials of the
Mouselab-MDP task described in the Methods section of Exper-
iment 1. Participants in the feedback condition were first given
15 trials where they practiced the Mouselab-MDP task while
receiving our cognitive tutor’s optimal metacognitive feedback
(Lieder, Callaway, Das, et al., 2019; Lieder et al., 2018, 2017). As
illustrated in Figure 4, the tutor’s feedback comprised i) a de-
lay penalty whose duration was proportional to how subopti-
mal the participant’s planning operation was, and ii) a visual
demonstration of what the optimal planning strategy described

above would have done differently. The feedback thereby supported both reinforcement learning and learning from

3

Paper # 251 101

demonstrations. Participants were then given 15 test trials of Mouselab-MDP without any feedback, identical to the
trials given to the control group.

3.2 Results

Consistent with Experiment 1, we found that older people (Mean = 23.23, SEM = 2.16) performed worse in the first
half of the experiment than younger people (Mean = 29.40, SEM = 2.33; F (1, 1162) = 18.10, p < 0.001).

Encouragingly, practicing with our cognitive tutor was effective at improving decision-making skills regardless of age.
Specifically, older and younger adults who practiced with the cognitive tutor scored significantly higher in the test block
than their counterparts in the control condition (t(39) = 3.31, p < 0.01 and t(35) = 3.56, p < 0.01 respectively). Even
more encouragingly, for older people the benefit of training with our cognitive tutor was so large that they did not only
catch up to younger people but even scored significantly higher than younger people who had practiced the task on
their own (t(38) = 2.41, p < 0.05). Furthermore, it appears that older adults benefited more from the cognitive tutor
than younger adults. According to a three-way ANOVA the advantage of young people gradually vanished over time in
both conditions (βtrial×young = −0.13, F (1, 2332) = 5.21, p < 0.05) and was more pronounced in the training block than in
the test block (βtraining block×young = 5.55, F (1, 1406) = 7.36, p < 0.01) in the feedback condition. This indicates that older
adults were catching up to younger adults over time. As a consequence, we could no longer detect a significant difference
between younger versus older adults (t(45) = −1.02, p = 0.31) after 15 trials of training with the cognitive tutor. The
results suggest that cognitive tutors can help older adults catch up to the younger generations – and sometimes even
overtake them.

4 Discussion

Why do older people have a harder time making complex plans and how can we help aging adults retain their planning
skills? In Experiment 1, we found that older adults’ decision making skills appear to be limited by their reliance on sub-
optimal planning strategies. In Experiment 2, we found that this deficit can be remedied by letting older adults practice
planning with a cognitive tutor that teaches them an optimal planning strategy via metacognitive feedback. While both
older and younger adults benefited from cognitive tutoring, older adults benefited more. As a result, cognitive training
with our intelligent tutor decreased the performance gap between older and younger adults.

Our findings suggest that cognitive tutoring could be a promising new approach to remediating cognitive decline. We
recently found that using our cognitive tutors improves performance on a near-transfer task (Lieder, Callaway, Jain, et
al., 2019), and we plan to investigate whether this benefit transfers to daily life. Developing cognitive tutors for a wide
range of different cognitive skills and tailoring them to the needs of various age groups and (psychiatric) populations are
exciting directions for future research.

References
Allain, P., Nicoleau, S., Pinon, K., Etcharry-Bouyx, F., Barré, J., Berrut, G., . . . Le Gall, D. (2005). Executive functioning in normal aging:

A study of action planning using the zoo map test. Brain and cognition, 57(1), 4–7.
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A resource-rational analysis of human planning. In

Proceedings of the 40th annual conference of the cognitive science society.
Callaway, F., Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017). Mouselab-MDP: A new paradigm for tracing how people plan.

In The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making, Ann Arbor, MI, USA. Retrieved from
https://osf.io/vmkrq/

A consensus on the brain training industry from the scientific community (Online Statement). (2014). Max Planck Institute for Human Devel-
opment and Stanford Center on Longevity. (Retrieved from http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-
on-the-brain-training-industry-from-the-scientific-community/ on March 1 2019)

Huys, Q. J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in your head: how the pavlovian system
sculpts goal-directed choices by pruning decision trees. PLoS computational biology, 8(3), e1002410.

Lieder, F., Callaway, F., Das, P., Gul, S., Krueger, P., & Griffiths, T. L. (2019). An intelligent feedback mechanisms for teaching people optimal
planning strategies. (Manuscript in preparation)

Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., & Griffiths, T. L. (2019). A cognitive tutor for helping people
overcome present bias. In The 4th Multidisciplinary Conference on Reinforcement Learning and Decision-Making, Montréal, QC, CA.

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., & Gul, S. (2018). Discovering and teaching optimal planning strategies.
In The 14th biannual conference of the German Society for Cognitive Science, GK.

Lieder, F., Krueger, P. M., Callaway, F., & Griffiths, T. L. (2017). A reward shaping method for promoting metacognitive learning. In
The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision-Making, Ann Arbor, MI, USA.

Newell, A., Simon, H. A., et al. (1972). Human problem solving (Vol. 104) (No. 9). Prentice-Hall Englewood Cliffs, NJ.
Schwarz, G., et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138. doi: 10.1037/h0042769
Sorel, O., & Pennequin, V. (2008). Aging of the planning process: The role of executive functioning. Brain and cognition, 66(2), 196–201.

4

Paper # 251 102

Contrasting the effects of prospective attention and retrospective
decay in representation learning

Guy Davidson
College of Computational Sciences

Minerva Schools at KGI
San Francisco, CA 94103
guy@minerva.kgi.edu

Angela Radulescu
Department of Psychology

Princeton University
Princeton, NJ 08544

angelar@princeton.edu

Yael Niv
Department of Psychology &

Princeton Neuroscience Institute
Princeton University
Princeton, NJ 08544

yael@princeton.edu

Abstract

Previous work has shown that cognitive models incorporating passive decay of the values of unchosen features explained
choice data from a human representation learning task better than competing models [1]. More recently, models that
assume attention-weighted reinforcement learning were shown to predict the data equally well on average [2]. We
investigate whether the two models, which suggest different mechanisms for implementing representation learning,
explain the same aspect of the data, or different, complementary aspects. We show that combining the two models
improves the overall average fit, suggesting that these two mechanisms explain separate components of variance in
participant choices. Employing a trial-by-trial analysis of differences in choice likelihood, we show that each model helps
explain different trials depending on the progress a participant has made in learning the task. We find that attention-
weighted learning predicts choice substantially better in trials immediately following the point at which the participant
has successfully learned the task, while passive decay better accounts for choices in trials further into the future relative
to the point of learning. We discuss this finding in the context of a transition at the “point of learning” between explore
and exploit modes, which the decay model fails to identify, while the attention-weighted model successfully captures
despite not explicitly modeling it.

Keywords: reinforcement learning, representation learning, decay, selective
attention, behavioral modeling, Dimensions Task, model compar-
ison, trial-by-trial analysis

Acknowledgements

This project was funded by grant W911NF-14-1-0101 from the Army Research Office to YN. The authors wish to thank
the Princeton Neuroscience Institute Summer Internship Program that facilitated this collaboration.

Paper # 188 103

1 Introduction

Previous work on representation learning in humans has investigated a role for selective attention in dynamically shap-
ing task representations [1], [2]. Computational models of this process of carving a task into its constituent states have
suggested two different mechanisms for implementing selective attention to different features of environmental stimuli:
a feature-level reinforcement learning model with decay of values of features of unchosen options (FRLdecay), and an
attention-weighted feature-level reinforcement learning model (awFRL). These two models offer conceptually different
accounts of selective attention: decay is retrospective, incrementally forgetting previously learned values if options are
not chosen again. In contrast, attentional filtering can be seen as prospective, modulating what is learned now for future
use, in line with [3], [4].

Even though these models posit different mechanisms, previous work has shown that, on average, they perform equally
well at predicting participants’ trial-by-trial choices on a multidimensional bandit task called the “Dimensions Task” (see
below). Here, we asked which model better accounts for choices on the Dimensions Task as a function of the participant’s
stage of learning. If the two models map onto the same cognitive process, we would expect them to be indistinguishable
in terms of the likelihood they assign to choices at every stage of the learning process. Conversely, if they capture
different aspects of the cognitive process, they should account well for different choices. First, we implement a new
model, awFRLdecay, which includes both a decay mechanism and attentional weights, and find it predicts participants’
choices better than either FRLdecay or awFRL. This suggests that the two mechanisms capture different components of
representation learning. We further investigate this finding using a novel trial-by-trial model comparison analysis which
takes into account the participant’s “point of learning” when comparing likelihoods. We find that the awFRL model best
explains behavior around the time when participants learn the correct task representation, while the FRLdecay model
best captures choices further beyond the “point of learning.” These findings suggest distinct roles for passive decay of
feature weights and selective attention in shaping task representations, and demonstrate the utility of moving beyond
average likelihoods when performing model comparison.

2 Task

Figure 1: Dimensions Task. On each trial, the participant is pre-
sented with three options (columns of features), each including
a face, a landmark, and a tool (“dimensions”). After choosing
one option, the participant receives feedback, and proceeds to the
next trial. One dimension is relevant for determining reward, and
within it, one feature rewards with p = 0.75 while the other two
features reward with p = 0.25. The participant does not know a
priori which dimension is relevant for reward, and which feature is
the target feature, and must learn these from trial and error

We reanalyzed data from [2]. Twenty-five human partic-
ipants were tasked with learning which of nine features
was more predictive of reward. Participants played 24
“games” consisting of 25 trials each. On each trial of
a game, participants chose between three columns, each
comprised of a face, a landmark, and a tool. All fea-
tures were visible on every trial, but feature combinations
within a column varied from trial to trial. The target fea-
ture randomly changed between games. Participants had
full prior knowledge of the task’s generative model. That
is, they received instructions in the beginning regarding
the reward contingencies, and changes in the target fea-
ture (i.e., end of games) were signalled explicitly (“New
game starting”).

3 Models Compared

We compared models using leave-one-game-out cross-validation, maximizing the total log-likelihood of the participants’
choices. As each participant performed a total of twenty-four games of the task, we held one game out at a time, fit the
model on the remaining twenty-three games, and evaluated performance on the held-out game.

3.1 Feature RL with Decay (FRLdecay)

The FRLdecay model introduced in [1] assumes the participant learns a feature weight for each of the nine unique
features. We denote these feature weights w and sum to compute a value for each column. Choice likelihood is modeled
as a noisy softmax. During learning, the weights of features in the chosen column are updated according to a temporal-
difference learning rule. Additionally, the values for features in unchosen columns decay toward zero. The addition
of decay implements a retrospective form of selective attention: on any given trial, the model learns about all chosen
features equally, later unlearning (decaying) the values of those features that are not chosen again. That is, instead of
predicting what should be learned on each trial, the model learns and then forgets values that were learned erroneously.

We denote the ith column on the current trial as Si, with the feature in each dimension (row) d ∈ {1, 2, 3} accessed as
Si[d], which indexes into the weights vector, w(Si[d]). Column values (analogous to action values, as choices were of

1

Paper # 188 104

columns) were computed as the sum over the weights of features in the three dimensions. The probability of choosing
column c is modeled using a noisy softmax over the values with an inverse temperature parameter β:

V (Si) =
∑

d

w(Si[d]) (1)

π(c) =
eβV (Sc)

∑
i e
βV (Si)

(2)

We assume a standard reinforcement learning update rule operating at the feature level. At each time point, we compute
the reward prediction error δ from the rewardR and the value assigned to the chosen column, δ = R−V (Sc), and update
each chosen feature using a learning rate η. For the unchosen columns, we decay all feature values toward zero with
decay rate λ:

For all d : w(Sc[d]) = w(Sc[d]) + ηδ (3)
For all d, i 6= c : w(Si[d]) = (1− λ)w(Si[d]) (4)

3.2 Attention weighted feature RL (awFRL)

The attention-weighted feature RL model described in [2] includes empirically-derived dimensional attention weights as
a direct measure of selective attention. These weights were computed in two ways: from eye position data, by binning
looking time to each dimension within a trial; and from fMRI decoding of information in face-, landmark-, and tool-
selective areas of the human cortex. The two measures of attention were then combined to form a single, empirically
measured attentional weight for each dimension (d) on each trial, which we denote φ[d] (see [2] for full details).

The attention weights modified both the value computation and update rule of the FRL model. First, they biased value
computation towards features in the attended dimensions. Next, the attention weights also biased the feature weight up-
date, modeling increased attention to a particular dimension as a higher learning rate for features in that that dimension:

V (Si) =
∑

d

φ[d]w(Si[d]) (5)

For all d : w(Sc[d]) = w(Sc[d]) + ηφ[d]δ (6)

As in the FRLdecay model, choice probabilities followed a noisy softmax distribution on column values.

3.3 Combined model: attention weighted feature RL with decay (awFRLdecay)

This model combines the above models, including both the attention-weighted value computation and chosen feature
value updates (from [2]), as well as the decay of unchosen features towards zero (from [1]). We can formally describe the
computations on each trial as:

V (Si) =
∑

d

φ[d]w(Si[d]) Attention-weighted value computation (7)

π(c) =
eβV (Sc)

∑
i e
βV (Si)

Choice likelihood (8)

For all d : w(Sc[d]) = w(Sc[d]) + ηφ[d]δ Attention-weighted feature weight updates (9)
For all d, i 6= c : w(Si[d]) = (1− λ)w(Si[d]) Unchosen feature decay (not attention-weighted) (10)

4 Results

As previously noted, the FRLdecay model and the awFRL model explained participants’ choices equally well on average
(Figure 2A). The new, combined, awFRLdecay model improved goodness of fit over both previous models, suggesting
that retrospective decay and prospective biasing by attention explain different components of the variability in partici-
pants’ choices. To test this hypothesis more directly, we next compared these models on a trial-by-trial basis, rather than
averaging over all trials within each game (Figure 2B). We found that awFRL explained choices in the first half of each
game better, while FRLdecay provided a better fit to choices in the later part of each game.

Motivated by the insight that the meaningful indexing within a game is not the absolute trial index, but the one relative
to the participant’s successful learning of the task, we repeated the trial-by-trial analysis, aligning data around the last
trial in which the participant did not choose the target feature, i.e. the “point of learning”(Figure 2C). We found that the
awFRL model predicted choices substantially better immediately following the point of learning, while the FRLdecay

2

Paper # 188 105

Figure 2: Trial-by-trial model comparison. A: Model comparison showing the mean cross-validated (CV) likelihood of participant’s
choices per trial. The FRLdecay (best fitting in [1]) and awFRL (best fitting in [2]) models both explain the data equally well, and
better than a baseline FRL model (equations (1)-(3)). The combined model surpassed both previous models (paired-sample t tests,
t(24) = 8.998, p < .001; t(24) = 12.374, p < .001, for the FRLdecay and awFRL models, respectively). B: Each bin shows the
the average likelihood difference as a function of trial, subtracting the FRLdecay predicted likelihood from the awFRL predicted
likelihood. C: The same trial-by-trial likelihood comparison, aligned to the last trial in each learned game in which the participant did
not choose the target feature (the “point of learning”). Error bars: standard error of the mean (SEM). *: p < 0.001.

Figure 3: Isolating the effects of introducing decay and attention. A: The difference in choice likelihoods between FRLdecay and FRL
(red) and awFRLdecay and awFRL (blue) aligned to the point of learning suggests that models that include retrospective decay lag in
capturing the participant’s point of learning. B: The difference in choice likelihoods between awFRL and FRL (green) and awFRLdecay
and FRLdecay (purple) suggests that models that include measured prospective attention weights perform best shortly following the
point of learning.

model performed better on the remainder of the game. Interestingly, both models fit the data to an equal extent before
the point of learning, that is, during the representation learning phase (see discussion).

To dissociate whether differences in likelihood around the point of learning are due to awFRL being a better predictor
of participants’ choices, or FRLdecay being a worse predictor, Figure 3 shows the same trial-by-trial analysis as before,
separating the effect of adding decay (A) and attention (B) to the models. Adding decay improved goodness of fit
throughout, except for the trial immediately following the “point of learning,” where decay models predicted choice
substantially worse than models omitting decay. Conversely, models including attention weights predicted choices con-
siderably better for a few trials after the “point of learning”. Both model components improved goodness of fit before
the point of learning.

5 Discussion

We compared the performance of two competing reinforcement learning models on a human representation learning
task. The models, introduced in previous work, posit conceptually different mechanisms, one suggesting retrospective

3

Paper # 188 106

“forgetting” of values learned in error, and the other employing prospective attention-gated learning of only those values
that are expected to be useful. Nevertheless, the two models predict choice data equally well on average. The improved
goodness of fit when combining both processes suggests that these models may account for different components of the
variance in the choice data. We uncovered differences in predictive likelihood between the models using insight into the
structure of the task: once participants successfully learn the correct task representation, they terminate a game with a
streak of correct choices, transitioning from exploring potential representations to exploiting the correct one. By align-
ing data to the “point of learning,” we recovered diverging predictive capacities of the FRLdecay and awFRL models.
The retrospective FRLdecay model lags in capturing behavior at the explore-exploit transition, while the prospective
awFRL attention model excels in predicting choices immediately following the transition. Together, these findings pro-
vide a more complete account of the complementary role of these mechanisms in enabling representation learning in
multidimensional reinforcement learning tasks.

This transition from exploration to exploitation, and the models’ success (or lack thereof) capturing it, allows a more
nuanced examination of the two models. The inclusion of decay, which essentially creates a learning-relevant choice
kernel [5], [6], as it maintains learning only for repeatedly chosen features, seems to improve overall model fit but fails
to account for the immediate transition at the “point of learning.” Perhaps this lag is due to its retrospective nature:
first learn about everything, then decay anything that is revealed by participants’ choices to have been learned (by the
mode) in error. Models incorporating prospective attention fare better at accounting for behavior around this change-
point, but rapidly lose their advantage as participants switch from exploration to exploitation. This effect may be due to
the attention measures used diminishing in effectiveness, participants deploying less selective attention once they have
learned the correct representation, or both. This comparison points to two other potential shortcomings of these models.
Neither model explicitly accounts for the change-point between exploration and exploitation, even though it appears to
be a distinct marker of the cognitive strategy employed by participants solving this task. Recent evidence suggests that
confidence might govern this transition [7], suggesting that a model incorporating separate exploration and exploitation
strategies may fare better at predicting the behavioral data. Of course, the transition may not be as abrupt as we have
portrayed it to be, which such a model could attempt to capture. Here, reaction times for different choices may provide
useful data that has been previously underexplored in the context of this task.

Another interesting finding is that the two models, which we have cast as conceptually different, explain the choice
data equally well before the point of learning, that is, during the actual representation learning stage. Three possible
explanations for this finding come to mind: 1) prospective and retrospective attention may contribute equally to the
representation learning process itself, 2) the models may be disguising as one another in the learning phase, and 3) the
differential contributions of the two processes are perhaps not separable with our task. In some sense, we cannot know
if both models account for the cognitive strategy participants take, or possibly neither model captures it well.

Finally, from the perspective of model comparison methodology, our results reaffirm the value of diving beyond average
model comparison metrics, such as mean cross-validated likelihood and BIC, and employing more granular comparisons.
Examining specific cases in which competing models make different predictions enables more nuanced investigation
than the overall goodness of fit of each model. Had we known in advance that such a stark behavioral change-point
exists in the data, we could have simulated data using this “qualitative signature,” which we expect a good model for
the task to be able to recover, and evaluated the models accordingly [8].

6 References
[1] Y. Niv, R. Daniel, A. Geana, S. J. Gershman, Y. C. Leong, A. Radulescu, and R. C. Wilson, “Reinforcement learn-

ing in multidimensional environments relies on attention mechanisms,” The Journal of Neuroscience, vol. 35, no. 21,
pp. 8145–8157, May 27, 2015.

[2] Y. C. Leong, A. Radulescu, R. Daniel, V. DeWoskin, and Y. Niv, “Dynamic interaction between reinforcement learn-
ing and attention in multidimensional environments,” Neuron, vol. 93, no. 2, pp. 451–463, Jan. 2017.

[3] N. J. Mackintosh, “A theory of attention: Variations in the associability of stimuli with reinforcement,” Psychological
Review, vol. 82, no. 4, pp. 276–298, 1975.

[4] J. Gottlieb, “Attention, learning, and the value of information,” Neuron, vol. 76, no. 2, pp. 281–295, Oct. 18, 2012.
[5] B. Lau and P. W. Glimcher, “Dynamic response-by-response models of matching behavior in rhesus monkeys,”

Journal of the Experimental Analysis of Behavior, vol. 84, no. 3, pp. 555–579, Nov. 2005.
[6] R. Akaishi, K. Umeda, A. Nagase, and K. Sakai, “Autonomous mechanism of internal choice estimate underlies

decision inertia,” Neuron, vol. 81, pp. 195–206, Jan. 8, 2014.
[7] A. Boldt, C. Blundell, and B. De Martino, “Confidence modulates exploration and exploitation in value-based learn-

ing,” 2017.
[8] R. C. Wilson and A. Collins, “Ten simple rules for the computational modeling of behavioral data,” 2019.

4

Paper # 188 107

Predicting Periodicity with Temporal Difference Learning

Kristopher De Asis
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8

kldeasis@ualberta.ca

Brendan Bennett
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8

babennet@ualberta.ca

Richard S. Sutton
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8
rsutton@ualberta.ca

Abstract

Temporal difference (TD) learning is an important approach in reinforcement learning, as it combines ideas from dynamic
programming and Monte Carlo methods in a way that allows for online and incremental model-free learning. A key
idea of TD learning is that it is learning predictive knowledge about the environment in the form of value functions,
from which it can derive its behavior to address long-term sequential decision making problems. The agent’s horizon of
interest, that is, how immediate or long-term a TD learning agent predicts into the future, is adjusted through a discount
rate parameter. In this paper, we introduce an alternative view on the discount rate, with insight from digital signal
processing, to include complex-valued discounting. Our results show that setting the discount rate to appropriately
chosen complex numbers allows for online and incremental estimation of the Discrete Fourier Transform (DFT) of a
signal of interest with TD learning. We thereby extend the types of knowledge representable by value functions, which
we show are particularly useful for identifying periodic effects in the reward sequence.

Keywords: Reinforcement Learning, Online Learning, Signal Processing, Dis-
crete Fourier Transform

Acknowledgements

The authors thank Roshan Shariff for insights and discussions contributing to the results presented in this paper, and the
entire Reinforcement Learning and Artificial Intelligence research group for providing the environment to nurture and
support this research. We gratefully acknowledge funding from Alberta Innovates – Technology Futures, the Alberta
Machine Intelligence Institute, Google Deepmind, and from the Natural Sciences and Engineering Research Council of
Canada.

Paper # 238 108

1 Temporal Difference Learning

Temporal-difference (TD) methods [7] are an important approach in reinforcement learning as they combine ideas from
dynamic programming and Monte Carlo methods. TD allows learning to occur from raw experience in the absence of a
model of the environment’s dynamics, like with Monte Carlo methods, while computing estimates which bootstrap from
other estimates, like with dynamic programming. This provides a way for an agent to learn online and incrementally in
both long-term prediction and sequential decision-making problems.

A key view of TD learning is that it is learning testable, predictive knowledge of the environment [11]. The learned
value functions represent answers to predictive questions about how a signal will accumulate over time, given a way
of behaving in the environment. A TD learning agent can continually compare its predictions to the actual outcomes,
and incrementally adjust its world knowledge accordingly. In control problems, this signal is the reward sequence, and
the value function represents the long-term cumulative reward an agent expects to receive when behaving greedily with
respect to its current predictions about this signal.

A TD learning agent’s time horizon of interest, or how long-term it is to predict into the future, is specified through
a discount rate [10]. This parameter adjusts the weighting given to later outcomes in the sum of a sequence over time,
trading off between only considering immediate or near-term outcomes and estimating the sum of arbitrarily long se-
quences. From this interpretation of its purpose, along with convergence considerations, the discount rate is restricted to
be γ ∈ [0, 1] in episodic problems, and γ ∈ [0, 1) in continuing problems.

In this paper, we investigate whether meaningful information can be learned from relaxing the range of values the
discount rate can be set to. In particular, we allow it to take on complex values, and instead restrict the magnitude of the
discount rate, |γ|, to fall within the aforementioned ranges.

2 One-step TD and the MDP Formalism

The sequential decision-making problem in reinforcement learning is often modeled as a Markov decision process (MDP).
Under the MDP framework, an agent interacts with an environment over a sequence of discrete time steps. At each time
step t, the agent receives information about the environment’s current state, St ∈ S , where S is the set of all possible
states in the MDP. The agent is to use this state information to select an action, At ∈ A(St), where A(s) is the set of
possible actions in state s. Based on the environment’s current state and the agent’s selected action, the agent receives a
reward, Rt+1 ∈ R, and gets information about the environment’s next state, St+1 ∈ S, according to the environment model:
p(s′, r|s, a) = P (St+1 = s′, Rt+1 = r|St = s,At = a).

The agent selects actions according to a policy, π(s, a) = P (At = a|St = s), which gives a probability distribution across
actions a ∈ A(s) for a given state s, and is interested in the expected discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
T−t−1∑

k=0

γkRt+k+1 (1)

given a discount rate γ ∈ [0, 1] and T equal to the final time step in an episodic task, or γ ∈ [0, 1) and T equal to infinity
for a continuing task.

Value-based methods approach the sequential decision-making problem by computing value functions, which provide es-
timates of what the return will be from a particular state onwards. In prediction problems, also referred to as policy
evaluation, the goal is to estimate the return under a particular policy as accurately as possible, and a state-value function
is often estimated. It is defined to be the expected return when starting in state s and following policy π:

vπ(s) = Eπ[Gt|St = s] (2)
TD methods learn an approximate value function, such as V ≈ vπ for state-values, by computing an estimate of the
return, Ĝt. One-step TD methods compute Ĝt by taking an action in the environment according to a policy, sampling the
immediate reward, and bootstrapping off of its current estimated value of the next state for the remainder of the return.
The difference between this TD target and the value of the previous state is then computed, and the previous state’s value
is updated by taking a step proportional to this difference with a step size α ∈ (0, 1]:

Ĝt = Rt+1 + γV (St+1) (3)

V (St)← V (St) + α[Ĝt − V (St)] (4)

3 Complex Discounting and the Discrete Fourier Transform

The discount rate has an interpretation of specifying the horizon of interest for the return, trading off between focusing
on immediate rewards and considering the sum of longer sequences of rewards. It can also be interpreted as a soft

1

Paper # 238 109

termination of the return [11, 8, 6], where an agent includes the next reward with probability γ, and terminates with
probability 1 − γ, receiving a terminal reward of 0. From these interpretations, it is intuitive for the discount rate to fall
in the range of γ ∈ [0, 1) with the exception of episodic problems, where γ can be equal to 1.

With considerations for convergence, assuming the rewards are bounded, restricting the discount rate to be in this range
makes the infinite sum (in the continuing case) of Equation 1 finite. However, this sum will remain finite when the
magnitude of the discount rate is restricted to be |γ| ∈ [0, 1), allowing for the use of negative discount rates up to −1, as
well as complex discount rates within the complex unit circle.

While the use of alternative discount rates may result in some corresponding value function, a question arises regarding
whether these values are meaningful, or if there is any situation in which an agent would benefit from this knowledge.
First, we consider the implications of exponentiating a complex discount rate. We look at the exponential form of a
complex number with magnitude A, and note that it can be expressed as a sum of sinusoids by Euler’s Formula:

Ae−iω = A cos(ω)− iA sin(ω) (5)

From this, it is evident that exponentiating a complex number to the power of n corresponds to taking n steps around
the complex unit circle with an angle of ω. Using this as a discount rate, we get the following return for some angle ω:

Gωt =
T−t−1∑

k=0

e−iωkAkRt+k+1 (6)

Complex discount rates weight a discounted reward sequence (with discount rate A) with two sinusoids, one along the
real axis and one along the imaginary axis. This checks the cross correlation between a reward sequence and a sinusoid
oscillating with a frequency of ω rad

step over an exponentially decaying window determined by A, allowing a TD learning
agent to identify periodicity in the reward sequence at specified frequencies online and incrementally. While discounting
by the magnitude A can distort the reward sequence, it primarily affects low frequencies which are unable to complete
an oscillation within a discount rate’s effective horizon.

Weighting the reward sequence with exponentiated complex numbers is equivalent to performing the Discrete Fourier
Transform (DFT) from digital signal processing literature [2]. The DFT corresponds to the discrete form of the coefficients
of a Fourier series, and thus each complex number encodes the amplitude and phase of a particular sinusoidal component
of a sequence. Specifically, the normalized magnitude, |Gωt |/N , corresponds to the amplitude, and the angle between the
imaginary and real components, ∠Gωt , gives the phase. The DFT is also an invertible, linear transformation [2]. Knowing
the sequence length, and the sampling frequency (denoted fs), one can invert the transform through a sum of sinusoids:

xn =

N−1∑

k=0

|Xk|
N

cos

(
2π

k

N
fsn+ ∠Xk

)
(7)

The learned approximate values of a TD agent represents the DFT of the return from a given state onward, and allows
for identification of the signal’s frequency information. However, the expected length of the sequence is typically not
known by the agent, resulting in unnormalized amplitude information.

4 Experiments

In this section, we detail several experiments involving TD learning agents using complex-valued discounting.

4.1 Checkered Grid World

The checkered grid world environment is a 5 × 5 grid world with two terminal states on opposite corners. It has deter-
ministic 4-directional movement, and moving into a wall keeps the agent in place. The agent starts in the center, and
the board is colored with a checkered pattern which represents the reward distribution. One color represents a reward
of 1 upon entry, and a reward of -1 for the other. Reaching a terminal state ends the episode with a reward of 11. Given
that complex discounting computes the DFT, we would like to see whether an agent using complex discount rates can
identify the structure of the reward distribution. We would also like to assess how well the expected reward sequence
can be reconstructed through Equation 7, with knowledge of the expected sequence length.

This environment was treated as an on-policy policy evaluation task with no discounting (|γ| = 1). The agent behaved
under an equiprobable-random behavior policy, and learned value functions corresponding to 114 equally spaced fre-
quencies in the range ω ∈ [0, 2π). Expected Sarsa [13] was used, and state-values were computed from the action-values.

We performed 100 runs, and the value of the starting state, represented by the complex number’s magnitude and phase
information, was plotted for each frequency after the 250th episode. The resulting learned DFT of the starting state can be

2

Paper # 238 110

seen in Figure 1. Of note, the frequencies are relative to the agent’s sampling frequency, with ω = 2π being 1 sample per
step. In the learned DFT, the magnitude of the value at ω = 0 gives what a standard TD agent with γ = e−i0 = 1 would
have learned. There is a relatively large magnitude at half the agent’s sampling frequency, meaning the agent has large
confidence in the existence of an oscillation at a rate of half a cycle per time step. This corresponds to the environment’s
rewards alternating between 1 and -1, as this pattern takes two time steps to complete a cycle.

Next, we reconstructed the expected reward sequence. Knowing the expected episode length, we use the learned values
of 38 equally spaced frequencies in [0, 2π), and evaluated Equation 7 for 38 steps. The reconstruction can be seen in Figure
2. Qualitatively, the reconstructed sequence captures several aspects of the structure of the return. The oscillations in the
sequence have a period of 2, and begin with an approximate amplitude of 1. It has a positive mean from the positive
reward upon termination, and its sum gives the correct standard undiscounted return. Of note, the sequence appears to
decay, and doesn’t end with a reward of 11. This is because when the agent bumps a wall, the periodic pattern shifts.
The earliest this can occur is in 3 steps, approximately where the exponential decay begins in the reconstruction.

4.2 Wavy Ring World

To assess the idea in a continuing setting with function approximation, we designed the wavy ring world environment.
This environment has 20 states arranged in a ring. The agent starts in state 0 and traverses the states in a fixed direction.
Binary feature vectors to be used with linear function approximation were produced with tile coding [9]. Specifically, we
used 6 overlapping tilings and each tile spanned 1/3-rd of the 20 states. The reward for leaving a state s ∈ {0, 1, 2, ..., 19},
R(s), consisted of the sum of four state-dependent, unit-amplitude sinusoids with periods of 2, 4, 5, and 10 states.

A TD agent learned complex-valued weights for each of 64 equally spaced frequencies in the range ω ∈ [0, 2π), and
the magnitude of each discount rate was |γ| = 0.9. We extracted the state values from the learned weights, and the
resulting DFT of the return from state 0 can be seen in Figure 1. In the learned DFT, we can see that it still has relatively
large peaks at various frequencies in the magnitude plot. Looking at the frequencies at which these peaks occur, they
correspond to the frequencies of the reward function R(s). One might be concerned that the peaks are not equal, because
the reward signal’s sinusoids have identical amplitudes. However, discounting distorts the signal, and the analytic DFT
has matching, unequal peaks. To illustrate this, we evaluate Equation 7 to invert the learned DFT (knowing the reward
signal’s period), and un-discount the sequence. The reconstructed reward sequence from state 0 can be seen in Figure 2.

(a) Checkered grid world results (b) Wavy ring world results

Figure 1: Learned DFTs for each environment. Note that they are symmetric about half of the sampling frequency. This
frequency is referred to as the Nyquist frequency [2], which, due to aliasing, is the largest detectable frequency.

5 Discussion and Conclusions

In our experiments, we showed that a TD agent using complex discount rates can identify periodic patterns in the return.
This is due to complex discount rates allowing for incremental estimation of the return’s DFT. We also showcased a way
of inverting the DFT, with knowledge of the sequence length, allowing for reconstructing the expected reward sequence.

We focused on a case where periodicity exists in the environment. This may have implications for problems with sound
or image data, as the DFT is typically used as a post-processing tool in those applications. In general, this approach
identifies policy-contingent frequency information. An agent behaving under a policy which led it in circles would induce
similar alternating patterns in the reward sequence. For example, using a robot’s joint position as a time step’s reward,
robot locomotion would induce periodicity in the reward signal. Awareness of periodicity may have implications in the

3

Paper # 238 111

(a) Checkered grid world reward sequence reconstruc-
tion

(b) Wavy ring world reward sequence reconstruction

Figure 2: Reward sequence reconstructions for both environments from inverting the learned DFT.

options framework [12], as it may offer insight regarding where an option should terminate. It may also have use in
exploration, where if state features are used as rewards, an agent avoiding periodicity may seek out novel states.

Beyond identifying periodicity, being able to roughly reconstruct the expected reward sequence, an agent might be able
to base decisions on properties like reward sparsity, or noise in the reward. Reconstructing the sequence can be seen as
recovering information lost from computing the sum of the rewards, which is different but comparable to distributional
reinforcement learning [1, 3] which recovers information lost from computing the sum’s expectation.

Prior work used a Fourier basis as a state representation in reinforcement learning [5], that complex discounting may
allow for incremental estimation of a similar representation. Also, in the deep reinforcement learning setting, learning
about many frequencies in parallel may have the representation learning benefit of predicting auxiliary tasks [4].

References

[1] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement learning. In ICML,
volume 70 of Proceedings of Machine Learning Research, pages 449–458. PMLR, 2017.

[2] E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.
[3] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning with quantile

regression. CoRR, abs/1710.10044, 2017.
[4] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement

learning with unsupervised auxiliary tasks. CoRR, abs/1611.05397, 2016.
[5] G. D. Konidaris, S. Osentoski, and P. S. Thomas. Value function approximation in reinforcement learning using the

Fourier basis. In Proceedings of the Twenty-Fifth Conference on Artificial Intelligence, pages 380–385, 2011.
[6] J. Modayil, A. White, and R. S. Sutton. Multi-timescale nexting in a reinforcement learning robot. Adaptive Behaviour,

22(2):146–160, 2014.
[7] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44, 1988.
[8] R. S. Sutton. TD model: Modeling the world at a mixture of time scales. Technical report, Amherst, MA, USA, 1995.
[9] R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Advances

in Neural Information Processing Systems 8, pages 1038–1044. MIT Press, 1996.
[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. 2nd edition, 2018. Manuscript in preparation.
[11] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A scalable real-

time architecture for learning knowledge from unsupervised sensorimotor interaction. In AAMAS, pages 761–768.
IFAAMAS, 2011.

[12] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.

[13] H. van Seijen, H. van Hasselt, S. Whiteson, and M. Wiering. A theoretical and empirical analysis of Expected Sarsa.
In Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pages 177–184,
2009.

4

Paper # 238 112

A Bayesian Approach to Robust Reinforcement Learning

Esther Derman
Technion, Israel

estherderman@technion.ac.il

Daniel J. Mankowitz
Deepmind, UK

dmankowitz@google.com

Timothy A. Mann
Deepmind, UK

timothymann@google.com

Shie Mannor
Technion, Israel

shie@ee.technion.ac.il

Abstract

In sequential decision making problems, Robust Markov Decision Processes (RMDPs) intend to ensure robustness with
respect to changing or adversarial system behavior. In this framework, transitions are modeled as arbitrary elements of a
known and properly structured uncertainty set and a robust optimal policy can be derived under the worst-case scenario.
However, in practice, the uncertainty set is unknown and must be constructed based on available data. Most existing
approaches to robust reinforcement learning (RL) build the uncertainty set upon a fixed batch of data before solving the
resulting planning problem. Since the agent does not change its uncertainty set despite new observations, it may be overly
conservative by not taking advantage of more favorable scenarios. Another drawback of these approaches is that building
the uncertainty set is computationally inefficient, which prevents scaling up online learning of robust policies. In this study,
we address the issue of learning in RMDPs using a Bayesian approach. We introduce the Uncertainty Robust Bellman
Equation (URBE) which encourages exploration for adapting the uncertainty set to new observations while preserving
robustness. We propose a URBE-based algorithm, DQN-URBE, that scales this method to higher dimensional domains.
Our experiments show that the derived URBE-based strategy leads to a better trade-off between less conservative solutions
and robustness in the presence of model misspecification. In addition, we show that the DQN-URBE algorithm can adapt
significantly faster to changing dynamics online compared to existing robust techniques with fixed uncertainty sets.

Keywords: Robust Markov Decision Processes, Online Learning, Deep Rein-
forcement Learning, Deep Q-Network

Acknowledgements

The authors would like to thank Chen Tessler for his help and useful comments on this paper.

Paper # 44 113

1 Introduction

Markov Decisions Processes (MDPs) are used for solving sequential decision making problems with varying degrees of
uncertainty. Two types of uncertainty can be encountered: the internal uncertainty due to the stochasticity of the system
and the uncertainty in the transition and reward parameters [13]. In order to mitigate the second type of uncertainty,
the Robust-MDP (RMDP) framework considers the unknown parameters to be a member of a known uncertainty set
[14, 7, 21]. An optimal solution to the robust RL problem then corresponds to the strategy that maximizes the worst-case
performance and it can be derived using dynamic programming [7, 19]. However, planning in RMDPs can lead to overly
conservative solutions. This is due to two main reasons. Firstly, the uncertainty set has to be rectangular in order for the
problem to be computationally tractable, which means that it must be structured as independent sets of MDP models for
each state [21]. Attempts to circumvent rectangular sets in RMDPs include the works [11, 12, 20, 6]. Secondly, the difficulty
of constructing uncertainty sets can result in too large sets and consequently lead to overly-pessimistic strategies [18].

In this work, we introduce a Bayesian framework for robust RL and address the first Bayesian algorithm that (1) accounts
for changing dynamics online (2) tackles conservativeness thanks to a variance bonus that detects changes in the level of
adversity. This variance is proven to satisfy an Uncertainty Robust Bellman Equation (URBE), that is estimated using
dynamic programming. Besides being scalable to complex domains, our approach leads to less conservative results than
existing planning methods for RMDPs while ensuring robustness to model misspecification. Our specific contributions are:
(1) An Uncertainty Robust Bellman Equation (URBE) that encourages robust exploration and prevents overly conservative
solutions. It also adapts the uncertainty set online to new observations allowing the agent to deal with sudden changes to
the underlying environment dynamics.; (2) A scalable algorithm, DQN-URBE, that utilizes URBE to learn less conservative
solutions that are still robust to model misspecification; (3) Experimental evidence in three domains illustrating an
improved trade-off between overly, conservative robust behaviour and less, conservative, improved performance for the
resulting DQN-URBE policy.

Related Work Proposals for learning an uncertainty set in a data-driven manner have rarely been addressed in RL
literature. Russel & Petrik [18] designed a robustification procedure that enlarges an initially trivial uncertainty set in a
safe manner. Although it leads to tighter uncertainty sets, their algorithm proceeds offline with a fixed batch of data and is
not scalable due to its high computational complexity. Previous work [8, 9] has used the “optimism in face of uncertainty”
principle to detect adversarial state-action pairs online and compute an optimistic minimax policy accordingly. Although
these methods have been proven to be statistically efficient, they require an exhaustive computation for each state-action
pair. This leads to solutions that are intractable for all but small problems. Previous work [16] has stressed the advantages
of posterior sampling methods over existing algorithms driven by optimism. However, most of the existing work on
posterior sampling methods studied finite tabular MDPs. The Uncertainty Bellman Equation (UBE) work [15] addressed
this shortcoming and proposed an online algorithm that scales naturally to large domains. Their method learns the
posterior variance of the value for guiding exploration when the true dynamics of the MDP are unknown. Yet, their
approach does not deal with adversarial transitions.

2 Problem Formulation

We consider an RMDP 〈S,A, r,P〉 of finite state and action spaces, where each episode has finite horizon length H ∈ N.
At step h, an agent is in state sh, selects an action ah according to a stochastic policy πh : S × A → ∆A that maps each
state to a probability distribution over the action space, ∆A denoting the set of distributions over A. The agent then gets
a deterministic reward rh and transitions to state sh+1 according to an arbitrary transition psh,ah ∈ Psh,ah ⊆ ∆S . This
induces a rectangular structure on the uncertainty set, which is formally defined in the following.
Definition 2.1 (Rectangularity). Given an RMDP 〈S,A, r,P〉, the uncertainty set P is said to be (s, a)-rectangular if P :=⊗

s∈S,a∈A Ps,a , where Ps,a are subsets of the probability simplex ∆S .

The robust Q-value at step h, state s, action a and under policy π := (π1, · · · , πH) is the expected total re-
turn under the worst-case scenario resulting from taking action a at s and following policy π thereafter: Qhsa :=

infp∈P E
[∑H

l=h r
l | sh = s, ah = a, π, p

]
. When it is clear from the context, we suppress the dependence on π for no-

tational convenience. A robust optimal policy is derived by maximizing the expected total worst-case return: J(π) :=

infp∈P Eπ,p
[∑H

h=1 r
h
]
. Assuming a rectangular structure onP , the robust Bellman operator T h for policy π at step h relates

the robust value at h to the robust value at following steps [7, 14]: T hQh+1
sa = rhsa + infp∈P

∑
s′∈S,a′∈A π

h
s′a′p

h
sas′Q

h+1
s′a′ .

3 The Uncertainty Robust Bellman Equation

Posterior uncertainty sets Define φp as a prior distribution according to which state transitions are generated. Assume
furthermore that φp is a product of |S| · |A| independent Dirichlet priors on each distribution psa over next states, that

1

Paper # 44 114

is φp =
∏
s,a φsa, where φsa is Dirichlet. Given an observation history H = 〈(s1, a1), (s2, a2), . . . , (sh, ah)〉 ∈ (S × A)h

induced by a policy π and a confidence level ψsa ∈ R+ for each state-action pair, we can construct a subset of transition
probabilities: P̂hsa(ψsa) = {psa ∈ ∆S : ‖psa − p̄sa‖1 ≤ ψsa}where p̄sa is the nominal transition given by p̄sa = E[psa | H].
This construction forms a rectangular uncertainty set P̂h(ψ) :=

⊗
s,a P̂hsa(ψsa). We call it a posterior uncertainty set and will

omit the dependence in ψ for ease of notation.

Posterior over robust Q-values The simulation proceeds as follows: at each episode t, we sample a transition matrix
according to φp. For a fixed policy π, we collect observation history. We then construct a posterior uncertainty set based on
observed data. A posterior over robust Q-values can then be obtained via Q̂hsa = rhsa + infp∈P̂h

sa

∑
s′,a′ π

h
s′a′psas′Q̂

h+1
s′a′ , with

Q̂H+1
sa = 0. A worst-case transition at step h is then defined as

p̂hsa ∈ arg inf
p∈P̂h

sa

∑

s′,a′

πhs′a′psas′Q̂
h+1
s′a′ (1)

Posterior variance of robust Q-values For the regular MDP setting, O’Donogue et al. [15] showed that the conditional
variance of posterior Q-values can be bounded by a quantity that satisfies a Bellman recursion formula. In Bayesian
robust RL, a similar upper bound can be derived, as stated below. We first introduce our notation as well as common
assumptions:
Notation 3.1. Define Ft as a minimal sigma-algebra that contains all of the available information up to episode t. Denote by Et[X]

the expectation of random variable X conditioned on Ft. Similarly, the conditional variance is vartX := Et
[
(X − Et[X])

2
]
.

Assumption 3.1. For any episode, the graph resulting from a worst-case transition model is directed and acyclic. Furthermore, for
all (s, a) ∈ S ×A, the rewards are bounded: −Rmax ≤ rsa ≤ Rmax. It follows that for all s, a and h: | Qhsa |≤ HRmax =: Qmax.
Theorem 3.1 (Solution of URBE). For any worst-case transition p̂ as defined in equation (1) and any policy π, under Assumption 3.1,
there exists a unique mapping w that satisfies the uncertainty robust Bellman equation: whsa = νhsa+

∑
s′∈S,a′∈A π

h
s′a′Et(p̂hsas′)w

h+1
s′a′ ,

for all (s, a) ∈ S ×A and h = 1, · · · , H where wH+1 = 0 and νhsa := Q2
max

∑
s′∈S

vartp̂
h
sas′

Etp̂hsas′
. Furthermore, w ≥ vartQ̂.

To prove this result, we first bound the posterior variance of the robust Q-value. Existence and uniqueness of URBE is
then established using robust dynamic programming (Exercise 1.5 in [2]).

A classical difficulty in Bayesian approaches is to compute the posterior distribution. The Bayesian central limit theorem
(Result 8 in [1]) ensures that under smoothness assumptions on prior and likelihood functions, the posterior distribution
converges to a Gaussian as the size of the data set increases. We thus approximate the posterior over robust Q-values as
N (Q̄,diag(w)), where w is the solution to URBE and Q̄ is the unique solution to Q̄hsa = rhsa +

∑
s′,a′ π

h
s′a′Et(p̂sas′)hQ̄

h+1
s′a′

for h = 1, · · · , H and Q̄H+1 = 0, with p̂hsa ∈ arg infp∈P̂h
sa

∑
s′,a′ π

h
s′a′psas′Q̄

h+1
s′a′ .

Theorem 3.1 reveals another quantity ν that only depends on local state and action pairs. We call it the robust local
uncertainty. Similarly to the non-robust setup, the robust local uncertainty can be modeled as a positive constant divided
by the visit counts nhsa := (nhsas′)s′∈S at step h, up to episode t. In the case of linear approximation for the Q-value
estimate, O’Donogue et al. introduced an estimate for the visit counts [15]. Likewise, defining Q̂hsa := φTs θa with
φ : S → Rd designating state features and θa being weights parameters that need to be learned (one for each action),
we have (n̂hsa)−1 = φTs (ΦTaΦa)−1φs, where Φa is the matrix of φs-s stacked row-wise with action a being taken at s. We
can then estimate the robust local uncertainty as ν̂hsa = β2φTs (ΦTaΦa)−1φs [15]. As it receives a new sample φ, the agent
needs to update the matrix Σa := (ΦTaΦa)−1 by affecting to it the following Sherman-Morrison-Woodbury formula [5]:
Σ+
a := Σa − (Σaφφ

TΣa)/(1 + φTΣaφ). The neural network representation proceeds similarly, provided that we treat all
layers as feature extractors and finally apply a linear activation function. In that case, we still have Q̂hsa = φTs θa, where φs
is the output network up to last layer for state s and θa are the parameters of the last layer for action a. We will use this
technique in Algorithm 1.

4 DQN-URBE Algorithm

The robust Bellman equation utilizes a robust TD-error as a loss criterion for learning a minimax policy [17]. The robust
TD error to be minimized is defined as: δh := r(sh, ah) + γ infp∈P

∑
s′∈S p(s

h, ah, s′) maxa′∈AQ(s′, a′)−Q(sh, ah), where
the uncertainty set is fixed. This method has been shown to lead to robust yet overly conservative behavior [10, 3].

In order to generate a less conservative solution, we present our DQN-URBE algorithm (Algorithm 1). Since finding a
solution to URBE requires solving a robust optimization problem at each episode, it is computationally costly and not

2

Paper # 44 115

scalable. We avoid this problem by keeping the uncertainty set fixed and finite, and add the robust local uncertainty as
an exploration bonus. In practice, DQN-URBE consists of a neural network architecture that has two output heads: one
attempts to learn the optimal robust Q-function of a fixed uncertainty set via the robust-DQN subroutine as described in
[10]; the other attempts to estimate the robust uncertainty for the robust Q-function, as mentioned in Section 3. We added
stop-gradients to prevent the posterior variance from affecting the robust Q-network parameters and vice-versa.

Algorithm 1 DQN - URBE
Input: Neural network for robust Q and w estimates; Robust DQN subroutine robustDQN; Hyperparameter β > 0
Initialize: Σa = µ · I for a ∈ Awith µ > 0; Initial state and action (s, a) ∈ S ×A
for t = 1, · · · do

for h = 2 to H + 1 do
Retrieve φ(s) from robust Q-network
Observe s′ and receive reward r
Compute Q̂hs′b and whs′b for all action b
Sample ζb ∼ N (0, 1) for all b and compute:

a′ = arg max
b

(
Q̂hs′b + βζb

√
whs′b

)
and y =

{
φ(s)TΣaφ(s) if h = H + 1
φ(s)TΣaφ(s) + γ2whs′a′ otherwise

Take gradient step on w w.r.t. loss (y − wh−1sa)2

Update robust Q-values using robustDQN

Update Σa according to the Sherman-Morrison-Woodbury formula: Σ+
a := Σa − (Σaφφ

TΣa)/(1 + φTΣaφ).
Take action a′
s← s′, a← a′

end for
end for

(a) (b) (c)

Figure 1: (a) Mar’s Rover domain - 10x10 grid. (b) Cartpole: Testing rewards for DQN-URBE (c) Cartpole: Training score
after changing the pole length. DQN-URBE is less conservative than robust DQN while it ensures robustness to changing
dynamics

5 Experiments

We first checked the evolving performance of DQN-URBE across changing dynamics and executed it on a 10× 10 grid-
world domain. The agent starts at a random state from the top left of the grid and is required to travel to the goal located
in the bottom right corner in order to get a high reward Rsuccess. On each step, the agent can either be brought back to a
terminating state with probability p and get a negative reward Rfail if it chose to move towards the goal. Otherwise, it
moves into the chosen direction and receives a small negative reward Rstep. DQN-UBE [15] and robust DQN [4] have
been used as baselines. After training these three agents on a nominal probability of p = 0.005, we tested their robustness
against model mispecification. Figure 1(a) shows that the robust agent is overly conservative since it keeps moving
backwards, while the UBE agent’s performance drops down under model mispecification as opposed to the URBE agent
which takes adversarial transitions into account. We then tested DQN-URBE on Cartpole after a training of 4000 episodes,
with 200 steps for each. Figure 1(b) shows that DQN-UBE is very sensitive to changing dynamics although it performs well
on the nominal model. Robust DQN is too conservative despite its stability along different pole lengths. DQN-URBE leads
to a strategy that performs well under the nominal model and is more stable than UBE under model mispecification. It
also leads to a performance that is comparable to robust DQN when the pole length is high. In order to test the exploration

3

Paper # 44 116

capacity of the robust agents, we also compared the sensitivity of robust DQN with DQN-URBE to changing dynamics
during training. In practice, we waited for both agents to converge before changing the nominal length from 1 to 0.5.
Figure 1(c) shows the training score after convergence of both agents. that URBE recovers faster than robust DQN besides
reaching maximal reward.

6 Discussion

We presented a Bayesian approach to learning less conservative solutions when solving Robust MDPs. This is achieved
using the Uncertainty Robust Bellman Equation (URBE), our adaptation of the UBE equation, which encourages safe
exploration and implicitly modifies the uncertainty set online using new observations. We scale this approach to higher
dimensional domain using the DQN-URBE algorithm and show the ability of the agent to learn less conservative solutions
in a toy MDP, a Mar’s rover domain and Open AI gym’s Cartpole domain. Finally, we show the ability of the agent
to adapt to changing dynamics significantly faster than a robust DQN agent during training. Our approach shed light
on the advantages of adding a variance bonus to robust Q-learning for encouraging safe exploration in lowering the
conservativeness of robust strategies. Further work should analyze the asymptotic behavior of our URBE-based method
as well as the impact of the size of the posterior uncertainty set on the posterior variance of robust Q-values.

References

[1] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Science and Business Media, 2013.
[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 2 edition, 2000.
[3] Esther Derman, Daniel J. Mankowitz, and Timothy A. Mann. Soft-robust actor-critic policy-gradient. UAI, 2018.
[4] Shirli Di-Castro Shashua and Shie Mannor. Deep Robust Kalman Filter. arXiv preprint arXiv:1703.02310v1, 2017.
[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The John Hopkins University Press, 1996.
[6] Vineet Goyal and Julien Grand-Clement. Robust Markov decision process: Beyond rectangularity. arXiv preprint

arXiv:1811.00215v4, 2019.
[7] Garud N. Iyengar. Robust Dynamic Programming. Mathematics of Operations Research, 30(2):257–280, 2005.
[8] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal of

Machine Learning Research, 11:1563–1600, 2010.
[9] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust Markov decision processes.

Mathematic of Operations Research, 41(4):1325–1353, November 2016.
[10] Daniel J Mankowitz, Timothy A Mann, Shie Mannor, Doina Precup, and Pierre-Luc Bacon. Learning Robust Options.

In AAAI, 2018.
[11] Shie Mannor, Ofir Mebel, and Huan Xu. Lightning Does Not Strike Twice: Robust MDPs with Coupled Uncertainty.

In ICML, 2012.
[12] Shie Mannor, Ofir Mebel, and Huan Xu. Robust MDPs with k-Rectangular Uncertainty. Mathematics of Operations

Research, 41(4):1484–1509, 2016.
[13] Shie Mannor, Duncan Simester, Peng Sun, and John N. Tsitsiklis. Bias and Variance Approximation in Value Function

Estimates. Management Science, 53(2):308–322, 2007.
[14] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices.

Operations Research, 53(5):783–798, 2005.
[15] Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The Uncertainty Bellman Equation and

Exploration. ICML, 2018.
[16] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement learning?

ICML, pages 2701–2710, 2017.
[17] Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under Model Mismatch. 31st Conference on

Neural Information Processing Systems, 2017.
[18] Reazul Hasan Russel and Marek Petrik. Tight bayesian ambiguity sets for robust MDPs. Neural Information Processing

Systems, 2018.
[19] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. ICML, 32:1401–1415,

2014.
[20] Andrea Tirinzoni, Marek Petrik, Xiangli Chen, and Brian Ziebart. Policy-conditioned uncertainty sets for robust

Markov decision processes. Advances in Neural Information Processing Systems, pages 8953–8963, 2018.
[21] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes. Mathematics of Operations

Research, 38(1):153–183, February 2013.

4

Paper # 44 117

Soft-Robust Actor-Critic Policy-Gradient

Esther Derman
Technion, Israel

estherderman@technion.ac.il

Daniel J. Mankowitz
Deepmind, UK

dmankowitz@google.com

Timothy A. Mann
Deepmind, UK

timothymann@google.com

Shie Mannor
Technion, Israel

shie@ee.technion.ac.il

Abstract

Robust reinforcement learning aims to derive an optimal behavior that accounts for model uncertainty in dynamical
systems. However, previous studies have shown that by considering the worst-case scenario, robust policies can be
overly conservative. Our soft-robust (SR) framework is an attempt to overcome this issue. In this paper, we present
a novel Soft-Robust Actor-Critic algorithm (SR-AC). It learns an optimal policy with respect to a distribution over an
uncertainty set and stays robust to model uncertainty but avoids the conservativeness of traditional robust strategies.
We show the convergence of SR-AC and test the efficiency of our approach on different domains by comparing it against
regular learning methods and their robust formulations.

Keywords: Reinforcement Learning, Robust Markov Decision Processes,
Policy-Gradient

Acknowledgements

This work was partially funded by the Israel Science Foundation under contract 1380/16 and by the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 306638 (SUPREL).

Paper # 45 118

1 Introduction

Markov Decision Processes (MDPs) are commonly used to model sequential decision making in stochastic environments.
A strategy that maximizes the expected accumulated reward is considered optimal and can be learned from sampling.
However, besides the uncertainty that results from stochasticity of the environment, model parameters are often esti-
mated from noisy data or can change during testing [11, 15]. This second type of uncertainty can significantly degrade
the performance of model compared with the optimal strategy.

Robust MDPs were proposed to address this problem [6, 14, 18]. In this framework, a transition model is assumed to
belong to a known uncertainty set and an optimal strategy is learned under the worst parameter realizations. Although
the robust approach is computationally efficient when the uncertainty set is state-wise independent, compact and convex,
it can lead to overly conservative results [19, 20, 9, 10].

For example, consider a business scenario where an agent’s goal is to make as much money as possible. It can either
create a startup which may make a fortune but may also result in bankruptcy. Alternatively, it can choose to live off
school teaching and have almost no risk but low reward. By choosing the teaching strategy, the agent may be overly
conservative and not account for opportunities to invest in his own promising projects. Our claim is that one could relax
this conservativeness and construct a softer behavior that interpolates between being aggressive and robust. Ideally, the
soft-robust agent should stay agnostic to unknown parameters that may affect the agent’s income such as risky projects
or low risk salary, but still be able to take advantage of the startup experience.

In this work, we focus on learning a soft-robust policy (SR policy) by incorporating soft-robustness into an online actor-
critic algorithm and show its convergence properties. Our specific contributions are: (1) A SR derivation of the objective
function for policy-gradient; (2) A SR-AC algorithm that uses stochastic approximation to learn a variant of distribu-
tionally robust policy in an online manner; (3) Convergence proofs of SR-AC; (4) An experiment with our framework in
different domains that shows the efficiency of SR behaviors in a continuous action space as well. We refer the reader to
[4] for an extended version of our work with theoretical proofs.

2 Background

In this section, we introduce the background material related to our SR approach.

Robust MDP A robust MDP is a tuple 〈X ,A, r,P〉 where X and A are finite state and action spaces respectively, r :
X × A → R is a deterministic and bounded reward function and P is a set of transition matrices. We assume that P
is structured as a cartesian product

⊗
x∈X Px, which is known as the rectangularity assumption [14]. For x, y ∈ X and

a ∈ A, denote by p(x, a, y) the probability of getting from state x to state y given action a. At timestep t, the agent is in
state xt and chooses an action at according to a stochastic policy π : X → M(A) that maps each state to a probability
distribution over the action space, M(A) denoting the set of distributions over A. It then gets a reward rt+1 and is
brought to state xt+1 with probability p(xt, at, xt+1).

Policy-Gradient Methods A policy π is parameterized and estimated by optimizing an objective function using stochas-
tic gradient descent [17]. Actor-critic methods attempt to reduce the variance of policy-gradient by using a critic that
estimates the value function and helps evaluating the policy [5, 1]. The actor then uses this signal to update policy
parameters in the gradient direction of the objective function [7, 2].

Deep Reinforcement Learning Algorithms In DQN [12, 13], a neural network approximates the Q-function. The agent is
then trained by optimizing the induced TD loss function thanks to stochastic gradient descent. Since DQN acts greedily
at each iteration, it can only handle small action spaces. Deep Deterministic Policy-Gradient (DDPG) is an off-policy
algorithm that can learn behaviors in continuous action spaces [8]. It is based on an actor-critic architecture that follows
the same baseline as DQN. The critic estimates the current Q-value of the actor using a TD-error while the actor is
updated according to the critic. This update is based on the chain rule principle which establishes equivalence between
the stochastic and the deterministic policy gradient [16].

3 Soft-Robust Policy-Gradient

Unlike robust MDPs that maximize the worst-case performance, we fix a prior on how transition models are distributed
over the uncertainty set. A distribution over P is defined as a product measure ω :=

⊗
x∈X ωx [19, 20]. This defines a

probability distribution ωx over Px independently for each state. Intuitively, ω can be thought as the way the adversary
distributes over different transition models. The product structure then means that this adversarial distribution only
depends on the current state without taking its whole trajectory into account.

We call SR average reward the SR objective J̄(π) := Ep∼ω [Jp(π)], where Jp(π) is the average reward under transition
p, i.e. Jp(π) = limT→+∞ Ep[1T

∑T−1
t=0 rt+1 | π]. The SR differential reward is given by Q̄π(x, a) := Ep∼ω[Qπp (x, a)] where

1

Paper # 45 119

Qπp (x, a) := Ep[
∑+∞
t=0 rt+1 − Jp(π)|x0 = x, a0 = a, π]. Similarly, the SR value function is V̄ π(x) :=

∑
a∈A π(x, a)Q̄π(x, a) =

Ep∼ω
[
V πp (x)

]
.

Define dπp as the stationary distribution of the Markov chain that results from following policy π under transition model
p ∈ P . We can show that the above objective J̄(π) can be written as an expectation of the reward over a stationary
distribution. Indeed, define the average transition model as p̄ := Ep∼ω[p]. Under proper assumptions, it admits a unique
stationary law, which will be denoted by d̄π [4].

The goal is now to learn a policy that maximizes the SR average reward J̄ . We use a policy-gradient method and consider
a class of parameterized stochastic policies πθ with θ ∈ Rd1 . We will estimate the gradient of the SR objective with respect
to θ in order to update the SR policy. The optimal set of parameters thus obtained is denoted by θ∗ := arg maxθ J̄(πθ).
Using the same method as in [17], we can use previous results to derive the gradient of the SR average reward. In order
to cope with large state spaces, we can also use a linear approximation fw(x, a) := wTψxa in place of Q̄π and still point
roughly in the direction of the true gradient, as stated below.

Theorem 3.1 (SR Policy-Gradient with Function Approximation). Let fw : X ×A → R be a linear approximator of Q̄π . If fw
minimizes the mean squared error Eπ(w) :=

∑
x∈X d̄

π(x)
∑
a∈A π(x, a)[Q̄π(x, a) − fw(x, a)]2 and is compatible in a sense that

∇wfw(x, a) = ∇θ log π(x, a), then∇θJ̄(π) =
∑
x∈X d̄

π(x)
∑
a∈A∇θπ(x, a)fw(x, a).

4 Soft-Robust Actor-Critic Algorithm

Our SR-AC algorithm is described in Algorithm 1. An uncertainty set P and a nominal model without uncertainty are
provided as inputs. The nominal model is fixed during training. A distribution ω over P is also provided. The step-
size sequences (αt, βt, ξt; t ≥ 0) are non-negative numbers properly chosen by the user. At each iteration, samples are
generated using the nominal model and the current policy. These are utilized to update the SR average reward (Line
5) and the critic (Line 7) based on an estimate of an SR TD-error. We then exploit the critic to improve our policy by
updating policy parameters in the direction of a gradient estimate for the SR objective (Line 8). This process is repeated
until convergence which is insured according to the following.
Theorem 4.1. Under all the previous assumptions, given ε > 0, there exists δ > 0 such that for a parameter vector θt, t ≥ 0
obtained using the algorithm, if supπt

‖eπt‖ < δ, then the SR-AC algorithm converges almost surely to an ε-neighborhood of a local
maximum of J̄ .

5 Numerical Experiments

s0

f1 s1

f2

s2

f3

s3

a1,−105 a1, 105

a2, 0

a2, 2000

a3,−100

a3, 5000

Figure 1: Single-step MDP

We demonstrate the performance of soft-robustness on various domains of finite
as well as continuous state and action spaces. We used the existing structure of
OpenAI Gym environments to run our experiments [3].

Single-step MDP We consider a simplified formulation of the startup vs teaching
dilemma described in Section 1. In Figure 1, failing states are denoted by fi and
successful ones are denoted by si. The agent is brought back to s0 once it has
reached one of these.

Continuous domains We ran DQN experiments on Cart-Pole, which has a con-
tinuous state space and a set of two possible actions. We then ran DDPG algo-
rithms on the inverted pendulum problem, a continuous state domain in which
the agent’s possible actions belong to a continuous interval [−a, a].

5.1 Learning Algorithms

For each experiment, we generate an uncertainty set P before training. An SR
update for the actor is applied by taking the optimal action with respect to the average transition function. We trained
the agent on the nominal model in each experiment. In practice, the nominal model is chosen such that a traditional agent
attains good performance with a baseline algorithm. The SR agent was learned using SR-AC in the single-step MDP. In
Cart-Pole, we run an SR-version of a DQN algorithm. The SR agent in Pendulum was trained using an SR-DDPG.

Figure 2(a) compares the performance of the optimal SR behavior with optimal aggressive and robust policies on the
single-step MDP. The three agents are tested against different transition models. As the probability of success gets low,
the performance of the aggressive agent drops down below the robust and the SR agents, although it performs best
when the probability of success gets close to 1. The robust agent stays stable independently of the parameters but
underperforms SR agent which presents the best balance between high reward and low risk.

2

Paper # 45 120

Algorithm 1 SR-AC
1: Input: P - An uncertainty set; p̂ ∈ P - A nominal model; ω - A distribution over P ; fx - A feature extractor for the SR

value function;
2: Initialize: θ = θ0 - An arbitrary policy parameter; v = v0 - An arbitrary set of value function parameters; α0, β0, ξ0 -

Initial learning-rates; x0 - Initial state
3: repeat
4: Act under at ∼ πθt(xt, at)

Observe next state xt+1 and reward rt+1

5: SR Average Reward Update:
Ĵt+1 = (1− ξt)Ĵt + ξtrt+1

6: SR TD-Error:
δt = rt+1 − Ĵt+1 +

∑
x′∈X p̄(xt, at, x

′)V̂x′ − V̂xt

7: Critic Update: vt+1 = vt + αtδtϕxt

8: Actor Update: θt+1 = θt + βtδtψxtat
9: until convergence

10: Return: SR policy parameters θ and SR value-function parameters v

Similar results can be seen in Cartpole and Pendulum (Figures 2(b) and 2(c)) when testing the agents against different
pole lengths and pendulum masses respectively. The robust strategy solves the task in a sub-optimal fashion, but is less
affected by model misspecification due to its conservative strategy. The aggressive non-robust agent is more sensitive
to model misspecification compared to the other methods as can be seen by its sudden dip in performance, below even
that of the robust agent in Pendulum. The SR solution strikes a nice balance between being less sensitive to model
misspecification than the aggressive agent, and producing better performance compared to the robust solution.

(a) (b) (c)

Figure 2: (a) Single-step MDP: Average reward for AC, robust AC and SR-AC (b) Cartpole: Average reward for DQN,
robust DQN and SR-DQN (c) Pendulum: Max-200 episodes average performance for DDPG, robust DDPG and SR-DDPG

6 Discussion

We have presented the SR-AC framework that is able to learn policies which keep a balance between aggressive and ro-
bust behaviors. SR-AC requires a stationary distribution under the average transition model which ensures convergence.
This is the first work that has attempted to incorporate a soft form of robustness into an online actor-critic method. Our
approach has shown promising capability of its scalability to large domains because of its low computational price. The
chosen weighting over the uncertainty set can be thought as the way the adversary distributes over different transition
laws. In our current setting, this adversarial distribution stays constant without accounting for the rewards obtained
by the agent. Future work should address the problem of learning the sequential game induced by an evolving adver-
sarial distribution to derive an optimal SR policy. Other extensions of our work may also consider non-linear objective
functions such as higher order moments with respect to the adversarial distribution.

References

[1] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):834 – 846, 1983.

[2] Shalabh Bhatnagar, Richard Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural Actor-Critic Algorithms.
Automatica, elsevier edition, 2009.

3

Paper # 45 121

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. arXiv:1606.01540v1, 2016.

[4] Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Soft-robust actor-critic policy-gradient.
AUAI press for Association for Uncertainty in Artificial Intelligence, pages 208–218, 2018.

[5] Ivo Grondman, Lucian Busoniu, Gabriel A.D. Lopes, and Robert Babuska. A Survey of Actor-Critic Reinforcement
Learning: Standard and Natural Policy Gradients. IEEE Transactions on Systems, Man, and Cybernetics—Part C:
Applications and Reviews, 42(1291-1307), 2012.

[6] Garud N. Iyengar. Robust Dynamic Programming. Mathematics of Operations Research, 30(2):257–280, 2005.
[7] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic Algorithms. In Advances in Neural Information Processing Systems,

volume 12, 2000.
[8] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,

and Daan Wierstra. Continuous Control with Deep Reinforcement Learning. arXiv:1509.02971, US Patent App.
15/217,758, 2016.

[9] Shie Mannor, Ofir Mebel, and Huan Xu. Lightning Does Not Strike Twice: Robust MDPs with Coupled Uncertainty.
In ICML, 2012.

[10] Shie Mannor, Ofir Mebel, and Huan Xu. Robust MDPs with k-Rectangular Uncertainty. Mathematics of Operations
Research, 41(4):1484–1509, 2016.

[11] Shie Mannor, Duncan Simester, Peng Sun, and John N. Tsitsiklis. Bias and Variance Approximation in Value Func-
tion Estimates. Management Science, 53(2):308–322, 2007.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing Atari with Deep Reinforcement Learning: Technical Report. DeepMind Technologies,
arXiv:1312.5602, 2013.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

[14] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain transition matri-
ces. Operations Research, 53(5):783–798, 2005.

[15] Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under Model Mismatch. 31st Conference on
Neural Information Processing Systems, 2017.

[16] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic Policy
Gradient Algorithms. ICML, 2014.

[17] Richard S. Sutton, David McAllester, Satinger Singh, and Yishay Mansour. Policy Gradient Methods for Reinforce-
ment Learning with Function Approximation. In Advances in Neural Information Processing Systems, volume 12, pages
1057–1063, 2000.

[18] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust mdps using function approximation. ICML, 32:1401–
1415, 2014.

[19] Huan Xu and Shie Mannor. Distributionally Robust Markov Decision Processes. Mathematics of Operations Research,
37(2):288–300, 2012.

[20] Pengqian Yu and Huan Xu. Distributionally Robust Counterpart in Markov Decision Processes. IEEE Transactions
on Automatic Control, 61(9):2538 – 2543, 2016.

4

Paper # 45 122

Modeling the development of learning strategies in a volatile
environment

Maria K Eckstein
Department of Psychology

UC Berkeley
Berkeley, CA 94720

maria.eckstein@berkeley.edu

Ron Dahl
Department of Public Health

UC Berkeley
Berkeley, CA 94720

rondahl@berkeley.edu

Linda Wilbrecht
Department of Psychology

UC Berkeley
Berkeley, CA 94720

wilbrecht@berkeley.edu

Anne GE Collins
Department of Psychology

UC Berkeley
Berkeley, CA 94720

annecollins@berkeley.edu

Abstract

The development of cognitive abilities is tightly linked to developmental changes in the underlying neural substrate.
The current research assesses the relationship between learning and decision making in a volatile environment, and
age-related developments in cognition and brain maturation. 322 participants aged 7-18 and 25-30 were tested in several
learning and decision making tasks, one of which is the focus of this paper. This probabilistic switching task required par-
ticipants to select a correct action based on probabilistic feedback, whereby the correct action changed unpredictably. We
found that, out of all age groups, children aged 7-12 switched their behavior most rapidly, which was reflected in good
short-term, but sub-optimal long-term performance. Adolescents aged 13-18, on the other hand, showed the most per-
sistent choices of all age groups, reflected in suboptimal short-term but close-to-optimal long-term performance. Young
adults (25-30) showed intermediate behavior. We employed a reinforcement learning model to assess the underlying
mechanisms and found that the inverse-U shaped behavioral changes were captured by a model in which multiple in-
dividual parameters changed linearly with age. Specifically, decision noise decreased continuously into adulthood and
choice persistence increased continuously. The learning rate from negative feedback, on the other hand, had stabilized by
adolescence. These findings are in accordance with the sequential development of cortical and sub-cortical brain regions.
Future analyses will assess the role of pubertal hormones in behavioral strategies and computational models.

Keywords: development, reinforcement learning, decision making, cognitive
control, computational modeling, puberty, testosterone, brain de-
velopment

Acknowledgements

Funding for the research was provided by NSF fellowhip SL:CN 1640885.

Paper # 224 123

1 Introduction

Learning and adjusting behaviors to new circumstances is crucial for successful behavior in volatile environments. The
current study assesses how this ability develops and relates to brain maturation. Changes in cognitive processing have
been associated with brain myelination (increases in white matter), starting before birth and progressing linearly until
around age 20 (Giedd et al., 1999). Brain development is also characterized by the formation and subsequent loss of
synapses and neurons (changes in grey matter), whereby different brain regions undergo this inverted-U process at
different rates. Grey matter maturation progresses from lower-level cortical areas (e.g., sensory and motor cortex, age
4-8) to higher-level ones (e.g., association cortex, young adulthood; Gogtay et al., 2004; Sowell et al., 2003). Subcortical
regions (e.g., basal ganglia) are still developing during late adolescence (Thompson et al., 2000; Dennison et al., 2013).

The maturation of higher-level cortical regions has been associated with increases in IQ (Sowell et al., 2003), and we
hypothesized that the maturation of subcortical regions–implicated in reinforcement learning and decision making (Niv,
2009)–was similarly linked to the development of specific cognitive capacities. To assess this hypothesis, we tested
participants aged 8-18 and 25-30 on several learning tasks spanning the dimensions of volatile / stable environments
and stochastic / deterministic feedback. Here, we focus on the volatile probabilistic task, in which participants learned
through trial and error which one of two stimuli was rewarding at any given moment. Once participants selected the
rewarding stimulus persistently, it changed, forcing participants to switch behavior. Probabilistic feedback precluded
absolute certainty as to which stimulus was the correct one.

Figure 1: Task design. Participants saw two boxes and were given up to 5 sec to choose one using a game controller. The
unchosen box disappeared upon selection, then the chosen box either opened to reveal a golden coin (reward), increasing
a coin counter, or was empty (no reward). Feedback was shown for 1 sec, then a 0.5 sec inter-trial interval (ITI) followed.

2 Methods

Participants We tested a sample of 233 participants in this study: 93 children (ages 8-12), 86 adolescents (ages 13-18),
and 54 adults (ages 25-30). All participants were recruited from the community, using protocols approved by the institu-
tional review board of the University of California, Berkeley. All participants were free of present or past psychological
and neurological disorders. Compensation consisted in 50$ for the 2-hour in-lab portion of the study, and additional 25$
for the completion of take-home saliva samples.

Experimental details All participants completed four computerized experimental tasks, three psychological question-
naires, and a saliva sample during their lab visit, which lasted from about 60 minutes for adults to 120 minutes for
children. The probabilistic switching task was the 4th task and consisted of 150 trials as exemplified in Fig. 1. On each
trial, participants selected between two boxes. One of the boxes was correct at any point in time (75% probability of
reward), whereas and the other one was incorrect (0% probability of reward). After participants had earned 7-15 rewards
for the same box, contingencies switched without notice, such that the previously incorrect box was suddenly correct.
Switches only occurred after rewarded trials and the first correct trial after a switch was always rewarded. Participants
underwent 2-9 switches during the 200 trials (mean = 7.26, sd = 1.02).

Behavioral analysis We specified regression models using the R package lme4. Mixed-effects models were created with
random-effects of subjects and gender (+(1|Subject) + (1|Gender)), or blocks (+(1|block)), depending on the model. Re-
action times (RTs), and testosterone levels were log-transformed to render their distribution normal. Predictor variables
were z-scored to facilitate model fitting.

RL model We modeled behavior in this task using a reinforcement learning algorithm (RL; Sutton and Barto, 2017).
Agents learned the value of choosing the left or right box. The value of a ∈ aleft, aright was updated based on the

1

Paper # 224 124

standard delta rule, Q(a) = Q(a) + α(r −Q(a)). Learning rates for positive (r = 1) and negative outcomes (r = 0) were
modeled independently: α ∈ αpos, αneg . Furthermore, the model allowed for counter-factual updating of non-selected
actions ans, as only one action was correct at any moment: Q(ans) = Q(ans) + c α(1− r −Qns), where 0 < c < 1.

Action probabilities p(a) were calculated using a softmax transform on action values with free parameter β, the decision
temperature or inverse noise. Importantly, instead of modeling choices between the left and right box, we modelled
choices between staying (repeating the previous trial’s choice) and switching (picking the other box). The value of
staying/switching was given by the value of the corresponding box. This allowed us to define the parameter d, the
undecision point. Action probabilities were calculated using p(a) = 1

exp(−β(d−0.5+Q(other)−Q(a)) . Thus, d indicates the
minimum value Q(astay) at which astay was selected with higher probability than aswitch. A value of d = 0.5 led to
selecting a random action in the case of equal-valued choices. d < 0.5, on the other hand, led to a preference for staying,
and d > 0.5 led to a preference for switching, in the case of equal values. We assessed simpler models with fewer
parameters, and used model comparison to identify the best model. The winning RL model had five free parameters:
αpos, αneg , c, β, and d.

Model fitting We fit the RL model in a Bayesian framework, i.e., estimating the full posterior probability distribu-
tions for all parameters θ given the human data d: p(θ|d) ∝ p(d|θ)p(θ). The Bayesian framework provided two main
advantages compared to, e.g., maximum likelihood fitting. First, posterior distributions included information about un-
certainty in parameter estimation. Second, the Bayesian approach facilitated hierarchical model fitting, allowing us to
test parameter differences between age groups within the model.

We employed Markov Chain Monte Carlo (MCMC) to approximate posterior distributions, using the no-U-turn (NUTS)
sampler provided by the python package PyMC3. We identified the winning model described above by fitting sev-
eral candidate models that differed in terms of included parameters, and selected the one with the best WAIC score.
The Bayesian model had the following structure. We modeled separate distributions for each age group (children, ado-
lescents, adults), from which individuals’ parameters were drawn, reflecting the notion that parameters might differ
between age groups. Parameters for the age groups were drawn from a common distribution, reflecting the fact that age
groups shared common priors. Individual parameters αpos, αneg , and c were sampled from Beta distributions; β was
sampled from Gamma distributions, and d was sampled from a Normal distribution. Age group distribution parameters
were drawn from Gamma distributions, whose parameters were sampled uniformly.

3 Results

3.1 Behavioral analyses

We first assessed the relationship between age and task performance in participants aged 7-18. A logistic regression
model predicting task accuracy (selecting the correct box independent of obtained feedback) from z-scored age revealed
a significant increase in accuracy with age, β = 0.12, z = 4.84, p < 0.001. Similarly, linear regression on log-transformed
RTs (correct trials only) revealed speeding of RTs with age, β = −0.18, t(183) = −8.53, p < 0.001.

We next aimed to shed light on the cognitive processes that underlay these improvements in task performance. We first
assessed switch trials, i.e., trials in which the previously rewarded box became the non-rewarded box. We found that
children aged 7-12 were more likely to change their behavior on the first trial after a switch than adolescents aged 13-18,
t(183) = 4.0, p < 0.001 (Fig. 2A). Rapid switching is the optimal behavior on switch trials, but rapid switching also
leads to mistakes on the long run because many unrewarded trials are not switch trials. Indeed, children showed worse
long-term performance (trials 3-7 after a switch) than adolescents, t(181) = −5.5, p < 0.001. Strikingly, adults showed
intermediate performance between children and adolescents for both short-term (trial 1) and long-term performance
(trials 3-7), highlighting the striking differences between childhood and adolescence (trial 1, adults compared to children:
t(113) = 2.22, p = 0.028; to adolescents: t(109) = −1.17, p = 0.25; trials 3-7, adults compared to children: t(108) =
−2.1, p = 0.035; to adolescents: t(107) = 2.4, p = 0.017).

We next assessed participants’ responses as a function of the two most recent actions and outcomes. When rewards were
followed by no reward (”reward, no reward”, Fig. 2B), the same inverse-u pattern with age arose as on the first trial after
a switch (Fig. 2A). In all other conditions, the percentage of staying increased with age, evident in significant effects of
age on staying in linear regression models (”both reward”: β = 0.27%, t(202) = 3.39, p < 0.001; ”no reward, reward”:
β = 0.51%, t(253) = 4.29, p < 0.001, ”both no reward”: β = 0.19%, t(258) = 1.34, p = 0.19).

Lastly, we assessed the short- and long-term effects of positive and negative feedback on behavior. We used logistic
regression to predict participants’ actions on trial t from actions and outcomes on trial t−i, with separate models for each
1 < i < 9 and each participant. The models predicted actions (right: 1; left: -1) from ”reward” (no reward: 0; reward-
right: 1; reward-left: -1) and ”noReward” (reward: 0; no-reward-right: 1; no-reward-left: -1). The models revealed
large effects of positive feedback for all age groups, showing that being rewarded increased participants’ probability of
reselecting the same action. This effect slowly diminished over time (Fig. 2C right). T-tests revealed age differences in

2

Paper # 224 125

that positive feedback had smaller effects on children than adolescents on trials t− 1 to t− 5, all ts < −2.14, ps < 0.033.
Negative feedback affected action selection in that participants were less likely to reselect actions that were not rewarded,
although these effects were much smaller than for positive feedback (Fig. 2C left). An interesting pattern emerged for
1-back negative feedback. Children exhibited a large negative effect, supporting the notion of fast switching in the
face of negative feedback. Adolescents’ effect of 1-back negative feedback, on the other hand, did not differ from 0,
t(85) = −1.33, p = 0.19, suggesting that adolescents were able to ignore single negative outcomes in the strategic pursuit
of rewards. The differences between children and adolescents was significant, t(148) = −3.37, p < 0.001, and adults
showed intermediate behavior.

Figure 2: Task performance. (A) Accuracy following switch trials. Children aged 7-12 switched fastest but reached
the worst long-term performance, whereas adolescents aged 13-18 switched slowest but achieved the best long-term
performance. (B) Effect of the two previous outcomes (x-axis) on staying behavior (i.e., repeating the same action).
In general, staying increased with age. The ”reward, no reward” condition replicated part A. (C) Results of a logistic
regression model predicting choice from several previous actions and outcomes (see main text). Negative feedback
(”noReward”) had small effects compared to positive feedback (”reward”). (D)-(E) Same analyses for the best-fit RL
model.

3.2 RL model

We next turned to our computational model to investigate potential mechanisms behind these differences. Simulations
based on the best-fitting RL model showed qualitatively similar–albeit quantitatively smaller–effects than in human
participants (see discussion; Fig. 2D-F). The model revealed that age groups did not differ in terms of learning rate
from positive feedback αpos or the parameter c for counter-factual learning (table 1). The softmax parameters β and d,
on the other hand, changed with age, such that decision noise decreased and undecision points shifted toward staying,
in accordance with the behavioral results (table 1). Children were more sensitive to negative rewards (αneg) than both
adolescents and adults, as suggested by the behavioral analyses.

Figure 3: Modeling results. Parameters of the RL model were fit in a hierarchical Bayesian framework. The figure shows
the posterior probabilities over parameter means for each age group.

3

Paper # 224 126

Table 1: Parameter differences based on age groups. p-values denote the percentage of MCMC samples in which the
parameter mean of one group was larger than in another. p-values p < 0.05 highlighted with stars.

p-values Children vs adolescents Children vs adults Adolescents vs adults
αpos 0.35 0.27 0.43
c 0.63 0.62 0.52

αneg 0.0046 * 0.029 * 0.80
β < 0.001 * < 0.001 * 0.0188 *
d 0.0042 * < 0.001 * 0.067 .

4 Discussion

We presented a computational model that captures non-linear behavioral differences between children, adolescents,
and adults in a probabilistic switching task, with the goal of shedding light on cognitive changes associated with age-
related brain maturation. Our RL model captured key aspects of human behavior, such as an inverse-U shape of 1-trial
switching, smaller effects of positive feedback in children than adolescents and adults, and larger effects of negative
feedback in children than adults, which was in turn larger than in adolescents. Albeit qualitatively similar, these effects
were quantitatively smaller than in humans and we will, in future work, explore a larger number of alternative models,
such as Bayesian inferences and the combination of RL with task-specific strategic components, to specifically capture
adolescents’ behavior better.

Children’s behavior was marked by rapid switches in response to negative feedback and worse long-term performance,
and was reflected in reduced learning rate from negative feedback and increased decision noise in the computational
model. Adolescents, on the other hand, showed a marked ability to overrule negative feedback for a single trial and
showed close-to-optimal long-term performance, reflected in smaller learning rates from negative feedback and a general
shift toward staying in the undecision point parameter. Interestingly, adult behavior—intermediate between children and
adolescents—was not associated with intermediate model parameters. Instead, parameters changed linearly with age.
Thereby, learning rate from negative feedback decreased from childhood to adolescence, but was constant thereafter,
consistent with an early maturation of basal ganglia regions. Decision noise and non-decision point, on the other hand,
continued changing into adulthood, consistent with the continued maturation of higher-level cortical regions.

Taken together, our results suggest that non-linear developmental changes can arise from linear changes in the underly-
ing computational and neural processes, highlighting the benefits of computational modeling for developmental cogni-
tive neuroscience. Our future work will explore these results in more depth, to explore potential effects of pubertal onset
and / or pubertal status. Neural development can be sensitive to hormonal changes and pubertal hormones and markers
have been linked to structural and functional reorganization in the brain (Blakemore, Burnett, and Dahl, 2010). We will
therefore investigate the relationship between pubertal hormones, task performance, and model parameters, hoping to
shed light on its underlying mechanisms.

References

Blakemore, S.-J., Burnett, S., & Dahl, R. E. (2010). The Role of Puberty in the Developing Adolescent Brain. Human Brain
Mapping, 31(6), 926–933. doi:10.1002/hbm.21052

Dennison, M., Whittle, S., Yucel, M., Vijayakumar, N., Kline, A., Simmons, J., & Allen, N. B. (2013). Mapping subcortical
brain maturation during adolescence: Evidence of hemisphere- and sex-specific longitudinal changes. Developmen-
tal Science, 16(5), 772–791. doi:10.1111/desc.12057

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., . . . Rapoport, J. L. (1999). Brain
development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.
doi:10.1038/13158

Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., . . . Thompson, P. M. (2004). Dynamic
mapping of human cortical development during childhood through early adulthood. Proceedings of the National
Academy of Sciences, 101(21), 8174–8179. doi:10.1073/pnas.0402680101

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139–154.
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical

change across the human life span. Nature Neuroscience, 6(3), 309–315. doi:10.1038/nn1008
Sutton, R. S. & Barto, A. G. (2017). Reinforcement Learning: An Introduction (2nd ed.). Cambridge, MA; London, England:

MIT Press.
Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the

developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193. doi:10.1038/
35004593

4

Paper # 224 127

Efficient Count-Based Exploration Methods for Model-Based
Reinforcement Learning

Nicolas El Maalouly
School of Engineering

École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

nicolas.elmaalouly@epfl.ch

Wulfram Gerstner
School of Computer and Communication Sciences and

Brain Mind Institute, School of Life Sciences
École Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland
wulfram.gerstner@epfl.ch

Johanni Brea
School of Computer and Communication Sciences and

Brain Mind Institute, School of Life Sciences
École Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland
johanni.brea@epfl.ch

Abstract

A key technique to efficient exploration in reinforcement learning is the propagation of reward exploration bonus
throughout the state and action space. Adding reward bonuses however, makes the MDP non stationary and requires
resolving the MDP after every iteration which can be computationally intensive. Prioritized sweeping with small back-
ups can greatly reduce the computational complexity required for keeping the model and value functions up to date in
an online manner. We first propose to adapt exploration bonus techniques to the small backups algorithm in order to
achieve better computational efficiency while retaining the benefits of a model-based approach. We then argue for the
advantages of maintaining separate value functions for exploration and exploitation and propose different ways of using
the two, and also discuss the different properties we get by choosing different forms for the bonus beyond the popular
1√
n

. Finally we present a more general PAC-MDP sample complexity analysis for count-based exploration bonuses. The
result is a generalization of count-based exploration methods that can be combined with state tabulation to augment any
deep reinforcement learning method with a theoretically justified and efficient model-based approach to exploration.

Keywords: exploration bonus, reinforcement learning, MDP, prioritized
sweeping, PAC-MDP, sample complexity, model-based RL

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant 200020 165538 /”Synaptic Plasticity in Sys-
tem Models”).

Paper # 30 128

1 Introduction

The field of reinforcement learning has enjoyed great successes in the past few years, especially when combined with
deep learning techniques [1]. Exploration efficiency remains however a big challenge. Model-based techniques like
Model-Based Interval Estimation with Exploration Bonus (MBIE-EB) [2] are simple to implement, allow for deep explo-
ration [3] by efficient propagation of the count bonuses, and have theoretical sample complexity guarantees, but their
large computational complexity prohibits many interesting applications. Exploration bonus techniques have been re-
cently adapted to large scale problems with neural network function approximation [4, 5], but their use is mostly limited
to model-free algorithms which tend to have a higher sample complexity because they fail to propagate the reward bonus
fast enough to earlier states.

While targeting lower sample complexity with model-free techniques would be a good way to go, we choose to focus
on the other side of the problem: that of achieving better computational efficiency using model-based algorithms. One
particularly efficient model-based technique we focus on in this paper is Prioritized Sweeping with Small Backups[6].

2 Background

2.1 Reinforcement Learning

In this paper we use the general formalism of reinforcement learning based on Markov Decision Processes (MDPs), which
can be described as a tuple 〈S,A, P,R, γ〉 consisting of S, the set of all states; A, the set of all actions; P s

′
sa = Pr(s′|s, a),

the transition probability from state s ∈ S to state s′ when action a ∈ A is taken; Rsa = E[r|s, a], the expected reward
function when action a is taken in state s; and γ, the discount factor. The goal is to find a policy π? that maximizes the
total accumulated reward. An action value function that quantifies the quality of the policy can be defined as Qπ(s, a) =
E{∑∞t=0 γ

tR(st, at)|s0 = s, a0 = a, π} and a state value function as V π(s) = Qπ(s, π(s)). In a model-based setting, the
algorithm keeps track of an estimate of Rsa and P s

′
sa and finds the optimal value function (which can lead to an optimal

policy of the form π(s) = argmaxaQ(s, a)) using techniques such as value iteration.

2.2 Prioritized Sweeping with Small Backups (PSSB)

Prioritized sweeping [7] is an efficient way to approximate the value iteration algorithm by limiting the number of
backups performed per time step, and prioritizing the ones that are expected to cause large value changes. In [6] the
authors greatly improve the efficiency of prioritized sweeping by introducing a new backup method, the ”small backup”,
which uses only the current value of a single successor state and has a computation time independent of the number of
successor states. For such a backup to be equivalent to the normal full backup the following relation has to hold:

Q(s, a) = Rsa + γ
∑

s′

P s
′
saV (s′) (1)

This requires that after each observation of a sample (s, r, s′) the following update needs to be performed:

Nsa ← Nsa + 1; Ns′
sa ← Ns′

sa + 1

Q(s, a)← [Q(s, a)(Nsa − 1) +Rsa + γV (s′)]/Nsa (2)
Equation 2 implies that the Q-function computed by the algorithm is a running average of the reward plus expected next
state value (note that when V (s′) is updated later, the Q-function is also updated in the background by the small backups
mentioned previously). By using the fact that the true reward can be obtained as the limit of the average observed
reward, the PSSB algorithm is able to maintain the best estimate for the value function at every time step through small
incremental updates that can be efficiently performed.

2.3 Count-Based Exploration Bonus

Exploration is a fundamental part of reinforcement learning, the agent needs to find a good balance between taking the
actions that are so far most promising in terms of maximizing reward, and actions that it has a lot of uncertainty about
their outcome since these might still end up being more rewarding. To this end, most reinforcement learning algorithms
use action randomization techniques (e.g. ε-greedy) to give a non-zero probability to trying out new actions and achieve
good exploration in the limit. These techniques, however, may lead to inefficient behavior by sometimes taking actions
that the agent is certain are not optimal, and this is known as the problem of undirected exploration. Directed exploration
techniques on the other hand, favor actions that may still turn out to be optimal, such as actions that are not yet well
explored. Count-based exploration bonus methods achieve directed exploration by favoring less visited state-action
pairs through the addition of a reward bonus of the form 1

(Nsa)θ
, where Nsa is the number of times the agent took action

1

Paper # 30 129

a in state s, for all the visited state action pairs, and θ > 0 is a parameter that indicates how fast the bonus goes to 0. This
bonus can then be added to the regular reward for a total reward of Rs,a + β

(Nsa)θ
where β ≥ 0 is a factor that determines

that scale of the added bonus.

One way to measure the exploration efficiency is by measuring sample complexity. The sample complexity of an al-
gorithm A is the number of timesteps t such that the policy at time t is not ε-optimal from the current state (formally,
V At(st) ≥ V ?M (st) − ε). We say that A is PAC-MDP (Probably Approximately Correct in Markov Decision Processes) if,
for any ε and δ, the per-step computational complexity and the sample complexity ofA are less than some polynomial in
the relevant quantities (|S|, |A|, 1/ε, 1/δ, 1/(1 − γ)), with probability at least 1 - δ. Model Based Interval Estimation - Ex-
ploration Bonus (MBIE-EB) [2] is one such PAC-MDP algorithm which uses a particular form of count-based exploration
bonus.

3 Prioritized Sweeping with Small Backups - Exploration Bonus

In this section we show how we can adapt the PSSB algorithm to efficiently compute an estimate of the propagated
reward bonus.

3.1 Computing the Exploration Bonus

The goal is to compute a reward bonus in the form of 1
(Nsa)θ

. PSSB however, keeps track of a running average of the
reward incurred in each state-action pair, so simply adding the reward bonus to the regular reward would not work
because the resulting bonus would be an average of the received bonuses which is not what we want. In order to use the
same equations for computing the reward bonus we need to define a new exploration reward function which results in
the desired exploration bonus. We use the following reward function:

Resa = 1 if Nsa = 0 and
1

(Nsa + 1)θ−1
− 1

(Nsa)θ−1
otherwise,

which results in the average reward: Resa = 1
(Nsa)θ

. To implement it with PSSB, we simply need to maintain a separate
value function for exploration initialized to:

Qe(s, a) =
1

1− γe
= 1 + γe

1

1− γe
,

which verifies equation 1, and update it in the same way we update the normal value function using equation 2 and a
separate priority queue. In the next section we will discuss how to make use of this new value function for exploration.

4 Benefits of Maintaining Separate Value Functions for Exploration and Exploitation

Having a separate value function for exploration can have some advantages over adding the reward bonus directly to
the extrinsic reward as it enables different learning schemes for the two value functions (e.g. different discount factor,
episodic vs non-episodic updates...) and also allows for different ways of using the exploration value function apart from
the general case of linearly combining it with the normal value function (the latter resulting in a behavior equivalent to
adding the reward bonus directly to the extrinsic reward). The approaches discussed here can be more generally applied
to any algorithm that maintains a separate value function.

4.1 Pure exploration for training, and pure exploitation for testing

Here the agent follows a policy maximizing the exploration value function during training (while still updating the
regular value function separately), and then at test time, it uses a policy that maximizes the regular value function. In
this setting the advantage of having separate value functions for exploration and exploitation becomes most apparent as
it allows the agent to use its best estimate of the value function at any time without needing to wait for bonuses to vanish.
Note that using a different policy for training and testing only works in the model-based setting, and would suffer from
off-policy issues in a model-free setting.

4.2 Using a policy that maximizes a mixture of value functions

In this case the agent follows a policy of the form:

π(s) = argmax
a

(Q(s, a) + β(Qe(s, a))
α)

2

Paper # 30 130

with α > 0 and β ≥ 0 mixture parameters, and using on-policy updates for the value functions. Some values
of α and θ result in a behavior equivalent to existing algorithms in the literature. For example θ = 1

2 and α =

1 yields propagation of 1√
n

, which is equivalent to the MBIE-EB algorithm [2]. However, in [8], the authors argue that
propagating 1√

n
is equivalent to summing up standard deviations along a trajectory which is not desirable from a prob-

abilistic stand point, and instead the variance should be propagated which can be transformed into a standard deviation
by taking the square root at the end. With θ = 1 and α = 1

2 we get what the authors propose for the tabular case: prop-
agating 1

n which is proportional to the local variance of the value function in the Bayesian setting with Gaussian prior
on rewards and Dirichlet prior on the transition function. MBIE-EB, however, still has the advantage of being a PAC
MDP (probably approximately correct in MDP) algorithm, while other parameter settings lead to algorithms that lack
the theoretical backup. For this reason, in section 5 we extended the sample complexity proof of MBIE-EB to work with
other settings of α and θ.

4.3 Determinization of Stochastic Policies

In [9], the authors propose to use counts to approximate stochastic decision making rules (e.g. ε-greedy, softmax...) with
deterministic policies. The idea is to take

π(s) = argmax
a

(
f(a|s)
C(s, a)

)
e.g. f(a|s) = softmax(Q(s, a))

where 1
C(s,a) is a generalized notion of counts. In their paper they use E-values which generalize counts in a model-free

setting. In our case we can use 1
C(s,a) = Qe(s, a) which is a model-based version of generalized counts.

5 Theoretical Analysis

In this section we show that the same sample complexity bound proven by [2] applies to all values of θ > 0 and 0 < α ≤ 1
for a particular choice of β. We also assume that 0 ≤ R ≤ 11. Due to lack of space, we omit the complete proof, but briefly
discuss the main points and the conditions for it to apply. The main idea is to use theorem 10 from [10] which requires
that the value function used to derive the policy is both optimistic and bounded. We get the former by choosing:

β′ =

(
β2θ

αε2θ−1(1− γ)2θ−α
)α

if θ > 1/2 otherwise β′ = β

with β =
1

1− γ
√

ln (2m|S||A|δ)/2 being the constant used for MBIE-EB

and the latter by using

π(s) = argmax
a

Q(s, a) with Q(s, a) = min (Qr(s, a) + β′ (Qe(s, a))
α
, Qmax) and Qmax =

1

1− γ

Figure 1 provides some intuition for how β′ is chosen to guarantee optimism for the simple case of α = 1 2. Since β√
n

was shown in [2] to guarantee optimism, any bonus bigger than that would also have the same guarantee.

The last condition the algorithm needs to fulfill is that of accuracy, i.e. accurately approximating the true value function.
This requires the exploration bonus to be small enough. So after m learning steps, with m being the number of times
every state-action pair needs to be visited in order to accurately estimate the value function, we can simply set the reward
bonus to 0. We can also show that this does not affect optimism since we only require the value to be within ε of the true
optimal value which in this case can be ensured by accuracy.

This leads to a PAC-MDP sample complexity of O
(
|S|2|A|
ε3(1−γ)6

)
, omitting log factors.

It is important to note that in Theorem 2 of [11] the authors proved that using reward bonuses of the form we use in this
paper with θ > 0.5 leads to an algorithm that is not PAC-MDP in general. However, their proof relies on taking ε as a
function of β. In our analysis we take β to be a function of ε which still allows for a PAC-MDP algorithm for θ > 0.5, but
may result in large values of β. In practice however, values used for β tend to be much smaller than the ones used in the
theoretical analysis even in the case of MBIE-EB.

1This is a common assumption in the literature and is not very restrictive since any bounded reward can be shifted and re-scaled
to verify this condition.

2For other values of α however, the analysis gets more complicated since the full exploration bonus added to the regular value
function becomes a nonlinear transformation of the count bonuses along the entire trajectory, which means that we cannot treat the
count bonuses for every state-action pair separately.

3

Paper # 30 131

Figure 1: Reward bonus as a function of the visit count for a single state-action pair.

6 Conclusion

This work presented a generalization of count-based exploration bonus techniques that accounts for different forms of
bonuses, which can differ in statistical properties, and different ways of balancing exploration and exploitation. We
extended the validity of existing sample complexity guaranties to account for a bigger class of these methods, and pro-
vided a way for adapting these methods for use with efficient model-based reinforcement learning methods like priori-
tized sweeping with small backups. While these efficient techniques only work in a tabular setting, recent work shows
that they can still be beneficial in high dimensional settings by transforming the environment into a tabular one [4, 12].
Combining such tabulation techniques with our exploration bonus implementation can bring model-based exploration
efficiency to high dimensional environments. In contrast to previous work on exploration bonuses with function approx-
imation [4, 5], we propose a model-based approach to exploration that allows to propagate the exploration bonuses more
effectively at little additional computational cost.

References

[1] Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” Nature 518.7540 (2015): 529.
[2] Strehl, Alexander L., and Michael L. Littman. ”An analysis of model-based interval estimation for Markov decision

processes.” Journal of Computer and System Sciences 74.8 (2008): 1309-1331.
[3] Osband, Ian, et al. ”Deep exploration via randomized value functions.” arXiv preprint arXiv:1703.07608 (2017).
[4] Tang, Haoran, et al. ”# Exploration: A study of count-based exploration for deep reinforcement learning.” Advances

in Neural Information Processing Systems. 2017.
[5] Bellemare, Marc, et al. ”Unifying count-based exploration and intrinsic motivation.” Advances in Neural Informa-

tion Processing Systems. 2016.
[6] Van Seijen, Harm, and Richard S. Sutton. ”Efficient planning in MDPs by small backups.” Proceedings of the 30th

International Conference on International Conference on Machine Learning. Vol. 28. 2013.
[7] Moore, Andrew W., and Christopher G. Atkeson. ”Prioritized sweeping: Reinforcement learning with less data and

less time.” Machine learning 13.1 (1993): 103-130.
[8] O’Donoghue, Brendan, et al. ”The Uncertainty Bellman Equation and Exploration.” arXiv preprint arXiv:1709.05380

(2017).
[9] Fox, Lior, Leshem Choshen, and Yonatan Loewenstein. ”DORA The Explorer: Directed Outreaching Reinforcement

Action-Selection.” (2018).
[10] Strehl, Alexander L., Lihong Li, and Michael L. Littman. ”Reinforcement learning in finite MDPs: PAC analysis.”

Journal of Machine Learning Research 10.Nov (2009): 2413-2444.
[11] Kolter, J. Zico, and Andrew Y. Ng. ”Near-Bayesian exploration in polynomial time.” Proceedings of the 26th Annual

International Conference on Machine Learning. ACM, 2009.
[12] Corneil, Dane, Wulfram Gerstner, and Johanni Brea. ”Efficient Model-Based Deep Reinforcement Learning with

Variational State Tabulation.” arXiv preprint arXiv:1802.04325 (2018).

4

Paper # 30 132

Hidden Information, Teamwork, and Prediction in
Trick-Taking Card Games

Hadi Elzayn
School of the Arts and Sciences

University of Pennsylvania
Pennsylvania, PA 19103
hads@sas.upenn.edu

Mikhail Hayhoe
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

mhayhoe@seas.upenn.edu

Harshat Kumar
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

harshat@seas.upenn.edu

Mohammad Fereydounian
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

mferey@seas.upenn.edu

Abstract

We highlight a class of card games which share several interesting features: hidden information, teamwork,
and prediction as a crucial component. This family of games in question, known as “Whist” games, consists
of games of trick-taking, turn-based play, with team relationships of varying intensities, differing betting
and scoring rules, and slight variations in mechanics. Using self-play, we have trained a DeepRL-style algo-
rithm to bet and play Four Hundred, a flagship game in the family (Hearts, Spades, and Bridge are all related to
varying degrees). Our algorithm reaches human-competitive performance, dominating all baselines it was
tested against and learning the importance of key game concepts such as trump and partnership. Moreover,
it exhibits reasonable context-specific strategies, suggesting an adaptability of the framework to different
scenarios.

We believe this family of games provides an interesting testing ground for reinforcement learning algo-
rithms because of its features; however, we are most interested in developing methods to transfer insights
across variations of games. We hope that such an approach will result in more efficient training and perhaps
more human-like play.

Keywords: Reinforcement Learning, Self-Play, Games, Transfer Learning

Acknowledgements

We appreciate valuable feedback from Shivani Agarwal, Heejin Chloe Jeong, Simeng Sun, and Steven Chen.

Paper # 230 133

1 Introduction

Inspired by the recent successes in the design of artificial intelligence to play games such as Backgam-
mon [6], Chess [4], Poker [1], Atari games [3], and Go [2] with superhuman performance, we study a
family of card games (“Whist” descendants) that provide a rich strategic environment for testing learning
algorithms. These games share several interesting features, including hidden information, teamwork, and
prediction as crucial components. The Whist family consists of games of trick-taking, turn-based play, with
team relationships of varying intensities, differing betting and scoring rules, and slight variations in me-
chanics. In work so far, we have focused on Four Hundred, a flagship of the game family, and design a
reinforcement learning algorithm to play the game at a level competitive with humans. We describe our
problem formulation, algorithms, and results in Section 2. We are also interested in this family of games as
a testing ground to explore the transfer of insights and strategies from one game into similar games. We
briefly discuss this agenda in Section 3.

2 Solving Four Hundred

Rules of Four Hundred

A deck of cards is distributed evenly (face down) to four players. Each player sits across from their team-
mate. No communication of hands is allowed. Before beginning play, players must bet an expected number
of ‘tricks’ (one round of played cards) they plan to take over the 13-card hand, between 2 and 13. In each
round after bets are placed, players take turns choosing a card to play from their hand in order, beginning
with the player to take the previous trick. The suit of the first card played determines the ‘lead suit’, and
players must play cards from that suit if possible. The winner of the trick is the player with the highest card
of the ‘lead suit’, or the highest card of the ‘trump suit’ (Hearts) if any were played. At the end of 13 rounds,
each player’s score is increased by their bet if they meet or exceed it, but decreased by their bet if they fail
to meet it. The game is over once one team has a player with 41 or more points, and the other player has
positive points.

Learning Problem Find an optimal betting policy βi,∗ and playing policy πi,∗t to maximize expected reward for
player i given each other and the play of the others:

βi,∗ = arg max
β∈B

E

[
13∑

t=0

R
(
β(Hi0), πi,∗t (Hit)

)]
, πi,∗t = arg max

c∈Hi
t

E
[
R(βi,∗(Hi0), c) | Sit

]
.

where Hi0 is player i’s starting hand, Hit is their hand after trick t ∈ {1, . . . , 13}, and Sit is the information
known to player i about the state of the game up until trick t.

BETTING: Since the final score depends not only on tricks taken, but on the bet made, the betting and
playing tasks are deeply intertwined. While both may be viewed from a reinforcement learning perspective,
we choose to view betting as a supervised learning problem. Given some particular strategy and initial
hand, the player can expect to win some number of tricks (where randomness comes from the distribution
of cards across opponents’ hands as well as variation in player strategies, stochastic and otherwise). Given
observed games under a fixed strategy and some observed initial hand compositions, a model that predicts
tricks taken by the end of the round may serve as a good bet model.

Thus, the data we generate during games in the form of initial hands can serve as input data, and the
number of tricks won functions as the label. We implement a neural network (NN) for regression using this
data. The input is a 4× 13 binary matrix with exactly 13 non-zero elements representing which cards are in
the player’s hand. Each column of the matrix represents a value (e.g. 7 or Queen), while each row represents
a suit. The first suit is reserved for the trump suit, which is higher in value than all other suits. The output
of the neural network is a real number, which we then map to the closest integer between 2 and 13 (since
bets of 0 and 1 are not allowed). We define the loss as the squared difference between the score received and
the best possible, which is also the squared difference between the optimal and observed reward (see (1)):

`bet(y, ŷ) = (y − sign(ŷ − y) · ŷ)
2

=

{
(y − ŷ)2, if y ≥ ŷ,
(y + ŷ)2, otherwise,

1

Paper # 230 134

where ŷ is the bet, and y is the tricks won. Motivated by the game’s scoring rules, this loss function is
asymmetric - it penalizes more for bets which are higher than the tricks obtained. Therefore our goal in this
supervised learning problem is to learn a relationship between the initial cards dealt to each player and the
number of tricks that player won at the end of the round. In this regard, the actual play of the game greatly
affects the number of tricks expected to win.

CARD PLAY: The second component of the game is the playing of cards, wherein we consider a reinforce-
ment learning approach to design a strategy. We capture the state of the game by three 4× 13 matrices and
two 1× 4 vectors in the following way. The first matrix represents the order history of the game; each card
played is represented by an integer between 1 and 52 (initialized to zero), based on the order in which it
was played. For example, in the 5th trick of the game, the card played by the third player will have a 23 in
the corresponding location (5th trick × 4 cards per trick + 3rd card played = 23). The second matrix is for
player history. As each card is played, its location will be filled by a number denoting the ID of the player.
Continuing our example, if the card above was played by player 2, then a 2 will be put in the correspond-
ing location. Representing order and player history as a matrix in this fashion was inspired by the state
representation of AlphaGo. The final matrix is the player hand, which is similar to the input for the betting
neural network, and indeed is identical at the beginning of the game. As the game continues, whenever a
card is played, the 1 indicating the presence of a card in the hand becomes a zero. Returning to our example,
the matrix after the fifth round will have 8 (13 initial cards - 5 cards played) non-zero elements. The first
1× 4 vector contains the bets that each player made at the beginning of the hand, and the second contains
the tricks that each player has won so far.

Given the states, we define a reward at the end of each round by

Reward =

{
bet, if tricks ≥ bet,
−bet, otherwise.

(1)

The state size is combinatorially large, and hence we do not consider tabular reinforcement learning solu-
tion methods but rather function approximation with neural nets. Ultimately, given the possible actions
available to the player, we will evaluate the function at each of the potential states and choose the action
which enters the state with the highest value. Our approach is informed by the classical Q-learning ap-
proach, where the value function is updated by

V t+1(s) = max
a

∑

s′

p(s′|s, a)(r(s, a, s′) + γV t(s′)),

where s is the state, a is an action, s′ is the state after taking action a from state s, and γ ∈ [0, 1) is the
discount factor. We consider a mild adaptation, similar to [5], in which the reward is provided as a label to
each observed state, and the neural net Q-update occurs in batches. Given that reward is observed at the
end of the round, for trick t ∈ {1, . . . , 13}, we assign a reward to that state s by

Value(s) = γ13−t · (RewardTeam member 1 + RewardTeam member 2) + 1{Team won the trick}.
We include the 1 term for reward shaping [3] as it is a favorable outcome which should help increase
convergence. Once we have assigned a label to each of the states in terms of the value defined above, we
use a neural network for regression to map each state to the appropriate value.

BASELINES: All data was generated from a game simulator developed from scratch. Three baselines were
created to compare against: the first baseline is Random Play-Random Bet. Random bet selects a random
value from {2, 3, 4, 5} during the betting stage, and in each round chooses a random card to play from the
set of valid cards. The second baseline is Greedy Play-Model Bet. During play, greedy simply selects the
highest card in its hand from the set of valid cards, without consideration of its partner. Betting for greedy
uses a neural net trained on 100,000 games of 4 greedy players with the same architecture as Over400, as
described earlier. For the final baseline, Heuristic Play-Model Bet, a heuristic strategy was defined based
on human knowledge of the game. This heuristic player takes into account available knowledge of the
team member’s actions as well as opponents’ actions, and straightforward, if complicated, control flow to
determine which move to play. In particular, it keeps track of whether the trump suit has been broken,
whether the currently winning player is a teammate or opponent, and what the minimum card guaranteed
to win the trick is. The betting for the heuristic baseline is also given by a neural network model which was
trained, in the same way as greedy, on 100,000 games of 4 heuristic players.

2

Paper # 230 135

2.1 Results

To understand the performance of the betting model, we consider the metrics of loss and Trick-bet differ-
ence. The noise observed is due to the betting and playing strategies being constantly updated in tandem.
Figure 1c shows the Trick-bet difference metric. As we can see, the highest peaks of the histogram occur
at Tricks - Bet ∈ {0, 1}. This means that most of the bets are slightly less than the number of actual tricks
taken, indicating that the players are betting conservatively.

(a) Loss function for the betting
NN, trained in tandem with the
playing NN.

(b) Tricks won over 1,000 games,
based on bet made. No bets were
higher than 6.

(c) Histogram showing difference
between tricks won and bet made.

Figure 1: Betting performance during games of self play. Tricks to the right of the bar (green area) represent
wasted potential score, since the AI won more tricks than it bet; tricks to the left of the bar (red area)
represent score penalties incurred, since the AI won fewer tricks than it bet. Bets were made conservatively,
since the AI made or exceeded its bet over 80% of the time.

To understand the performance of the card play network, we consider the average score shown in Figure
2b. As expected, the average score of all four players increases as the number of training iterations increase,
with some noise due to the betting and playing neural networks being trained in tandem. It is important to
note that the game is learning how to play relative to the other players, in that it understands the relation-
ship between its team member and its opponents relative to its position. Finally, we consider Table 1 which
shows the performance of our Program against the baselines. Our Heuristic algorithm was able to defeat
Random and Greedy Baselines 100 - 0, as did Over400. Even more impressively, Over400 beat the heuristic
baseline 89.5 % of the time.

(a) Neural Network Architecture for Card Play
(b) Average score showing the performance of
the self play NN model

Figure 2: Network Architecture and Performance

Human players also squared off against the network to get a sense as to how Over400 was playing. The
AI understood to win tricks by playing high cards of the lead suit and also to play a trump card when the
lead suit had run out in its hand. It had also learned to play differently depending on whether or not it
had won enough tricks to make its bet (e.g., attempting to lose tricks if it already made its bet). However,

3

Paper # 230 136

Over400 would occasionally play high cards which were not capable of winning since they were not the
lead or trump suit. We imagine this is due to the difficulty in learning the concept of the lead suit, which
may have been accomplished with more samples of training data or with a deeper neural net structure.

Random Greedy Heuristic Over400
Heuristic Win % 100 100 - 10.5
Over400 Win % 100 100 89.5 -

Table 1: Percentage of wins against the baselines over 200 games.

3 Future Work

There are over 30 varieties of Whist games with major or minor variations in rules. In future work, we will
examine whether and how, by learning one game, we can learn them all. For example, Spades is nearly the
same as Four Hundred: the objective is to take tricks, but the trump suit is Spades (rather than Hearts), and
there is usually no betting or teams. Tarneeb is nearly the same as Four Hundred, but the trump suit is chosen
by players (and the betting is more complicated). Finally, Hearts has the same mechanics as Spades, but the
goal is to avoid taking tricks.

A policy trained for Four Hundred will likely fail to produce good results on any of these other games.
However, it is clear that the similarity of structure in these games should mean a learner which is good at
one game can perform well when playing others. An analogy can be drawn to classification: playing Spades
well and Hearts poorly feels similar to classifying objects with high accuracy but failing to do so if they are
rotated and translated. Overcoming this problem in image classification required, in some sense, focusing
on features that were ‘invariant’ to translation and rotation; in our case, there is some ‘invariance’ about the
relative ordering of the cards.

We briefly describe our proposed approach, which we call invariance discovery, or insight abstraction. Let S
be the set of observed states, VG be the value of each state under game G, and VG′ be the value of the state
under game G′. Recall that we estimate VG to be able to return the following policy:

πG = argmaxaEs′∼P (s,a) [V (s′)] .

Instead of retraining for G′, if we learn the invariance mapping χ : VG(s) 7→ VG′(s), we can then return the
policy πG′ := argmaxaEs′∼P (s,a)χ(V (s′)). Such a mapping exists whenever the value functions do, but
learning this function from noisy samples may be hard. Indeed, in full generality it may be impossible
without exponentially many samples, since we may not see the same states across games. However, we
may make this problem tractable by restricting χ to live in some class of functions Ω. For example, χ could
be a linear function; this may approximate the truth when mapping Spades to Hearts, since having high
cards is good in Spades but bad in Hearts. Ongoing work explores the feasibility of this approach, and we
also plan to explore theoretical properties in future work.

References

[1] N. Brown and T. Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top profes-
sionals. Science, 359:418–424, 2018.

[2] D. Silver et al. Mastering the game of Go without human knowledge. Nature, 550:354–359, 2017.
[3] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
[4] A. J. Hoane Jr. M. Campbell and F. Hsu. Deep blue. Artificial Intelligence, 134(1-2):57–83, 2002.
[5] M. Riedmiller. Neural fitted Q iteration - First experiences with a data efficient neural reinforcement

learning method. European conference on Machine Learning, 05:317–328, 2005.
[6] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3):58–68,

1995.

4

Paper # 230 137

The detour problem in a stochastic environment: Tolman
revisited

Pegah Fakhari
Department of psychological and brain sciences

Indiana University
Bloomington, IN

pfakhari@indiana.edu

Arash Khodadadi
Department of psychological and brain sciences

Indiana University
Bloomington, IN

arashkhoda@indiana.edu

Jerome R. Busemeyer
Department of psychological and brain sciences

Indiana University
Bloomington, IN

jbusemey@indiana.edu

Abstract

We designed a grid world task to study human planning and re-planning behavior in an unknown stochas-
tic environment. In our grid world, participants were asked to travel from a random starting point to a ran-
dom goal position while maximizing their reward. Because they were not familiar with the environment,
they needed to learn its characteristics from experience to plan optimally. Later in the task, we randomly
blocked the optimal path to investigate whether and how people adjust their original plans to find a detour.
To this end, we developed and compared 12 different models. These models were different on how they
learned and represented the environment and how they planned to catch the goal. The majority of our
participants were able to plan optimally. We also showed that people were capable of revising their plans
when an unexpected event occurred. The result from the model comparison showed that the model-based
reinforcement learning approach provided the best account for the data and outperformed heuristics in
explaining the behavioral data in the re-planning trials.

Keywords: planning and re-planning in stochastic environment, multistage
decision making, navigation in maze, model-based reinforcement
learning

Paper # 14 138

G

𝐸𝑙 = −16.2
Path C1 Path C2

𝐸𝑙 = −24.2

Path A1 Path A2
𝐸𝑙 = −60.2 𝐸𝑙 = −24.2S

G

𝐸𝑙 = −16.2
Path C1 Path C2

𝐸𝑙 = −24.2

Path A1 Path A2
𝐸𝑙 = −60.2 𝐸𝑙 = −24.2

Path B
𝐸𝑙 = −2.6

S

Planning

Re-planning

Figure 1: General grid world used in our experiments. The decision nodes are represented by yellow
circles and the goal is depicted by red circle. The green paths are available to participants. Note that
participants can not see the obstacles depicted by shadow areas. The black dashed line in the grid separates
path B and path A1A2. Top: In the planning trials, for this current start and goal positions, 5 paths are
available to participants and they need to find the optimal path. Down: In the re-planning trials, the
optimal path, path B is blocked and participants need to find the detour.

1 Introduction

This material was published in cognitive psychology, (Fakhari, Khodadadi, & Busemeyer, 2017).

Planning in a stochastic environment is challenging. It becomes even more challenging when the envi-
ronment is unknown to us. No matter how complicated these problems are, we mainly use our previous
experiences to deal with them. Sometimes the environment changes and forces us to change or modify our
plan. As a result, we update our plan every now and then to make sure our plan becomes a success. In
this paper, we tried to study real life planning and re-planning problems in a simplified situation using our
grid world experiment. Using this framework, we developed three experiments to investigate planning
and re-planning in humans while learning an unknown environment.

2 Design

After 6 blocks of training in a 4 by 7 grid, participants’ planning skill was tested, Fig. 1. At the beginning
of the 7th block (the pretest block), we warned them that their score will be converted to monetary reward
(the exchange rate was 0.01). In experiment 1 and 2, the starting and goal positions were fixed during the
test phase, but, in experiment 3, we randomized these pairs. The majority of our participants (19 out of
19 in experiment 1, 30 out of 36 in experiment 2 and 30 out of 32 in experiment 3) were able to find the
optimal path. This is in contrast to previous studies that showed people are more likely to be sub-optimal
in the description-based decision trees involving a probabilistic reward, (Hey & Knoll, 2011), (Hotaling &
Busemeyer, 2012)1.

The basic configuration of the grid world is similar to the detour problem in (Tolman, Ritchie, & Kalish,
1946), but we modified it into a stochastic environment where finding the shortest path was not optimal
anymore. It is important to note that the experiments had two distinctive features that encourage
goal-directed behavior: first, the (hidden) punishments were probabilistic, and second, the starting and
goal positions were randomly located in different cells. In order to find the optimal path, participants
needed to learn and compare the expected values of different paths. Employing probabilistic rewards

1It has been proposed by (Erev, Ert, Plonsky, Cohen, & Cohen, 2017) that people show planning biases in description-
based decision trees problems, but not in experience based learning

1

Paper # 14 139

enabled us to represent this problem in a decision tree framework to study (optimal) planning similar to
experience-based decision-making tasks.

Table 1 highlights the differences and similarities among the three experiments. It is important to em-
phasize that participants can only see a plain grid on the screen along with their current position (yellow
circle) and their destination (red circle, Fig. 1) with no sign/cue of the obstacles or the stochastic losses.
They do not have access to papers nor calculators/cellphones to do any computations or to take notes. In
the instruction, they are told to consider a scenario that they move to a new city (a 4 by 7 grid) and need to
get from one place to another (determined by the yellow and red circles). In the test phase, participants are
told that a random accident might happen in one of the possible routes and block that path. If they see the
accident they need to find a detour path.

Table 1: Summary Of Experiments

Design Experiment 1 Experiment 2 Experiment 3
Number of learning blocks 6 6 6
Number of test blocks 2 2 3
Number of pretest blocks 1 1 1
Number of probabilistic losses 2 5 5
Fixed G and S in the test blocks Yes Yes No
Fixed G and S in the learning blocks No No No
Fixed G and S in the pretest block No No No
Cells with stochastic losses 15, 16 9, 11, 16, 19, 17 9, 11, 16, 19, 17
Number of re-planning trials in the test trials 13 out of 40 13 out of 40 20 out of 60

Experiment 1 has two stochastic losses with one sure loss at cell 21 with the loss of −45. In experiment 2 and 3, there
are 5 stochastic losses (similar environment). The rate of re-planning trials in the test blocks is fixed in all three ex-
periments (33%). Unlike experiments 1 and 2, the pairs in the test blocks of the experiment 3 are random. In all
three experiments, there is one pretest block and six learning blocks. G and S stand for Goal and Starting positions.

3 Model fit results

We developed 12 different models to fit the choice data, Table 2. These models were different on how they
learned and represented the environment and how they planned to catch the goal. The baseline model
selects a random action at each cell regardless of what participants have experienced. This model was the
simplest model in our benchmark. The traditional Q-learning algorithm was not able to explain the data
because the starting and goal positions in the environment in our experiments were not fixed. In addition,
when a change happens in the environment, the whole set of the action-state values needs to be updated
(again by extensive amount of learning and exposure to the new environment).

The (full) model-based RL tries to learn the model of the environment by estimating the transition and
reward functions. This knowledge (of the environment) is later used to generate Q-value for each action.
The model-based RL had the best predictions in the test blocks. In model 7, we restrict the model-based
RL in its spatial search. Instead of a complete tree search that is commonly used in value iteration,
we confine the model’s planning depth to its kth nearest neighbors (k is a free parameter). While this
modification can decrease the computational costs, for many pairs the best fitted k leads to a full tree search.

In addition to model-based and model-free RL, there is another alternative, SR, which is more flexible
than model-free RL and computationally simpler than model-based RL, (Dayan, 1993). SR calculates the
state values using both reward and a successor map which stores the expected and discounted future
states’ occupancies. In case of reward devaluation, SR’s behavior is similar to model-based RL but when
there is an alteration in the transition structure, it fails to adapt to the change (similar to model-free RL),
(Gershman, Moore, Todd, Norman, & Sederberg, 2012), (Kulkarni, Saeedi, Gautam, & Gershman, 2016),
(Momennejad et al., 2016).

2

Paper # 14 140

Table 2: Summary of models and their free parameters

Model Description Parameters No. of free
parameters

1 Baseline (random model) - 0
2 Q-learning β, γ, qu0

, qr0 , qd0 , ql0 6
3 Model-based RL β, γ, α1HS

, α1MS
, α1LS

5
4 Avoids Salient Loss -MBRL β, γ 2
5 Remembers The Last R -MBRL β, γ 2
6 Finds The Shortest Path -MBRL β, γ 2
7 Cubed Model-Based RL β, γ, α1HS

, α1MS
, α1LS

, ω 6
8 Successor Representation β, γ, αl, α1HS

, α1MS
, α1LS

6
9 Avoids Salient Loss -SR β, γ, λ 3

10 Remembers The Last R -SR β, γ, λ 3
11 Finds The Shortest Path -SR β, γ, λ 3
12 Hybrid SR-MB β, γ, αl, ωhb, α1HS

, α1MS
, α1LS

7

MB = Model-based, SR = Successor Representation.

Although the hybrid SR-MB model provided a better account for participants’ choices in the learning
blocks, it failed to predict the re-planning behavior in the test blocks. Since the candidate models were not
trained by the test blocks’ data, they needed to generalize their knowledge (from the learning blocks) to
perform optimally in the re-planning trials when the optimal path was randomly blocked. One solution
to this problem is to use a mixture model which switches from the SR model in the planning trials to the
model-based RL mechanism in the re-planning trials. It can post hoc fit all the data the best, because it uses
the best fitting model for the training blocks and then switches to the best predicting model for the test
blocks.

References
Dayan, P. (1993). Improving generalization for temporal difference learning: The successor representation.

Neural Computation, 5(4), 613–624.
Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From anomalies to forecasts: Toward a de-

scriptive model of decisions under risk, under ambiguity, and from experience. Psychological Review,
124(4), 369–409.

Fakhari, P., Khodadadi, A., & Busemeyer, J. (2017, September). The detour problem in a stochastic environ-
ment: Tolman revisited. arXiv:1709.09761 [q-bio, stat].

Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A., & Sederberg, P. B. (2012). The successor
representation and temporal context. Neural Computation, 24(6), 1553–1568.

Hey, J. D., & Knoll, J. A. (2011). Strategies in dynamic decision makingAn experimental investigation of the
rationality of decision behaviour. Journal of Economic Psychology, 32(3), 399–409.

Hotaling, J. M., & Busemeyer, J. R. (2012). DFT-D: a cognitive-dynamical model of dynamic decision
making. Synthese, 189(1), 67–80.

Kulkarni, T. D., Saeedi, A., Gautam, S., & Gershman, S. J. (2016). Deep successor reinforcement learning.
arXiv preprint arXiv:1606.02396.

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N., & Gershman, S. J. (2016). The
successor representation in human reinforcement learning. bioRxiv.

Tolman, E. C., Ritchie, B., & Kalish, D. (1946). Studies in spatial learning. II. Place learning versus response
learning. Journal of Experimental Psychology, 36(3), 221–229.

3

Paper # 14 141

Generalization and Regularization in DQN ∗

Jesse Farebrother
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

jfarebro@ualberta.ca

Marlos C. Machado †
Google Brain

Montréal, QC, Canada
marlosm@google.com

Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

mbowling@ualberta.ca

Abstract

Deep reinforcement learning (RL) algorithms have shown an impressive ability to learn complex control policies in
high-dimensional environments. However, despite the ever-increasing performance on popular benchmarks such as the
Arcade Learning Environment (ALE), policies learned by deep RL algorithms often struggle to generalize when evaluated
in remarkably similar environments. In this paper, we assess the generalization capabilities of DQN, one of the most
traditional deep RL algorithms in the field. Additionally, we provide evidence suggesting that DQN overspecializes to
the training environment. Furthermore, we comprehensively evaluate the impact of traditional regularization methods,
`2-regularization and dropout, and of reusing the learned representations to improve the generalization capabilities of
DQN. We perform this study using different game modes of Atari 2600 games, a recently introduced modification for the
ALE which supports slight variations of the Atari 2600 games traditionally used for benchmarking. Despite regularization
being largely underutilized in deep RL, we show that it can, in fact, help DQN learn more general features. These features
can then be reused and fine-tuned on similar tasks, considerably improving the sample efficiency of DQN.

Keywords: Deep reinforcement learning, generalization, regularization, repre-
sentation learning, function approximation, Atari games

Acknowledgements

The authors would like to thank Matthew E. Taylor, Tom Van de Wiele, and Marc G. Bellemare for useful discussions,
as well as Vlad Mnih for feedback on a preliminary draft of the manuscript. This work was supported by funding from
NSERC and Alberta Innovates Technology Futures through the Alberta Machine Intelligence Institute (Amii). Computing
resources were provided by Compute Canada through CalculQuébec.

∗This paper is an extended abstract of the following article: “J. Farebrother, M. C. Machado, M. Bowling. Generalization and
Regularization in DQN. CoRR abs/1810.00123, 2018.”
†Work performed while at the Department of Computing Science at the University of Alberta.

Paper # 250 142

1 Introduction

Recently, reinforcement learning (RL) has proven very successful on complex high-dimensional problems, in large part
due to the increase in computational power and to the use of deep neural networks for function approximation [e.g., 4].
Despite the generality of the proposed solutions, applying these algorithms to slightly different environments generally
requires agents to learn the new task from scratch. On the other hand, deep neural networks are lauded for their
generalization capabilities [e.g., 2] with some communities heavily reusing the learned representations [e.g., 5]. In light of
the successes of traditional supervised learning methods, the current lack of generalization or reusable knowledge (i.e.,
policies, representation) acquired by current deep RL algorithms is somewhat surprising.

In this paper we investigate whether the representations learned by deep RL methods can be generalized, or at the very
least reused and refined on small variations to the task at hand. We evaluate the generalization capabilities of DQN [4]
and we further explore whether the experience gained by the supervised learning community to improve generalization
and to avoid overfitting could be used in deep RL. We employ conventional supervised learning techniques, albeit largely
unexplored in deep RL, such as fine-tuning (i.e., reusing and refining the representation) and regularization. In order to
perform this study we employ different game modes and difficulties of Atari 2600 games, a feature recently introduced to
the Arcade Learning Environment (ALE) [1, 3].

We show that a learned representation trained with regularization allows us to learn more general features capable of being
reused and fine-tuned. Besides improving the generalization capabilities of the learned policies this fine-tuning procedure
has the potential to greatly improve sample efficiency on settings in which an agent might face multiple variations of the
same task, or when future tasks are unknown to the agent. Our results suggest that, if we move beyond the single-task
setting in RL, regularization techniques might play a prominent role in deep RL algorithms.

2 Background

2.1 Reinforcement learning

Q-learning [7] is a traditional approach to learning an optimal state-action value function from samples obtained by
interacting with the environment. The agent updates the state-action value function iteratively using the update rule

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a′∈A
Q(St+1, a

′)−Q(St, At)
]
. (1)

Generally, due to the exploding size of the state space in many real-world problems, it is intractable to learn a state-action
pairing for the entire MDP, we often resort to learning an approximation to qπ .

DQN approximates the state-action value function such that Q(s, a; θ) ≈ qπ(s, a), where θ denotes the weights of a neural
network. DQN is trained in a supervised fashion to minimize the squared TD error from 1 using a batch of experience
sampled uniformly from a buffer of (St, At, Rt+1, St+1) transition tuples.

2.2 Supervised learning

In the supervised learning problem we wish to learn a function f : Rn → R which maps training examples Xi of
dimension n to a predicted output label ŷi. The model should accurately predict true label yi while generalizing to unseen
examples. When f is a neural network parametrized by θ we typically train the model by minimizing the objective

min
θ

λ

2
‖θ‖22 +

1

m

m∑

i=1

L(yi, f(Xi; θ)), (2)

where L is a differentiable loss function which outputs a scalar corresponding to the quality of the prediction (e.g., squared
error loss). The first term in 2 is a form of regularization, i.e., `2 regularization, which encourages generalization by
imposing a penalty on large weight vectors. The hyperparameter λ is the weighted importance of the regularization term.

Dropout [6] is a regularization technique applied to the feed-forward operation of a neural network. During the forward
pass each neural unit has a chance of being set to 0 according to Bernoulli(p) where p is referred to as the dropout rate.

Fine-tuning is the process of bootstrapping weight initialization using pre-trained weights from a different task. This
differes from standard stochastic initialization processes.

3 The ALE as a platform for evaluating generalization in RL

The Arcade Learning Environment (ALE) is a platform used to evaluate agents across dozens of Atari 2600 games [1]. The
ALE poses the problem of general competency by having agents use the same learning algorithm to perform well in as
many games as possible without using game specific knowledge.

1

Paper # 250 143

Table 1: Direct policy evaluation. Each agent is initially trained in
the default flavour for 50M frames then evaluated in each listed game
flavour. Agents with regularization are trained using dropout and `2
regularization. Reported numbers are averaged over five runs. Standard
deviation is reported between parentheses.

GAME VARIANT
EVAL. WITH

REGULARIZATION
EVAL. WITHOUT

REGULARIZATION LEARN SCRATCH

FREEWAY

m1d0 5.8 (3.5) 0.2 (0.2) 4.8 (9.3)

m1d1 4.4 (2.3) 0.1 (0.1) 0.0 (0.0)

m4d0 20.6 (0.7) 15.8 (1.0) 29.9 (0.7)

HERO
m1d0 116.8 (76.0) 82.1 (89.3) 1425.2 (1755.1)

m2d0 30.0 (36.7) 33.9 (38.7) 326.1 (130.4)

BREAKOUT m12d0 31.0 (8.6) 43.4 (11.1) 67.6 (32.4)

SPACE INVADERS

m1d0 456.0 (221.4) 258.9 (88.3) 753.6 (31.6)

m1d1 146.0 (84.5) 140.4 (61.4) 698.5 (31.3)

m9d0 290.0 (257.8) 179.0 (75.1) 518.0 (16.7)

10M 20M 30M 40M 50M

Frames before evaluation

0

5

10

15

20
25

C
u
m

u
l
a
t
iv

e
R

e
w

a
r
d

(l
o
g

sc
a
l
e
)

Freeway Policy Evaluation w/ Regularization

m1d0

m1d1

m4d0
m1d0 dropout+`2
m1d1 dropout+`2
m4d0 dropout+`2

Figure 1: Evaluation performance in dif-
ferent flavours of FREEWAY from a trained
agent in m0d0 with regularization (solid
line) and without regularization (dashed
line). Curves are smoothed using a mov-
ing average over two data points. Results
were averaged over five seeds.

In this paper, we use the different modes and difficulties of Atari 2600 games to evaluate a neural network’s ability to
generalize in high-dimensional state spaces. Game modes, originally native to the Atari 2600 console, were recently added
in the ALE [3]. They give us modifications of the default environment dynamics and state space, often modifying sprites,
velocities, and partial observability. These modes pose a tractable way to investigate generalization of RL agents in a
high-dimensional environment.

In this paper, we use 13 flavours (combinations of a mode and a difficulty) obtained from 4 games: FREEWAY, HERO,
BREAKOUT, and SPACE INVADERS ∗. In FREEWAY, modes vary the speed and number of vehicles, while different
difficulties change how the player is penalized for running into a vehicle. In HERO, subsequent modes start the player off
at increasingly harder levels of the game. The mode we use in BREAKOUT makes the bricks partially observable. Modes of
SPACE INVADERS allow for oscillating barriers, increasing the width of the player sprite, and partially observable aliens.

4 Generalization of the learned policies and overfitting

In order to test the generalization capabilities of DQN we first evaluate whether the policy learned after 50M frames in
the default flavour, m0d0 (mode 0, difficulty 0) can perform well in a different flavour. If the representation encodes
a robust policy we might expect it to be able to generalize to slight variations of the underlying reward signal, game
dynamics, or observations. We measure the cumulative reward averaged over 100 episodes in the new flavour. The results
are summarized in Table 1 under the column EVAL. WITHOUT REGULARIZATION. Baseline results where the agent is
trained from scratch in the target flavour used for evaluation are summarized in the baseline column LEARN SCRATCH.

We can see in the results that the policies learned by DQN do not generalize well to different flavours, even when the
flavours are remarkably similar. For example, in FREEWAY, a high-level policy applicable to all flavours is to go up while
avoiding cars. The default flavour m0d0 and m4d0 comprise of exactly the same sprites, the only difference being that in
m4d0 some cars accelerate and decelerate over time. The close to optimal policy learned in m0d0 is only able to score
around half of what is achieved by the policy learned from scratch in m4d0.

As aforementioned, the different modes of HERO can be seen as giving the agent a curriculum. Interestingly, the agent
trained in the default mode for 50M frames can progress to at least level 3 and sometimes level 4. Mode 1 starts the agent
off at level 5, and performance in this mode suffers greatly during evaluation despite no addition of any novel game
mechanics. Perhaps the agent is memorizing trajectories instead of learning a robust policy capable of solving each level.

Results in some flavours suggest that the agent is overfitting to the flavour it is trained on. We tested this hypothesis
by periodically evaluating the policy being learned in each other flavour of that game. This process involved taking
checkpoints of the network every 500,000 frames and evaluating the policy in the prescribed flavour. The results obtained
in FREEWAY, the most pronounced game in which we observe overfitting, are depicted by dashed lines in Figure 1.

In FREEWAY, while we see the policy’s performance flattening out in m4d0, we do see the traditional bell-shaped curve
associated to overfitting in the other modes. At first, improvements in the original policy do correspond to improvements

∗Video comparing each game flavour can be found at https://goo.gl/pCvPiD

2

Paper # 250 144

in the performance of that policy in other flavours. With time, it seems that the agent starts to refine its policy for the
specific flavour it is being trained on, overfitting to that flavour. With other game flavours being significantly more
complex in their dynamics and gameplay, we do not observe this prominent bell-shaped curve though. For example, in
BREAKOUT, we actually observe a monotonic increase in performance throughout the evaluation process.

5 Regularization in deep RL

In order to evaluate the hypothesis that the observed lack of generalization is due to overfitting, we revisit some popular
regularization methods from the supervised learning literature. We consider two forms of regularization: dropout and `2
regularization.

First we want to understand the effect of regularization when deploying the learned policy in a different flavour. We do
so by applying dropout to the first four layers of the network, that is, the three convolutional layers and the first fully
connected layer. Note that we used two seperate dropout rates, one for the convolutional layers and the other for the fully
connected layer. We also evaluate the use `2 regularization on all weights in the network during training. An exhaustive
grid search was performed for both dropout and `2 regularization and we ended up combining both methods as this
provided a good balance between training and evaluation performance. For all future experiments we fixed λ = 10−4, and
pconv, pfc = 0.05, 0.1. We follow the same evaluation methodology described when examining the non-regularized policy.

Alongside the column EVAL. WITHOUT REGULARIZATION in Table 1 we present the results for EVAL. WITH REGULAR-
IZATION. In most flavours, evaluating the policy trained with regularization does not negatively impact performance
when compared to the performance of the policy trained without regularization. In some flavours we even see an increase
in performance. Interestingly, when using regularization the agent in FREEWAY improves for all flavours and even learns a
policy capable of outperforming the baseline learned from scratch in two of the three flavours. Moreover, in FREEWAY we
now observe increasing performance during evaluation throughout most of the learning procedure as depicted with solid
lines in Figure 1. The results in Figure 1 seem to confirm the notion of overfitting.

Despite slight improvements from these techniques, regularization by itself does not seem sufficient to enable policies to
generalize across flavours. As shown in the next section, the real benefit of regularization in deep RL seems to come from
the ability to learn more general features. These features may lead to a more adaptable representation which can be reused
and subsequently fine-tuned on other flavours, which is often the case in supervised learning.

6 Value function fine-tuning

We hypothesize that the benefit of regularizing deep RL algorithms may not come from improvements during evaluation,
but instead in having a good parameter initialization that can be adapted to new tasks that are similar. We evaluate this
hypothesis by fine-tuning the entire network post-training with and without regularization.

When fine-tuning the entire network we take the weights of the network trained in the default flavour for 50M frames and
use them to initialize the network commencing training in the new flavour for 50M frames. For comparison we provide a
baseline trained from scratch for 50M and 100M frames in each flavour. Directly comparing the performance obtained
after fine-tuning to the performance after 50M frames (SCRATCH) shows the benefit of re-using a learned representation.
Comparing the performance obtained after fine-tuning to the performance of 100M frames (SCRATCH) lets us take into
consideration the sample efficiency of the whole learning process. The results are presented in Table 2.

Fine-tuning from a non-regularized representation yields conflicting conclusions. Although in FREEWAY we obtained positive
fine-tuning results, we note that rewards are so sparse in mode 1 that this initialization is likely to be acting as a form of
optimistic initialization, biasing the agent to go up. The agent observes rewards more often, therefore, it learns quicker
about the new flavour. However, the agent is still unable to reach the maximum score in these flavours.

The results of fine-tuning the regularized representation are more exciting. In FREEWAY we observe the highest scores
on m1d0 and m1d1 throughout the whole paper. In HERO we vastly outperform fine-tuning from an non-regularized
representation. In SPACE INVADERS we obtain higher scores across the board on average when comparing to the same
amount of experience. These results suggest that reusing a regularized representation in deep RL might allow us to learn
more general features which can be more successfully fine-tuned.

Moreover, initializing the network with a regularized representation has a big impact on the agent’s performance when
compared to initializing the network randomly. These results are impressive when we consider the potential regularization
has in reducing the sample complexity of deep RL algorithms. Such an observation also holds when we take the total
number of frames seen between two flavours into consideration. When directly comparing one row of REGULARIZED
FINE-TUNING to SCRATCH we are comparing two algorithms that observed 100M frames. However, to generate two rows
of SCRATCH we used 200M frames while two rows of REGULARIZED FINE-TUNING used 150M frames (50M from scratch +
50M in each row). The distinction becomes larger as more tasks are taken into consideration.

3

Paper # 250 145

Table 2: Experiments fine-tuning the entire network with and without regularization (dropout + `2). An agent is trained
with dropout + `2 regularization in the default flavour of each game for 50M frames, then DQN’s parameters were used to
initialize the fine-tuning procedure on each new flavour for 50M frames. The baseline agent is trained from scratch up to
100M frames. Standard deviation is reported between parentheses.

FINE-TUNING REGULARIZED FINE-TUNING SCRATCH

GAME VARIANT 10M 50M 10M 50M 50M 100M

FREEWAY
m1d0 2.9 (3.7) 22.5 (7.5) 20.2 (1.9) 25.4 (0.2) 4.8 (9.3) 7.5 (11.5)

m1d1 0.1 (0.2) 17.4 (11.4) 18.5 (2.8) 25.4 (0.4) 0.0 (0.0) 2.5 (7.3)

m4d0 20.8 (1.1) 31.4 (0.5) 22.6 (0.7) 32.2 (0.5) 29.9 (0.7) 32.8 (0.2)

HERO
m1d0 220.7 (98.2) 496.7 (362.8) 322.5 (39.3) 4104.6 (2192.8) 1425.2 (1755.1) 5026.8 (2174.6)

m2d0 74.4 (31.7) 92.5 (26.2) 84.8 (56.1) 211.0 (100.6) 326.1 (130.4) 323.5 (76.4)

BREAKOUT m12d0 11.5 (10.7) 69.1 (14.9) 48.2 (4.1) 96.1 (11.2) 67.6 (32.4) 55.2 (37.2)

SPACE INVADERS
m1d0 617.8 (55.9) 926.1 (56.6) 701.8 (28.5) 1033.5 (89.7) 753.6 (31.6) 979.7 (39.8)

m1d1 482.6 (63.4) 799.4 (52.5) 656.7 (25.5) 920.0 (83.5) 698.5 (31.3) 906.9 (56.5)

m9d0 354.8 (59.4) 574.1 (37.0) 519.0 (31.1) 583.0 (17.5) 518.0 (16.7) 567.7 (40.1)

7 Discussion and conclusion

Analyzing generalization and overfitting in deep RL has its own issues on top of the challenges posed in the supervised
learning case. Actually, generalization in RL can be seen in different ways. We can talk about generalization in RL in
terms of conditioned sub-goals within an environment, learning multiple tasks at once, or sequential task learning as in a
continual learning setting. In this paper we evaluated generalization in terms of small variations of high-dimensional
control tasks. This provides a candid evaluation method to study how well representations learned by deep neural
networks in RL problems can generalize. The approach of studying generalization with respect to the representation
learning problem intersects nicely with the aforementioned problems in RL where generalization is key.

Ultimately we want agents that can keep learning as they interact with the world in a continual learning fashion. The
ability to generalize is essential. Throughout this paper we often avoided the expression transfer learning because we
believe that succeeding in slightly different environments should be actually seen as a problem of generalization. Our
results suggested that regularizing and fine-tuning representations in deep RL might be a viable approach towards
improving sample efficiency and generalization in this setting.

References
[1] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Environment: An

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[3] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael Bowling.

Revisiting the Arcade Learning Environment: Evaluation protocols and open problems for general agents. Journal of
Artificial Intelligence Research, 61:523–562, 2018.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[5] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN features off-the-shelf: An
astounding baseline for recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
pages 512–519, 2014.

[6] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[7] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

4

Paper # 250 146

Hyperbolic Discounting and Learning over Multiple Horizons

William Fedus
Google Brain

University of Montreal (Mila)
liamfedus@google.com

Carles Gelada
Google Brain

cgel@google.com

Yoshua Bengio
University of Montreal (Mila)

CIFAR Senior Fellow
yoshua.bengio@mila.quebec

Marc G. Bellemare
Google Brain

bellemare@google.com

Hugo Larochelle
Google Brain

hugolarochelle@google.com

Abstract

Reinforcement learning (RL) typically defines a discount factor (γ) as part of the Markov Decision Process. The discount
factor values future rewards by an exponential scheme that leads to theoretical convergence guarantees of the Bellman
equation. However, evidence from psychology, economics and neuroscience suggests that humans and animals instead
have hyperbolic time-preferences (1

1+kt for k > 0). Here we extend earlier work of Kurth-Nelson and Redish and propose
an efficient deep reinforcement learning agent that acts via hyperbolic discounting and other non-exponential discount
mechanisms. We demonstrate that a simple approach approximates hyperbolic discount functions while still using familiar
temporal-difference learning techniques in RL. Additionally, and independent of hyperbolic discounting, we make a
surprising discovery that simultaneously learning value functions over multiple time-horizons is an effective auxiliary
task which often improves over a strong value-based RL agent, Rainbow.

Keywords: Reinforcement learning (RL), time-preferences, hyperbolic dis-
counting, multiple-horizon discounting, auxiliary tasks

Acknowledgements

This research and its general framing drew upon the talents of many researchers at Google Brain, DeepMind and Mila.
In particular, we’d like thank Ryan Sepassi for framing of the paper, Utku Evci for last minute Matplotlib help, Audrey
Durand, Margaret Li, Adrien Ali Taïga, Ofir Nachum, Doina Precup, Jacob Buckman, Marcin Moczulski, Nicolas Le Roux,
Ben Eysenbach, Sherjil Ozair, Anirudh Goyal, Ryan Lowe, Robert Dadashi, Chelsea Finn, Sergey Levine, Graham Taylor
and Irwan Bello for general discussions and revisions.

Paper # 38 147

1 Introduction

The standard treatment of the reinforcement learning (RL) problem is the Markov Decision Process (MDP) which includes
a discount factor 0 ≤ γ < 1 that exponentially reduces the present value of future rewards [18]. A reward rt received
in t-time steps is devalued to d(t)rt = γtrt, a discounted utility model. This establishes a time-preference for rewards
realized sooner rather than later. The decision to exponentially discount future rewards by γ leads to value functions that
satisfy theoretical convergence properties [3]. The magnitude of γ also plays a role in stabilizing learning dynamics of RL
algorithms [3] and is often treated as a hyperparameter.

However, discounting future values exponentially and according to a single discount factor γ does not harmonize with
the measured value preferences in humans and animals [10]. A wealth of empirical evidence has been amassed that
humans, monkeys, rats and pigeons instead discount future returns hyperbolically, where dk(t) = 1

1+kt , for some positive
k > 0 [1, 12, 6]. As an example of a potential difference emerging from hyperbolic discounting, one may maintain
time-inconsistent preferences. For instance, a person might prefer $1M immediately to the promise of $1.1M dollars
tomorrow while simultaneously preferring the promise of $1.1M in 366 days over $1M in 365 days.

Hyperbolic time-preferences is mathematically consistent with the agent maintaining some uncertainty over the prior
belief of the hazard rate in the environment [16]. Hazard rate h(t) measures the per-time-step risk the agent incurs as it
acts in the environment due to a potential early death. Precisely, if s(t) is the probability that the agent is alive at time t
then the hazard rate is h(t) = − d

dt lns(t). We consider the case where there is a fixed, but potentially unknown hazard rate
h(t) = λ ≥ 0. The prior belief of the hazard rate p(λ) implies a specific discount function [16]. Under this formalism, the
canonical case in RL of discounting future rewards according to d(t) = γt is consistent with the belief that there exists a
single hazard rate λ = e−γ known with certainty. This contrasts most RL environments with simple hazard dynamics.

We extend the µAgents work of Kurth-Nelson and Redish which empirically demonstrated modeling a finite set of
exponential functions may approximate a hyperbolic discounting function [9] which is a model consistent with fMRI
studies [19, 14]. Here we propose a deep reinforcement learning agent that efficiently approximates hyperbolic discounting
while preserving Q-learning [20] tools and their associated theoretical guarantees. Our agent efficiently models many
Q-values in parallel by building separate Q-value heads off a common shared representation of the state.

Surprisingly and in addition to enabling new discounting schemes, we observe that learning a set of Q-values is beneficial
as an auxiliary task [8]. Adding this multi-horizon auxiliary task often improves over strong baselines including Rainbow
[7] in the ALE [2]. This work questions the RL paradigm of learning policies through a single discount function which
exponentially discounts future rewards through two contributions:

1. Hyperbolic-agent. A practical approach for training an efficient deep RL agent which discounts future rewards
by a hyperbolic discount function and acts according to this.

2. Multi-horizon auxiliary task. A demonstration of multi-horizon learning over many γ simultaneously as an
effective auxiliary task in deep RL.

2 Hazard in MDPs

To study MDPs with hazard distributions and general discount functions we introduce two modifications. The hazardous
MDP now is defined by the tuple < S,A, R, P,H, d >. In standard form, the state space S and the action space Amay be
discrete or continuous. The learner observes samples from the environment transition probability P (st+1|st, at) for going
from st ∈ S to st+1 ∈ S given at ∈ A. We will consider the case where P is a sub-stochastic transition function, which
defines an episodic MDP. The environment emits a bounded reward r : S ×A → [rmin, rmax] on each transition. In this
work we consider non-infinite episodic MDPs. A policy π : S → A is a mapping from states to actions.

The first difference is that at the beginning of each episode, a hazard λ ∈ [0,∞) is sampled from the hazard distribution
H. This is equivalent to sampling a continuing probability γ = e−λ. During the episode, the hazard modified transition
function will be Pλ, in that Pλ(s′|s, a) = e−λP (s′|s, a). The second difference is that we now consider a general discount
function d(t). This differs from the standard approach of exponential discounting in RL with γ according to d(t) = γt,
which is a special case. The state action value function QH,dπ (s, a) is the expected discounted rewards after taking action a
in state s and then following policy π until termination.

QH,dπ (s, a) = EλEπ,Pλ

[∞∑

t=0

d(t)R(st, at)|s0 = s, a0 = a

]
(1)

where λ ∼ H and Eπ,Pλ implies that st+1 ∼ Pλ(·|st, at) and at ∼ π(·|st). This formulation supports an equivalence
between the value function of an MDP with a discount function and MDP with a hazard distribution.

1

Paper # 38 148

3 Computing Hyperbolic Q-Values From Exponential Q-Values

We can re-purpose exponentially-discounted Q-values to compute hyperbolic (and other-non-exponential) discounted
Q-values. The central challenge with using non-exponential discount strategies is that most RL algorithms use some form
of TD learning [17]. This family of algorithms exploits the Bellman equation which, when using exponential discounting,
relates the value function at one state with the value at the following state Qγ

t

π (s, a) = Eπ,P [R(s, a) + γQπ(s′, a′)] where
expectation Eπ,P denotes sampling a ∼ π(·|s), s′ ∼ P (·|s, a), and a′ ∼ π(·|s′).

Being able to reuse the literature on TD methods without being constrained to exponential discounting is thus an important
challenge. By using a simple change of variables λ = e−γ relating hazard rate in Sozou’s formulation [16] to discount rate
in RL we may model hyperbolic as well as other non-exponential discount schemes through simple integrals over γ.

Lemma 3.1. Let QH,γπ (s, a) be the state action value function under exponential discounting in a hazardous MDP <
S,A, R, P,H, γt > and let QH,dπ (s, a) refer to the value function in the same MDP except for new discounting < S,A, R, P,H, d >.
If there exists a function w : [0, 1]→ R such that

d(t) =

∫ 1

0

w(γ)γtdγ (2)

which we will refer to as the exponential weighting condition, then

QH,dπ (s, a) =

∫ 1

0

w(γ)QH,γπ (s, a)dγ (3)

For example, the hyperbolic discount d(t) = 1
1+kt can be expressed as the integral 1

k

∫ 1

γ=0
γ1/k+t−1dγ = 1

1+kt where
γ = [0, 1). This integral can be derived and the w(γ) = 1

kγ
1/k−1 identified via the change of variables γ = e−λ applied to

Sozou’s Laplace transform [16] of the priorH = p(λ). This procedure allows us to express alternative discount factors in
reinforcement learning.

4 Approximating the Discount Factor Integral

We now present a practical approach to approximate discounting Γ(t) = 1
1+kt using standard Q-learning [20]. To avoid

estimating an infinite number of Qγπ-values we introduce a free hyperparameter (nγ) which is the total number of Qγπ-
values to consider, each with their own γ. We choose a practically-minded approach to choose G = [γ0, γ1, · · · , γnγ] that
emphasizes evaluating larger values of γ rather than uniformly choosing points and empirically performs well as seen in
Sections 5, 6.

Each Qγiπ computes the discounted sum of returns according to that specific discount factor Qγiπ (s, a) =
Eπ [

∑
t(γi)

trt|s0 = s, a0 = a]. The set of Q-values permits us to estimate the integral through a Riemann sum (Equa-
tion 5).

QΓ
π(s, a) =

∫ 1

0

w(γ)Qγπ(s, a)dγ (4)

≈
∑

γi∈G
(γi+1 − γi) w(γi) Q

γi
π (s, a) (5)

where we estimate the integral through a lower bound. This approach is similar to that of [9] where each µAgent models a
specific discount factor γ. However, this differs in that our final agent computes a weighted average over each Q-value
rather than a sampling operation of each agent based on a γ-distribution.

5 Pathworld Results

We first test our approach in a synthetic environment, Pathworld. The agent makes one decision in Pathworld: which of
the N paths to investigate. Once a path is chosen, the agent continues until it reaches the end or until it dies. This is similar
to a multi-armed bandit, with each action subject to dynamic risk. The paths vary quadratically in length with the index
d(i) = i2 but the rewards increase linearly with the path index r(i) = i, presenting a non-trivial decision. At deployment,
an unobserved hazard λ ∼ H is drawn and the agent is subject to a per-time-step risk of dying of (1− e−λ). Note that this
takes inspiration from hazardous settings [16] since we determine time-preferences through risk to the reward. However,
alternative formulations investigate these time-preferences emerging when rewards are subject to variable-timing as is the
case in adjusting-delay procedure [11, 9].

2

Paper # 38 149

Figure 1 confirms this approximates the true hyperbolic value of each path when the hazard prior matches the true
distribution. Agents that discount exponentially according to a single γ (as is common in RL) incorrectly value the paths.
Through this procedure, we are able to train an RL agent that is robust to hazards in the environment.

0 2 4 6 8 10 12 14
Path index a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
x
p
e
ct

e
d
 v

a
lu

e
 E

[r
(a

)]

Hyperbolic vs. Exponential Value Est.
value estimate

theoretical value

hyperbolic value

gamma=0.75

gamma=0.9

gamma=0.95

gamma=0.975

gamma=0.99

Figure 1: An unobserved hazard is drawn each episode
λ ∼ p(λ) and the agent is subject to a per-step risk of
the reward not being realized. When the agent’s hazard
prior matches the true hazard distribution, the value
estimate agrees well with the theoretical value. Expo-
nential discounts for many γ fail to well-approximate
the true value as seen to the right in Table 1.

Discount function MSE
hyperbolic value 0.002

γ=0.975 0.566
γ=0.95 1.461
γ=0.9 2.253
γ=0.99 2.288
γ=0.75 2.809

Table 1: The average mean
squared error (MSE) over each
of the paths in Figure 1 show-
ing that our approximation
scheme well-approximates the
true value-profile.

We examine further the failure of exponential discounting in this hazardous setting. For this environment, the true hazard
parameter in the prior was k = 0.05 (i.e. λ ∼ 20exp(−λ/0.05)). Therefore, at deployment, the agent must deal with
dynamic levels of risk and faces a non-trivial decision of which path to follow. Even if we tune an agent’s γ = 0.975 such
that it chooses the correct arg-max path, it still fails to capture the functional form (Figure 1) and it achieves a high error
over many paths (Table 1). If the arg-max action was not available or if the agent was proposed to evaluate non-trivial
intertemporal decisions, it would act sub-optimally.

6 Atari 2600 Results

With our approach validated in Pathworld, we now move to the high-dimensional environment of Atari 2600, specifically,
ALE [2]. We use the Rainbow variant from Dopamine [4] which implements three of the six considered improvements
from the original paper: distributional RL, predicting n-step returns and prioritized replay buffers.

The agent maintains a shared hidden representation h(s) of state, but computes nγ separate Q-value logits (one for each of
the γi) via Q(i)

π (s, a) = Wih(s) + bi where Wi and bi are the learnable parameters of the affine transformation for that logit.
On a random subset of 19 games from ALE we find performance improvements [5] of the Hyperbolic-Rainbow agent
(Hyper-Rainbow), however, to dissect these improvements, recognize that Hyper-Rainbow changes two properties from
the base Rainbow agent. First, the agent acts according to hyperbolic Q-values computed by our approximation described
above. Second, the agent simultaneously learns Q-values over many γ rather than a Q-value for a single γ.

The second modification can be regarded as introducing an auxiliary task [8]. Therefore, to attribute the performance
of each properly we construct a Rainbow agent augmented with the multi-horizon auxiliary task but have it still act
according to the original policy (Multi-Rainbow). That is, Multi-Rainbow acts to maximize expected rewards discounted
by a fixed γaction but now learns over multiple horizons.

We examine further and investigate the performance of this auxiliary task across the full Arcade Learning Environment.
Doing so we find strong empirical benefits of the multi-horizon auxiliary task on the Rainbow agent as shown in Figure 2.
This provides a clear demonstration of the usefulness of modeling multiple time-scales as was sought by earlier γ-net
work [15] and an alternative motivation from TD(∆) [13].

7 Discussion

This work challenges one of the basic premises of RL: that the agent should always maximize the exponentially discounted
returns via a single discount factor. Our deep RL agent instead builds a shared representation that efficiently learns over

3

Paper # 38 150

multiple horizons simultaneously. This permits us both a broader class of learning algorithms and this also improves
performance as a powerful auxiliary task that positively builds upon other improvements (distributional learning, n-step
returns) previously introduced. Many open questions remain including which time-preferences are beneficial in more
complicated environments and the general mechanism underlying the improvement of our auxiliary task and we hope
these findings and other related work piques additional inquiry.

-103 -102 -101 -1000 100 101 102 103

Percent Improvement (log)

Seaquest
IceHockey

Phoenix
Pitfall

SpaceInvaders
MontezumaRevenge

Zaxxon
Breakout
Gravitar

StarGunner
Tennis
Asterix
Gopher

NameThisGame
TimePilot

Bowling
MsPacman

Solaris
VideoPinball
BeamRider

Skiing
Asteroids

WizardOfWor
KungFuMaster
YarsRevenge
CrazyClimber

Krull
Hero

Qbert
Tutankham

Atlantis
FishingDerby

Alien
ElevatorAction

Enduro
UpNDown

ChopperCommand
Kangaroo

Centipede
Venture

Pong
Berzerk
Boxing

Freeway
RoadRunner

Riverraid
Robotank
BankHeist

DoubleDunk
Carnival
Assault
Amidar

BattleZone
Frostbite

AirRaid
JourneyEscape

Pooyan
DemonAttack

Jamesbond
PrivateEye

G
a
m

e
 N

a
m

e

Multi-Rainbow Improvement over Rainbow

Figure 2: Performance improvement over Rainbow
using the multi-horizon auxiliary task in Atari Learning
Environment (3 seeds each).

References
[1] G. Ainslie. Specious reward: a behavioral theory of impulsiveness and

impulse control. Psychological bulletin, 82(4):463, 1975.
[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learn-

ing environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming, volume 5.
Athena Scientific Belmont, MA, 1996.

[4] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare.
Dopamine: A research framework for deep reinforcement learning.
CoRR, abs/1812.06110, 2018.

[5] W. Fedus, C. Gelada, Y. Bengio, M. G. Bellemare, and H. Larochelle.
Hyperbolic discounting and learning over multiple horizons. arXiv
preprint arXiv:1902.06865, 2019.

[6] L. Green, E. B. Fisher, S. Perlow, and L. Sherman. Preference reversal and
self control: Choice as a function of reward amount and delay. Behaviour
Analysis Letters, 1981.

[7] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[8] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[9] Z. Kurth-Nelson and A. D. Redish. Temporal-difference reinforcement
learning with distributed representations. PLoS One, 4(10):e7362, 2009.

[10] T. V. Maia. Reinforcement learning, conditioning, and the brain: Suc-
cesses and challenges. Cognitive, Affective, & Behavioral Neuroscience,
9(4):343–364, 2009.

[11] J. E. Mazur. An adjusting procedure for studying delayed reinforcement.
1987.

[12] J. E. Mazur. Choice, delay, probability, and conditioned reinforcement.
Animal Learning & Behavior, 25(2):131–147, 1997.

[13] J. Romoff, P. Henderson, A. Touati, Y. Ollivier, E. Brunskill, and
J. Pineau. Separating value functions across time-scales. arXiv preprint
arXiv:1902.01883, 2019.

[14] N. Schweighofer, M. Bertin, K. Shishida, Y. Okamoto, S. C. Tanaka,
S. Yamawaki, and K. Doya. Low-serotonin levels increase delayed
reward discounting in humans. Journal of Neuroscience, 28(17):4528–4532,
2008.

[15] C. Sherstan, J. MacGlashan, and P. M. Pilarski. Generalizing value
estimation over timescal. In FAIM Workshop on Prediction and Generative
Modeling in Reinforcement Learning, 2018.

[16] P. D. Sozou. On hyperbolic discounting and uncertain hazard rates. Pro-
ceedings of the Royal Society of London B: Biological Sciences, 265(1409):2015–
2020, 1998.

[17] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.

[18] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
2018.

[19] S. C. Tanaka, K. Doya, G. Okada, K. Ueda, Y. Okamoto, and S. Yamawaki.
[20] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

4

Paper # 38 151

Compositional subgoal representations

Carlos G. Correa
Princeton Neuroscience Institute

Princeton University
Princeton, NJ 08544

cgcorrea@princeton.edu

Fred Callaway
Department of Psychology

Princeton University
Princeton, NJ 08544

fredcallaway@princeton.edu

Mark K. Ho
Department of Psychology

Princeton University
Princeton, NJ 08544
mho@princeton.edu

Thomas L. Griffiths
Departments of Psychology and Computer Science

Princeton University
Princeton, NJ 08544
tomg@princeton.edu

Abstract
When faced with a complex problem, people naturally break it up into several simpler problems. This hierarchical decomposition of
an ultimate goal into sub-goals facilitates planning by reducing the number of factors that must be considered at one time. However,
it can also lead to suboptimal decision-making, obscuring opportunities to make progress towards multiple subgoals with a single
action. Is it possible to take advantage of the hierarchical structure of problems without sacrificing opportunities to kill two birds with
one stone? We propose that people are able to do this by representing and pursuing multiple subgoals at once. We present a formal
model of planning with compositional goals, and show that it explains human behavior better than the standard “one-at-a-time”
subgoal model as well as non-hierarchical limited-depth search models. Our results suggest that people are capable of representing
and pursuing multiple subgoals at once; however, there are limitations on how many subgoals one can pursue concurrently. We find
that these limitations vary by individual.

Keywords: planning; problem solving; hierarchy; goals

Acknowledgements

Paper # 124 152

1 Introduction

It’s Tuesday afternoon and you have a list of errands to run before you can return home to watch last night’s episode of The Bachelor.
You need to mail a letter, pick up broccoli for tonight’s stir fry, and drop off a book at the library. You are eager to get home to see
whether Hannah B. received one of the coveted roses, and thus want to accomplish these tasks as expediently as possible. There are
two library locations, four grocery stores, and who knows how many mail boxes in your town; how do you decide which location
of each to visit, and in what order? Unfortunately, you have been presented with the generalized traveling salesman problem, which
is known to be NP-hard (that is, potentially very difficult to solve). You might simplify the problem by focusing on only one errand
at a time, completing it as quickly as possible from wherever the last errand left you. But by taking this strategy you might miss
opportunities to save time overall–e.g., by going to the library location that is further from your house, but near the grocery store.

The ability of people to plan and problem solve can be formulated in terms of search over an internal representation of the prob-
lem space (Newell & Simon, 1972). However, the combinatorial explosion of possible action sequences makes exhaustive search
intractable, necessitating approximation strategies (Huys et al., 2015). One particularly valuable strategy for directing search is sub-
goaling (Donnarumma, Maisto, & Pezzulo, 2016). By focusing on a single subgoal at a time, one can ignore irrelevant actions and
features of the environment, effectively reducing the dimensionality of the problem space (Dietterich, 2000). However, this reduction
comes at a cost. Standard models of goal-setting and hierarchical planning assume that subgoals are context-free in the sense that they
are pursued independently, without consideration of the ultimate goal or future subgoals. As a result, opportunities to make progress
towards multiple subgoals at once will be missed. Nevertheless, people often do identify these opportunities. This poses a problem
for the standard one-at-a-time model of subgoal pursuit.

How might people reap the fruits of hierarchical decomposition without being hamstrung by the artificial boundaries it imposes on
problem solving? One possibility is that, contrary to the standard model, people are not limited to pursuing one goal at a time. That
is, perhaps they choose a subset of goals, and construct a plan that is optimal with respect to that subset. They might ask themselves,
for example, “What is the fastest way to get to both a grocery store and a library?”, leaving future goals such as dropping off a letter
for future consideration. We formalize this theory in a hierarchical planning framework. At the abstract level, the agent dynamically
constructs composite goals (or multigoals) from a set of primitive goals. Then, at the concrete level, the agent searches for a plan that
achieves the composite goal, disregarding future goals.

Here, we first discuss previous attempts to capture how people use subgoals to decompose problems. We then present a formalization
of the multigoal model as a type of hierarchical planning. To test this account, we assess how well it explains human behavior on a
classic problem solving task (Shallice, Broadbent, & Weiskrantz, 1982) and use a formal model comparison to show how it acccounts
for participant behavior better than alternative models.

2 Background

Much previous work in psychology studies how people use representations to make problem solving tractable. We focus on two
non-exclusive classes of strategies that have been studied: tree search and hierarchical decomposition. Tree search strategies take
inspiration from algorithms based on search through a decision tree, in which possible plans are simulated forward and evalu-
ated (Newell & Simon, 1972). For example, rather than consider plans that are arbitrarily long, people can engage in depth-limited
search that focuses resources on plans that can be taken within a certain time horizon (Keramati, Smittenaar, Dolan, & Dayan, 2016;
Krusche, Schulz, Guez, & Speekenbrink, 2018; MacGregor, Ormerod, & Chronicle, 2001). Alternatively, they may rely on local
signals of progress to avoid less promising plans without explicitly considering them (Huys et al., 2012).

However, approaches such as depth-limited search and heuristics are limited by their locality—what if the goal is in the distant
future, or even just out of reach of an arbitrary depth limit? What if the local cues are uninformative or simply do not exist? This,
in part, motivates complementary approaches based on hierarchical decomposition, in which a problem is holistically broken into
sub-problems, each of which is then solved independently (Botvinick, 2012; Sacerdoti, 1974). Such an approach can make decision-
making easier by reducing the resources needed to solve a given sub-problem at a particular time (Maisto, Donnarumma, & Pezzulo,
2015; Van Dijk, Polani, & Nehaniv, 2009). But this raises new problems: What is a good way to break down a task? And how exactly
should the identified hierarchy guide the choice of actions?

3 A Model of planning with multigoals

Multigoals extend standard goal-based hierarchical planning by allowing new subgoals to be constructed from primitive subgoals
on the fly. Formally, we define a multigoal, G , as a set of primitive subgoals. Following the options framework (Sutton, Precup, &
Singh, 1999), a subgoal g is defined by βg : S →{0,1}, which indicates whether a state satisfies the subgoal. A multigoal is satisfied
when all component subgoals are satisfied: βG (s) = ∏g∈G βg(s). Here, we focus on the simplest case of a two-level hierarchy. At the
abstract level the agent chooses a multigoal based on the current state and ultimate goal. At the concrete level, the agent attempts to
find a sequence of actions that satisfies the current multigoal.

1

Paper # 124 153

k = 2

k = 1

Figure 1: Planning with multigoals of different size k can lead to different action sequences. In this example, planning with k = 2
ensures that A is moved first which avoids extraneous actions at future states. Green blocks represent subgoals that have been satisfied
and blue blocks represent the subgoals in the current multigoal, used to plan the next action.

To focus on how multigoals are composed from subgoals, here, we assume that possible subgoals and their appropriate ordering are
given. Formally, the agent receives an ordered set of subgoals {g1,g2, . . .gn} such that completing all n subgoals in order amounts
to solving the ultimate goal. The abstract-level phase of planning is thus reduced to selecting k subgoals to pursue. Given k and the
multigoal, G(s;k) is simply the set of the next k incomplete subgoals, as illustrated in Figure 1. For example, if g1 has been completed
(βg1(s) = 1) and k = 2, we would have G(s;k = 2) = {g2,g3}. Admittedly, our assumption that possible subgoals and their ordering
are given eliminates a considerable amount of interesting complexity. However, it allows us to study multigoals without tackling the
full problem of multigoal selection. Relaxing this assumption is an important direction for future work.

Given a multigoal G , concrete-level planning uses tree search to find a lowest-cost path π that satisfy all subgoals in G . This search
process may be depth-limited. If no path of length d or less can be found that satisfies all the subgoals, the model chooses a path that
satisfies the largest possible number of subgoals. Thus, the action sequence is chosen by

argmax
π ∑

g∈G
βg(sπ)−λ|π| s.t. |π| ≤ d, (1)

where sπ is the final state on the path defined by the action sequence π and λ is a very small positive constant, with the effect that π
is chosen to maximize the first term (number of subgoals completed), using the second term (path length) as a tie-breaker.

There are several special cases of the model worth highlighting. When k = 1, we recover a standard hierarchical planning algorithm
in which only one subgoal is pursued at a time. When k = ∞, we recover a standard depth-limited search model with a heuristic cost
function defined by the number of incomplete subgoals. When d = ∞, the model optimally achieves each multigoal, but may still
perform suboptimally because future subgoals are not considered. And when d = k = ∞, the model always makes optimal choices.

4 Experiment: Measuring human multigoaling

To test the multigoal model, we conducted a Tower of London (ToL) experiment (Shallice et al., 1982) where an initial configuration
of stacked items must be rearranged to match a goal configuration by moving one item at a time. Our variant of ToL uses blocks
instead of disks and removes the restrictions on stack height. We additionally mark the blocks with letters and use a single standard
goal position to reduce working memory requirements. This results in an unambiguous subgoal ordering (Kaller, Rahm, Kstering, &
Unterrainer, 2011): One must put blocks in their place in reverse alphabetical order.

4.1 Methods

Each trial, participants were shown two configurations of stacked blocks marked with letters and asked to rearrange the blocks in one
stack to match the blocks in the goal configuration (Figure 2a). Only the top block of a stack can be moved, and the board is limited
to three columns. In all trials, the goal configuration is a single stack arranged in alphabetical order in the middle column.

Participants completed 3-, 4-, and 5-block tutorial trials and then completed sixteen 6-block test trials. Trials did not have a time
limit. Only test trials were analyzed. Problems were selected to maximize the difference in likelihood of the fixed k multigoal model
and the depth-limited model on data simulated from multigoal agents with k ∈ {1,2,3,4}. We recruited 41 participants from Amazon
Mechanical Turk. Each participant received $2 for completing the task, which took an average of 9 minutes.

2

Paper # 124 154

(a) (b)

Figure 2: Experiment. (a) Experimental interface. (b) Relative model performance. Each point is one model fit to one participant.
For ease of comparison, we normalize the AIC (Akaike information criterion) values for each participant by the AIC of their best
fitting model. The same additive transformation is applied to the AIC values for each model, and thus the mean differences between
models are not affected.

4.2 Model

According to the multigoal model, people select multiple subgoals to pursue concurrently, attempting to create a plan that satisfies
all k subgoals in the fewest steps. A subgoal in the experimental task corresponds to putting a block in its correct final position with
all prior subgoals completed (this ensures that subgoals will only be completed in order). Thus, we have an ordered set of subgoals
{gF ,gE ,gD,gC,gB,gA} such that completing them in order necessarily solves the full problem.

We derive model likelihoods as follows. Given a state and a value for k, the model selects a multigoal G(s;k) which is the set of the
next k uncompleted subgoals. Then, given this multigoal and a value for d, we find a set of optimal paths given by Equation 1. The
model uniformly selects among optimal actions or selects an action randomly with probability ε.

To test the multigoal model’s prediction that people can pursue more than one goal at a time, we employ formal model comparison.
The comparisons of greatest interest are special cases of the full model. A standard depth-limited search model sets k = ∞ and has
d (the search depth) as a free parameter. A standard hierarchical planning or subgoaling model sets k = 1, allowing for only one
subgoal to be pursued at a time, and also has d as a free parameter. In the full model, both k and d are free.

We consider two hypotheses for how k and d are chosen when they are free parameters. The first hypothesis is that the parameter is
fixed for each individual. For example, one person might always consider two subgoals at a time (k = 2) and search fourteen steps
into the future (d = 14). The second hypothesis is that k and d vary from decision to decision, but follow some distribution that is
particular to each individual. For example, one person might typically consider one subgoal at a time but occasionally pursue two
(or rarely, three) subgoals at a time. We consider two possible distributions for both k and d: the Geometric distribution, which has a
strong positive skew, and the Poisson distribution, which can distribute mass more evenly around a mean. Because these distributions
both have a single parameter, they do not increase the number of parameters in the full model. To compute the likelihood, we integrate
out the latent k and d parameters. We fit all models by maximum likelihood estimation. For discrete parameters we used grid search,
considering all possible values of k ∈ {1 . . .6} and values of d ∈ {1 . . .15}. We chose 15 as this was the farthest a participant ever
was from a goal state. For continuous parameters, we used L-BFGS.

4.3 Results

Models were fit separately for each participant. Results are summarized in Figure 2. We highlight three primary results below.

First, all models that include multigoals explain the data significantly better than the k = 1 model. This suggests that people are not
limited to pursuing one subgoal at a time. That being said, for some participants, the best fitting pk parameter in the Geometric k/d
model was close to one, resulting in single subgoal planning in most cases. In particular pk was greater than 0.95 for 17 out of 41
participants, suggesting that these participants considered more than one subgoal at most 5% of the time.

Second, all models with free k parameters performed better than the models with free d parameters. This suggests that limits on
composite subgoal representations provide a better explanation for participants’ behavior than limits on the depth of search. However,
models that include both kinds of limits perform best. This suggests that human problem solving may be jointly constrained by
subgoal representations and search depth, and that these two constraints each provide unique contributions to explaining behavior.

Third, models with distributions over model parameters k and d always performed better than the corresponding models with fixed
parameters. This suggests that people consider different numbers of subgoals and search to varying depths at different points. This
effect could be due to changing problem structure: The configuration of blocks at any moment may determine, for example, the

3

Paper # 124 155

number of subgoals a person is capable of considering. An alternative (although not mutually exclusive) explanation is that our
participants adaptively adjusted the complexity of their multigoals, choosing how much effort to put into the problem based on an
estimate of how much doing so will improve their performance (Lieder & Griffiths, 2017; Shenhav et al., 2017).

5 Discussion

People often solve complex problems by breaking them down into simpler problems. The importance of subgoals has been long
recognized, and they play a critical role in the most successful models of human problem solving (Anderson, 2013; Laird, Newell,
& Rosenbloom, 1987; Newell & Simon, 1972). However, these models are limited by the assumption that only one subgoal can
be pursued at a time. To address this limitation, we have extended the classic subgoaling model with the notion of a multigoal, a
composite subgoal that is constructed on the fly and pursued concurrently. Through a formal model comparison, we showed that the
multigoal model explains data better than a standard one-at-a-time subgoal model or a model that ignores subgoal structure altogether.

We have presented a theory of how people might represent and pursue multiple concurrent subgoals, and we have provided prelimi-
nary evidence that they do this. Future work will need to determine in greater detail how people select which subgoals to pursue at
any moment. Thus, in the context of the experiment, we treat k as a latent variable to be inferred, not predicted. A more complete
model would explain why people choose the k they do, perhaps as a function of problem complexity or stakes. Such a theory could be
constructed within the framework of resource-rational analysis (Griffiths, Lieder, & Goodman, 2014), predicting that people choose
a k to optimize a trade-off between the efficiency of the problem solution and the cost of representing and pursuing more complex
multigoals. An important open question is how to quantify the cost of a multigoal, or even a standard subgoal.

Another major direction for future work is to remove the simplifying assumption of subgoal-ordering. This assumption allows us to
reduce the problem of composing multigoals from a set of subgoals to the problem of selecting a single integer k, greatly simplifying
model specification and inference. However, many of the problems people are faced with do not have such an assumed ordering.
To return to the initial motivating example, you do not know a priori whether you should go to a grocery store or library first.
Unfortunately, choosing a multigoal from an unordered set of subgoals is a daunting task. With n basic subgoals, there are

(n
k

)
possible multigoals of size k that you could construct. But fortunately, as Colton demonstrates when he hands out roses at the end of
each episode, people are entirely of capable of choosing k out of n options.

References
Anderson, J. R. (2013). The architecture of cognition. Psychology Press.
Botvinick, M. M. (2012). Hierarchical reinforcement learning and decision making. Current opinion in neurobiology, 22(6), 956–962.
Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence

Research, 13, 227–303. doi: 10.1613/jair.639
Donnarumma, F., Maisto, D., & Pezzulo, G. (2016). Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes

and Pitfalls in the Tower of Hanoi. PLoS Computational Biology, 12(4), 1–30. doi: 10.1371/journal.pcbi.1004864
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2014). Rational use of cognitive resources: Levels of analysis between the computational and the

algorithmim. Topics in Cognitive Science, 7(2), 217–229. doi: 10.1111/tops.12142
Huys, Q. J. M., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in your head: how the Pavlovian system sculpts

goal-directed choices by pruning decision trees. PLoS Comput Biol, 8(3), e1002410.
Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J., . . . Roiser, J. P. (2015). Interplay of approximate planning strategies.

Proceedings of the National Academy of Sciences of the United States of America, 112(10), 3098–103. doi: 10.1073/pnas.1414219112
Kaller, C. P., Rahm, B., Kstering, L., & Unterrainer, J. M. (2011). Reviewing the impact of problem structure on planning: A software tool for

analyzing tower tasks. Behavioural Brain Research, 216(1), 1 - 8.
Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016, nov). Adaptive integration of habits into depth-limited planning defines a habitual-

goaldirected spectrum. Proceedings of the National Academy of Sciences, 113(45), 12868–12873. doi: 10.1073/pnas.1609094113
Krusche, M. J. F., Schulz, E., Guez, A., & Speekenbrink, M. (2018). Adaptive planning in human search. bioRxiv, 0–5. doi: 10.1101/268938
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial intelligence, 33(1), 1–64.
Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational metareasoning. Psychological review, 124(6), 762.
MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001). Information processing and insight: a process model of performance on the nine-dot

and related problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 176.
Maisto, D., Donnarumma, F., & Pezzulo, G. (2015, feb). Divide et impera: subgoaling reduces the complexity of probabilistic inference and

problem solving. Journal of The Royal Society Interface, 12(104), 20141335–20141335. doi: 10.1098/rsif.2014.1335
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial intelligence, 5(2), 115–135.
Shallice, T., Broadbent, D. E., & Weiskrantz, L. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of

London. B, Biological Sciences, 298(1089), 199-209. doi: 10.1098/rstb.1982.0082
Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a Rational and Mechanistic

Account of Mental Effort. (March), 99–124.
Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence, 112(1-2), 181–211.
Van Dijk, S. G., Polani, D., & Nehaniv, C. L. (2009). Hierarchical behaviours: getting the most bang for your bit. In European conference on

artificial life (pp. 342–349).

4

Paper # 124 156

Skynet: A Top Deep RL Agent in the
Inaugural Pommerman Team Competition

Chao Gao∗, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor
Borealis AI

Edmonton, Alberta, Canada
{pablo.hernandez, bilal.kartal, matthew.taylor}@borealisai.com

Abstract

The Pommerman Team Environment is a recently proposed benchmark which involves a multi-agent domain with
challenges such as partial observability, decentralized execution (without communication), and very sparse and delayed
rewards. The inaugural Pommerman Team Competition held at NeurIPS 2018 hosted 25 participants who submitted a
team of 2 agents. Our submission nn_team_skynet955_skynet955 won 2nd place of the “learning agents” category.
Our team is composed of 2 neural networks trained with state of the art deep reinforcement learning algorithms and
makes use of concepts like reward shaping, curriculum learning, and an automatic reasoning module for action pruning.
Here, we describe these elements and additionally we present a collection of open-sourced agents that can be used for
training and testing in the Pommerman environment. Relevant code available at: https://github.com/BorealisAI/
pommerman-baseline

Keywords: Deep Reinforcement Learning; Multi-Agent Deep Reinforcement Learning; Pommerman

Acknowledgements

∗cgao3@ualberta.ca Department of Computing Science, University of Alberta. Work performed as intern at Borealis AI

Paper # 90 157

1 Introduction

The Pommerman environment for benchmarking Multi-Agent Learning is based on the classic console game Bomberman.
The team competition involves 4 bomber agents initially placed at the four corners of an 11×11 board. Each two diagonal
agents form a team. At every step, each agent issues an action simultaneously from 6 discrete candidate moves: moving
left, right, up, down, placing a bomb, or stop. The bomb action is legal as long as the agent’s ammo is greater than 0,
and any illegal action is superseded with stop by the environment. Each cell on the board can either be a passage, a
rigid wall, or wood. Only passage is passable for the agent. Wood would be destroyed if it is covered by an exploding
bomb’s flame while a rigid location is unaffected. Also, when wood is destroyed a powerup might appear (according
to some probability) at the same location. There are 3 types of powerups: ExtraBomb, EnableKick, and ExtraBlast
for which the agent respectively, increases its ammo by 1, acquires the ability to kick bombs, and rises its bombs’ blast
strength by 1.

The game starts with a procedurally generated random map and each agent initially has an ammo of 1 and
blast strength of 2. Whenever an agent places a bomb, it explodes after 10 time steps, producing flames that
have a lifetime of 2 time steps and a radius of the bomb placing agent’s blast strength. The game ties when both
teams have at least one agent alive after 800 steps. The team environment is also partially observable, meaning each agent
can only see the local board with a radius of 4 cells, see Figure 1(a).

Pommerman is a challenging benchmark for multi-agent learning and model-free reinforcement learning, due to the
following characteristics:

Sparse and deceptive rewards: the former refers to the fact that the only non-zero reward is obtained at the end of an
episode. The latter refers to the fact that quite often a winning reward is due to the opponents’ involuntary suicide,
which makes reinforcing an agent’s action based on such a reward deceptive. Note that suicide happens frequently during
learning since an agent has to place bombs to explode wood to move around on the board, while due to terrain constraints,
in some cases, performing non-suicidal bomb placement requires complicated, long-term, and accurate planing.

Delayed action effects: the only way to make a change to the environment (e.g., bomb wood or kill an agent) is by
means of bomb placement, but the effect of such an action is only observed when the bomb’s timer decreases to 0; more
complications are added when a placed bomb is kicked to another position by some other agent.

Imperfect information: an agent can only see its nearby areas. This makes the effect of certain actions, such as bomb
kicking, unpredictable. Indeed, even detecting which agent placed the exploding bomb is intractable in general because of
the hidden information of the board.

Uninformative multiagent credit assignment: In the team environment, the same episodic reward is given to two
members of the team. It may not be clear how to assign credit to individual agents. For example, consider an episode
where an agent eliminates an opponent but then commits suicide, and its teammate eliminates the remaining opponent.
Under this scenario, both team members get a positive reward from the environment, but this could reinforce the suicidal
behaviour of the first agent. Similarly, one agent could eliminate both opponents whereas its teammate just camps; both
agents would get positive rewards, reinforcing a lazy agent [7].

2 Skynet955

nn_team_skynet955_skynet955 is a team composed of two identical neural networks, where skynet955 is trained
after equipping the neural net agent with an “ActionFilter” module for 955 iterations. The philosophy is to instill prior
knowledge to the agent by telling the agent what not to do and let the agent discover what to do by trial-and-error. The
benefit is twofold: 1) the learning problem is simplified since suicidal actions are removed and bomb placing becomes
safe; and 2) superficial skills such as not moving into flames and evading bombs in simple cases are handled. Below we
describe the main components of our team: the ActionFilter and the reinforcement learning aspect.

ActionFilter We designed the filter to speed up learning so that agents can focus on higher level strategies. The filter
thus serves as a safety check to provide more efficient exploration. The ActionFilter is implemented by rules shown in
Table 1. Note that for the “avoiding suicide” rules, skynet955 implemented a simple version of them (e.g., a moving
bomb was simply treated as static); a full implementation would arguably make the agent stronger. It is worth mentioning
that the above ActionFilter is extremely fast. In our experiments, together with neural net evaluation, each action takes
≈ 3 ms on a GTX 1060 GPU on average, while the time limit in the competition is 100 ms per move. Also, we note that
another natural approach for “bomb placement” pruning is conducting a lookahead search using “avoding suicide” rules;
this is perhaps better than the crude rules described above. We think this ActionFilter will be useful for learning agents
within the Pommerman domain, since it can constrain the action space during learning without significantly affecting the
overall team strategy. Ideally, one can even start model-free learning with the filter, and once an agent acquires some basic

1

Paper # 90 158

(a)

0 500 1,000 1,500
0

20

40

60

80

100

Iteration

W
in
in
g
P
er
ce
n
ta
g
e

Against Static Team

0 500 1,000 1,500 2,000
0

5

10

15

20

Iteration

W
in
in
g
P
er
ce
n
ta
g
e

Against Smart Random Team

(b)

Figure 1: (a) An example team environment Pommerman game. On the right is shown the partial observation (a limited
area around) for each agent. (b) Winning percentage of the learning team against a team of Static opponents and a team
of Smart random opponents.

Table 1: ActionFilter rules
Avoiding Suicide Not going to positions that are flames on the next step.

Not going to doomed positions, i.e., positions where if the agent were to go there the agent would have no way to
escape. For any bomb, doomed positions can be computed by referring to its blast strength, blast range,
and life, together with the local terrain.

Bomb Placement Not place bombs when teammate is close, i.e., when their Manhattan distance is less than their combined blast
strength.
Not place bombs when the agent’s position is covered by the blast of any previously placed bomb.

skills, it can be unplugged from the neural network so that strategy bias by filter is completely removed. For this reason,
we have open-sourced an implementation of the ActionFilter.1

Reinforcement Learning As depicted in Figure 2, the architecture contains 4 convolution layers, followed by policy and
value heads. The input contains 14 features planes, each of shape 11×11, similar to [9]. It then convolves using 4 layers
of convolution, each has 64 3×3 kernels; the result thus has shape 11×11×64. Then, each head convolves using 2 1×1
kernels. Finally, the output is squashed into action probability distribution and value estimation, respectively. Such a
two-head architecture is a natural choice for Action-Critic algorithms, as it is generally believed that forcing policy and
value learning to use shared weights could reduce over-fitting [10].

Instead of using an LSTM to track the history observations, we use a “retrospective board” to remember the most recent
value at each cell of the board, i.e., for cells outside of an agent’s view, in the “retrospective board” its value is filled with
what was present when the agent saw that cell the last time. The input feature has 14 planes in total, where the first
10 are extracted from the agent’s current observation, the rest 4 are from “retrospective board.” We initially performed
experiments with an LSTM to track all previous observations; however, due to computational overhead on top of the
already prolonged training in Pommerman domain, we decided to replace it with the “retrospective board” idea, which
yielded similar performance but was significantly faster.

1 https://github.com/BorealisAI/pommerman-baseline

Figure 2: Architecture used for the skynet955 agents

2

Paper # 90 159

Table 2: Reward Shaping for skynet955 agents
Going to a cell not in a 121-length FIFO queue gets 0.001. At the end of a game, dead agent in the winning team gets 0.5.
Picking up kick gets 0.02. For draw games, all agents receive 0.0.
Picking up ammo gets 0.01. On one enemy’s death gets 0.5.
Picking up blast strength gets 0.01. On a teammate’s death gets −0.5.

The neural net is trained by PPO [10], minimizing the following objective:

o(θ;D) =
∑

(st,at,Rt)∈D

[
−clip(πθ(at|st)

πoldθ (at|st)
, 1−ε, 1+ε)A(st, at)+

α

2
·max

[
(vθ(st)−Rt)2, (voldθ (st)+clip(vθ(st)−voldθ (st),−ε, ε)−Rt)2

]]
,

(1)
where θ is the neural net, D is sampled by πoldθ , and ε is a tuning parameter. Refer to OpenAI baseline for details [10].

Curriculum Learning Training is conducted by letting two identical neural net players compete against a set of curricu-
lum [1] opponents: (i) Static opponent teams, where opponents do not move or place bombs. Competing against a team
of Static opponents teaches our agents to get closer to opponents, place a bomb, and move away to a safe zone. The
trained neural net is then used against the second opponent in the curriculum. (ii) SmartRandomNoBomb: players that do
not place bombs. Smart random means it has the ActionFilter as described earlier and the action taken is random (except
that bomb placing is disallowed). The reason we let SmartRandomNoBomb not place bombs is that the neural net can focus
on learning true “killing” skills, not a skill that solely relies on the opponent’s strategy flaw (e.g., the provided baseline
SimpleAgent has a significant flaw where the competitor can diagonally block and make SimpleAgent be killed by
its own bomb). This avoids the “false positive” reward signal caused by opponent’s involuntary suicide. Competing
against a team of SmartRandomNoBomb helps our agents to learn better battling skills such as using the topological map
to corner the opponents and pursuing opponents.

Reward shaping: To cope with the sparse reward problem, a dense reward function is added during the learning, see
Table 2. It should be noted the above hand designed reward function is still noisy in the sense that an agent’s contribution
was not clearly separated.

Results: Figure 1(b) shows the learning curves against Static and SmartRandomNoBomb teams. In our training, each
iteration contains 120 games, produced in parallel by 12 actor workers. The curves show that, against Static agents, the
neural net achieved wining percentage around 70%, while against SmartRandomNoBomb, it never reached 20%. We note
that because the opponents do not place bombs, the rest of the games are almost all draws. The learning seems to be slow,
in part because playing against SmartRandomNoBomb, a large number of games were ended with draws, which gives
reward signal 0 in our training.

In the competition, our team was composed of two identical neural net models, at each step, for each of our agent, each
action typically costs one to several milliseconds, while the time limit is 100ms per move. The submitted agent skynet955
was the neural net model at iteration 955 obtained in training against SmartRandomNoBomb team, as by the time of
submission only around 1000 iterations were finished. Throughout our training and testing, only the V0 environment
(which has no wall collapsing) was used. By contrast, in the competition, the V1 (which has wall collapsing, meaning at
certain time step, the boarder passages will suddenly change to rigid walls, and any agent that happens to be in any of the
corresponding cells dies) was used.

An open-sourced collection of agents for Pommerman Against SimpleAgent, it is not difficult to train a non-placing-
bomb neural net agent that wins by diagonally blocking and forcing SimpleAgent to get stuck on its self-placed bomb.2
This strategy flaw of SimpleAgent stems from its hand-crafted heuristic strategy for enemy engagement and bomb
placement. Learning agents exploit this flaw and the learned policy does not generalize against other opponents types.
Therefore, we propose and open source different agents to be used for training, see Table 3.

StaticAgent is an extremely simple agent that always executes the stop action, the advantage of using this agents is
that rewards are noise-free. SmartRandomNoBomb agent is a very challenging opponent. It moves randomly among
the filtered actions, therefore learning against it provides better generalization. It does not place bombs, and thus never
commits suicide. In contrast to SimpleAgent and CautiousAgent, it does not use Dijkstra, and it takes less time to act.

CautiousAgent is based on a modification of SimpleAgent, the main idea is to only let this agent place a bomb when it
is certain to kill an opponent. However, with this adaptation, the “weak” opponent SimpleAgent is instantly turned into
a “strong” player. Killing this agent requires quite advanced skills. When learning against this opponent, a large number

2https://youtu.be/3yUhI46Xx8o

3

Paper # 90 160

Table 3: Description of different agents. Our open-sourced agents: StaticAgent, SmartRandom,
SmartRandomNoBomb and CautiousAgent, will be helpful to baseline against and to train against. The bottom 3
agents are relatively stronger than the provided baseline, less prone to exploitation due to higher level of stochasticity, and
fast decision makers to be used during training.

SimpleAgent (Provided by Pommer-
man)

A heuristic agent that uses Dijkstra and rules for navigation, tune-up collection,
and simple attacks.

StaticAgent A boring agent that always executes the stop action. Helpful for learning agents
as rewards are noise-free.

SmartRandom (Random agent + Ac-
tionFilter)

Takes random actions from the filtered action space. Stochastic but careful
actions render it a competitive opponent for RL agents.

SmartRandomNoBomb (Random agent
+ ActionFilter + No Bombing)

Similar to SmartRandom but force the agent not place bomb at all.

CautiousAgent (Modified Sim-
pleAgent)

The modification enables the agent to place a bomb if and only if it guarantees a
kill.

Skynet955 (Neural Network agent) Agent that is trained with PPO using reward shaping, ActionFilter, and opponent
curriculum learning.

of games ended with draws, or the challenger is killed. For example, in our tests, our Skynet agent can easily achieve 70%
wining percentage against SimpleAgent team, but only around 10% against CautiousTeam, if not excluding draws.

3 Conclusions and Future work

In spite of the good performance of our skynet agents, there are still many potential avenues for future research. For
example, recent innovations, such as curiosity [2, 8], centralized learning with decentralized execution [5], or difference
rewards [4] have shown to be able to produce good results in related domains, it remains to experimentally verify how
effective they would be in the challenging domain of Pommerman.

One challenge of multi-agent learning in partial observable environments is the credit assignment for each individual
agent’s behavior [3, 6]. Whenever there is a success or failure, it is important to correctly identify who is to reward
or blame. Unfortunately, the original environment provided by Pommerman does not provide any such information.
However, if centralized training [5] can be used by revising the environment, information might be helpful in devising
more accurate reward function, for example: identification of bombs’ owners and bombs’ kickers; in general for any
relevant event occurred (wood destruction, enemy’s death, etc.) identifying which agent is to reward or blame could be
based on who is responsible for the corresponding exploding bomb. Lastly, an ensemble consists of multiple neural net
models may also improve the playing performance in the competition setting.

References
[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th annual international conference on

machine learning, pages 41–48. ACM, 2009.
[2] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation. arXiv preprint arXiv:1810.12894,

2018.
[3] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer. Potential-based difference rewards for multiagent reinforcement learning. In

AAMAS, pages 165–172, 2014.
[4] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual Multi-Agent Policy Gradients. In 32nd AAAI

Conference on Artificial Intelligence, 2017.
[5] J. N. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, and S. Whiteson. Stabilising Experience Replay for Deep

Multi-Agent Reinforcement Learning. In International Conference on Machine Learning, 2017.
[6] P. Hernandez-Leal, B. Kartal, and M. E. Taylor. Is multiagent deep reinforcement learning the answer or the question? A brief

survey. arXiv preprint arXiv:1810.05587, 2018.
[7] L. Panait and S. Luke. Cooperative Multi-Agent Learning: The State of the Art. Autonomous Agents and Multi-Agent Systems, 11(3),

Nov. 2005.
[8] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-supervised prediction. In International

Conference on Machine Learning (ICML), volume 2017, 2017.
[9] C. Resnick, W. Eldridge, D. Ha, D. Britz, J. Foerster, J. Togelius, K. Cho, and J. Bruna. Pommerman: A multi-agent playground.

arXiv preprint arXiv:1809.07124, 2018.
[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

4

Paper # 90 161

Autonomous Open-Ended Learning of Interdependent Tasks

Vieri Giuliano Santucci1, Emilio Cartoni1, Bruno Castro da Silva2, Gianluca Baldassarre1

1Istituto di Scienze e Tecnologie della Cognizione (ISTC)
Consiglio Nazionale delle Ricerche (CNR)

Roma , Italy
{vieri.santucci,emilio.cartoni,gianluca.baldassarre}@istc.cnr.it

2Institute of Informatics
Federal University of Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
bsilva@inf.ufrgs.br

Abstract

Autonomy is fundamental for artificial agents acting in complex real-world scenarios. The acquisition of many different
skills is pivotal to foster versatile autonomous behaviour and thus a main objective for robotics and machine learning.
Intrinsic motivations have proven to properly generate a task-agnostic signal to drive the autonomous acquisition of
multiple policies in settings requiring the learning of multiple tasks. However, in real-world scenarios tasks may be
interdependent so that some of them may constitute the precondition for learning other ones. Despite different strategies
have been used to tackle the acquisition of interdependent/hierarchical tasks, fully autonomous open-ended learning in
these scenarios is still an open question. Building on previous research within the framework of intrinsically-motivated
open-ended learning, we propose an architecture for robot control that tackles this problem from the point of view of
decision making, i.e. treating the selection of tasks as a Markov Decision Process where the system selects the policies
to be trained in order to maximise its competence over all the tasks. The system is then tested with a humanoid robot
solving interdependent multiple reaching tasks.

Keywords: Interdependent Tasks, Hierarchical Skill Learning, Intrinsic Moti-
vations, Reinforcement Learning, Autonomous Robotics

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under
Grant Agreement no. 713010 (GOAL-Robots – Goal-based Open-ended Autonomous Learning Robots). This work was
also partially supported by the Brazilian FAPERGS under grant no. 17/2551-000.

Paper # 138 162

1 Introduction

Autonomous acquisition of many different skills is necessary to foster behavioural versatility in artificial agents and
robots. While the learning of multiple skills per se can be addressed through different machine learning techniques
sequentially assigning a series of N tasks to the agent, autonomy implies that the agent itself has the capacity to select
on which task to focus at each moment and to shift between them in a smart way. Intrinsic motivations (IMs) have been
used in the field of machine learning and developmental robotics [15, 2] to provide self-generated reinforcement signals
driving exploration and skill learning [15, 18, 9]. Other works [3, 19, 7] implemented IMs as a motivational signal for
the autonomous selection of tasks (often called “goals”): the learning progress in accomplishing the tasks is used as a
transient reward to select goals in which the system is making the most learning progress [10, 17].

In real-world scenarios, tasks may require specific initial conditions to be performed or may be interdependent, so that
to achieve a task the agent needs first to learn and accomplish other tasks. This latter case is of particular interest and
although it has been studied under different headings, it is still an open question from an autonomous open-ended
learning perspective. Hierarchical reinforcement learning [4] has been combined with IMs to allow for the autonomous
formation of skills sequences. These methods often tackle only discrete state and actions domains [20]; or focus on
the discovery of sub-goals on the basis of externally-given tasks [1] or under the assumption that sub-goals come as
predefined rewards [14], thereby reducing the autonomy of the agent learning process. Imitation learning methods have
also achieved important results in learning task hierarchies [8, 12, 13], also in association with IMs [5], but by definition
they rely on external knowledge sources (e.g., an “instructor”), which limits the agent’s autonomy.

We propose a reinforcement learning (RL) system for robot control that is capable of learning multiple interdependent
tasks by treating the selection of tasks/goals as a Markov Decision Process (MDP) where the agent selects goals to
maximise its overall competence.

2 Problem Analysis and Suggested Solution

From an RL perspective, learning of multiple goals can be treated as learning different policies πg , each one associated
with a different goal state g ∈ G. Such policies aim at maximising the return provided by a reward functionRg associated
with goal g (see e.g. [6]). For each g the system thus learn a policy

π∗
g(a|s) = argmax

π

Rg(πg) (1)

Since we are considering an open-ended learning scenario where no specific tasks are assigned to the robot, we assume
that the system does not aim at maximising extrinsic rewards, but rather a competence function C over the distribution
of goals G. Here, C is the sum of the agent’s competence Cg at each goal g as made possible by a given candidate goal-
selection policy Πt. In other words, competence is a measure of the agent’s ability to efficiently accomplish different
goals by allocating its time among them using a given policy Πt. Each goal can thus be associated with an MDP where
the agent is tasked with learning to maximise the competence Cg for that goal rather than the goal’s extrinsic reward Rg .
If we consider a finite time horizon T , the robot needs to properly allocate its training time to the goals that guarantee the
highest competence gain. To do so, the system may use the current derivative of the competence δC (w.r.t. time) as an
intrinsic motivation signal to select the goal with the highest competence improvement at each time step t, where time
here refers to one training step over a given task. The problem of task selection can thus be described as an N -armed
bandit (possibly a rotting bandit due to the non-stationary transient nature of IMs) where the agent learns a policy Π to
select goals that maximise the current competence improvement δC:

Π∗ = argmax
Π

δC(Πt) (2)

The efficacy of this approach has been demonstrated in different works within the intrinsically motivated open-ended
learning framework [10, 11, 16]. If we constrain the feasibility of the goals to specific environmental conditions, goal
selection becomes a contextual bandit problem where the robot has to learn to select goals depending on its current state
s ∈ S. Equation 2 thus becomes:

Π∗(st) = argmax
Π

δC(Π(st)) (3)

where now the policy for selecting the goals to train needs to explicitly take into account the current state of the agent,
which may include information such as which other goals have already been accomplished. By making this change to the
objective, the system can bias the choice using the expected competence gain for each goal given different conditions. The
evaluation of the competence improvement for each goal can be done via a state-base moving average of performance at
achieving that goal given the current policy. If we now further assume a situation where goals are interdependent, so that
a goal may be a precondition for other ones, we shift to a different kind of problem where the state of the environment
depends on previously selected (and possibly achieved) goals. A sequence of contextual bandits where the context at
time t + 1 is determined by the “action” (here, goal selection) executed at time t, can be seen as an MDP over all the

1

Paper # 138 163

goal-specific MDPs for which the robot is learning the policy (a “skill”). This is a setting that hierarchical skill learning
methods have only scarcely addressed within a fully autonomous open-ended framework.

In this paper we propose that, given the structure of the problem, goal selection in the case of multiple interdependent
tasks can be treated as an MDP and, consequently, can be addressed via RL algorithms that transfer intrinsic-motivation
values between interrelated goals. In particular, in the following sections we show how a system implementing goal
selection with a standard Q-learning algorithm is able to outperform systems that treat goal selection as a standard
bandit or contextual bandit problem.

3 Experimental Setup and System Comparison

To test our hypothesis we compared different goal-selection systems in a robotic scenario with a simulated iCub robot
(Fig. 1) that has to reach and “activate” 6 different spheres. We present results comparing three algorithms (discussed
below) in two experimental scenarios:
1) Environmental Dependency/Contextual Bandit Setting: the activation of a sphere, by having the robot touch it, is depen-
dent on some environmental variable. In this setting we assume a state feature (the “contextual feature”) that is set to 1.0
with 50% probability at the beginning of each trial, and to 0.0 otherwise. The environment is composed of a total of six
spheres that the agent needs to learn to activate: three can only be activated when the contextual feature is on, and the
other three only when it is off.
2) Multiple Interrelated Tasks/MDP Setting: the “achievability” of a task (activation of a sphere) is now dependent on the
activation status of the other spheres. In this scenario, the fact that the robot has previously achieved or not a goal (or set
of goals) constitutes the precondition for the achievement of other goals, thus introducing interdependencies between
the available tasks.

Figure 1: The simulated iCub robot in our experimental setup: when a sphere is touched (given its preconditions) it
“lights up”, changing its colour to green.

Figure 2: Performance of GRAIL and C-GRAIL in the first experiment

In this paper we compare three goal-selection systems that build upon the existing GRAIL architecture [19]. This ar-
chitecture is generally composed of two components: a high-level component, called the “goal selector” (GS), which
performs task selection on the basis of competence-based intrinsic motivations; and a low-level component composed of
a set of low-level experts (one per task or goal); each expert is an actor-critic neural network implementing a candidate
policy for achieving a goal. In the original version of GRAIL, the GS component receives no input from the environment

2

Paper # 138 164

Figure 3: Performance of C-GRAIL and M-GRAIL over the 6 goals in the second experiment

and selects goals as in a standard bandit setting, where each arm/goal is evaluated on the basis of an exponential moving
average (EMA) of the previously-acquired intrinsic rewards associated with achieving that goal. We now discuss two
different versions of GRAIL that, by modifying the GS component, are able to cope with the added complexity of the
scenarios described above. The first, called Contextual-GRAIL (C-GRAIL), provides as input to the GS the state of the
environment, which can be composed of standard state features or also features describing the status of different goals
(e.g features describing whether each sphere is activated). The GS then selects tasks to practice as in a contextual bandit
where different EMAs are associated with different contexts. A second possible modification to GRAIL, called Markovian-
GRAIL (M-GRAIL), provides the same input to the GS as in C-GRAIL, but treats goal selection as an MDP and solves it
by modeling the temporal interdependency between goals as the temporal dependency between consecutive states in an
MDP; it then uses Q-learning to assign a value to each goal, where values represent the long-term benefits of practicing
that goal considering the intrinsic rewards that goals that depend on it may provide in the future.

4 Results

In our first experiment we compare GRAIL and C-GRAIL in a setup where the value of a contextual feature is used as
precondition to determine whether the agent can activate certain spheres. In particular, spheres a, c and e can only be
activated when the contextual feature (cf) is set to 1.0, while spheres b, d and f can only be activated when cs is set to 0.0.
At the beginning of each trial, cf is set to 1.0 with 50% probability. While GRAIL selects tasks without considering the
environmental condition, C-GRAIL receives cs as input and performs task selection as in a contextual bandit. Fig. 2 shows
the performances of GRAIL and C-GRAIL on the 6 tasks during an experiment that lasts for 4000 trials. At the end of each
trial, the environment is reset (all spheres are set to “off”). C-GRAIL is able to properly learn all tasks in approximately
2000 trials, while GRAIL (at the end of the simulation) has achieved high competence in only two of the tasks. This is
because GRAIL performs selection (and value assignment) without taking the status of the cs into account, which is by
construction important to determine whether spheres can be activated. While C-GRAIL can properly generate IMs for
the different tasks only in those conditions where they can be in fact be achieved, GRAIL “wastes time” in selecting tasks
even when they cannot be trained, thus impairing the learning process.

In our second experiment we introduce interdependencies between goals. In particular, sphere f can be activated only
if sphere c is already active, while sphere a can be activated only when f is on. This implies that to light up sphere a,
the robot has to first turn on spheres c and f . Other spheres have no dependencies. We ran simulations for 1500 epochs,
each one lasting 4 trials, for a total of 6000 trials. At the end of each epoch we reset the environment; during each epoch,
spheres retain their current status as determined by the actions of the robot.

Based on the first experiment we can observe that GRAIL is not capable of properly performing autonomous learning
when tasks are dependent on preconditions; we thus evaluated C-GRAIL and M-GRAIL to study whether they help
tackle the interdependent-task setting. Both algorithms provide as input to the goal selector, at each step, the status of
the six spheres (“on” or “off”); however, they assign values to each candidate goal in different ways, as briefly discussed
in Section 3. By comparing the performances of C-GRAIL and M-GRAIL (Fig. 3) we observe that while M-GRAIL reaches
a perfect overall performance after about 975 epochs, C-GRAIL achieves a high performance on all goals only at the very
end of the experiment.

Although both systems are capable of assigning positive values to goals only in states where their preconditions are
satisfied, C-GRAIL is negatively affected whenever achieving a task such as a requires that the agent first satisfy a
number of previous preconditions. Intuitively, a is “distant” from the initial condition of the system, where all spheres
are off. Furthermore, whenever a task is completely learned (the robot has an optimal policy for performing a goal), the

3

Paper # 138 165

intrinsic motivation for selecting it gradually disappears. This may lead to a situation where the robot starts selecting
tasks almost at random due to the absence of intrinsic rewards, thus wasting trials in selecting goals that cannot be
achieved at that moment. As a result, even though the robot may have an intrinsic motivation reward for practicing a
goal (e.g. activating sphere a), it does not have intrinsic motivation for first practicing the goals that are preconditions
to a; it is not, thus, capable of systematically putting the environment in the proper conditions to train a. M-GRAIL, by
contrast, can rapidly learn all tasks: even when (similarly to C-GRAIL) it is no longer intrinsically motivated in achieving
“simple” goals per se (i.e., goals with few preconditions), it ensures that the robot continues to select those goals thanks
to the Q-learning algorithm, which propagates the intrinsic motivations for solving task a back to the tasks that are a’s
preconditions.

References

[1] B. Bakker and J. Schmidhuber. Hierarchical reinforcement learning based on subgoal discovery and subpolicy
specialization. In Proc. of the 8-th Conf. on Intelligent Autonomous Systems, pages 438–445, 2004.

[2] G. Baldassarre and M. Mirolli. Intrinsically Motivated Learning in Natural and Artificial Systems. Springer Science &
Business Media, 2013.

[3] A. Baranes and P.-Y. Oudeyer. Active learning of inverse models with intrinsically motivated goal exploration in
robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

[4] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

[5] N. Duminy, S. M. Nguyen, and D. Duhaut. Learning a set of interrelated tasks by using a succession of motor
policies for a socially guided intrinsically motivated learner. Frontiers in neurorobotics, 12, 2018.

[6] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement learning agents. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 1514–1523, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[7] S. Forestier, Y. Mollard, and P.-Y. Oudeyer. Intrinsically motivated goal exploration processes with automatic cur-
riculum learning. arXiv preprint arXiv:1708.02190, 2017.

[8] D. H. Grollman and O. C. Jenkins. Incremental learning of subtasks from unsegmented demonstration. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 261–266. IEEE, 2010.

[9] M. B. Hafez, C. Weber, and S. Wermter. Curiosity-driven exploration enhances motor skills of continuous actor-critic
learner. In Proceedings of the 7th Joint IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), 2017.

[10] M. Lopes and P.-Y. Oudeyer. The strategic student approach for life-long exploration and learning. In Development
and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference on, pages 1–8. IEEE, 2012.

[11] K. E. Merrick. Intrinsic motivation and introspection in reinforcement learning. IEEE Transactions on Autonomous
Mental Development, 4(4):315–329, 2012.

[12] A. Mohseni-Kabir, C. Li, V. Wu, D. Miller, B. Hylak, S. Chernova, D. Berenson, C. Sidner, and C. Rich. Simultaneous
learning of hierarchy and primitives for complex robot tasks. Autonomous Robots, pages 1–16, 2018.

[13] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 6292–
6299. IEEE, 2018.

[14] R. Niel and M. A. Wiering. Hierarchical reinforcement learning for playing a dynamic dungeon crawler game. In
2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1159–1166. IEEE, 2018.

[15] P.-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for autonomous mental development. IEEE
transactions on evolutionary computation, 11(6), 2007.

[16] V. G. Santucci, G. Baldassarre, and M. Mirolli. Intrinsic motivation signals for driving the acquisition of multiple
tasks: a simulated robotic study. In Proceedings of the 12th International Conference on Cognitive Modelling (ICCM),
2013.

[17] V. G. Santucci, G. Baldassarre, and M. Mirolli. Which is the best intrinsic motivation signal for learning multiple
skills? Frontiers in neurorobotics, 7:22, 2013.

[18] V. G. Santucci, G. Baldassarre, and M. Mirolli. Cumulative learning through intrinsic reinforcements. In Evolution,
Complexity and Artificial Life, pages 107–122. Springer, 2014.

[19] V. G. Santucci, G. Baldassarre, and M. Mirolli. Grail: A goal-discovering robotic architecture for intrinsically-
motivated learning. IEEE Transactions on Cognitive and Developmental Systems, 8(3):214–231, 2016.

[20] C. M. Vigorito and A. G. Barto. Intrinsically motivated hierarchical skill learning in structured environments. IEEE
Transactions on Autonomous Mental Development, 2(2):132–143, 2010.

4

Paper # 138 166

Active Domain Randomization

Bhairav Mehta
Mila, Université de Montréal
mehtabha@mila.quebec

Manfred Diaz
Mila, Université de Montréal

diazcabm@iro.umontreal.ca

Florian Golemo
Mila, Université de Montréal
golemofl@mila.quebec

Christopher Pal
Mila, Polytechnique Montréal, Element AI

christopher.pal@polymtl.ca

Liam Paull
Mila, Université de Montréal
paulll@iro.umontreal.ca

Abstract

Domain randomization is a popular technique for zero-shot domain transfer, often used in reinforcement learning
when the target domain is unknown or cannot easily be used for training. In this work, we empirically examine the
effects of domain randomization on agent generalization and sample complexity. Our experiments show that domain
randomization may lead to suboptimal policies even in simple simulated tasks, which we attribute to the uniform sampling
of environment parameters. We propose Active Domain Randomization, a novel algorithm that learns a sampling strategy
of randomization parameters. Our method looks for the most informative environment variations within the given
randomization ranges by leveraging the differences of policy rollouts in randomized and reference environment instances.
We find that training more frequently on these proposed instances leads to faster and better agent generalization. In
addition, when domain randomization and policy transfer fail, Active Domain Randomization offers more insight into
the deficiencies of both the chosen parameter ranges and the learned policy, allowing for more focused debugging. Our
experiments across various physics-based simulated tasks show that this enhancement leads to more robust policies, all
while improving sample efficiency over previous methods.

Keywords: reinforcement learning, domain randomization, continuous control

Acknowledgements

We are grateful for the Canadian Institute For Advanced Research (CIFAR) funding that made this work possible, for the
Google Cloud Platform credits that were sponsored by the AI Grant (aigrant.org).

Paper # 229 167

1 Introduction

Recent trends in Deep Reinforcement Learning (DRL) exhibit a growing interest for zero-shot domain transfer, i.e. when a
policy is learned in a source domain and is then tested without finetuning in an unseen target domain. Zero-shot transfer is
particularly useful when the task in the target domain is inaccessible, complex, or expensive, such as gathering rollouts
from a real-world robot. An ideal agent would learn to generalize across domains; it would accomplish the task without
exploiting irrelevant features or deficiencies in the source domain (i.e., approximate physics in simulators), which may
vary dramatically after transfer. Any agent that fails this transfer task falls prey to the domain adaptation problem.

One promising route to zero-shot transfer has been domain randomization (Tobin et al., 2017). The approach is simple: when
episodically training a policy in a simulator, uniformly randomize every environment parameter of the simulation (e.g.
friction, motor torque) across predefined ranges. By randomizing everything that might vary in the target environment,
the hope is that eventually, the target domain will be just another variation. Yet, domain randomization is not without its
flaws. Recent works suggest that the sample complexity grows exponentially in terms of the number of randomization
parameters, even when dealing only with transfer between simulations (e.g., in Andrychowicz et al., 2018 Figure 8). In
addition, when using domain randomization unsuccessfully, policy transfer fails as a black box. After a failed transfer,
randomization ranges are tweaked heuristically via trial-and-error. Repeating this process iteratively, researchers are often
left with arbitrary ranges that do (or do not) lead to policy convergence without any insight into how those settings may
be beneficial or detrimental to the learned behavior.

In this work we investigate the impact of parameter sampling for domain randomization. We show that, in a reinforcement
learning setting, uniform sampling of environment parameters is suboptimal, and moreover, that the generalization
performance of the learned policy is much more sensitive to some parameters than others. This motivates the development
of our algorithm, Active Domain Randomization (ADR), which has the following benefits (which we claim as our
contributions):

1. ADR learns the most informative variations in the randomization space. Briefly, ADR searches for randomization
settings where the agent policy deviates most from its behavior in a reference environment. We find that such
environment instances correspond to harder versions of the problem and that prioritizing these samples in training
leads to faster and better generalization.

2. The learned sampling strategy of ADR is reusable and can be extracted to bootstrap new agents even more
efficiently while still maintaining the benefits of generalization.

3. ADR can provide insight into which dimensions and parameter ranges are most influential before transfer, which
can alert researchers of overfitting or simulation flaws before expensive experiments are undertaken.

We illustrate how ADR is applicable to a broad spectrum of domain adaption problems, by showcasing its benefits on a
variety of simulated, continuous control benchmarks.

2 Domain Randomization

Algorithm 1 Uniform Sampling Domain Randomiza-
tion

Input: Randomization Space Ξ, Simulator S
Initialize agent policy πθ
for each episode do

Initialize trajectory buffer Trand
// Uniformly sample parameters
for i = 1 to Nrand do
ξi ∼ U

[
ξi,low, ξi,high

]
// Generate, rollout in randomized env.
Ei ← S(ξi)
rollout τi ∼ πθ(·;Ei)
Trand ← Trand ∪ τi

end for
for each gradient step do

// Agent policy update
with Trand update:
θ ← θ + ν∇θJ(πθ)

end for
end for

Domain Randomization (DR) is a technique introduced to over-
come the domain adaptation issue, especially when training poli-
cies completely in simulation and transferring them in a zero-shot
manner to the real world.

DR requires a prescribed set of Nrand simulation parameters
to randomize, as well as corresponding ranges to sample them
from. This induces the notion of a randomization space Ξ ⊂ RNrand ,
where each randomization parameter ξi is bounded on a closed
interval {

[
ξi,low, ξi,high

]
}Nrand
i=1 . When a configuration ξ ∈ Ξ is

passed to a non-differentiable simulator S, it generates an envi-
ronment E, which the agent policy πθ sees and uses to train.

Generally, at the start of each episode, the parameters are uni-
formly sampled from the ranges, and the environment generated
from those values is passed to the agent policy πθ for training.

DR changes any to all parts of the task T ’s underlying Markov
Decision Process (MDP)1, with the exception of keeping R and
γ constant. DR therefore generates a multitude of MDPs that are
superficially similar, but can vary greatly in difficulty depending

1

Paper # 229 168

on the character of the randomization. Upon transfer to the target domain, the expectation is that policy has learned to
generalize across MDPs, and sees the final domain as just another variation.

The most common instantiation of DR, Uniform-Sampling Domain Randomization (USDR) is summarized in Algorithm 1.
USDR generates randomized environment instances Ei by uniformly sampling the randomization space. The agent policy
πθ is then trained on rollouts τi produced in those randomized environments.

3 Active Domain Randomization

3.1 Motivating Experiment

To motivate the need for a better sampling strategy, we begin by investigating the validity of the following claim: uniformly
sampling of environment parameters does not generate equally useful MDPs. We do so by performing an experiment on a toy
environment, LunarLander-v2, where the agent’s task is to ground a lander in a designated zone, and is rewarded
based on the quality of landing (fuel used, impact velocity, etc). Parameterized by an 8D state vector and actuated by
a 2D continuous action space, LunarLander-v2 has one main axis of randomization that we vary: the main engine
strength (MES).

8 9 10 11 12 13
Main Engine Strength (MES)

0

50

100

150

200

250

300

Av
er

ag
e

R
ew

ar
d

Expert vs USDR - LunarLander-v2

[Solved]
MES = 13 (ref)
MES U(8, 11)
MES U(8, 13)

USDR

Figure 1: Generalization for various agents who
saw different main engine strength ranges.

Targeting the uniform sampling strategy in DR, we aim to determine if
certain environment instances (different values of the MES) are more in-
formative - more efficient than others in terms of aiding learning speed
and generalization. We set the total range of variation for the MES
to be [8, 20] (the default is 13, and lower than 7.5 makes the environ-
ment practically unsolvable when all other physics parameters are held
constant) and find through simple tests that lower engine strengths
generate harder MDPs to solve. Under this assumption, we show the
effects of focused domain randomization by editing the ranges that the
main engine strength is uniformly sampled from.

We train multiple agents, with the only difference between them being
the randomization ranges for MES during training. The randomiza-
tion ranges define what types of environments the agent sees during
training.

Figure 1 shows the final generalization performance of each agent by
sweeping across the entire randomization range of [8, 20] and rolling
out the policy in the generated environments. We see that focusing on
harder MDPs improves generalization over traditional DR, even when
the evaluation environment is outside of the training distribution.

3.2 Active Domain Randomization

While interesting, the experiment in the previous section is problematic for two reasons:

1. It is rare that such intuitively hard MDP instances or parameter ranges are known beforehand.

2. DR is used mostly when the space of randomized parameters is high dimensional (noninterpretable).

To address these two issues, we extend our initial intuitions: not only are all parts of a randomization range not equally
informative, but also individual randomization dimensions are not equally useful to focus on. In LunarLander-v2, the
main engine strength is more crucial to task performance than the side engine strength, which only marginally affects
generalization performance when varied. An ideal randomization scheme would learn this inherent difference between
the dimensions’ values and focus on the most difficult environment instances rather than sampling uniformly across the
entire space.

To this end we propose ADR, summarized in Algorithm 2. ADR tries to find these informative MDPs within the
randomization space by formulating the search as an Reinforcement Learning (RL) problem. ADR attempts to learn a
policy µφ where the states are proposed randomization configurations ξ ∈ Ξ and actions are changes to those parameters.

We learn a discriminator-based reward for µφ, similar to the one originally proposed in Eysenbach et al. (2018):

rD = logDψ(y|τi ∼ πθ(·;Ei)) (1)

1The effects of DR on action space A are usually implicit or are carried out on the simulation side.

2

Paper # 229 169

where y is an boolean variable denoting the discriminator’s prediction of which type of environment (a randomized
environment Ei or reference environment Eref) the trajectory τi was generated from. In our work, we define the Eref to be
the environment defined by the default parameter configuration ξref , which comes along with the original task definition.
Intuitively, we reward the policy µφ for finding regions of the randomization space that produce environment instances
where the same agent policy πθ acts differently than in the reference environment. The agent policy πθ sees and trains
only on the randomized environments (as it would in traditional DR), using the environment’s task-specific reward for
updates. As the agent improves on the proposed, problematic environments, it becomes more difficult to differentiate
whether any given state transition was generated from the reference or randomized environment. Thus, ADR can find
what parts of the randomization space the agent is currently performing poorly on, and can actively update its sampling
strategy throughout the training process.

Algorithm 2 Active Domain Randomization
Input: Ξ: randomization space, S: simulator, ξref :
reference parameters
Initialize πθ: agent policy, µφ: SVPG particles, Dψ:
discriminator, Eref ← S(ξref): reference environ-
ment
while not max_timesteps do

for each sampling step do
rollout ξi ∼ µφ(·)

end for
for each ξi do

// Generate, rollout in randomized env.
Ei ← S(ξi)
rollout τi ∼ πθ(·;Ei), τref ∼ πθ(·;Eref)
Trand ← Trand ∪ τi
Tref ← Tref ∪ τref
for each gradient step do

// Agent policy update
with Trand update:
θ ← θ + ν∇θJ(πθ)

end for
end for
// Calculate reward for each proposed environment
for each τi ∈ Trand do

Calculate reward with associated ξi and Ei us-
ing Eq. (1)

end for
// Update randomization sampling strategy
for each particle µφi do

Update particles using SVPG
end for
// Update discriminator
for each gradient step do

Update Dψ with τi and τref using SGD.
end for

end while

To encourage sufficient exploration in high-dimensional random-
ization spaces, we parameterize µφ with Stein Variational Policy
Gradient (SVPG). SVPG benefits from multiple, diverse policies
and gives the agent policy πθ the same type of environment va-
riety seen in DR while still using the learned reward to hone
in on problematic MDP instances. In addition, SVPG is highly
parallelizable, which allows us to gather agent rollouts across
various randomized environments simultaneously (Lines 7 to 18
of Algorithm 2).

4 Results

4.1 Implementation Details

To test ADR, we experiment on LunarLander-v22, a 2 degrees
of freedom (DoF) environment in which the agent has to softly
land a spacecraft, implemented in Box2D (detailed in Section 3.2).
Across all experiments, our agent policy is trained with Deep
Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015),
although the agent policy can be substituted with any other on
or off-policy algorithm with only minor changes to Algorithm
2. Our discriminator-based reward generator is a three layers,
128-neurons, Fully Connected Neural Network (FCN).

The simulator parameter sampling strategy is parameterized
by SVPG with RBF Kernel and temperature α = 10, and we
use Advantage Actor-Critic (A2C) to calculate unbiased and low
variance gradient estimates. Each of the SVPG particles is also
an FCN of two layers of 100 neurons each. All experiments
results are plotted (mean) averaged across five seeds, five trials
per evaluation point, with one standard deviation shown.

4.2 Toy Experiments

To investigate whether ADR’s learned sampling strategy pro-
vides a tangible benefit in both agent generalization and learning
speed, we start by comparing it against traditional DR (labeled
as USDR) on LunarLander-v2 and vary only the main engine
strength (MES). In Figure 3, we see that ADR approaches expert-levels of generalization whereas traditional DR fails to
generalize on lower MES ranges.

Figure 2 explains the flexibility of ADR by showing generalization and sampling distribution at various stages of training.
ADR starts by sampling approximately uniform for the first 650K steps, when it is apparent that it finds a deficiency in the
policy on higher ranges of the MES. As those areas become more frequently sample between steps 650K-800K steps, the
agent learns to solve all of the higher-MES environments, as shown by the generalization curve for 800K steps. As a result,
the discriminator is no longer able to differentiate reference and randomized trajectories from the higher MES regions, and
starts to reward environment instances generated in the lower end of the MES range, which improves generalization by
the completion of training.

2https://gym.openai.com/envs/LunarLander-v2/

3

Paper # 229 170

7.5 10.0 12.5 15.0 17.5 20.0
Engine Strength

200

100

0

100

200

300

Av
er

ag
e

R
ew

ar
d

Generalization - LunarLander-v2

[Solved]
135K Steps
650K Steps
850K Steps
1M Steps

(a)

7.5 10.0 12.5 15.0 17.5 20.0
Engine Strength

0

100

200

300

400

Fr
eq

ue
nc

y

Sampling Frequency - LunarLander-v2

135K Steps
650K Steps
850K Steps
1M Steps

(b)

Figure 2: Agent generalization (a) and environment sampling frequency (b) throughout training on LunarLander-v2.

8 9 10 11 12 13
Main Engine Strength (MES)

0

50

100

150

200

250

300

Av
er

ag
e

R
ew

ar
d

ADR - LunarLander-v2

[Solved]
MES U(8, 11)

USDR
ADR(ours)

Figure 3: Generalization on LunarLander-v2 for an expert interval selection, ADR, and USDR. Higher is better.

References

Andrychowicz, Marcin et al. (2018). “Learning dexterous in-hand manipulation.” In: arXiv preprint arXiv:1808.00177.
Eysenbach, Benjamin et al. (2018). “Diversity is All You Need: Learning Skills without a Reward Function.” In: arXiv

preprint arXiv:1802.06070.
Lillicrap, Timothy P et al. (2015). “Continuous control with deep reinforcement learning.” In: arXiv preprint

arXiv:1509.02971.
Tobin, Josh et al. (2017). “Domain randomization for transferring deep neural networks from simulation to the real world.”

In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, pp. 23–30.

4

Paper # 229 171

Perception as prediction using general value functions in
autonomous driving applications

Daniel Graves
Huawei Noah’s Ark Lab

Huawei Technologies Canada, Ltd.
Edmonton, AB, Canada

daniel.graves@huawei.com

Kasra Rezaee
Huawei Noah’s Ark Lab

Huawei Technologies Canada, Ltd.
Markham, ON, Canada

kasra.rezaee@huawei.com

Sean Scheideman
Department of Computer Science

University of Alberta
Edmonton, AB, Canada
searn@ualberta.ca

Abstract

Autonomous driving is a challenging domain for control due to the vast scenario and environment complexities that
an agent will face. Designing a reward signal to learn end-to-end is not an easy task. In this work, we propose and
investigate a perception as prediction framework as an alternative perspective in autonomous vehicle following the
Horde framework. We investigate how to learn and use policy-based predictions of safety and speed in the problem
of adaptive cruise control (ACC) while also learning to predict safety from being rear-ended by other agents. We train
the predictors in three different simulation environments and design a few hand-crafted controllers to compare with an
LQR-based baseline in challenging ACC scenarios. We then do sim2real transfer of the predictions to the a Clearpath
robot and a Lincoln MKZ vehicle and demonstrate that the predictions can be used in the real-world.

Keywords: general value functions, prediction learning, autonomous driving

1 Introduction

Understanding the world by learning predictions and using those predictions to act intelligently in the world is becom-
ing an important topic of research, cf [1][2][3][4]. Modern theory of the brain shows that we are predictive machines
that constantly try to match incoming sensory inputs with predictions [5]. The Horde framework embraces this idea of
predicting sensorimotor signals [1] using general value functions to learn and make action and policy dependent pre-
dictions. There have been a number of successful applications of GVFs including controlling a myoelectric robotic arm
prosthesis [2] and controlling a laser welding robot from a camera [3].

In this work, we are interested in exploring a perception as prediction architecture in autonomous driving. A common
approach to designing an autonomous vehicle is to build layers to abstract the decision making that happens in planning
and controlling a vehicle [6]. The planning layers use the world model generated by perception tasks to decide on a
route, choose behaviors such as when to change lanes and then plan a path in the world. This is then passed to a control
layer that executes the plan produced by the planning layers including lateral (steering) and longitudinal control (throttle
and brake). Motivated by [5], we propose augmenting this architecture with action-oriented predictions where the key
difference is that the predictions provide a link between the agent’s actions and the sensor data. This is an important
distinction because it enables the autonomous agent to understand how the actions taken affect the sensor readings as
well as the objects detected by a traditional perception pipeline. This information is very helpful in allowing an agent to
understand what actions to take in order to achieve a variety of goals in the environment.

We demonstrate in our experiments that there is one target policy that is very useful in autonomous driving, and specif-
ically adaptive cruise control, and that is ”what will happen if I keep doing what I’m doing?” We believe this policy is
especially interesting in problems like autonomous driving where actions tend to change slowly over time and it provides
a signal that a controller can use to adjust its action.

2 Predicting Safety with GVFs

We borrow from a classical definition of safety in autonomous driving and adaptive cruise control using the inter-vehicle
distance model also called headway [7]. However, we extend this model to three dimensions to allow for use with high
dimensional LIDAR sensors as well as low dimensional radar sensors. The safety function is the pseudo-reward signal

Paper # 77 172

(also called the cumulant in general value function literature) which the predictor must learn to predict. The safety
cumulant function cf maps the current state st at time t to a ego safety score on the interval [0, 1]. There are two safety
zones in our implementation: ego safety (or front safety) and rear safety. The definition of front safety used is

cf (st) =

{
0, if nf > βf .

1, otherwise.
(1)

where nf is the number of points returned by either LIDAR or radar sensors that are inside the front safety zone (or box)
and βf ≥ 0 is a minimum threshold. The width of the front safety zone is the width of the vehicle and the height is the
height of the vehicle. The length of the front safety zone is the headway to the vehicle in front and is proportional to the
vehicle’s speed following the inter-vehicle distance model hf = dmin + vτ where τ is the desired headway in seconds,
dmin is the stand-still distance, and v is the current speed of the vehicle. For rear safety, we build a three dimensional
safety zone for the rear vehicle and calculate hr = dmin + vrτ where vr is the speed of the rear vehicle.

The safety cumulants are the signals that are predicted. We use a similar approach as [1] only instead of using the GQ(λ)
algorithm to learn a general value function, we use TD(λ = 0) to learn a general value function. In addition, the focus in
this work will be on learning general action value functions which may be more useful for control, where the prediction
is a function of state and action; thus, the predictive question is ”will I be safe if I take action a and take similar actions
thereafter?” The reason is that the predictive question can be viewed as a kind of predictive model of the world that
permits queries over a set of possible next actions.

The goal is to learn an estimator that predicts the return of the cumulant Gt defined by

Gt ≡
∞∑

k=0

(

k∏

j=0

γt+j+1)ct+k+1 (2)

where 0 ≤ γt < 1 is the continuation function and ct is the cumulant (pseudo-reward) sampled at time t. The general
value function is defined as Qπ(s, a) = Eπ[Gt|st = s, at = a, at+1:T−1 ∼ π, T ∼ γ] where π, γ, and c make up the
predictive question [1]. Each GVF Qπ is approximated with an artificial neural network parameterized by θ denoted as
q̂π(s, a, θ).

Using non-linear function approximation introduces potential challenges in learning because there is no proof of conver-
gence. In addition, off-policy learning where the target policy π may be different from the behavior policy µ could be
problematic with deep neural networks if importance sampling ratios are required.

The approach adopted here uses TD(λ = 0) [8] to learn the predictions using non-linear function approximation with an
experience replay buffer. The loss for the general value function q̂π(s, a, θ) is the squared TD error: L(θ) = Es∼dµ,a∼µ[(y−
q̂π(s, a, θ))2] where the target y is produced by bootstrapping a prediction of the value of the next state and action taken
from the target policy π given by y = Es′∼P,a′∼π[c+ γq̂π(s′, a′, θ)] where y is a bootstrap prediction using the most recent
parameters θ but is ignored in the gradient descent. dµ is the state distribution of the behavior policy µ and P is the
Markovian transition distribution over next state s′ given state s and action a. The time subscript on c and γ has been
dropped to simplify notation. If the agent behaves with the same policy as the target policy π such that µ(a|s) = π(a|s)
then the approach is on-policy learning otherwise it is off-policy. Note that this approach doesn’t correct for the state
distribution dµ because it still depends on the behavior policy µ. Both on-policy and off-policy approaches were tried but
since the behavior policy constructed to achieve suitable exploration was very similar to the target policy, no appreciable
difference was noticed.

When the agent observes a state s and chooses an action a according to its behavior policy, it receives cumulant c,
continuation γ and observes next state s′ and store this tuple in the replay buffer. We also generate an action a′ ∼ π and
store it in the replay buffer whether that is the next action taken (on-policy) or not (off-policy). When training the GVF, a
mini-batch of m < n samples, where n is the size of the replay buffer, is sampled randomly to update the parameters θ.
The updates can be either accomplished on-line, while collecting and storing experience in the replay buffer, or off-line
after the data has been collected since the target policy doesn’t change.

In this work, we learn separate estimators: one for each cumulant of future front safety, rear safety, and speed. The
cumulants are scaled by a factor of 1 − γt+1 to normalize them; this ensures the predicted safety is on the interval [0, 1]
since the sum of an infinite geometric series of 0 ≤ γ < 1 is 1/(1− γ) if γ is constant.

3 Experiments

An analysis of the predictions and the behavior of the controllers that use these predictions are provided in the TORCS
environment under a number of different scenarios. After evaluation, the rule-based controller was selected for imple-

2

Paper # 77 173

(a) Front safety predictions (b) Back safety predictions (c) Safety distances

(d) Front safety predictions (e) Back safe predictions (f) Safety distances

Figure 1: Predicting front and rear safety with different values of γ without using the predictions for control. Top row
(a)-(c) is from the emergency stop scenario and the bottom row (d)-(f) is from the follow-and-stop scenario.

mentation on the Jackal robot and the autonomous vehicle platform since it performed similarly with the fuzzy controller
and was simpler to tune. A two stage approach is used: (1) learn the predictors by following the predictor’s target policy
and (2) use the predictors in autonomous driving applications (such as a warning system or adaptive cruise control).

The target policy chosen was the normal distribution centered on the last action taken, i.e. π(at|st, at−1) = π(at|at1) =
N (at−1, σ2) where σ is a tunable parameter. This target policy represents the question ”what if I keep doing what I’m
doing?” The behavior policy chosen was a Wiener process where the next action is the last action plus noise generated
by a normal distribution centered on the last action taken and with standard deviation equal to σ for our target policy.
However, in order to facilitate exploration of the state and action space, the agent occasionally interrupts the Wiener
process and chooses a random action according to uniform probability and then continues with the random walk.

We trained predictions for γ values of 0.95, 0.975 and 0.983. When training the safety predictors, the other vehicles are
controlled by a similar random walk process. Therefore, the training terminates with γ = 0 upon collision with another
vehicle.

3.1 TORCS Experiments

Here we highlight the two challenging high-speed scenarios: (a) emergency stop and (b) follow-and-stop. The target
speed in both of these experiments was 100 km/h. In the first scenario the vehicle approaches a stopped vehicle and
must stop quickly to avoid collision. In the second scenario the vehicle follows a slower vehicle going 80 km/h which
then abruptly stops requiring the vehicle to react and slow down without a collision. We compared against an LQR-based
controller [7] called ACC/CA as a baseline. The target safety parameters for all controllers were defined by a desired
spacing of τ = 3 seconds and minimum stopping distance of dmin = 4 meters. The objective was not to beat the baseline
but to match its performance and demonstrate that perception as prediction is a viable approach in autonomous driving
that deserves more attention and further research.

In the first set of experiments, the performance of the predictions is analyzed by comparing them with the safety signals
being predicted. The ACC/CA baseline controller is used to drive the vehicle.

The safe distances for front and rear are shown in figure 1(c) and (f) for reference. The safety GVFs predict both front
and rear safety effectively and anticipate when the safety could change based on observations of the other agents. For
example, in figure 1(b) where the back safety dips at around t = 58 s, the vehicle is slowing down very quickly while the
vehicle behind is not reacting fast enough. Once the vehicle behind starts to decelerate sufficiently, the predictions jump
back up again predicting that the vehicle is safe from a rear-end collision.

When the predictions are applied to the adaptive cruise control problem, we implemented rule-based and fuzzy-based
controllers and they perform similarly which suggests the predictions learned are potentially useful for a variety of

3

Paper # 77 174

controllers. The GVF-based controllers appeared to optimize the safety rather well for all values of gamma with γ = 0.983
particularly tending to keep the vehicle safer than ACC/CA during deceleration possibly because of being longer-term
predictions. In fact, in most of our experiments, the GVF-based controllers did not cross the safety distance threshold.

In terms of computational complexity, the GVF-based approach with the fuzzy controller required only needed to search
across 21 possible next actions to determine a suitable next action. The reason is because the predictions are policy-based
rather than action trajectory-based which otherwise would have required a significantly larger search space over all
possible action sequences. We therefore argue that policy-based predictions are a viable way achieve predictive control
with appropriately selected target policies while keeping computational requirements low.

3.2 Demonstrating in the Real-World

We then trained front safety predictions using a deep convolutional neural network in Gazebo to test on a real-world
Clearpath Jackal robot. In the training environment, randomly shaped geometric objects or were generated in the scene
to help with sim-to-real transfer to the real-world. We then tested the predictors on the Clearpath Jackal robot. The
robot has a Hokuyo UTM 30LX laser range finder which produces 1040 distance measurements in a 260◦ arc in front of
the robot. A 5MP front facing color camera was used to follow blue tape for lateral steering control using a rule-based
controller for longitudinal control. We used a deep neural network with 6 convolutional layers and 2 fully connected
layers to predict safety from a history of 3 LIDAR measurements and the vehicle’s current speed vt. The safety parameters
τ = 1.5 seconds and dmin = 0.4 meters were used since the robot can stop fairly quickly.

The safety predictors were tested on a real robot where we tried several different situations: (a) following a human with
varying walking speeds along a pre-defined path, (b) approaching a stationary obstacle, and (c) reacting to a person
walking in front of the robot suddenly. In all cases, the robot was able to stop without collision.

We also trained front safety predictors in the Webots simulator environment for deploying on an autonomous vehicle
in a controlled test environment. The objects detected in the scene were supplied as input to the neural network which
included the distance and speed of the vehicle in front and in the same lane. We tested a similar rule-based controller as
used on the Jackal robot and was able to achieve the desired following behavior. An emergency brake test was performed
where both virtual and real objects were placed in the scene of the vehicle requiring it to stop immediately. Finally, we
proceeded to test the vehicle in a large circular road where the vehicle had to stop for pedestrians and other vehicles. The
performance was often comfortable and the speed control usually felt human-like. The tests showed that the vehicle was
still able to respond quickly and safely in situations that required emergency braking as well as follow another vehicle
smoothly.

References

[1] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup, “Horde: A scalable real-time
architecture for learning knowledge from unsupervised sensorimotor interaction,” in 10th Int. Conf. on Autonomous
Agents and Multiagent Systems - Vol. 2, ser. AAMAS ’11, 2011, pp. 761–768.

[2] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi, J. P. Carey, and R. S. Sutton, “Online human training of a myo-
electric prosthesis controller via actor-critic reinforcement learning,” in 2011 IEEE Int. Conf. on Rehabilitation Robotics,
June 2011, pp. 1–7.

[3] J. Gunther, P. M. Pilarski, G. Helfrich, H. Shen, and K. Diepold, “Intelligent laser welding through representation, pre-
diction, and control learning: An architecture with deep neural networks and reinforcement learning,” Mechatronics,
vol. 34, pp. 1 – 11, 2016.

[4] G. Kahn, A. Villaflor, P. Abbeel, and S. Levine, “Composable action-conditioned predictors: Flexible off-policy learn-
ing for robot navigation,” CoRR, vol. abs/1810.07167, 2018.

[5] A. Clark, “Whatever next? predictive brains, situated agents, and the future of cognitive science,” Behavioral and
Brain Science, vol. 36, no. 3, pp. 181–204, 2013.

[6] W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, “Architecture design and implementation of an autonomous
vehicle,” IEEE Access, vol. 6, pp. 21 956–21 970, 2018.

[7] S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation of a full-range adaptive cruise control system with
collision avoidance,” Control Engineering Practice, vol. 17, no. 4, pp. 442 – 455, 2009.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed. Cambridge, MA, USA: MIT Press, 1998.

4

Paper # 77 175

Optimal nudging

Mathew Hardy
Department of Psychology, Princeton University

mdhardy@princeton.edu

Frederick Callaway
Department of Psychology, Princeton University

fredcallaway@princeton.edu

Thomas L. Griffiths
Departments of Psychology and Computer Science, Princeton University

tomg@princeton.edu

Abstract

People often face decisions where errors are costly but computing the optimal choice is intractable or prohibitively dif-
ficult. To address this, researchers have developed nudge theory as a way to lead people to better options without
imposing restrictions on their freedom of choice. While heuristics and case-by-case evaluations are usually used to pre-
dict and explain nudges’ effects on choice, another way of interpreting these effects is that nudges can change the costs of
attaining certain pieces of information. These changes in costs then bias people towards or away from making particular
choices. In this paper, we propose a method for predicting the effects of choice architecture on option selection by mod-
eling deliberation as a metalevel Markov decision process and nudging as the reduction of certain computational costs.
This allows us to construct optimal nudges by choosing cost modifications to maximize some objective function. This ap-
proach is flexible and can be adapted to arbitrary decision making problems. Furthermore, by making the objectives of
nudging explicit, the approach can address ethical concerns regarding the effects of nudging and the role people should
have in choosing how, when, and why they are nudged. We demonstrate the strength of this framework by applying
it to the Mouselab paradigm, where deliberation costs are made explicit. We find that a version of our approach leads
to significantly higher participant reward, both increasing the quality of their choices and lowering the cost of making
these choices.

Keywords: decision-making; bounded rationality; resource-rationality;
decision-support

Acknowledgements

This research was supported by a grant from Facebook Reality Labs

Paper # 208 176

1 Introduction

Every day people encounter a seemingly neverending set of complicated decisions and difficult tradeoffs. When facing
these dilemmas, people often make choices that deviate from classical notions of rationality (Kahneman, Slovic, & Tver-
sky, 1982). These deviations, made in both small and large-scale decisions, are often costly to both individuals and society
(Kahneman et al., 1982). Policy makers have traditionally sought to reduce these costs through educational programs,
incentives, and mandates designed to improve people’s choices (Benartzi et al., 2017; Thaler & Sunstein, 2008). However,
another increasingly popular approach is to change the context and structure of the decisions people encounter, rather
than trying to change behavior directly. These types of modifications, often called “nudges”, change only the architec-
ture of a decision, and include changing default options, information availability, and social norms. While often subtle,
nudges have been shown to lead to increases in retirement savings, reductions in energy consumption, and increased
vaccination rates, among other things (Benartzi et al., 2017). Furthermore, the cost of administrating nudges is often
substantially lower than organizing effective educational campaigns or new incentive structures (Benartzi et al., 2017).

However, nudges can be controversial. There is often disagreement about what the effects of a change in choice architec-
ture should be (Goodwin, 2012), and nudges can influence behavior in ways that people are unaware of, cannot control,
or that benefit other parties at the expense of their own well-being. Furthermore, the domains in which nudging have
been most successful are somewhat limited, with most successful applications the result of domestic policy or marketing.

In this paper we present a formal framework for optimal nudging. Using metalevel Markov decision processes, we char-
acterize nudging as the targeted reduction of computational costs leading to a desired change in a decision maker’s
reasoning process and/or choices. We apply and test our model in a modified version of the Mouselab paradigm (Payne,
Bettman, & Johnson, 1988), in which cognitive costs are represented as the monetary costs of uncovering information
about options’ possible outcomes. We conclude by discussing implications of our approach, and ways in which it can be
used to address some of the ethical concerns regarding nudging.

2 Modeling optimal nudging

2.1 Metalevel Markov decision processes

We model the decision maker’s deliberation process as a metalevel MDP (Hay, Russell, Tolpin, & Shimony, 2012). A
metalevel MDP treats reasoning as a sequential decision problem. Formally a metalevel MDP is defined analogously to a
standard undiscounted MDP, (B, C, Tmeta, rmeta), where the states, B, correspond to beliefs and the actions, C, correspond
to cognitive operations, or computations. The effect of computations on beliefs is described in the metalevel transition
function Tmeta, and the costs and benefits of computations are described in the reward function, rmeta. Finally, a reasoning
strategy is formalized by a metalevel policy, πmeta : B → ∆(C), which selects computations to perform in a given belief
state. Note that ∆(·) denotes the set of all distributions over a set.

A belief b ∈ B is a distribution over some parameters of the environment, θ, that determine the reward, r(a; θ), of each
possible physical action, a ∈ A. At any moment, the metalevel policy can choose to cease deliberation by executing
the termination operation, ⊥. This passes control to an action-selecting “object-level” policy, πact, that selects an action
uniformly from those that are optimal in the final belief state: πact(a | b) = Uniform(a; argmaxa′∈A Eθ∼b [r(a′; θ)]). The
metalevel reward for terminating computation is the external reward, r, for the chosen action, a, under the true param-
eters, θ∗; that is, rmeta(b,⊥) = r(a; θ∗). In general, this value will be higher the more accurate the belief b is, rewarding
belief-refining computations. However, computation comes at a cost: rmeta(b, c) is strictly non-positive (and typically
negative) for all computations besides the termination operation, ⊥. This sets up a natural tradeoff between the benefits
and costs of computation. At each time point, the metalevel policy must determine which computations (if any) will lead
to sufficient improvement in expected decision quality so as to outweigh their costs.

2.2 Optimal nudging as computational cost modification

The primary contribution of this paper is a formal approach to nudging based on the idea that some nudges modify the
costs of the computations available to a decision maker, thus changing the sequence of computations—and ultimately,
the decision—she is likely to make. Assume that we can model some decision-making problem as a metalevel MDP
(B, C, Tmeta, rmeta), and let rmeta(b, c) = λc for all c ∈ C \ {⊥}, where λ is a vector giving the cost of all available compu-
tations (excluding the termination operation, ⊥). We can then formalize nudging as replacing the original costs λ with
modified costs λ̃. Optimal nudging is thus the selection of λ̃ to maximize some objective function.

The choice of a suitable objective function depends on the goals one wishes to accomplish through nudging. For example,
many nudges aim to maximize the probability that people take a certain action, such as those seeking to maximize organ
donation or recycling rates. This kind of goal can be formalized as maximizing the probability of the decision maker

1

Paper # 208 177

choosing a specific action,

p(a | λ̃; θ∗, πmeta) = E
[
πact(a | B⊥) | λ̃, θ∗, πmeta

]
=

∫

BT∈B
p(BT | λ̃, θ∗, πmeta) πact(a | BT) dBT , (1)

where p(BT | λ̃, θ∗, πmeta) gives the probability that a certain belief will be the final belief if the metalevel policy πmeta

chooses computations in a metalevel MDP with costs λ̃ and true parameters θ∗. Note that we are implicitly conditioning
on the full metalevel MDP, but we leave it out of the equations to ease notational burden.

Other nudges do not aim to make people choose a specific option, but rather to improve the overall quality of their deci-
sions, encouraging them, for example, to make healthier eating choices or choose more diversified investment portfolios.
We can model this kind of goal as maximizing the expected utility of the decision maker’s choice,

U(λ̃; θ∗, πmeta) =
∑

a∈A
p(a | λ̃; θ∗, πmeta) r(a) . (2)

A potential limitation of the utility-maximizing approach is that it ignores the cost of deliberation (Griffiths, Lieder, &
Goodman, 2015). In some cases, we might want to not only encourage people to make better decisions, but also to make
it easier to make those decisions. We can formalize this goal as minimizing the total expected computational cost to the
decision maker,

l(λ̃; θ∗, πmeta) = E
[T−1∑

t

λ̃Ct

∣∣∣λ̃, θ∗, πmeta

]
. (3)

In addition to optimizing with respect to a single one of the above equations, we might want to optimize a combination.
In particular, we can combine expected decision utility (Equation 2) and expected deliberation cost (Equation 3) into a
single description of how “well-off” the decision maker is,

g(λ̃; θ∗, πmeta) = U(λ̃; θ∗, πmeta)− l(λ̃; θ∗, πmeta) = E
[T∑

t

r(Bt, Ct)
∣∣∣λ̃, θ∗, πmeta

]
. (4)

Combining the decision utility and deliberation cost in this way, we recover the standard objective function in a metalevel
MDP—maximizing the sum of metalevel rewards, or the metalevel return. However, rather than optimizing this objective
through our choice of a metalevel policy, we aim to optimize the metalevel return by modifying the problem itself, in
particular, by reducing the costs of certain computations.

The metalevel return can trivially be optimized by setting the cost of all computations to zero. In this case, the decision
maker will always take all possible computations, making the best possible decision while paying no cost. However,
it is unlikely that completely eliminating deliberation costs is possible. Thus, we assume that the modifications are
constrained by a budget, Z. That is,

∑
c λc − λ̃c < Z. We impose the additional constraint that costs cannot be increased

or driven below zero.

Although any combination of the objectives defined above are possible, we will focus on the metalevel return, defined
in Equation 4. Critically, however, our approach can be trivially extended to optimize any combination of the functions
defined above, and indeed any function of a sequence of computations followed by a choice.

To estimate any of these objectives, we must make an assumption about the decision maker’s reasoning strategy, πmeta.
One principled choice is to assume that the decision maker is metalevel optimal and maximizes the expected sum of
metalevel rewards. This approach has been found to model human behavior somewhat well in simple decision making
(Gul, Krueger, Callaway, Griffiths, & Lieder, 2018) and planning (Callaway et al., 2018) problems. However, in more
complex domains, even approximating the optimal metalevel policy is computationally intensive. Thus, this approach
may not be desirable from an implementation perspective. As an alternative, we could assume that the decision maker
employs some other metalevel policy that is adaptive but not optimal. For example, the meta-greedy policy (Russell &
Wefald, 1991) acts myopically, choosing each computation as if it were the last one. This policy often behaves similarly
to the optimal policy, while being easy to compute. Thus, we assume that πmeta is the meta-greedy policy, and use it to
determine the optimal cost modifications in the experiment described below.

3 Experiment: testing optimal nudging

We evaluated the proposed optimal nudging method in a modified version of the Mouselab paradigm (Payne et al., 1988).
In this setup, participants have to make choices between different options with known and unknown payoff values. The
paradigm externalizes computations as information-gathering operations (clicks) that reveal these values, computational
cost as the monetary cost of these operations, and belief states as configurations of revealed and hidden values. By using
such a paradigm, we can more easily make assumptions about the metalevel MDP underlying the participants’ decisions,
thus allowing us to test our cost-modification approach directly.

2

Paper # 208 178

Figure 1: Experimental interface. On every trial, participants made a choice between six options. After choosing an
option, a single ball color (blue, green, or yellow) was selected with percentage probability equal to the number of balls
of that color. The option then paid out with the value indicated by the corresponding cell. The values in some cells were
shown immediately, while others were hidden at trial onset. Participants could click on these cells to reveal the values,
paying one point for each click. The number of clicks required to reveal each cell was indicated by its color.

3.1 Methods

An example of the experimental interface is given in Figure 1. Participants chose between six options (columns), each
with three possible payoff values (rows). After making a choice, a ball was drawn from a simulated lottery machine
with 100 balls, and the chosen option paid out depending on the color of the drawn ball. The percentage probability
that a certain color ball was drawn was simply the number of balls indicated in the far left column. Different options
paid different values depending on which color ball was drawn; some of these values were revealed at trial onset, while
others were hidden. To reveal a hidden value, participants had to click the value they wished to reveal between one and
four times (see Figure 1), paying one point for each click. These clicks correspond to computations in the metalevel MDP.
The cost to reveal each cell was sampled uniformly from {0, 1, 2, 3, 4} to mask the cost-reductions (described below). Cell
values were sampled from a normal distribution with a mean of 75 points and a standard deviation 36 points (truncated
at 0 points).

On each trial, the cost structure was modified according to either the proposed optimal nudging method or a random
baseline. In both cases, the cost-modification budget was set toZ = 6 and the space of budget allocations was constrained
to uniform reductions of 2 or 3 costs (each cost being reduced by 3 or 2 points respectively). Optimal costs were chosen
to maximize the metalevel return of the meta-greedy policy (Equation 4). In particular, we employed a greedy search
algorithm that made local adjustments to λ̃ until no adjustment could further improve the metalevel return. The random
cost modification was determined by randomly sampling three costs and reducing each by 2 points.

We recruited 150 participants from Mechanical Turk. Participants first completed a practice trial, and then 20 test trials in
which 10 problems had random sales and 10 had optimal sales. Each participant completed the same set of 21 problems,
but problem order and each problem’s modification type varied randomly between participants.1 At the end of the game,
participants’ total points were paid as a bonus with 10 points equal to 1 cent. Participants earned $0.25 for participating
in the study plus an average bonus of $1.71.

3.2 Results

On average, participants earned 81.55 points on trials with random modifications and 89.66 points on trials with optimal
modifications (see Figure 2). To test whether this difference was significant, we ran a crossed mixed-effects regression
predicting total points earned on each trial with a fixed effect for the cost-modification condition (optimal vs. random)
and random effects for both participant and problem. A likelihood ratio test of the mixed effects model with and without
the condition fixed effect was significant (χ2(1) = 37.711, p < 0.001). Similar models predicting the click cost and decision
quality also revealed significant effects, (click cost: 3.99 vs. 3.48, χ2(1) = 8.6866, p = 0.003, choice payout: 85.54 vs. 93.14,
χ2(1) = 33.821, p < 0.001).

1Due to a programming error, the first test problem was always the same as the practice problem. We thus exclude data from this
problem from our analysis, leaving 19 trials per participant.

3

Paper # 208 179

**

3.0

3.3

3.6

3.9

4.2

Click cost

75

80

85

90

95

Choice payout

75

80

85

90

 Random
 modifications

 Optimal
 modifications

Net earnings

P
oi

nt
s

Figure 2: Average points per game spent and earned under random and optimal cost modifications. The first plot shows
the average points spent uncovering values, the second the average reward from participants’ choices, and the third
their average net reward (choice payout minus click cost). Errors bars show standard error estimates derived from the
residuals of the crossed mixed-effects regressions.

4 Discussion

In line with previous behavioral research on nudging, we find strong evidence that changes in choice architecture can
have a significant impact on people’s choices. Optimal modifications significantly increased participants’ scores on
Mouselab problems over random modifications, both increasing the average value of the options they chose and re-
ducing the cost of making these choices. This provides preliminary evidence that modifying computational costs can be
an effective way to help people make decisions more effectively.

Our approach has a number of advantages over other approaches to nudging. Not only can our framework be used to
model existing nudges, we can use it motivate and develop new types of nudges, as we demonstrated by selecting mod-
ifications in order to maximize metalevel reward. However, nudges could be constructed with any number of different
goals, for example, making people’s decisions easier without systematically changing their choices. We provide a general
and automatic way to construct nudges to optimize any objective. This objective could be selected by individuals, giving
people control over how, when, and why they are nudged. We believe that this feature will be crucial in addressing
ethical concerns with nudging.

One limitation of our approach is that it requires a fairly detailed model of the computational processes underlying the
decision we would like to intervene on. In the present work, we avoided the challenge of developing such a model
by using a process tracing paradigm that externalizes these typically unobservable processes. Applying the method
in the real world, however, necessitates inferring such a model from observed behavior. This is a very difficult task.
Nevertheless, even a heavily simplified model of the decision making process may be adequate to inform the construction
of helpful, if not truly optimal, nudges.

References
Benartzi, S., Beshears, J., Milkman, K. L., Sunstein, C. R., Thaler, R. H., Shankar, M., . . . Galing, S. (2017). Should governments invest

more in nudging? Psychological Science, 28(8), 1041-1055. (PMID: 28581899)
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A resource-rational analysis of human planning. In

Proceedings of the 40th annual conference of the cognitive science society.
Goodwin, T. (2012). Why we should reject “Nudge”. Politics, 32(2), 85-92.
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational

and the algorithmic. Topics in Cognitive Science, 7(2), 217-229.
Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., & Lieder, F. (2018). Discovering rational heuristics for risky choice. In The 14th

biannual conference of the german society for cognitive science.
Hay, N., Russell, S., Tolpin, D., & Shimony, S. E. (2012). Selecting computations: Theory and applications. In Proceedings of the 28th

conference on uncertainty in artificial intelligence.
Kahneman, D., Slovic, P., & Tversky, A. e. (1982). Judgment under uncertainty: heuristics and biases. Cambridge, England: Cambridge

University Press.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 14(3), 534–552.
Russell, S., & Wefald, E. (1991). Principles of metareasoning. Artificial Intelligence, 49(1-3), 361–395.
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. New Haven: Yale University Press.

4

Paper # 208 180

Robust Exploration with Tight Bayesian Plausibility Sets

Reazul H. Russel
Department of Computer Science

University of New Hampshire
Durham, NH 03824

rrussel@cs.unh.edu

Tianyi Gu
Department of Computer Science

University of New Hampshire
Durham, NH 03824
gu@cs.unh.edu

Marek Petrik
Department of Computer Science

University of New Hampshire
Durham, NH 03824

mpetrik@cs.unh.edu

Abstract
Optimism about the poorly understood states and actions is the main driving force of exploration for many provably-efficient rein-
forcement learning algorithms. We propose optimism in the face of sensible value functions (OFVF)- a novel data-driven Bayesian
algorithm to constructing Plausibility sets for MDPs to explore robustly minimizing the worst case exploration cost. The method
computes policies with tighter optimistic estimates for exploration by introducing two new ideas. First, it is based on Bayesian
posterior distributions rather than distribution-free bounds. Second, OFVF does not construct plausibility sets as simple confidence
intervals. Confidence intervals as plausibility sets are a sufficient but not a necessary condition. OFVF uses the structure of the value
function to optimize the location and shape of the plausibility set to guarantee upper bounds directly without necessarily enforcing
the requirement for the set to be a confidence interval. OFVF proceeds in an episodic manner, where the duration of the episode
is fixed and known. Our algorithm is inherently Bayesian and can leverage prior information. Our theoretical analysis shows the
robustness of OFVF, and the empirical results demonstrate its practical promise.

Keywords: Reinforcement Learning, Markov Decision Process, Exploration in RL,
Bayesian Learning, Multi-armed bandits.

Acknowledgements

This work was supported by the National Science Foundation under Grant No. IIS-1717368 and IIS-1815275.

Paper # 173 181

1 Introduction

Markov decision processes (MDPs) provide a versatile methodology for modeling dynamic decision problems under uncer-
tainty [Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Puterman, 2005]. A perfect MDP model for many reinforcement
learning problems is not known precisely in general. Instead, a reinforcement learning agent tries to maximize its cumulative payoff
by interacting in an unknown environment with an effort to learn the underlying MDP model. It is important for the agent to explore
sub-optimal actions to accelerate the MDP learning task which can help to optimize long-term performance. But it is also important
to pick actions with highest known rewards to maximize short-run performance. So the agent always needs to balance between them
to boost the performance of a learning algorithm during learning.

Optimism in the face of uncertainty (OFU) is a common principle for most reinforcement learning algorithms encouraging explo-
ration [Auer et al., 2010; Brafman and Tennenholtz, 2001; Kearns and Singh, 1998]. The idea is to assign a very high exploration
bonus to poorly understood states and actions. As the agent visits and gathers statistically significant evidence for these states-actions,
the uncertainty and optimism decreases converging to reality. Many RL algorithms including Explicit Explore or Exploit pE3q [Kearns
and Singh, 1998], R-MAX Brafman and Tennenholtz [2001], UCRL2 [Auer, 2006; Auer et al., 2010], MBIE [Strehl and Littman, 2008,
2004b,a; Wiering and Schmidhuber, 1998] build on the idea of optimism guiding the exploration. Probability matching class of al-
gorithms like Posterior Sampling for reinforcement learning (PSRL) [Osband and Van Roy, 2017; Osband et al., 2013; Strens, 2000]
performs exploration with a proportional likelihood to the underlying true parameters. PSRL algorithm is simple, computationally ef-
ficient and can utilize any prior structural information to improve exploration. These algorithms provide strong theoretical guarantees
with polynomial bound on sample complexity.

During exploration, it is possible for an agent to be overly optimistic about a potentially catastrophic situation and end up there paying
an extremely high price (e.g. a self driving car hits a wall, a robot falls off the cliff etc.). Exploring and learning such a situation may
not payoff the price. It can be wise for the agent to be robust and avoid those situations minimizing the worst-case exploration cost´
which we call robust exploration. OFU and PSRL algorithms are optimistic by definition and cannot guarantee robustness while
exploring. The main contribution of this paper is OFVF, an optimistic counter part of RSVF [Russel and Petrik, 2018]. OFVF is a
Bayesian approach of constructing plausibility sets for robust exploration.

The paper is organized as follows: Section 2 formally defines the problem setup and goals of the paper. Section 3 reviews some
existing methods to construct the plausibility sets and their extension to Bayesian setting. OFVF is proposed and analyzed in Section 4.
Finally, Section 5 presents empirical performance on several problem domains.

2 Problem Statement

We consider the problem of learning a finite horizon Markov Decision Process M with states S “ t1, . . . , Su and actions A “
t1, . . . , Au. p : S ˆ A Ñ ∆S is a transition function, where pass1 is interpreted as the probability of ending in state s1 P S by
taking an action a P A from state s P S . We omit s1 when the next state is not deterministic and denote the transition probability
as psa P RS . R : S ˆA Ñ R is a reward function and Rass1 is the reward for taking action a P A from state s P S and reaching
state s1 P S . Each MDP M is associated with a discount factor 0 ď γ ď 1 and a distribution of initial state probabilities p0. We
consider an episodic learning process where L is the number of episodes and H is the number of periods in each episode. A policy
π “ pπ0, . . . , πH´1q is a set of functions mapping a state s P S to an action a P A . We define a value function for a policy π as:

V πh psq :“
ÿ

s1
P
πpsq
ss1 rrh ` V ps1qs (1)

The optimal value function is defined by V ‹h psq “ maxπ V
π
h psq and the optimal policy is defined by π‹psq “

arg maxaPA pass1V ps1q, @s1 P S : pass1 ą 0.

Optimistic algorithms encouraging exploration find the probability distribution P̃sa for each state and action within an interval of the
empirically derived distribution p̄sa “ Er¨|s, as, which defines the plausible set Psa of MDPs. They then solve an optimistic version
of Eq. (1) within Psa that leads to the policy with highest reward.

V ‹h ps, aq :“ max
psaPPsa

ÿ

s1
p
πpsq
ss1 rrh ` V ‹ps1qs (2)

We evaluate the performance of the agent in terms of worst-case cumulative regret, which is the maximum total regret incurred by
the agent upto time T for a policy π‹l :

RegretpT, π‹l q “
T {H´1ÿ

l“0

sup

„ ÿ

sPS
p0psq

`
V ‹psq ´ V π‹l psq˘

(3)

Where V ‹psq is the true value w.r.t M ˚.

1

Paper # 173 182

3 Interval Estimation for Plausibility Sets

In this section, we first describe the standard approach to constructing plausibility sets as distribution free confidence intervals. We
then propose its extension to Bayesian setting and present a simple algorithm to serve that purpose. It is important to note that
distribution-free bounds are subtly different from the Bayesian bounds, the Bayesian safety guarantee holds conditional on a given
dataset D while the distribution-free hold across the sets. This makes the guarantees qualitatively different and difficult to compare.

3.1 Plausibility Sets as Confidence Intervals

It is common in the literature to use L1 norm as the distribution-free bound. This bound is constructed around the empirical mean of
the transition probability p̄s,a by applying the Hoeffding inequality [Auer et al., 2010; Petrik et al., 2016; Wiesemann et al., 2013;
Strehl and Littman, 2004b].

Psa “
"
‖p̃sa ´ p̄sa‖1 ď

d
2

ns,a
log

SA2S

δ

*

where p̄sa is the mean transition computed from D, ns,a is the number of times the agent arrived in state s1 after taking action a in
state s, δ is the required probability of the interval and ‖‚‖1 is the L1 norm. An important limitation of this approach is that, the size
of Psa grows linearly with the number of states, which makes it practically useless in general.

3.2 Bayesian Plausibility Sets

The Bayesian plausibility sets take the same interval estimation idea and extend it into Bayesian setting, which is analogous to
credible intervals in Bayesian statistics. Credible intervals are constructed with the posterior probability distributions and they are
fixed ´ not a random variable, given the data D . Instead the estimated transition probabilities maximizing the rewards are random
variables. To construct a plausibility set, we optimize for the smallest credible region around the mean transition probability with the
assumption that a smaller region will lead to a tighter upper bound estimate. Formally, the optimization problem to compute ψs,a for
each state s and action a is:

min
ψPR`

tψ : P r‖p̃s,a ´ p̄s,a‖1 ą ψ | Ds ă δu , (4)

where nominal point is p̄s,a “ EP̃ rp̃s,a | Ds. A Bayesian extension of the celebrated UCRL [Auer et al., 2010] algorithm is
BayesUCRL, which we consider for comparison. BayesUCRL algorithm uses a hierarchical Bayesian model that can be used to infer
the posterior transition probability over p‹. The plausibility set here is a function of the 1

t -quantile of the posterior samples. We omit
the details of BayesUCRL to conserve space.

4 OFVF: Optimism in the Face of sensible Value Functions

Algorithm 1: OFVF
Input: Desired confidence level δ and posterior distribution PP ‹r¨ | Ds
Output: Policy with a maximized safe return estimate

1 Initialize current policy π0 Ð arg maxπ ρpπ,EP ‹rP ‹ | Dsq;
2 Initialize current value v0 Ð vπ0

EP‹ rP ‹ | Ds;
3 Initialize value set V0 Ð tv0u ;
4 Construct P0 optimal for V0;
5 Initialize counter k Ð 0;
6 while Eq. (5) is violated with V “ tvku do
7 Include vk that violates Eq. (5): Vk`1 Ð Vk Y tvku ;
8 Construct Pk`1 optimized for Vk`1;
9 Compute optimistic value function vk`1 and policy πk`1 for Pk`1;

10 k Ð k ` 1 ;

11 return pπk, pT0 vkq ;

OFVF uses samples from a posterior distribution, similar to a Bayesian confidence interval, but it relaxes the safety requirement as it
is sufficient to guarantee for each state s and action a that:

min
vPV PP ‹

„
max
pPPs,a

pp´ p‹s,aqTv ď 0

ˇ̌
ˇ̌ D

ě 1´ δ

SA
, (5)

with V “ tv̂‹Pu. To construct the set P here, the set V is not fixed but depends on the optimistic solution, which in turn depends on
P . OFVF starts with a guess of a small set for V and then grows it, each time with the current value function, until it contains v̂‹P
which is always recomputed after constructing the ambiguity set P .

2

Paper # 173 183

0 20 40 60 80 100
Number of Episodes

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Re
gr

et

PSRL
Bayes UCRL
OFVF

0 20 40 60 80 100
Number of Episodes

0

20

40

60

80

100

120

140

160

Cu
m

ul
at

iv
e

Re
gr

et

PSRL
BayesUCRL
OFVF

Figure 1: Cumulative regret for the single-state simple problem. Left) average-case, Right) worst-case.

0 20 40 60 80 100
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
gr

et

PSRL
Bayes UCRL
OFVF

0 20 40 60 80 100
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

4000

Cu
m

ul
at

iv
e

Re
gr

et

PSRL
Bayes UCRL
OFVF

Figure 2: Cumulative regret for the RiverSwim problem. Left) average-case, Right) worst-case.

In lines 4 and 8 of Algorithm 1, Pi is computed for each state-action s, a P S ˆA . Center p̄ and set size ψs,a are computed from
Eq. (7) using set V & optimal gv computed by solving Eq. (6). When the set V is a singleton, it is easy to compute a form of an
optimal plausibility set.

g “ max

k : PP ‹rk ď vTp‹s,as ě 1´ δ{pSAq((6)

For a singleton V , it is sufficient for the plausibility set to be a subset of the hyperplane tp P ∆S : vTp “ g‹u for the estimate to
be sufficiently optimistic. When V is not a singleton, we only consider the setting when it is discrete, finite, and relatively small. We
propose to construct a set defined in terms of an L1 ball with the minimum radius such that it is safe for every v P V . Assuming that
V “ tv1, v2, . . . , vku, we solve the following linear program:

ψs,a “ min
pP∆S

!
max

i“1,...,k
‖qi ´ p‖1 : vTi qi “ g‹i , qi P ∆S , i P 1, . . . , k

)
(7)

In other words, we construct the set to minimize its radius while still intersecting the hyperplane for each v in V .

5 Empirical Evaluation

In this section, we empirically evaluate the estimated returns over episodes. We assume a true model of each problem and generate
a number of simulated data sets for the known distribution. We compute the tightest optimistic estimate for the optimal return and
compare it with the optimal return for the true model. To judge the performance of the methods, we evaluate both the absolute error
of the worst case estimates from optimal, as well the average case estimate from optimal.

We compare our results with BayesUCRL and PSRL algorithms. We omit UCRL from comparison because it performs too poorly
compared to other methods. PSRL performs very well in both average and worst case, and as we will see in the experiments, OFVF
outperforms BayesUCRL and performs competitively with PSRL. For all the experiments, we use an uninformative Dirichlet prior
for the transition probabilities, and run experiments for 100 episodes each containing 100 runs, unless otherwise specified.

Single-state Bellman Update We initially consider a simple problem with one single non-terminal state. The agent can take three
different actions on that state. Each action leads to one of three terminal states with different transition probabilities. The value
function for the terminal states are fixed and assumed to be known. Fig. 1 compares the average-case and worst-case returns computed
by different methods. Note that OFVF outperforms all other methods in this simplistic setting. OFVF is able to explore in a robust
way maximizing the worst and average case returns.

3

Paper # 173 184

RiverSwim Problem We compare the performance of different methods in standard example of RiverSwim [Osband et al., 2013;
Strehl and Littman, 2004b]. The problem is designed requiring hard exploration to find the optimal policy, we omit the full description
of the problem to preserve space. Fig. 2 compares the average and worst case regrets of different methods. Among optimistic methods,
OFVF performs better than BayesUCRL both in average and worst case scenario. But the stochastically optimistic PSRL outperforms
all other methods. This is due to the fact that, BayesUCRL and OFVF constructs a plausibility set for each state and action. Even
if the plausibility sets are tight, the resulting optimistic MDP is simultaneously optimistic in each state-action, yielding a way too
optimistic overall MDP model [Osband and Van Roy, 2017]. Thus OFVF can construct tighter plausibility sets for exploration, but
still may not match the statistical efficiency of PSRL. This performance however shows that, as an OFU algorithm, OFVF can be
reasonably optimistic and can offer competitive performance.

6 Summary and Conclusion

In this paper, we proposed OFVF, a Bayesian algorithm capable of constructing plausibility sets with better shapes and sizes. Beside
the fact that our proposed Bayesian methods are computationally demanding than other distribution free methods, our theoretical and
experimental analysis furnished that they can pay-off with much tighter return estimates. We showed that, OFU algorithms can be
useful and can be competitive to stochastically optimistic algorithm like PSRL.

References

P Auer, Thomas Jaksch, and R Ortner. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning
Research, 11(1):1563–1600, 2010.

Peter Auer. Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning. Advances in Neural Information Pro-
cessing Systems (NIPS), 2006.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.
Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A general polynomial time algorithm for near-optimal reinforcement learning.

International Joint Conference on Artificial Intelligence (IJCAI), 2001.
Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. International Conference on Machine

Learning (ICML), 1998.
Ian Osband and Benjamin Van Roy. Why is Posterior Sampling Better than Optimism for Reinforcement Learning? International

Conference on Machine Learning (ICML), 2017.
Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via Posterior Sampling? Advances in

Neural Information Processing Systems (NIPS), 2013.
Marek Petrik, Yinlam Chow, and Mohammad Ghavamzadeh. Safe Policy Improvement by Minimizing Robust Baseline Regret.

Advances in Neural Information Processing Systems (NIPS), 2016.
Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons, Inc., 2005.
Reazul Hasan Russel and Marek Petrik. Tight Bayesian Ambiguity Sets for Robust MDPs. Infer to Control, Workshop on Proba-

bilistic Reinforcement Learning and Structured Control, Advances in Neural Information Processing Systems (NIPS), 2018.
Alexander. L. Strehl and Michael L. Littman. An empirical evaluation of interval estimation for markov decision processes. IEEE

International Conference on Tools with Artificial Intelligence, 2004.
Alexander L Strehl and Michael L Littman. Exploration via Model-based Interval Estimation. International Conference on Machine

Learning (ICML), 2004.
Alexander L Strehl and Michael L Littman. An Analysis of Model-Based Interval Estimation for Markov Decision Processes. Journal

of Computer and System Sciences, 74:1309–1331, 2008.
Malcolm Strens. A Bayesian Framework for Reinforcement Learning. International Conference on Machine Learning (ICML), 2000.
Richard S Sutton and Andrew Barto. Reinforcement Learning: An Introduction. 1998.
Marco Wiering and Jurgen Schmidhuber. Efficient Model-Based Exploration. International Conference on Simulation of Adaptive

Behavior (SAB), pages 223–228, 1998.
Wolfram Wiesemann, Daniel Kuhn, and Berc Rustem. Robust Markov Decision Processes. Mathematics of Operations Research,

38(1):153–183, 2013.

4

Paper # 173 185

On Inductive Biases in Deep Reinforcement Learning

Matteo Hessel ∗
DeepMind

London, UK
mtthss@google.com

Hado van Hasselt ∗
DeepMind

London, UK
hado@google.com

Joseph Modayil
DeepMind

London, UK
modayil@google.com

David Silver
DeepMind

London, UK
davidsilver@google.com

Abstract

Many deep reinforcement learning algorithms contain inductive biases that sculpt the agent’s objective and its interface
to the environment. These inductive biases can take many forms, including domain knowledge and pretuned hyper-
parameters. In general, there is a trade-off between generality and performance when we use such biases. Stronger
biases can lead to faster learning, but weaker biases can potentially lead to more general algorithms that work on a
wider class of problems. This trade-off is relevant because these inductive biases are not free; substantial effort may be
required to obtain relevant domain knowledge or to tune hyper-parameters effectively. In this paper, we re-examine sev-
eral domain-specific components that bias the objective and the environmental interface of common deep reinforcement
learning agents. We investigated whether the performance deteriorates when these components are replaced with adap-
tive solutions from the literature. In our experiments, performance sometimes decreased with the adaptive components,
as one might expect when comparing to components crafted for the domain, but sometimes the adaptive components
performed better. We then investigated the main benefit of having fewer domain-specific components, by comparing the
learning performance of the two systems on a different set of continuous control problems, without additional tuning of
either system. As hypothesized, the system with adaptive components performed better on many of the new tasks.

Keywords: Reinforcement learning, deep learning, inductive biases

∗equal contribution

Paper # 126 186

1 Introduction

The deep reinforcement learning (RL) community has demonstrated that well-tuned deep RL algorithms can master a
wide range of tasks, including board games [1], video-games [2], and custom 3D navigation tasks [3]. These results
are a testament to the generality of the approach. At times, however, the excitement for the stream of challenges being
mastered by RL agents may have over-shadowed the dependency of some of these agents on various forms of inductive
biases, and the amount of tuning required for them to perform well.

In general, there is a trade off between generality and performance when we inject inductive biases into our algorithms.
Inductive biases take many forms, including domain knowledge and pretuned learning parameters. If applied carefully,
such biases can lead to faster and better learning. On the other hand, fewer biases can potentially lead to more general
algorithms that work out of the box on a wider class of problems. A clear example of the benefits of generality is the
AlphaZero algorithm [1], which, by removing all Go-specific inductive biases of the predecessor AlphaGo, could not just
surpass human performance on Go but also learn to play Chess and Shogi. Importantly, inductive biases are typically
not free: substantial effort is required to attain the relevant domain knowledge or pretune parameters. This cost is
often hidden—e.g., one may use hyperparameters enstablished as good in prior work on the same domain, without
knowing how much time was spent optimising them, nor how specific they are to the domain. But this cost is a huge
bottleneck when applying even well known algorithms to new domains. Systematic studies about the impact of the
various inductive biases are rare and, as a result, the generality of common biases in deep RL is often unclear.

We consider two broad ways of injecting inductive biases in RL agents: 1) sculpting the agent’s objective (e.g., clipping
and discounting rewards); 2) sculpting the agent-environment interface (e.g., using fixed action repetitions, or crafting
the observations). We then investigate if (and by how much) performance deteriorates when replaced with general
adaptive components. For instance, we show that all the carefully crafted heuristics commonly used in Atari, and often
considered essential for good performance on this domain, can be replaced with adaptive components, while preserving
competitive performance across the benchmark. Furthermore, we show that this results in increased generality for an
actor critic agent; the resulting fully adaptive system can be applied with no additional tuning on a separate suite of
continuous control tasks, with much higher performance than a comparable system using Atari tuned heuristics, and
even higher performance than an actor-critic agent tuned for this benchmark specifically by [4].

2 Background

Problem setting: Reinforcement learning is a framework for learning and decision making under uncertainty, where an
agent interacts with its environment, by executing actions At and receiving observations Ot+1 and rewards Rt+1 in return.
The behaviour of an agent is specified by a policy π(At|Ht): a probability distribution over actions conditional on all
previous observations, i.e. on the history Ht = O1:t. The agent’s objective is to find a policy that collects as much reward
as possible, in each episode of experience. Crucially, it must learn such a policy without direct supervision, by trial and
error. The amount of reward collected from time t onwards - the return - is a random variable

Gt =

Tend∑

k=0

γkRt+k+1, (1)

where Tend is the number of steps until episode termination and γ ∈ [0, 1] is a constant discount factor. The agent seeks
an optimal policy, that maximizes values v(Ht) = Eπ[Gt|Ht]. In fully observable environments the optimal policy depends
on the last observation alone: π∗(At|Ht) = π∗(At|Ot). Otherwise, the history may be summarized in an agent state
St = f(Ht). The agent’s objective is then to jointly learn the state representation f and policy π(At|St), so as to maximize
values. The fully observable case is formalized as a Markov Decision Process [5].

Actor-critic algorithms: Value-based algorithms efficiently learn to approximate values vw(s) ≈ vπ(s) ≡ Eπ[Gt|St = s],
under a policy π, by exploiting a recursive decomposition vπ(s) = E[Rt+1 + γvπ(St+1)|St = s], known as Bellman
equation, as done in temporal difference learning [6] through sampling and incremental updates:

∆wt = (Rt+1 + γvw(St+1)− vw(St))∇wvw(St). (2)
Policy-based algorithms update directly a parameterized policy πθ(At|St) through a stochastic gradient estimate of the
direction of steepest ascent in the value [7, 8]; for instance, according to the update

∆θt = Gt∇ log πθ(At|St). (3)
Value-based and policy-based methods are combined in actor-critic algorithms. If a state value estimate is available, the
policy updates can be computed from incomplete episodes by using the truncated returns G(n)

t =
∑n−1
k=0 γ

kRt+k+1 +
γnvw(St) that bootstrap on the value estimate at state St+n according to vw. This can reduce the variance of the updates.
The variance can be further reduced using state values as a baseline in policy updates, as in advantage actor-critic updates

∆θt = (G
(n)
t − vw(St))∇θ log πθ(At|St). (4)

1

Paper # 126 187

3 Inductive Biases and Learned Solutions

Sculpting the agent’s objective: agents typically do not directly optimize the objective that they are evaluated against.
They optimize a different handcrafted objective incorporating biases to simplify learning. We consider 2 ways of sculpt-
ing such objective: reward clipping, and fixed reward discounting by a factor different from the evaluation discount.

In many deep RL algorithms, the magnitude of updates scales linearly with the returns. This complicates training the
same RL agent, with same hyper-parameters, on multiple domains, because good settings for hyper-parameters vary
across tasks. A common solution is to clip rewards to a fixed range [9], for instance [−1, 1]. This makes the magnitude
of returns and updates more comparable. However, it also changes the agent objective. This can make learning simpler,
and, when it is a good proxy for the true objective, results in good performance. In some tasks, however, clipping
results in sub-optimal policies. PopArt [10, 11] was introduced to learn effectively irrespective of scale. PopArt works by
computing temporal difference errors used for updates 2 and 4 in a normalized space. This is done by reparametrizing
values as the linear transformation vw(s) = µ + σ ∗ nw(s) of normalized values nw(s), where µ and σ are computed by
tracking mean and standard deviation of the bootstrapped returns. PopArt additionally combines such adaptive rescaling
of values with an inverse transformation of the weights at the last layer of nw(s), to preserve outputs precisely under
any change in statistics µ→ µ′ and σ → σ′. Note that this can be done exactly.

Discounting is part of the traditional MDP formulation of RL. As such, it is often considered a property of the problem
rather than a parameter of the agent. Indeed, sometimes, the environment does define a natural discounting of rewards
(e.g., inflation in a financial setting). However, even in settings where the agent should maximize the undiscounted return,
a constant discount is often used to simplify the problem, as optimizing such proxy objective often results in superior
performance even in terms of undiscounted return. This, however, comes at the cost of adding a hyperparameter, and a
rather sensitive one—i.e., learning may be fast if the discount is small, but the solution may be myopic. Instead of tuning
the discount, we use meta-learning [12] to adapt it. The meta-gradient algorithm by [13] exploits the fact that updates
such as 2 and 4 are differentiable functions of the discount. On a second sample of experience, generated with updated
parameters w + ∆w(γ), the agent can therefore apply an actor-critic update, not to w but to the discount γ used to
update w. [13] demonstrated that this improved performance, while using a separate hand-tuned discount factor for the
meta-update. We use the undiscounted returns (γm = 1) to compute the meta-gradients, to understand if this technique
can fully replace the need to reason about timescales.

Sculpting the agent-environment interface: In RL we assume that time progresses in discrete steps with a fixed dura-
tion. While algorithms are typically defined in this space, learning at the fastest timescale provided by the environment
is often not practical. It is often convenient to have the agent operate at a slower timescale, for instance by repeating
each selected action a fixed number of times. The use of such fixed action repetitions is a widely used heuristic [9] with
several advantages. 1) Operating at a slower timescale increases action gaps, which can lead to more stable learning; 2)
selecting an action every few steps can save a significant amount of computation; 3) committing longer to each action
may help exploration, e.g., by removing often-irrelevant sequences of actions that jitter back and forth. A more general
solution approach is for the agent to learn the most appropriate time scale at which to operate. Solving this problem
in full generality is one of the aims of hierarchical reinforcement learning [14]. This general problem remains largely
unsolved. A simpler, though more limited, approach is to allow the agent to learn how long to commit to each selected
action [15]. At each step t, the agent may be allowed to select both an action At and a commitment Ct, by sampling from
two separate policies, both trained with policy gradient.

Many state-of-the-art RL agents use non-linear function approximators to represent values, policies, and states. Being
able to learn flexible state representations was essential to capitalize on the successes of deep learning, and to scale up
reinforcement learning algorithms. While the use of deep neural network to approximate value functions and policies
is widespread, their input is often not the raw observations but the result of domain-specific heuristic transformations.
In Atari, for instance, most agents rely on down-sampling observations to a coarser resolution, max-pooling consecutive
frames to remove flickering, grey scaling, and finally concatenating of frames into a K-Markov representation. We replace
this specific preprocessing pipeline with a recurrent state representation learned end-to-end.

4 Experiments

When designing algorithms it is useful to keep in mind what properties we would like the algorithm to satisfy. If the aim
is to design an algorithm, or inductive bias, that is general, in addition to metrics such as asymptotic performance and data
efficiency, there are additional dimensions that are useful to consider. 1) Does the algorithm require careful reasoning
to select an appropriate time horizon for decision making? This is tricky without domain knowledge or tuning. 2)
How robust is the algorithm to the scaling of rewards? Rewards can have arbitrary scales, that may change by orders
of magnitudes during training. 3) Can the agent use commitment (e.g. action repetitions, or options) to alleviate the
difficulty of learning at the fastest time scale? 4) Does the algorithm scale effectively to large complex problems? 5) Does
the algorithm generalize well to problems it was not specifically designed and tuned for?

2

Paper # 126 188

Figure 1: Investigations on the robustness of an A2C agent with respect to discounting, reward scaling and action repeti-
tions. We report the average reward per environment step, after 5000 steps of training, for each of 20 distinct seeds. Each
parameter study compares different fixed configurations of a specific hyper-parameter to the corresponding adaptive
solution. In all cases the performance of the adaptive solutions is competitive with that of the best tuned solution

We first investigate how current domain heuristics and adaptive solutions compare with respect to dimensions 1-3, by
training a number of tabular actor-critic agent in a few small chain environments. Figure 1a shows a parameter study over
a range of values for the discount factor (in blue) in the first of these environments. It highlights how it can be difficult to
set a suitable discount factor, and that naively optimizing undiscounted returns can also perform poorly. Compare this to
the same agent, but equipped with the meta-gradient algorithm (in orange in Figure 1.a). Even initializing the discount
adversarially, the agent learned to adapt the discount and performed in par with the best tuned fixed discount. Figure
1.b shows the impact of reward scaling by considering the performance of the tabular actor-critic agent when rewards are
scaled by different factors. The performance of the naive actor-critic (in blue) is quite sensitive to the scale, while for the
same agent equipped with PopArt we observed good performance across all tested scales. Finally, Figure 1.c compares
an actor-critic agent that learns to choose the number of action repeats, to agents with different fixed repetitions C. This
fixed number of action repetitions can also be a sensitive hyper-parameter, while the adaptive agent that learns how often
to repeat actions via policy gradient (in orange in Figure 1.c) can easily learn a suitable number of action repetitions.

Next we investigate the properties of the various inductive biases and adaptive solutions at scale. We train several
actor-critic agents with non-linear function approximation on each of 57 Atari games. We first measure the performance
of a fully adaptive agent with learned action repeats, PopArt normalization, learned discount factors, and an LSTM-
based state representation. We compare the performance of this agent to agents with exactly one adaptive component
disabled and replaced with one of two fixed components. This fixed component corresponds to either falling back to
the naive solution (e.g. learning directly from undiscounted returns), or using the corresponding domain heuristic. This
enables us to investigate how important the heuristic is for current RL algorithms, as well as how fully current adaptive
solution can replace it. Figure 2a shows that in the first 100M frames, the agent acting at the fastest rate is competitive
with the agents equipped with action repetition (fixed or learned). However, while the agents with action repeats still
improve performance until the very end of training, the agent acting at the fastest timescale plateaus much earlier. This
performance plateau is observed across many games, and we speculate that the use of multiple action repetitions may be
providing better exploration. Learning to repeat performed comparably to the tuned domain heuristic in Atari. Figure
2b show that using undiscounted returns directly in the updates to policy and values results in poor performance; this
confirms our intuition that directly optimizing the real objective is problematic with current deep RL solutions, and the
large effect of biasing the objective towards simpler proxies. However, using the undiscounted objective for the meta-
gradient updates and learning the discounting does work well in practice, and slightly outperforms the tuned heuristic.
In Figure 2c shows that the naive solution of learning from the raw environment rewards performs very poorly, compared
to using either reward clipping or the learned solution. Note however that here the domain heuristic (reward clipping)
retained a significant edge over PopArt. This suggests that the inductive bias of optimizing for a weighted frequency of
rewards is a very good heuristic in many Atari games. Finally, in Figure 2d we compare the fully end to end pipeline
with a recurrent network, to a feedforward neural network with the standard Atari pipeline. The recurrent end to end
solution performed best, showing that a recurrent network is sufficiently flexible to learn on its own to integrate relevant
information over time, despite Atari-specific issues such as the flickering of the screen. Finally, in order to investigated
the generality of these different RL solutions, we compared the fully general agent to an agent with all the usual inductive
biases, but in the context of a completely different benchmark: a collection of 28 continuous control tasks. For both we
use the exact same solutions that were used in Atari, with no additional tuning. Figure 2e shows that the fully general
agent performed better than the heuristic solution, which suggests that the set of inductive biases typically used by Deep
RL agents on Atari do not generalize as well as the set of adaptive solutions considered in this paper. The adaptive
solution was also better, overall, than the tuned baseline by [4], as shown by the reference horizontal line.

3

Paper # 126 189

Figure 2: Comparison of inductive biases to RL solutions. The first four plots compares median performance across
57 Atari games for the same fully general agent and 2 alternatives: a) tuned action repeats, and no action repeats. b)
tuned discount factor, and no discounting. c) reward clipping, and learning from raw rewards. d) learning from raw
observations, and the standard preprocessing. The right-most plot (e) compares mean performance across 28 continuous
control tasks for the fully adaptive actor critic agent and an agent the same biases as in the Atari experiments.

5 Conclusion

We found existing learned solutions are competitive with well tuned domain heuristics, even on the domain these heuris-
tics were designed for, and they generalize better to unseen domain. This suggests removing these biases in future re-
search, since they are not essential for performance, and they might hide issues in the learning algorithms. There are
two features of our agent that, despite not incorporating quite as much domain knowledge as the heuristics discussed
in the paper, may also affect its generality: 1) The use of parallel copies of the environment in actor-critic agents is not
always practical, especially in real world applications. 2) Back-propagation through time for training RNNs constrains
the length of the temporal relationship that we can learn. We believe further work on these issues to be important.

Our work was inspired by that of [1] in the context of Go, but we investigated the different set of domain specific
heuristics, that are used in more traditional deep RL agents. Our work also relates to a broader debate [16] about priors
and innateness. There is evidence that we, as humans, posses specific types of biases, and that these have a role in
enabling efficient learning [17]; however, it is not clear whether these are essential for intelligent behaviour to arise, nor
what form such priors take, and their generality. Here we show that several heuristics we use in deep RL are harming
the generality of our methods. This does not imply that different inductive biases could not be useful, but it is a reminder
that we must be careful with the domain knowledge we bake into algorithms, and we must revise these biases over time.

References
[1] Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, Lillicrap, Simonyan, and Hassabis. Mas-

tering chess and shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.
[2] Hessel, Modayil, van Hasselt, Schaul, Ostrovski, Dabney, Horgan, Piot, Azar, and Silver. Rainbow. AAAI, 2018.
[3] Kempka, Wydmuch, Runc, Toczek, and Jaśkowski. Vizdoom: A doom-based ai research platform for visual rl. In CIG, 2016.
[4] Tassa, Doron, Muldal, Erez, Li, Las Casas, Budden, Abdolmaleki, Merel, Lefrancq, Lillicrap, and Riedmiller. Control suite. 2018.
[5] Richard Bellman. Dynamic programming. Princeton University Press, 1957.
[6] Sutton. Learning to predict by the methods of temporal differences. ML, 1988.
[7] Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. ML, 1992.
[8] Sutton, McAllester, Singh, and Mansour. Policy gradient methods for rl with function approximation. In NIPS, 2000.
[9] Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, and Kavukcuoglu. Asynchronous methods for deep rl. In ICML, 2016.

[10] van Hasselt, Guez, Hessel, Mnih, and Silver. Learning values across many orders of magnitude. In NIPS, 2016.
[11] Hessel, Soyer, Espeholt, Czarnecki, Schmitt, and van Hasselt. Multi-task deep reinforcement learning with popart. AAAI, 2018.
[12] Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In AAAI, 1992.
[13] Xu, van Hasselt, and Silver. Meta-gradient reinforcement learning. CoRR, abs/1805.09801, 2018.
[14] Sutton., Precup, and Singh. Intra-option learning about temporally abstract actions. In ICML, 1998.
[15] Lakshminarayanan, Sharma, and Ravindran. Dynamic action repetition for deep reinforcement learning. In AAAI, 2017.
[16] Marcus. Innateness, alphazero, and artificial intelligence. CoRR, abs/1801.05667, 2018.
[17] Dubey, Agrawal, Pathak, Griffiths, and Efros. Investigating human priors for playing video games. CoRR, abs/1802.10217, 2018.

4

Paper # 126 190

Symbolic Planning and Model-Free Reinforcement Learning:
Training Taskable Agents

León Illanes
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

lillanes@cs.toronto.edu

Xi Yan
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

xi.yan@mail.utoronto.ca

Rodrigo Toro Icarte
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

rntoro@cs.toronto.edu

Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

sheila@cs.toronto.edu

Abstract

We investigate the use of explicit symbolic action models, as typically used for Automated Planning, in the context of
Reinforcement Learning (RL). Our objective is to make RL agents more sample efficient and human taskable. We say
an agent is taskable when it is capable of achieving a variety of different goals and there is a simple method for goal
specification. Moreover, we expect taskable agents to easily transfer skills learned for one task to other related tasks.
To these ends, we consider high-level models that inexactly represent the low-level environment in which an agent
acts. Given a model, defining goal-directed tasks is a simple problem, and we show how to communicate these goals
to an agent by leveraging state-of-the-art symbolic planning techniques. We automatically generate families of high-
level solutions and subsequently represent them as a reward machine, a recently introduced formalism for describing
structured reward functions. In doing this, we not only specify what the task at hand is, but also give a high-level
description of how to achieve it. The structure present in this description can be successfully exploited by a Hierarchical
RL system. The reward machine represents a collection of sequential solutions and can be used to prune the options
available when training. We can ensure that, at every step, the meta-controller can only select options that represent
advancement in some high-level plan.

We empirically demonstrate the merits of our approach, comparing to a naive baseline where a single sequential plan is
strictly followed, and to standard Hierarchical RL techniques. Our results show that the approach is an effective method
for specifying tasks to an RL agent. Given adequately pretrained options, our approach reaches high-quality policies in
previously unseen tasks in extremely few training steps and consistently outperforms the standard techniques.

Keywords: Reinforcement Learning
Hierarchical Reinforcement Learning
Goal Specification
Automated Planning
Symbolic Planning

Acknowledgements

We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC),
Becas Chile (CONICYT), and Microsoft Research.

Paper # 198 191

1 Introduction
Reinforcement learning (RL) techniques allow for agents to perform tasks in complex domains, where environment
dynamics and reward structures are initially unknown. These techniques are based on performing random exploration,
observing the dynamics and reward returned by the environment, and synthesizing an optimal policy that maximizes
expected cumulative reward. Unfortunately, when reward is sparsely distributed, as is the case in many applications,
RL techniques can suffer from poor sample efficiency, requiring millions of episodes to learn reasonable policies. Further,
these systems are typically not taskable: specifying new tasks is often difficult and the skills that are learned for one
task are not easily transferred to others. Over the years a number of approaches have been proposed to address these
shortcomings including efforts to learn hierarchical representations or to define options, a form of macro-action that can
be used by the RL system [9] .

Our interest in this paper is in leveraging high-level symbolic planning models and automated plan synthesis techniques,
in concert with state-of-the-art RL techniques, with the objective of significantly improving sample efficiency and creating
systems that are human taskable. Our efforts are based on the observation that some approximated understanding of the
environment can be characterized as a symbolic planning model—a set of properties of the world and actions that cause
those properties to change in predictable ways.

Recent research has demonstrated the benefit of providing high-level instructions to an RL system to improve sample
efficiency (e.g., policy sketches [1]). Nevertheless, these instructions must be manually generated. By using a symbolic
model of the environment rather than a task-specific set of instructions we are able to automatically generate instructions
in the form of one or more sequential or partial order plans—the latter compactly characterizing a multitude of sequential
plans. We represent these plans as a structured reward function in the form of an automata-inspired reward machine [10].
This reward machine is then used to enhance a Hierarchical Reinforcement Learning (HRL) system by ignoring options
that—based on inspection of the machine’s structure—cannot result in future reward.

We compare our approach to standard forms of HRL and to a naive baseline algorithm. Our results show that the
approach is an effective method for specifying tasks to an RL agent, reaching high-quality policies for previously unseen
tasks in extremely few training steps.

2 Related Work
The options framework [9] has become a well-known standard approach for exploiting temporal abstraction in Rein-
forcement Learning. A key contribution of our work is the way in which we use explicit symbolic planning to select
adequate options.

Other existing approaches have used symbolic planning to select options or macro-actions. An early approach proposed
using a symbolic planner coupled into an RL agent [2]. There, the planner produces an initial high-level plan and is
subsequently used to replan when the plan’s preconditions are violated. A related approach uses a sequential plan to
modify the reward via reward shaping [3]. In contrast to these approaches, our system uses planners to produce a single
structured reward function that represents the task at hand. Our approach is orthogonal to the idea of reward shaping,
and we believe that it may be applied in our setting.

Recent work has also proposed methods based on coupling a planner to an RL agent [11, 7]. There, the focus has been
on two-way communication between agent and planner to continuously improve the high-level model and find better
high-level solutions. In our case, we assume an adequate high-level model is given and we show how to exploit it. Other
work has explored techniques for automatically building such abstractions [6, 5]. Integrating such techniques into our
work may prove to be an interesting direction for future work.

Finally, there has also been work that has focused on learning explicit state-transition systems that represent high-level
models [12]. With these, standard graph search algorithms can be used to find sequences of macro-actions. Our work
considers implicit state-transition systems described as classical planning domains. This allows us to consider highly
combinatorial problems that are far too large to represent explicitly.

3 Preliminaries
For the purposes of this work, we will say that the environment in which an RL agent acts is formalized as a tuple
E = 〈S,A, p〉, where S is its set of states, A is the set of available actions, and p(st+1 | st, at) is the transition probability
distribution. A policy is defined as a probability distribution π(a | s) that establishes the probability of the agent taking
action a given that its current state is s.

For defining tasks, we consider a recently introduced reward mechanism known as reward machines [10]. A reward
machine is a finite-state machine that can be used to specify temporally-extended and non-Markovian reward functions.
The intuitive idea is that transitions in the reward machine take place based on observations made by the agent about
the environment, and that the reward depends on the transitions taken in the machine. The observations are represented
by a set of propositional symbols P , which correspond to facts that the agent may perceive. For a given environment, we

1

Paper # 198 192

assume there is a labeling function L : S → 2P that establishes what is perceived when reaching a state. Then, a reward
machine for environment E and observation propositions P is given by the tupleR = 〈U, u0, δu, δr〉. U is its set of states,
u0 is its initial state, δu : U × 2P → U is its state transition function, and δr : U × U → R is its reward transition function.
Whenever the agent makes a transition (s, a, s′) in the environment and observes P ⊆ P , the current state in the reward
machine is updated from u to u′ = δu(u, P). At this point, the agent receives reward δr(u, u′).

Temporal Abstraction in RL The options framework proposes the use of policies that are trained for achieving specific
high-level behaviours, coupled with well-defined termination criteria for their application [9]. An agent acting within
this framework can choose, at every step, to either apply a low-level action or to apply one of these high-level options.
We use a simplistic notion of option defined as a pair o = 〈πo, To〉, where πo is the corresponding policy and To ⊆ S is a
set of states that the policy is intended to reach and that will be used as the option’s termination criterion.

Symbolic Planning We specify planning domains in terms of a tuple D = 〈F,A〉. F is a set of propositional symbols,
called the fluents of D, and A is the set of planning actions in the domain. Planning states are specified as subsets of F ,
so that state S ⊆ F represents the situation in which the fluents in S are all true and those not in S are false. Actions are
specified in terms of their preconditions and effects, which are given as logical formulae over the propositional fluents.
Actions are only applicable in states where their preconditions are satisfied, and such application results in a transition
to a state where the action’s effects are true, and everything else remains unchanged.

A planning task is described by an initial state and a goal condition. The goal is given as a formula over the fluents of
the domain. Any state that satisfies the goal condition is said to be a goal state. A sequence of actions Π = [a0, a1, . . . , an]
is known as a sequential plan for a task when it is possible to sequentially apply the actions starting at the initial state,
and doing so reaches a goal state. Given a plan Π = [a0, a1, . . . , an], we will refer to its prefix with respect to action ai as
prefix(Π, ai) = [a0, a1, . . . , ai−1].

A D

CB
K

K

B[

[[

[[

[b

Figure 1: The OFFICEWORLD.

Partial-order plans generalize sequential plans by relaxing the ordering condition
over the actions. A partial-order plan is a tuple Π =

〈
A,≺

〉
, where A is its set of

action occurrences and ≺ is a partial order over A. The set of linearizations of Π,
denoted Λ(Π), is the set of all sequences of the action occurrences inA that respect
the partial order ≺. Any linearization Π ∈ Λ(Π) is a sequential plan for the task.
Intuitively, a partial-order plan represents a family of related sequential plans.

Running Example We consider a version of the OFFICEWORLD domain de-
scribed by Toro Icarte et al. [10]. The low-level environment is represented by
the grid displayed in Figure 1. An agent situated in any cell can try to move in
any of the four cardinal directions, succeeding only if the movement does not go
through a wall. The symbols in the grid represent events that can be perceived
by the agent: it picks up coffee or mail when it reaches the locations marked with
blue cups or the green envelope, respectively, or it can deliver what it picked up
by reaching the office, marked by the purple writing hand, etc. The locations marked [are places the agent must not
step on. The four additional named locations (A, B, C, D) can also be recognized by the agent. An example of a task is
that of delivering both mail and coffee to the office. For this task, any optimal policy will need to choose whether to get
the coffee or mail first depending on the agent’s initial position.

4 Planning Models in RL
Given a low-level environment E = 〈S,A, p〉 and the set of associated symbols P that represent possible observations, a
symbolic model for E is specified asM = 〈D, α〉, where D = 〈F,A〉 is a planning domain and α : A → 2P is a function
that associates planning actions with sets of observations.

Note that the symbols in F do not directly map to the observations, and that they can therefore be used to model state
properties that cannot be directly perceived in the low-level environment. In the OFFICEWORLD running example, some
of the symbols in F represent state properties that are non-Markovian in the low-level environment, such as the set of
locations that were visited in the past, and whether or not the agent is carrying coffee or mail.

Note that one of the key properties of automated planning systems based on symbolic models is that specifying indi-
vidual tasks is a very simple problem. We take advantage of this by enabling the description of such tasks—goals in the
symbolic models—to be communicated to an RL agent.

From Symbolic Planning Actions to Options Given an environment E and a corresponding symbolic modelM, we
can define a set of options that represents relevant transitions that can occur in M. For every planning action a ∈ A,
we build a target set Ta comprised of all the low-level states in which every observation associated with a is perceived.
Formally, this is defined in terms of L−1, the preimage of the labeling function: Ta = L−1(α(a)) ⊆ S. Then, the set of
options can be defined as O(M) = {〈πa, Ta〉 | a ∈ A}, where every πa is a policy trained specifically for reaching the
states in Ta. Note that two or more actions in Amay produce the same target set and be represented by a single option.

2

Paper # 198 193

From Plans to Meta-Controllers We propose that a good way of communicating the high-level tasks to the agent
is not in terms of the goals of the task, but rather in terms of high-level plans that achieve them. This allows us to
specify tasks that are non-Markovian from the perspective of the low-level environment, such as delivering coffee in the
OFFICEWORLD, while simultaneously enabling a natural form of task decomposition.

To actually give a specific high-level plan to an RL agent, we will design a simple reward machine that directly represents
the execution of the plan. Reward of 1 will be given only upon completing this execution.

• U = {u0, u1, . . . , un+1}
• δr(ui, uj) ={

1 if i = n and j = n+ 1

0 in any other case

• δu(ui, P) ={
ui+1 if P = α(ai)

ui in any other case

(a) Reward machine based on a sequential plan Π =
[a0, a1, . . . , an].

• U = 2A, u0 = ∅

• δr(ui, uj) =

{
1 if uj = A
0 in any other case

• δu(u, P) =

u ∪ {a} if ∃a ∈ A,Π ∈ Λ(Π),
s.t. u = prefix(Π, a)

and P = α(a)

u in any other case

(b) Reward machine based on a partial-order plan
Π =

〈
A,≺

〉
.

Figure 2: Reward machines defined by plans.

For a sequential plan Π = [a0, a1, . . . , an], the implementation of the
corresponding reward machine is very straightforward and shown in
Figure 2a. If instead of a sequential plan we consider a partial-order
plan Π =

〈
A,≺

〉
, we need a reward machine that effectively repre-

sents all possible orderings of the plan, in a way that any execution of
one of them results in receiving a reward of 1 only on the last step. We
build this machine by including one state for every possible subset of
A. This ensures that the machine’s executions correctly keep track of
which actions have already taken place. Note that some of these states
will not be reachable. In practice, we will only generate the states as
needed. The possible transitions will be defined by explicitly consid-
ering Λ(Π), as described in Figure 2b.

Note that the given definition of δu does not necessarily imply a func-
tion. Consider two actions a, b ∈ A such that P = α(a) = α(b), that
is, actions that result in the same observations. In the OFFICEWORLD,
an action to simply visit the office achieves the same event as the ac-
tion to deliver coffee. Now, if there are two linearizations of Π, Πa

and Πb, such that u = prefix(Πa, a) = prefix(Πb, b), then either action
could be used in the definition of δu(u, P). In such cases, we arbitrarily
choose which of the actions to use, as either choice represents a valid
linearization of Π.

From Reward Machines to Meta-Controllers Given an environment
E and a symbolic model M = 〈D, α〉, we want to leverage the set
of options O(M) to efficiently find a low-level policy for achieving a
high-level goal g defined in terms of D. A naive approach consists
of finding a sequential plan for g and then attempting to execute the
corresponding options in order. A more flexible approach is to learn
a meta-controller over the options while using the plan only to spec-
ify the reward function. The latter approach also allows the use of a
partial-order plan, resulting in a less restrictive reward.

Our third and main approach combines the flexibility of partial-order
plans with the simplicity of naively following a plan. Effectively, we
train a meta-controller that is a priori restricted to only select among options that correspond to actions that are reasonable
within the context of a partial-order plan. In practice, this means that the meta-controller is limited to selecting options
that can advance the reward machine toward its goal, an idea introduced by Toro Icarte et al. as a simple way of exploiting
the structure in a reward machine [10] .

5 Empirical Evaluation

We evaluated our approach by considering two different low-level environments and respective high-level symbolic
models. In each case, we defined a set of option candidates using the approach outlined in Section 4. We subsequently
pretrained these options, and finally evaluated our approach on a number of new tasks for each environment. For each
task we computed sequential and partial-order plans, and built the corresponding reward machines. We compare our
results against the use of the same pretrained options in a standard HRL framework, and against the naive approach
outlined above. In all cases, the training was done through the Q-learning algorithm.

The first test environment is the OFFICEWORLD running example. Here the high-level actions include visiting any of
the named locations, getting coffee, getting mail, delivering either coffee or mail to the office, and delivering both coffee
and mail to the office. This results in options for going to any of the named locations or to the office, and for getting
coffee and getting mail. The actions for delivering to the office are all mapped to the same observation, which occurs
whenever the agent reaches the office, and therefore correspond to the same option. For this environment, we tested on
tasks consisting of 6 different goals and 10 random initial states for each goal.

3

Paper # 198 194

0 10K 20K 30K 40K 50K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRL(seq)
HRL(pop)

HRL(restr)

(a) OFFICEWORLD

0 100K 200K 300K 400K 500K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRL(seq)
HRL(pop)

HRL(restr)

(b) MINECRAFTWORLD

Figure 3: Experimental performance
obtained on previously unseen tasks.

Our second environment is the Minecraft-inspired gridworld described by An-
dreas et al. [1]. The grid contains raw materials (e.g., wood, iron) and loca-
tions where the agent can combine materials to produce refined materials (e.g.,
wooden planks), tools (e.g., hammer), and goods (e.g., goldware). The high-
level actions allow for collecting each of the raw materials, and for achieving
the combinations. The types of tasks that we evaluated on include examples
such as “build a bridge” or “have a hammer and a pickaxe”. We ran experiments
on 10 different maps, 10 different final-state goals, and 4 random initial states
for each combination of map and goal.

In both environments, we pretrained options by generating a small set of ran-
dom initial states. We simultaneously trained a single policy for each option.
The experience observed when training for any given option was used for
training all other options, in an off-policy learning setting. This pretraining
was restricted to a small number of reinforcement learning steps. In each in-
dependent experiment, option policies were continuously refined as the agent
continued to interact with the environment.

We used the Fast Downward planning system [4] to quickly produce high-
quality sequential plans. To get partial-order plans, we relaxed the sequential
plans by solving a mixed integer linear program, following Muise et al. [8].

Results and Discussion We report the results for the OFFICEWORLD and
MINECRAFTWORLD environments in Figures 3a and 3b. Each graph displays
the performance obtained after training with the labeled algorithm for the
specified number of steps. HRL(restr) refers to our main approach; HRL(seq)
and HRL(pop) refer to the standard HRL approach, respectively using the re-
wards specified by the sequential and partial-order plans. In all cases, we
report the normalized median discounted reward (using discount γ = 0.9)
obtained on all tasks and several independent trials. We also show the me-
dian quintile performance (shaded area). Rewards were normalized by the
best value obtained for each task across all independent experiments.

The aim of our experiments was to validate our approach as a method for
easily solving unseen tasks. In particular, they show how by just having pretrained options and a high-level plan, we
could obtain high-quality policies for the new tasks with little extra learning. Our results were positive and show that the
approaches that restrict which options can be used based on the actions presented by the plan produced good policies
after very few training steps. The naive method quickly reached a plateau in its performance; but even when compared
to this, the other methods we tested needed up to an order of magnitude more training steps to reach comparable results.
Our main approach significantly outperformed all other approaches, even after a large number of training steps.

To conclude, we believe that the automatic generation of goal-relevant options and ordering constraints over them—in
conjunction with the ability to explicitly represent them in a structured reward function—is one of the key aspects that
will enable RL systems to be both taskable and scalable. Moreover, we believe that symbolic planning and knowledge
representation techniques can provide the ideal framework for generating such options and constraints. Planning for-
malisms and algorithms support a plethora of different domain and solution properties, such as temporally-extended
goals, preferences, diverse plans, numeric constraints, and more. All of these could be used for representing rich rein-
forcement learning tasks, while preserving useful structure that can be exploited when learning policies.

References
[1] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy sketches. In ICML, volume 70 of PMLR, pages 166–175, 2017.

[2] M. J. Grounds and D. Kudenko. Combining reinforcement learning with symbolic planning. In AAMAS III, volume 4865 of LNCS, pages 75–86, 2008.

[3] M. Grześ and D. Kudenko. Plan-based reward shaping for reinforcement learning. In IS, volume 2, pages 10-22–10-29, 2008.

[4] M. Helmert. The Fast Downward planning system. JAIR, 26:191–246, 2006.

[5] S. James, B. Rosman, and G. Konidaris. Learning to plan with portable symbols. In PAL@ICML/IJCAI/AAMAS, 2018.

[6] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. From skills to symbols: Learning symbolic representations for abstract high-level planning. JAIR, 61:215–289, 2018.

[7] D. Lyu, F. Yang, B. Liu, and S. Gustafson. SDRL: interpretable and data-efficient deep reinforcement learning leveraging symbolic planning. In AAAI, 2019.

[8] C. J. Muise, J. C. Beck, and S. A. McIlraith. Optimal partial-order plan relaxation via MaxSAT. JAIR, 57:113–149, 2016.

[9] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. AIJ, 112(1-2):181–211, 1999.

[10] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for high-level task specification and decomposition in reinforcement learning.
In ICML, volume 80 of PMLR, pages 2112–2121, 2018.

[11] F. Yang, D. Lyu, B. Liu, and S. Gustafson. PEORL: integrating symbolic planning and hierarchical reinforcement learning for robust decision-making. In IJCAI, pages
4860–4866, 2018.

[12] A. Zhang, S. Sukhbaatar, A. Lerer, A. Szlam, and R. Fergus. Composable planning with attributes. In ICML, volume 80 of PMLR, pages 5837–5846, 2018.

4

Paper # 198 195

Doubly Robust Estimators in Off-Policy Actor-Critic Algorithms

Riashat Islam1∗ Samin Yeasar Arnob2∗ Doina Precup1

1Mila - McGill University
2McGill University

Abstract

Off-policy learning in deep reinforcement learning (RL) relies on the ability of using past samples from an experience
replay buffer, where samples are collected by a different behaviour policy. Despite its usefulness in terms of sample
efficiency, off-policy learning often suffer from high variance. Doubly robust (DR) estimators were introduced by Jiang
and Li [2016], Thomas and Brunskill [2016] to guarantee unbiased and lower variance estimates in off-policy evaluation.
In this work, we extend the idea of doubly robust estimation in actor-critic algorithms, to achieve low variance estimates
in the off-policy critic evaluation. DR estimators can also be interpreted as a control variate Thomas and Brunskill [2016].
In policy gradient algorithms relying on gradient of action-value function, we therefore propose using a control variate to
achieve lower variance in the critic estimate itself. We suggest that controlling the variance, and achieving a good estimate
of the action-value function is a key step towards stability of policy gradient algorithms. We demonstrate the usefulness of
using a doubly robust estimator in the policy critic evaluation in a popular off-policy actor-critic algorithm on several
continuous control tasks. Extending the usefulness of DR estimators in policy gradients may be an important step towards
improving stability of policy gradient methods, relying on reliably good, unbiased and low variance estimations of the
critic.

Keywords: Off-policy learning, Policy gradient and Actor-Critic algorithms,
Doubly Robust Estimators, Control Variates

∗Equal contribution. Correspondence: {riashat.islam}@mail.mcgill.ca.

Paper # 243 196

1 Introduction

Policy gradient methods are a wide class of model-free algorithms used to solve continuous control tasks Lillicrap et al.
[2015], Silver et al. [2014a]. These class of algorithms are adaptable to solve a range of complex tasks. However, due to the
instability of policy gradient algorithms, especially in the off-policy case, as noted by Henderson et al. [2018], often state
dependent or state-action dependent baselines are used to reduce variance of the policy gradient estimators. Monte-Carlo
on-policy policy gradient estimates Williams [1992] often suffer from high variance, and requires state dependent unbiased
baselines to reduce variance. Actor-Critic algorithms replaces the Monte-Carlo returns with an estimated return to reduce
variance, but at the cost of introducing bias. A wide range of state-action dependent baselines have also been introduced,
which are often mostly used for off-policy actor-critic algorithms Lillicrap et al. [2015]. Although several state-action
dependent baselines have been introduced Gu et al. [2016], there exists a mirage between the choice of the baseline Tucker
et al. [2018], and the choice of the right baseline is often not clear. It is often argued that the variance of action dependent
baselines often increases, compared to using a state dependent baselines, in few of the standard control tasks Tucker et al.
[2018].

In this paper, we extend the idea of doubly robust off-policy evaluation Jiang and Li [2016] in actor-critic algorithms.
Doubly robust (DR) estimators have better theoretical understandings, both from the bandits literature Dudík et al. [2015]
and for sequential decision making Jiang and Li [2016]. Thomas and Brunskill [2016] also extends the idea of doubly
robust off-policy evaluation as a control variate to further reduce variance while keeping the estimators unbiased for both
finite and infinite horizon settings. We propose to extend doubly robust estimators in the off-policy critic evaluation of
actor-critic algorithms. More interestingly, the introduction of DR estimators can be thought of as an using an advantage
function, Â in the critic estimate itself, as we derive later, which has an interesting connection to control variates for
critic estimation to reduce variance of regression estimate. Instead of using a control variate in the gradient estimator,
we are subtracting a state dependent baseline, and adding a state-action dependent control variate in the critic estimate
itself. Through the use of a separate reward function approximator, we suggest that a DR estimator which adds a
state-action dependent baseline while subtracting a state dependent baseline can make off-policy gradient algorithms
work significantly better in practice. Importantly, we believe that extending the idea of DR estimators to actor-critic
algorithms is an interesting step in itself.

2 Preliminaries

In policy gradient methods, the aim is to learn a parameterized policy πθ(a|s) to maximize the discounted sum of
cumulative returns along the sampled trajectories, given by J(πθ) = Eπθ

[
∑∞
i=t+1 γ

ir(si, ai)]. Based on the policy gradient
theorem Sutton et al. [2000], we can improve the policy parameters θ using the policy gradient, which can be computed
with Monte-Carlo estimation∇θJ(θ) = Eπθ

[∇θ log πθ(a|s)Qπθ (s, a)], where, the E above uses samples under the current
policy π. Often the policy gradient estimator can suffer from high variance, and hence an advantage function Aπθ (s, a) =
Qπθ (s, a)− V πθ (s) or a state dependent baseline, or a combination of both is used in practice to reduce baseline ∇θJ(θ) =
Eπθ

[∇θ log πθ(a|s)(Qπθ (s, a)−V πθ (s))]. Alternatively, often the gradient is also estimated with an advantage function critic
and using a state-action dependent baseline, such that Aw(s, a)−Q(s, a) where the critic uses a function approximator
parameterized by w and a separately learned baseline is used.

2.1 Off-Policy Actor-Critic Algorithms

Instead of on-policy gradient estimators, which can be sample-inefficient in practice, due to their inability to re-use data
from past experiences, often an off-policy gradient estimate is preferred, based on the deterministic policy gradient (DPG)
theorem Silver et al. [2014a]. For continuous control tasks, the DDPG algorithm Lillicrap et al. [2015] is often used due to
their ease ability to learn from experience replay buffer. The off-policy policy gradient estimator is given by ∇θJ(θ) =
Eµ[∇θQw(s, πθ(s)], whereQw is a critic estimate and πθ is a deterministic policy which outputs continuous actions, to allow
directly finding the gradient of the action-value function. Due to the instability of off-policy gradient methods with function
approximators, we often require careful fine-tuning of this algorithm Henderson et al. [2018] as the gradient estimate is
directly related to the estimate of the critic. Since the DPG Silver et al. [2014a] algorithm can avoid importance sampling
(IS) corrections, typically required in off-policy learning Precup [2000], the critic can be evaluated with a regression based
objective without any high variance IS corrections being required L(w) = Eµ[(r(s, a) + γQ(s′, πθ(s′)) − Q(s, πθ(s)))

2],
where the Eµ is under samples from the experience replay buffer, and the off-policy critic evaluation is a regular one-step
temporal difference (TD) based update without requiring off-policy corrections, even though we are using old samples
from the replay buffer. This is due to the DPG theorem Silver et al. [2014b] which avoids an integral over the action space,
avoiding the need for IS corrections. However, the DDPG algorithm can often be unstable to use in practice Henderson
et al. [2018], and a state-action dependent or state dependent baseline can be used in the gradient estimate.

In this work, we instead argue that a control variate in the form of a doubly robust estimator Thomas and Brunskill
[2016] should instead be used in the off-policy critic evaluation of DDPG. Since the gradient estimate is dependent on

1

Paper # 243 197

directly finding gradient of action-value function, it is better to use a baseline which is unbiased but reduces variance in
the off-policy critic evaluation itself.

2.2 Doubly Robust Off-Policy Evaluation

The doubly robust (DR) estimator in MDPs was introduced by Jiang and Li [2016], Thomas and Brunskill [2016] to reduce
the variance of off-policy evaluation, while keeping the regression based estimators unbiased. Jiang and Li [2016] argued
that instead of using importance sampling corrections, which is unbiased, but can have high variance, it is better to use
DR estimators in off-policy evaluation tasks. The key step in DR estimator is to use the following unbiased estimator

VDR(s) = V̂ (s) + ρ[r(s, a) + γVDR(s
′)− Q̂(s, a)] (1)

where in the case of off-policy, ρ is the importance sampling correction in the update, and we replace V π with V πDR to
denote a DR estimation of the off-policy evaluation. A key requirement in DR estimators is to use an approximation to the
MDP model since the V̂ requires the rewards from an approximation of the MDP. In other words, R̂ used to compute V̂ is
the model’s prediction of the reward. Given the samples from past data and an approximate model of the MDP, the goal
of DR estimators is to produce a low variance regression mean equated error estimate MSE(VDR, V

π).

3 Approach

In this work, we extend the idea of DR estimators in the off-policy DDPG algorithm, where we propose to use a doubly
robust estimator, as a control variate, to reduce variance of the critic estimates. The key idea of our work is to use a low
variance and unbiased DR estimator to estimate the critic, instead of using a control variate in the gradient estimate
itself. Our key intuition is as follows : since the policy gradient estimate in DDPG relies directly on finding gradient of
action-value function, the important quantity in DDPG is to have a reliably good low variance estimate of the critic. We
therefore aim to reduce the variance of the critic estimate itself. Since we can re-use samples from the experience buffer,
we can use an off-policy low variance evaluation of the critic based on sampled states and actions to further reduce the
variance of the policy gradient estimator in the actor update. When we incorporate the DR estimator, the off-policy critic
estimate in DDPG QDR(s, a) will be as follows

QDR(s, a) =Q̂(s, a) +
[
r(s, a) + γQDR(s

′, πθ(s
′))− V̂ (s)

]
(2)

where Q̂ and V̂ are computed based on an approximation of the rewards R̂ using a reward function approximator.

Reward Function Approximator : We extend the idea of DR estimator Jiang and Li [2016] in actor-critic algorithms in deep
reinforcement learning. Typically DR estimation requires an approximate MDP model to have an estimate of the rewards
R̂. In this work, instead of using an approximate model, we instead use a parameterized reward function approximator
R̂ = fφ(s, a) to predict the rewards. In other words, we use an approximation R̂ of the true reward function r(s, a) and
learn the reward function approximator based on sampled states from the experience replay buffer. This is a supervised
learning (SL) step, where given the s, a, r, s′ tuples in the reply buffer, we can train an approximate reward model R̂ to
predict the true rewards r based on the following regression based update

L(φ) = Es,a,r∼Buffer[(R̂(s, a)− r(s, a))2] (3)

The reward function approximator fφ(s, a) therefore predicts the reward for the batch of experiences available in the
replay buffer. The predicted rewards R̂ can then be used to compute Q̂, which is a separate control variate or baseline
function approximator. The Q̂ can further be learned, as typically done for a separate control variate as follows

L(Q̂) = Es,a,r,s′∼Buffer[(R̂(s, a) + γQ̂(s′, πθ(s
′))− Q̂(s, a))2] (4)

Following 4 we can further estimate V̂ (s) similar update rule. Therefore, using a reward function approximator, we can
compute QDR as in doubly robust regression estimation, without explicitly using an approximation of the model of the
MDP.

For learning the off-policy critic estimate in DDPG, we therefore use the following update rule, based on the DR estimator,
where the QDR is estimated with a parameterized function approximator w.

L(w) = Es,a,r,s′∼Buffer
[
Q̂(s, a) +

(
r(s, a) + γQDR(s

′, πθ(s
′)
)
− V̂ (s)−QDR(s, a)

]
(5)

2

Paper # 243 198

Equation 5 can be explained as follows. Instead of the regular critic update in DDPG, we have introduced the DR estimate
of the critic, where Q̂ and V̂ are estimated based on a reward function approximator. Equation 5 can be interpretated
as introducing a DR control variate Thomas and Brunskill [2016] in the critic update, where we have subtracted a state
dependent baseline (as typically done to reduce variance of policy gradient estimates) and added a state-action dependent
control variate (unlike typically subtractinga this control variate). As in DR off-policy evaluation, this also achieves an
unbiased, low variance estimate of the critic in actor-critic algorithms. This can also be interpreted as adding a separate
advantage function estimation since Â = Q̂− V̂ , where the advantage function is now learnt with a separate approximation
of the rewards R̂. In our experiments, we show that adding a state-action dependent inverse baseline (since we are adding
the control variate), inspired from using DR estimation for off-policy evaluation, we can significantly improve our estimate
the critic (lower MSE) and improve performance of our algorithm for continuous control tasks.

4 Experimental Results

We evaluate the performance of our DDPG algorithm with a doubly robust critic estimator on several continuous control
Mujoco tasks Todorov et al. [2012]. We use two variants of the DR estimator in the critic (a) : We add only a state-action
dependent Q̂(s, a) in the critic estimate, denoted by DDPG-HDR and (b) use the full DR estimator as the advantage term
Q̂−V̂). Experiments are evaluated on the Half-Cheetah-v2, Walker-2d-v2, Hopper-v2, Swimmer-v2, InvertedPendulum-v2,
InvertedDoublePendulum-v2 environments, and evaluated an average over 3 runs with random seeds.

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
e

Re
wa

rd
s Environment-HalfCheetah-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6
0

500

1000

1500

2000

2500

3000

Cu
m

ul
at

iv
e

Re
wa

rd
s Environment-Walker2d-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6
0

500

1000

1500

2000

2500

3000

Cu
m

ul
at

iv
e

Re
wa

rd
s Environment-Hopper-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

10

15

20

25

30

35

40

Cu
m

ul
at

iv
e

Re
wa

rd
s Environment-Swimmer-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6
300

400

500

600

700

800

900

1000

1100

Cu
m

ul
at

iv
e

Re
wa

rd
s Environment-InvertedPendulum-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
e

Re
wa

rd
sEnvironment-InvertedDoublePendulum-v2

DDPG-baseline
DDPG-HDR
DDPG-DR

Figure 1: Performance Comparison of DDPG and Variants of Doubly Robust DDPG

Figure 1 shows that using a DR estimator in DDPG, we can significantly reduce variance and improve the performance of
our algorithm over the standard baseline over all the environments except Hopper-v2. Interestingly, however, using the

3

Paper # 243 199

full form of the DR estimator does not necessarily lead to better performance, but adding only a state-action dependent
control variate in the critic estimate has a better effect, as shown in figure 1.

5 Discussion and Conclusion

In this work, we have shown that the doubly robust (DR) estimator can be extended to the actor-critic setting, where the
critic can be estimated with a DR estimator to reduce variance while keeping the estimator unbiased. Even though the DR
estimator depends on an approximate model of the MDP, we suggest that to extend DR to be fully model-free, we can
instead use a reward function approximator fφ and learn it to predict the rewards R̂ as an approximation to the estimated
model rewards. The reward function approximator can be learnt using the same batch of data in the experience replay
buffer without more computation. We evaluated the performance of our algorithm on standard baselines, building off the
DDPG algorithm, and showed that the introduction of a control variate in the critic estimate can lead to marginally better
performance.

In future work, it would be interesting to see other ways the reward function approximator can be used to predict the
rewards R̂. Since predicting the rewards can be considered as a supervised learning problem, it would be interesting to
see the effect of over-fitting in the reward function approximation. Furthermore, we would require theoretical analysis of
the bias variance trade-off of the DR estimator in the actor update, to fully understand the potential of DR estimators in
the actor-critic setting. We evaluated our variance reduction on DDPG only. More experiment are required to show, how
well does the variance reduction of DR estimators generalize in policy gradient methods.

References
Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In Proceedings of the 33nd

International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 652–661, 2016.
URL http://jmlr.org/proceedings/papers/v48/jiang16.html.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
2139–2148, 2016. URL http://jmlr.org/proceedings/papers/v48/thomasa16.html.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014a.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep reinforcement
learning that matters. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3207–3214, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine
learning, 1992.

Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, and Sergey Levine. Q-prop: Sample-efficient
policy gradient with an off-policy critic. CoRR, abs/1611.02247, 2016. URL http://arxiv.org/abs/1611.02247.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, and Sergey Levine. The
mirage of action-dependent baselines in reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5022–5031, 2018. URL
http://proceedings.mlr.press/v80/tucker18a.html.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation and optimization. CoRR,
abs/1503.02834, 2015. URL http://arxiv.org/abs/1503.02834.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in neural information processing systems, 2000.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series,
page 80, 2000.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

4

Paper # 243 200

Off-Policy Policy Gradient Theorem
with Logarithmic Mappings

Riashat Islam
Mila - McGill University

riashat.islam@mail.mcgill.ca

Zafarali Ahmed
Mila - McGill University

zafarali.ahmed@mail.mcgill.ca

Pierre-Luc Bacon
Stanford University

plbacon@cs.stanford.edu

Doina Precup
Mila - McGill University
dprecup@cs.mcgill.ca

Abstract

Policy gradient theorem [1] is a fundamental result in reinforcement learning. A class of continuous control tasks rely
on policy gradient methods. However, most of these algorithms rely on using samples collected on-policy. While there
are serveral approaches proposed for off-policy policy gradients, there exists a lack of an off-policy gradient theorem which
can be adapted for deep reinforcement learning tasks. Often off-policy gradient methods are difficult to use in practice
due to the need for an importance sampling correction which can have unbounded variance. In this paper, we propose
a derivation for an off-policy policy gradient theorem which can completely avoid high variance importance sampling
corrections. Towards this goal, we introduce the existence of a policy gradient theorem using a non-linear Bellman
equation (logarithmic mappings of value function). We show that using logarithmic mappings of the policy gradient
objective, we achieve a lower bound to the policy gradient, but can avoid importance sampling and derive the gradient
estimate where experiences are sampled under a behaviour policy. We further develop an off-policy actor-critic algorithm,
and suggest that the proposed off-policy gradient can be used for deep reinforcement learning tasks, for both discrete and
continuous action spaces.

Keywords: Reinforcement learning; Policy Gradient Methods; Off-Policy
Learning; Actor-Critic Algorithms

Acknowledgements

Paper # 246 201

1 Introduction

Off-policy learning in reinforcement learning (RL) is often desired due to its ability to learn from and re-use multiple
streams of experiences collected under a behaviour policy, to learn about a target policy. Off-policy RL is often desired
due to their sample efficiency, and scaling up off-policy methods has been a fundamental goal towards efficient RL. A
central approach to off-policy learning, however, relies on importance sampling (IS) corrections [2], which can exhibit high
variance, making off-policy algorithms often unstable to use in practice.

A wide range of on-policy [3, 4] and off-policy [5, 6] algorithms exist. Unfortunately, the choice of which algorithm to use
is often dictated by the action space being discrete or continuous. In particular, the range of off-policy gradient algorithms
for discrete action spaces is quite limited. Previously, [7] proposed the off-policy counterpart of the policy gradient
theorem [1], but uses a crude approximation to the gradient term and the theorem only works for tabular representations
of the policy. [8] proposed an actor-critic algorithm under off-policy training, and shows that there exists convergence
guarantees for the case where the critic uses a linear function approximation. Recently, [9] proposed the off-policy gradient
theorem, for the case of both stochastic and deterministic policies, but relies on estimating the emphatic weightings which
makes the algorithm often difficult to scale in practice. The success of off-policy policy gradients is widely dominated due
to the existence of the Deterministic Policy Gradient theorem [10], which only works for the case of deterministic policies
and continuous actions.

In this work, we propose an off-policy policy gradient theorem following the policy gradient theorem [1] and suggest the
provide the following contributions. We derive the policy gradient estimates with logarithmic mappings assuming
positive rewards, but the results can be extended for general rewards by using a decomposition of the value function
under positive and negative rewards.

• We derive a policy gradient theorem based on non-linear logarithmic mappings of the value function. We first
derive the policy gradient, and then extend the result for the off-policy case which has a desriable property as
follows

• The off-policy policy gradient theorem using logarithmic mappings can avoid importance sampling (IS) corrections
which can have high unbounded variance. This is an important result in off-policy RL, since most of off-policy
learning methods relies on importance sampling and variants

• We suggest that by using Jensen’s inequality with logarithmic mappings of the policy gradient objective, we can
compute the Monte-Carlo estimate of the gradient under samples from the behaviour policy, without the need for
any importance sampling corrections

• The proposed off-policy gradient objective can be particularly interesting as it can be extended for both discrete
and continuous action spaces - a result lacking in policy gradients literature, since the choice of the algorithm
often depends on the action space

• We derive an off-policy actor-critic algorithm, where the critic can be estimated with logarithmic mappings
off-policy and can avoid direct dependency on importance sampling corrections in its estimate. We can show
existence of a unique fixed point for the off-policy one-step critic update with logarithmic mappings.

2 Preliminaries and Background

The goal of reinforcement learning is to find a policy π that maximizes the expected return J(π) = Eπ[
∑∞
t=0 γ

trt]. In
policy gradient methods, we consider parameterized policies πθ(a|s), and optimize the objective by adjusting the policy
parameters θ based on the policy gradient theorem [1, 11]: ∇θJ(θ) = Es∼.π(s),a∼π(a|s)[∇θ log πθ(a|s)Q

π(s, a)]. Note here
that the expectation is under the current policy π, and requires trajectories to be sampled under the current policy to
obtain a sample based estimate. Several variants of the policy gradient theorem have been proposed, including Trust
Region Policy Optimization (TRPO) which often dominates the success of these algorithms in continuous control tasks.
However, most of these algorithms lack the ability to re-use past experiences or off-policy data. In off-policy learning,
importance sampling corrections are used [2] to correct for the difference in distributions and learn the value functions
from experiences that are gathered under a behaviour policy µ(a|s). However, since policy gradient methods are based on
returns until end of the trajectory, this would require per step importance sampling corrections, and therefore the product
of IS corrections would exhibit high variance, making it unsuitable for solving complex tasks. Off-PAC [7] proposed using
marginal importance weights to reduce the variance, but still requires estimating the IS ratio, and further approximates
the gradient by dropping a term. Recent work from [9] tries to address this issue by taking the full approximation to the
gradient, but instead requires estimating the emphatic weightings For deep reinforcement learning, perhaps the most
successful off-policy policy gradient algorithm is the Deep Determininistic Policy Gradient (DDPG), derived from the
deterministic policy gradient theorem, but is only known to work for deterministic continuous action policies. Although
variants of the DDPG algorithm have been proposed, as in the Soft-Actor-Critic (SAC), and the ACER algorithm, but all
these derives from the either the Off-PAC or the DPG policy gradient theorem.

1

Paper # 246 202

3 Policy Gradient Theorem with Logarithmic Value Functions

In this section, we show that by considering logarithmic mappings of the value function log V π(s), we can derive the
existence of a policy gradient theorem. We first show that a policy gradient theorem exists for logarithmic value functions,
and then derive the significance of using log V π(s) to derive the off-policy counterpart of the policy gradient theorem. This
has a particularly interesting form as for the off-policy case, unlike existing off-policy policy gradient theorem as in [7, 9],
we can completely avoid the dependency on the importance sampling corrections, which is can have unbounded variance.
This is inspired by the idea of having a non-linear Bellman equation for value functions with logarithmic mappings where
we can write the value function as follows.

Let us first consider the case where the reward function, and hence the value functions are positive. Consider the
logarithmic mapping f(x) = ln(x) and its inverse, f−1(x) = exp(x). We can define an update for Q directly in the
logarithmic space by applying the mapping logQ(s, a) = Q̃(s, a). We can therefore write the update equation as
Q̃(s, a) := (1 − α)Q̃(s, a) + αf [r(s, a) + γf−1(Q̃(s, a))], where Q̃(s, a) is an estimate of the expected return mapped
to the logarithmic space and we can retrieve the regular Q(s, a) with the inverse mapping f−1(Q̃(s, a)) 1. Recent work
also demonstrates the existence of logarithmic value functions (under submission).

Following [1], we derive the policy gradient theorem for logarithmic mappings of the value function. We prove the
theorem for the start-state formulation. In the next section, we will show that a similar form of the policy gradient with
logarithmic mappings would hold even for the case of off-policy learning, with the only difference being the policy under
which samples are collected.

The policy gradient objective is given by J(π) = Es∼dπ(s)[V π(s)]. Taking log on both sides, and applying Jensen’s
inequality, we get a lower bound to the policy gradient objective J̃(π), but also get a logarithmic mapping of V π(s), ie,
log J(π) ≥ Es∼dπ(s)[log V π(s)]. Assumiing policy parameterization πθ(a|s), we want to find∇θ log V πθ (s).

∇θ log V π(s) = ∇θ log[
∑

a

π(a, s)Qπ(s, a)] = ∇θ[log[Ea∼π(a|s)Qπ(s, a)]] (1)

>= ∇θ[Ea∼π(a|s)[logQπ(s, a)]] = ∇θ[
∑

a

π(a|s) logQπ(s, a)] (2)

=
∑

a

[∇θπ(a|s) logQπ(s, a) + π(a|s)∇θ logQπ(s, a)] (3)

= Ea∼π(a|s)[∇θ log π(a|s) logQπ(s, a) +∇θ logQπ(s, a)] (4)

Taking Es∼dπ(s) on both sides, we therefore get the policy gradient theorem with logarithmic value functions, as in equation 5.

∑

s

dπ(s)[∇θ log V π(s)] =
∑

s

dπ(s)[Ea∼π(a|s)[∇θ log π(a|s) logQπ(s, a) +∇θ logQπ(s, a)]] (5)

= Es∼dπ(s),a∼π(a|s)[∇θ log π(a|s) logQπ(s, a) +∇θ logQπ(s, a)]] (6)

We can interpret the above policy gradient theorem for logarithmic mappings as follows. This result is similar to the
policy gradient theorem [1], except it uses logQπ(s, a) instead of Qπ(s, a) and adds an extra term that depends on directly
finding the gradient of the logarithmic action-value function (similar to DPG [10] that requires ∇θQ(s, πθ(s)). For discrete
actions, here we would require a relaxation of the discrete action (mean estimate of the actions at a given state).

4 Off-Policy Policy Gradient Theorem

We can derive a similar policy gradient for off-policy where sampled experiences are under a behaviour policy µ(a|s).
We start with the off-policy policy gradient objective J(π) =

∑
s dµ(s)V

π(s). Importance sampling is one of the popular
approaches in off-policy reinforcement learning [2]. Considering policy gradient with end of the trajectory returns, as in
REINFORCE [11], where actions are sampled under the behaviour policy µ(a|s), the importance sampled policy gradient is
given by∇θJ(θ) = (

∏T
t=1 ρt)

∑k
t=0(

∑k
i=0 γ

irt+i)∇θ log πθ(at|st), where ρt denotes the importance weighting. Equation ??
provides an unbiased gradient estimator, but it can suffer from high variance due to the product of unbounded importance
sampling weightings. Off-PAC [7] attacked this problem by using the marginal value functions, and replaces the product

1Note that for stability purposes, we might require an empirical trick and consider a lower bound on the values in the logarithmic
space by considering mappings with a δ of the form f(x) = c ln(x+ δ)

2

Paper # 246 203

of importance weights (required with an estimate of the marginal importance weights. Recent work, as in ACER [12],
derives from Off-PAC for an off-policy policy gradient algorithm, but requires clipping of importance weights, while
the critic is evaluated with λ-returns as in Retrace(λ) [13]. We start with the off-policy counterpart of the policy gradient
objective, with marginal importnace weightings

J(π) =
∑

s

dµ(s)V
π(s) =

∑

s

dµ(s)
∑

a

π(a|s)Qπ(s, a) =
∑

s

dµ(s)
∑

a

π(a|s)µ(a|s)
µ(a|s)Q

π(s, a)

= Es∼dµ(s),a∼µ(a|s)[
π(a|s)
µ(a|s)Q

π(s, a)]

(7)

Instead of using marginal importance weights, we argue that we can instead apply Jensen’s inequality in equation 7.
Jensen’s inequality states that when f is concave, then f(E[x]) ≥ E[f(x)]. Applying Jensen’s, and considering logarithmic
mappings to equation 7, we therefore get a lower bound to the above policy gradient objective.

J̃(π) = log[Es∼dµ(s),a∼µ(a|s)[
π(a|s)
µ(a|s)Q

π(s, a)]

≥ Es∼dµ(s),a∼µ(a|s)[log[
π(a|s)
µ(a|s)Q

π(s, a)]] = Es∼dµ(s),a∼µ(a|s)[log π(a|s) + logQπ(s, a)− logµ(a|s)]
(8)

Considering parameterized policies πθ(a|s), the gradient of the lower bound to the objective is therefore

J̃(θ) = Es∼dµ(s),a∼µ(a|s)[∇θ log πθ(a|s) +∇θ logQπ(s, a)−∇θ logµ(a|s)]
= Es∼dµ(s),a∼µ(a|s)[∇θ log πθ(a|s) +∇θ logQπ(s, a)]

(9)

Equation 9 gives the off-policy policy gradient theorem where samples are under the behaviour policy µ(a, s) instead of
π(a, s). More interestingly, equation 9 has the same form as we previously showed with the policy gradient theorem with
logarithmic mappings in equation ?? with the only difference of not having to sum over actions and having Eµ instead
of Eπ. This is an interesting result since the same form of the policy gradient theorem holds, for both the on-policy case
(where E is under the target policy π), and the off-policy case (where E is under the target policy µ), requiring only minor
changes. In the off-policy case, however, we would require the critic to be evaluated under off-policy samples with regular
importance sampling corrections. We demonstrate, in the next section, how considering logarithmic mappings of the
value function, we can also derive an off-policy critic in the logarithmic space.

5 Off-Policy Actor-Critic with Logarithmic Policy Evaluation

In this section, we derive an off-policy actor-critic algorithm following the policy gradient theorem in equation ?? and the
off-policy counterpart of it in equation 9. In off-policy actor-critic, we can approximate the critic logQπ(s, a) ≈ logQw(s, a)
with a function approximator, and would need off-policy corrections for the critic evaluation, since we want to estimate
logQπ(s, a) while our samples are under the behaviour policy µ(a, s). We consider the one-step off-policy critic evaluation
here, ie, off-policy SARSA or Expected SARSA, instead of the more popular variants with λ-returns as in Retrace(λ) [13].

However, note that, unlike the regular critic Qπ(s, a) as in most actor-critic algorithms, we now have a logarithmic
mapping of the critic evaluation logQπ(s, a). In this section for the off-policy critic evaluation, we consider the value
function mapped to the logarithmic space and perform the value function updates directly in this space. We emphasize
that considering logarithmic mappings have an interesting outcome - for off-policy corrections, we can now directly avoid
the importance sampling ratio.

We show the off-policy critic update directly in the logarithmic space as follows. Let us first consider the off-policy TD
update, with an importance sampled correction given by Q(s, a) := Q(s, a) + απ(a|s)µ(a|s) [r(s, a) + γQ(s′, a′)−Q(s, a)].

Recent work (under submission) shows the existence of a non-linear Bellman equation with logarithmic mappings of the
value function. Considering the off-policy update with logarithmic value functions, we can write the update as

Q̃(s, a) := Q̃(s, a) + αf [
π(a|s)
µ(a|s) [r(s, a) + γf−1Q(s′, a′)−Q(s, a)]] = Q̃(s, a) + αf [

π(a|s)
µ(a|s)] + αf [r(s, a) + γf−1Q̃(s′, a′)− Q̃(s, a)]

(10)

3

Paper # 246 204

and since f(x) = log(x), we can write the above off-policy update as Q̃(s, a) = Q̃(s, a) + α[log π(a|s) − logµ(a|s)] +
αf [r(s, a) + γf−1Q̃(s′, a′)− Q̃(s, a)]. Alternately, we can also consider Expected SARSA off-policy update for the critic
evaluation, in the logarithmic space, such that Q̃(s, a) := Q̃(s, a) + αf [r(s, a) + γ

∑
a π(a|s)f−1(Q̃(s, a))− Q̃(s, a)].

We can similar minimize the MSE loss for the critic update, considering parameterized logarithmic critics Q̃w(s, a) where
the MSE with an Expected SARSA update is given by L(w) = Es∼dµ(s),a∼µ(a|s)[(y − Q̃(s, a))], where the target is given by
y = log[r(s, a) + γ

∑
a′ π(a

′|s′) exp Q̃(s′, a′)]. Following our off-policy gradient theorem, as in equation 9, and considering
logarithmic mappings of the off-policy critic evaluation, we can therefore derive an off-policy actor critic algorithm

∇θJ(θ) = Es∼dµ,a∼µ(a|s)[∇θ log πθ(a|s) +∇θ logQw(s, a)] (11)

where in the actor updates, we update θ following the gradient update in equation 11, and the logarithmic critic
approximation with parameters w is a one step TD update with Expected SARSA, or any off-policy policy evaluation
algorithms.

6 Conclusion and Future Work

In this work, we provide a derivation of the off-policy policy gradient theorem, which relies on logarithmic mappings of
the value functions. We show that a particular interesting property considering non-linear value functions is that, the
resulting policy gradient theorem, and the off-policy counterpart, has the similar form of the gradient such that we can
either compute the gradients on-policy or with behaviour samples in off-policy learning. As a result, we can conveniently
avoid marginal importance sampling corrections in our resulting off-policy gradient theorem.

We have provided a derivation of our off-policy policy gradient theorem. In future work, it would be interesting to see
whether this form of the gradient is useful in both on-policy or off-policy case. Particularly in off-policy learning, if this
approach provides a way to completely avoid importance sampling corrections, it would be interesting to analyse the
effectiveness of this derivation, compared to the other high variance counterparts of off-policy policy gradient methods.

References
[1] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforce-

ment learning with function approximation. In Advances in neural information processing systems, 2000.
[2] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series,

page 80, 2000.
[3] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region policy optimization.

In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
1889–1897, 2015.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[5] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[6] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess, and Martin A. Riedmiller.
Maximum a posteriori policy optimisation. CoRR, abs/1806.06920, 2018.

[7] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.
[8] Hamid Reza Maei. Convergent actor-critic algorithms under off-policy training and function approximation. CoRR,

abs/1802.07842, 2018.
[9] Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic weightings. In

Advances in Neural Information Processing Systems, 2018.
[10] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy

gradient algorithms. In International Conference on Machine Learning, 2014.
[11] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine

learning, 1992.
[12] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and Nando de Freitas.

Sample efficient actor-critic with experience replay. International Conference on Learning Representations, 2017.
[13] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-policy reinforcement

learning. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1046–1054, 2016.

4

Paper # 246 205

Predicting Human Choice in a Multi-Dimensional N-Armed
Bandit Task Using Actor-Critic Feature Reinforcement Learning

Tyler James Malloy
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180
mallot@rpi.edu

Rachel A. Lerch
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180
lerchr2@rpi.edu

Zeming Fang
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180
fangz5@rpi.edu

Chris R. Sims
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180
simsc3@rpi.edu

Abstract

Recent improvements in Reinforcement Learning (RL) have looked to integrate domain specific knowledge into deter-
mining the optimal actions to make in a certain environment. One such method, Feature Reinforcement Learning (FRL)
[1], alters the traditional RL approach by training agents to approximate the expected reward associated with a feature of
a state, rather than the state itself. This requires the value of a state to be some known function of the values of the state
features, but it can accelerate learning by applying experience in one state to other states that have features in common.
One domain where these assumptions hold is the multi-dimensional n-armed bandit task, in which participants deter-
mine which feature is most associated with a reward by selecting choices that contain those features. In this environment,
the expected reward associated with one choice is the sum of the expected reward associated with each of its features.
The FRL approach displayed improved performance over traditional q-learning in predicting human decision making.
Similar improvements in the speed of learning have been displayed in some environments by using an actor-critic (AC)
model, which uses a second-order learning strategy where the state-value function v(s) can be considered as a critic of
the state-action-value function q(s,a) [2]. In this paper we apply the domain specific knowledge approach of FRL onto
AC to develop an Actor-Critic Feature RL (AC-FRL) model and display improved performance over FRL in predicting
human choice decisions in the multi-dimensional n-armed bandit task. These improvements in performance are most
closely connected to the increased confidence that the AC-FRL model has in it’s predictions, particularly in games where
the participant may have not learned which feature was most associated with a reward.

Keywords: Reinforcement Learning, Actor-Critic, Multi-armed Bandits

Acknowledgements

This research was supported by NSF grant DRL-1560829 and a grant from the RPI-IBM Artificial Intelligence Research
Collaboration (AIRC). Empirical data was provided by Yael Niv from the Niv Lab Website.

Paper # 183 206

1 Introduction
Modelling human learning using Reinforcement Learning (RL) entails addressing many issues and open questions.
Among the most prominent is how individuals learn generalizable policies in high dimensional domains, or resolve
the so-called ‘curse of dimensionality’. One method of mitigating this issue is to implement domain specific algorithms
that use some predefined knowledge of the environment in their learning strategy. Although this method makes these
models less flexible (and imposes ‘inductive bias’), it ideally reflects the types of assumptions humans also make while
trying to improve their decision making in complex tasks. To study this issue, Niv et al. [1] developed a small-scale lab-
oratory task, in the form of a multi-dimensional n-armed bandit task, that nonetheless captures many of the important
issues involved in learning in high-dimensional environments. This task consists of human participants selecting options
with different combinations of randomly generated features, and determining which single feature was most associated
with a reward.

To tackle the issues with predicting human decision making in complex environments, Niv et al. developed a ‘Feature
Reinforcement Learning’ (FRL) model, based on learning a state-action value function, q(s, a), but integrated with do-
main specific knowledge of the task, namely that the value of an option should be a weighted (linear) combination of the
features that make up that option. However, this feature representation should be applicable to any RL learning method,
and one interesting candidate is the actor-critic (AC) learning architecture. One feature of AC that make it a good candi-
date for this specific environment is that it may potentially better reflect the neural architecture of human reinforcement
learning [2]. In this paper we apply the same feature representation previously used by the FRL model, but within the
context of an actor-critic RL model. Using this Actor-Critic Feature Reinforcement Learning (AC-FRL) method, we show
improved accuracy in predicting human choice in the multi-dimensional n-armed bandit task.

2 Background
2.1 Multi Dimensional N-Armed Bandit Task
In this task, participants were presented on each trial with a choice of three objects, each composed of three unique fea-
tures, and were required to determine which feature among 9 possibilities was associated with an increased probability
of observing a reward (75% vs 25%). The participants played games lasting uniformly between 15-25 trials in which the
target feature was the same, and all 9 features were present in each trial. The data analyzed in this paper consisted of
22 participants each with 800 trials, with 500 fast-paced (500 ms) and 300 slower-paced trials. The possible features were
the color (red, blue, green), shape (square, triangle, circle), and texture (dotted, hatch, wavy). Each trial contained all 9
features in different combinations determined randomly in 3 choices. A more complete methodology is presented in [1].

2.2 Feature Reinforcement Learning
In the Reinforcement Learning (RL) setting, an agent’s goal is to learn (or approximate) an optimal policy function
π?(a|s) which gives a probability distribution over possible actions for a given state. A fundamental construct in RL to
accomplish this is an optimal state-action function, q∗(s, a), that returns the expected long-term reward associated with
performing action in a state, and subsequently following an optimal policy. The Feature Reinforcement Learning (FRL)
algorithm presented in [1] facilitates learning in multidimensional environments by decomposing the state-action value
function using a linear combination of features:

qω(s, a) = ωTΦ(sa) (1)

where the state s consists of a collection of three objects presented to the subject on a given trial, the action a corresponds
to selecting one of the objects, and sa is the selected object. Φ(sa) returns the feature vector associated with that object,
corresponding to the features that make up any stimulus such as [red, yellow, green, triangle, square, circle, dotted,
wavy, hatch]. For example the vector returned by Φ(s1) where the action is selecting a red-dotted-triangle would be
[1, 0, 0, 1, 0, 0, 1, 0, 0]. The state-action value qω(s, a) is thus a weighted combination of the features that compose the
chosen object, where the vector ω defines the feature weights learned using standard TD-learning with linear function
approximation [2]. In particular, given an observed reward r and learning rate α, the learning rule is:

ω ← ω + α[r − ωTΦ(sa)]Φ(sa) (2)

Given state-action values for each choice, qω(s, a), the FRL algorithm’s choice policy is defined by a soft-max distribution
over these values.

The underlying feature representation reduces the number of trials required to approximate the value of a state by
generalizing the information gathered from an outcome beyond the state it took place in. In the next section we detail
the application of this same approach to a model based on actor-critic learning.

2.3 Actor-Critic Feature Reinforcement Learning
The actor-critic architecture decomposes the basic RL problem into separate sub-problems for learning a value function,
and learning a policy. Notably, this introduces a form of second-order learning dynamics, meaning that it is incrementally

1

Paper # 183 207

updating two interacting learning components. The first component is the state-action function q(s, a) which approxi-
mates the expected long term reward of performing an action in a state for the current policy. The second component is
the policy function π(a|s) which is itself adapting to changes in q(s, a) in order to improve behavior, and maps the state
onto the probability of performing any action in that state. In contrast, other RL algorithms such as SARSA or q-learning
lack this second-order learning property, as the policy is directly and immediately determined by the current value func-
tion. The AC-FRL model uses the same linear function approximation qω(s, a) as the FRL model. AC-FRL differs in that
the policy πθ(a|s) is also parameterized in terms of a linear combination of features, via the parameter vector θ:

πθ(a|s) =
exp[β θTΦ(sa)]∑
a′ exp[β θTΦ(sa′)]

. (3)

This policy is updated in our model by minimizing the following objective function:

Jθ =
∑

a

πθ(a|s)(max
a′

q(s, a′)− q(s, a)). (4)

Note the similarity between the target of this update rule, (maxa′ q(s, a
′)−q(s, a)), and the so-called “advantage function”

[3], defined as A(s, a) = q(s, a) − v(s). Maximizing the advantage function is equivalent to minimizing the objective
function given in Eq. 4. This objective penalizes actions that deviate from the best possible action, given the current
estimate for q(s, a). Following the gradient of this objective function gives the learning rule for the state-value-function
parameterization vector as θ ← θ − αθ∇θJθ(s). For the linear feature representation used in our model, this yields

θ ← θ + αθ[r − (max
a

q(s, a′)− q(s, a))]Φ(sa). (5)

We parameterize q(s, a) with the same feature representation used in the FRL model: qω(s, a) = ωTΦ(s, a), and utilize
the same update rule (Eq 2).

The mapping of a state-action pair onto the Φ(sa) vector includes the domain specific knowledge that the value of a
choice is the sum of the features it consists of. Multiplying by Φ(sa) ensures that only the values that correspond to the
features that are make up the selected option are updated based on the observed reward. The result of this update policy
is that, at each time step, the 3 features that make up the choice that was selected by the agent have their corresponding
ω and θ values updated by the value that the participant observed after selecting that choice.

3 Results
Model comparison was performed in the same manner as described in the Niv paper [1] by using leave-one-out cross-
validation. For each game, model parameters were determined by minimizing the negative log-posterior of the partici-
pant’s data in relation to these parameters while excluding the given game. Then the model with those parameters was
used to determine the likelihood of the choices in the left out game. Results from this process are plotted on Figure 1.
This process results in a more valid model comparison by avoiding biases introduced by over-fitting model parameters
to a given set of participant choices. Results from this comparison show that the performance of the Actor-Critic version
of the model outperform the average likelihood of standard Feature RL. Results are split between learned and unlearned
games. A game was considered to be learned when the participant correctly selected the option containing the feature of
interest on 4 or more of the last 6 trials within the game.

Figure 1: Average likelihood assigned by each model to the choice that the participant selected by within game trial
number. The Actor-Critic model predicted participants’ performance significantly better (p < 0.05) than the standard
Feature RL method for trials 5-20. Transparent error bars signify 95% confidence interval.

2

Paper # 183 208

3.1 Average Likelihood by Trial Number

Figure 1 shows improves performance by the Actor-Critic version of the Feature RL model 1 in predicting human choice
selection for the multi-dimensional n-armed bandit task environment. Both the Actor-Critic and standard models incor-
porate parameters for the learning rate (AC-FRL uses 2 learning rates for the ω and θ update rules) and β soft-max inverse
temperature. A gamma distribution prior with size 2 and shape 3 was used for the β while fitting these parameters for
both models. The Actor-Critic model had an AIC averaged by games of 30.39, Feature RL model had 32.37.

3.2 Model Prediction Confidence
An alternative to considering the average likelihood is to allow the models to make a prediction based on their policy
and evaluate the probability that the model assigns to its selection. Figure 2 shows the average probability that the model
assigned to the prediction it made in this scenario. These results show that the Actor-Critic method has higher confidence
in its predictions, especially for unlearned games, than Feature RL. Critically the Actor-Critic method matches the early
trial confidence of traditional Feature RL, meaning it does not simply identify the feature of interest faster and with a
higher confidence. Since the performance of the participants in unlearned games suggests they never learned what the
feature of interest was, it is likely that many of these trials included instances where the participant was changing their
belief on what the feature of interest was. These unlearned game predictions are difficult because the participant may
still be exploring different options as to what they believe the feature of interest is, so a high confidence and accuracy for
these trials is a key factor in the improved predictive accuracy of the Actor-Critic model. Although it is difficult to make
general statements on the performance of different RL methods, the results discussed in this section suggest that part of
the improved performance of Actor-Critic comes from its faster and more flexible learning.

Figure 2: Confidence assigned to the choice that was ultimately selected by the model by within game trial number.
Transparent error bars signify 95% confidence interval.

3.3 Simulated Game Environment
To better understand the improvement in average likelihood gained by the Actor-Critic version, we developed a simu-
lated game environment where the two methods engaged in the same basic task as the human participants, but where
we altered the reward probability associated with choosing the correct feature. We investigated simulated environments
with 50%, 75% and 100% probabilities of observing a reward after selecting the option with the correct response Pr, and
kept the probability of observing a reward after an incorrect selection to be (1- Pr). The only significant difference in
probability of selecting the feature of interest between the FRL and AC-FRL algorithms in a simulated game environ-
ment occurs when the probability of viewing a reward after selecting the option with the correct feature is 100% with a
0% chance of receiving a reward after an incorrect guess.

Method 50% Reward Probability 75% Reward Probability 100% Reward Probability
AC-FRL Feature 44 % 60% 79%
FRL Feature 45% 63% 84%

Firstly, these results indicate that the improvement in average likelihood by the AC-FRL algorithm is not merely because
the algorithm is learning to play the game better than the FRL model. This was an important finding, as the higher
confidence that the AC-FRL model assigns to the correct choice could potentially have been the result of the model being
better at playing the game in a way that doesn’t reflect human learning strategies. In fact, The accuracy in selecting the
choice that contained the feature of interest of our model with the base rate probabilities for reward from correct/incorrect

1Niv et al [1] reported improved performance by adding a parameter that decays the values of non-chosen features towards zero.
Adding this parameter to AC-FRL also showed similar performance improvements and does not change the interpretation of our
results. Hence for simplicity we omit it from the current discussion.

3

Paper # 183 209

guesses (75% and 25%) shows a slight decrease in performance compared to FRL. Secondly, this suggests that one possible
explanation for the improvement in average likelihood of the Actor-Critic model is in part due to instances where the
participant observed no reward after selecting the option with the correct feature. Since the standard Feature RL model
performed better when the reward probability was deterministic, it may be the case that the Actor-Critic model more
accurately reflects the changes in approximate value that the participants encoded as a result of observing no reward
when selecting the an option with the feature of interest, or vise versa.

4 Conclusions
The AC-FRL model described in this paper displayed improved performance in predicting human decision making in
the multi-dimensional n-armed bandit environment. The source of this improved performance was partially due to
the increased confidence in predictions, particularly in unlearned games when the participant may not have learned
the feature of interest. This increased confidence was a result of faster and more flexible learning afforded by using
the two-tiered architecture implicit in the Actor-Critic model. The current work is relevant to any attempt at improving
performance by applying principled domain specific knowledge of a task onto a traditional learning model. Additionally,
there has been some recent interest in the use of the advantage function described in [3], which shows a close connection
to the update rule used in the θ parameter update method.

Attention is a valuable and limited resource for all intelligent agents, meaning one key aspect to acting in high-
dimensional environments is the selection of a subset of relevant features to attend to. The FRL method approaches
the issue of attention by directing the agent to approximate the values of features that occur repeatedly across each state,
and thus inform the value of all states. While the original FRL model displayed high accuracy in predicting human
choice, this general method can be applied to other RL techniques outside of a traditional q-learning strategy. The AC
model is a good candidate for applications of domain specific knowledge due to the fact that both are attempting to
improve performance by learning from fewer training examples. This quality of the AC model is particularly relevant
to predicting human selection in the multi-dimensional n-armed bandit task. This is because the number of training
examples is far fewer than the state space, and the human participants are naturally superior to traditional methods at
learning in these high dimensional environments from few examples. The results presented in this paper displayed the
ability of a feature based approach to be applied onto the actor-critic architecture.

References

[1] Y. Niv, R. Daniel, A. Geana, S. J. Gershman, Y. C. Leong, A. Radulescu, and R. C. Wilson. Reinforcement Learning in
Multidimensional Environments Relies on Attention Mechanisms. Journal of Neurosci, 35(21):8145–8157, 2015. 1, 2, 3

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. 1
[3] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforce-

ment learning with function approximation. In Advances in neural information processing systems, pages 1057–1063,
2000. 2, 4

5 Supplementary Material

Algorithm 1 Feature based Capacity-Limited Actor-Critic for Multi-Dimesnional N-Armed Bandit Task
1: Input: Trial stimuli: s
2: Input: Participant choices: a
3: Input: Trial observed rewards: r
4: Parameters: Learning rates 0 ≤ αω, αθ ≤ 1, Soft-max inverse temperature β > 0.
5: Initialize policy parameterization: ω ∈ Rd and state-action value parameterization θ ∈ Rd
6: for each trial (for each participant): do
7: Compute the choice probabilities for the current trial:

8: πθ(a|s)←
exp[βθTΦ(sa)]∑3
i=1 exp[βθTΦ(si)]

9: Predict action a ∼ πθ(a | s)
10: Update based on the human choice and observed reward:
11: ω ← ω + αω[r − ωTΦ(sa)]Φ(sa)
12: q(s, a)← ωTΦ(sa)
13: θ ← θ + αθ[r − (maxa′ q(s, a

′)− q(s, a))]Φ(sa)
14: end for

4

Paper # 183 210

A Value Function Basis for Nexting and Multi-step Prediction

Andrew Jacobsen Vincent Liu Roshan Shariff Adam White Martha White

Department of Computing Science
University of Alberta

Edmonton, AB T6G 2E8
{ajjacobs, vliu1, roshan.shariff, amw8, whitem}@ualberta.ca

Abstract

Humans and animals continuously make short-term cumulative predictions about their sensory-input stream, an ability
referred to by psychologists as nexting. This ability has been recreated in a mobile robot by learning thousands of value
function predictions in parallel. In practice, however, there are limitations on the number of things that an autonomous
agent can learned. In this paper, we investigate inferring new predictions from a minimal set of learned General Value
Functions. We show that linearly weighting such a collection of value function predictions enables us to make accurate
multi-step predictions, and provide a closed-form solution to estimate this linear weighting. Similarly, we provide a
closed-form solution to estimate value functions with arbitrary discount parameters γ.

Keywords: Reinforcement Learning, Multi-Step Prediction

Paper # 261 211

1 Introduction

The ability to continually make predictions about one’s sensory-motor stream is an important aspect of forming awareness
of one’s environment. In particular, it has been shown that both humans and animals continually make large numbers of
short-term cumulative predictions about their sensory input at many different time-scales [Fedus et al., 2019, Pezzulo,
2008, Carlsson et al., 2000, Brogden, 1939]. This ability is referred to as nexting. Recent work in Reinforcement Learning
has been able to recreate this ability in a mobile robot by using a collection of General Value Functions (GVFs)[Sutton et al.,
2011], learned online and in parallel [Modayil et al., 2014]. GVFs make cumulative predictions about a given target; in a
standard value function, for example, this target is the reward signal. When we instead let the target be an observation
from the sensory-motor stream, the GVF prediction corresponds to a nexting prediction.

There are are limitations, however, on the number of predictions that an agent can make in a continual learning setting.
Each nexting prediction that the agent makes has its own cost in terms of memory and computation. With a large enough
collection of nexting predictions — say in the millions — it becomes infeasible for the agent to be able to update them
all. Furthermore, in this setting we want our agents to be able to make new predictions during run-time. This can be
problematic since each GVF may require different hyperparameters (learning rate α, trace decay rate λ, etc.) to learn
accurate predictions. Because of this, not only does the agent have to learn each new prediction from scratch, but may have
to do so multiple times in order to find the right hyperparameters — all before being able to actually use that prediction.

Instead of learning all possible predictions from scratch, in this paper we investigate whether an agent can use a small set
of sufficiently informative nexting predictions to infer the answers to other questions. We show that a small collection of
GVF predictions can be used to accurately estimate the answers to predictive questions that the agent has not explicitly
learned. We introduce a simple linear transformation which uses a collection of GVF predictions to estimate 1) other GVFs
with arbitrary discounting parameters, and 2) n-horizon predictions.

This work has a similar motivation to multi-scale Successor Representations (SRs) [Momennejad and Howard, 2018], and
Universal Value Function Approximators (UVFAs)[Schaul et al., 2015]. SRs, in fact, can be represented as GVFs. This work
differs from multi-scale SRs, because they assume a tabular setting and use a different weighting scheme with approximate
laplace transforms. UVFAs focus on learning value functions that generalize across goal states, using neural networks.

2 General Value Functions

In this section, we define the concepts of return and value and their extension to more general predictions. Consider a
Markov Reward Process defined by state-space S, transition function P : S × S 7→ [0, 1], and reward function r : S 7→ R
defined as r(s) = E

[
Rt+1|St = s], where Rt and St are random variables representing the reward and state at time t

respectively. We define the return at time t to be

Gt :=
∞∑

j=0

γjr(St+j)

where γ ∈ [0, 1) is a constant discounting factor. Given a state s ∈ S , we define the value of state s to be the expected return
from state s

v(s) := E
[
Gt|St = s]

The function v(s) is referred to as the Value Function. A General Value Function (GVF) [Sutton et al., 2011] extends the above
definition of value, by allowing r(St) to be any function of the current state — not just a reward signal — and letting
the discounting factor be a function of state as well, γt := γ(St). In this paper we consider only constant discounting
factors, thus the above definition of return does not change. GVF predictions with r(·) set to the observations correspond
to nexting predictions [Modayil et al., 2014].

3 Predicting Future Outcomes with General Value Functions

In this section, we explain how a set of value function predictions can be used to approximate outcomes n-steps into
the future. We start by assuming access to the actual returns into the future and then discuss implications when using
expected returns and estimation with value functions.

1

Paper # 261 212

Suppose we are interested in reconstructing an unknown time series y1, . . . , yt, . . . ∈ R. Suppose further that we know the
discounted sum of this time series, for several discounts γ1, . . . , γk ∈ [0, 1):

Gt,γi =

∞∑

j=0

γji yt+j+1.

Our goal is to reconstruct various aspects of y given only Gt,γ1 , . . . , Gt,γk . We are primarily interested in reconstructing yn
for a variety of horizons n ∈ N. We might also be interested in reconstructing Gγ for some γ /∈ {γ1, . . . , γk}.
In general, obtaining exact reconstructions is not possible, because we only have k known quantities and yet we want to
reconstruct yn for all n ∈ N. Our only recourse is to approximate y. To do so, define the function f : N→ R, with f(t) := yt.
We will try to find a f̂ that minimizes the distance to f .

To begin with, we can think of f as an element of an infinite-dimensional vector space — the space of all functions N→ R.
We can define an inner product on this space: 〈f, g〉 =

∑∞
t=0 f(t)g(t), for f, g ∈ N → R, which in turn gives us a norm

‖f‖ =
√
〈f, f〉 =

√∑∞
t=0 f(t)

2. An element of this function space is the function t 7→ γt. We denote this function ~γ to
distinguish it from the scalar γ. We can see that the discounted sum is actually an inner product: Gγ = 〈~γ, f〉. In other
words, we have a system of k linear equations in the unknown f :

〈~γ1, f〉 = Gt,γ1
...

〈~γk, f〉 = Gt,γk

As mentioned above, it is impossible to recover f from this system since f is infinite-dimensional and the dynamics of f(t)
are unknown. However, we do have k infinite-dimensional known quantities: the functions ~γi. Therefore, we can at least
recover the component of f that lies in the k-dimensional subspace spanned by ~γ1, . . . , ~γk. Define

f̂θ(t) :=
k∑

i=1

θiγ
t
i

for θ ∈ Rk as a linear combination of the functions {~γ1, . . . , ~γk}with coefficients θ1, . . . , θk. We want to find the coefficients
θ that minimize the squared distance ‖f̂θ − f‖2. Let G be the matrix with the infinite-dimensional ~γi as its columns. Then
the θ which minimizes ‖f̂θ − f‖2 is the least squares solution to Gθ ≈ f . That is,

G>Gθ = G>f =⇒ θ = (G>G)−1G>f = K−1

〈~γ1, f〉

...
〈~γk, f〉

 , (1)

where K is a k× k matrix whose entries are given by Kij = 〈~γi, ~γj〉. Fortunately, the entries of K can actually be computed
in closed form when the discounting factors are constant:

Kij = 〈~γi, ~γj〉 =
∞∑

t=0

γtiγ
t
j =

1

1− γiγj

for 0 ≤ γi, γj < 1. Note that certain selections of discounting factors can lead to a poorly conditioned K matrix; the
conditioning can be improved by applying `2 regularization in the usual way, by replacing K with K + λI in Equation 1,
where λ is the weight of the regularization and I is a k × k identity matrix.

With this approximation to f , we can return to the problem of approximating aspects of the series y. We can obtain
n-horizon predictions by using

yn = f(n) ≈ f̂θ(n) =
k∑

i=1

θiγ
n
i .

We can estimate the discounted sum 〈~γ, f〉 for some γ /∈ {γ1, . . . , γk} using

∞∑

i=0

γtyt+1 = 〈~γ, f〉 ≈ 〈~γ, f̂θ〉 =

k∑

i=1

θi〈~γ,~γi〉 =

k∑

i=1

θi
1− γiγ

. (2)

2

Paper # 261 213

When making predictions about the future, we do not have access to exact returns. Rather, we will estimate value
functions — estimate expected returns — to use within the above formulas. For exact value functions, we can obtain
the same approximations as above for expected n-step values and expected discounted sums. This is appropriate, as
any direct multi-step prediction method using squared error is estimating the expected value n steps in the future. The
approximation of the value functions themselves will introduce additional approximations to above.

4 Experimental Results

In this section we give two simple demonstrations of an agent’s ability to infer the answers to questions it has not been
trained to predict. We imagine a scenario in which the agent is performing a simple prediction task for a number of
evaluation steps. Mid-way through the task, the agent adds a new prediction to be evaluated.

4.1 Predicting Future Observations

To demonstrate our method’s ability to make n-horizon predictions, we tested our approach on the Mackey-Glass time
series, a single-variable dataset derived from the time-delay differential equation:

∂y(t)

∂t
= α

y(t− τ)

1 + y(t− τ)10
− βy(t)

In this experiment, we used τ = 17, α = 0.2, and β = 0.1, starting from an initial value of y(0) = 1.2. The agent makes
predictions at a horizon of 6 steps for 1, 000, 000 steps, and adds a horizon 12 prediction mid-way through. We gave the
agent a GVF basis consisting of 100 GVFs and constant discount factors γi = 1.0 − i/101, for i = 1, . . . , 100. The GVFs
were trained using TD(0) with linear value function approximation. The features given to the GVFs were a history of the
previous 4 observations. We additionally included predictions made using a linear autoregressive model (“Direct AR”),
with a history of 4 observations, as an optimal baseline. Note that the baseline was allowed to directly train on each of the
horizons of interest, while our method was never explicitly trained to do any n-horizon prediction.

Results on this task are shown in figure 1 (Left). We can see that at the start of training, the GVF basis predictions at
horizon 6 take a bit longer to learn, but still end up reaching the same performance level as the baseline without ever
being trained to make this prediction. At the 500,000 step mark, the agent begins making horizon 12 predictions. Note that
the baseline agent using direct AR has to wait almost 100,000 steps before it can obtain a reasonably accurate horizon 12
prediction! Furthermore, note that the GVF basis could have just as easily made predictions for an arbitrary number of
horizons, all of which can be made immediately.

300 430 600
Steps (1,000)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RMSE

Steps (1,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6 GVF Basis horizon 6

Direct AR horizon 6

GVF Basis horizon 12

Direct AR horizon 12

500 600 725

GVF Basis γ=0.9

GVF Basis γ=0.8
Direct TD γ=0.8

Direct TD γ=0.8

MSE

Figure 1: Left: Online Mean Squared Error (MSE) for the GVF Basis and Direct AR. For the first 500,000 steps of training, the
agent makes only horizon 6 predictions. At step 500,000 the agent adds a horizon 12 prediction to evaluate. Performance
stabilizes at around 725,000 steps, so we omit the final 250,000 steps. Right: Online Root Mean Squared Error (RMSE) for
the GVF Basis and Direct TD.

3

Paper # 261 214

Our method is slightly less accurate than the final performance of the baseline at horizon 12. However, we note that
the discounting values are chosen rather arbitrarily; a better understanding of discount selection strategy could lead to
improved performance. Selecting optimal discounting factors is still currently a work in progress at the time of writing.
We note also that in these experiments, the GVFs were given a history of observations in order to build up sufficient state
information. We could have instead used the GVF predictions themselves as features at each step, as in Schlegel et al.
[2018]. We find that this approach works much better in general, but is outside the scope of this paper.

4.2 Predicting other General Value Functions

We also tested the accuracy of our method for predicting other GVFs. The environment is a randomly generated Markov
chain with 500 states and the branching factor of 5 (the number of successor states), where we can compute the true value
functions exactly. GVF basis learns the GVFs of a set discounted factors Γtrain, and predicts the GVF of a different discount
factors γ. Direct TD learns the GVF of the discount factor γ directly.

Both methods use TD(0). We tuned the regularization constant over the values λ ∈ {0.0, 10−1, 10−2, 10−3, 10−4} and the
learning rate over the set {0.4, 0.2, 0.1, 0.05, 0.025}. Online performance is shown in Figure 1 (Right). For the first 300,000
steps of training, the agent makes prediction for γ1 = 0.9. We can see that the GVF Basis predictions are comparable to
Direct TD predictions in the beginning of training. At step 300,000 the agent adds a prediction for γ2 = 0.8. The GVF Basis
can immediately make the new prediction accurately; the Direct TD method, however, needs to learn the value function
from scratch, and takes roughly 430,000 steps to reach the same performance as the GVF Basis estimate.

5 Conclusions

In this work, we introduced a novel approach to infer new GVF predictions and multi-step predictions from a small set
of learned GVFs. This work was focused more on whether a collection of GVF predictions can be used to make other
predictions, rather than on the general utility of this approach. In these initial experiments, the collection of discounting
factors Γ was chosen naively; future work will investigate how these discounting factors can be chosen optimally to
facilitate reconstructing multi-step and discounted cumulative predictions. It is possible that better performance can be
attained by selecting Γ in a more principled way. We note also that discounted cumulative predictions are interesting
in their own right for time series prediction problems such as section 4.1; each of the predictions made with a different
discounting factor provides slightly different information about how the signal is expected to evolve over time. We believe
that the fact that predictions of this sort also facilitate relatively accurate multi-step predictions could make them a subject
of interest to the general time series forecasting community.

References
Wilfred J Brogden. Sensory pre-conditioning. Journal of Experimental Psychology, 25(4):323, 1939.
Katrina Carlsson, Predrag Petrovic, Stefan Skare, Karl Magnus Petersson, and Martin Ingvar. Tickling expectations: neural

processing in anticipation of a sensory stimulus. Journal of cognitive neuroscience, 12(4):691–703, 2000.
William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo Larochelle. Hyperbolic discounting and

learning over multiple horizons. arXiv preprint arXiv:1902.06865, 2019.
Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in a reinforcement learning robot. Adaptive

Behavior, 22(2):146–160, 2014.
Ida Momennejad and Marc W. Howard. Predicting the future with multi-scale successor representations. bioRxiv, page

449470, October 2018. doi: 10.1101/449470. URL https://www.biorxiv.org/content/10.1101/449470v1.
Giovanni Pezzulo. Coordinating with the future: the anticipatory nature of representation. Minds and Machines, 18(2):

179–225, 2008.
Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In International

Conference on Machine Learning, pages 1312–1320, 2015.
Matthew Schlegel, Adam White, Andrew Patterson, and Martha White. General value function networks. arXiv preprint

arXiv:1807.06763, 2018.
Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White, and Doina Precup.

Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In The
10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768, 2011.

4

Paper # 261 215

Event segmentation reveals working memory forgetting rate

Abstract
We perceive the world as a sequence of events and fluidly segment it into episodes. Although people generally
agree with segmentation, i.e., when salient events occur, the number of determined segments varies across the
individuals. Converging evidence suggests that the working memory system plays a key role in tracking and
segmenting a sequence of events (Zacks et al., 2007; Bailey et al., 2017). However, it is unclear what aspect of
working memory is related to event segmentation and individual variability. Here, we tested whether the number
of determined segments predicts working memory capacity, quantified as the number of items that can be kept
in mind, or forgetting rate, which reflects how long each item is retained in the face of interference. Healthy adults
(n=36, 18-27 years old) watched three movies with different storylines and performed a recognition memory test.
They also participated in an image-action association learning task that was used to extract the individual’s
working memory capacity and forgetting rate (Collins et al., 2017). They then segmented the movies and
performed a free recall task for the movies. Cross-task analyses showed that working memory forgetting rate is
significantly related to event segmentation. Specifically, we found a U-shaped relationship between forgetting rate
on the association learning task and the number of events segmented for the movies, suggesting that people with
a higher forgetting rate may use distinct strategies for tracking events. Under-segmenters performed better in the
temporal order recognition test for the movie with a linear and overarching storyline, while over-segmenters
performed better on free recall. Working memory forgetting rate is a less studied parameter of the working
memory system because of the high computational effort required to extract the parameter. These results support
the possibility of using an individual’s event segmentation performance to infer working memory forgetting rate.

Keywords: Perception, memory, reinforcement learning, human behavior

Acknowledgments: I thank Cassandra Lei, Crystal H. Shi, and Megan Schneider for data collection.

Anna Jafarpour *
University of Washington, Department of
Physiology and Biophysics, Seattle, WA

annaja@uw.edu

Elizabeth A Buffalo
University of Washington, Department

of Physiology and Biophysics, and
National Primate Center, Seattle, WA

ebuffalo@uw.edu

Robert T Knight
University of California, Department of

Psychology, Berkeley, CA and
University of California, Department of

Psychology, San Francisco, CA
rtknight@berkeley.edu

Anne GE Collins
University of California, Department of

Psychology, and Helen Wills
Neuroscience Institute, Berkeley, CA

annecollins@berkeley.edu

Paper # 174 216

1 Experimental design

People watched three movies and then performed a temporal recognition test, where they saw two scenes of a
movie and selected the order of the scenes. Movie 1 and 3 had an overarching storyline, but events in movie 2
were temporally interchangeable (like Tom&Jerry). Although temporal order recognition was better for movies
with an overarching story than for movie 2, recognition performance was better than the chance level (50%) for
all movies. People then performed an association learning task, learning stimulus-action association by trial and
error (Collins et al. 2017; Figure 1). The actions were limited to three and the probability of each action being
associated with a stimulus was equal. The number of stimulus-action associations was different in each block
(ranging from 2 to 6). This task was used for estimating working memory capacity and forgetting rate. Then,
people watched the movies again to subjectively segment them. They were instructed to press a key whenever a
new event started and they knew that the aim was to segment the movie into episodes. Lastly, people wrote
their memory of the movies (free recall).

Figure 1 – Experimental
design: The experiment
consisted of four parts; the
first two of which are
depicted here. Temporal
memory test: (A) At
encoding, participants
watched three mute movies.
(B) At retrieval,
participants were shown
two frames of a movie and
determined the temporal
order of two movie frames
by pressing the left or right
key. There were 35
questions about the
temporal order of events
per movie. Association
learning task: (C)
Participants performed a
block-design association

learning task. In each block, participants learned by trial and error the association between a set of images and
three possible actions (A1, A2, and A3); feedback was provided. The set size at each block was different (ranging
from 2 to 6). (D) A 3-trial example of a learning block. Delay quantifies the number of intervening trials from the
last time the stimulus was encountered, and Pcor quantifies the number of trials that the choice for the stimulus
was correct.

2 Modeling

We applied two models. First, we used a logistic regressor to study the effect of the parameters - namely, set
size, number of previously correct trials (Pcor), and delay (Figure 1D) - that are related to working memory, on
trial by trial responses to the learning task and investigated the link between individuals’ working memory
limitation (the beta estimates of the logistic regressor) and the number of determined events. Then to clarify the
aspect of working memory that is linked to individuals’ event segmentation, we used a version of a
reinforcement learning model that infers the working memory capacity and forgetting rate (RLWM, Collins et al.
2017). The validity of the RLWM model was tested by comparing the model fit to the fitting of RL models that do
not have working memory components, and by comparing the simulated behavior of the RLWM to individuals’
learning behavior.

Paper # 174 217

We fit three RL models to the trial-by-trial responses for each subject. The simplest model was a two-
parameters reinforcement learning (RL2) with delta rule learning (parameters were learning rate and the
inverse temperature). The next model was had four-parameters (RL4); in addition to the two parameters of
RL2, we estimated how much a person valued a correct response, irrespective of the reward by estimating the
value for correct-but-not-rewarded items, i.e. 𝑟𝑟0. The model also considered an undirected noise, 0 < 𝜖𝜖 < 1, in
the stochastic action selection, to allow for choosing an action that did not have the highest value. The third
model was a modified RLWM model (Collins et al., 2017).

RLWM model had 8 parameters and consisted of two components, working memory and RL. A working memory
component with limited working memory capacity, C, and forgetting rate, ∅𝑊𝑊𝑊𝑊. The Q value of the WM
component was subject to decay with a forgetting rate, 0 < 𝜙𝜙 < 1, so for all the stimuli that are not current, 𝑄𝑄 =
 𝑄𝑄 + 𝜙𝜙(𝑄𝑄0 − 𝑄𝑄), where 𝑄𝑄0 = 1

𝑛𝑛𝑠𝑠
. The RL component had a learning rate, 𝛼𝛼, value for an unrewarded correct

response, 𝑟𝑟0, undirected noise, 𝜖𝜖, and a forgetting rate, ∅𝑅𝑅𝑅𝑅 (𝛽𝛽 was set constant at 100). We also allowed for the
potential lack of an impact of negative feedback (𝛿𝛿 < 0) by estimating a preservation parameter, 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝. In that
case, the learning rate is reduced by 𝛼𝛼 = (1 − 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝) × 𝛼𝛼. Accordingly, 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 near 1 indicated lack of an impact of
negative feedback (learning rate close to 0; high preservation of Q value), and 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 close to 0 indicated equal
learning rate for positive and negative feedback.

The WM component was simulated as encoding of stimulus in a Q learning system, like the RL component but
the outcome, 𝑟𝑟𝑡𝑡, was 1 for correct, 0 for incorrect (rather than the observed reward), the learning rate was set to
1 (𝛼𝛼 = 1), and at most 𝐶𝐶 stimuli could be remembered. We formulated the probability of a stimulus being in
working memory as:

If 𝑟𝑟𝑡𝑡 = 1, 𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) = min �1, 𝐶𝐶
𝑛𝑛𝑠𝑠
�× 𝑄𝑄𝑤𝑤𝑤𝑤(𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) + (1 − min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
�) × 1/𝑛𝑛𝑎𝑎,

if the 𝑟𝑟𝑡𝑡 = 0, 𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) = min �1, 𝐶𝐶
𝑛𝑛𝑠𝑠
�× (1 − 𝑄𝑄𝑤𝑤𝑤𝑤(𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡)) + (1 − min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
�) × 1/𝑛𝑛𝑎𝑎

, where 𝑛𝑛𝑎𝑎 is the number of possible actions (= 3). In RL case,

if the 𝑟𝑟𝑡𝑡 > 0, 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡)

if the 𝑟𝑟𝑡𝑡 = 0, 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) = 1 − 𝑄𝑄𝑅𝑅𝑅𝑅(𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡).

A mixture weight, 𝑤𝑤0, formulated how much each of the components were used for action selection. The weight
was 𝑤𝑤0 × min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
� to represent the confidence in WM efficiency. This initialization reflects that participants

are more likely to utilize WM when the stimulus set size is low. The overall policy was:

𝑃𝑃(𝑎𝑎|𝑝𝑝) = 𝑤𝑤𝑡𝑡(𝑝𝑝) × 𝑃𝑃𝑊𝑊𝑊𝑊(𝑎𝑎|𝑝𝑝) + (1 −𝑤𝑤𝑡𝑡(𝑝𝑝)) × 𝑃𝑃𝑅𝑅𝑅𝑅(𝑎𝑎|𝑝𝑝).

A Bayesian model averaging scheme inferred the relative reliability of WM compared with the RL system over
time, t:

𝑤𝑤𝑡𝑡+1(𝑝𝑝) =
𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) 𝑤𝑤𝑡𝑡(𝑝𝑝)

𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡,𝑎𝑎𝑡𝑡) 𝑤𝑤𝑡𝑡(𝑝𝑝) + 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑝𝑝𝑡𝑡 ,𝑎𝑎𝑡𝑡) (1 − 𝑤𝑤𝑡𝑡(𝑝𝑝))

, where 𝑃𝑃𝑊𝑊𝑊𝑊 is the probability that action 𝑎𝑎 is selected for stimulus 𝑝𝑝 according to the WM component at time 𝑡𝑡
and 𝑃𝑃𝑅𝑅𝑅𝑅 is the probability of action selection according to the RL component. We assumed that although the 𝑤𝑤0
is the same for all stimuli, the development of mixture weight over time would be different for each stimulus,
because the probability of retaining a stimulus in working memory or another retention system is not equal
(Jafarpour et al., 2017). In all the RL models choosing an action utilized the expected reward value using the
SoftMax choice rule.

Paper # 174 218

The link between the number of determined events and working memory capacity and forgetting rate was
tested by linear and quadratic model fitting. We used the Akaike Information Criterion (AIC) to select the best
model considering the number of parameters used in each model.

3 Results and Discussion

Learning was near optimal for a low number of associations, but it decreased with increasing number of
associations, reflecting working memory limitation (Figure 2A). The logistic regression confirmed this
observation (Figure 2B) and the beta estimate for the interaction between Pcor and set size correlated with the
number of determined events (movie 1: ranked r = 0.31, p = 0.064; movie 2: ranked r = 0.45, p = 0.006; movie 3:
ranked r = 0.32, p = 0.057). To clarify the aspect of working memory that is linked to event segmentation, we
used a RLWM model, which was the best fit among the RL models (pairwise t-test: RLWM and RL2: t(34) = 25.9,
p < 0.001; RLWM and RL4: (t(34) = 9.63, p = 0.03). RLWM provided the individuals’ working memory forgetting
rate and capacity.

Event segmentation task showed that individual variability in number of determined events was consistent
across the movies, irrespective to the storyline (Spearman ranked correlation: movie 1 vs. movie 2: r = 0.85, p <
0.001; movie 2 vs. movie 3: r = 0.86, p < 0.001; movie 1 vs. movie 3: r = 0.71, p < 0.001; Figure 2C for an
example). We compared the estimated working memory capacity and forgetting rate to the number of
determined events.

Figure 2 - (A) learning performance
decreased with increasing learning set size.
(B) logistic regression reveals the effect of
working memory on learning performance.
(C) inter-individual variability in the number
of determined events was consistent across
movies (correlation for movie 3 that had an
overarching story and movie 2 that did not
have an overarching story). The individual
who determined a very high number of events
was excluded from the future analysis,
although the results are the same if we
include her. (D) the cross-task result shows a
U-shaped relationship between number
determined events (movie 3) and working
memory (WM) forgetting rate. Excluding the
individual with a high estimation of
forgetting rate improves the U-shaped fit.

The cross-task comparison showed that individuals who reported a very low or very high number of events had
a higher working memory forgetting rate than others (Figure 2D). This effect was replicated across the three

Paper # 174 219

movies. Excluding the participants with high estimated forgetting rate (two standard deviation more than the
mean; outliers) improved the significance of the U-shaped relationship (movie 3: x: p = 0.014, x2: p = 0.012).

The follow-up test showed that the over-segmenters (those who segmented one standard deviation more than
the mean) recalled more about the movies than the under-segmenters (two-sample t-test t(10) = -2.67, p =
0.023); whereas, under-segmenters benefited from the overarching story of the movie and had a better
temporal order memory than the under-segmenters (two sample t-test t(12) = 3.26, p = 0.0068). In a nutshell,
by utilizing a cross-task design and RLWM model, we observed that the working memory forgetting rate reflects
individual differences in event-segmentation. Here we used a separate task for estimating the working memory
forgetting rate that is a less studied parameter of the working memory system due to the high computational
effort. The data suggest that an individual’s forgetting rate can be inferred from the segmentation rate.

Event segmentation is a domain-general cognitive control mechanism for chunking flow of events into episodes
(Zacks et al., 2007) and extracting the structure of a flow of events (Jafarpour et al., 2019). The constitution of
event segmentation is yet unclear. Here we observed that event segmentation reveals the working memory
forgetting rate. A U-shaped relationship between the number of determined events on one task and the
forgetting rate on another task showed that participants with a high forgetting rate used two different strategies
for event perception. Critically, segmentation affects subsequent memory of events (Ezzyat and Davachi, 2014)
and we showed that individual subsequent memory performance is variable depending on the segmentation
rate. Under-segmenters remembered the order of schematic events better than over-segmenters, suggesting
that they utilized schematic information to compensate for high working memory forgetting rate. In contrast,
over-segmenters recollected more events than under-segmenters, reflecting the detailed chunking.

4 References

Bailey HR, Kurby CA, Sargent JQ, Zacks JM (2017) Attentional focus affects how events are segmented and
updated in narrative reading. Mem Cogn 45:940–955.

Collins AGE, Albrecht MA, Waltz JA, Gold JM, Frank MJ (2017) Interactions Among Working Memory,
Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in
Schizophrenia. Biological Psychiatry 82:431–439.

Ezzyat Y, Davachi L (2014) Similarity breeds proximity: Pattern similarity within and across contexts is related
to later mnemonic judgments of temporal proximity. Neuron 81:1179–1189.

Jafarpour A, Griffin S, Lin JJ, Knight RT (2019) Medial orbitofrontal cortex, dorsolateral prefrontal cortex, and
hippocampus differentially represent the event saliency. bioRxiv:285718.

Jafarpour A, Penny W, Barnes G, Knight RT, Duzel E (2017) Working-Memory Replay Prioritizes Weakly
Attended Events. eNeuro:ENEURO.0171-17.2017.

Zacks JM, Speer NK, Swallow KM, Braver TS, Reynolds JR (2007) Event perception: a mind-brain perspective.
Psychol Bull 133:273–293.

Paper # 174 220

Safe Hierarchical Policy Optimization using Constrained Return
Variance in Options

Arushi Jain
School of Computer Science

Mila - McGill University
Montreal, Canada

arushi.jain@mail.mcgill.ca

Doina Precup
School of Computer Science

McGill University, Google Deepmind
Montreal, Canada

dprecup@cs.mcgill.ca

Abstract

The standard setting in reinforcement learning (RL) to maximize the mean return does not assure a reliable and repeatable
behavior of an agent in safety-critical applications like autonomous driving, robotics, and so forth. Often, penalization
of the objective function with the variance in return is used to limit the unexpected behavior of the agent shown in the
environment. While learning the end-to-end options have been accomplished, in this work, we introduce a novel Bellman
style direct approach to estimate the variance in return in hierarchical policies using the option-critic architecture (Bacon
et al., 2017). The penalization of the mean return with the variance enables learning safer trajectories, which avoids
inconsistently behaving regions. Here, we present the derivation in the policy gradient style method with the new safe
objective function which would provide the updates for the option parameters in an online fashion.

Keywords: option-critic,
safety,
constrained variance in return,
policy gradient

Acknowledgements

This research has received funding from Center of Research Institute in Montreal (CRIM).

Paper # 128 221

1 Introduction

The objective function of maximizing the mean return does not offer any constraint on the distribution of the return,
making it a vulnerable strategy for the risk-sensitive domains. The notion of avoiding risks arising from the stochastic
nature of the environment (inherent uncertainty) using the constraint on the variance in return has been studied for a
long time by the research community. Prashanth and Ghavamzadeh (2013); Sato et al. (2001); Tamar et al. (2012, 2016,
2013) constraint the indirect estimate of the variance using the second-order moment methods or directly estimated the
cost-to-go returns with the updates provided after completing the entire trajectory. Sherstan et al. (2018) came up with a
direct estimation of the variance in the λ-return using a Bellman operator in the policy evaluation methods. This work
demonstrated the superiority of the direct estimator over the indirect approaches to estimate the variance.

Temporal abstraction provides a way to learn the policies in a hierarchical fashion which has been shown to improve
exploration, robustness against model misspecification and increases the learning speed in transfer learning. Recently,
option-critic architecture (Bacon et al., 2017) introduced an end-to-end style of learning the options. Jain et al. (2018) used
the variance in the temporal difference (TD) error over the initial state-option pair distribution to estimate the controllable
states in the option-critic.

In this work, we came up with a novel hierarchical safe policy learning approach in the option-critic architecture where
the hierarchical policies are learned by penalizing the direct estimate of the variance in return extending from Sherstan
et al. (2018) in a control setting. We seek to maximize the mean return and minimize the direct estimate of the variance
in return given an initial state-option pair distribution in the policy gradient style.

2 Background

In a Markov Decision Process (MDP), an agent takes an action a∈A, transitions from state St to state St+1, and receives
an immediate reward Rt+1 from the environment. The expected reward is r(St, At) =

∑
r∈R r

∑
s′ P (s′, r|St, At) where

r : S×A→ R. The environment dynamics is modeled by P (St+1|St, At), where P : S×A×S → [0, 1]. A stochastic policy
π(At|St) determines the probability of taking an action in a given state. The MDP is represented by a tuple 〈S,A, P, r, γ〉,
where γ ∈ [0, 1] is a factor discounting the future rewards.

2.1 Option-Critic

The option-critic architecture (Bacon et al., 2017), an option w ∈W is defined as a tuple of 〈Iw, πw, βw〉; where Iw contains
the initial set of states where an option can start, πw is the option policy defining a distribution over action space and
βw determines the termination probability of an option in a state. The policy over the options is denoted by µ(w|s)
describing the distribution over options given a state. Let Θ = [θ, ν, κ] be the parameters of intra-option policy πw,
termination condition βw and policy over options µ respectively. Jπ,µ denotes the objective function of maximizing the
mean return. The intra-option policy gradient (Bacon et al., 2017) update is:

∇θJπ,µ(Θ) = Eπ,µ[∇θ log πθ(At|St,Wt)Qπ,µ(St,Wt, At)],

and the termination gradient (Bacon et al., 2017) is given by:

∇νJπ,µ(Θ) = Eπ,µ[−∇νβν(St+1,Wt)AΘ,Q(St+1,Wt)]

where, AΘ,Q(St+1,Wt) = Q(St+1,Wt)− V (St+1) is the advantage function describing the importance of an option value
over the mean value. In the following work we assume that all the options can be started from any state (Iw ∈ S ∀w ∈W).

3 Safety in Option-Critic

Taking inspiration from the notion of safety in the actor-critic framework using the constraint variance in return (Jain
et al., 2019), we similarly derive the safe framework in the option-critic. Our notion of safety emphasizes minimizing the
erratic or the harmful behavior of an agent in the environment (Amodei et al., 2016). The higher is the variance in return
from a state; the higher would be the uncertainty in the value estimate of that state. Uncertainty in the value estimate
of a state reflects an inconsistent behavior of the agent in that particular state. Considering that the irregular or sudden
behavior is classified as unsafe, potentially, the unsafe states would exhibit higher variance in return.

Let the return be denoted by

Gt,π,µ = Rt+1 + γRt+2 + γ2Rt+3 + · · · = Rt+1 + γGt+1,π,µ.

We consider Zt = (St,Wt) as an augmented state space - a space of state-option pair. Here, the transition matrix over the
augmented state space is given by:

P (z′|z, a) = P (s′|s, a)[(1− βν(s′, w))1w=w′ + βν(s′, w)µκ(w′|s′)] (1)

1

Paper # 128 222

The rewards are coming from a base MDP, where we write r(z, a, z′) = r(s, a). Since,
∑
z′ P (z′|z, a) = 1, therefore, the

reward model is defined as:

r(s, a) = Eπ,µ[Rt+1|St = s,At = a] =
∑

z′

P (z′|z, a)r(z, a, z′)

Lemma 1. Eb[γλδt,π
(
ρt+1G

λ
t+1,π − Eb[ρt+1Qπ(St+1, At+1)|St = s,At = a]

)∣∣St = s,At = a] = 0.

Proof. The proof of the lemma is given in Jain et al. (2019). Here λ is trace decay parameter and δt,π is the 1-step TD
error.

Theorem 1. The Bellman equation for the variance in the return from a given augmented state-action pair is:

σπ,µ(z, a) = Eπ,µ
[
δ2
t,π + γ̄σπ,µ(Zt+1, At+1)

∣∣Zt = z,At = a
]

(2)

where γ̄ = γ2 and δt is the 1-step TD error.

Proof. On expanding Gt,π,µ −Qπ,µ(z, a),

Gt,π,µ −Qπ,µ(z, a) =Rt+1 + γGt+1,π,µ −Qπ,µ(z, a)

=Rt+1 + γ
∑

z′,a′

P (z′|Zt, At)πθ(a′|z′)Qπ,µ(z′, a′)−Qπ,µ(z, a)

+ γ{Gt+1,π,µ −
∑

z′,a′

P (z′|Zt, At)πθ(a′|z′)Qπ,µ(z′, a′)}

=δt + γ
(
Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a]

)
(3)

Similar to Jain et al. (2019), let the variance for the augmented state-action pair be given as:

σπ,µ(z, a) =Eπ,µ
[
(Gt,π,µ − Eπ,µ[Gt,π,µ|Zt = z,At = a])2|Zt = z,At = a

]

=Eπ,µ
[
(Gt,π,µ −Qπ,µ(z, a))2|Zt = z,At = a

]

=Eπ,µ
[(
δt + γ(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])

)2

|Zt = z,At = a
]

=Eπ,µ
[
δ2
t |Zt = z,At = a

]
+ γ2 Eπ,µ

[
(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])2|Zt = z,At = a

]

+ 2γ Eπ,µ
[
δt(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])

]
(4)

Using the Lemma 1, by substituting ρ, λ = 1 and changing the state S as an augmented state Z, the third term in the
above (4) goes to 0. This leads the variance to σπ,µ(z, a) = Eπ,µ

[
δ2
t,π + γ̄σπ,µ(Zt+1, At+1)

∣∣Zt = z,At = a
]
.

The new safe objective function is defined as:

J(Θ) = Ez∼d
[
QΘ(z)− ψz σΘ(z)

]
,

where d describes the initial state-option distribution and ψz is the regularizer for the variance penalty term which is a
function of the augmented state space.
Theorem 2. (Safe Intra-Option Policy Gradient Theorem) Given Markov options, πw,θ policy differentiable in parameter θ, the
gradient of the objective function J w.r.t. θ starting from state s and option w is:

∇θJ(Θ) = Ed,Θ[
∑

a

∇θπθ(a|Zt)
(
Qπ,µ(Zt, a)− ψZt σπ,µ(Zt, a)

)
]

Proof. The gradient of the σΘ(z) w.r.t. θ is calculated in a similar fashion as the gradient ofQΘ(z) w.r.t. θ in the Intra-option
Policy Gradient Theorem (Bacon et al., 2017).

The gradient update for the intra-option policy moves in the direction to maximize the mean return value and minimize
the variance in the return.
Theorem 3. (Safe Termination Gradient Theorem) Given Markov options, βw,ν termination function differentiable in parameter ν,
the gradient of the objective function J w.r.t. ν starting from state s and option w is:

∇νJ(Θ) = Ed,Θ[−∇νβν(St+1,Wt)
(
Aπ,µ,Q(St+1,Wt)− ψz Aπ,µ,σ(St+1,Wt)

)
]

where Aπ,µ,σ(St+1,Wt) = σΘ(St+1,Wt)− σΘ(St+1) is the advantage function for the variance similar to the value function.

2

Paper # 128 223

Proof. The gradient of the σΘ(z) w.r.t. ν is calculated in a similar fashion as the gradient ofQΘ(z) w.r.t. ν in the Termination
Gradient Theorem (Bacon et al., 2017).

Similar to the Option-Critic, when the advantage of the value function is positive for an option, the gradient for the
termination descends. On the other hand, the positive advantage function for the variance makes the gradient update
for the termination ascent. It matches with the intuition, when the variance of an option is higher than the average
variance, it would be desirable to terminate the option and choose a better option with a lower variance.
Theorem 4. (Safe Policy over Options Gradient Theorem) Given Markov options, µκ policy over options differentiable in parameter
κ, the gradient of the objective function J w.r.t. κ starting from state s and option w is:

∇κJ(Θ) = Ed,Θ[βν(St+1,Wt)
∑

w′

∇κµκ(w′|St+1)
(
QΘ(z′)− ψz′ σΘ(z′)

)
]

Proof. Let 1-step augmented state transition using (1) be: P (1)
γ̄ (Zt+1|Zt) def

= γ̄
∑
a πθ(a|Zt)P (Zt+1|Zt, a). Similarly, the

k-step transition would be defined as: P (k)
γ̄ (Zt+k|Zt) def

= P
(1)
γ̄ (Zt+k|Zt+k−1) × P

(k−1)
γ̄ (Zt+k−1|Zt). The gradient of the

variance w.r.t. κ parameter following (2),

∇κσΘ(z) =∇κ
[∑

a

πθ(a|z)γ̄
∑

s′

P (s′|s, a)
[
(1− βν(s′, w))σΘ(s′, w) + βν(s′, w)

∑

w′

µκ(w′|s′)σΘ(s′, w′)
]]

=
∑

a

πθ(a|z)γ̄
∑

s′,w′

P (s′|s, a)
[
(1− βν(s′, w)1w=w′ + βν(s′, w)µκ(w′|s′)]∇κσΘ(s′, w′)

+
∑

a

πθ(a|z)γ̄
∑

s′,w′

P (s′|s, a)βν(s′, w)
∑

w′

∇κµκ(w′|s′)σΘ(s′, w′)

=
∞∑

k=0

∑

z′

P
(k)
γ̄ (z′|z)

∑

a′

πθ(a
′|z′)

∑

s′′

γ̄P (s′′|s′, a′)βν(s′′, w′)
∑

w′′

∇κµκ(w′′|s′′)σΘ(s′′, w′′)

Similarly, the gradient of the QΘ(z) value function can be derived similarly, leading to the proof.

The above theorem states that the gradient of the policy over the options is updated in the direction of maximizing the
expected Q-value and minimizing the variance function achieved from all other possible options after termination of the
current option.

4 Experiment

Grid-World: We experiment in the classic grid-world four rooms (FR) environment (Bacon et al., 2017). To test safety, we
created a variable reward frozen patch (F) in one of the hallway generated fromN (0, 8) distribution. The rest of the states
are given a 0 reward. Agent receives a reward of 50 on reaching the goal (G) (See Fig. 1a). γ is kept as 0.99. The step size of
value function, variance function, intra-option policy, termination, policy over options are 1.0, 2e−3, 1e−3, 5e−3, 1e−4
respectively for both option-critic (ψz = 0) and safe option-critic (ψz = 0.5) ∀z ∈ Z. Fig. 1b and Fig. 1c depict the
performance in the FR environment.

(a) Environment (b) Learning curve (c) Absolute TD error

Figure 1: Performance in the FR: Shows the performance averaged over 50 trials where the vertical bands depict the std.
dev.. Shows b) the return, and c) sum of the absolute TD error. The safe policy (red) has a smaller standard deviation as
compared to the baseline (black) signifying safety helps an agent to avoid variance inducing regions.

Continuous State-Action Space: Here we performed the experiments in Mujoco environments to test the real-world use
case of introducing safe trajectories while learning in an environment. We implemented our safe algorithm over existing

3

Paper # 128 224

proximal policy option-critic (PPOC) (Klissarov et al., 2017). We compare the performance of the agent using both the
baseline PPOC and Safe-PPOC in Fig. 2. The videos1 compare the performance of the agent using both the algorithms in
the Mujoco environments.

(a) Half Cheetah (b) Humanoid Standup (c) Ant

Figure 2: Performance in Mujoco: Learning curve average over 10 runs where vertical bands depict the std. dev.. The
vertical bars at right most corner display the std. dev. in performance over the last 50 iterations. The variance regularized
PPOC (ψ > 0) helps in reducing the variation across multiple seed values leading to a more consistent performance.

5 Conclusion & Future Work

This work aims to introduce the constraint over the variance in return to the existing option-critic architecture in order
to incorporate responsible behavior in the risk-sensitive domains. Firstly, we propose a direct estimator of the variance
in the hierarchical policy framework. Then, we establish a method to learn a safe and reliable policy in option-critic,
which uses the above direct estimator of the variance to avoid unpredictably behaving regions. The above framework
is generic, which makes no assumption about the environment, making it a simple strategy to combine with the current
policy gradient techniques. The future work is to experiment with more different environments like Atari to understand
the scalability of the safe algorithm.

References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016). Concrete problems in ai safety.

arXiv preprint arXiv:1606.06565.
Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In AAAI, pages 1726–1734.
Jain, A., Jain, A., Khetarpal, K., , Aboutalebi, H., and Precup, D. (2019). On-policy and off-policy actor-critic with con-

strained return variance. In Under Submission.
Jain, A., Khetarpal, K., and Precup, D. (2018). Safe option-critic: Learning safety in the option-critic architecture. arXiv

preprint arXiv:1807.08060.
Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D. (2017). Learnings options end-to-end for continuous action tasks.

arXiv preprint arXiv:1712.00004.
Prashanth, L. and Ghavamzadeh, M. (2013). Actor-critic algorithms for risk-sensitive MDPs. In Advances in neural infor-

mation processing systems, pages 252–260.
Sato, M., Kimura, H., and Kobayashi, S. (2001). TD algorithm for the variance of return and mean-variance reinforcement

learning. Transactions of the Japanese Society for Artificial Intelligence, 16(3):353–362.
Sherstan, C., Ashley, D. R., Bennett, B., Young, K., White, A., White, M., and Sutton, R. S. (2018). Comparing direct

and indirect temporal-difference methods for estimating the variance of the return. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 63–72.

Tamar, A., Di Castro, D., and Mannor, S. (2012). Policy gradients with variance related risk criteria. In Proceedings of the
twenty-ninth international conference on machine learning, pages 387–396.

Tamar, A., Di Castro, D., and Mannor, S. (2016). Learning the variance of the reward-to-go. Journal of Machine Learning
Research, 17(13):1–36.

Tamar, A., Xu, H., and Mannor, S. (2013). Scaling up robust MDPs by reinforcement learning. arXiv preprint
arXiv:1306.6189.

1The performance videos of the agent in PPOC and Safe PPOC in Mujoco domains is here.

4

Paper # 128 225

Making Meaning: Semiotics Within
Predictive Knowledge Architectures

Alex Kearney
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
kearney@ualberta.ca

Oliver Oxton
Department of Philosophy

University of Waterloo
Waterloo, Ontario, Canada
opo.xton@gmail.com ∗

Abstract

Within Reinforcement Learning, there is a fledgling approach to conceptualizing the environment in terms
of predictions. Central to this predictive approach is the assertion that it is possible to construct ontologies
in terms of predictions about sensation, behaviour, and time—to categorize the world into entities which
express all aspects of the world using only predictions. This construction of ontologies is integral to predictive
approaches to machine knowledge where objects are described exclusively in terms of how they are perceived.
In this paper, we ground the Pericean model of semiotics in terms of Reinforcement Learning Methods,
describing Peirce’s Three Categories in the notation of General Value Functions. Using the Peircean model
of semiotics, we demonstrate that predictions alone are insufficient to construct an ontology; however, we
identify predictions as being integral to the meaning-making process. Moreover, we discuss how predictive
knowledge provides a particularly stable foundation for semiosis—the process of making meaning—and
suggest a possible avenue of research to design algorithmic methods which construct semantics and meaning
using predictions.

Keywords: Reinforcement Learning, General Value Functions, Philosophy,
Epistemology, Semantics.

Acknowledgements

Thanks to Patrick Pilarski, Johannes Günther, Melissa Woghiren, Anna Koop, and Niko Yasui for feedback on
early drafts of this manuscript. Thanks to Dylan Jones for insightful discussion. This work was supported in
part by the Alberta Machine Intelligence Institute, Alberta Innovates, the Natural Sciences and Engineering
Research Council, the Canada Research Chairs program, and by Borealis AI through their Global Fellowship
Award.

∗For additional discussion on the epistemology of predictive knowledge and how we can view predictive knowledge
architectures as having knowledge, please refer to Kearney & Pilarski, "When is a Prediction Knowledge?", accepted to
RLDM 2019.

Paper # 37 226

1 Predictive Approaches to Machine Knowledge

A foundational problem of machine intelligence is being able to conceptualize the environment—to construct
ontologies of categories and concepts which enable meaningful decision making and problem solving.
Furthermore, it is normally assumed that such ontologies are dependent upon knowledge; and so it is
no surprise that each approach to machine intelligence—from expert systems to machine learning meth-
ods—aims to build systems approaching human-level understanding of their environment based on differing
assumptions about what knowledge is and what counts as it. Within Reinforcement learning, there is a
fledgling approach to knowledge building sometimes called predictive knowledge: a collection of learning
methods and architectural proposals which seek to describe the world exclusively in terms of sensation,
behaviour, and time (Sutton, 2009).

What separates predictive knowledge from other machine intelligence proposals is a focus on, and require-
ment of, methods which have three capacities: the ability to 1) self-verify knowledge through continual
interaction with the environment, 2) describe knowledge exclusively in terms of observations from the
environment, and 3) scale learning methods (Sutton et al., 2011). While each of the requirements is important
to operationalizing predictive knowledge, they are in service of a greater, unmentioned requirement: the
ability to construct an ontology through interaction with the environment. Many other learning methods
assume that ontological categories are given to the agent, either by hand-crafting properties and relationships
to describe the world (as is done in knowledge bases), or providing explicit ontological categorization during
supervised learning. Predictive Knowledge is liberated from this engineering process by focusing on learning
methods which construct their own categories, properties, and relationships to describe the environment.

While promising, it is unclear to what extent ontologies constructed through predictive knowledge frame-
works accomplish the task of conceptualizing the environment. Certainly there is some degree of success in
using predictions to support control and decision-making (Modayil and Sutton, 2014; Edwards et al., 2016;
Günther et al., 2016), but there are also roadblocks to progress which seem to indicate a problem with the
foundations of the framework. For instance, tasks such as reasoning about objects in terms of sensorimotor
experience in predictive terms (Koop, 2008) has proven to be exceptionally challenging—a task which is
relatively simple for supervised learning systems, and other learning methods with hand-crafted ontologies.
This difficulty to express general concepts using predictions is sometimes referred to as the abstraction gap.

At root, and so in service of the three requirements above, the predictive knowledge project proposes that
value functions hold the meaning necessary to construct a successful ontology.1 This paper will proceed
by proposing a framework for understanding meaning which will present a challenge to this stated under-
standing of value functions, the technical implications of which will then be discussed. Importantly, we find
that Predictive Knowledge does not yet meet the threshold for meaning that is necessary to accomplish the
ontological construction sought after by the project of Predictive Knowledge.

2 The Building Blocks of Meaning: a Less Deadly Triad

There is a long standing approach to the construction of meaning in academic literature outside of Computer
Science and Machine Intelligence; namely, semiotics. Despite particular theoretical differences, the basic idea
behind positions in semiotics is that meaning is a relational product of ‘signifiers’ (or, words and language)
and the ‘signified’ (or, objects and the world). For instance, Saussure argued that the meaning for some word
was defined by its relative place in the broader structure of the relevant language—i.e. dog does not mean
cat (and vice-versa) precisely because the structure of the English language has unique places, laid out by
interpreters through practice, wherein dog and cat cannot be interchanged. Thus, there is the signified (one’s
actual pet) and it stands in relation to a structured ontology of signifiers (of words one might use, or not use,
to describe their pet).

Of course, put so broadly, semiotics as an approach to linguistic meaning is simultaneously compatible with a
wide variety of other methodological approaches and philosophical commitments, and prone to questioning
and conflict. Consequently, to see how semiotics may help design machine learning methods capable of
independently constructing ontologies, the discussion must be narrowed from the broader theoretical terrain

1This is made clear in some conceptual projects(Sutton, 2009; Koop, 2008; Sutton et al., 2011); however, it is worth
noting that in engineering projects which focus on using predictions to support decision making, it is likely that the
claim of predictions as being relevant is likely only implicit, if intended at all.

1

Paper # 37 227

to one particular view. To that end, we focus on the Peircean model of semiotics for two reasons: 1) Peircean
semiotics is not limited to the domain of language, but instead, tackles the broadest domain possible with
the notion of a sign (CP 1.339)2, making it applicable to the analysis of machine intelligence methods; and
2) Peircean semiotics particularly emphasizes the process of agent interaction rather than the resulting
‘language’ or ontological structure (CP 1.341), making it uniquely suitable to analysis of Reinforcement
Learning methods.

At a macroscopic level, Peirce’s semiotics is often described as a triadic relation between an object, a signifier,
and an interpretation. For example, a bonfire at a campsite could be an object; the smoke it gives off could
be its signifier; and the conclusion that one draws (or, interpretation) could be that “people are in the forest.”
One may note that under the Peircean model, signifiers are not only words or the perspective of agents, but
can also be objects in the world. This leads to two immediate confusions: 1) that there is a multiplicity to
the interpretation of signs (it is not clear the the ’right’ signifier is the smoke, or the fire, or that the ’right’
interpretation is that there are people in the forest); and 2) that signs are not isolated or fixed, but instead are
linked together (a ’complete’ sign between smoke, fire and the interpretation of people, might itself be the
signifier of another larger, more complex sign). However, despite these points of potential confusion, the
model nonetheless provides a framework for evaluating meaning: smoke means people are present due to
the combination of relations inherent between smoke and fire, fire and people, and the interpretive step an
agent takes in relating their environment and experiences to these relations. The crux of this model is thus
the third aspect of agent interpretation rather than simply the sets of relations between phenomena.

Indeed, to go into further detail, one will find that the triadic model is derivative of Peirce’s Theory of
Mind.3 What can be shown is that the semiotic model depends upon, what is normally called, the Three
Categories; and which we will refer to here as Sensation, Perception, and Generality.4 First, before abstractions—
or conceptualizations—can be constructed, there must be the information or sensation from which one can
construct the abstraction, absent of any categorization, modelling, or understanding. Thus, Sensation is the
observation an agent receives from the environment without further analysis, comparison, or relation. In the
linguistic semiotic model, this would be the smoke as smoke—a signifier without a corresponding object or
interpretation, something merely sensed.

Of course, our concepts and thoughts are not simply composed of raw, unprocessed sensation. A sensation of
smoke and a sensation of fire are related through our perception and environment construction regardless of
any particular meaning. Consider, for example, how classical conditioning describes fixed responses to stimuli,
such as blinking, which do not require higher level conceptual cognition. Thus the second component of the
triad, Perception, describes both the properties which our environment is in terms of and how each property
relates to different sensations. Within predictive knowledge and machine learning, this notion of Perception,
can be found in many places: i.e. a prediction’s estimate, or the value of a state action pair.

Now, it may seem unclear why one needs a third part. There are moments sensed and perceptions which relate
them; what else could there be, or must there be? Some reflection, however, may reveal the shortcomings
of this diadic relationship. To think again of our campsite, one’s sensation of smoke may bring about
the perceptual relation of fire—the two go together after all, like blinking—but there are many further
experiences which come with fire. Sometimes there really is a campsite and people roasting marshmallows,
other times lightning strikes, or dry heat and unkempt brush may bring an unwelcome end to celebratory
fireworks. Which conclusion one draws from the sensation of smoke—that is, what the smoke means—is
thus the application of a broader general concept (say, campfire as compared to forest fire). The useful selection
of one broader concept over another may require a rich background of experience and learned relations
(between, say, the volume of smoke and the colour of the horizon, or the smell of burning pine), but is
nonetheless an active cognitive step wherein a general notion is applied to a particular case—that the source
of this smoke, and so this fire, is people and not lightning. This third category, the relation of general patterns
to particular instances, is what we have called Generality.

2We refer to Collected Papers of Charles S. Peirce by CP m.n, where m is the volume number and n is the paragraph
number, as is custom in Peircean scholarship.

3The full scope of which is, unfortunately, beyond this paper.
4Peirce refers to these categories as Firstness, Secondness, and Thirdness; however, despite the systematic function

that these categories play throughout his theories, we eschew this naming schema for both clarity and applicability. See
CP 1.300 onwards for relevant discussion.

2

Paper # 37 228

3 Is Learning a GVF a Semiotic Process?

Thus far we have presented the parallels between AI and semiotics speculatively and hesitantly, but we
will now develop an extended example covering predictive knowledge and the Three Categories. To do
so, we take a General Value Function (GVF) (White, 2015)—the most basic mechanism of many predictive
knowledge proposals—and evaluate whether learning an approximate value function can be seen as a triadic
relationship; we evaluate whether predicting is a process which produces meaning.

GVFs make predictions estimating the value, or expected discounted sum of a signal C defined as Gt =∑∞
k=0(

∏k
j=1(γt+j))Ct+k+1. Value for some state φ is estimated with respect to a specific policy π, discount

function 0 ≤ γ ≤ 1, and cumulant c, such that v(φ;π, γ, c) = Eπ[Gt|St = φ]. Using GVFs, we can ask
questions such as “How long will it take me to bump into a wall if I keep walking forwards”? These GVFs
are typically learnt online through interaction between an agent and its world over discrete time-steps. On
each time-step t = 0, 1, 2, ..., n the agent receives a vector ot that describes what is sensed, and takes an action
at. Prior to use or feature construction, the observations ot received by the system are Sensation: the first
component of the Three Categories.

The observations, with some function approximator, are used to produce the agent state: a feature vector φt :
ot → Rn which describes the environment from the agent’s perspective5. This state φt is used in conjunction
with some learning method to estimate the discounted sum Gt of future signals C. For our example, we
consider Temporal-Difference (TD) learning (Sutton, 1988); however, our conclusions will generalize to other
policy evaluation methods. When performing TD learning, we maintain some weight parameters w ∈ Rn
which when combined with the current state produce the estimated return vπ(φt) = w>t φt. On each step, at
each instant, the weights are changed proportional to the TD error δt = Ct+1 + γt+1vπ(φt+1)− vπ(φt). When
the weights are updated by wt+1 = wt + αtδtφt, the relation between ot, at, and ct is updated based on some
response from the environment. For any given state φt, the estimate vπ(φt) forms a relation between what
is sensed ot, the actions taken at and the signal being predicted ct; thus, value estimates form the second
component of the Three Categories: Perception.

Having come to the end of the process of specifying and learning a GVF, one may wonder where Generality
exists in predictive knowledge. After all, many claim that a single prediction has meaning6, but we have
so far only identified Sensation and Perception. While a GVF may capture a prediction for any given state,
generalizing over observations through some function approximation, it does not capture Generality. When
a prediction is formed as a GVF, our expectation of future signals slurs over all experience, making it
impossible to relate manifestations of instances of signals in order to compare and contrast them. Using
GVFs alone, we are incapable of, say, identifying that a wall bumped into is the very same as the one we
bumped into both 10 time-steps ago and 100 time-steps ago: we may only say how close an observation was
to the expectation of the whole of an agent’s experience in that particular agent-state.

This limitation in expressing the Three Categories invites us to wonder whether the notion of Sensation,
Perception, and Generality is a productive one: does framing predictive knowledge as a semiotic process
help us better understand machine intelligence? As we previously introduced, there are other approaches to
semiosis, some of which do not depend on Generality7. Simply finding our methods to be meaningful does
not obliviate the limitations of existing predictive knowledge methods. Predictive knowledge frameworks
can be construed as constructing meaning under other definitions of semiotics; however, declaring our
methods to be sufficient does not help predictive knowledge systems cross the abstraction gap and express
concepts which are at present elusive—a declaration of meaning would not suddenly enable Predictive
Knowledge methods to reason about generality, or make it any clearer how notions such as objects would be
formalized in a predictive setting.

How, then, do we surmount the gap between abstract generalities and the relations which inform them?
While predictions alone are insufficient, it may be possible to express generalities by constructing models
using predictions A model-based method which explicitly defines state-action transitions relates not only one
state st to another st+1, but relates states in terms of all the possible transitions given all the possible actions

5It is worth noting that input observations ot could include not just immediate sensor feedback, but also the previous
action, historical information, or internal signals generated from learning.

6See Sutton et al. (2011) for an example argument for GVFs as having explicit semantics, and both Koop (2008) and
White (2015) for additional discussion of predictions as inherently meaningful.

7For example, (Barbieri, 2007) presents a variety of semiotic models in application to cell biology.

3

Paper # 37 229

which could have been taken in st. A model which is able to interrelate many predictions such that contexts
can be compared and contrasted could be considered semiotic. For these reasons, difficulty in constructing
generalities does not belong to insufficient learning methods, or poor state construction (although they do
impact progress). The difficulty of constructing abstractions results from an inability to interrelate what is
learned: it is a problem of how we structure predictive knowledge architectures, not how we learn them.

Does learning a prediction encompass the entirety of a semiotic process? No; however, predictive knowledge
could play a central role in a process which is semiotic. GVFs provide a robust and flexible foundation for
semiosis by playing the part of Perception. By focusing on incremental learning methods which are specified in
terms of behaviour, GVFs describe a class of predictions which are uniquely suited to be Perception: methods
which are not ontologically constrained by labels—or, what predictive knowledge agents can conceptualize
constrained by the reality of the environment they inhabit, not the labels provided for training. Moreover,
GVFs have proven themselves to be practically useful for reactive behaviour such as prosthetic control
(Edwards et al., 2016), lazer welding (Günther et al., 2016), and robotics (Modayil and Sutton, 2014)—crucial
steps in demonstrating that GVFs are useful in informing decision-making about the environment, although
insufficient for constructing an ontology of the world.

4 Conclusion: Taking Stock of the Predictive Knowledge Project

Predictive knowledge describes a collection of proposals for constructing machine knowledge which assert
that all world knowledge can be described as predictions about sensation, behaviour, and time. In this
paper, we take a first look at the construction of semantics and meaning in predictive knowledge by
evaluating whether or not learning a General Value Function can be construed as a semiotic process. We
demonstrate that GVFs can be seen to fulfill the first two components of semiosis: Sensation and Peception;
however, predictions fall short of providing the third component, Generality. As a result, predictions do not
have meaning independent of any other process. While predictive knowledge proposals do not presently
construct meaning, the project of predictive knowledge is not inherently doomed; quite the opposite,
predictive knowledge provides a promising foundation for construction of meaning in Machine Intelligence.
We suggest that it may be possible to express generalities by using predictions to construct models of the
environment, thereby completing the triadic relation and forming a semiotic process.

References
Barbieri, M. (2007). Introduction to Biosemiotics: The New Biological Synthesis. Springer Science & Business

Media.
Edwards, A. L., Hebert, J. S., and Pilarski, P. M. (2016). Machine learning and unlearning to autonomously

switch between the functions of a myoelectric arm. In Biomedical Robotics and Biomechatronics (BioRob),
2016 6th IEEE International Conference On, pages 514–521. IEEE.

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., and Diepold, K. (2016). Intelligent laser welding through
representation, prediction, and control learning: An architecture with deep neural networks and reinforce-
ment learning. Mechatronics, 34:1–11.

Koop, A. (2008). Investigating Experience: Temporal Coherence and Empirical Knowledge Representation. PhD
Thesis, University of Alberta.

Modayil, J. and Sutton, R. S. (2014). Prediction driven behavior: Learning predictions that drive fixed
responses. In The AAAI-14 Workshop on Artificial Intelligence and Robotics, Quebec City, Quebec, Canada.

Peirce, C. S., Hartshorne, C., and Weiss, P. (1931). Collected Papers of Charles Sanders Peirce. Vol. 1, Principles of
Philosophy. Belknap Press of Harvard University Press.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–44.
Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowledge. In Working Notes of the

IJCAI-09 Workshop on Grand Challenges for Reasoning from Experiences.
Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D. (2011). Horde: A

scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In
AAMAS 2011, pages 761–768. International Foundation for Autonomous Agents and Multiagent Systems.

White, A. (2015). Developing a Predictive Approach to Knowledge. PhD Thesis, University of Alberta.

4

Paper # 37 230

When is a Prediction Knowledge?

Alex Kearney
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
kearney@ualberta.ca∗

Patrick M. Pilarski
Departments of Medicine and Computing Science

University of Alberta
Edmonton, Alberta, Canada
pilarski@ualberta.ca

Abstract

Within Reinforcement Learning, there is a growing collection of research which aims to express all of an
agent’s knowledge of the world through predictions about sensation, behaviour, and time. This work can be
seen not only as a collection of architectural proposals, but also as the beginnings of a theory of machine
knowledge in reinforcement learning. Recent work has expanded what can be expressed using predictions,
and developed applications which use predictions to inform decision-making on a variety of synthetic and
real-world problems. While promising, we here suggest that the notion of predictions as knowledge in
reinforcement learning is as yet underdeveloped: some work explicitly refers to predictions as knowledge,
what the requirements are for considering a prediction to be knowledge have yet to be well explored. This
specification of the necessary and sufficient conditions of knowledge is important; even if claims about the
nature of knowledge are left implicit in technical proposals, the underlying assumptions of such claims
have consequences for the systems we design. These consequences manifest in both the way we choose
to structure predictive knowledge architectures, and how we evaluate them. In this paper, we take a first
step to formalizing predictive knowledge by discussing the relationship of predictive knowledge learning
methods to existing theories of knowledge in epistemology. Specifically, we explore the relationships between
Generalized Value Functions and epistemic notions of Justification and Truth.

Keywords: Reinforcement Learning, Predictive Knowledge, Continual Learn-
ing, General Value Functions, Epistemology

Acknowledgements

Thanks to David Quail for insightful discussion; thanks to Dylan Jones, Kory Mathewson, and Johannes
Günther for feedback on an early draft of this manuscript. This work was supported in part by the Canada
Research Chairs program, the Alberta Machine Intelligence Institute, Alberta Innovates, the Natural Sciences
and Engineering Research Council, and by Borealis AI through their Global Fellowship Award.

∗For additional discussion on the epistemology of predictive knowledge and how we can view predictive knowledge
architectures as having semantics, please refer to Kearney & Oxton, "Making Meaning: Semiotics Within Predictive
Knowledge Architectures", RLDM 2019.

Paper # 170 231

1 Predictive Approaches to Machine Knowledge

One of the foundational goals of machine intelligence is to create systems which are able to understand
and reason about the world around them. Within Reinforcement Learning, there is a growing collection of
research which attempts to describe the world in terms of predictions about the environment, sometimes
called Predictive Knowledge (Sutton, 2009; Koop, 2008; Sutton et al., 2011; White, 2015). Predictive knowledge
agents describe the world by making many predictions with respect to their behaviour. These predictions
can then be interrelated to express more abstract, conceptual aspects of the environment (Schapire and
Rivest, 1988). For instance, using a General Value Function, a system could predict whether there is an
obstacle to the left or right. Key to this approach is that all predictions—from immediate sensorimotor
anticipation, to abstract conceptual expressions of the environment—are described exclusively in terms
of sensation, behaviour, and time. As a result of these constraints, predictive knowledge centres itself
around methods which are able to construct their own categories, properties and relationships: predictive
knowledge is liberated from the process of labelling. This body of work can be seen as not just a collection of
engineering proposals, but also as a fledgling approach to describing knowledge from a machine intelligence
perspective—as a starting point for applying Epistemology to Reinforcement Learning.

Predictive knowledge methods show promise; however it is unclear to what extent predictions can be
considered knowledge. While prediction’s special status as knowledge has been alluded to in RL (Sutton et al.,
2011; White, 2015), there has been no discussion of the necessary and sufficient conditions for predictions to
be considered knowledge, or the assumptions required and consequences which follow from considering
predictions to be knowledge. This is more than simply an absence of conceptual discussion in a purely
technical endeavour; there are practical challenges to developing predictive knowledge architectures which
are particularly pernicious due to a limited understanding of the requirements of knowledge—i.e., how
to choose what to predict and how to predict it independent of designer intervention is largely unknown.
Although predictions have proven to be practically useful in reactive control systems in bionic limbs
(Edwards et al., 2016) and industrial laser welding (Günther et al., 2016), in each of these instances the
predictions learnt by the system and how they are used to inform decison-making is hand-specified by
engineers and designers. These problems, at least in part, are a consequence of a poor understanding of the
requirements of knowledge.

When we propose that predictions can be interpreted as knowledge, we are making a claim about what
knowledge is. In this paper, we begin the project of formalizing a theory of knowledge in reinforcement
learning by exploring justification and truth in predictive knowledge. Specifically, we 1) highlight evaluation
concerns in predictive knowledge architectures, emphasizing how they relate to existing real-world appli-
cations; and 2) argue that epistemology is relevant to predictive knowledge research—that epistemology
deserves greater attention when designing predictive knowledge architectures. To do so, we examine one of
the most fundamental components of predictive knowledge proposals: General Value Functions (GVFs).

2 General Value Functions

When we discuss the requirements of knowledge, it is natural for us to begin by examining how predic-
tive knowledge learning methods relate to formal theories of knowledge. One of the central methods of
specifying predictions in predictive knowledge is through General Value Functions. General Value func-
tions estimate the discounted sum of some signal c over discrete time-steps t = 1, 2, 3, ..., n defined as
Gt = E(

∑∞
k=0(

∏k
j=1(γt+j))Ct+k+1). On each time-step the agent receives some vector ot of observations

which describes the environment and takes an action at. The observations are used to construct the agent-state
φ : ot → Rn: the state of the environment from the agent’s perspective. A GVF is parameterized by a set of
weights w ∈ Rn which when combined with the agent-state produce an estimate of the return v(s) = w>φ(ot)
The prediction is specified by two sets of parameters: question parameters which determine what the pre-
diction is about and answer parameters which determine how the prediction is learnt. Question parameters
include the signal of interest C, a discounting function dependent on the state of the environment st and an
action taken at, a factor 0 ≥ γ ≥ 1 which determines how to discount future signals, and a policy π which
describes the behaviour over which the predictions are made. Answer parameters include the step-size α
which scales updates to the weights, and the eligibility decay λ which determines how much previous states
should update their estimates based on the most recent observation. These predictions can be learned online,
incrementally using policy evaluation methods such as Temporal-difference learning (Sutton, 1988).

1

Paper # 170 232

GVFs form a key component of predictive knowledge proposals by acting as the mechanism through which
knowledge is constructed(Sutton et al., 2011). Certainly, not all predictions are created equally. Feature
construction and amount of experience contribute to the how well the return Gt is estimated. If we center all
knowledge as a collection of predictions, how do we evaluate the quality of a predictions as knowledge?

3 Lessons From Epistemology: Barn Facades and Bionic Limbs

Before embarking on determining whether or not accurate predictions can be considered knowledge,
it’s prudent to have an understanding of what knowledge is. To this end, we introduce arguments from
epistemology, the study of knowledge, and ground these arguments in terms of GVFs.

At its core epistemology captures the distinction between systems which know that such-and-such is the case
and systems which are simply reliably responding to stimuli. While there are many theories that define the
necessary and sufficient conditions for knowledge, they can be summarized broadly as requiring Justification,
Truth, and Belief (Gettier, 1963). Each of the legs of this tripartite approach to analysing knowledge are meant
to constrain what can be admitted as knowledge.

First, one must believe that they have knowledge of something. Belief may seem trivial; however, there are
real-world examples of people who are able to complete tasks while not believing they are capable of doing
so. When blindsighted patients are asked to perform certain visual tasks, they are able to achieve accuracy
higher than would be expected by chance, but do not believe their reports are accurate (Humphrey, 2006). A
blindsighted person does not assert that they know whether or not a stimulus is present; regardless, they are
able to complete these tasks with some reliability. Second, the belief must be truthful. Truth separates beliefs
which have bearing on the world, and assertions which are incongruous for reality. If someone says they
know the moon is made of cheese, we wouldn’t say they know what the moon is made of, even if they deeply
hold this belief. Third, a belief must be justified. Justification serves to separate accidentally true beliefs from
those which are right for good reasons; i.e, if you asked someone how to get to the nearest cafe, and their
directions happened to be correct, you wouldn’t say they were right—you’d say they were lucky.

The variety of positions relating to each of justification, truth, and belief are numerous. To that end, we
constrain ourselves to considering how GVFs relate to the first two components of the tripod: how can
predictions be licensed as being Truthful and Justified? As we alluded to earlier, not all predictions are
created equally. In order to make progress in designing predictive architectures, we must be able to separate
predictions which are unreliable, or made for poor reasons, from those which are robust and can be used to
inform decision-making.

When an agent is making a prediction, it is making an assertion about the world as observed through its
data stream. If a prediction is accurate, it is a testament to its truth. One common method of evaluating
whether a prediction is correct or not is to compare what is predicted against an estimation of the true
return (Pilarski et al., 2012; Edwards et al., 2016; Günther et al., 2016). The approximate return is G̃t =∑b
k=0(

∏k
j=1(γt+j))Ct+k+1 − vt(st) for some buffer-size b which determines how many steps into the future

cumulants c are stored to produce the return estimate on any given time-step. The truthfulness of the
prediction can be described as the the extent to which estimated value matches the true, observed return1.

If prediction accuracy describes the truth of a prediction, what is justification within predictive knowledge
architectures? Or, is justification necessary? As previously mentioned, the necessary and sufficient conditions
for knowledge are a point of contention. In the same paper that Gettier introduced Justified True Belief,
he argued against its validity. Similarly, Goldman’s Barn Facade problem—which we explore in terms of
predictions in the following paragraphs—illustrates how evidence and reasons are not the only way to
support the claim that a belief is true—reasons are not the only way to separate a lucky guess, from a justified
belief (Goldman, 1976). The purpose of justification is simply to show that a belief is expected to be reliable,
that a belief is predicted to be true (Brandom, 2009). Can we treat the reliability of predictions as sufficient
for identifying knowledge independent of any other form of justification?

In short, no. While the reliability of a belief—or, accuracy of a prediction—is a means of justifying a belief,
reliability alone is insufficient to attribute knowledge (Brandom, 2009). We can examine the limitations
of reliability as justification by translating Goldman’s barn facade problem to a predictive knowledge
experiment. Consider a single GVF making a prediction about some signal c. In this case, the return error

1This approach is advocated in the original proposal of Sutton et al. (2011)

2

Paper # 170 233

4900 5000 5100 5200 5300 5400 5500 5600
Time-steps

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

El
bo

w
An

gl
e

(R
ad

ia
ns

)

Signal of Interest
Scaled Calculated Return

(a) Estimated value for two predictions; Signal as dotted line.

4900 5000 5100 5200 5300 5400 5500 5600
Time-steps

0

20

40

60

80

100

120

140

Ab
so

lu
te

 R
et

ur
n

Er
ro

r

(b) Absolute return error of two predictions.

Figure 1: Which prediction counts as knowledge: green or purple?

vt(φt)− G̃t is relative to a particular time-step t, and a set of observations ot. A GVF which predicts random
values could make a perfect prediction for a given time-step t and have no return error for an observation ot.
Clearly, the accuracy of a prediction over one time step says nothing about how likely a prediction is to be
accurate in general. Given the limitations of a single time-step error, over what horizon—for what period
of time, or what collection of states—must we examine the return error to licence truth? Must we calculate
the return error of a prediction relative to all possible states in order to determine whether a prediction is
sufficiently justified? Such a requirement would be technically infeasible in a real-world setting.

Not only is return error impractical as the exclusive source of justification, it is incoherent on a conceptual
level. Relative to each set of states, there is a clear answer as to whether or not a prediction is accurate;
however, there is nothing in the world which privileges one set of states over others in making the distinction
of truth. So the accuracy, or reliability of a belief does not determine whether or not the prediction is justified.
None of this is to say that the reliability of predictions does not have any epistemic significance. Prediction
accuracy is unquestionably an important part of assessing the truth of a prediction and evaluating if a
prediction is justified. However, Prediction accuracy alone does not tell the full story.

To explore this point, we produce two predictions about the joint angles of a robotic actuator, as sampled
from the human controlling a robotic arm to do manipulation task. Please refer to Pilarski et al. (2013a) for
the full details of how this dataset was generated. The cumulant of interest is the elbow servo motor angle in
radians. For both predictions, the discount factor is γ = 0.99, corresponding to roughly 2.5 seconds of arm
operation. As per Pilarski et al. (2013a), the predictions were made on-policy with TD(λ) with λ = 0.999 and
a step size α = 0.033 (Sutton, 1988). Only the function approximators used to construct the agent-state varies
between the two predictions.

From the predictions in Figure 1, we can see that the green prediction isn’t a prediction at all. Although both
predictions are specified to learn the same GVF, the green prediction is simply tracking the signal of interest.
In comparison, the purple prediction, in fact, predicts: it rises before the stimulus rises, and decreases before
the stimulus falls. Looking at return error alone (Figure 1b), we would be lead to the conclusion that the green
prediction is in fact more truthful than the purple. Because the green prediction is more accurate—both on a
moment-to moment basis, and throughout the trial—from this reliabilist perspective, it is better justified. We
could conclude that the green prediction that isn’t predicting is a better candidate for knowledge. Although
the purple prediction is clearly more predictive, it has a greater return error, both on a moment-to-moment
basis on each time-step and in the greater context of the experimental trial.

More than simply a contrived example, these predictions are examples of prototypical GVFs made on bionic
limbs to inform control systems. While existing systems are hand-engineered, if we choose to build systems
which independently make decisions about what to learn and how to learn them, we must be able to assess
the quality of a prediction in a robust, reliable way. From purely an engineering standpoint, in order to build
such systems successfully we must be able to discriminate between predictions which have low error for
poor reasons and predictions which explain their signal of interest (Pilarski et al., 2013b). Put simply, just
because a prediction is accurate, doesn’t make it useful.

3

Paper # 170 234

The limitations of reliability as justification is more than a conceptual problem, it has practical consequences
for evaluation in real-world applications of predictive knowledge systems. The consequences of epistemic
choices we make—whether we are conscious of them or not—have a fundamental impact on the effectiveness
of our systems. To achieve its fullest potential, future work should examine additional methods of supporting
the justification of predictions, perhaps using internal signals about learning.

4 Concluding Thoughts:
The Importance of Evaluating When Predictions are Knowledge

Within reinforcement learning, there are the seeds of an approach to constructing machine knowledge
through prediction. While promising, there is limited discussion of what the formal commitments of such
an approach would be: namely, what knowledge is and what counts as it. In this paper, we take a first
step towards formalizing predictive knowledge by clarifying the relationship of GVFs to formal theories
of knowledge. We identify that a GVF’s estimates of some cumulant can be seen as truthful insofar as they
match the observed expected discounted return of the cumulant; we discuss arguments for and against the
reliability of a belief—or accuracy of a prediction—as being sufficient for justifying knowledge. Having
formalized these relationships between GVFs and both justification and truth, we use a robotic prediction
task to demonstrate that prediction accuracy is insufficient to determining whether a prediction is knowledge.
This inquiry is not simply an academic discussion: it has practical implications for decisions about what
knowledge is and what counts as it in architectural proposals. The project of predictive knowledge shows
promise not just as a collection of practical engineering proposals, but also as a theory of machine knowledge;
however, to achieve its full potential, predictive knowledge research must pay greater attention to the
epistemic commitments being made.

References
Brandom, R. (2009). Articulating Reasons. Harvard University Press.

Edwards, A. L., Hebert, J. S., and Pilarski, P. M. (2016). Machine learning and unlearning to autonomously switch between
the functions of a myoelectric arm. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International
Conference On, pages 514–521. IEEE.

Gettier, E. L. (1963). Is justified true belief knowledge? analysis, 23(6):121–123.

Goldman, A. I. (1976). Discrimination and perceptual knowledge. The Journal of Philosophy, 73(20):771–791.

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., and Diepold, K. (2016). Intelligent laser welding through representation,
prediction, and control learning: An architecture with deep neural networks and reinforcement learning. Mechatronics,
34:1–11.

Humphrey, N. (2006). Seeing Red. Harvard University Press.

Koop, A. (2008). Investigating Experience: Temporal Coherence and Empirical Knowledge Representation. PhD Thesis, University
of Alberta.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., Chan, K. M., Hebert, J. S., and Sutton, R. S. (2013a). Adaptive
artificial limbs: A real-time approach to prediction and anticipation. IEEE Robotics & Automation Magazine, 20(1):53–64.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., and Sutton, R. S. (2012). Dynamic switching and real-time machine
learning for improved human control of assistive biomedical robots. In Biomedical Robotics and Biomechatronics (BioRob),
2012 4th IEEE RAS & EMBS International Conference On, pages 296–302. IEEE.

Pilarski, P. M., Dick, T. B., and Sutton, R. S. (2013b). Real-time prediction learning for the simultaneous actuation of
multiple prosthetic joints. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pages 1–8. IEEE.

Schapire, R. E. and Rivest, R. L. (1988). Diversity-Based Inference of Finite Automata. Master’s Thesis, Massachusetts
Institute of Technology, Dept. of Electrical Engineering and Computer Science.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–44.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowledge. In Working Notes of the IJCAI-09
Workshop on Grand Challenges for Reasoning from Experiences.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D. (2011). Horde: A scalable real-time
architecture for learning knowledge from unsupervised sensorimotor interaction. In AAMAS 2011, pages 761–768.
International Foundation for Autonomous Agents and Multiagent Systems.

White, A. (2015). Developing a Predictive Approach to Knowledge. PhD Thesis, University of Alberta.

4

Paper # 170 235

DeepMellow: Removing the Need for a Target Network
in Deep Q-Learning

Seungchan Kim
Department of Computer Science

Brown University
Providence, RI 02906

seungchan kim@brown.edu

Kavosh Asadi
Department of Computer Science

Brown University
Providence, RI 02906
k8@brown.edu

Michael Littman
Department of Computer Science

Brown University
Providence, RI 02906

mlittman@cs.brown.edu

George Konidaris
Department of Computer Science

Brown University
Providence, RI 02906
gdk@cs.brown.edu

Abstract

Deep Q-Network (DQN) is a learning algorithm that achieves human-level performance in high-dimensional, complex
domains like Atari games. One of the important elements in DQN is its use of target network, which is necessary
to stabilize learning. We argue that using a target network is incompatible with online reinforcement learning, and
it is possible to achieve faster and more stable learning without a target network, when we use an alternative action
selection operator, Mellowmax. We present new mathematical properties of Mellowmax, and propose a new algorithm,
DeepMellow, which combines DQN and Mellowmax operator. We empirically show that DeepMellow, which does not
use a target network, outperforms DQN with a target network.

Keywords: Deep Q-Learning, Deep Q-Network, Target Network

Paper # 226 236

1 Introduction

Deep Q-Network (DQN) [4] is an algorithm that combines standard Q-learning and deep neural networks, which can
train agents and yield human-level performances in large-scale, complex domains like Atari games. One of the important
techniques used in DQN is a target network, which is a copy of the estimated action-value function that is held fixed to
serve as a stable target for some number of steps. However, key shortcomings of target network are that it hinders
faster learning by delaying the updates of action-value functions and that it moves us farther from online reinforcement
learning, a type of learning long desired by reinforcement learning community[5][7].
We propose an approach that reduces the need for a target network in DQN while ensuring stable learning and good
performance in high-dimensional domains. To this end, we use a recently proposed softmax operator, Mellowmax [1].
We derive novel mathematical properties of Mellowmax, and suggest that the use of Mellowmax allows us to remove
target network from DQN. We test the performances of a new algorithm, DeepMellow, the combination of Mellowmax
and DQN, in two control domains (Acrobot, Lunar Lander) and two Atari games (Breakout, Seaquest). Our empirical
results show that DeepMellow achieves more stability than a version of DQN without target network. We also show that
DeepMellow, which does not have a target network, learns faster than DQN, which does.

2 Deep Q-Network and Target Network

Deep Q-Network (DQN) is a variation of standard online Q-learning with three modifications: first, it uses deep neural
networks to approximate action-value function in large state spaces. Second, it employs an experience replay which
stores transition samples into a buffer and randomly samples a minibatch of transitions to update action-value functions.
Third, it uses a separate target network, which is just a copy of real action-value function. While the real action-value
function is updated continually, the target network is updated with delays to stabilize learning.

The update equation of DQN is as follows:

θ ← θ + α
(
r + γmax

a′
Q̂(s′, a′; θ−)−Q(s, a; θ)

)
∇θQ(s, a; θ),

where action-value function Q is parameterized by θ, and a separate target network Q̂ is parameterized by θ−. The
separate weights θ− is synchronized with θ after some period of time. Using a separate target network makes divergence
unlikely, because it adds a delay between the time that Q̂ values are updated and the time that Q values are updated.

We aim to show that it is possible to remove target network from DQN, while ensuring stable learning and good
performances in complex domains. There are three reasons for removing the target network from DQN:

(1) Target network in DQN violates online reinforcement learning, and hinders fast learning. Online learning enables
real-time learning with streams of incoming data, continually updating the value functions without delays [5][8]. By
eliminating the target network, we can remove the delays in the update of value functions, and thus support faster
learning, as demonstrated in our experiments. (2) Having a separate target network doubles the memory required to store
neural network weights. Thus, removing the target network will contribute to better allocation of memory resources. (3)
We aim to develop simpler learning algorithms since they are easier to implement in practice and understand in theory.
Target network is an extra complication added to Q-learning to make it work; removing that complication results in a
simpler, and therefore, better algorithm. To this end, we use an alternative softmax operator defined next.

3 Properties of Mellowmax Operator

Mellowmax is a softmax operator, which can be thought of as a smooth approximation of the max operator. Softmax
operators have been found useful across many disciplines of science, including optimization [2], electrical engineering
[9], game theory [10], and experimental psychology [11].

In reinforcement learning, softmax has been used in the context of action selection to trade off exploration (trying new
actions) and exploitation (trying good actions), owing to its cheap computational complexity relative to more principled
approaches like optimism under uncertainty [12][13] or Bayes optimal decision making [14]. We use softmax in the
context of value-function optimization, where we focus on the following softmax operator:

mmω(x) :=
log(1n

∑n
i=1 exp(ωxi))

ω
.

This recently introduced operator, called Mellowmax [1], can be incorporated into the Bellman equation as follows:

Q(s, a) =
∑

s′∈S
T (s, a, s′)[R(s, a, s′) + γmmωQ(s, ·)].

1

Paper # 226 237

Mellowmax has several interesting properties. In addition to being a non-expansion, the parameter ω offers an interpola-
tion between max (ω →∞) and mean (ω → 0) [1]. In the next subsection, we develop two novel mathematical properties
of this operator (convexity and monotonic non-decrease).

3.1 Convexity and Monotonic Non-decrease

Claim 1: For any ω ≥ 0, mmω(x) is convex.
Proof: Our proof generalizes the proof by Boyd and Vandanberghe [2]. Note that∇2mmω(x) =

ω
1>z ((1

>z)diag(z)− zz>)
where zi = eωxi . They showed that 1

1>z ((1
>z)diag(z)− zz>) ≥ 0. Thus, convexity holds as long as temperature ω ≥ 0.

Claim 2: For any ω ≥ 0 and any x, mmω(x) is non-decreasing with respect to ω.
Proof: Let ω2 > ω1 > 0. We want to show that mmω2(x) ≥ mmω1(x):

mmω2(x) =
log 1

n

∑
i e
ω2xi

ω2
=

log 1
n

∑
i e
ω1xi

ω2
ω1

ω2
=

log 1
n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2
.

Using Jensen’s Inequality: 1
n

∑
i e

(ω1xi)
(
ω2
ω1

)

≥ (1n
∑
i e

(ω1xi))(
ω2
ω1

). We finally get:

mmω2(x) =
log 1

n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2
≥ log(1n

∑
i e

(ω1xi))(
ω2
ω1

)

ω2
=

(ω2

ω1
) log(1n

∑
i e

(ω1xi))

ω2
=

log(1n
∑
i e

(ω1xi))

ω1
= mmω1(x),

allowing us to conclude that mmω(x) is a non-decreasing function of ω.

4 DeepMellow

Now we present the theoretical basis of DeepMellow algorithm (alleviation of overestimation). Then we compare the
differences between DeepMellow and DQN in the next subsection.

4.1 Alleviation of Overestimation

Previous work [6] showed that standard Q-learning, which uses the max operator, suffers from an overestimation
problem: note that due to Jensen’s inequality and the convexity of max, E[max Q̂] ≥ maxE[Q̂] . Q-learning can
overestimate the target due to noise in the estimator Q̂. In practice, this gap can be quite large. We hypothesize that
using a separate target network keeps the target Q̂ constant for a while, and, in effect, removes the randomness from the
target. In this case, both sides of the above inequality will be the same quantity max Q̂.
By the same argument, and as a corollary of the convexity argument of Mellowmax (Claim 1), Q-learning with
Mellowmax also suffers from this overestimation problem. However, the magnitude of the overestimation is reduced
by lowering the temperature parameter ω, as we argue next. For this analysis, we assume that Q̂ is an unbiased
estimate of Q as assumed by previous work. We further assume that Q̂ values are uncorrelated. We wish to find the
following gap: bias

(
mmω(Q̂)

)
= E[mmω(Q̂)] −mmω(Q). Let’s begin with a second-order Taylor expansion of Mellow-

max as a good approximation for convex functions: mmω(y)−mmω(x) ≈ ∇mmω(x)
>(y−x)+(y−x)>∇2mmω(x)(y−x).

Replacing x and y with Q and Q̂, we get: mmω(Q̂)−mmω(Q) = ∇mmω(Q)>(Q̂−Q) + (Q̂−Q)>∇2mmω(Q)(Q̂−Q).

Taking expectations on both sides, we get: E[mmω(Q̂)−mmω(Q)] = E[mmω(Q̂)]−mmω(Q) = bias
(
mmω(Q̂)

)
.

Thus:
bias

(
mmω(Q̂)

)
= E[∇mmω(Q)>(Q̂−Q)] + E[(Q̂−Q)>∇2mmω(Q)(Q̂−Q)]

= ∇mmω(Q)>E[Q̂−Q] + E[(Q̂−Q)>∇2mmω(Q)(Q̂−Q)]

= E[(Q̂−Q)>∇2mmω(Q) =
∑

i

∂2mmω(Q)

∂(Qi)2
E[(Q̂i −Qi)2] =

∑

i

∂2mmω(Q)

∂(Qi)2
Var[Q̂i].

We make two observations about the bias quantity. First, the amount of bias relates to the variance of the estimator. If
the estimator Q̂ can perfectly estimate Q with one sample (no variance), then there will also be no bias. Second, note that

∂2mmω(Q)

∂(Qi)2
=
ωeωQi

∑
i e
ωQi − weωQieωQi

∑
i e
ωQi

∑
i e
ωQi

= ωx− ωx2 = ωx(1− x) where w > 0 and 0 < x < 1.

Here, x denotes eωQi/
∑
i ωQi. We see that the bias is always positive and monotonically increases with ω.

2

Paper # 226 238

Figure 1: DeepMellow and DQN results with no target network. (Left: Control Domains, Right: Atari Games) DeepMel-
low outperforms DQN in all domains, in the absence of target network.

4.2 DeepMellow vs DQN

The target network is just a copy of the action-value function that is updated on a delay, and it can serve as a stable target
between updates. We note that the analysis in the previous subsection provides an explanation for how a target network
improves Q-learning—keeping the target network fixed reduces the variance of estimator Q̂. As we showed above, the
variance of the estimator is connected to the amount of bias, so using a target network results in a bias reduction. Our
analysis suggests that the use of Mellowmax reduces overestimation bias, and thus reduces the need for a target network.

DeepMellow replaces the max operator in DQN with the Mellowmax operator, as in the framework of generalized MDPs
[3]. DeepMellow further differs from DQN, as it does not use a separate target action-value function Q̂, and thus does
not need to copy the action-value function every C steps. Therefore, to update action-value function, DeepMellow
performs gradient descent on {rj + γmmω

a′
Q(φj+1, a

′; θ) − Q(φj , aj ; θ)}2 , while DQN performs gradient descent on

{rj + γmax
a′
Q̂(φj+1, a

′; θ−)−Q(φj , aj ; θ)}2.

5 Experiments and Results

We tested our DeepMellow algorithm in two control domains (Acrobot, Lunar Lander) and two Atari game domains
(Breakout, Seaquest). We first compared DeepMellow and DQN in the absence of a target network. The results are
shown in the Figure 1. In Acrobot, DeepMellow achieves more stable learning than DQN—without a target network,
the learning curve of DQN goes upward fast, but soon starts fluctuating and fails to improve towards the end. By
contrast, DeepMellow (especially with temperature parameter ω = 1) succeeds. Similar results are observed in Lunar
Lander. DeepMellow (ω ∈ {1, 2}) achieves more stable learning and higher average returns than DQN without a target
network. We could observe similar trends in Atari games, too. In Breakout, DeepMellow (ω ∈ {3000, 5000}) showed
better performances than DQN without target network. In Seaquest, the performance gaps widened: DQN without
target network couldn’t learn, but DeepMellow (ω = 20) was able to learn stably without target network.

Next, to see if DeepMellow has an advantage over DQN with a target network, we compared the performance of the two
approaches, focusing on learning speed. As shown in Figure 2, DeepMellow learns faster than DQN in Lunar Lander,
Breakout, and Seaquest domains. In Acrobot (not shown), there was no significant difference because both algorithms
learned so quickly. In Lunar Lander domain, DeepMellow reaches a score of 0 at episode 517 on average, while DQN
reaches the same point around episode 561 on average. Similar results hold in Breakout; DeepMellow (ω = 3000) reaches
a score of 12 at timestep 101× 104, while DQN reaches it at 117× 104. In Seaquest, DeepMellow reaches to the scores of
400 at timestep 159× 104; DQN reaches to the same scores at timestep 212× 104.)

3

Paper # 226 239

Figure 2: Performances of DeepMellow (with no target network) and DQN (with a target network). DeepMellow has an
advantage over DQN in terms of learning speed (how fast it starts learning at the beginning phase of training).

6 Conclusion

We proposed a new algorithm, DeepMellow, that can learn stably without the use of a target network. DeepMellow
replaces the max operator in DQN with the Mellowmax operator. We showed new mathematical properties of the
Mellowmax operator (convexity, monotonic non-decrease, and mitigation of overestimation) and explained how we
can reduce the instability of deep Q-learning using Mellowmax. This increased stability reduces the need for a target
network, speeding up learning. Our empirical results show that DeepMellow achieves more stability and higher average
scores than DQN without target network. We also showed that DeepMellow without a target network has a learning
speed advantage over DQN with a target network.

References

[1] Kavosh Asadi and Michael L.Littman. An alternative softmax operator for reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, pages 243 - 252, 2017.

[2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004
[3] Michael L.Littman and Csaba Szepesvari. A generalized reinforcement-learning model: Convergence and applica-

tions. In ICML, volume 96, pages 310 - 318, 1996.
[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.Bellemare, Alex Graves,

Martin A. Riedmiller, AndreasFidjeland, Georg Ostrovski, Stig Petersen, CharlesBeattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[5] Richard S. Sutton and Andrew G.Barto. Reinforcement learning - an introduction. Adaptive computation and ma-
chine learning. MIT Press, 1998.

[6] Hado van Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems23: 24th Annual Confer-
ence on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British
Columbia,Canada, pages 2613-2621, 2010.

[7] Harm Seijen and Rich Sutton. True online td (lambda). In International Conference on Machine Learning, pages 692-700,
2014.

[8] A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical Report CUED/F-
INFENG/TR 166, Cambridge University Engineering Department, 1994

[9] Aysel Safak. Statistical analysis of the powersum of multiple correlated log-normal components. IEEE Transactions on
Vehicular Technology, 42(1):5861, 1993

[10] Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory and rein-
forcement learning. arXiv preprint arXiv:1704.00805, 2017.

[11] Dale O Stahl II and Paul W Wilson. Experimental evidence on players models of other players. Journal of economic
behavior & organization, 25(3):309-327, 1994.

[12] Ronen I. Brafman and Moshe Tennenholtz. R-MAX - a general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research, 3:213-231, 2002.

[13] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages 881-888. ACM, 2006.

[14] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In AAAI/IAAI, pages761-768, 1998

4

Paper # 226 240

Variational State Encoding as
Intrinsic Motivation in Reinforcement Learning

Martin Klissarov
School of Computer Science

McGill University
martin.klissarov@mail.mcgill.ca

Riashat Islam
School of Computer Science

McGill University
riashat.islam@mail.mcgill.ca

Khimya Khetarpal
School of Computer Science

McGill University
khimya.khetarpal@mail.mcgill.ca

Doina Precup
School of Computer Science

McGill University
dprecup@cs.mcgill.ca

Abstract

Discovering efficient exploration strategies is a central challenge in reinforcement learning (RL), especially in the context
of sparse rewards environments. We postulate that to discover such strategies, an RL agent should be able to identify
surprising, and potentially useful, states where the agent encounters meaningful information that deviates from its prior
beliefs of the environment. Intuitively, this approach could be understood as leveraging a measure of an agent’s surprise
to guide exploration. To this end, we provide a straightforward mechanism by training a variational auto-encoder to
extract the latent structure of the task. Importantly, variational auto-encoders maintain a posterior distribution over
this latent structure. By measuring the difference between this distribution and the agent’s prior beliefs, we are able to
identify states which potentially hold meaningful information. Leveraging this as a measure of intrinsic motivation, we
empirically demonstrate that an agent can solve a series of challenging sparse reward, highly stochastic and partially
observable maze tasks.

Keywords: Intrinsic Motivation, Surprise, Exploration, State Encoding, Vari-
ational Auto-Encoders, Sparse Reward,

Paper # 237 241

1 Introduction

Reinforcement learning (RL) algorithms have achieved several recent accomplishments, especially by using non-linear
function approximators to solve high dimensional complex tasks. However, most RL algorithms rely on a well designed
reward functions to guide the behaviour of the agent. Hand-crafting such reward functions is complex and can some-
times lead to unexpected behaviour. In order to be deployed in real-world settings, RL agents will have to be able to
learn from sparse rewards environments. A key step towards scaling RL algorithms for unknown reward functions is
for the agent to naturally adapt its behaviour by learning a good exploration strategy.

Exploiting task structure is a key step towards learning efficient exploration strategies in RL. Recent approaches include
the discovery of bottleneck states [Goyal et al.2019] or learning a feature space [François-Lavet et al.2018]. Exploration
can also be formulated of as an agent’s internal drive towards learning more about the environment. This is often
defined as intrinsic motivation, or curiosity of the agent [Schmidhuber1991a, Oudeyer et al.2016]. Intrinsic motivation is
also an important concept in developmental psychology, where it is defined as the desire to pursue an activity for its
inherent satisfaction rather than for some external pressure or reward [Oudeyer and Kaplan2009]. Curiosity or intrinsic
motivation can therefore be thought of as a task agnostic exploration heuristic towards the goal of learning in an online
fashion based on the agent’s interactions with the environment.

In this work, we propose a formulation of intrinsic motivation based on the definition of Bayesian surprise
[Itti and Baldi2009]. The intuition behind this approach is that experiences which deviate from the agent’s prior be-
liefs about the world are surprising, and potentially useful for learning. In other words, the agent should be able to
identify the states which create important changes to its prior knowledge by measuring the difference between posterior
and prior distribution after visiting such states. We propose a framework to identify surprising or useful states in the
environment via latent representation learning, which we use as intrinsic motivation for solving sparse rewards and
partially observable maze tasks.

Our Contributions : We use a Variational Auto-Encoder (VAE) to project the state space into a probabilistic latent
representation that would represent the inherent structure of the environment. By using a VAE we naturally obtain a
measure of the agent’s surprise defined by how much the posterior distribution over the latent representation deviates
from its prior belief. This is measured in the form of a KL divergence KL(p(Z|S)||p(Z)) where p(Z) is the agent’s prior
distribution over the latent structure of the environment and p(Z|S) the posterior. We incentivize the agent to visit
surprising (and potentially useful) regions of the state space by providing this KL divergence as intrinsic motivation.

2 Preliminaries and Background

In this work we will consider the standard reinforcement learning setting which considers the environment as a Markov
Decision Process M, which is defined as a tuple =̇(S,A, γ, r, P). S is the state set, A the action set, γ ∈ [0, 1) the
discount factor, r : S × A → Dist(R) the reward function and P : S × A → Dist(S) the transition probabil-
ity distribution. A policy π : S → Dist(A) specifies a way of behaving, and its value function is the expected
return obtained by following π: Vπ(s)=̇Eπ [

∑
t=0 γ

tr(St, At)|S0 = s]. Vπ satisfies the following Bellman equations:
Vπ(s) =

∑
a π (a|s) (r(s, a) + γ

∑
s′ P (s′|s, a)Vπ(s′)).

Curiosity as a form of intrinsic motivation has been argued to be a fundamental component for efficient learn-
ing [Friston et al.2006]. One of the ways to implement curiosity is by maintaining a forward dynamics model
of the environment and using its prediction error [Pathak et al.2017, Schmidhuber1991b] or prediction uncertainty
[Houthooft et al.2016] as intrinsic reward. These approaches encourage the agent to visit regions of the state space where
the dynamics of the environment are less well understood, therefore guiding exploration. However, their performance
tends to suffer in stochastic environments as it becomes harder to predict the consequences of the agent’s actions. An-
other direction [Ostrovski et al.2017] formulated an exploration bonus as a measure of novelty in terms of unseen states.
Such approaches have shown great potential but contain some strict requirements on the density model of the states,
such as it should be learning-positive. Other ways to improve exploration include the optimal rewards framework
[Singh et al.2010] where the authors propose that the optimal intrinsic reward is the one that would maximize the extrin-
sic reward. However, defining such optimal reward function is an open question. Our approach on the other hand aligns
with the Bayesian perspective on surprise [Itti and Baldi2009] which has been shown to be applicable across different
spatio-temporal scales and levels of abstractions.

3 Leveraging State Encoding for Intrinsic Motivation

3.1 Intrinsic motivation

In this work, we assume that the experiences S of an agent are generated by a random latent process defined through
the variable Z. This latent process can encode some structure or pattern present in the observed data. The goal of

1

Paper # 237 242

the agent would be to extract and learn this structure in order to come to a better understanding of the world it is
interacting with. However, to faithfully represent the latent factors of variation, an agent has to successfully explore the
environment. Therefore, the objective of extracting structure from the environment is deeply interlaced with the objective
of exploration. One way to attend to this challenge is by adding an intrinsic reward that would depend on the quality of
the model of the environment. On one hand, this intrinsic motivation would encourage the agent to gather unseen data
which would improve the model, while on the other hand guiding the agent to fully explore its environment.

We propose a measure of intrinsic motivation formulated as the distance between the posterior distribution over the
latent variable p(Z|S) after seeing new data S and the prior p(Z). A natural way to measure this distance is through the
KL divergence. Therefore, we can define the intrinsic reward at a state S as

rintrinsic(S) = KL
(
(p(Z|S)||p(Z)

)

Our measure of intrinsic reward is closely related to the definition of Bayesian surprise proposed by [Itti and Baldi2009].
In this work, the authors argue that the only rigorous definition of surprise is by measuring how data affects the beliefs of
an observer about the world. This measure of surprise is done by computing the difference between the prior distribution
p(M) of the observer, whereM represents the possible models of its environment, and posterior distribution p(M |D) after
observing data D. Our definition of intrinsic motivation can then be seen as an approximation to Bayesian surprise, with
the slight conceptual difference that the variable Z represents a latent encoding of the structure of the environment. This
difference will have an impact in our work as it directly guides our implementation.

3.2 Approach

It is usually impractical to infer exactly the posterior distribution p(Z|S) as it involves intractable integrals. We will
therefore choose to approximate this posterior by a variational distribution qφ(Z|S). A natural candidate to represent
this distribution is through a Variational Auto-Encoder (VAE). VAEs take the inputs S and project them into latent space
Z, which is usually of smaller dimensionality. This latent space is meant to capture factors of variation (patterns) within
the data. Importantly, a VAE minimizes the following loss:

L(θ, φ) = Eqφ(Z|S)
[
log pθ(S|Z)

]
−KL

(
qφ(Z|S)||p(Z)

)

where the first term is the reconstruction loss while the second term encourages the approximate posterior qφ(Z|S) to
stay close to the prior p(Z). In practice, the prior is chosen as a unit Gaussian to simplify the implementation. This also
our choice for the prior.

Algorithm 1: Training loop with intrinsic motivation for A2C.
for Episode=0,1,2,.... do

Initialize dataset D and insert s0 in D.
for t=0,1,2...T do

Take action at and observe next state st+1 and extrinsic reward rextrinsic(st+1)
Compute intrinsic reward: rintrinsic(st+1) = KL(qφ(z|st+1)||p(z))
Store tuple (st+1, at, rintrinsic(st+1), rextrinsic(st+1)) in D
if mod(t,N) then

Train the actor and critic on return Gt =
∑
t rextrinsic(st) + βKL(qφ(z|st)||p(z))

Train the VAE on the collected states s in D.
Initialize dataset D and insert st in D.

end
end

The overall loss function is a lower-bound to the likelihood of the data. This lower-bound is appealing as it explicitly
evaluates the KL divergence between posterior and prior distributions. It is therefore straightforward to leverage VAEs
for intrinsic motivation. To do so, we need to separately train a VAE on the stream of data an RL agent experiences. We
can then define the useful states, or states which contain a high degree of surprise, in places where the KL is high between
the posterior and the prior. This KL between the posterior and prior, whenever high, would encourage the agent to visit
that region of the state space when it is provided as intrinsic motivation. By doing so, the agent would efficiently explore
its environment and improve the quality of the VAE for encoding the hidden structure in the data.

We define the intrinsic motivation reward as rintrinsic(st) = KL(qφ(z|st)||p(z)) such that at every step, the agent gets a
total reward of rtotal(st) = rextrinsic(st) + βrintrinsic(st). We can therefore define policy gradient objectives based on the
cumulative discounted total return, which includes both the extrinsic and intrinsic task rewards. In our implementation,
we use will be using actor-critic to solve the task at hand. However, our definition of intrinsic motivation could be readily
used with any other policy gradient algorithm, as well as value-based algorithms. We provide a description of the overall
process in Algorithm 1.

2

Paper # 237 243

4 Experimental Results

We will perform experiments on multi-room maze tasks, which are partially observable and sparse reward tasks, as part
of the MiniGrid environment [Chevalier-Boisvert and Willems2018]. In these environments, the agent has to navigate a
number of rooms, by opening doors or by using a key, in order to get to the goal situated at the other end of the maze.
Due to the sparsity in rewards, these maze tasks are often hard to solve, hence requiring efficient exploration strategies.
The goal of our experiments is to show that our definition of intrinsic motivation can achieve efficient exploration. To
do so, we compare our implementation (VAE) to two baselines: a standard A2C agent and an A2C agent using the
prediction error of a model of the transition dynamics as intrinsic motivation (ICM) [Pathak et al.2017]. In Figure 1
we show empirical results on three domains: Multi-Room-N3S4, Multi-Room-N4S4 (where N represents the number of
rooms and S the size of the rooms) and Door-Key-8x8. We see that our approach, VAE, and the approach based on the
prediction error, ICM, both outperform significantly the A2C baseline. In the Multi-Room-N4S4 environment, we notice
that our approach outperforms ICM. Upon investigating the behaviour of the agent, we noticed that the KL divergence
was highest at key states such as hallways, in the sight of the door and near the goal. Therefore, we believe that one of
the reasons why our agent seems to perform better is due to a possible correlation between surprising states and useful
states in these particular environments.

Figure 1: Task Rewards on partially observable and sparse reward tasks from the MiniGrid environment. We see that our
approach, VAE, significantly outperforms both the approach based on the prediction error i.e. ICM, and the A2C baseline.

It is widely-known that intrinsic motivation based on the prediction error of a transition model is sensitive to the inherent
stochasticity of the environment [Burda et al.2018]. As such, we performed a series of experiments on the same task
but with different degrees of randomness and we show our results in Figure 2. We notice that as the stochasticity in
the environment is increased (from left to right), the prediction error of ICM becomes an unreliable source of intrinsic
rewards which in turn degrades the performance of the agent on the task. This highlights an important difference with
our approach: the agent is not trying to predict the consequences of its actions, as sometimes they can be very complex,
but instead tries to encode the structure present in the stream of observations. This provides a efficient intrinsic signal
that can guide the agent even when the environment becomes less predictable.

(a) (b) (c) (d)

Figure 2: Task Rewards for different degrees of environmental stochasticity: As the stochasticity in the environment
is increased from (a) to (d), the prediction error of ICM becomes an unreliable source of intrinsic rewards which in turn
degrades the performance of the agent on the task. On the contrary, our approach VAE shows consistency and is robust
to stochasticity in the environment.

5 Discussion and Future Work

In this work, we presented an interestingly simple approach towards intrinsic motivation inspired by the definition of
Bayesian surprise. We emphasize that our approach is readily extendable towards existing RL frameworks as it requires
little overhead. In contrast to several existing works which use prediction error of a transition dynamics model as intrinsic
motivation, our approach does not suffer much from an increase in the environment’s stochasticity.

3

Paper # 237 244

A possible improvement to the current framework would be to use a model of the environment that better reflect its
latent structure. As it has been noted in [Ha and Schmidhuber2018], variational auto-encoders tend to encode details
about the observations that are not always meaningful. To overcome this issue, we could use multiple losses to refine the
latent representation [François-Lavet et al.2018].

The key to our approach is to provide intrinsic motivation that is only dependant on the latent structure of the environ-
ment. This means that, irrespective of a dense or sparse reward environments, we can provide an exploration bonus
defined by the agent’s measure of Bayesian surprise, without requiring the agent to know the task-dependent goal in-
formation. This is an interesting step towards transfer learning, where even if the task reward changes or the transition
dynamics change, the agent can use the learnt state encoding representation as intrinsic motivation in new tasks. In
future work, we aim to evaluate the usefulness of our proposed method on transfer learning tasks where we would
provide an exploration bonus in new tasks with the same learnt variational encoder.

References

[Burda et al.2018] Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018). Large-scale study
of curiosity-driven learning. arXiv preprint arXiv:1808.04355.

[Chevalier-Boisvert and Willems2018] Chevalier-Boisvert, M. and Willems, L. (2018). Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid.

[François-Lavet et al.2018] François-Lavet, V., Bengio, Y., Precup, D., and Pineau, J. (2018). Combined reinforcement
learning via abstract representations. CoRR, abs/1809.04506.

[Friston et al.2006] Friston, K., Kilner, J., and Harrison, L. (2006). A free energy principle for the brain. Journal of
Physiology-Paris, 100(1-3):70–87.

[Goyal et al.2019] Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Botvinick, M., Larochelle, H., Levine, S., and Bengio, Y.
(2019). Infobot: Transfer and exploration via the information bottleneck. CoRR, abs/1901.10902.

[Ha and Schmidhuber2018] Ha, D. and Schmidhuber, J. (2018). World models. CoRR, abs/1803.10122.
[Houthooft et al.2016] Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016). Vime: Varia-

tional information maximizing exploration. In Advances in Neural Information Processing Systems, pages 1109–1117.
[Itti and Baldi2009] Itti, L. and Baldi, P. (2009). Bayesian surprise attracts human attention. Vision research, 49(10):1295–

1306.
[Ostrovski et al.2017] Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-based exploration

with neural density models. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2721–2730. JMLR. org.

[Oudeyer et al.2016] Oudeyer, P.-Y., Gottlieb, J., and Lopes, M. (2016). Intrinsic motivation, curiosity, and learning:
Theory and applications in educational technologies. In Progress in brain research, volume 229, pages 257–284. Elsevier.

[Oudeyer and Kaplan2009] Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6.

[Pathak et al.2017] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
16–17.

[Schmidhuber1991a] Schmidhuber, J. (1991a). Curious model-building control systems. In [Proceedings] 1991 IEEE Inter-
national Joint Conference on Neural Networks, pages 1458–1463. IEEE.

[Schmidhuber1991b] Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in model-building
neural controllers. In Proc. of the international conference on simulation of adaptive behavior: From animals to animats, pages
222–227.

[Singh et al.2010] Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. (2010). Intrinsically motivated reinforcement learning:
An evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2):70–82.

4

Paper # 237 245

Graph-DQN: Fast generalization to novel objects using
prior relational knowledge

Varun V. Kumar
Intel AI Lab

varun.v.kumar@intel.com

Hanlin Tang
Intel AI Lab

hanlin.tang@intel.com

Arjun K. Bansal
Intel AI Lab

arjun.bansal@intel.com

Abstract

Humans have a remarkable ability to both generalize known actions to novel objects, and reason about novel objects
once their relationship to known objects is understood. For example, on being told a novel object (e.g. ’bees’) is to be
avoided, we readily apply our prior experience avoiding known objects without needing to experience a sting. Deep
Reinforcement Learning (RL) has achieved many remarkable successes in recent years including results with Atari [3]
games and Go [2] that have matched or exceeded human performance. While a human playing Atari games can, with
a few sentences of natural language instruction, quickly reach a decent level of performance, modern end-to-end deep
reinforcement learning methods still require millions of frames of experience. Past studies have hypothesized a role for
prior knowledge in addressing this gap between human performance and Deep RL [5]. However, scalable approaches
for combining prior or instructional knowledge with deep reinforcement learning have remained elusive.

We introduce a graph convolution based reinforcement learning architecture (Graph-DQN) for combining prior informa-
tion, structured as a knowledge graph, with the visual scene, and demonstrate that this approach is able to generalize to
novel objects whereas the baseline algorithms fail. Ablation experiments show that the agents apply learned self-object
relationships to novel objects at test time. In both a Warehouse game and the more complex Pacman environment, Graph-
DQN is also more sample efficient, reaching the same performance in 5-10x fewer episodes compared to the baseline.
Once the Graph-DQN is trained, we can manipulate agent behavior by modifying the knowledge graph in semantically
meaningful ways. These results suggest that Graph-DQNs provide a framework for agents to reason over structured
knowledge graphs while still leveraging gradient based learning approaches.

Paper # 47 246

1 Graph-DQN

In deep learning based RL agents such as Deep Q-Networks (DQN), the input state is a 2-D feature map representing the
game world as either RGB pixels, or as a symbolic environment. In this paper, we design Graph-DQNs for symbolic grid
worlds. Our model combines a provided prior knowledge graph with the symbolic environment, and leverages graph
convolutions to reason over entities in both the knowledge graph and the game state.

1.1 Knowledge Graph

The knowledge graph K = (V, E) is a directed graph provided as vertices for each symbol in the environment (for
subjects and objects), V = {vA, vb, vB , v+, . . .} initially encoded as one-hot vectors of length |V|, and edge features E =
{eAb, eAB , eA+, . . .}. The edge features (for relations) are represented as one-hot vectors. The connectivity of the graph,
as well as the edge features are designed to reflect the structure of the environment. During training, the knowledge
graph’s structure and features are fixed. Importantly, while we provide the one-hot encoded representation of the edge
relationships, the Graph-DQN must learn to ground the meaning of this representation in terms of rewarding actions
during training. I

1.2 Graph DQN model

The first component of our graph DQN model performs K → S ′ and infuses the knowledge graph into the game state as
follows:

K → GraphConv→ GraphConv→ K′ → Broadcast(S,K′)→ S ′ (1)

The features of the nodes in the knowledge graphK are enriched through the use of edge-conditioned graph convolution
[7]. The enriched graph K′ are then Broadcast into the state S by copying the node features into the locations in S of
the corresponding symbols, producing a game state S’.

The second component transfers information from S ′ → K with:

(S ′,K′)→ KGConv→ S ′′ → Pooling→ K → GraphConv→ GraphConv→ K′′′ (2)

Here we apply a joint convolution over both S’ and K’ computed in the first component. The result is then pooled into
the knowledge graph by averaging over all the features from the state corresponding to the symbol location. We then
apply two layers of graph convolution to produce the updated knowledge graph representation K′′′.

Finally, the network predicts the Q-value by

(S ′′′,K′′′)→ KGConv→ Dense(50)→ Dense(4) (3)

Through end to end training, the network learns to reason over both the knowledge graph and the state representations,
and uses Pooling, Broadcast, and KGConv to communicate between the two representation types. As shown in the
experiments below, the model learned to ground the knowledge graph representation in terms of actions, and used this
representation during the test phase when it encountered novel objects connected with known relationships to entities
in the knowledge graph.

2 Experiments

Previous environments measured generalization to more difficult levels [1], modified environment dynamics [6], or dif-
ferent solution paths [9]. These environments, however, do not introduce new objects at test time. To quantify the
generalization ability of Graph-DQN to unseen objects, we needed a symbolic game with the ability to increment the
difficulty in terms of the number of new objects and relationships. Therefore, we introduce a new Warehouse environ-
ment, where the agent pushed balls into the corresponding bucket, and new ball and bucket objects and their pairing
are provided at test time. We also benchmarked our model and the baseline DQN algorithm on a symbolic version of
Pacman1.

1http://ai.berkeley.edu/project_overview.html

1

Paper # 47 247

Table 1: Experiment variations for the Warehouse environment. The agent is rewarded for pushing the ball into the
correct bucket. For each type, we list the rewarded ball-bucket pairs in the training and test games. Note that the
test games only include ball types not seen in the training games. Sets denote rewarded combinations. For example,
{b, c} → B means b→ B and c→ B are rewarded.

Name Training Pairs Test Pairs
one-one b→ B c→ B
two-one {b, c} → B d→ B
five-two {b, c, d, e, f} → B {g, h} → B
buckets b → B, c → C ,

d → D , e → E ,
f → F

g → G , h → H
, i → I , j → J ,
k → K

buckets-
repeat

{b, c, d} → B ,
{e, f, g} → C, . . . ,
{n, o, p} → F

{q, r, s} → G,
{t, u, v} → H ,
. . . , {6, 7, 8} → K

2.1 Warehouse

The warehouse environment is implemented using the pycolab environment [8]. The environment consists of a 10 × 10
grid, where the agent is rewarded for pushing balls into their matching buckets. The set of rewarded ball-bucket pairs
varies, and in the test games the agent sees balls or buckets not seen during training. For the variations, see Table 1.
Lower case alphanumeric characters refer to balls, and upper case as buckets. We increasingly vary the difficulty of the
environment by the number of ball-bucket pairs, the complexity of the grouping, and the number of unseen objects. The
buckets-repeat is a challenging environment, with complex relationships in the test environment. The agent is identified
as the A symbol, and the walls with +.

2.2 Symbolic Pacman

We test the agents on the smallGrid, mediumGrid, mediumClassic, and capsuleClassic environments from the text-based
Pacman implementation. The environments differed in the size of the map as well as the numbers of ghosts, coins, and
capsules present. We used random ghosts (as opposed to ghosts seeking out the agent).

2.3 Knowledge graph construction

For both environments, we add all entities to the knowledge graph with the exception of blank spaces. We then add edges
between objects to reflect relationships present in the game structure. Each entity or edge type is assigned a unique one-
hot vector; note however that edges between two pairs of entities may have the same edge type if they are connected
with a similar relationship.

3 Results

We compared our Graph-DQN model with the baseline DQN in the Warehouse and Pacman environments. In addition,
we compared the performance of different knowledge graph architectures during training. We also demonstrated the
ability to manipulate agent behavior by changing the knowledge graph at test time.

3.1 Warehouse

In the Warehouse environment, the Graph-DQN model was more sample efficient during training than the baseline
Conv-DQN algorithm, as shown in Figure 1. For example, in the one-one environment, our model required approxi-
mately 8x fewer samples to reach the solution in the training environment (compare blue and green curves in the top
row). In addition, in more complex environments with an increased number of possible objects and ball-bucket pair-
ings, the baseline Conv-DQN required increasingly more samples to solve, whereas the Graph-DQN solved in the same
number of samples.

We tested zero-shot transfer learning by placing the trained agents in environments with objects unseen during training.
The Graph-DQN is able to leverage the knowledge graph to generalize, solving in > 80% of the test environments (see
Figure 1, bottom row). The baseline DQN failed completely to generalize to these environments. Additional control
experiments ruled out confounding factors.

2

Paper # 47 248

Figure 1: Warehouse results. For the environments described in Table 1 (columns), performance of the baseline DQN
(green), our proposed Graph-DQN (blue), and a variant of Graph-DQN with edges removed (orange) over the number
of training episodes. The top row represents the success rate (fraction of environments completed within 100 steps) in the
training environments, and bottom row measures success rate on the test environments. Bold lines are the mean success
rate over n = 10 runs, and shaded area denotes the standard error. A moving average of t = 100 episodes was applied.
The Graph-DQN model is more sample efficient during training, and also generalizes to test environments.

3.2 Pacman

We compare Graph-DQN to the baseline Conv-DQN on four symbolic Pacman environemnts (Figure 2). The Graph DQN
converges significantly faster to a performing control policy than the convolution-based DQN on all four environments.

Figure 2: Pacman results. Performance of the baseline Conv-DQN (green) and GraphDQN (blue) agent on several sym-
bolic Pacman environments (smallGrid, mediumGrid, mediumClassic, and capsuleClassic). Bold lines are the mean,
with the individual n = 3 repetitions indicated by the lighter colors. The symbols are: % - wall, P - player, G - ghost, H -
scared ghost, . - coin, o - capsule.

3.3 What do the agents learn?

To understand how the agents are interpreting the edge relations between objects, we observed the behavior of a trained
agent running in an environment while manipulating the knowledge graph (Figure 3). For simplicity consider the one-
one environment, with one bucket pair (b → B) during training and one pair (c → B) during testing. A successful
behavior is shown in Figure 3a. When we removed b → B, the agent still pushes the ball, but does not know where to
push the ball towards, suggesting that the agent has learned to ground the feature ebB = 2 as ’goal’ or ’fills’. We swapped
the edge features of A → B and A → b, and the agent attempts to push the bucket into the ball. The knowledge graph
could also be manipulated such the agent pushes a ball into another ball. These studies show that the agent learned the
’push’ and ’fills’ relation and is able to apply these actions to objects it has never pushed before.

3

Paper # 47 249

Table 2: Manipulating Pacman behavior. Behavior and score of the Graph-DQN agent on the mediumClassic map when
various edges are removed or features substituted. Reward is shown as mean± standard error over n = 100 repetitions.

Variation Reward Behavior
Base 1169± 39 Default behavior
Remove Ghost→Player edge −170± 27 No clear interpretation
Set Ghost→Player to Player→Coin feature −78± 38 Does not avoid ghosts
Remove Player→Scared Ghost edge 558± 25 Does not chase scared ghosts
Remove Ghost→Scared Ghost edge 1161± 29 No effect
Remove Player→Coin edge −376± 20 Pacman moves randomly
Remove Player→Capsule edge 323± 37 Does not eat the capsule
Remove Player→Wall edge −339± 21 Runs into the nearest wall
Remove Ghost→Wall edge 267± 33 No clear interpretation
Remove Scared Ghost→Wall edge 530± 28 Does not chase scared ghosts

Similarly, in Pacman, if we remove the Player→Scared Ghost edge, the agent no longer chases the scared ghosts
(Table 2). Without an edge to the capsule, the agent no longer eats the capsule. The agent can also be manipulated to not
avoid ghosts by changing the Ghost→Player feature to the Player→Coin edge relation.

Figure 3: Manipulating Trained Agents in Warehouse. We used agents trained on the base knowledge graph (a), and
manipulated their behavior at runtime by changing the input knowledge graph.

Conclusion: The field has long debated the importance of reasoning with symbols (that may incorporate prior knowl-
edge) and its compatibility with gradient based learning. The Graph-DQN architecture provides one framework to
bridge these seemingly disparate approaches [4].

References

[1] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization in reinforce-
ment learning. arXiv preprint arXiv:1812.02341, 2018.

[2] David Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science, arXiv:1712.01815:1140–1144, 2018.

[3] Volodymyr Minh et al. Human-level control through deep reinforcement learning. Nature, arXiv:1312.5602(7540).
[4] Marta Garnelo and Murray Shanahan. Reconciling deep learning with symbolic artificial intelligence: representing

objects and relations. Current Opinion in Behavioral Sciences, 29:17–23, Oct 2019.
[5] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building machines that learn

and think like people. Behavioral and Brain Sciences, 40, Nov 2016.
[6] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krahenbuhl, Vladlen Koltun, and Dawn Song. Assessing general-

ization in deep reinforcement learning. arXiv:1810.12282, 2018.
[7] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks on

graphs. CoRR, abs/1704.02901, 2017.
[8] Thomas Stepleton. The pycolab game engine, 2017.
[9] Vinicius Zambaldi. Deep reinforcement learning with relational inductive biases. In International Conference on Learn-

ing Representations, 2019.

4

Paper # 47 250

Model-free and model-based learning processes in the updating of
explicit and implicit evaluations

 Benedek Kurdi Samuel J. Gershman
 Department of Psychology Department of Psychology
 Harvard University Harvard University
 kurdi@g.harvard.edu gershman@fas.harvard.edu

 Coauthor Mahzarin R. Banaji Coauthor
 Affiliation Department of Psychology Affiliation
 Address Harvard University Address
 email mahzarin_banaji@harvard.edu email
 (if needed)

Abstract
Evaluating stimuli along a positive–negative dimension is a fundamental computation performed by the
human mind. In recent decades, research has documented both dissociations and associations between ex-
plicit (self-reported) and implicit (indirectly measured) forms of evaluations. Together, these two forms of
evaluation are central to organizing social cognition and drive behavior in intergroup relations, consumer
choice, psychopathology, and close relationships. However, it is unclear whether explicit–implicit dissocia-
tions arise from relatively more superficial differences in measurement techniques or from deeper differ-
ences in the processes by which explicit and implicit evaluations are acquired and represented. The current
project (total sample size: N = 2,354) relies on the computationally well-specified distinction between model-
based and model-free reinforcement learning to investigate the unique and shared aspects of explicit and
implicit evaluations. Study 1 used a revaluation procedure to reveal that whereas explicit evaluations of
novel targets are updated via both model-free and model-based processes, implicit evaluations depend on
the former but are impervious to the latter. Studies 2–3 demonstrated the robustness of this effect to (a) the
number of stimulus exposures in the revaluation phase and (b) the deterministic vs. probabilistic nature of
initial reinforcement. These findings provide a novel framework, going beyond traditional dual-process and
single-process accounts, to highlight the context-sensitivity and long-term recalcitrance of implicit evalua-
tions as well as variations in their relationship with their explicit counterparts. These results also suggest
novel avenues for designing theoretically guided interventions to produce change in implicit evaluations.
Keywords: human cognition, Implicit Association Test, implicit evaluations, model-free vs. model-based
learning, social cognition
Acknowledgements
This work was supported by the Dean’s Competitive Fund for Promising Scholarship of the Harvard Facul-
ty of Arts and Sciences and an Undergraduate Research Scholar award from the Institute of Quantitative
Social Science at Harvard University (both to Mahzarin R. Banaji).

Paper # 6 251

1 Background

Evaluations of entities along a positive–negative continuum (e.g., “I prefer Federer to Nadal”), also referred
to as attitudes, are central to structuring affect, behavior, and cognition in humans. After decades of work
relying on self-report measures to index such evaluations, social cognition research since the 1980s has been
guided by the recognition that evaluations can also be activated automatically upon encountering a stimu-
lus (1). These automatically activated evaluative representations (implicit attitudes) are measured using re-
sponse interference tasks (e.g., 2). Specifically, on the Implicit Association Test (IAT) used in the present
studies, implicit evaluations of two targets (e.g., Federer vs. Nadal) are inferred from the speed and accura-
cy of sorting stimuli representing each category together with positive words (e.g., “love” and “sunshine”)
vs. negative words (e.g., “hate” and “vomit”). By contrast, explicit attitudes are measured by self-report.
Dominant dual-process theories posit that, beyond differences in measurement, explicit and implicit evalua-
tions also differ from each other in more profound ways. Crucially, explicit and implicit evaluations are hy-
pothesized to originate from fundamentally different learning processes. Specifically, the learning processes
giving rise to explicit evaluations are assumed to be flexible and rule-governed and to rely on propositional
information, whereas the learning processes giving rise to implicit evaluations are assumed to be slow and
gradual and to rely on associative regularities encountered in the environment (3).
Although this dual-process perspective on evaluative learning has inspired much work on the acquisition
and change of explicit and implicit evaluations, it suffers from some notable shortcomings. First, in opposi-
tion to the theory, it has been repeatedly demonstrated that implicit evaluations can be flexibly updated via
purely verbal instructions (4). Such findings have prompted some to abandon a dual-process perspective on
evaluative learning and to replace it with a model of evaluative learning that relies on a single propositional
process (4). Second, dual-process theories of evaluation are difficult to falsify and the same applies to single-
process alternatives. For instance, whether learning is quick or slow is a matter of judgment and, as such,
researchers with different theoretical commitments may make widely divergent inferences from the same
data. Third, implicit evaluations exhibit a host of characteristics that are not accounted for by dual-process
or single-process theories. For instance, implicit evaluations have been shown to be context-specific and sit-
uationally malleable (5). Fourth, under dual-process theories, explicit and implicit evaluations emerge from
different learning processes and, as such, convergence between the two is unexpected. By contrast, under
single-process theories, explicit and implicit evaluations emerge from the same learning process and, as
such, they should always converge. In fact, the majority of empirical data fall between these two extremes:
Explicit and implicit evaluations are typically correlated with each other but are rarely redundant (6).

2 The present project

Given these shortcomings of existing dual-process and single-process theories, the present project investi-
gated, for the first time, whether (a) implicit evaluations, as measured using the Implicit Association Test
(IAT) (2) are responsive to reinforcement learning, and (b) implicit and explicit evaluations are differentially
responsive to model-free versus model-based processes (7). As such, our aim is to provide a new and com-
putationally precise general framework in which the acquisition and change of implicit and explicit evalua-
tions can be understood.
Although model-free and model-based algorithms solve the same reinforcement learning problem, they dif-
fer from each other both in the way they learn and the kind of information that they are able to represent (7).
Model-free algorithms are experience-based and computationally cheap, and create a highly compressed
representation of the past history of rewards. By contrast, model-based algorithms rely on a causal model of
the environment over which mental simulations can be performed. As such, they are computationally ex-
pensive and considerably more flexible than model-free algorithms. Human learners have been shown to
rely on both model-free and model-based strategies (8). Under some conditions, model-free and model-
based learning can converge on the same behavioral output. However, the results of model-free and model-
based learning can diverge when the environment changes in such a way as to modify the motivational rel-
evance of a known stimulus. Specifically, a paradigm commonly referred to as reward revaluation has often
been used to discern whether humans rely on model-free or model-based learning (8). Here we used this
paradigm for the first time to probe the updating of implicit (i.e., indirectly revealed) evaluations.
The present studies (total sample size: N = 2,354) consisted of a learning phase and a test phase. In the learning
phase, participants interacted with two novel groups (Laapians vs. Niffians) and received rewards (positive

Paper # 6 252

points) or punishments (negative points) as a result of their choice behavior. In the test phase, they complet-
ed measures of explicit evaluation and implicit evaluation (2) of the Laapian and Niffian targets.
Crucially, for the learning phase of the experiment, participants were assigned to one of five between-
subjects conditions (see Figure 1). In the control (Study 1) and baseline learning conditions (Studies 1–3),
the learning phase consisted of a single part, whereas in the reward revaluation (Studies 1–3), transition
revaluation (Study 1), and relearning conditions (Study 1), the learning phase consisted of two parts.

In the first part of the learning phase, participants completed learning trials on which they made a choice
between a Laapian and a Niffian target. Depending on their choice, they were then exposed to a second-
stage stimulus (vertical or horizontal bar), followed by a positive or negative outcome (+5 or -5 points). Par-
ticipants were instructed to maximize wins. The relationship between first-stage and second-stage stimuli
was deterministic (e.g., Laapians were always followed by horizontal bars and Niffians by vertical bars). In
the control condition (Study 1), second-stage stimuli were randomly followed by wins or losses, thus
providing a measure of relative preference at baseline. In all four remaining conditions of Studies 1–2, the
transition between second-stage stimuli and rewards was deterministic, whereas in Study 3 it was probabil-
istic, with one second-stage stimulus followed by wins 75 percent of the time and the other second-stage
stimulus followed by losses 75 percent of the time.
In the reward revaluation, transition revaluation, and relearning conditions, the first part of the learning
phase was followed by a second part. In the reward revaluation conditions, the transition between second-
stage stimuli and rewards was reversed compared to the first part of the learning phase (without partici-
pants making choices between first-stage stimuli). In the transition revaluation condition, the transition
between first-stage and second-stage stimuli was reversed compared to the learning phase (without partici-
pants making any choices). The relearning condition was similar to the reward revaluation condition in
that the transition between second-stage stimuli and rewards was reversed; however, participants experi-
enced the full transition structure from first-stage stimuli to second-stage stimuli to rewards based on their
choices between Laapian and Niffian targets.
As such, the control condition (Study 1) indexes explicit and implicit evaluations without any meaningful
learning. The baseline learning condition (compared to the control condition; Study 1) probes whether ex-
plicit and implicit evaluations are updated in the face of valenced feedback involving novel stimuli. Crucial-
ly, the reward revaluation and transition revaluation conditions (compared to the baseline learning condi-
tion; Study 1) test whether explicit and implicit evaluations are (differentially) reflective of revaluation (i.e.,
model-based learning). Studies 2 and 3 investigate the same issue by asking whether reward revaluation
shifts explicit and implicit attitudes when (a) the revaluation phase involves twice as many trials as the base-

Figure 1. Overview of the learning procedure (Studies 1–3). The number of trials is
noted after the name of the condition. A hand symbol indicates a choice made by
the participant. The assignment of first-stage stimuli to second-stage stimuli as well
as the assignment of second-stage stimuli to positive and negative outcomes was
counterbalanced. Transitions between first-stage stimuli (Laapians vs. Niffians),
second-stage stimuli (horizontal vs. vertical bars), and outcomes (wins vs. losses)
were deterministic, with the exception of the control condition in Study 1 where
second-stage stimuli were randomly followed by wins or losses, and Study 3 where
initial learning in both conditions was probabilistic.

Paper # 6 253

line learning phase (Study 2) and (b) initial reinforcement is probabilistic rather than deterministic (Study 3).
Finally, to the extent that implicit evaluations do not show updating in the revaluation conditions, the re-
learning condition (compared to the baseline learning condition; Study 1) can be used to establish whether
implicit evaluations, once in place, do not respond to any kind of new information, or they are specifically
impervious to model-based, but not model-free, updating.

3 Results

3.1 Explicit evaluations

Results using explicit measures of evaluation replicated well-established results regarding the sensitivity of
such evaluations to both model-free and model-based learning (8). In Study 1, baseline learning shifted ex-
plicit evaluations compared to control, t(548.86) = 9.88, P < 0.0001, BF10 = 3.40 × 1018. Similarly, reward reval-
uation shifted explicit evaluations compared to the baseline learning condition, t(474.09) = 14.49, P < 0.0001,
BF10 = 5.89 × 1038. The same result was observed for transition revaluation, t(502.54) = 10.44, P < 0.0001, BF10 =
5.06 × 1020. Finally, the relearning condition was also found to shift explicit evaluations, t(793.91) = 24.55, P <
0.0001, BF10 = 1.62 × 1085. In Study 2, explicit evaluations shifted significantly as a result of revaluation in both
the revaluation 20 condition, t(124.17) = 8.31, P < 0.0001, BF10 = 2.04 × 1012, and in the revaluation 40 condi-
tion, t(115.47) = 7.42, P < 0.0001, BF10 = 1.44 × 1010, thus replicating the results of Study 1. In Study 3, explicit
evaluations were again found to shift significantly as a result of reward revaluation, although the evidence
in favor of change was weaker than in Studies 1 and 2, t(351.96) = 2.16, P = 0.031, BF10 = 1.10.

3.2 Implicit evaluations

Implicit evaluations, like explicit evaluations, were sensitive to reinforcement learning, as shown by a sig-
nificant difference between the control and baseline learning conditions, t(565.06) = 4.35, P < 0.0001, BF10 =
9.11 × 102. Unlike with explicit measures, the crucial comparison between the baseline learning and reward
revaluation conditions provided evidence in favor of the null hypothesis, t(569.05) = 1.06, P = 0.287, BF01 =
6.22, suggesting that implicit evaluations are impervious to model-based updating. Moreover, we found on-
ly weak evidence that the transition revaluation condition may have differed from the baseline learning
condition, t(591.29) = 2.47, P = 0.013, BF10 = 1.85. However, this small difference does not necessarily indicate
the use of model-based learning: Given that it had been paired with reward, the second-stage stimulus
could have served as a reinforcer (akin to second-order conditioning). Finally, given that no updating was
found in the reward revaluation condition, a comparison involving the baseline learning and relearning
conditions can be used to establish whether implicit evaluations are (a) generally impervious to updating or
(b) more specifically impervious to model-based, but not model-free, updating. The baseline learning and
relearning conditions were found to significantly differ from each other, t(649.58) = 6.04, P < 0.0001, BF10 =
2.40 × 106, suggesting that already established implicit evaluations can be effectively updated provided that
such updating can be performed via model-free mechanisms.
Replicating the results of Study 1, implicit evaluations were found to be impervious to reward revaluation
in both Study 2 and Study 3. Specifically, Study 2 provided evidence in favor of the null hypothesis when
the number of trials was the same across the first and second parts of the learning phase (baseline learning
vs. revaluation 20 conditions), t(154.74) = -0.87, P = 0.381, BF01 = 4.19. A similar result was obtained in the
revaluation 40 condition where the number of revaluation trials was double the number of the initial learn-
ing trials, t(152.71) = -0.51, P = 0.612, BF01 = 5.28. Implicit evaluations also remained insensitive to reward
revaluation in Study 3, demonstrating that their insensitivity to model-based learning does not depend on
the deterministic vs. probabilistic nature of initial reinforcement, t(366.99) = 0.32, P = 0.747, BF01 = 8.26.

4 Discussion

The novel contribution of the present project is twofold. First, we have shown that implicit (automatically
and indirectly revealed) evaluations of stimuli, like their explicit (self-reported) counterparts, are amenable
to updating as a result of reinforcement learning, i.e., experience with the positive and negative outcomes of
actions involving those stimuli. Second, we have demonstrated both a commonality and a difference in the
computations underpinning the updating of explicit vs. implicit evaluations via reinforcement learning: Just
like explicit evaluations, implicit evaluations were found to be responsive to model-free processes. Howev-
er, unlike their explicit counterparts, implicit evaluations were insensitive to model-based learning.

Paper # 6 254

This perspective readily explains the hitherto puzzling finding that whereas certain interventions can suc-
cessfully shift implicit evaluations, others seem to be completely ineffective. Specifically, out of 17 interven-
tions implemented in a recent large-scale collaboration (9), only eight shifted implicit evaluations of African
Americans toward neutrality, while nine produced no change. Five of the eight effective interventions re-
quired no model of the environment, whereas three required a model of the simplest possible form
[P(positive | African American) = P(negative | White American) = 1]. By contrast, all but one ineffective
interventions involved a complex causal model of the environment (e.g., a model of another persons’ mind,
a model of a positive encounter with an outgroup member, or a model of racial injustice). The one remain-
ing unsuccessful intervention required no model; however, it involved both rewards and punishments fol-
lowing both White American and African American targets and, as such, should not produce learning.
Although the present studies created a pattern of dissociation between explicit and implicit evaluations, it
should be noted that a reinforcement learning perspective, unlike a traditional dual-process view (3), does
not make an unqualified prediction of explicit–implicit dissociations, for multiple reasons. First, in many
situations, including the baseline learning condition of the present studies, model-free and model-based al-
gorithms converge on the same value representation. Second, as demonstrated by the present studies, ex-
plicit and implicit evaluations can both be updated by model-free processes. This shared learning process
should generally lead to some degree of association between explicit and implicit evaluations. Third, recent
research has shown that model-free and model-based learning need not be antagonistic: On the contrary, a
model of the environment can be used to modulate model-free value representations via simulated experi-
ence (10). Future work may test this idea in the context of implicit evaluations by imposing a delay between
the revaluation and test phases of the experiment.
Moreover, model-free learning is inherently state-dependent, which may account for the highly contextual-
ized nature of implicit evaluations (5) as well as their resistance to long-term change. By mapping out the
space of relevant states and providing model-free training across a large number of them, change in implicit
evaluations may become more robust, enduring, and generalizable.

5 References

1. Greenwald AG, Banaji MR (1995) Implicit social cognition: Attitudes, self-esteem, and stereotypes.
Psychol Rev 102(1):4–27.

2. Greenwald AG, McGhee DE, Schwartz JLK (1998) Measuring individual differences in implicit cogni-
tion: The Implicit Association Test. J Pers Soc Psychol 74(6):1464–1480.

3. Rydell RJ, McConnell AR (2006) Understanding implicit and explicit attitude change: A systems of
reasoning analysis. J Pers Soc Psychol 91(6):995–1008.

4. De Houwer J (2014) A propositional model of implicit evaluation. Soc Pers Psychol Comp 8(7):342–353.

5. Blair IV (2002) The malleability of automatic stereotypes and prejudice. Pers Soc Psychol Rev 6(3):242–
261.

6. Nosek BA (2005) Moderators of the relationship between implicit and explicit evaluation. J Exp Psy-
chol Gen 134(4):565–584.

7. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction (MIT Press, Cambridge, MA).

8. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral
striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711.

9. Lai CK, et al. (2014) Reducing implicit racial preferences: I. A comparative investigation of 17 inter-
ventions. J Exp Psychol Gen 143(4):1765–1785.

10. Gershman SJ, Zhou J, Kommers C (2017) Imaginative reinforcement learning: Computational princi-
ples and neural mechanisms. J Cognitive Neurosci 29(12):2103–2113.

Paper # 6 255

A Comparison of Non-human Primate and Deep Reinforcement
Learning Agent Performance in a Virtual Pursuit-Avoidance Task

Theodore L. Willke
Intel Labs

Intel Corporation
Hillsboro, OR USA

ted.willke@intel.com

Seng Bum M. Yoo
Department of Neuroscience

University of Minnesota
Minneapolis, MN USA

sbyoo.ur.bcs@gmail.com

Mihai Capotă
Intel Labs

Intel Corporation
Hillsboro, OR USA

mihai.capota@intel.com

Sebastian Musslick
Princeton Neuroscience Institute

Princeton University
Princeton, NJ USA

musslick@princeton.edu

Benjamin Y. Hayden
Department of Neuroscience

University of Minnesota
Minneapolis, MN USA

benhayden@gmail.com

Jonathan D. Cohen
Princeton Neuroscience Institute

Princeton University
Princeton, NJ USA

jdc@princeton.edu

Abstract

We compare the performance of non-human primates and deep reinforcement learning agents in a virtual pursuit-
avoidance task, as part of an effort to understand the role that cognitive control plays in the deeply evolved skill of
chase and escape behavior. Here we train two agents, a deep Q network and an actor-critic model, on a video game in
which the player must capture a prey while avoiding a predator. A previously trained rhesus macaque performed well
on this task, and in a manner that obeyed basic principles of Newtonian physics. We sought to compare the principles
learned by artificial agents with those followed by the animal, as determined by the ability of one to predict the other.
Our findings suggest that the agents learn primarily 1st order physics of motion, while the animal exhibited abilities con-
sistent with the 2nd order physics of motion. We identify scenarios in which the actions taken by the animal and agents
were consistent as well as ones in which they differed, including some surprising strategies exhibited by the agents.
Finally, we remark on how the differences between how the agents and the macaque learn the task may affect their peak
performance as well as their ability to generalize to other tasks.

Keywords: deep reinforcement learning, pursuit tasks, motion prediction

Paper # 289 256

1 Introduction and background

There is mounting interest in comparing the performance of artificial agents with natural agents in complex task domains.
While in some domains, artificial agents have been successful in outperforming humans (1–3), there are other domains
in which they still fail to do so (4). On the one hand, the systematic comparison of artificial and natural agents can help
identify weaknesses in state-of-the-art artificial intelligence (AI) and, on the other hand, it can help to better understand
the cognitive processes, and underlying neural mechanisms responsible for the behavior of natural agents, including
humans. However, comparisons between artificial and natural agents are often limited to crude behavioral measures,
such as overall task performance, and are constrained by a lack of experimental control over the task environment.

Here, we compare the performance of two deep reinforcement learning (RL) agents and a rhesus macaque in a pursuit
avoidance task that is complex enough to challenge to state-of-the art reinforcement learning models but simple enough
to train non-human primates to high levels of performance. In this paradigm, the agent (used henceforth to refer to both
the non-human primates and deep RL agents) is faced with continuous decisions about where to move based on the
position of a predator that the agent must avoid and the position of a prey that the agent must catch to be rewarded.
The prey and predator follow cost-driven movement policies that involve repulsion from and attraction to the agent,
respectively. These highly interactive dynamics, paired with sparse rewards and punishments contingent on avoiding
the predator and catching the prey, present a significant challenge to reinforcement learning models. Here we train a
deep Q-learning network, as well as a deep actor-critic model to perform this task, and compare the two artificial agents
against the non-human primates with respect to (a) overall performance on task, (b) learning dynamics, (c) behavioral
strategies as a function of prey and predator position, and (d) the complexity of the internal model of the task that is
reflected in the agent’s decision-making behavior. We discuss implications of this analysis for the development of future
artificial agents, as well as for understanding the latent cognitive variables underlying decision-making processes in
non-human primates.

2 Methods

2.1 Virtual pursuit-avoidance task design

We designed the virtual pursuit-avoidance task based on an existing visual experimental design (5). In this design, the
agent controls the position of an avatar (yellow circle in Fig. 1). The game determines the predator and prey’s next
positions at each step according to attraction and repulsion force functions, along with a cost contour map over the
pixel field (1920 by 1080 pixels). The field cost is higher along the perimeter to mitigate cornering tactics. The color of
the predator and prey objects encodes their maximum speed. The agent is always yellow. Unless otherwise stated, the
starting points of the objects and their colors are randomized trial-by-trial, with a minimum starting distance to the agent
of 400 pixels.

Figure 1: The visual environment. The agent (yellow circle), predator (red triangle), and prey
(green square) are shown.

The macaque interacted with the environment through a joystick providing proportional inputs in two dimensions (−1 ≤
x, y ≤ 1). The deep RL agents interacted through an environment API. The API provides an (observation, reward,
done) tuple each trial step and accepts an action vector. The observation consisted of the color values and x-y coordinates
of the agent, predator, and prey. Steps were assigned a small penalty, predators a large penalty, preys a large reward,
and timeouts (max steps reached) a medium penalty. The action vector was agent-dependent (see below). The original
environment was implemented in Matlab using Psychtoolbox (6) as an interactive simulation with joystick-driven input.
We implemented a new environment in Python using PsychoPy (7) for training the RL agents. The agent interface
conforms to the de facto standard defined by the OpenAI Gym project (8).

2.2 Macaque training and evaluation

A male adult Macaca mulatta (8 year old) was trained using a multi-stage curriculum. The goal was to learn the following
in sequence: 1) touching the joystick produces reward; 2) moving the joystick controls the position of a circle (agent’s

1

Paper # 289 257

avatar) on the screen; 3) overlap of the circle and a square (prey) on the screen provides a reward; 4) objects move; 5)
color indicates the amount of reward as well as maximum speed of the prey; 6) a triangle (predator) will pursue the circle
and overlap results in a penalty.

2.3 Deep reinforcement learning agents

The deep Q network implemented Q-learning, a form of off-policy temporal-difference learning that estimates an action-
value function through iterative updates. This function estimates the expected value of all future rewards for a given
state and action (Eqn. 1).

Q∗(s, a) = Es′∼E
[
r + γmax

a′
Q∗(s′, a′)

∣∣∣s, a
]

(1)

Given the size of the state space, this function was approximated using a fully-connected deep neural network (1).
The model performed online RL using two copies of the same network - the policy network and the target network.
In our ”double DQN” (9), the policy network updated the action-value function as it replayed prioritized experiences
from memory. Periodically its parameters were loaded into the target network, which took action in the environment.
Replay was prioritized by the magnitude of an experience’s TD error (10). Epsilon greedy exploration was used in the
bootstrapping process. A short sequence of observations were ”stacked” to provide the input state to the network. The
network output was a 1-hot state vector of 9 possible actions (cardinal and sub-cardinal directions and none). We used
our own Python implementation.

Soft Actor-Critic (SAC) (11) is an off-policy actor-critic agent that simultaneously maximizes expected return and policy
entropy:

π∗ = argmax
π

∑

t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], (2)

SAC automatically uses approximating dual gradient descent to tune the parameter α that determines the importance of
entropy. The critic part of SAC uses the minimum of two soft Q function approximators to counter positive bias when
computing gradients. It also uses a target soft Q function and a replay pool, like DQN. SAC outputs continuous [-1, 1]
actions, emulating joystick input. We used the Rlkit implementation of the agent (12).

2.4 Deep RL agent training and evaluation

The deep RL agents were trained on randomly-initialized episodes. The agents executed until one of the termination
conditions - catch, caught, or maximum steps - was encountered. The agents were trained using backpropagation until
catch performance stopped improving, somewhere between 6,000 and 10,000 episodes. DQN used epsilon greedy ex-
ploration, starting at 1.0 and ending at 0.25; epsilon was 0 for evaluation. SAC, which targets maximum entropy for its
policy, does not inject explicit exploration noise; instead, it uses the mean action.

DQN used a frame skipping technique, processing every 3rd frame, to lower the training time without eliminating useful
motion information. Memory replay capacity was 100,000 episodes, which were replayed at 128 episodes per step based
on rank-based importance sampling.

SAC processed every frame and its replay memory capacity was 1,000,000 episodes, not prioritized, with a batch size
of 1024. Notably, SAC achieved high performance on the task using default hyperparameters. In contrast, DQN was
extremely sensitive to many of the hyperparameters listed above.

The agents were evaluated on a different set of randomly initialized episodes (>10,000). The environmental parameters
used (screen size, object size, object speed, etc.) matched the parameters used with the macaque. The network model
parameters were frozen during this phase (i.e., no backpropagation).

3 Results and Discussion

Qualitative comparison of training and learning characteristics: The macaque was trained on the task for 70 days and
10,850 trials, after finishing the previous curriculum stages. The agents reached peak performance in a similar number
of trials. Training took 2-10 hours on single-CPU machines. The training curves are shown in Fig. 2.

Overall performance on the task: We compared overall performance after the macaque and the agents had achieved
peak performance on the task. The results are shown in Table 1. Both agents greatly outperformed the macaque on the
task. The superior performance of the RL agents is not attributed to a lack of attention or motivation by the macaque, a
fact supported by the macaque’s high performance on other types of trials (e.g., one prey, no predator) (5).

Evidence that the macaque and the RL agents model the physics of motion: We analyzed the step-by-step trajectories
for evidence that the agents had learned to instantaneously predict prey and predator movement by modeling 1st, 2nd,

2

Paper # 289 258

0 2000 4000 6000 8000 10000
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Ca
tc

h
ra

te

Figure 2: Training performance curves for the macaque (left), SAC agent (middle), and DQN
(right). The macaque performed an average of 155 trials per day (10,850 total). The catch rate
performance for the agents is averaged over a trailing sliding window of 100 episodes.

Catch Caught Timeout

Player Percentage Mean steps Percentage Mean steps Percentage Mean steps

MK 66.67 168 33.33 169 0.26 1200
DQN 98.5 154.8 1.29 88.5 0.21 1200
SAC 99.99 48.65 0.01 43.03 0 N/A

Table 1: Peak performance on the task for the macaque (MK), the DQN agent, and the SAC
agent. Termination rates and the average number of steps to termination are shown.

and/or 3rd order equations of motion. Previous work (5) had found evidence that macaques learn latent representations
of these motion mechanics. The generative model described in (5) and depicted in Fig. 3 was used. In summary, the
macaque’s behavior was best explained by 2nd order physics, qualitatively matching the findings of (5) even though the
current study adds a predator to the environment. In contrast, the behavior of both artificial agents was better explained
by the 1st order prediction model. One explanation for this simplified modeling is that the agents are unencumbered by
mechanical inertia, in contrast to the macaque, and execute more precisely-aimed actions (on average; see below).

Evidence that the macaque and the RL agents take similar/different actions depending on context: We analyzed the
actions taken by the macaque and agents under the same environmental conditions (i.e., the same avatar, predator, and
prey locations, and the same values). To do this, we presented the agents with an observation that the macaque had seen
and taken action on. We then measured the difference in angle of action input by the macaque and agent. We binned
each measurement based on the distance of the avatar to either the predator or the prey. The results are shown in Fig. 4.

For SAC, there is strong angular agreement when the avatar is within a couple hundred pixels of the prey (prey diameter
is 60). The DQN exhibits its best agreement under this circumstance as well, but the agreement is less pronounced and
coherent. This may be due to observed action oscillations due to the DQN’s limited one-hot action space (versus the
SAC’s continuous action space). A similar pattern of agreement is seen as a function of predator proximity, but the
pattern is more spread out because the typical agent-predator distance spans a greater range.

Trajectory analysis. We analyzed whether the agents were more effective than the macaque when initialized from steps
along trajectories in episodes that the macaque had played to termination. We conditioned the analysis on outcome:
50 episodes that terminated in prey capture and 50 that terminated in being caught by the predator. At every step,
we initialized the environment and had the agents play to assess relative performance in terms of outcome and steps
to termination. The results are shown in Fig. 5 (agent outcomes not shown). In general, the agents capture the prey in
significantly fewer steps, but with less advantage when initialized deeper into the trajectory (closer to the prey/predator).
The DQN in particular performs worse when initialized close to the prey, possibly due to action space oscillations and
an inability to immediately compensate for them, given the proximity. Furthermore, agents were caught much less
frequently than the macaque, even when initialized with only 10% of the trajectory remaining (i.e., in close proximity).
In these cases, the number of remaining steps is higher, primarily due to them escaping and eventually pursuing the
prey. Both agents survived much longer than the macaque, and often escaped to later capture the prey, when initialized
close to the predator.

3

Paper # 289 259

Figure 3: Fitting generative models of motion physics. The agent (yellow) moves based on
past prey movement information (position, velocity, acceleration). The pursuit vector is scaled
by a force parameter κ; the resulting position of the subject is then computed by summing the
pursuit vector and the joystick movement inertia. Once the target location is set, an action is
taken. Performance of each motion model was compared trial-by-trial and averaged across
trials. Lower values indicate better fits, with significance values indicated for within-agent
comparisons (stars indicate p < 0.001).

0 250 500 750 1000 1250 1500 1750 2000
Distance between monkey and prey (pixels)

150

100

50

0

50

100

150

An
gl

e
be

tw
ee

n
ag

en
t a

nd
 m

on
ke

y
m

ov
e

ve
ct

or
s (

de
gr

ee
s)

1000

2000

3000

4000

5000

6000

7000

8000

nu
m

be
r o

f s
te

ps

0 250 500 750 1000 1250 1500 1750 2000
Distance between monkey and prey (pixels)

150

100

50

0

50

100

150

An
gl

e
be

tw
ee

n
ag

en
t a

nd
 m

on
ke

y
m

ov
e

ve
ct

or
s (

de
gr

ee
s)

200

400

600

800

nu
m

be
r o

f s
te

ps

0 250 500 750 1000 1250 1500 1750
Distance between monkey and predator (pixels)

150

100

50

0

50

100

150

An
gl

e
be

tw
ee

n
ag

en
t a

nd
 m

on
ke

y
m

ov
e

ve
ct

or
s (

de
gr

ee
s)

1000

2000

3000

4000

5000

6000

nu
m

be
r o

f s
te

ps

0 200 400 600 800 1000 1200 1400
Distance between monkey and predator (pixels)

150

100

50

0

50

100

150

An
gl

e
be

tw
ee

n
ag

en
t a

nd
 m

on
ke

y
m

ov
e

ve
ct

or
s (

de
gr

ee
s)

100

200

300

400

500

600

nu
m

be
r o

f s
te

ps

Figure 4: Action angle agreement as a function of distance to prey and predator. The color
indicates the number of episode steps per bin. From the left: SAC for prey distance, DQN for
prey distance, SAC for predator distance, and DQN for predator distance.

Figure 5: Trajectory analysis. From the left: SAC initialized on macaque trials that ended in
prey capture; DQN for prey capture trials; SAC initialized on macaque trials that ended in
being caught by predator; DQN for caught by predator trials. The RL agents were initialized
progressively at steps within the trials and run to termination. Lower is better for trials that end
in prey capture by agent (i.e., nearly all trials, not shown). Red line indicates that the macaque
and agent would terminate in the same number of remaining steps.

4

Paper # 289 260

4 Conclusion and Future Work

We observed that the RL agents learned as fast and to a higher level of proficiency than macaques (5), in contrast to
reports of similar agents learning to play games much more slowly than humans. This may be due to the simplicity of
our particular environment, which limits complexity to the mechanics of motion and relatively simple interactions. Peak
agent performance was near perfect and they were much more efficient at achieving successful outcomes. In general, the
agents exhibited a tendency to take the same action as the macaque when put into identical circumstances. However,
over a series of steps the outcomes played out quite differently. The reason for this remains inconclusive. Motor control
inertia and less motor precision by the macaque may explain this.

A growing number of studies suggest that humans (13), non-human primates (5, 14, 15), as well as other mammals
(16, 17) develop predictive models of the environment to guide their decision making. In line with these results, we
observed that behavior of the non-human primate can be well explained by a predictive model based on 2nd order
Newtonian physics. In contrast, the behavior of trained artificial agents was best explained by a simpler model of 1st
order Newtonian physics. The latter confirms recent criticisms of AI, arguing that the learning of naturalistic agents is
guided by a domain-general knowledge of intuitive physics, whereas artificial agents often rely on the acquisition of
domain-specific knowledge to solve the particular task with which they are confronted (4), without necessarily learning
more general characteristics of the environment or strategies that may exploit those for other purposes. The lack of such
inductive biases can result in higher performance on one task at the expense of learning efficiency and generalization
performance (18).

The experimental setup in this work provides opportunities for a more systematic comparison of artificial and natural
agents, including the opportunity to measure neural correlates of performance. The latter can be used to test for latent
variables predicted by the computational models. The computational models, in turn, can be used to test the effects
of constraints on processing that may help explain performance of the natural agents. For example, one candidate
explanation for the lower performance of the non-human primate is a limitation in the ability to accurately perceive
and/or process information about the predator and prey at the same time, thus requiring cognitive control to determine
where to allocate attention (and even fixation) at a given time. Recent work suggests that such limitations take the form
of a cost that attaches to the allocation of cognitive control (19, 20). The paradigm and computational models described
here provide a platform for testing hypotheses about the nature of such costs, and the mechanisms used to evaluate them
and allocate control.

References

1. V. Mnih, et al., arXiv preprint arXiv:1312.5602 (2013).
2. D. Silver, et al., nature 529, 484 (2016).
3. M. Campbell, A. J. Hoane Jr, F.-h. Hsu, Artificial intelligence 134, 57 (2002).
4. B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, Behavioral and Brain Sciences 40 (2017).
5. S. B. M. Yoo, S. T. Piantadosi, B. Y. Hayden, bioRxiv p. 272260 (2018).
6. D. H. Brainard, Spatial Vision 10 (1997).
7. J. W. Peirce, Journal of Neuroscience Methods 162, 8 (2007).
8. G. Brockman, et al., Openai gym (2016).
9. H. van Hasselt, A. Guez, D. Silver, CoRR abs/1509.06461 (2015).

10. T. Schaul, J. Quan, I. Antonoglou, D. Silver, CoRR abs/1511.05952 (2015).
11. T. Haarnoja, et al., CoRR abs/1812.05905 (2018).
12. V. Pong, https://github.com/vitchyr/rlkit.
13. N. D. Daw, Y. Niv, P. Dayan, Nature neuroscience 8, 1704 (2005).
14. B. Lau, P. W. Glimcher, Journal of the experimental analysis of behavior 84, 555 (2005).
15. D. Lee, M. L. Conroy, B. P. McGreevy, D. J. Barraclough, Cognitive Brain Research 22, 45 (2004).
16. K. J. Miller, M. M. Botvinick, C. D. Brody, Nature neuroscience 20, 1269 (2017).
17. N. Huh, S. Jo, H. Kim, J. H. Sul, M. W. Jung, Learning & Memory 16, 315 (2009).
18. J. Baxter, Learning internal representations (Flinders University of S. Aust., 1995).
19. A. Shenhav, M. M. Botvinick, J. D. Cohen, Neuron 79, 217 (2013).
20. A. Shenhav, et al., Annual review of neuroscience 40, 99 (2017).

5

Paper # 289 261

Multi-batch Reinforcement Learning

Romain Laroche
Microsoft Research Montréal

romain.laroche@microsoft.com

Rémi Tachet des Combes
Microsoft Research Montréal

remi.tachet@microsoft.com

Abstract
We consider the problem of Reinforcement Learning (RL) in a multi-batch setting, also sometimes called growing-batch setting. It
consists in successive rounds: at each round, a batch of data is collected with a fixed policy, then the policy may be updated for
the next round. In comparison with the more classical online setting, one cannot afford to train and use a bad policy and therefore
exploration must be carefully controlled. This is even more dramatic when the batch size is indexed on the past policies performance.
In comparison with the mono-batch setting, also called offline setting, one should not be too conservative and keep some form of
exploration because it may compromise the asymptotic convergence to an optimal policy.

In this article, we investigate the desired properties of RL algorithms in the multi-batch setting. Under some minimal assumptions,
we show that the population of subjects either depletes or grows geometrically over time. This allows us to characterize conditions
under which a safe policy update is preferred, and those conditions may be assessed in-between batches. We conclude the paper by
advocating the benefits of using a portfolio of policies, to better control the desired amount of risk.

Keywords: Multi-Batch Reinforcement Learning, Algorithm Selection

Paper # 166 262

1 Introduction

The most common setting for Reinforcement Learning (RL) is online: the algorithm directly interacts with the true environment and
is allowed to be updated anytime. This setting is the less restrictive one from the algorithmic point of view, but real world problems
(RWP) have all sorts of additional constraints that make it – most of the time – inapplicable. First example, RWP generally have a
high complexity and a complete policy update would be too expensive to compute at every time step, hence the use of online RL
algorithms that only perform small updates on the policy or the value-function estimators through temporal difference or gradient
descent. The online RL algorithms comply with the complexity constraint but are less sample efficient. Second example, RWP are
also generally meant to be widely deployed, on different devices with limited bandwidth, memory and computational power, which
prevents frequent policy updates. As a consequence, while the online setting does not suffer from bad intermediate policies, since
those can be fixed promptly, we argue that bad intermediate policies would jeopardize most RWP services.

At the opposite, the single batch setting, in the words of [3], refers to a reinforcement learning setting, where the complete amount
of learning experience, usually a set of transitions sampled from the system, is fixed, without any access to the true environment. The
literature on single batch RL focuses on safe policy improvement of the baseline policy that was used to generate the batch [6]. RWP
never amount to a single policy update. Instead, we argue that most of them consist in a multi-batch setting, also sometimes referred
to as growing batch in the literature, where the policy is successively trained on the past batches of data. This setting is commonly
encountered in the following domains: dialogue systems, crop management or pharmaceutical treatment. The single batch setting
might therefore be regarded as a greedily myopic study of the multi-batch setting where the former objective is a mix of safety and
expected performance, neglecting the longer-term impact of the chosen policy on the quality of the next batches. As a consequence,
algorithm safety might be counterproductive as it punishes exploratory strategies, which is detrimental to the asymptotic performance.

system

subjects

algorithm

dynamics

interaction

dataset

policy update

experience

enrollment

Figure 1: Multi-batch setting.

Our contributions are the following:

• We make the first attempt to model the multi-batch setting process.
• Under a set of minimal assumptions, we prove that, asymptotically, either the pool

of subjects depletes, or grows geometrically.
• We conclude the paper with a set of recommendation for situational desired prop-

erties of the algorithms and argue that the situation may be assessed during the
process with mild assumptions.

2 Multi-Batch Reinforcement Learning Process

Process 1 formalizes the generic process involved in the multi-batch setting: at every batch,
the RL algorithm trains/updates a policy (Step 1). This policy is used to collect a dataset
(Step 3) through interactions with a set of subjects, whose enrollment depends on the past
subjects experience (Step 2). Figure 1 is an illustration of the multi-batch setting.

Step 2 is generally overlooked in the literature. However, we will show that it is crucial.
Indeed, the size of the datasetDβ , called crowd and denoted by κβ = |Dβ | in the following,
is dependent on the past subject experience. For instance, if the algorithm generates a bad policy, it is likely to lose its subjects and
later, it may only get a handful of additional experience in the next batch. Then, it may be slow to regain subjects’ trust.

The goal is to optimize the cumulative return after B ∈ R+ batches. More formally, we have:

J (α, κ0, {π0,D0} , B) =
B∑

β=1

κβ∑

k=1

ρ̇πβ ,τk = J (α, κ1, {π0,D0} ∪ {π1,D1} , B − 1) +

κ1∑

τ=1

ρ̇π1,τ , (1)

Process 1: Multi-batch setting process
Input: Initial policy π0 Input: Initial crowd κ0 Input: Unknown environment MDP: M = 〈X ,A, P,R, γ〉
Input: Initial dataset D0 Input: Multi-batch algorithm α Input: Horizon of the process (number of batches): B

for each batch β ∈ J1, BK do
Step 1: with α, train the new policy πβ on past datasets and their behavioural policies: πβ ∼ α

(
{πβ′ ,Dβ′}β′∈J0,β−1K

)
.

Step 2: enroll a crowd of κβ subjects, in function of the past subjects experience: κβ ∼ g
(
{Dβ′}β′∈J0,β−1K

)
.

Step 3: collect dataset Dβ of size κβ , by following policy πβ : Dβ =
{
τk ∼ 〈X ,A, P, πβ , R, γ〉

}
k∈J1,κβK

.

end for

1

Paper # 166 263

where k is the index of trajectory τk, β is a batch index, α is a multi-batch RL algorithm, πβ is the policy trained by algorithm α at
batch β on dataset

⋃β−1
β′=0 {πβ′ ,Dβ′}, ρ̇πβ ,τk is the random variable denoting the performance of trajectory τk, when following policy

πβ , κβ is the crowd at batch β, π0 is the initial policy, and D0 denotes the possibly empty initial batch of data.

In the following, the performance ρ̇πβ ,τ of a given trajectory τ will be defined as the classical infinite horizon RL discounted return:
ρ̇πβ ,τ =

∑∞
t=0 γ

trπβ ,τ,t, (we assume that all trajectories of batch B − 1 have terminated before starting batch B) but any other
trajectory-sighted objective function may be considered and, at the exception of Proposition 2 (for which similar bounds may still be
found under some other mild assumptions), all results hold. For instance, ρ̇πβ ,τ may be defined as the binary task completion.
Remark 1. We make the following remarks about Process 1:

(i) Step 1: some algorithms are randomized, hence the sampling sign ‘∼’.

(ii) Step 1: algorithms cannot be considered monotonous with respect to the samples they are trained on. Indeed, some data
may be misleading and lead to bad policies [4]. Some algorithms (such as vanilla model-based RL) may train policies that
are performing worse with larger datasets, even in expectation [5].

(iii) Step 2: the function g for the crowd update is stochastic, hence the sampling sign ‘∼’.

(iv) Step 2: the function g depends on individual factors: “did the subject have a good past experience with the system?” ; and
global factors: “does the system have a good image?”, “what is the pool size for the crowd?”.

(v) Step 2: the function g is dependent on the task. In some domains, it may be unacceptable for the system to fail: it is essentially
evaluated on its efficiency (e.g. autonomous cars). In others, it is acceptable for it to fail regularly (e.g. dialogue systems).

(vi) Step 2: the function g may not be monotonous: it has happened in the past that some systems got hyped because they were
failing in an entertaining way. We may cite three famous examples: Tay, Baidu and Youtube Rewind 2018.

(vii) Step 3: the dataset collection involves several sources of stochasticity: πβ , P , and R.

(viii) Steps 2 & 3: subjects behave differently from one another and overtime.

3 Analysis

In order to give some insights on the dynamics, and similarly to [2], we make a series of assumptions that should account for a large
variety of multi-batch RL settings:
Assumption 1. The multi-batch RL process is simplified as follows:

(i) The performance ρ̇πβ ,τ of trajectory τ generated at batch β is a random variable that belongs to [−1, 1].

(ii) The crowd κβ at any given batch β is assumed to be subject-centered, i.i.d., linearly bounded, and stationary over time.

Assumption 1(ii) states that each subject having followed a trajectory τ during batch β enrolls ġπβ ,τ ∈ N subjects for the next batch.
ġπβ ,τ is assumed to be a random variable that only depends on its last individual experience and that is bounded by some maximal
value ġmax. While ρ̇πβ ,τ and ġπβ ,τ are only depending on the generated trajectory, it is more convenient to consider them as being
directly sampled from a distribution only dependent on the policy πβ : ρ̇πβ ,τ ∼ ρ̇(πβ) and ġπβ ,τ ∼ ġ(πβ), but one has to keep in mind
that ρ̇πβ ,τ and ġπβ ,τ are thus correlated through τ .

Assumption 2. Additionally, we assume that the random function ġ(π) is Λ-Lipschitz with respect to π and `1,∞ :

Eτ [|ġπ1,τ − ġπ2,τ |] ≤ Λ‖π1 − π2‖1,∞, (2)

where `1,∞ is defined as follows: ‖π1 − π2‖1,∞ = supx∈X
∫
a∈A|π1(a|x)− π2(a|x)|da.

Assumption 2 is satisfied in most cases, and in particular when the trajectory length is bounded by tmax. We denote the empirical
mean performance during batch β with the random variable ρ̂β and the empirical batch growth with ĝβ :

ρ̂β =
1

κβ

κβ∑

τ=1

ρ̇πβ ,τ and ĝβ =
1

κβ

κβ∑

τ=1

ġπβ ,τ . (3)

Then, we may write:

κβ = κβ−1ĝβ−1 = κ0

β−1∏

β′=0

ĝβ′ , (4)

2

Paper # 166 264

As a consequence of the assumption on κβ’s dynamics, if ġπ,τ can take values greater than 1 for some policy π, then the crowd is
automatically assumed unbounded.

This section makes the analysis of the multi-batch process under Assumptions 1 and 2 in a tacit manner. Due to space constraints, all
the proofs are omitted in the extended abstract.
Proposition 1. The objective function J unfolds as follows:

J (α, κ0, {π0,D0} , B) = κ0

B∑

β=1

ρ̂β

β−1∏

β′=0

ĝβ′ . (5)

From now on, we focus the analysis on the asymptotic behaviour of J with respect to B.
Assumption 3. We assume that πβ uniformly converges in probability with respect to the `1,∞-norm to some policy π∞ as β tends
to infinity:

∀ε > 0,∃β0 ∈ N, such that ,∀β > β0, ‖πβ − π∞‖1,∞ < ε. (6)

Assumption 3 only states the convergence of πβ , it does not say anything on the quality of the policy π∞ in the limit. This assumption
generally holds for unbiased algorithms since the incoming data depletes either in quantity: the crowd equals 0 at some batch and
thereafter, no more data may be collected, or in informative content as a consequence of the strong law of large numbers, and of the
increasing nature of the data collection (as long as the trained policies do not oscillate between several equally (sub-)optimal solu-
tions). More specifically, in finite spaces X and A, this assumption is satisfied by most greedy-in-the-limit algorithms. In continuous
space, it has to be noted that most algorithms include a bias that makes them sensitive to the data distribution, and this distribution
is in turn dependent on the previously used policy. In case of crowd depletion, there is also the possibility for the algorithm to be
randomized and therefore to generate a different policy at every batch. But, since these policies are never used because of the crowd
depletion, this special case could be treated separately in a trivial way, and would not be a real issue for the generality of the theory.
Proposition 2. We consider t ∈ N and two policies π1 and π2. Then, with probability larger than 1− t‖π1 − π2‖1,∞ :

|ρ̇π1,τ − ρ̇π2,τ | ≤ 2γt.1 (7)

Corollary 1. If ‖π1 − π2‖1,∞ < ε, then, with probability larger than 1 + ε
⌊
logγ−1 ε

⌋
: |ρ̇π1,τ − ρ̇π2,τ | ≤ 2ε.

Proposition 2 and its corollary relate the distance between the trajectories generated by two policies with their distance.
Proposition 3. If ‖π1 − π2‖1,∞ < ε, then, ġπ1,τ and ġπ2,τ are close in mean and variance:

|Eġπ1,τ − Eġπ2,τ | ≤ Λε and |Vġπ1,τ − Vġπ2,τ | ≤ Λεġmax, (8)

and are equal with probability higher than 1− Λε.

Proposition 3 relates the distance between the enrollments implied by two policies with their distance.
Corollary 2. Under Assumption 3, ρ̇πβ ,τ and ġπβ ,τ respectively converge in probability to ρ̇π∞,τ ∼ ρ̇(π∞) and ġπ∞,τ ∼ ġ(π∞) :

∀ε > 0, lim
β→∞

P
(
|ρ̇πβ ,τ − ρ̇π∞,τ | > ε

)
= 0, (9)

∀ε > 0, lim
β→∞

P
(
|ġπβ ,τ − ġπ∞,τ | > ε

)
= 0. (10)

Corollary 2 proves, under Assumption 3, the convergence in probability of ρ̇πβ ,τ and ġπβ ,τ , when β tends to ∞. Now, we define
two modes of asymptotic behaviour of the multi-batch process. Then, we show as our main contribution that, except for identified
degenerate cases, the multi-batch process follows one of the two following modes:
Definition 1. The crowd depletion mode (CDM) has the following properties:

(i) The crowd converges to 0 almost surely: limβ→∞ κβ = 0.

(ii) The dataset remains finite: |⋃β∈NDβ | <∞.

(iii) The objective function J remains finite: limB→∞ J <∞.
1The use of the same subscript τ for both random variables ρ̇π1,τ and ρ̇π2,τ indicates that as long as both policies behave the same, the other

random events follow the same realization. In other words, they behave as generated with the same random seed.

3

Paper # 166 265

Definition 2. The geometric crowd mode (GCM) has the following properties:

(i) The crowd asymptotically grows geometrically with ratio Eġπ∞,τ as a function of β.

(ii) The dataset size grows to infinity: |⋃β∈NDβ | =∞.

(iii) The objective function J asymptotically grows geometrically with ratio Eġπ∞,τ as a function of B. As a consequence, J
diverges either to +∞ or−∞, according to the sign of Eρ̇π∞,τ . If Eρ̇π∞,τ = 0, then nothing can be said about limB→∞ J .

Theorem 1. In the degenerate case ġπ∞,τ = 1, nothing may be said, except that it does not follow GCM.

If Eġπ∞,τ ≤ 1, then the process almost surely enters CDM.

If Eġπ∞,τ > 1, then with some probability p∞ > 0, the process asymptotically enters GCM. With the complementary probability
1−p∞, it enters CDM. p∞ may be lower bounded from batch β0 on, if β0 is such that for all β ≥ β0, expectation Eġπβ ,τ ≥ µ0 > 1,
and variance Vġπβ ,τ ≤ σ2

0 :

p∞ ≥ 1− min
µ∈(1,µ0)

σ2
0µ

κβ0
(µ0 − µ)2(µ− 1)

;
e
−

2κβ0
(µ0−µ)2

ġ2max

1− e−
2κβ0

(µ−1)(µ0−µ)2

ġ2max

. (11)

In particular µ = 1
4

(
1 +
√

8µ0 + 1
)

minimizes the first term (obtained with Chebyshev’s bound), the second term (obtained with
Hoeffding’s bounds) may be shown to have a unique local minimum that does not admit a closed form expression. A numerical
simulation (not reported here) shows that Equation 11 is not a tight bound and, more surprisingly, suggests that p∞ is close to being
constant when µ0 − 1 is small, and when κβ0

(µ0 − 1) and σ2
0 are constant. The derivation of tighter bounds is left for future work.

4 Concluding recommendations

The goal is to maximize the objective function J , but given the stochasticity of the process, one has to consider the expected indirect
utility. The concept of indirect utility classically refers to a measurement of the satisfaction obtained by the decision maker as a
function of its objective function. It is generally assumed to be monotonically increasing with the objective function, concave in R+,
reflecting aversion to risk and diminishing marginal utility, and asymmetric with respect to the origin. The logarithm utility function,
first proposed by Bernoulli, is still commonly used: Υlog(J) = sign(J) log(1 + |J |).

Under the log-utility, the following recommendations may be made. The goals for a multi-batch algorithm are the following, by
decreasing order of importance: to make Eρ̇π∞,τ positive, to maximize p∞E [logEτ ġπ∞,τ |GCM], and only marginally, maximize
the asymptotic expected performance Eρ̇π∞,τ . In other words, the most important for a service is to make it profitable for its owner
(ρ̇π∞,τ > 0), then to make it viable (p∞E [log ġπ∞,τ |κβ →∞]), and only then, to make it effective (Eρ̇π∞,τ). In most cases, maxi-
mizing p∞ and E [log ġπ∞,τ] is achieved through maximizing Eρ̇π∞,τ . But in some cases, a “too good” service has for consequence
to lose potential future customers. This is, for instance, why planned obsolescence exists. Consequently, the multi-batch setting is
multi-objective and its most salient objective is not the optimization of the performance.

The random variable ġπ,τ is generally strongly dependent on the trajectory performance random variable. Assuming past samples of
ġπ,τ are observable, after several batches, one might have a good estimate of it as a random function of ρ̇π,τ . Based on such a model,
one is now able to assess whether risk should be taken in order to increase Eġπβ ,τ or to be safe in order to optimize p∞. A/B testing
over two or more policies, including a safe past policy, even without online optimization, is beneficial in order to balance the desired
amount of risk and explore new policies at the same time. With online optimization, an algorithm selection for RL has been shown to
outperform the most efficient one in the portfolio with a minimal amount of embedded computation power [4] and bandwidth [1].

References
[1] Raphaël Féraud, Réda Alami, and Romain Laroche. Decentralized exploration in multi-armed bandits. In Proceedings of the

36th International Conference on Machine Learning (ICML), 2019.
[2] Tatsunori B Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without demographics in repeated

loss minimization. arXiv preprint arXiv:1806.08010, 2018.
[3] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning. Springer, 2012.
[4] Romain Laroche and Raphaël Féraud. Reinforcement learning algorithm selection. In Proceedings of the 6th International

Conference on Learning Representations (ICLR), 2018.
[5] Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement with baseline bootstrapping. In

Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
[6] Marek Petrik, Mohammad Ghavamzadeh, and Yinlam Chow. Safe policy improvement by minimizing robust baseline regret. In

Proceedings of the 29th Advances in Neural Information Processing Systems (NIPS), 2016.

4

Paper # 166 266

SPIBB-DQN: Safe Batch Reinforcement Learning
with Function Approximation

Romain Laroche*
Microsoft Research Montréal

romain.laroche@microsoft.com

Rémi Tachet des Combes*
Microsoft Research Montréal

remi.tachet@microsoft.com

Abstract
We consider Safe Policy Improvement (SPI) in Batch Reinforcement Learning (Batch RL): from a fixed dataset and without direct
access to the true environment, train a policy that is guaranteed to perform at least as well as the baseline policy used to collect the
data. Our contribution is a model-free version of the SPI with Baseline Bootstrapping (SPIBB) algorithm, called SPIBB-DQN, which
consists in applying the Bellman update only in state-action pairs that have been sufficiently sampled in the batch. In low-visited parts
of the environment, the trained policy reproduces the baseline. We show its benefits on a navigation task and on CartPole. SPIBB-
DQN is, to the best of our knowledge, the first RL algorithm relying on a neural network representation able to train efficiently and
reliably from batch data, without any interaction with the environment.1

Keywords: Batch Reinforcement Learning, Safe Reinforcement Learning, DQN,
Policy Improvement

*Equal contribution
1This extended abstract is an excerpt of our recent paper:

Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe Policy Improvement with Baseline Bootstrapping. In Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019.

Paper # 257 267

1 Introduction

Most real-world Reinforcement Learning agents [17, RL] are to be deployed simultaneously on numerous independent devices and
cannot be patched quickly. In other practical applications, such as crop management or clinical tests, the outcome of a treatment
can only be assessed after several years. Consequently, a bad update could be in effect for a long time, potentially hurting the user’s
trust and/or causing irreversible damages. Devising safe algorithms with guarantees on the policy performance is a key challenge of
modern RL that needs to be tackled before any wide-scale adoption.

Batch RL is an existing approach to such offline settings and consists in training a policy on a fixed set of observations without access
to the true environment [10]. It should not be mistaken with the multi-batch setting where the learner trains successive policies from
small batches of interactions with the environment [5, 11]. Current Batch RL algorithms are however either unsafe or too costly
computationally to be applied to real-world applications.

In this paper, we focus on Safe Policy Improvement (SPI). SPI consists in safely improving a baseline policy from a batch of data.
We develop a model-free version of SPI with Baseline Bootstrapping [12, 16, SPIBB]. SPIBB bootstraps the trained policy with the
baseline in the state-action pair transitions that were not probed enough in the dataset. Similarly to [14], it assumes access to the base-
line. Such a scenario is typically encountered when a policy is trained in a simulator and then run in its real environment, for instance
in Transfer RL [19]; or when a system is designed with expert knowledge and then optimized, e.g. in dialogue applications [20, 8].

In Section 2, we recall the basics of SPIBB and implement a model-free version of the algorithm, SPIBB-DQN. SPIBB-DQN relies
on pseudo-counts of the state-actions pairs, which can either be handcrafted or approximated using density models [1], and allows
to apply SPIBB algorithms to tasks requiring a neural network representation. In Section 3, we apply SPIBB-DQN to a continuous
navigation task of our design and to CartPole. SPIBB-DQN is, to the best of our knowledge, the first RL algorithm relying on a neural
network representation able to train efficiently and reliably from batch data, without any interaction with the environment [5]. Section
4 concludes the paper and suggests possible future research directions.

2 SPI with Baseline Bootstrapping

Background: An MDP is denoted by M = 〈X ,A, R, P, γ〉, where X is the state space, A is the action space, R(x, a) ∈
[−Rmax, Rmax] is the bounded stochastic reward function, P (·|x, a) is the transition distribution, and γ ∈ [0, 1) is the discount
factor. The true environment is modelled as an unknown finite MDP M∗ = 〈X ,A, R∗, P ∗, γ〉. Π = {π : X → ∆A} is the set
of stochastic policies, where ∆A denotes the set of probability distributions over A. The state and state-action value functions are
respectively denoted by V πM (x) and QπM (x, a). We define the performance of a policy by its expected return, starting from the initial
state x0: ρ(π,M) = V πM (x0). Given a policy subset Π′ ⊆ Π, a policy π′ is said to be Π′-optimal for an MDPM when its performance
is maximal in Π′: ρ(π′,M) = maxπ∈Π′ ρ(π,M).

In this paper, we focus on the batch RL setting where the algorithm does its best at learning a policy from a fixed set of ex-
perience. Given a dataset of transitions D = 〈xj , aj , rj , x′j〉j∈J1,NK collected by following a baseline policy πb, we denote by
M̂ = 〈X ,A, R̂, P̂ , γ〉 the Maximum Likelihood Estimation (MLE) MDP of the environment. R̂ is the reward mean and P̂ the
transition statistics observed in the dataset. Vanilla batch RL looks for the optimal policy in M̂ . This policy may be found indiffer-
ently using dynamic programming on the explicitly modelled MDP M̂ , Q-learning with experience replay until convergence [17], or
Fitted-Q Iteration with a one-hot vector representation of the state space [6].

As we shall see below (a fact also observed in [12]), Vanilla batch RL performs very poorly on stochastic environments because
it learns from all the transitions in the dataset, including the rarely sampled ones for which the uncertainty is large and which can
thus be misleading. This is not too problematic in an online setting, as the policy privileging a poor action in a given state will soon
perform it and immediately correct its estimates. In a batch setting however, the bad policy might be in action for a while before its
next update, leading to very poor performance on an extended period of time. A solution to this issue is to act pessimistically when
the uncertainty is high: this flip side of optimism in the face of uncertainty [18] can be achieved by penalizing actions rarely observed
in the dataset as e.g. in RaMDP [14]. An alternative option consists in bootstrapping on the baseline, a technique we now present.

SPIBB methodology: SPIBB essentially reformulates the percentile criterion [4]. It consists in optimizing the policy with respect
to its performance in the MDP estimate M̂ , while guaranteeing it to be ζ-approximately at least as good as πb in an admissible MDP
set Ξ which contains the true MDP M∗ with high probability. Formally, it writes as follows:

max
π∈Πb

ρ(π, M̂), where Πb ⊂ {π ∈ Π s.t. ∀M ∈ Ξ, ρ(π,M) ≥ ρ(πb,M)− ζ}. (1)

Clearly, the larger the Πb the greater the potential policy improvement and the harder the optimization problem. By appropriately
balancing those opposite effects, SPIBB makes searching for an efficient and provably-safe policy tractable in terms of computer
time, while allowing for potentially substantial policy improvements. To construct Πb, we let ND(x, a) denote the count of state-
action pair (x, a) in D. We then define a bootstrapped set B ⊂ X ×A containing all the pairs (x, a) whose counts are smaller than
a fixed parameter N∧. In other words, B contains the state-action pairs (x, a) for which the uncertainty is high. Πb then denotes the

1

Paper # 257 268

set of policies π that verify:

∀(x, a) ∈ B, π(a|x) = πb(a|x). (2)

In the uncertain pairs, for which relying on the observed data could potentially be risky, SPIBB leans on the baseline by copying
its probability to take action a. In the others, SPIBB follows classic policy optimization techniques. For finite MDPs, this may be
achieved in a model-based manner by explicitly computing the MDP model M̂ , constructing the set of allowed policies Πb and
finally searching for the Πb-optimal policy π�spibb in M̂ using policy iteration over Πb [9, 15]. [12] prove that Πb-SPIBB converges

to a Πb-optimal policy π�spibb in M̂ , and that π�spibb is a safe policy improvement over the baseline in the true MDP M∗. They also
apply SPIBB to a gridworld example and show its benefits over existing algorithms. In the following, we describe an extension of
their method to function approximators.

SPIBB-DQN: DQN [13] successfully applies Q-learning to complex video games that require deep neural networks. The method
uses a variety of techniques but fundamentally consists in iteratively applying the Bellman operator to learn the Q-values of the
environment. DQN can easily be extended to a batch setting by replacing the experience memory used in the original algorithm with
the batch we are training on. Similarly, the SPIBB policy optimization described above may be achieved in a model-free manner by
sampling transitions 〈xj , aj , rj , x′j〉 from the dataset and fitting the Q-function Q(t+1)(xj , aj) to the following target y(t)

j :

y
(t)
j = rj + γ max

π∈Πb

∑

a′∈A
π(a′|x′j)Q(t)(x′j , a

′)

= rj + γ
∑

a′|(x′
j ,a

′)∈B
πb(a

′|x′j)Q(t)(x′j , a
′) + γ

 ∑

a′|(x′
j ,a

′)/∈B
πb(a

′|x′j)

 max

(x′
j ,a

′)/∈B
Q(t)(x′j , a

′).

The first term rj is the immediate reward observed during the recorded transition, the second term is the return estimate of the boot-
strapped actions (where the trained policy is constrained to the baseline policy), and the third term is the return estimate maximized
over the non-bootstrapped actions. We call this algorithm SPIBB-DQN as it is equivalent to DQN fitted to y(t)

j . Note that the compu-
tation of the SPIBB targets requires the computation of the bootstrapped set B, which relies on an estimate of the state-action counts
ÑD(x, a), sometimes called pseudo-counts [1, 7, 3]. The safety of SPIBB-DQN increases with N∧. For N∧ = 0, we observe that
B = ∅, and SPIBB-DQN amounts to the original DQN. As N∧ → ∞, we see that B = X × A, thus SPIBB-DQN becomes fully
conservative and simply reproduces πb. Intermediate values of N∧ allow a balance between these two extreme cases.

Among existing batch RL algorithms, and to the best of our knowledge, only RaMDP [14] can straightforwardly be extended to
the function approximation setting. RaMDP stands for Reward-adjusted MDP and consists in modifying the observed reward by

rj ← rj − κ/
√
ÑD(xj , aj) (κ is a hyperparameter of their model).

3 SPIBB-DQN empirical evaluation

The performance of Batch RL algorithms can vary greatly from one dataset to another. To properly evaluate SPIBB-DQN and its
ability to produce policies that reliably outperform the baseline, we randomly generate 20 fixed-size datasets and train 15 policies on
each dataset for each algorithm and for various hyper-parameter values. The algorithms are then evaluated using the mean perfor-
mance and conditional value at risk performance (CVaR, also called expected shortfall) of the policies they produce. The X%-CVaR
is the mean performance over the X% worst runs, it is commonly used to assess the robustness of algorithms.

For the sake of simplicity and to be able to repeat several runs of each experiment efficiently, instead of applying costly and often
finicky pseudo-count methods from the literature [1, 7, 3], we consider here a pseudo-count heuristic based on the Euclidean distance
between states, and tasks where it makes sense to do so. The pseudo-count of a state-action (x, a) is defined as the sum of its similarity
with the state-action pairs (xi, ai) found in the dataset. The similarity between (x, a) and (xi, ai) is equal to 0 if ai 6= a, and to
max(0, 1− 5d(x, xi)) otherwise (where d(·, ·) is the Euclidean distance between two states).

We first consider a helicopter navigation task (see Figure 1(a)). The helicopter starts from a random position in the teal area, with
a random initial velocity. The 9 available actions consist in applying thrust: backward, no, or forward acceleration, along the two
dimensions. The episode terminates when the velocity exceeds some maximal value, in which case it gets a -1 reward, or when the
helicopter leaves the blue area, in which case it gets a reward as chromatically indicated on Figure 1(a). The dynamics of the domain
follow the basic laws of physics with a Gaussian centered additive noise both on the position and the velocity. To train our algorithms,
we use a discount factor γ = 0.9, but report the undiscounted final reward. The baseline is generated as follows: we first train a policy
with online DQN, stop before full convergence and then apply a softmax on the obtained Q-network. Our experiments consist in 300
runs on SPIBB-DQN with a range of N∧ values and for different dataset sizes. SPIBB-DQN with N∧ = 0 is equivalent to vanilla
DQN. We also perform a hyper-parameter search for RaMDP on 10k-transition datasets, with κ values ranging from 0.001 to 1000.
To reduce the computational load, we only performed 75 runs per value. We also display κ = 0, which amounts to vanilla DQN.
Figure 2(b) shows that, although it slightly improves over DQN, RaMDP is rather limited and stays far below the baseline.

2

Paper # 257 269

(a) Helicopter environment.

DQN 5 10 15 20
N∧

−1

0

1

2

3

p
er

fo
rm

an
ce

Baseline, mean

|D| = 10000, mean

|D| = 20000, mean

|D| = 30000, mean

Baseline, 10%-CVaR

|D| = 10000, 10%-CVaR

|D| = 20000, 10%-CVaR

|D| = 30000, 10%-CVaR

(b) Mean and 10%-CVaR vs N∧.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

noise level

−1

0

1

2

3

4

p
er

fo
rm

an
ce

Baseline

DQN
SPIBB-DQN, N∧ = 5

SPIBB-DQN, N∧ = 10

(c) Performance vs noise factor.

Figure 1: (a) Illustration of the environment. (b) Mean and 10%-CVaR performance as a function of N∧ for three dataset sizes. (c)
Mean and 10%-CVaR performance for the baseline, vanilla DQN, SPIBB-DQN withN∧ = 5, 10, as a function of the transition noise
factor.

0 2 4 6 8 10
N∧

−1

0

1

2

3

p
er

fo
rm

an
ce

Baseline, mean

SPIBB-DQN, mean

Baseline, 10%-CVaR

SPIBB-DQN, 10%-CVaR

Baseline, 1%-CVaR

SPIBB-DQN, 1%-CVaR

(a) Mean, 10%-CVaR and 1%-CVaR vs N∧.

DQN 0.001 0.01 0.1 1 10 100 1000

RaMDP hyper-parameter κadj

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
p

er
fo

rm
an

ce

Baseline
SPIBB-DQN N∧ = 5

RaMDP, mean

RaMDP, 10%-CVaR

(b) RaMDP Performance vs κ.

DQN 5 10 15 20
N∧

0

20

40

60

80

p
er

fo
rm

an
ce

Baseline, mean

SPIBB-DQN, mean

Baseline, 10%-CVaR

SPIBB-DQN, 10%-CVaR

(c) Performance on CartPole.

Figure 2: (a) Mean, 10%-CVaR and 1%-CVaR as a function of N∧ for a single 10k dataset. (b) Mean and 10%-CVaR performance
of RaMDP for multiple values of κ over the 20 10k-datasets from Figure 1. (c) Mean and 10%-CVaR performance on CartPole.

Figure 1(b) displays the mean and 10%-CVaR performances in function ofN∧ for three dataset sizes (10k, 20k, and 30k). We observe
that vanilla DQN (N∧ = 0) significantly worsens the baseline in mean and achieves the worst possible 10%-CVaR performance.
SPIBB-DQN not only significantly improves the baseline in mean performance for N∧ ≥ 1, but also in 10%-CVaR when N∧ ≥ 8.
The discerning reader might wonder about the CVaR curve for the baseline. It is explained by the fact that the evaluation of the policies
are not exact. The curve accounts for the evaluation errors, errors also obviously encountered with the trained policies. We performed
an additional experiment. Keeping the baseline identical, we trained on 10k-transitions datasets obtained from environments with
different transition noises. Figure 1(c) shows the mean and 10%-CVaR performances for the baseline, vanilla DQN, and SPIBB-
DQN with N∧ ∈ {5, 10}. First, we observe that vanilla DQN performs abysmally. Second, we see that the baseline quickly gets
more efficient when the noise is removed making the safe policy improvement task harder for SPIBB-DQN. As SPIBB is efficient
at dealing with stochasticity, the noise attenuation reduces its usefulness. Third, as we get to higher noise factors, the stochasticity
becomes too high to efficiently aim at the goal, but SPIBB-DQN still succeeds at safely improving the baseline.

Before starting the experiments reported above, we led preliminary experiments with a single 10k-transitions dataset. We found out,
and report on Figure 2(a), that vanilla DQN produces very different Q-networks (and therefore very different policies) for different
random seeds, even on the same dataset. It is worth noticing a posteriori that this dataset was actually favorable to DQN (mean
performance of 1.7 on this dataset vs. -0.5 averaged over 20 datasets, Figure 1(b)), but that DQN’s reliability is still very low. In
contrast, SPIBB-DQN shows stability for N∧ ≥ 4. We also report the 1%-CVaR performance (quite heavy computationally to
accurately estimate) and see that there too, SPIBB-DQN performs well.

We also apply SPIBB-DQN to the CartPole environment from OpenAI gym [2]. Similarly to above, we first train a policy on the
environment and build a baseline from it by applying a softmax to the learnt Q-values. To make the task more challenging once the
baseline has been obtained, we add some stochasticity to the environment by acting randomly 50% of the time. With that added noise,
the baseline gets an average score of approximately 78. SPIBB-DQN reaches values over 90 while remaining safe. Standard DQN
gets a score of 33 and a 10%-CVaR of 13. Results can be found on Figure 2(c), for datasets of size 10k. We also applied our algorithm
to Pendulum with marginal improvements (not shown here).

3

Paper # 257 270

4 Conclusion and future work

In this paper, we study the problem of safe Batch Reinforcement Learning with function approximation. We develop a model-free
version of SPIBB and demonstrate its performance on two domains. SPIBB-DQN is the first deep batch algorithm allowing policy
improvement in a safe manner. Future work involves extending our results to more complex domains, e.g. with pixel state spaces
such as Atari games. This would, in particular, imply adapting existing pseudo-counts techniques to the batch setting.

References
[1] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based

exploration and intrinsic motivation. In Proceedings of the 29th Advances in Neural Information Processing Systems (NIPS),
2016.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai
gym, 2016.

[3] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In Proceedings
of the 7th International Conference on Learning Representations (ICLR), 2019.

[4] Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with parameter uncertainty. Operations
research, 2010.

[5] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement learning for
continuous control. In Proceedings of the 33rd International Conference on Machine Learning (ICML), pages 1329–1338,
2016.

[6] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. Journal of Machine Learning
Research, 6(Apr):503–556, 2005.

[7] Lior Fox, Leshem Choshen, and Yonatan Loewenstein. Dora the explorer: Directed outreaching reinforcement action-selection.
In Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.

[8] Aude Genevay and Romain Laroche. Transfer learning for user adaptation in spoken dialogue systems. In Proceedings of the
15th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2016.

[9] Ronald A Howard. Dynamic programming. Management Science, 1966.
[10] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning. Springer,

2012.
[11] Romain Laroche and Raphaël Féraud. Reinforcement learning algorithm selection. In Proceedings of the 6th International

Conference on Learning Representations (ICLR), 2018.
[12] Romain Laroche and Paul Trichelair. Safe policy improvement with baseline bootstrapping. In Proceedings of the 14th Euro-

pean Workshop on Reinforcement Learning, 2018.
[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin

Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 2015.

[14] Marek Petrik, Mohammad Ghavamzadeh, and Yinlam Chow. Safe policy improvement by minimizing robust baseline regret.
In Proceedings of the 29th Advances in Neural Information Processing Systems (NIPS), 2016.

[15] Martin L Puterman and Shelby L Brumelle. On the convergence of policy iteration in stationary dynamic programming.
Mathematics of Operations Research, 1979.

[16] Thiago D. Simao and Matthijs T. J. Spaan. Safe policy improvement with baseline bootstrapping in factored environments. In
Proceedings of the 33th AAAI Conference on Artificial Intelligence, 2019.

[17] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.
[18] István Szita and András Lőrincz. The many faces of optimism: a unifying approach. In Proceedings of the 25th International

Conference on Machine Learning (ICML), 2008.
[19] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal of Machine

Learning Research, 10(Jul):1633–1685, 2009.
[20] Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. Pomdp-based statistical spoken dialog systems: A review.

Proceedings of the IEEE, 101(5):1160–1179, 2013.

4

Paper # 257 271

Batch Policy Learning under Constraints

Hoang M. Le
Department of Computing + Mathematical Sciences

California Institute of Technology
Pasadena, CA 91106
hmle@caltech.edu

Cameron Voloshin
Department of Computing + Mathematical Sciences

California Institute of Technology
Pasadena, CA 91106

clvoloshin@gmail.com

Yisong Yue
Department of Computing + Mathematical Sciences

California Institute of Technology
Pasadena, CA 91106
yyue@caltech.edu

Abstract

When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected
off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints.
We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We
first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as
subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main
objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy
evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains,
including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and
smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a
standalone basis, especially in a high-dimensional setting.

Keywords: Batch Reinforcement Learning
Constrained Policy Learning
Off-Policy Policy Evaluation
Off-Policy Learning
Approximate Dynamic Programming

Paper # 275 272

1 Introduction
We study the problem of policy learning under multiple constraints. Contemporary approaches to learning sequential
decision making policies have largely focused on optimizing some cost objective that is easily reducible to a scalar value
function. However, in many real-world domains, choosing the right cost function to optimize is often not a straightfor-
ward task. Frequently, the agent designer faces multiple competing objectives. Indeed, many such real-world applica-
tions require the primary objective function be augmented with an appropriate set of constraints.

Recent policy learning research has largely focused on either online reinforcement learning (RL) with a focus on ex-
ploration, or imitation learning (IL) with a focus on learning from expert demonstrations. However, many real-world
settings already contain large amounts of pre-collected data generated by existing policies (e.g., existing driving behav-
ior, power grid control policies, etc.). We thus study the complementary question: can we leverage this abundant source of
(non-optimal) behavior data in order to learn sequential decision making policies with provable guarantees on constraint satisfaction?

We present an algorithmic framework for learning sequential decision making policies from off-policy data. We employ
multiple learning reductions to online and supervised learning, and present an analysis that relates performance in the
reduced procedures to the overall performance with respect to both the primary objective and constraint satisfaction.

Constrained optimization is a well studied problem in supervised machine learning and optimization. In contrast to
supervised learning for classification, batch policy learning for sequential decision making introduces multiple additional
challenges. First, setting aside the constraints, batch policy learning itself presents a layer of difficulty, and the analysis is
significantly more complicated. Second, verifying whether the constraints are satisfied is no longer as straightforward as
passing the training data through the learned classifier. Certifying constraint satisfaction amounts to an off-policy policy
evaluation problem, which by itself is a challenging problem. In this paper, we develop a systematic approach to address
these challenges, provide a careful error analysis, and experimentally validate our algorithms.
2 Problem Formulation
Let X ⊂ Rd be a bounded and closed d-dimensional state space. Let A be a finite action space. Let c : X × A 7→ [0, C] be
the primary objective cost function that is bounded by C. Let there be m constraint cost functions, gi : X × A 7→ [0, G],
each bounded by G. To simplify the notation, we view the set of constraints as a vector function g : X × A 7→ [0, G]m

where g(x, a) is the column vector of individual gi(x, a). Let p(·|x, a) denote the (unknown) transition/dynamics model.
Let γ ∈ (0, 1) denote the discount factor. Let χ be the initial states distribution.

In the discounted infinite horizon setting, an MDP is defined as (X,A, c, g, p, γ, χ). A policy π ∈ Π maps states to actions,
i.e., π(x) ∈ A. The value function Cπ : X 7→ R corresponding to the primary cost function c is defined in the usual way:
Cπ(x) = E [

∑∞
t=0 γ

tc(xt, at) | x0 = x]. We similarly define the vector-value function for the constraint costsGπ : X 7→ Rm
as Gπ(x) = E [

∑∞
t=0 γ

tg(xt, at)|x0 = x]. Let C(π) and G(π) as the expectation of Cπ(x) and Gπ(x), respectively.

In batch policy learning, we have a pre-collected dataset, D = {(xi, ai, x′i, c(xi, ai), g1:m(xi, ai)}ni=1, generated from (a set
of) historical behavioral policies denoted jointly by πD. The goal of batch policy learning under constraints is to learn a
policy π ∈ Π from D that minimizes the primary objective cost while satisfying m different constraints:

min
π∈Π

C(π)

s.t. G(π) ≤ τ
(OPT)

where G(·) = [g1(·), . . . , gm(·)]> and τ ∈ Rm is a vector of known constants. We assume that (OPT) is feasible. However,
the dataset D might be generated from multiple policies that violate the constraints.

Example: Counterfactual & Safe Policy Learning. In conventional online RL, the agent needs to “re-learn” from scratch
when the cost function is modified. Our framework enables counterfactual policy learning assuming the ability to com-
pute the new cost objective from the same historical data. A simple example is safe policy learning. The goal here is to
counterfactually avoid undesirable behaviors observed from historical data.

Example: Multi-objective Batch Learning. Traditional policy learning (RL or IL) presupposes that the agent optimizes a
single cost function. In reality, we may want to satisfy multiple objectives that are not easily reducible to a scalar objective
function. One example is learning fast driving policies under multiple behavioral constraints such as smooth driving and
lane keeping consistency (see Section 5).
3 Proposed Approach
We first convexify the policy class Π by allowing stochastic combinations of policies, which effectively expands Π into its
convex hull Conv(Π). Formally, Conv(Π) contains randomized policies.1 Executing a mixed π consists of first sampling one
policy πt, and then executing πt. It is easy to see that the augmented version of (OPT) over Conv(Π) has a solution at
least as good as the original (OPT).

1This places no restrictions on the individual policies. Individual policies can be arbitrarily non-convex. Convexifiying a policy
class amounts to allowing ensembles of learned policies.

1

Paper # 275 273

A Meta-Algorithm. The Lagrangian of (OPT) is L(π, λ) = C(π) + λ>(G(π)− τ) for λ ∈ Rm+ . Clearly (OPT) is equivalent
to the min-max problem: min

π∈Π
max
λ∈Rk+

L(π, λ). We assume (OPT) is feasible. Policy class convexification ensure that strong

duality holds, and (OPT) is also equivalent to:max
λ∈Rk+

min
π∈Π

L(π, λ). From a game-thoeretic perspective, the problem becomes

finding the equilibrium of a two-player game between the π−player and the λ−player [4]. In this repeated game, the
π−player minimizes L(π, λ) given the current λ, and the λ−player maximizes it given the current π.

We first present a meta-algorithm (Algorithm 1) that uses any no-regret online learning algorithm (for λ) and batch policy
optimization (for π). At each iteration, given λt, the π-player runs Best-response to get the best response:

Best-response(λt) = arg min
π∈Π

L(π, λt) = arg min
π∈Π

C(π) + λ>t (G(π)− τ).

This is equivalent to a standard batch reinforcement learning problem where we learn a policy that is optimal with
respect to c + λ>t g. The corresponding mixed strategy is the uniform distribution over all previous πt. In response
to the π−player, the λ−player employs Online-algorithm, which can be any no-regret algorithm that satisfies:∑
t L(πt, λt) ≥ maxλ

∑
t L(πt, λ) − o(T). Finally, the algorithm terminates when the estimated primal-dual gap is be-

low a threshold ω (Lines 7-8). Leaving aside (for now) issues of generalization, Algorithm 1 is guaranteed to converge
assuming: (i) Best-response gives the best policy in the class, and (ii) Lmax and Lmin can be evaluated exactly.

Proposition 3.1. Assuming (i) and (ii) above, Algo 1 is guaranteed to stop and the rate depends on the regret of
Online-algorithm.

3.1 Our Main Algorithm
We now provide a specific instantiation of Algorithm 1. Algorithm 2 is our main algorithm in this paper.

Policy Learning. We instantiate Best-response with Fitted Q Iteration (FQI), an off-policy learning approach [2].

Off-policy Policy Evaluation. A crucial difference between constrained policy learning and existing work on constrained
supervised learning is the technical challenge of evaluating the objective and constraints. First, estimating L̂(π, λ) (Lines
11-12) requires estimating Ĉ(π) and Ĝ(π). Second, any gradient-based approach to Online-learning requires passing
in Ĝ(π)− τ as part of gradient estimate (line 15).

We propose a new and simple model-free technique using function approximation, called Fitted Q Evaluation (FQE).
FQE is based on an iterative reductions scheme similar to FQI, but for the problem of off-policy evaluation. Algorithm 3
lays out the steps. The key difference with FQI is that themin operator is replaced byQk−1(x′i, π(x′i)) (Line 3 of Algorithm
3). Each x′i comes from the original D. Since we know π(x′i), each D̃k is well-defined. Note that FQE can be plugged-in
as a direct method if one wishes to augment the policy evaluation with a doubly-robust technique.

Online Learning Subroutine. Many online convex optimization approaches can be used for Online-algorithm. For
our main Algorithm 2, we use Exponentiated Gradient (EG) [6], which has a regret bound of O(

√
log(m)T) instead of

O(
√
mT) as in OGD. radient-based algorithms generally require bounded λ. We thus force ‖λ‖1 ≤ B using hyperparam-

2

Paper # 275 274

eter B. Solving (OPT) exactly requires B =∞. We will analyze Algorithm 2 with respect to finite B. We augment λ into
a (m+ 1)−dimensional vector by appending B − ‖λ‖1, and augment the constraint cost vector g by appending 0.2

4 Theoretical Analysis
4.1 Convergence Guarantee
The convergence rate of Algorithm 2 depends on the radius B of the dual variables λ, the maximal constraint value G,
and the number of constraints m. In particular, we can show O(B

2

ω2) convergence for primal-dual gap ω.
Theorem 4.1 (Convergence of Algorithm 2). After T iterations, the empirical duality gap is bounded by

L̂max − L̂min ≤ 2
B log(m+ 1)

ηT
+ 2ηBG2

Thus, to achieve the primal-dual gap of ω, setting η = ω
4G2B

will ensure that Algo 2 converges after 16B2G2 log(m+1)
ω2 iterations.

4.2 Generalization Guarantee of FQE and FQI
We provide sample complexity analysis for FQE and FQI as standalone procedures for off-policy evaluation and off-policy
learning. We use the notion of pseudo-dimension dimF as capacity measure of non-linear function class F [5]. Pseudo-
dimension is finite for a large class of function approximators.

We use the notion of concentration coefficient, proposed by [8], to measure the degree of distribution shift. The following
standard assumption from analysis of related ADP algorithms limits the severity of distribution shift over time:
Assumption 1 (Concentration coefficient of future state-action distribution). [9]
Let Pπ be the operator acting on f : X×A 7→ R s.t. (Pπf)(x, a) =

∫
X
f(x′, π(x′))p(dx′|x, a). Given data generating distribution

µ, initial state distribution χ, form ≥ 0 and an arbitrary sequence of stationary policies {πm}m≥1 define the concentration coeffient:
βµ(m) = supπ1,...,πm

∥∥∥d(χPπ1Pπ2 ...Pπm)
dµ

∥∥∥
∞

. We assume βµ = (1− γ)2
∑
m≥1

mγm−1βµ(m) <∞.

The performance of both FQE and FQI depend on how well the function class F approximates the Bellman operator. We
measure the ability of function class F to approximate the Bellman evaluation operator via the worst-case Bellman error:
Definition 4.1 (inherent Bellman evaluation error). Given a function class F and policy π, the inherent Bellman evaluation
error of F is defined as dπF = supg∈F inff∈F ‖f − Tπg‖π where ‖·‖π is the `2 norm weighted by distribution induced by π.
Theorem 4.2 (Generalization error of FQE). Under Assumption 1, for ε > 0 & δ ∈ (0, 1), after K iterations of Fitted Q
Evaluation (Algorithm 3), for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with probability 1− δ:

∣∣C(π)− Ĉ(π)
∣∣ ≤ γ1/2

(1− γ)3/2
(√

βµ (2d
π
F + ε) +

2γK/2C

(1− γ)1/2
)
.

We can show an analogous generalization bound for FQI. While FQI has been widely used, to the best of our knowledge,
a complete analysis of FQI for non-linear function approximation has not been previously reported.3

Definition 4.2 (inherent Bellman optimality error). [9] Recall that the Bellman optimality operator is defined as
(TQ)(x, a) = r(x, a) + γ

∫
X

mina′∈AQ(x′, a′)p(dx′|x, a). Given a function class F, the inherent Bellman error is defined
as dF = supg∈F inff∈F ‖f − Tg‖µ, where ‖·‖µ is the `2 norm weighted by µ, the state-action distribution induced by πD.

Theorem 4.3 (Generalization error of FQI). Under Assumption 1, for ε > 0 & δ ∈ (0, 1), afterK iterations of Fitted Q Iteration,
for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with probability 1− δ:

∣∣C∗ − C(πK)
∣∣ ≤ 2γ

(1− γ)3

(√
βµ (2dF + ε) + 2γK/2C

)

where πK is the policy acting greedy with respect to the returned function QK .
4.3 End-to-End Generalization Guarantee
We are ultimately interested in the test-time performance and constraint satisfaction of the returned policy from Algo-
rithm 2. We now connect the previous analyses from Theorems 4.1, 4.2 & 4.3 into an end-to-end error analysis.
Assumption 2. Function classes F sufficiently rich so that ∀f : Tf ∈ F & Tπf ∈ F for the policies π returned by Algorithm 2.
Theorem 4.4 (Generalization guarantee of Algorithm 2). Let π∗ be the optimal policy to (OPT). Denote V = C +BG. Let K
be the number of iterations of FQE and FQI. Let π̂ be the policy returned by Algorithm 2, with termination threshold ω. For ε > 0

& δ ∈ (0, 1), when n = O
(
V 4

ε2 (log K(m+1)
δ + dimF log V 2

ε2 + log dimF)
)
, we have with probability at least 1− δ:

C(π̂) ≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
βµε+ 2γK/2V

)
, and G(π̂) ≤ τ + 2

V + ω

B
+

γ1/2

(1− γ)3/2

(√
βµε+

2γK/2V

(1− γ)1/2

)
.

2The (m+ 1)th coordinate of g is thus always satisfied. This augmentation is only necessary when executing EG.
3FQI for continuous action space from [1] is a variant of fitted policy iteration and not the version of FQI under consideration. The

appendix of [7] contains a proof of FQI but for linear functions.

3

Paper # 275 275

Figure 1: CarRacing. (Left) Screenshot of environment (Middle) (Lower is better) Comparing our algorithm, regularized
LSPI, online RL w/o constraints, behavior policy πD w.r.t. main cost objectives and two constraints. (Right) FQE vs. other
OPE methods on a standalone basis.

5 Empirical Analysis - Car Racing under Smooth Driving and Lane Keeping Constraints
Environment & Data Collection. The car racing environment is a high-dimensional domain where the state is a 96×96×3
tensor of raw pixels. The action space A takes 12 discretized values. The goal in this episodic task is to complete the track
in minimum time. With the costs given by the environment, one can train online RL agent using DDQN. We collect
≈ 1500 trajectories from DDQN’s randomization, resulting in data set D with ≈ 94000 transition tuples.

Fast Driving under Behavioral Constraints. We study the problem of minimizing cost while subject to two behavioral
constraints: smooth driving and lane centering. This is a highly challenging setup since three objectives and constraints
are in conflict with one another,e.g., fast driving causes the agent to cut corners and apply frequent brakes to make turns.
We are not aware of previous work in policy learning with 2 or more constraints in high-dimensional settings.

Baseline and Procedure. As a naı̈ve baseline, DDQN achieves low cost, but exhibits “non-smooth” driving behavior (see
our supplementary videos). We set the threshold for each constraint to 75% of the DDQN benchmark. We also compare
against regularized batch RL algorithms [3], specifically regularized LSPI. We instantiate our subroutines, FQE and FQI,
with multi-layered CNNs. We augment LSPI’s linear policy with non-linear features derived from a FQI model.

Results. The returned mixture policy from our algorithm achieves low main objective cost, comparable with online RL
policy trained without regard to constraints. After several initial iterations violating the braking constraint, the returned
policy - corresponding to the appropriate λ trade-off - satisties both constraints, while improving the main objective.
The improvement over data gathering policy is significant for both constraints and main objective. While regularized
LSPI obtains good performance for the main objective, it does not achieve acceptable constraint satisfaction. By default,
regularized policy learning requires parameter tuning heuristics. In constrast, our approach is systematic, and is able to
avoid the curse-of-dimensionality of brute-force search that comes with multiple constraints.

The off-policy evaluation by FQE is critical for success of our algorithm, and is ultimately responsible for certifying con-
straint satisfaction. While other OPE methods can also be used in place of FQE, we find that the estimates from popular
methods are not sufficiently accurate in a high-dimensional setting. As a standalone comparison, we select an individ-
ual policy and compare FQE against PDIS, DR and WDR with respect to the constraint cost evaluation. To compare
both accuracy and data-efficiency, for each domain we randomly sample different subsets of dataset D. Figure 1 (right)
illustrates the difference in quality. In the high-dimensional car domain, FQE signficantly outperforms other methods.
References
[1] A. Antos, C. Szepesvári, and R. Munos. Fitted q-iteration in continuous action-space mdps. In Advances in neural information

processing systems, pages 9–16, 2008.

[2] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal of Machine Learning Research, 6(Apr):
503–556, 2005.

[3] A. M. Farahmand, M. Ghavamzadeh, S. Mannor, and C. Szepesvári. Regularized policy iteration. In Advances in Neural Information
Processing Systems, pages 441–448, 2009.

[4] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79–103, 1999.

[5] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer, 2001.

[6] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation,
132(1):1–63, 1997.

[7] A. Lazaric and M. Restelli. Transfer from multiple mdps. In Advances in Neural Information Processing Systems, pages 1746–1754,
2011.

[8] R. Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567, 2003.

[9] R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine Learning Research, 9(May):815–857,
2008.

4

Paper # 275 276

Model-based Knowledge Representations

Lucas Lehnert
Computer Science Department

Brown University
Providence, RI 02912, USA

lucas lehnert@brown.edu

Michael L. Littman
Computer Science Department

Brown University
Providence, RI 02912, USA

michael littman@brown.edu

Michael J. Frank
Department of Cognitive, Linguistic & Psychological Sciences

Carney Institute for Brain Science
Brown University

Providence, RI 02912, USA
michael frank@brown.edu

Abstract

One question central to reinforcement learning is which representations – including aspects of the state space, transition
function and reward function – can be generalized or re-used across different tasks. Humans are adept at such flexible
transfer but existing reinforcement learning algorithms are much more limited. While transferring successor features
between different tasks has been shown to improve learning speed, this representation is overly specific and hence needs
to be re-learned when the optimal policy or transition function change.

This article presents Model Features: a latent representation that compresses the state space of a control problem by ex-
ploiting states that are equivalent in terms of both transition and reward functions. Because Model Features only extract
these equivalences but are not tied to the transition and reward functions themselves, this latent state representation gen-
eralizes across tasks that change in both their transition and reward functions. Model Features link successor features to
model reductions, facilitating the design of gradient-based optimization algorithms to approximate model reductions di-
rectly from transition data. Learning Model Features is akin to model-based reinforcement learning, because the learned
representation supports predictions of future reward outcomes.

This article first summarizes theoretical results from our extended article. Then empirical simulation results are pre-
sented that suggest Model Features serve as a state representation that affords generalization across tasks with different
transition and reward functions. Because Model Features construct a latent state representation that supports predictions
of future reward outcomes, the presented results motivate further experiments to investigate if humans or animals learn
such a representation, and whether neural systems involved in state representation reflect the equivalence abstraction.

Keywords: Model-based Reinforcement Learning, Knowledge Representa-
tions, Latent Structure Learning, Successor Representation, Hu-
man and Animal Learning

Acknowledgements

This work has been supported by funding from the MURI PERISCOPE project.

Paper # 63 277

1 Introduction

Reinforcement learning (RL) [19] studies the problem of computing optimal decision strategies from one-step interac-
tions sampled from an environment. Each interaction consists of the agent selecting an action to cause a change in the
environment’s state. For each state transition the agent receives a reward, a single scalar number. The goal is to compute
a decision making strategy that maximizes rewards. One central question is how to generalize knowledge across differ-
ent environments. This article presents Model Features, a feature representation that compresses the state space into a
lower dimensional representation by clustering states that produce identical future reward outcomes. By only exploiting
such state equivalences, Model Features generalize across environments that differ in reward and transition functions.

In RL a task is formalized as a Markov decision processes (MDP) [19] M = 〈S,A, p, r, γ〉. All possible states of a task
are described by the set S and the agent can make a decision by selecting an action from a set of actions A. Selecting
an action changes the state probabilistically according to the transition function p. The reward function r specifies a
reward for each state transition. The goal is to compute a decision strategy, called policy, π : S → A that maximizes
rewards. One key property of model-based RL is the ability to predict a sequence of reward outcomes (r1, r2, ...) given
a state s and a sequence of actions (a1, a2, ...). Model Features compress the state space by assigning two different states
(approximately) the same n-dimensional feature vector if, given an arbitrary action sequence (a1, a2, ...), both states
generate the same reward sequence (r1, r2, ...) with equal (or near-equal) probability. Such two states are also called
bisimilar [10]. Knowing which reward sequence a certain action sequence can generate is sufficient for evaluating any
arbitrary policy and identifying the optimal policy. Model Features encode model reductions [10] and provide a state
representation specifically optimized to preserve all information relevant for predicting future reward outcomes.

This article first summarizes results from our extended article [12] and shows that Model Features, and by extension
bisimulation relations, can be extracted by learning the successor features [2] of a single arbitrary policy. Model Features
construct a low dimensional representation of the state space by utilizing which states are equivalent to the transition
and reward function. We then show that Model Features learned for one MDP can be re-used on another MDP with
different transition and reward functions, assuming that state equivalences are preserved. Such ”deep transfer” across
environments, even in the absence of prior experience with specific transition or reward functions, is predicted by behav-
ioral and neural signatures of human structure learning [3, 1, 9] but not afforded by alternative algorithms that compress
the transition function directly [18, 17]. As a lay example, an expert musician can immediately transfer a learned song
from one key to another, or from a guitar to a piano, despite the very different transition functions [8].

2 Successor Features encode Model Features

A state representation φ maps each state s of an MDP to a real valued vector φφφ. Using φ a trajectory (s1, a1, s2, a2, ...)
can be mapped to a feature-trajectory (φφφ1, a1,φφφ2, a2, ...). Because φ is a many-to-one function, different states may not
be distinguishable in terms of their feature vectors. As a result, the empirical probability of transitioning between two
different feature vectors need not correspond to the probability of the underlying state transition. Model Features are
designed to distinguish between states such that the resulting empirical feature transition probabilities are equal to the
underlying transition probabilities. A linear model can be build to predict feature-trajectories and reward sequences
from these feature trajectories. If these predicted reward sequences equal in expectation the reward sequence (r1, r2, ...)
generated by the trajectory (s1, a1, s2, a2, ...), then the state representation φ is said to support accurate predictions of
future reward outcomes. Model Features are state representation that support predictions of future reward outcomes.

Suppose a state representation φ maps the state space to a finite set of feature vectors {φφφ1, ...,φφφn}. By simulating different
trajectories (s1, a1, s2, a2, ...), the empirical probability Pr{φφφi a→ φφφj} of transitioning from the feature vector φφφi to φφφj when
selecting action a can be computed for all φφφi and φφφj . Figure 1(b) illustrates how a state representation partitions the
state space by mapping different states to the same feature vector. Each state partition is a sub-set of the state space that
corresponds to a particular feature vector φφφi. Suppose s is a state that is mapped to φφφi. If the probability Pr{s a→ φφφj} of
transitioning from state s to the state partition corresponding to φφφj is equal for all states that map to φφφi, then

Pr{s a→ φφφj} = Pr{φφφi a→ φφφj}where φ(s) = φφφi. (1)

Line (1) holds because the empirical probability Pr{φφφi a→ φφφj} is the marginal over all states mapping to φφφi:

Pr{φφφi a→ φφφj} =
∫

si:φ(s)=φφφi

ω(si)Pr{si a→ φφφj}ds =
(∫

si:φ(s)=φφφi

ω(si)ds

)
Pr{s a→ φφφj} = Pr{s a→ φφφj}. (2)

The empirical feature transition probability Pr{φφφi a→ φφφj} is the marginal over all states s that map to φφφi with respect
to probability of visiting a state s. The density function ω models this visitation distribution over a state partition (Fig-
ure 1(b)). If Pr{si a→ φφφj} is equal for all states si of the same partition, the probability of transitioning from state s to a
state partition corresponding to φφφj can be moved out of the integrand and the second identity in line (2) follows.

1

Paper # 63 278

0 0 1

0 0 1

0 0 1
30

ro
w

s

0 0 1
φ

(a) Column World. To support predictions of future
rewards, each column can be compressed to a state.

Pr{s a→ φφφ3}

Pr{φφφ1
a→ φφφ3}

S

Probability

Density

Feature

Space

s

φφφ1 φφφ2 φφφ3 φφφ4

Transition Function p
Visitation Density ω

(b) Relationship between state transition probabilities and empirical feature
transition probabilities.

0 250 500 750 1000
Gradient Update

0.0

0.2

0.4

0.6

0.8

Lo
ss

 V
al

ue

(c) Loss Objective [12] (d) Initialization (e) Iteration 100 (f) Iteration 1000

0 50 100 150 200
Rollout Steps

0.0

0.2

0.4

0.6

Re
wa

rd
 P

re
di

ct
io

n
Er

ro
r

Init.
It. 1000
It. 400

(g) Reward Prediction Error

Figure 1: Learning Model Features. Figure 1(a) shows the Column World example where an agent can move up, down,
left, or right (four actions) and is rewarded in the right column. Figure 1(b) shows the connection between empirical
feature transition probabilities and state transition probabilities. Figures 1(c) to 1(f) plot how the loss objective evolves
during optimization for the column world MDP. As the value of the loss objective decreases, the feature vectors for
equivalent states merge into the same cluster and the different cluster centers move apart. At different training iterations,
Figure 1(g) shows the average reward prediction errors along randomly selected 200-step action sequences and start
states. Each curve plots the average over 100 action sequences and the shaded areas show standard errors.

Clustering bisimilar states by directly comparing empirical feature transition probabilities to state transition probabilities
is possible [10, 16], but such methods are restricted to constructing entire transition tables. By tying Model Features to a
variation of Successor Features (SFs) [2, 5], the usual SF learning algorithms can be used to approximate Model Features
directly from sampled transitions. For an arbitrary fixed policy π, SFs are defined as

ψψψπs,a = E
[
φφφ1 + γφφφ2 + γ2φφφ3 + · · ·

∣∣∣∣s = s1, a = a1, π

]
= E

[∞∑

t=1

γt−1φφφt

∣∣∣∣s = s1, a = a1, π

]
. (3)

Because the expectation in Eq. (3) is computed over all possible infinite length trajectories starting at state swith action a,
SFs implicitly encode the empirical feature transition probabilities for each action. Intuitively, SFs predict the frequencies
or rescaled empirical probabilities with which feature vectors are encountered along a trajectory, because a frequently
encountered feature vector will occur in the summation in Eq. (3) more often than rarely encountered feature vectors. If
two states of the same state partition have the same SFs, then they also have the same state to state partition transition
probabilities and Eq. (1) holds. Our extended article [12] formally proves that learning SFs is equivalent to finding
approximations of Model Features. Figures 1(c) to 1(f) illustrate how learning SFs and minimizing the loss function
plotted in Figure 1(c) results in increasingly accurate approximations of Model Features. Figure 1(g) displays the reward
sequence prediction error at different steps of training. The curves show if reward prediction errors grow with the action
sequence length. At initialization, reward prediction errors are low and as learning progresses, all reward prediction
errors tend to zero. Hence, Model Features support predictions of future reward outcomes and model-based RL [12].

3 Model Features encode Task Knowledge

Model Features construct a low dimensional state representation by clustering states that are equivalent to the transition
and reward function. On three transfer task sets, Figure 2 shows that a state representation’s ability to predict future
reward outcomes is indicative that this representation can be reused in a previously unseen MDP. On a previously unseen
MDP such a representation performs better than other representations which only maximize total reward in the original
MDP. If a state representation incorrectly clusters states, the resulting compressed MDP does not resemble the original
MDP. A policy optimal in the compressed MDP is not necessarily optimal in the original MDP and cannot generate a
high total reward. For each transfer experiment, all possible state representations were enumerated and scored on their
reward sequence prediction error and the total reward generated. Total rewards were generated by a policy optimal in

2

Paper # 63 279

0 1 2

0
1
2

+1
+1
+1

0 1 2

0
1
2

+1
+1
+1

0 1 2

0
1
2

+1
+1
+1

3 variations of rewards

5 6 7 8 9 10
Total reward at transfer

0

100

200

300

400

Nu
m

be
r o

f a
bs

tra
ct

io
ns Total reward

Reward sequence error

Distribution at transfer

: Randomly selected start location

(a) Transfer between different column worlds.

Common
state
abstraction

100 variations of
transitions and
rewards

1.5 1.6 1.7 1.8
Total reward at transfer

0

50

100

150

200

250

Nu
m

be
r o

f a
bs

tra
ct

io
ns Total reward

Reward sequence error

Distribution at transfer

(b) Transfer between random MDPs compressible to 3 states.

0 1 2

0
1
2

+1
+1 · · ·

0 1 2

0
1
2

+1
+1

36 different reward location combinations

5 6 7 8 9
Total reward at transfer

0

50

100

150

200

250

Nu
m

be
r o

f a
bs

tra
ct

io
ns Total reward

Reward sequence error

Distribution at transfer

: Randomly selected start location

(c) Transfer between grid worlds with different goal locations.

p-value
Fig 2(a) 3.29 · 10−30

Fig 2(b) 8.63 · 10−176

Fig 2(c) 9.60 · 10−75

(d) One sided Welch’s t-test.

Figure 2: Low reward sequence prediction errors identify state abstractions amenable for ”deep transfer”. For each
experiment all possible state abstractions were enumerated using Algorithm U [11]. State abstractions were scored by
compressing an MDP using the state abstraction of interest [14]. The total reward score was computed by solving for
the optimal policy using value iteration [19, Chapter 4.4] and running the computed policy 20 times for 10 time steps in
the MDP from a randomly selected start state. The reward sequence error was computed by selecting 20 random start
states and then performing a random walk for 10 time steps. The histograms report averages over all repeats and transfer
MDPs. Figure 2(d) lists the p-values of the difference in mean total reward being insignificant for each histogram.

the compressed version of one randomly selected MDP. The top 5% scoring state abstractions were then re-evaluated on
the remaining transfer MDPs and the total rewards generated by these state representations are plotted as histograms in
Figure 2. In all cases state representations with low reward sequence prediction errors generate a higher total reward at
transfer than state representations that were selected based on their ability to construct a well performing policy on the
original MDP. This result indicates that Model Features, which are designed to produce low reward sequence prediction
errors, encode information about an MDP that generalizes across different MDPs.

Figure 2(a) presents three grid world MDPs where the agent can move up and down. The difference between the three
MDPs is which column is rewarded. Each column can be compressed into a single state, similar to the column world
example in Figure 1(a). For each experiment, total rewards and reward sequence prediction errors are computed by
sampling a start location at random. The histogram in Figure 2(a) indicates that state representations with low reward
sequence prediction errors outperform on average state representations that only maximize total reward in one of the
tasks. The experiment in Figure 2(b) is similar to the previous experiment in that each of the 100 MDPs can be com-
pressed with the same state representation, but otherwise the transition and reward functions are randomly generated.
Besides a common “hidden” state representation, these 100 MDPs differ in both transition and reward functions. The
histogram confirms the claim that low reward sequence prediction errors are indicative of a state representation’s ability
to generalize across different MDPs. State representations that result in high total reward in only one of the 100 MPDs
generate on average less reward on any of the remaining MDPs. Figure 2(c) presents a transfer experiment where two
reward locations are permuted in a grid world. In this experiment the MDPs cannot be compressed without incurring
some loss, because the grid location is important for predicting where the goal locations are and what action is optimal at
each location. However, the histogram in Figure 2(c) indicates that representations selected based on minimizing reward
sequence prediction error criterion still perform better than selecting representations by their total reward. Because grid
worlds have a specific topology of the state space, a state representation clustering only neighbouring states preserves
approximately the grid location information and would be expected to perform relatively well across all MDPs.

4 Conclusion

Model Features approximate state abstractions that compress an MDP while preserving the ability to predict future re-
ward outcomes using only the compressed model. Such a feature representation exploits which states are equivalent for
both the reward and transition function and thus Model Features can be understood as a model-based knowledge repre-

3

Paper # 63 280

sentation. Model-based basis functions have been studied previously [4, 6], but the presented connection to SFs allows us
to design a gradient-based optimization algorithm that can construct bisimulation relations directly from transition data.
Previous work on transfer with SFs has shown that re-using SFs on an MDP with a different reward function can provide
faster learning [2, 15, 17]. However, SFs are fragile to changes in the optimal policy [13] and transition function, whereas
latent state representations are more abstract and thus are not tied to particular transitions [3, 8]. In related work, Stachen-
feld et al. [18] compress the SR of an MDP using PCA and demonstrate this representation’s suitability for transfer and
connections to place cells and grid cells in the hippocampus. However, this compressed SR constructs a representation
of the transition function itself, and hence transfer is limited to environments that share the same transition function. In
contrast to Stachenfeld et al., Model Features separate the transition dynamics (and the SR) from the compression on the
state space itself, and thus generate a latent state representation of a task exploiting task equivalences. François-Lavet
et al. [7] construct latent state representations as part of a model-free and model-based hybrid model. In contrast to their
method, Model Features encode model reductions and are thus strict model-based representations. Collins and Frank
[3] and Badre and Frank [1] demonstrate that reward prediction errors and prediction errors on the structure of the state
space identify latent state representations that accelerate learning in humans when transferring knowledge across tasks.
While this work considers contextual multi-armed bandits, Model Features may extend this work to sequential decision
making, motivating further experiments to investigate if humans or animals learn such a feature representation.

References
[1] D. Badre and M. J. Frank. Mechanisms of hierarchical reinforcement learning in cortico–striatal circuits 2: Evidence

from fmri. Cerebral cortex, 22(3):527–536, 2011.
[2] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver. Successor features for transfer

in reinforcement learning. In Advances in neural information processing systems, pages 4055–4065, 2017.
[3] A. G. E. Collins and M. J. Frank. Neural signature of hierarchically structured expectations predicts clustering and

transfer of rule sets in reinforcement learning. Cognition, 152:160–169, 2016.
[4] G. Comanici, D. Precup, and P. Panangaden. Basis refinement strategies for linear value function approximation in

mdps. In Advances in Neural Information Processing Systems, pages 2899–2907, 2015.
[5] P. Dayan. Improving generalization for temporal difference learning: The successor representation. Neural Compu-

tation, 5(4):613–624, 1993.
[6] N. Ferns and D. Precup. Bisimulation metrics are optimal value functions. In UAI, pages 210–219. Citeseer, 2014.
[7] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau. Combined reinforcement learning via abstract representa-

tions. arXiv preprint arXiv:1809.04506, 2018.
[8] N. T. Franklin and M. J. Frank. Compositional clustering in task structure learning. PLoS computational biology, 14

(4):e1006116, 2018.
[9] N. T. Franklin and M. J. Frank. Generalizing to generalize: when (and when not) to be compositional in task

structure learning. bioRxiv, 2019. doi: 10.1101/547406.
[10] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in markov decision processes.

Artificial Intelligence, 147(1):163–223, 2003.
[11] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions.

Addison-Wesley, 2005.
[12] L. Lehnert and M. L. Littman. Successor features support model-based and model-free reinforcement learning.

arXiv preprint arXiv:1708.00102, 2019.
[13] L. Lehnert, S. Tellex, and M. L. Littman. Advantages and limitations of using successor features for transfer in

reinforcement learning. arXiv preprint arXiv:1708.00102, 2017.
[14] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps. In ISAIM, 2006.
[15] I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. Daw, and S. J. Gershman. The successor represen-

tation in human reinforcement learning. Nature Human Behaviour, 1(9):680, 2017.
[16] S. S. Ruan, G. Comanici, P. Panangaden, and D. Precup. Representation discovery for mdps using bisimulation

metrics. In AAAI, pages 3578–3584, 2015.
[17] E. M. Russek, I. Momennejad, M. M. Botvinick, S. J. Gershman, and N. D. Daw. Predictive representations can link

model-based reinforcement learning to model-free mechanisms. PLoS computational biology, 13(9):e1005768, 2017.
[18] K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. The hippocampus as a predictive map. Nature Neuroscience,

20:1643 EP –, 10 2017. URL https://doi.org/10.1038/nn.4650.
[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

4

Paper # 63 281

Rethinking Expected Cumulative Reward Formalism of Reinforcement
Learning: A Micro-Objective Perspective

Changjian Li
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L3G1

changjian.li@uwaterloo.ca

Krzysztof Czarnecki
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L3G1

k2czarne@uwaterloo.ca

Abstract
The standard reinforcement learning (RL) formulation considers the expectation of the (discounted) cumulative reward. This is
limiting in applications where we are concerned with not only the expected performance, but also the distribution of the performance.
In this paper, we introduce micro-objective reinforcement learning — an alternative RL formalism that overcomes this issue. In this
new formulation, a RL task is specified by a set of micro-objectives, which are constructs that specify the desirability or undesirability
of events. In addition, micro-objectives allow prior knowledge in the form of temporal abstraction to be incorporated into the global
RL objective. The generality of this formalism, and its relations to single/multi-objective RL, and hierarchical RL are discussed.

Keywords: reinforcement learning; Markov decision process

Acknowledgements

The authors would like to thank Sean Sedwards, Jaeyoung Lee and other members of Waterloo Intelligent Systems Engineering Lab
(WISELab) for discussions.

Paper # 40 282

1 Introduction and Related Works

The RL formulation commonly adopted in literature aims to maximize the expected return (discounted cumulative reward), which
is desirable if all we are concerned with is the expectation. However, in many practical problems, especially in risk-sensitive appli-
cations, we not only care about the expectation, but also the distribution of the return. For example, in autonomous driving, being
able to drive well in expectation is not enough, we need to guarantee that the risk of collision is below a certain acceptable level. As
another example, there might be two investment plans with the same expected return, but different variance. Depending on investor
type, one investment plan might be more attractive than the other. As a simplified abstraction, we consider the following Markov
Decision Process (MDP) with only one non-absorbing state s0, which is the state where the investment decision is to be made. There
are two actions, a1 and a2, corresponding to the two investment plans. From s0, if a1 is taken, there is 0.9 chance of getting a profit
of 10 (entering absorbing state s1), and 0.1 chance of getting a loss of −10 (entering absorbing state s2). If a2 is taken, there is 0.7
probability of earning a profit of 20 (entering absorbing state s3), and 0.3 probability of receiving a loss of −20 (entering absorbing
state s4). The reward function is therefore as follows:

r(s0, a1, s1) = 10, r(s0, a1, s2) = −10, r(s0, a2, s3) = 20, r(s0, a2, s4) = −20 (1)

The reward function is zero onwards once an absorbing state is reached. Both a1 and a2 will result in an expected return of 8.
However, the investor might not be able to afford a loss of more than, say, 15, in which case a1 is preferable to a2. Unfortunately, the
expected return formulation provides no mechanism to differentiate these two actions. Furthermore, any mixture policy of a1 and a2

(mixing a1 and a2 with some probability) also has the same expected return.

Two approaches have been discussed in literature to tackle this issue. One is to shape the reward so that the expected return of the
policies are no longer the same [Koenig and Simmons, 1994]. E.g., we can give more negative reward when the loss is higher than
15, such as the following:

r′(s, a, s′) =

{
r(s, a, s′), if r(s, a, s′) ≥ −15

r(s, a, s′)− (r(s, a, s′) + 15)2, otherwise

Although in this simple case, the reward shaping is fairly straight-forward, in more complex tasks such as autonomous driving where
there are many conflicting aspects, it is a challenge to choose a reward that properly balances the expected overall performance and
the risk of each aspect.

The second approach is to use an alternative formulation that considers more than just the expected return. Several methods [Sato
et al., 2001, Sherstan et al., 2018, Tamar et al., 2013] have been proposed to estimate the variance of return in addition to the
expectation. While this alleviates the issue by taking variance into account, distributions can differ even if both the expectation and
the variance are the same. Yu et al. [Yu et al., 1998] considered the problem of maximizing the probability of receiving a return
that is greater than a certain threshold. Geibel and Wysotzki [Geibel and Wysotzki, 2011] considered constrained MDPs [Altman,
1999] where the discounted probabilities of error states (unacceptable states) are constrained. However, both of these formulations
are designed only for a specific type of application, and do not have the generality required as an alternative RL formalism.

In this paper, we propose to solve this issue by restricting the return to a distribution that is entirely decided by its mean, namely the
Bernoulli distribution. To motivate this idea, observe that in any RL task, we are essentially concerned with a set of events, some
desirable, some undesirable, to different extents. For example, in the task of autonomous driving, collision is an undesirable event;
running a red light is another event, still undesirable but not as much; driving within the speed limit is a desirable event, etc. Instead
of associating each event with a reward, and evaluating a policy by the total reward it accumulates (as in conventional RL), we can
think of all the events as a whole, and evaluate a policy based on the combination of events it would lead to. The return is now only an
indicator of an event, and is restricted to binary values: 1 if the event happens, and 0 if it does not. Given a policy, the return of each
micro-objective is thus a Bernoulli random variable, whose mean is both the value function, and the probability of event occurrence
under the policy. Following this view, a task can be specified by a predefined set of events, and a partial order that allows comparison
between different combinations of event probabilities. The goal is to find the policies that result in the most desirable combinations
of probabilities. 1.

This can be illustrated with the investment example. Instead of defining a reward function as in Eq. 1, we define entering s1, s2,
s3 and s4 as four events. If action a1 is taken, the chances of the four events occurring are 0.9, 0.1, 0 and 0. If action a2 is taken,
the chances are [0, 0, 0.7, 0.3]. Apart from the events, a partial order on the probability vectors is also defined to specify which
probability vector is more desirable. Let vπ = [vπ1 , v

π
2 , v

π
3 , v

π
4] denote the expected returns of the four events. If we set the partial

order to vπ � vπ
′ ⇐⇒ 20(vπ3 − vπ4) + 10(vπ1 − vπ2) ≤ 20(vπ

′
3 − vπ

′
4) + 10(vπ

′
1 − vπ

′
2), we arrive at an equivalent formulation to

the standard RL formulation with reward specified by Eq. 1. If, however, we want the probability of getting a loss of more than 15 to
be less than a certain threshold ε, we can simply redefine the partial order so that vπ is smaller whenever vπ4 ≥ ε.

1To be exact, the combinations (of probabilities) that are not less desirable than any other combinations.

1

Paper # 40 283

2 Background

2.1 MDP and Reinforcement Learning

The standard RL problem is often formulated in terms of a (single-objective) Markov Decision Process (MDP), which can be repre-
sented by a six-tuple (S,A, P, µ, γ, r), where S is a finite set of states;A is a finite set of actions; P (s′|s, a) is the transition probability
from state s to state s′ taking action a; µ is the initial state distribution; γ ∈ [0, 1]R is the discount factor; and r(s, a, s′) ∈ R is the
reward for taking action a in state s and arriving state s′. The goal is to find the maximal expected discounted cumulative reward:
maxπ∈ΠE[

∑∞
t=0 γ

(t)r(st, at, st+1)|π, µ], where γ(t) denotes γ to the power of t, and Π denotes the set of policies we would like to
consider. In the most general case, a policy can be history-dependent and random, in the form of π = (π0, π1, ..., πt, ...), where a
decision rule πt(ht, s, a) ∈ [0, 1]R is the probability of taking action a in state swith history ht. A history is a sequence of past states,
actions and decision rules ht = (s0, a0, π0, s1, a1, π1, ..., st−1, at−1, πt−1). A policy is said be deterministic if πt(ht, s, a) = 1 for
only one action, in which case we can use a simplified notation π = (d0, d1, ..., dt, ...), where dt(ht, s) ∈ A. Correspondingly, if
the policy is deterministic, a history can be represented with ht = (s0, d0, s1, d1, ..., st−1, dt−1). A policy is said to be stationary
if the decision rule only depends on the current state s, and does not change with time, i.e., πt(ht, s, a) = π(s, a). The set of all
history-dependent random policies, history-dependent deterministic policies, stationary random policies, and stationary deterministic
policies are denoted by ΠHR, ΠHD, ΠSR and ΠSD, respectively. We call a task an episodic task with horizon T if the state space is
augmented with time; γ = 1; and r(s, a, s′) = 0,∀t ≥ T . The expected return following a policy starting from the initial state
distribution is called the value function, which is denoted as vπ . For a single-objective MDP, there exists stationary deterministic
optimal policy, that is, ∃π ∈ ΠSD, v

π = arg maxπ′∈ΠHR
vπ
′

2.2 Multi-objective Reinforcement Learning

In some cases [Roijers et al., 2014], it is preferable to consider different aspects of a task as separate objec-
tives. Multi-objective reinforcement learning is concerned with multi-objective Markov decision processes (MOMDPs)
(S,A, P, µ, [(γ1, r1), ..., (γi, ri), ..., (γk, rk)],�) , where S, A and P (s′|s, a), µ are the state space, action space, transition prob-
ability and initial state distribution as in single-objective MDPs; Now there are k pairs of discount factors γi and rewards ri(s, a, s′),
one for each objective. The value function for the ith objective is defined as vπi = E[

∑∞
t=0 γ

(t)
i ri(s

t, at, st+1)|π, µ]. Let
vπ = [vπ1 , v

π
2 , ..., v

π
k] be the value functions for all objectives, and V Π = {vπ|π ∈ Π} be the set of all realizable value func-

tions by policies in Π, � is a partial order defined on V ΠHR . Multi-objective RL aims to find the policies π ∈ Π such that vπ is a
maximal element 2 of V Π. Episodic tasks have not been widely discussed in the context of multi-objective RL, and most literature
assumes γ1 = γ2 = ... = γk. Although for a single-objective MDP, the optimal value can be attained by a deterministic stationary
policy, this is in general not true for multi-objective MDPs. White [White, 1982] showed that history-dependent deterministic policies
can dominate stationary deterministic policies; Chatterjee et al. [Chatterjee et al., 2006] proved for the case γ1 = γ2 = ... = γk that
there exists optimal stationary random policy.

3 Micro-Objective Reinforcement Learning

In standard multi-objective RL, there is no restriction on the reward function of each objective. Each objective can itself be a ‘macro’
objective that involves multiple aspects. This makes multi-objective RL subject to the same issue single-objective RL has: only
the expectation of return is considered for each objective. Conceptually, micro-objective RL is multi-objective RL at its extreme:
each micro-objective is concerned with one and only one aspect — the occurrence of an event. An event can be ‘entering a set of
goal/error states’, ‘taking certain actions in certain states’, or ‘entering a set of states at certain time steps’, etc., but ultimately can be
represented by a set of histories. If the history up to the current time step (ht, st) is in the set, we say that the event happens.

3.1 Micro-objectives

At the core of the micro-objective formulation is a new form of value function vπψi,Ti
(φi|µ). Denoting H as the set of all possible

histories, ψi ⊂ H is the set of histories that corresponds to the occurrence of the event, which we call the termination set of a micro-
objective. φi ⊂ H is also a set of histories, which we call the initiation set. The terminologies are deliberately chosen to resemble
those of options [Sutton et al., 1999], and as we will see, this form of value function is indeed connected to options. Independent
from the task, a micro-objective has its own initiation and termination. A micro-objective initiates if it is not currently active and
(ht, st) ∈ φi, when an associated timer ti is also initiated. A micro-objective terminates if it is currently active and (ht, st) ∈ ψi,
upon which a return of 1 is received. It also terminates if ti ≥ Ti or the task terminates, upon which a return of 0 is received, and ti
is reset. Note that t and T are the time step and time horizon for the task, whereas ti and Ti are the time step and time horizon for the
micro-objective. vπψi,Ti

(φi|µ) is defined as the expected return the ith micro-objective receives starting from initial state distribution
µ following policy π. For example, suppose that the task always starts from s0 (i.e., µ(s0) = 1), and the micro-objective is active

2A maximal element of a subset X of some partially ordered set is an element of X that is not smaller than any other element in X .

2

Paper # 40 284

three times (in sequence) before task termination if policy π is followed, with the return of 0, 0 and 1, respectively, then vπψi,Ti
(φi|µ)

is 1
3 (0 + 0 + 1) = 1

3 . Although this particular form of value function is similar to the generalized value function (GVF) proposed by
Sutton et al. [Sutton et al., 2011] in the sense that both have their own initiation, termination and return, it is a rather different concept.
Unlike a GVF which is associated with a target policy, and can be interpreted as the answer to a question regarding the target policy;
the value function of a micro-objective is parameterized by the global control policy, and is an evaluation of the global policy with
respect to one aspect of the task. This becomes clearer when we consider the fact that the value function for a micro-objective is
conditioned on the initial state distribution of the task. As a result, the value functions of the micro-objectives appear in the global
RL objective, while it is not obvious how GVFs can be used in the RL task specification.

Formally, a micro-objective RL problem is an episodic task represented by the 8-tuple (S,A, P, µ, ψ, T, [(φ1, ψ1, T1), ..., (φi, ψi, Ti),
..., (φk, ψk, Tk)],�), where S, A, P , µ are the state space, action space, transition probabilities, and initial state distribution as usual.
ψ ⊂ S is the terminal states of the task, and T is the time horizon. The task terminates whenever t ≥ T , or a state in ψ is reached.
(φ1, ψ1, T1) to (φk, ψk, Tk) are the k micro-objectives as described above. Let vπ = [vπψ1,T1

(φ1|µ), vπψ2,T2
(φ2|µ), ..., vπψk,Tk

(φk|µ)]

be the value functions for all objectives, and V Π = {vπ|π ∈ Π} be the set of all realizable value functions by policies in Π, � is a
partial order defined on V ΠHR . Similar to multi-objective RL, the goal is to find the policies π ∈ Π such that vπ is a maximal element
of V Π. However, the multi-objective RL formulation introduced in Section 2.2 does not subsume micro-objective RL. For one thing,
there is no notion of objective termination in multi-objective RL. It can be shown that the optimal policy for micro-objective RL is in
general history-dependent and random, which we omit due to the space limit.

3.2 Relation with Hierarchical RL

Hierarchical RL [Barto and Mahadevan, 2003] refers to RL paradigms that exploits temporal abstraction to facilitate learning,
where the higher level policy selects ‘macro’ actions that in turn ‘call’ the lower level actions. Notable Hierarchical RL approaches
include the options formalism [Sutton et al., 1999], hierachical abstract machines (HAM) [Parr and Russell, 1997], the MAXQ
framework [Dietterich, 2000], and feudal RL [Dayan and Hinton, 1992]. However, in none of these frameworks does the specification
for temporal abstraction appear in the global RL objective. As a result, there is no clear measure on how well each temporally
abstracted action should be learned, and how important they are compared to the goal of the high-level task. The micro-objective
formulation is designed to allow temporal abstraction to be expressed as micro-objectives, therefore building the bridge between
‘objectives’ and ‘options’. To see this, recall that a micro-objective has an initiation set φi and a termination set ψi, corresponding
to the initiation set I ⊂ S and termination condition β : S → [0, 1]R of an option. If the initiation set I and the goal states 3

of an option coincide with the initiation set φi and the termination set ψi of a micro-objective, then the micro-objective can be
thought of as a measure of how important this option is. To be more concrete, consider the following task where the initial state is
s0, the goal state is s1, and ψ is a set of intermediate states. o0 is a hypothetical (might not exist, and is to be learned if needed)
option that takes the agent from s0 to s1 without passing through ψ. Similarly, o1 is a hypothetical option from s0 to ψ, and o2 is
a hypothetical option from ψ to s1. Such a task can be a taxi agent at location s0 driving a passenger from a pick-up location ψ
to a destination s1, in which case we can define two micro-objectives ({s0}, ψ, T1) and (ψ, {s1}, T2), corresponding to o1 and o2

respectively. In this example, a micro-objective for o0 is not needed, because passing though ψ is required. The value function is thus
vπ = [vπψ,T1

({s0}|µ(s0) = 1), vπ{s1},T2
(ψ|µ(s0) = 1)], and the partial order can be defined as vπ � vπ

′ ⇐⇒ vπψ,T1
({s0}|µ(s0) =

1) ≤ vπ
′
ψ,T1

({s0}|µ(s0) = 1) ∧ vπ{s1},T2
(ψ|µ(s0) = 1) ≤ vπ

′
{s1},T2

(ψ|µ(s0) = 1). Another possible scenario for such a task
would be an agent navigating through a maze, and ψ is only some heuristics. In this case, the only important micro-objective is
({s0}, {s1}, T3), which corresponds to option o3. o1 and o2 are only there to help exploration. Let vπ = [vπψ,T1

({s0}|µ(s0) =

1), vπ{s1},T2
(ψ|µ(s0) = 1), vπ{s1},T3

({s0}|µ(s0) = 1)], the partial order can be defined as

vπ � vπ
′ ⇐⇒ vπ{s1},T3

({s0}|µ(s0) = 1) < vπ
′
{s1},T3

({s0}|µ(s0) = 1) ∨
(
vπ{s1},T3

({s0}|µ(s0) = 1) = vπ
′
{s1},T3

({s0}|µ(s0) = 1)∧

vπψ,T1
({s0}|µ(s0) = 1) ≤ vπ′ψ,T1

({s0}|µ(s0) = 1) ∧ vπ{s1},T2
(ψ|µ(s0) = 1) ≤ vπ′{s1},T2

(ψ|µ(s0) = 1)

)

3.3 Generality

We briefly discuss the generality of the micro-objective RL formulation. Since the state space, action space and transition probabilities
are the same as in a MDP, our only concern is whether micro-objectives, together with the partial order can imply an arbitrary optimal
policy. If for any stationary deterministic policy π∗ and any Markov dynamics (S,A, P), there exists a partial order and a set of micro-
objectives such that π∗ is optimal, then we can cast any single-objective RL problem into an equivalent micro-objective problem.
Now we show that micro-objective RL can indeed imply an arbitrary stationary deterministic policy π∗ ∈ ΠSD. Let s1, s2, ...s|S| be
an enumeration of the finite state space S, we define |S|micro-objectives vπ{(h,sj ,π∗(sj))|h∈H},1({(h, sj)|h ∈ H}|µ), j = 1, 2, ..., |S|,
which, with abuse of notation, we write as vπj . In other words, for each state s ∈ S we define an event: taking π∗(s) in s. If we

3Options do not need to have goal states. This is an intentional oversimplification to illustrate the idea.

3

Paper # 40 285

further define the partial order as vπ � vπ
′ ⇐⇒ vπ1 ≤ vπ

′
1 ∧ ... ∧ vπ|S| ≤ vπ

′
|S|, then π∗ is optimal for this micro-objective RL task.

Therefore, given enough micro-objectives, the micro-objective formulation is at least as general as the standard RL formulation.

4 Discussions

We introduced micro-objective RL, a general RL formalism that not only solves the problem of standard RL formulation that only
the expectation is considered, but also allows temporal abstraction to be incorporated into the global RL objective. Intuitively, this
micro-objective paradigm bears more resemblance to how humans perceive a task — it is hard for a human to tell what reward they
receive at a certain time, but it is relatively easy to tell how good a particular combination of events is. Ongoing research topics
include effective algorithms for micro-objective RL, and compact representation of similar micro-objectives.

References
Eitan Altman. Constrained Markov Decision Processes. Chapman & Hall/CRC, 1999. ISBN 9780849303821.
Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems,

13(1-2):41–77, 2003. doi: 10.1023/A:1022140919877. URL https://doi.org/10.1023/A:1022140919877.
Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov decision processes with multiple objectives. In

STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006,
Proceedings, pages 325–336, 2006. doi: 10.1007/11672142\ 26. URL https://doi.org/10.1007/11672142 26.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in Neural Information Processing Systems 5,
[NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992], pages 271–278, 1992. URL http://papers.nips.cc/
paper/714-feudal-reinforcement-learning.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res., 13:
227–303, 2000. doi: 10.1613/jair.639. URL https://doi.org/10.1613/jair.639.

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under constraints. CoRR, abs/1109.2147,
2011. URL http://arxiv.org/abs/1109.2147.

Sven Koenig and Reid G. Simmons. Risk-sensitive planning with probabilistic decision graphs. In Proceedings of the 4th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR’94). Bonn, Germany, May 24-27, 1994., pages
363–373, 1994.

Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies of machines. In Advances in Neural Information Pro-
cessing Systems 10, [NIPS Conference, Denver, Colorado, USA, 1997], pages 1043–1049, 1997. URL http://papers.nips.cc/paper/
1384-reinforcement-learning-with-hierarchies-of-machines.

Diederik Marijn Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-objective sequential decision-
making. CoRR, abs/1402.0590, 2014. URL http://arxiv.org/abs/1402.0590.

Makoto Sato, Hajime Kimura, and Shibenobu Kobayashi. Td algorithm for the variance of return and mean-variance reinforcement
learning. Transactions of the Japanese Society for Artificial Intelligence, 16(3):353–362, 2001. doi: 10.1527/tjsai.16.353.

Craig Sherstan, Dylan R. Ashley, Brendan Bennett, Kenny Young, Adam White, Martha White, and Richard S. Sutton. Comparing
direct and indirect temporal-difference methods for estimating the variance of the return. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 63–72,
2018. URL http://auai.org/uai2018/proceedings/papers/35.pdf.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999. doi: 10.1016/S0004-3702(99)00052-1. URL https://doi.org/10.
1016/S0004-3702(99)00052-1.

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam White, and Doina Precup. Horde: a
scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In 10th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pages 761–768,
2011. URL http://portal.acm.org/citation.cfm?id=2031726&CFID=54178199&CFTOKEN=61392764.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Temporal difference methods for the variance of the reward to go. In Proceedings of
the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 495–503, 2013.
URL http://jmlr.org/proceedings/papers/v28/tamar13.html.

D.J White. Multi-objective infinite-horizon discounted markov decision processes. Journal of Mathematical Analysis and Ap-
plications, 89(2):639 – 647, 1982. ISSN 0022-247X. doi: https://doi.org/10.1016/0022-247X(82)90122-6. URL http://www.
sciencedirect.com/science/article/pii/0022247X82901226.

Stella X Yu, Yuanlie Lin, and Pingfan Yan. Optimization models for the first arrival target distribution function in discrete time.
Journal of Mathematical Analysis and Applications, 225(1):193 – 223, 1998. ISSN 0022-247X. doi: https://doi.org/10.1006/
jmaa.1998.6015. URL http://www.sciencedirect.com/science/article/pii/S0022247X98960152.

4

Paper # 40 286

Learning Treatment Policies for Mobile Health
Using Randomized Least-Squares Value Iteration

Celine Liang
Harvard University

Cambridge, MA 02138
cliang@college.harvard.edu

Serena Yeung
Harvard University

Cambridge, MA 02138
serenayeung@g.harvard.edu

Susan Murphy
Harvard University

Cambridge, MA 02138
samurphy@fas.harvard.edu

Abstract

In this work, we investigate the use of Randomized Least-Squares Value Iteration (RLSVI), a recently proposed rein-
forcement learning algorithm, for learning treatment policies in mobile health. RLSVI uses a Bayesian approach to learn
action-state value functions and then selects subsequent actions using the posterior distribution of this learned function.
An important challenge in mobile health is to learn an optimal policy, that is, which treatment (usually in the form of a
mobile notification) to provide a user in a given state. Providing too few notifications defeats the purpose of the inter-
vention, while bombarding with too many notifications increases the burden of the user and reduces the effectiveness
of the treatment. Learning a policy for a user is not easy and must be done efficiently to avoid user disengagement.
To do this requires a delicate balance of exploration and exploitation. The goal of this research is to develop an online
algorithm for mobile health that can learn and update the treatment policy efficiently and continuously. We consider
policies for a binary action: sending a notification to the user (pinging) or refraining from any action (waiting). We first
test the original, finite-horizon RLSVI algorithm on a testbed that reflects a simplified mobile health setting, for a two-
dimensional state space over a finite time horizon. Notifying the user accumulates quantities of short-term reward at
the expense of decreased potential total reward, while waiting accumulates no reward but increases the potential total
reward in the future. We then develop and test a continuing task extension of RLSVI that is more relevant to mobile
health problems in the real world and show that for both episodic and continuing tasks, RLSVI performs more robustly
than an algorithm employing least-squares value iteration (LSVI) to learn the action-state value function while selecting
actions in an epsilon-greedy manner.

Keywords: mobile health, user notification, treatment policies, randomized
value iteration, continuing task

Paper # 234 287

1 Introduction

With the rise in popularity of mobile devices and wearable technology, it is now possible to deliver behavioral treatments
in situ (usually in the form of a mobile notification). In mobile health, one of the most important aspects of delivering
treatment is learning which treatment is best to provide a user in a given state. Intuitively, providing too few mobile
notifications may defeat the purpose of the treatment, while bombarding with too many notifications may increase a
sense of burden on the user and reduce the effectiveness of the treatment. Reinforcement learning (RL) can be used
to learn policies for delivering treatment that balance this trade-off for each user. However, the application domain of
mobile health presents a number of particular challenges. The biggest challenge is the importance of efficient learning.
Because the nature of reinforcement learning algorithms requires the agent to interact frequently with the environment,
the very act of collecting data can cause users to lose interest, leading to disengagement and diminishing the efficacy
of the intervention. Another feature of mobile health is the need for online learning as a continuing task. Unlike many
problems for which training is done offline or in episodes, restarting is not an option in mobile health.

There is a growing body of work which uses RL to learn treatment policies for mobile health. The majority of these have
either applied bandit-type algorithms that optimize only for immediate reward [1, 2], or modelled future reward with
little focus on efficient exploration [3, 4]. This is problematic since greedy, bandit-type algorithms do not balance the
reward obtained vs. the burden incurred by treatment. In the reinforcement learning literature, efficient exploration has
been an important topic of study; however, much of this has been in the context of episodic learning [5, 6], which is less
applicable to many problems in mobile health that occur in a continuing task setting. Relevant to our work are methods
based on posterior sampling, in particular RLSVI [7], which have been shown to explore efficiently across a large class of
finite-horizon problems. RLSVI performs posterior sampling of value functions in a least-squares estimation framework,
and was shown to be provably more efficient in tabular learning than epsilon-greedy or Boltzmann exploration [7].

This paper studies the applicability of the finite-horizon RLSVI algorithm from [7] to mobile health as a method of
efficient exploration, and introduces an extension of the algorithm from its original episodic setting to a continuing task
setting. We evaluate the original, finite-horizon RLSVI algorithm using a simulation testbed that reflects a simplified
mobile health setting, and we also propose and evaluate a continuing task extension of RLSVI that is more representative
of mobile health problems in the real world. We confirm prior findings that RLSVI does indeed outperform LSVI in
the episodic, finite-horizon case and also establish RLSVI as performing more robustly than LSVI over a wide range of
hyperparameters, in both the episodic and continuing task settings for mobile health.

2 Methods

The goal of this work is to develop an online algorithm that can efficiently learn a policy for determining optimal times to
deliver treatment in mobile health. The policy must avoid incurring high burden on the user due to the nature of mobile
health problems described in Sec. 1. We define the notion of two types of burden: short-term and long-term. Short-term
burden is caused by a single notification or treatment that affects the user temporarily, while long-term burden is caused
by the total treatment that the user has undergone which causes them to be less sensitive to future treatments. We define
the burden size to be a measure of the user’s sensitivity to treatment, which corresponds to the quantity of short-term
burden accumulated upon receiving a notification.

In this section, we present an approach for efficiently learning treatment policies in mobile health that balance achieving
reward (e.g. desired behavior) vs. incurring too much burden. We investigate two settings: the finite-horizon setting
and the continuing task setting. First, we describe how we apply the finite-horizon RLSVI algorithm of [7] to an episodic
testbed that reflects a simplified mobile health setting. We then propose an extension of RLSVI to the continuing task
setting, using a testbed that models the typical non-restarting nature of mobile health problems.

2.1 Finite horizon

While treatment delivery in mobile health is more appropriately modelled as a continuing task in most situations, we can
model the problem using a finite horizon when it is reasonable to assume that there are no considerable long term effects.
We can imagine a simple scenario in which the user follows a daily “routine” which resets every day, such that learning
can occur episodically at the end of each day. Under the finite-horizon assumption, the RLSVI algorithm proposed in
[7] can be used. Here, we describe our problem setup in the finite-horizon setting, and our use of RLSVI to enable more
efficient learning.

Problem setup. Following the intuition described above, let H denote the finite horizon length corresponding to the
episodic time before a reset in the mobile health problem. We model the problem using a two-dimensional state capturing
a user’s level of short-term and long-term burden, respectively. Specifically, we define the state at timestep t of episode
l to be (s

(0)
l,h , s

(1)
l,h) ∈ {0, . . . ,Hd} × {0, . . . ,H}. The initial state resets to (0, 0) at the beginning each episode. At each

timestep of each episode, an action al,h ∈ {0, 1} is selected, where 1 corresponds to pinging the user with a mobile

1

Paper # 234 288

notification and 0 corresponds to waiting (no ping). We define a deterministic transition function T (s, a) = s′ such that
(s

(0)
l,h+1, s

(1)
l,h+1) = T ((s

(0)
l,h , s

(1)
l,h), 1) = (s

(0)
l,h + d, s

(1)
l,h + 1) when a ping action is taken and (s

(0)
l,h+1, s

(1)
l,h+1) = T ((s

(0)
l,h , s

(1)
l,h), 0) =

(max(0, s
(0)
l,h − 1), s

(1)
l,h) when a wait action is taken. Intuitively, pinging has an increasing effect on both short and long-

term burden, while waiting allows the user to recover from the burden. We also define a reward functionR((s(0), s(1)), a)

such that R((s(0), s(1)), 0) = 0 given a wait action and R((s(0), s(1)), 1) = r−s
(0)

0 r−s
(1)

1 given a ping action, for fixed
r0 ≥ 1, r1 ≥ 1. The reward observed from taking action al,h in state (s

(0)
l,h , s

(1)
l,h) is then rl,h = R((s

(0)
l,h , s

(1)
l,h), a) + ε, where

ε ∼ N (0, σ2
true) is random noise with true standard deviation σtrue.

Algorithm 1: Continuing task RLSVI
Input: Features Φ(si, ai), ri : i < t, λ > 0, σ > 0, H > 0

Output: θ̃t,0, ...θ̃t,H−1
for h = H − 1, ..., 1, 0 do

Generate regression problem A ∈ R(t−H+1)×K , b ∈ Rt−H+1:
for i = 0, 1, ..., t−H do

Ai ← Φ(sh+i, ah+i)

bi ←
{
rh+i + maxα

(
Φθ̃t,h+1

)
(sh+i+1, α) if h < H − 1

rh+i if h = H − 1

end
Bayesian linear regression for the value function

θ̄t,h ← σ−2
(
σ−2ATA+ λI

)−1
AT b

Σt,h ←
(
σ−2ATA+ λI

)−1

Sample θ̃t,h ∼ N (θ̄t,h,Σt,h) from Gaussian posterior
end

Algorithm 2: Policy learning procedure for continuing tasks
Input: Features Φ; σ > 0, λ > 0, H
for t = 0, 1, 2, ... do

if t ≤ H − 1 then
Use random θ̃t,0, θ̃t,1, ..., θ̃t,H−1 ∼ N (0, 1/λ)

else
Obtain θ̃t,0, ..., θ̃t,H−1 from Algorithm 1

end

Sample at ∈ arg maxα∈A
(

Φθ̃t,0

)
(st, α)

Observe rt and st+1

end

RLSVI. In order to learn treatment policies for this
mobile health problem, we use the RLSVI algorithm
introduced in [7] for the finite-horizon setting. RLSVI
has been shown to enable more efficient learning
through randomized sampling of value functions (as
opposed to actions), in a least-squares value iteration
framework. More specifically, the RLSVI algorithm
uses a matrix of basis functions Φ to represent the
state-action space. It then performs Bayesian linear
regression to approximate the value function at each
timestep of the finite horizon, starting with the last
timestep: h = H − 1, ..., 1, 0. At each timestep, ob-
served data from previous episodes for that particu-
lar timestep is used to perform the linear regression,
and the resulting parameter mean and covariance
matrix is used to sample a value function that will
be used in determining the action at that timestep in
the next episode.

2.2 Continuing task

While the finite-horizon testbed is a good starting
point for verifying the efficacy of RLSVI, it is not di-
rectly applicable to mobile health problems where
learning must be continuous and online. Although
temporal factors and user routines still exist, it is
naive to assume that the user state does a complete
“reset” every day. For our continuing task simula-
tions, we use a similar setup to the finite-horizon
setting, except that training is continual rather than
episodic, and for a given state, the level of long-term
burden is determined by the number of pings in a
fixed memory window of length T of previous ac-
tions, rather than all previous actions (due to the infinite nature of the problem). Instead of the time horizon, we let
H be the lookahead horizon on which to perform value iteration, then use the value function corresponding to the first
step of the lookahead horizon to determine the next action.

Problem setup. To model the continuing task, we now no longer have an episode length or restarts to the initial state
at the beginning of each episode. Instead, we define a memory window T , which is the time window over which long-
term burden can accumulate. Our two-dimensional state at each timestep t is now (s

(0)
t , s

(1)
t) ∈ {0, . . . , d(T + 1)} ×

{0, . . . , T}. At each timestep, an action at ∈ {0, 1} is selected. As in the finite-horizon setting, 1 corresponds to pinging
the user with a mobile notification and 0 corresponds to waiting (no ping). Our deterministic transition function is
Tinf (s, a) = s′ such that (s

(0)
t+1, s

(1)
t+1) = Tinf ((s

(0)
t , s

(1)
t), 1) = (min(s

0)
t + d, d(T + 1)), pt) when a ping action is taken and

(s
(0)
t+1, s

(1)
t+1) = Tinf ((s

(0)
t , s

(1)
t), 1) = (max(0, s

(0)
t − 1), pt) when a wait action is taken, where pt =

∑t
i=max(0,t−T+1) 1ai=1

is the number of pings in the memory window of the last T timesteps (including action at). We use the same reward
function R((s(0), s(1)), a) defined in the finite-horizon problem such that for a given state (s

(0)
t , s

(1)
t), the reward observed

from taking action at is rt = R((s
(0)
t , s

(1)
t), at) + ε, where ε ∼ N (0, σ2

true) is random noise.

Extending RLSVI for use with continuing tasks. In order to use RLSVI for the continuing task setting that is prevalent
in mobile health, we extend it from finite to infinite horizon as presented in Algorithm 1. The full learning algorithm for
continuing tasks is presented in Algorithm 2. Our extension still retains roughly the same structure as the RLSVI algo-

2

Paper # 234 289

rithm in [7]; however, we make two important modifications: since the problem is no longer episodic, rolling lookaheads
of length H are used in place of the length H episodes in [7], and the value functions approximate the expected total
reward over the next H time steps for each state. For initial timesteps t = 0, ...,H − 1, random actions are taken to accu-
mulate observations. Then as described in Algorithm 2, at every subsequent timestep t = H and onwards, Algorithm 1
is used to output H policies θ̃t,h for h = H − 1, ..., 0, corresponding to each step of the length-H lookahead. The policy
θ̃t,h is obtained through Bayesian linear regression as in the finite-horizon case; however, due to the lack of episodes, the
parameter mean and covariance matrix θ̄t,h,Σt,h are computed using observations from the hth step of all previously
observed stretches of length-H consecutive timesteps. At timestep t, there are a total of t−H previously observed such
length-H “episodes” i, so row Ai of matrix A contains the observed feature vector for timestep i + h, while element bi
of regression target vector b is the expected total reward over the next H steps. When h = H − 1, regression target bi is
determined using the policy θ̃t−1,H−1 obtained from RLSVI at the previous timestep t−1; for all other h, bi is determined
using the policy θ̃t,h+1. While this procedure corresponds to computing policies looking H timesteps into the future, the
next action at is always selected using only the policy θ̃t,0 corresponding to the first timestep of the lookahead. To sum-
marize, we solve the continuing task problem by formulating it as a series of finite-horizon problems which use rolling
lookaheads of length H . Our formulation is motivated in spirit by algorithms in model predictive control which perform
iterative, finite-horizon planning over short time scales in complex systems.

3 Experiments

In this section, we present experiments evaluating RLSVI in the finite-horizon and continuing task settings for mobile
health, using simulation testbeds built to model these settings.

Baseline. We compare with Least-Squares Value Iteration (LSVI) with ε-greedy exploration as our baseline in these
experiments. LSVI has the same framework as RLSVI in that it performs linear regression to compute the approximation
of expected future reward at each timestep using observed data from previous episodes. However rather than sampling
from a posterior distribution, LSVI uses the mean obtained from the linear regression as the estimate for the expected
future reward, and thus has no built-in exploration. Therefore ε-greedy must be used in addition to LSVI to encourage
exploration. We experiment with different ε values in our simulations. See [7] for a juxtaposition of LSVI and RLSVI.

Implementation details. For all simulations, we use one-hot vector representations of the state-action space as our
feature matrix Φ and reward standard deviation σtrue = 0.01. For the initial episodic finite-horizon simulations, we used
a time horizon of H = 16 for burden size d = 3 and reward decay rates r0 = 1.5, r1 = 1.0 for the reward function,
modeling a treatment with no long-term burden effects. Finite-horizon simulations were run for 1000 episodes of 16
timesteps each. In the continuing task simulations, we consider burden size d = 3, memory window T = 4, lookahead
horizon H = 8, and reward decay rates r0 = 1.5, r1 = 1.2 for the reward function, modeling a treatment where long-term
burden effects are now present. We run all continuing task experiments for 10000 timesteps and used discount factor
γ = 0.95. For all experiments, a fixed random seed was used over all hyperparameters for a given trial to allow for
comparability.

Evaluation. To compare RLSVI and LSVI, we evaluate performance over a broad range of hyperparameters using two
metrics: the final reward obtained after the end of the learning process, and the mean-squared error of the total reward
obtained by the learned policy as compared to the optimal policy. The final reward is calculated by taking the average
total reward obtained in the last 100 episodes (in the finite-horizon case) or last 100 timesteps (in the continuing task
case). The MSE is computed as (r − ropt)2 + 1

N

∑N
n=1(rn − r)2, where N is the number of trials that were performed, rn

is the total reward obtained in the nth trial, r is the mean total reward averaged over N trials, and ropt is the maximum
reward achievable using the optimal policy.

3.1 Finite horizon

We first analyze our results for the finite-horizon setting. As discussed in Sec. 2.1, this is a simpler setting corresponding
to problems in mobile health with little to no long term effects, and also provides useful intuition for comparing RLSVI
and LSVI. Using our testbed for this setting, the optimal policy achieves a final reward of 4.67. Considering the MSE
metric, RLSVI achieves a lowest MSE of 3.53 · 105 and final reward 4.25 with hyperparameters (λ, σ) = (1, 0.1), while
LSVI achieves a lowest MSE of 3.91 · 105 and final reward 4.28 with (λ, ε) = (10−5, 0.1). Considering the highest final
reward metric, RLSVI attains the optimal policy reward of 4.67 with MSE 1.48·106 using (λ, σ) = (0.1, 0.01), while LSVI is
not able to learn the optimal policy reward and only obtains final reward 4.28 with MSE 3.91·105 using (λ, ε) = (10−5, 0.1).
For the hyperparameters that achieve low MSE, RLSVI sacrifices some exploration to achieve the low MSE, and therefore
RLSVI and LSVI both achieve similar MSE and final reward. However, for the hyperparameters that achieve high final
reward, RLSVI has higher MSE because the initial 500 episodes are a period of high exploration and lower rewards,
which allows the algorithm to learn the optimal policy while LSVI does not. From Figure 1, we can also see that overall,
RLSVI performance is more robust over different parameter values compared to LSVI, which seems to perform poorly

3

Paper # 234 290

(a) Final reward achieved for LSVI (left) vs.
RLSVI (right) (b) MSE for LSVI (left) vs. RLSVI (right)

Figure 1: Finite-horizon simulation results (burden size d = 3, horizon H = 16)

(a) Final reward achieved for LSVI (left) vs.
RLSVI (right) (b) MSE for LSVI (left) vs. RLSVI (right)

Figure 2: Continuing task simulation results (burden size d = 3, lookahead H = 8, window T = 4)

for epsilon values besides 0.1. This is significant in mobile health as the optimal hyperparameters are not known before
clinical trials begin, and thus it is important for algorithms to be robust and effective across a large range of parameters.

3.2 Continuing tasks

In the continuing task setting, we observe similar behavior in comparing RLSVI vs. LSVI. For reference, the average final
reward obtained by the optimal continuing task policy is 0.2083. Considering the MSE metric, RLSVI achieves a lowest
MSE of 9.35 · 104 and final reward 0.1915 with (λ, σ) = (2, 10−4), while LSVI achieves a lowest MSE of 4.71 · 104 and final
reward 0.1947 with (λ, ε) = (10−3, 0.1). Considering the highest final reward metric, RLSVI attains final reward 0.2041,
almost the optimal reward, with MSE 1.18 · 105 using (λ, σ) = (0.05, 0.1), while LSVI does not quite achieve optimal final
reward and attains 0.1951 with MSE 9.62 · 104 using (λ, ε) = (1, 0.1). Due to the explorative nature of RLSVI, the MSE
of RLSVI tends to be higher than LSVI, but we observe that Figure 2 again illustrates the improved robustness of RLSVI
over different hyperparameters, compared to LSVI.

4 Conclusion

In this paper, we both investigated the application of finite-horizon RLSVI to mobile health, and introduced an exten-
sion of RLSVI for continuing tasks that is able to learn continuously rather than episodically and therefore model the
more prevalent and complex continuing task setting in mobile health. In simulation experiments for these mobile health
problems, we showed that RLSVI outperforms LSVI and is additionally more robust than LSVI on both finite and contin-
uing task problems over various hyperparameters. We intend to continue investigating the extended RLSVI algorithm
for continuing tasks on increasingly larger state spaces and testing it using non-stationary rewards and higher noise
environments, with the aim of applying it to a continuing task mobile health problem in an ongoing real-world study.

References
[1] Mashfiqui Rabbi, Min Hane Aung, Mi Zhang, and Tanzeem Choudhury. Mybehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In

Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 707–718. ACM, 2015.

[2] Elad Yom-Tov, Guy Feraru, Mark Kozdoba, Shie Mannor, Moshe Tennenholtz, and Irit Hochberg. Encouraging physical activity in patients with diabetes: intervention using a reinforcement
learning system. Journal of medical Internet research, 19(10), 2017.

[3] Mo Zhou, Yonatan Mintz, Yoshimi Fukuoka, Ken Goldberg, Elena Flowers, Philip Kaminsky, Alejandro Castillejo, and Anil Aswani. Personalizing mobile fitness apps using reinforcement learning.
In IUI Workshops, 2018.

[4] Shanice Clarke, Luis G Jaimes, and Miguel A Labrador. mstress: A mobile recommender system for just-in-time interventions for stress. In 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC), pages 1–5. IEEE, 2017.

[5] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational information maximizing exploration. In Advances in Neural Information Processing Systems,
pages 1109–1117, 2016.

[6] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pages 2753–2762, 2017.

[7] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. 2016.

4

Paper # 234 291

A cognitive tutor for helping people overcome present bias

Falk Lieder∗
Max Planck Institute for Intelligent Systems

Tübingen, Germany
falk.lieder@tuebingen.mpg.de

Frederick Callaway∗
Princeton University
Princeton, NJ, USA

fredcallaway@princeton.edu

Yash Raj Jain
Max Planck Institute for Intelligent Systems

Tübingen, Germany
f20140604@hyderabad.bits-pilani.ac.in

Paul M. Krueger
Princeton University
Princeton, NJ, USA

paul.m.krueger@gmail.com

Priyam Das
UC Irvine

Irvine, CA, USA
priyam.das@uci.edu

Sayan Gul
UC Berkeley

Berkeley, CA, USA

Thomas L. Griffiths
Princeton University
Princeton, NJ, USA

tomg@princeton.edu

∗ These authors contributed equally.

Abstract
People’s reliance on suboptimal heuristics gives rise to a plethora of cognitive biases in decision-making including the present bias,
which denotes people’s tendency to be overly swayed by an action’s immediate costs/benefits rather than its more important long-term
consequences. One approach to helping people overcome such biases is to teach them better decision strategies. But which strategies
should we teach them? And how can we teach them effectively? Here, we leverage an automatic method for discovering rational
heuristics and insights into how people acquire cognitive skills to develop an intelligent tutor that teaches people how to make better
decisions. As a proof of concept, we derive the optimal planning strategy for a simple model of situations where people fall prey to the
present bias. Our cognitive tutor teaches people this optimal planning strategy by giving them metacognitive feedback on how they
plan in a 3-step sequential decision-making task. Our tutor’s feedback is designed to maximally accelerate people’s metacognitive
reinforcement learning towards the optimal planning strategy. A series of four experiments confirmed that training with the cognitive
tutor significantly reduced present bias and improved people’s decision-making competency: Experiment 1 demonstrated that the
cognitive tutor’s feedback can help participants discover far-sighted planning strategies. Experiment 2 found that this training effect
transfers to more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the
training. Finally, Experiment 4 found that practicing with the cognitive tutor can have additional benefits over being told the strategy
in words. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to
improving the human mind.

Keywords: cognitive training; planning; metacognitive reinforcement learning; cognitive plasticity

Acknowledgements

This work was supported by grant number ONR MURI N00014-13-1-0341 and a grant from the Templeton World Charity Foundation
to TLG. We thank Tania Lombrozo, Peter Dayan, Thomas Hills, and Mike Mozer for helpful comments and discussions.

Paper # 61 292

1 Introduction

Research on heuristics and biases has identified many ways in which human judgment and decision-making might be sub-optimal
(Tversky and Kahneman, 1974). For instance, decision-makers often partly or entirely neglect the long-term consequences of their
choices while being overly swayed by their immediate costs or benefits in the present. This phenomenon is known as the present bias
(O’Donoghue and Rabin, 1999) and gives rise to procrastination, impulsivity, and poor economic decisions, such as people’s failure
to save for retirement. Interventions that help people overcome present bias could thus confer significant benefits to individuals,
organizations, and society.

Two of the main challenges for improving the human mind are a) discovering effective cognitive strategies, and b) teaching them
effectively so that people will apply them in everyday life. Our recent work has begun to address the first problem by developing
automatic methods for deriving resource-rational cognitive strategies (Lieder and Griffiths, 2019; Lieder et al., 2017). Here, we
address the second problem by developing and evaluating a cognitive tutor that teaches people far-sighted planning strategies.

We start by introducing the experimental paradigm we use to observe and intervene on the decision strategies that might give rise to
the present bias. We then derive a resource-rational planning strategy for overcoming the present bias. Next, we present a cognitive
tutor that teaches people this cognitive strategy via a metacognitive feedback mechanism. Finally, we evaluate our cognitive tutor in
a series of experiments and discuss our findings and directions for future work.

2 Measuring present bias with the Mouselab-MDP paradigm

Previous work has inferred present bias from the choices that people make. But the underlying mechanisms remain to be elucidated.
Here, we use a recently developed process-tracing paradigm (Callaway et al., 2017) to measure the decision strategies that might give
rise to present bias. Making future-minded decisions requires planning. Planning, like all cognitive processes, cannot be observed
directly but has to be inferred from observable behavior. To be able to give people feedback on the quality of their planning strategies
we therefore draw on the Mouselab-MDP paradigm (Callaway et al., 2017) illustrated in Figure 1a and 1c to make people’s behavior
more diagnostic of their planning strategies. This paradigm externalizes people’s beliefs and planning operations as observable states
and actions (Callaway et al., 2018,1). Inspired by the Mouselab paradigm (Payne et al., 1993), it uses people’s mouse-clicking as
a window into their planning. Participants are presented a series of route planning problems where each location (the gray circles)
harbors a gain or loss. These potential gains and losses are initially occluded, corresponding to a highly uncertain belief state. The
participant can reveal each location’s reward by clicking on it and paying a fee of $1.

The key property of situations in which present bias impairs human decision-making is the misalignment between immediate reward
and long-term value. As an illustration of this problem, consider the choice between beginning work on a manuscript and watching
a YouTube video. Staring at a blank page might make you feel anxious in the short run, but you will feel very satisfied when you
submit the paper for publication months later. By contrast, the YouTube video will give you immediate joy but you might later come
to regret the wasted time. To make good decisions in situations like this, people have to look beyond the salient immediate rewards,
set a goal for the future, plan how to achieve it, and execute the plan. What makes this far-sighted approach worthwhile is that the
range of outcomes that can be obtained by a concerted sequence of actions over an extended period of time is much larger than the
range of rewards that can be attained immediately.

To capture this aspect of many real-world situations within the Mouselab paradigm, we constructed 3-step sequential decision envi-
ronments where the range of rewards increases from the first step to the second step and was largest in the third step. In each episode,
rewards are independently drawn from discrete uniform distributions; in the first step the possible values were {−4,−2,+2,+4}; in
the second step the possible values were {−8,−4,+4,+8}; and in the third step the possible values were {−48,−24,+24,+48}. To
plan their actions participants can uncover the rewards at each location by clicking on it for a fee of $1 per click. This captures that
the decision-maker’s time is costly.

Recording the clicks people make in this paradigm allows us to detect whether their decisions are swayed by present bias. That is, if
a participant only inspects the immediate outcomes of the first step while ignoring the outcomes of the second step and the third step,
then we know that their decision was affected by present bias. Conversely, if a participant looks at the potential final outcomes in
the third step while ignoring the immediate outcomes, we can be confident that they were not swayed by present bias. Our paradigm
thereby allows us to i) observe the maladaptive heuristics that give rise to present bias, and to ii) trace whether and how they improve
in response to interventions. To develop an effective intervention, the next section derives the optimal planning strategy for the
environment modelled by this paradigm.

3 Discovering optimal planning strategies that counter present bias

Teaching clever heuristics is a promising approach to improving decision-making (Gigerenzer and Todd, 1999; Hertwig and Grüne-
Yanoff, 2017). But which heuristics should be taught and how can we discover such heuristics? The theory of resource-rationality
provides a mathematically precise definition of optimal heuristics (Lieder and Griffiths, 2019). In essence, the optimal heuristic for a
decision-maker to use in a given environment achieves the best possible tradeoff between the expected utility of the resulting decision

1

Paper # 61 293

and the expected opportunity cost of its execution. In the Mouselab-MDP paradigm, heuristics can be expressed as rules for deciding
where to click given which information has already been revealed, when to stop clicking, and where to move given the information
that has been uncovered. In previous work, we derived the optimal planning strategies for several Mouselab-MDP environments by
solving metalevel MDPs using backward induction (Callaway et al., 2018).

In particular, Callaway et al. (2018) found that the resource-rational planning strategy for the environment described in Section 2 is
to first set a goal by evaluating potential final destinations. As soon as inspecting a potential final destination uncovers the highest
possible reward (+48), the optimal strategy selects the path that leads to it and terminates planning. If all potential final destinations
have been inspected and one was revealed to be better than all the others, then the optimal strategy immediately decides to go
there; else the optimal strategy inspects additional nodes located immediately before those most promising final destination and then
chooses the path that is most promising according to the revealed information (and stops planning as soon as one path is revealed to
be as good as possible). Having discovered this optimal planning strategy, we now present a cognitive tutor that teaches it to people.

4 Countering present bias with cognitive tutoring

We developed a cognitive tutor that teaches cognitive strategies by giving people metacognitive feedback. Our tutor’s pedagogy is
based on findings suggesting that people learn how to decide at least partly from the rewards and punishments they experience as
a consequence of their decisions (Krueger et al., 2017; Lieder and Griffiths, 2017). This evidence for metacognitive reinforcement
learning suggests that it should be possible to apply methods that have been developed to accelerate model-free reinforcement
learning in robots– such as reward shaping (Ng et al., 1999)– to accelerate metacognitive learning in people. Following this line of
reasoning, we used the following reward shaping method to generate optimal feedback signals for accelerating the process by which
people learn how to make better decisions:

1. Model the cognitive function to be improved (i.e., planning) and the available cognitive operations (e.g., simulating the
outcome of taking a certain action in a certain state) and their costs as a metalevel Markov Decision Process (MDP).

2. Compute the values of the computations c people might perform in different belief states b (i.e., the state-action value
function Qmeta(b,c)) by solving the metalevel MDP.

3. Let people practice the cognitive function to be improved and infer their computations from process tracing data.

4. Score people’s inferred computations by

score(b,c) = Q̂meta(b,c)−max
c

Q̂meta(b,c). (1)

5. Translate score into reinforcement and a feedback message.

We completed Step 1 and Step 2 in previous work (Callaway et al., 2018). Step 3 is accomplished by using the Mouselab-MDP
paradigm to measure people’s planning operations. Finally, the feedback signal computed in Step 4 is translated into a delay penalty
of 2− score seconds if the participant made an error or 0 seconds if their planning operation was optimal. The resulting feedback is
given immediately after each click.

The cognitive tutor shown in Figure 1a integrates this feedback mechanism into the Mouselab-MDP paradigm and augments it with
demonstrations of the optimal strategy described in Section 3. That is, the tutor’s feedback has two components: i) a delay penalty
whose duration communicates how sub-optimal the participant’s planning operation was, and ii) a hint about what the optimal strategy
would have done differently. Concretely, if the tutee makes an error then the planning operation that the optimal strategy would have
performed instead is highlighted in blue (see Figure 1a). By contrast, when participants respond correctly, then they are told that they
did a good job and can move on to the next click immediately.

5 Results

We evaluated our cognitive tutor in four online experiments that were run on Amazon Mechanical Turk. For each of these experiments
we recruited about 50 participants per condition. Participants were paid performance-based bonuses.

In the control condition of each experiment, participants solved 31 different 3-step sequential decision problems in a plain version
of the Mousleab-MDP paradigm shown in Figure 1a. Inspecting the recorded click sequences revealed that 38% of the participants
in the control condition exhibited the present bias on the first trial. We identified three distinct planning strategies that gave rise
to the present bias: i) a myopic satisficing strategy that inspects the immediate outcomes of alternative actions until it encounters
a positive outcome and then immediately chooses the corresponding action, ii) a myopic maximizing strategy that inspects each
action’s immediate outcomes and then chooses the action with the best immediate outcome, and iii) an overly frugal myopic strategy
that inspects only a single immediate outcome and nothing else.

Experiments 1-3 employed a between-subjects pre-post design comparing the effects of practicing the task with versus without the
cognitive tutor. In Experiment 1, the pre-test, training, and post-test blocks all employed the same 3-step planning task shown in

2

Paper # 61 294

Training Transfer
a c

b d

Figure 1: (a) Example feedback from the cognitive tutor in the training phase. (b) Participants learn to achieve high scores faster with
the tutor’s feedback. (c) A more difficult transfer problem. Feedback is not given in either condition. (d) Participants who received
feedback in the training phase outperform control participants when tested immediately or after a 24 hour delay.

Figure 1a. We found that the tutor’s metacognitive feedback significantly improved our participants’ learning (see Figure 1b) and led
to significantly higher post-test performance (36.2 $/trial vs. 24.6 $/trial, t(2258) = 10.7, p< 0.0001).

To elucidate how these improvements in performance were accomplished, we inspected how the prevalence of different types of
strategies changed over time in the presence versus absence of optimal metacognitive feedback. We found that, over time, participants
in the control condition slowly developed more adaptive planning strategies. In this process the prevalence of near-optimal goal-
setting strategies increased from only 0.0% in the first trial to 26.4% after 30 trials (χ2(1) = 16.1, p < .0001). Conversely, the
prevalence of the sub-optimal strategies giving rise to present bias dropped from 37.7% to 9.4% (χ2(1) = 11.8, p = .0006) and the
prevalence of acting impulsively without any planning decreased from 33.9% to 26.4% (χ2(1) = 0.72, p = .3974). As shown in
Figure 2, our tutor’s optimal feedback amplified both of these changes, thereby increasing the the prevalence of near-optimal goal
setting from 0.0% to 50.9% (χ2(1) = 34.9, p < .0001) while decreasing the prevalence of short-sighted decision strategies from
45.1% to 0.0% (χ2(1) = 29.7, p < .0001) and the prevalence of impulsive choices from 29.4% to 5.9% (χ2(1) = 9.7, p = .0018).
Critically, we found that the feedback of our cognitive tutor significantly increased the proportion of people who discovered the
far-sighted goal setting strategy from 26.4% to 50.9% (χ2(1) = 6.63, p = .0100) and significantly decreased the eventual prevalence
of the maladaptive short-sighted strategies from 9.4% to 0.0% (χ2(1) = 5.05, p = .0246) and the prevalence of the maladaptive
impulsive strategy from 26.4% to 5.9% (χ2(1) = 8.01, p = .0046). Furthermore, the learning curves shown in Figure 2 suggest that
our tutor’s feedback accelerated this transition.

In Experiment 2, the training block used a flight planning task that was structurally equivalent to task used in Experiment 1, whereas
the pre-test and post-test blocks used the transfer task shown in Figure 1c). The training and the transfer task were structurally similar
in that the variance of the reward distribution increased from each step to the next – being smallest for the immediate rewards and
largest for the rewards attainable in the final step. But the transfer task used a different cover story (moving a money loving spider
through a web of cash vs. flight planning), was more complex (5-step planning vs. 3-step planning) and involved a larger number of
possible payoffs (192 vs. 10). As shown in Figure 1d, we found significant transfer effects from the relatively simple 3-step training
task to the more difficult 5-step transfer task. Participants who had practiced with the cognitive tutor performed significantly better
on the transfer task than participants who had practiced planning without the assistance of our cognitive tutor (37.4 $/trial vs. 27.4
$/trial, t(2358) = 8.8; p< .0001). This transfer effect appears to be partially mediated by people learning to plan backward – which
was also beneficial in the transfer task. Concretely, participants who had practiced with the cognitive tutor were more likely to start
planning by inspecting one of the final destinations than the control group (91.4% vs. 83.1%, Z = 3.43, p = .0006) and were less
likely to start by inspecting one of the rewards in the first step (2.21% vs. 14.8%, Z = −6.33, p < 0.0001). In Experiment 3, we
found that the transfer effect was after a delay of approximately 24 hours (39.9 $/trial vs. 39.1 $/trial, t(1578) = 7.8; p< .0001).

3

Paper # 61 295

Figure 2: Prevalence of short-sighted versus far-sighted planning
strategies for participants practicing with versus without out cog-
nitive tutor.

Experiment 4 compared the effectiveness of instruction plus
practice with the cognitive tutor versus pure instruction and in-
struction plus watching a video demonstration of the optimal
strategy. Participants in all three conditions read about the goal-
setting principle for better decision-making discovered by Call-
away et al. (2018). In the experimental conditions participants
subsequently practiced applying the goal-setting principle with
the cognitive tutor or saw a video demonstration of the optimal
strategy. After 24 hours all participants were tested on the trans-
fer task (Figure 1c). We found that participants who had prac-
ticed with the cognitive tutor performed significantly better on
the transfer task than participants who were only told about the
principle (38.0 $/trial vs. 24.2 $/trial, t(83) = 10.5, p= 0.0000).
Participants who had seen a demonstration of the optimal strat-
egy performed at the same level as participants who had prac-
ticed with the cognitive tutor (38.8 $/trial vs. 38.0 $/trial,
t(78) = −0.7, p = 0.49). In either case, our cognitive tutor
significantly improved people’s planning by teaching them the
resource-rational strategy we derived in previous work.

6 Discussion

The present work illustrates how artificial intelligence can be leveraged to discover and teach rational decision-making strategies.
The theoretical framework of resource-rationality allowed us to derive near-optimal planning strategies automatically, and the theory
of metacognitive reinforcement learning allowed us to develop an intelligent system that can teach those rational heuristics very
effectively. Our preliminary results suggest that practice with our cognitive tutor is more effective than instruction and has transferable
benefits that are retained over time. Concretely, we found that participants who practiced decision-making with our cognitive tutor
were significantly more likely to overcome the present bias by learning more far-sighted decision strategies than participants who
practiced the same task without the tutor. This suggests that combining automatic strategy discovery with intelligent tutors is a
promising approach to enhancing human rationality.

Moving forward we will investigate how diagnostic our paradigm is of people’s propensity to succumb to the present bias in everyday
life and whether our approach to enhancing human rationality can be used to improve the decisions that people make in the real world.
In future work we will also apply our approach to helping people overcome additional cognitive biases and training them to put more
thought into important decisions.

References
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., and Griffiths, T. L. (2018). A resource-rational analysis of human planning. In Proceedings

of the 40th Annual Conference of the Cognitive Science Society, Austin, TX. Cognitive Science Society.
Callaway, F., Lieder, F., Krueger, P. M., and Griffiths, T. L. (2017). Mouselab-MDP: A new paradigm for tracing how people plan. In The 3rd

Multidisciplinary Conference on Reinforcement Learning and Decision Making, Ann Arbor, MI.
Gigerenzer, G. and Todd, P. M. (1999). Simple heuristics that make us smart. Oxford University Press, New York, NY.
Hertwig, R. and Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering good decisions. Perspectives on Psychological Science,

12(6):973–986.
Krueger, P. M., Lieder, F., and Griffiths, T. L. (2017). Enhancing metacognitive reinforcement learning using reward structures and feedback. In

Proceedings of the 39th Annual Conference of the Cognitive Science Society. Cognitive Science Society.
Lieder, F. and Griffiths, T. (2017). Strategy selection as rational metareasoning. Psychological Review, 124:762 –794.
Lieder, F. and Griffiths, T. L. (2019). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational

resources. Behavioral and Brain Sciences.
Lieder, F., Krueger, P. M., and Griffiths, T. L. (2017). An automatic method for discovering rational heuristics for risky choice. In Gunzelmann,

G., Howes, A., Tenbrink, T., and Davelaar, E. J., editors, Proceedings of the 39th Annual Meeting of the Cognitive Science Society, pages
742–747, Austin, TX. Cognitive Science Society.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations: Theory and application to reward shaping. In Bratko,
I. and Dzeroski, S., editors, Proceedings of the 16th Annual International Conference on Machine Learning, pages 278–287, San Francisco,
CA. Morgan Kaufmann.

O’Donoghue, T. and Rabin, M. (1999). Doing it now or later. American Economic Review, 89(1):103–124.
Payne, J. W., Bettman, J. R., and Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press.
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157):1124–1131.

4

Paper # 61 296

Investigating Curiosity for Multi-Prediction Learning

Cameron Linke
University of Alberta

clinke@ualberta.ca

Nadia M. Ady
University of Alberta
nmady@ualberta.ca

Thomas Degris
DeepMind London

degris@google.com

Martha White
University of Alberta

whitem@ualberta.ca

Adam White
University of Alberta
DeepMind Edmonton

adamwhite@google.com

Abstract

This paper investigates a computational analog of curiosity to drive behavior adaption in learning systems with multiple
prediction objectives. The primary goal is to learn multiple independent predictions in parallel from data produced by
some decision making policy—learning for the sake of learning. We can frame this as a reinforcement learning problem,
where a decision maker’s objective is to provide training data for each of the prediction learners, with reward based on
each learner’s progress. Despite the variety of potential rewards—mainly from the literature on curiosity and intrinsic
motivation—there has been little systematic investigation into suitable curiosity rewards in a pure exploration setting.
In this paper, we formalize this pure exploration problem as a multi-arm bandit, enabling different learning scenarios to
be simulated by different types of targets for each arm and enabling careful study of the large suite of potential curiosity
rewards. We test 15 different analogs of well-known curiosity reward schemes, and compare their performance across
a wide array of prediction problems. This investigation elucidates issues with several curiosity rewards for this pure
exploration setting, and highlights a promising direction using a simple curiosity reward based on the use of step-size
adapted learners.

Keywords: Reinforcement Learning, Curiosity, Online Learning

Acknowledgements

We are very grateful to the Alberta Machine Intelligence Institute (Amii), the Reinforcement Learning and Artificial
Intelligence lab (RLAI), and DeepMind for their support of our work.

Paper # 222 297

1 Introduction

We consider the case of a lifelong learning agent that receives one stream of experience with many different incoming
streams of data (e.g. distance sensors, camera, battery state, etc.). This type of agent is outlined in the Horde architec-
ture (Sutton et al., 2011) where a robotic agent learns about many different sensorimotor streams, off-policy, in parallel,
while interacting with its environment. This architecture has been shown to scale up to making thousands of predic-
tions at once, giving the agent a rich prediction-based understanding of its environment. Other architectures such as
Universal Value Function Approximators (Schaul et al., 2015) and UNREAL (UNsupervised REinforcement and Auxil-
iary Learning) (Jaderberg et al., 2016) have shown that in complex environments with deep neural networks as function
approximators, additional predictions like these are powerful in improving the ultimate performance of the agent. The
extra predictions were used to guide the agent to new areas of the state space, or to add richness to a sparse reward
signal. Here we consider how the agent’s behaviour changes the quality of its predictions of the signals themselves, in
contrast to using the predictions as a target to guide behaviour appropriate to a separate task.

For an agent that is able to learn about many things at once, the challenge remains—how does an agent who gets only
one stream of experience decide what to learn, and how long to learn it for? Thought of another way—given a number
of target policies, what is the best behaviour policy for the agent to learn to predict and control the streams of data that
it is receiving? Prior work on this problem has either used a hand-crafted policy designed to explore the environment in
a specific way for the learners (Sutton et al., 2011; Modayil et al., 2014), or had the agent target maximizing one specific
reward signal and learning about other signals at the same time (Jaderberg et al., 2016; Schaul et al., 2015; Riedmiller
et al., 2018). A number of authors have proposed special reward signals to motivate agent learning; herein we call such
signals curiosity rewards.

While our ultimate goal is to get to a full Horde setting, it remains a complex environment for testing different types of
curiosity reward signals to drive agent behavior. The function approximation used by the agent means that we need to
consider representation learning in addition to learning to predict the signal itself. The off-policy nature of the signals
being learned also complicates the agent as it brings in choices around the type of learners to use, and further need for
sweeps over a larger number of parameters. To specifically study the mechanisms driving the curious agent, we want to
be able to remove as many of these other complicating factors as possible and focus on the mechanisms themselves.

This paper has three contributions. First we propose a new benchmark for evaluating curiosity-driven learning agents.
We propose using a bandit setting to focus on the single learning decision that the agent needs to take at each time
step—what action can I take that will maximize learning? This is different from the traditional exploration/exploitation
trade-off given by the bandit literature. We are instead focused on maximizing the long-term learning of the agent, not
the long-term reward. The setup of our bandit is to have multiple arms each with their own Least Mean Square (LMS)
learner predicting the value of the arm. Each arm’s learner can be thought of as a single prediction about a sensorimotor
stream, and the agent can take an action that will teach it more about that stream of data. This setup models the situation
that is faced by an agent in the Horde setting—at each step it is learning about a set of predictions, and a curious agent
will want to take an action that allows it to learn the most. The bandit is set up to model the types of challenges a curious
agent will face—how does an agent learn to best improve its predictions while avoiding getting stuck on unlearnable
signals? Mechanisms that are effective at driving curious behavior in this setting should be effective in the larger setting.
Alternatively, mechanisms that are not able to solve this distilled setting will not be effective in the larger Horde setting.

Second, we propose a comprehensive empirical comparison of current approaches to curiosity on our proposed bench-
mark. We compare many of the well-known methods from reinforcement learning and active learning. Much recent
work has been in large-scale domains where it is difficult to tease out which of the many moving parts is driving the ben-
efit of the method. In this comparison we distill the methods down to the specific mechanism driving curious behavior
and compare them in our focused domain. This allows us to both compare how the mechanisms perform against each
other, as well as evaluate the specific properties of how each mechanism deals with the problems each environment tests.
While we did not compare every curiosity method that exists, we did make sure to have a representative method from
each of the different classes we identified as grouping similar underlying mechanisms.

Third, we show the effectiveness of capable learners in directing curious behavior. Capable learners, such as step-size
adaptation methods, are able to quickly adapt to unlearnable targets, such as those with high variance. This allows the
agent to avoid unlearnable signals that may seem interesting due to their high error, but ultimately are not worth the
agent continuing to spend time trying to learn. In this work, we show one particular curiosity reward—Weight Change—
becomes one of the best curiosity rewards in this setting when paired with capable learners. While we examine capable
learners in a simplified setting with LMS learners, nothing precludes these results from being moved back to the Horde
setting. The more general case of off-policy learners with function approximation also have step-size adaptation methods
(Jacobsen et al., 2019; Kearney et al., 2018) that allow capable learners to be applied.

1

Paper # 222 298

2 Related Work

Many learning systems draw inspiration from the exploratory behavior of young humans and animals, uncertainty
reduction in active learning, and information theory—and the resulting techniques could all be packed into the suitcase
of curiosity and intrinsic motivation. In an attempt to distill the key ideas and perform a meaningful yet inclusive
empirical study, we consider only methods applicable to our bandit formulation of multi-prediction learning. As such,
we ignored work related to curriculum learning (Graves et al., 2017), methods that rely on predictions about state (e.g.,
(Pathak et al., 2017)), or traditional bandit exploration methods.

Several curiosity rewards are based on violated expectations, or surprise. This notion can be formalized using the error
in some prediction (of a signal or multiple signals) to compute the instantaneous Absolute Error or Squared Error. We can
obtain a less noisy measure of violated expectations with a windowed average of the error, which we call Expected Error.
Regardless of the specific form, if the error increases, then the curiosity reward increases, encouraging further sampling
for that target. Such errors can be normalized, such as was done for Unexpected Demon Error (White et al., 2014), to
mitigate the impact of the differing magnitudes of and noise in the targets.

Another category of methods focus on learning progress, and assume that the learning system is capable of continu-
ally improving its policy or predictions. For approaches designed for tabular stationary problems, this is trivially true:
(Chentanez et al., 2005; Still and Precup, 2012; Little and Sommer, 2013; Meuleau and Bourgine, 1999; Barto and Şimşek,
2005; Szita and Lőrincz, 2008; Lopes et al., 2012). The most well-known approaches for integrating intrinsic motivation
make use of rewards based on improvements in (model) error: including Error Reduction (Schmidhuber, 1991, 2008), and
Oudeyer’s model Error Derivative Change approach (Oudeyer et al., 2007). Improvement in the value function can as
be used to construct rewards, and can be computed from the Positive Error Part (Schembri et al., 2007), or by tracking
improvement in the value function over all states (Barto and Şimşek, 2005).

An alternative to learning progress is to reward amount of learning. Such rewards do not penalize errors becoming
worse, and instead only measure that estimates are changing: the prediction learner is still adjusting its estimates and
so is still learning. Bayesian Surprise (Itti and Baldi, 2006) formalizes the idea of amount of learning. For a Bayesian
learner, which maintains a distribution over the weights, Bayesian Surprise corresponds to the KL-divergence between
this distribution over parameters before and after the update. Other measures based on information gain have been
explored (Still and Precup, 2012; Little and Sommer, 2013; Achiam and Sastry, 2017; de Abril and Kanai, 2018; Still and
Precup, 2012), though they have been found to perform similarly to Bayesian Surprise (Little and Sommer, 2013). Note
that several learning progress measures, discussed in the previous paragraph, can be modified to reflect amount of
learning by taking the absolute value, and so removing the focus on increase rather than change. We can additionally
consider non-Bayesian strategies for measuring amount of learning, including those based on how much the variance in
the prediction changes—Variance of Prediction.

3 Experimental Design

To simulate a curious learning problem that an agent may face we introduce the drifter-distractor environment. The
environment is modelled in the bandit setting and has four arms, two which respond with random noise, one which
slowly drifts, and one which returns a constant. This environment simulates a common situation for learning agent:
having distracting signals that will produce large prediction errors, but are ultimately unlearnable.

The ideal behaviour of a curious learning agent in this environment is to first test out all of the arms, getting a sense of
what each of the signals is. After it has learned a bit about each signal it should begin to hone in on the signals that it is
poor at predicting. This will initially lead it to pulling the noisy arms a fair amount. The agent should then fairly rapidly
move away from pulling the noisy arms, instead focusing on the drifter arm as it has a signal that is learnable, but needs
to continually be tracked to keep its predictions accurate. To measure the effectiveness of each agent we can look at the
prediction error of each of its learners.

Capable learners are able to adapt to the the learnability of a signal. Previous work has not investigated the impact of
capable learners in a multi-prediction setting. Here step-size adaptation methods achieve this learnability adaptation by
adjusting the step size up or down. We can see the benefits on the drifter-distractor problem. Capable learners allow us
to use the step size to make the noisy signals less interesting to our agent. We use Autostep (Mahmood et al., 2012) to
update the agent’s step size online where the reward bonus of Weight Change is given by:

‖wt − wt+1‖1 = αt,i‖ŷt,i − ŷt−1,i‖1 = αt,i|δt,i| (1)

Where wt ∈ R is the weight at time t, αt,i ∈ R is the step size of arm i at time t, ŷt,i ∈ R is the prediction of arm i at time t,
and δt,i is the prediction error for the agent’s prediction of arm i at time t. We can see clearly that a step-size adaptation
method allows us to temper the error signal by driving down the step size in unlearnable situations. This property
permits us to give a curiosity reward that allows the agent to make learning progress based on the error, because it only
affects the reward if the prediction is learnable.

2

Paper # 222 299

Non-Capable Learners

Capable Learners

Figure 1: The Drifter-Distractor Problem on both non-capable and capable learners. Each subplot summarizes the learning of the
control agent, over 50,000 time steps, using different curiosity rewards. Each plot shows the agent’s preference for each arm over time.
The drifting arm is green. We can see that the inclusion of Autostep (our capable learners) allows the simple reward function based
on Weight Change and Bayesian Surprise to efficiently solve the problem. Variance of Prediction was able to solve the problem even
with a weak learner, however this was due to extensive parameter sweeps and long running agents—shorter runs caused an incorrect
preference for the noisy arms. The rewards based on variance result in faster preference for the drifting arm when combined with
Autostep, but prefer the drifting arm less in the long run because the prediction varies less when using step-size adaptation.

4 Results

We conducted two experiments in the drifter-distractor environment, one with non-capable learners and one with ca-
pable learners. In Figure 1 we show the results for five of the methods tested in this domain. For each experiment, an
extensive parameter search was conducted over the the parameters of control agent (Gradient Bandit), the prediction
learners, and the reward functions.

We can see from Figure 1 that the inclusion of a capable learner allowed both the Weight Change agent and the Bayesian
Surprise agent to effectively track the learnable arms while ignoring the noisy arm. Without a capable learner these
agents were dominated by the error of the noisy arms and were not effective. Variance of Prediction was able to solve
the problem without a capable learner—this, however, was an artifact of the parameter sweep, which chose very long
running averages, enabling the larger variance to be detected. Shorter averaging windows for the variance computations
caused an incorrect preference for the noisy arm.

There are two key conclusions from this experiment. First, capable learners were critical for curiosity rewards based on
amount of learning, particularly Weight Change and Bayesian Surprise. Without Autostep, both Weight Change and
Bayesian Surprise incorrectly cause the agent to prefer the two high-variance arms because their targets continually gen-
erate changes to the prediction. With Autostep, however, the weights converge for the constant and high-variance arms,
and both agents correctly prefer the drifting arm. Second, measures based on violated expectations—Unexpected Demon
Error and Error Derivative Change—either induce uniform selection or focus on noisy arms, with or without Autostep.
Full results of the tested methods and domains can be found at http://rldm.investigatingcuriosity.com.

5 Conclusions

The goal of this work was to investigate curiosity rewards in the multi-prediction setting. This paper has three main con-
tributions: (1) Introduce a new benchmark for curiosity-driven exploration. (2) Survey existing ideas for curiosity driven
exploration and test them on our proposed benchmark. (3) Show how capable learners can allow curiosity mechanisms,
specifically the step-size adapted Weight Change, to perform strongly on the proposed task.

The problem introduced in this work formalizes the multi-prediction setting as a non-stationary multi-armed bandit. This
formalism allowed us to draw clear conclusions about the efficacy of existing curiosity rewards for the task of choosing
what to learn about if we hope to minimize error for multiple predictions. The focus of future work is on scaling up to a
larger setting with a actor-critic or SARSA behavior policy (Sutton and Barto, 2018), with a Horde (Sutton et al., 2011) of
prediction and control learners rather than the LMS learners used here.

We demonstrated how this formalism can represent a variety of types of targets we expect to see in a multi-prediction
setting, including those that are noisy, drifting or easy-to-predict, and investigated performance of these curiosity re-

3

Paper # 222 300

wards across several such settings, with both weak learners and capable learners. We surveyed and studied 15 different
curiosity rewards, suitable for our pure exploration setting. We reach a surprisingly clear conclusion, particularly con-
sidering the number of approaches surveyed. Simple curiosity rewards based on learner parameters, such as change in
weights, can be highly effective when paired with a capable learner.

References

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement learning. arXiv:1703.01732, 2017.
Andrew G Barto and Ozgür Şimşek. Intrinsic motivation for reinforcement learning systems. In Yale Workshop on Adaptive and Learning

Systems, 2005.
Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement learning. In Adv. in Neural Inform.

Process. Sys., pages 1281–1288, 2005.
I Magrans de Abril and Ryota Kanai. Curiosity-driven reinforcement learning with homeostatic regulation. arXiv:1801.07440, 2018.
Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated curriculum learning for neural

networks. arXiv:1704.03003, 2017.
Laurent Itti and Pierre F Baldi. Bayesian surprise attracts human attention. In Adv. in Neural Inform. Process. Systems, 2006.
Andrew Jacobsen, Matthew Schlegel, Cameron Linke, Thomas Degris, Adam White, and Martha White. Meta-descent for online,

continual prediction. 2019.
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu.

Reinforcement learning with unsupervised auxiliary tasks. arXiv:1611.05397, 2016.
Alex Kearney, Vivek Veeriah, Jaden B Travnik, Richard S Sutton, and Patrick M Pilarski. TIDBD: Adapting temporal-difference step-

sizes through stochastic meta-descent. arXiv:1804.03334, 2018.
Daniel Ying-Jeh Little and Friedrich Tobias Sommer. Learning and exploration in action-perception loops. Front. in Neural Circuits,

2013.
Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-based reinforcement learning by empir-

ically estimating learning progress. In Adv. in Neural Inform. Process. Sys., pages 206–214, 2012.
A. Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-free step-size adaptation. In ICASSP, 2012.
Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environments: Local measures and back-propagation of uncertainty.

Machine Learning, 35(2):117–154, 1999.
Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in a reinforcement learning robot. Adaptive Behavior, 22

(2):146–160, 2014.
Pierre-Yves Oudeyer, Frédéric Kaplan, and Verena Hafner. Intrinsic motivation systems for autonomous mental development. IEEE

Transactions on Evolutionary Computation, 2007.
Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In

International Conference on Machine Learning, 2017.
Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas

Heess, and Jost Tobias Springenberg. Learning by playing-solving sparse reward tasks from scratch. arXiv:1802.10567, 2018.
Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In International Conference on

Machine Learning, pages 1312–1320, 2015.
Massimiliano Schembri, Marco Mirolli, and Gianluca Baldassarre. Evolving childhood’s length and learning parameters in an intrin-

sically motivated reinforcement learning robot. In International Conference on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems, 2007.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural controllers. In International
Conference on Simulation of Adaptive Behavior: From Animals to Animats, 1991.

Jürgen Schmidhuber. Driven by compression progress: A simple principle explains essential aspects of subjective beauty, novelty,
surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. In Workshop on Anticipatory Behavior in Adaptive
Learning Systems, 2008.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement learning. Theory in Biosciences,
131(3):139–148, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, 2nd Edition. MIT press, 2018.
Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White, and Doina Precup. Horde: A

scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In International Conference on
Autonomous Agents and Multiagent Systems, 2011.

István Szita and András Lőrincz. The many faces of optimism: a unifying approach. In International Conference on Machine Learning,
pages 1048–1055, 2008.

Adam White, Joseph Modayil, and Richard S Sutton. Surprise and curiosity for big data robotics. In AAAI Workshop on Sequential
Decision-Making with Big Data, 2014.

4

Paper # 222 301

Learned human-agent decision-making, communication
and joint action in a virtual reality environment

Patrick M. Pilarski∗
DeepMind & University of Alberta

Edmonton, Alberta, Canada

Andrew Butcher
DeepMind

Edmonton, Alberta, Canada

Michael Johanson
DeepMind

Edmonton, Alberta, Canada

Matthew M. Botvinick
DeepMind

London, UK

Andrew Bolt
DeepMind

London, UK

Adam S. R. Parker
University of Alberta

Edmonton, Alberta, Canada

Abstract

Humans make decisions and act alongside other humans to pursue both short-term and long-term goals. As a result of
ongoing progress in areas such as computing science and automation, humans now also interact with non-human agents
of varying complexity as part of their day-to-day activities; substantial work is being done to integrate increasingly
intelligent machine agents into human work and play. With increases in the cognitive, sensory, and motor capacity of
these agents, intelligent machinery for human assistance can now reasonably be considered to engage in joint action with
humans—i.e., two or more agents adapting their behaviour and their understanding of each other so as to progress in
shared objectives or goals. The mechanisms, conditions, and opportunities for skillful joint action in human-machine
partnerships is of great interest to multiple communities. Despite this, human-machine joint action is as yet under-
explored, especially in cases where a human and an intelligent machine interact in a persistent way during the course of
real-time, daily-life experience (as opposed to specialized, episodic, or time-limited settings such as game play, teaching,
or task-focused personal computing applications). In this work, we contribute a virtual reality environment wherein a
human and an agent can adapt their predictions, their actions, and their communication so as to pursue a simple foraging
task. In a case study with a single participant, we provide an example of human-agent coordination and decision-making
involving prediction learning on the part of the human and the machine agent, and control learning on the part of the
machine agent wherein audio communication signals are used to cue its human partner in service of acquiring shared
reward. These comparisons suggest the utility of studying human-machine coordination in a virtual reality environment,
and identify further research that will expand our understanding of persistent human-machine joint action.

Keywords: human-agent joint action, prediction learning, policy learning,
emergent communication, augmented intelligence

Acknowledgements

We are deeply indebted to our DeepMind colleagues Drew Purves, Simon Carter, Alex Cullum, Kevin McKee, Neil
Rabinowitz, Michael Bowling, Richard Sutton, Joseph Modayil, Max Cant, Bojan Vujatovic, Shibl Mourad, Leslie Acker,
and Alden Christianson for their support, suggestions, and insight during the pursuit of the work in this manuscript.

∗Corresponding author. This work was conducted at DeepMind, with collaboration from the University of Alberta.

Paper # 49 302

“First Thoughts are the everyday thoughts. Everyone
has those. Second Thoughts are the thoughts you
think about the way you think. People who enjoy
thinking have those. Third Thoughts are thoughts
that watch the world and think all by themselves.”

Terry Pratchett, A Hat Full of Sky

1 Understanding and Improving Human-Machine Joint Action

Humans regularly make decisions with and alongside other humans. In what has come to be defined as joint action,
humans coordinate with other humans to achieve shared goals, sculpting both their actions and their expectations about
their partners during ongoing interaction (Sebanz et al. 2006; Knoblich et al. 2011; Pesquita et al. 2018). Humans now
also regularly make decisions in partnership with computing machines in order to supplement their abilities to act, per-
ceive, and decide (Pilarski et al. 2017). It is natural to expect that joint action with machine agents might be able to
improve both work and play. In situations where someone is limited in their ability to perceive, remember, attend to,
respond to, or process stimulus, a machine counterpart’s specialized and complementary abilities to monitor, interpret,
store, retrieve, synthesize, and relate information can potentially offset or even invert these limitations. Persistent com-
putational processes that extend yet remain part of human cognition, perhaps best described in the words of the author
Terry Pratchett as “third thoughts,” are evident in common tools like navigation software and calendar reminders.

Specifically with a focus on joint action, as opposed to more general forms of human-machine interaction, Moon et al.
(2013), Bicho et al. (2010), Pilarski et al. (2013), Pezzulo et al. (2011), and others have provided compelling examples
of fruitful human-machine coordination wherein a human and a machine work together and co-adapt in real-time joint
action environments. One striking characteristic of many of these examples, and what separates them from other exam-
ples of human-machine interaction, is that they occur within peripersonal space (Knoblich et al. 2011)—i.e., interaction is
perceived by the human to unfold continuously in the region of physical space surrounding their body and upon which
they can act. While the perception of spatial and temporal proximity between partners has been shown to significantly
influence joint decision making (as reviewed by Knoblich et al. 2011), peripersonal joint action settings have to date
received less attention than other settings for human-machine interaction. The study of how different machine learn-
ing approaches impact human-machine joint action is even less developed, but in our opinion equally important. Our
present work therefore aims to extend the discussion on how a human decision maker (here termed a pilot) and a ma-
chine learning assistant (termed a copilot) can learn together and make decisions together in service of a shared goal. We
do so by defining a virtual reality environment to probe real-time joint action between humans and learning machines,
and, using this environment, contribute a human-machine interaction case study wherein we demonstrate the kinds of
changes that might be expected as a pilot interacts with different machine learning copilots in a shared environment.

2 Virtual Reality Environment and Protocol

A single participant engaged in a foraging task over multiple experimental blocks. This foraging task was designed
so as to embed a hard-to-learn sensorimotor skill within a superficially simple protocol. In each block, the participant
was asked to interact with a simulated world and a machine assistant via a virtual reality (VR) headset and two hand-

Figure 1: The virtual-reality foraging environment used to explore human-agent learning and joint action, comprised of six equidis-
tant fruit objects, background detail, and a repeated cycle of day and night illumination. The human participant (the pilot) was able to
move about within the virtual world and used their hand-held controllers to both harvest fruit in varying states of ripeness and train
their machine-learning assistant (the copilot).

1

Paper # 49 303

Figure 2: Schematic showing the interactions available to both the human pilot and the machine copilot. Using the right and left hand
controllers, respectively, the pilot was able to harvest fruit or train their copilot to estimate the value of hue/saturation combinations,
each action resulting in different sound cues as shown. On every time step, the copilot provided sound cues according to its learned
predictions V (h, s) and, for the bandit condition, its learned policy π(V).

held controllers (HTC Vive with deluxe audio strap). The pilot was instructed that in each block they were to move
through the world to collect objects, and that these objects would grant them “points”; they were told that, during the
experiment, their total points would be reflected in visual changes to the environment, and that they would receive a
unique, momentary audio cue whenever they gained or lost points as a result of their actions (and that they could also
be given different audio cues in situations where they might expect to gain or lose points).

Loosely inspired by the bee foraging example of Schultz et al. (1997), the virtual world presented to the pilot was a simple
platform floating in space with six coloured balls (“fruit”) placed at equidistant locations around its perimeter (Fig. 1).
To tease out behavioural changes in different conditions for pilot/copilot joint action, over the course of a single trial the
light level in the world varied from full sunlight (“day”) to regular periods of darkness lasting roughly 20s (“night”, c.f.,
Fig. 3c, bottom trace). While copilot perception was unaffected by light level, during twilight and night phases the pilot
was by design unable to determine the colour of any objects in the environment, seeing only their general shape. The
main mechanic of the world was that the pilot could collect fruit to either increase their points or, in some blocks, collect
fruit in order to teach their copilot.

To create conditions for skill learning on the part of the pilot, the environment was designed with a confounding factor
(ripeness) that related the appearance of the fruit as observed by the pilot to the reward structure of the task. Over the
course of time, each fruit underwent a “ripening cycle” wherein it cycled through a progression of colours—hue and
saturation levels—and reward that varied in relation to the time since the fruit’s appearance. If a fruit was not contacted
before a fixed time interval by the pilot, i.e., the end of the ripening cycle, it would disappear and no point gains or losses
will be credited to the participant. A short, variable time after the participant collected a fruit or the fruit disappeared
due to time, a new fruit would drop from above to the same position as the previous fruit. These new fruit were assigned
a random fraction between 0% and 95% through their ripening cycle.

The pilot started each trial in the centre of the platform, was able to move short distances and rotate in place, and could
make contact with the fruit using either their left or right hand controllers (Fig. 2). Upon making contact with one of
the fruit via their right-hand controller (“harvesting”), the ball would disappear and the pilot would hear an audio cue
indicating that they either gained or lost points (one distinct sound for each case, with a small mote of light appearing in
place of the fruit when points were gained). Upon contacting a ball with their left-hand controller (“teaching”), the fruit
would disappear with no points gained or lost by the pilot, and they would hear a unique tone indicating that they had
given information to their copilot (for blocks involving a copilot, otherwise the fruit disappeared and no sound played).

Harvesting fruit was the only way the pilot could gain points. The points gained or lost by the participant for collecting a
fruit was determined by a sinusoidal reward function that varied according to the time since the beginning of the ripening
cycle (Fig. 2). All fruit in a given trial were assigned the same, randomly selected reward sinusoid (in terms of phase)
and related hue/saturation progression—i.e., all balls in a given trial would ripen in the same way, and would generate
points in the same way, but these ripening mechanics would vary from trial to trial. The frequency of the reward sinusoid
(i.e., number of reward maxima and minima until a fruit’s disappearance), positive/negative reward offset, length of the
ripening cycle, and time range until reappearance (all akin to difficulty), were predetermined and held constant across

2

Paper # 49 304

all trials and blocks. Difficulty in terms of these parameters was empirically preselected and calibrated so as to provide
the pilot with a challenging pattern-learning problem that was still solvable within a single trial.

Following an extended period of familiarization with the navigation and control mechanics of the VR environment
and the different interaction conditions, the participant (one of the co-authors for this pilot study) experienced three
experimental blocks each consisting of three 180s trials; each trial utilized previously unseen ripening mechanics in
terms of colour presentation and points phase. There was an approximately 20s break between trials. The blocks related
to the three different conditions (Fig. 2), presented in order, as follows:

Condition 1, No copilot (NoCP): The pilot harvested fruit without any signalling or support from a machine copilot.
Using the left, training hand to contact fruit had no effect, and did not provide any additional audio cues.

Condition 2, Copilot communication via Pavlovian control (Pav): The pilot harvested fruit with support from a ma-
chine copilot that provided audio cues in a fixed way based on its learned predictions. As described above, the pilot was
able to train the copilot by contacting fruit with their left hand controller. Practically, this amounted to updating the
value function of the copilot, denoted V (h, s), according to the points value associated with a fruit’s current hue h and
saturation level s at the time of contact; updates were done via simple supervised learning. At each point in time, the
copilot queried its learned value function V (h, s) with the current colour values of each of the six fruits, and, if the value
of V (h, s) was positive for a fruit, triggered an audio cue that was unique to that fruit—each fruit had a characteris-
tic sound. In other words, feedback from the copilot to the human pilot was based on a pre-determined function that
mapped learned predictions to specific actions (an example of Pavlovian control and communication, c.f., Modayil et al.
(2014) and Parker et al. (2014)).

Condition 3, Copilot communication learned through trial and error (Bandit): The pilot harvested fruit with support
from a machine copilot that provided audio cues in an adaptable way based on collected points (reward) and its learned
predictions. This condition was similar to Condition 2 in terms of how the pilot was able to train the copilot. However,
instead of deterministically playing an audio cue for the pilot each time the copilot’s prediction V (h, s) for a given fruit
was positive, the copilot was instead presented with a decision whether or not to play an audio cue for the pilot. The
decision to play a cue was based on a stochastic policy π(V) that was updated as in a contextual bandit approach (Sutton
and Barto, 2018) according to the points collected by the pilot if and when a fruit was harvested. In essence, if the copilot
cued the user and this resulted in the pilot gaining points a short time later, it would reinforce the copilot’s probability
of playing a sound when it predicted a similar level of points in the future; should the pilot instead harvest the fruit and
receive negative points, as when a fruit is harvested after the peak in its ripening cycle and/or the pilot is consistently
slow to react to the copilot’s cue, the copilot would decrease its probability of playing a sound when it predicted that
level of expected points. The copilot’s control policy used learned predictions as state, c.f., prediction in human and robot
motor control (Wolpert et al. 2001; Pilarski et al. 2013).

3 Results and Discussion

Figure 3 presents the aggregate behaviour of the pilot in terms of total score over all three trials per condition, a fruit-by-
fruit breakdown of total score, and a detailed presentation of time-series data from the second trial of the experiment. As
a key finding, we observed that interaction with different copilots (Pav and Bandit) led to different foraging behaviours
on the part of the pilot during day and night, especially as compared to the no copilot (NoCP) condition. Interactions
with both the Pav and the Bandit copilot led to more foraging behaviour during night-time periods, as compared to the
NoCP condition (Fig. 3c). Learning to interpret the communication from these copilots appeared to induce multiple
foraging mistakes on the part of the pilot, especially during night-time phases (Fig. 3a,c) and less familiar fruit locations
(Fig. 3b). Despite this, the total points collected in the absence of any mistakes (the score without any negative point
value events, Fig. 3a+) suggest that collaboration with a policy-learning copilot could potentially lead to effective joint
action once a good policy has been learned by both the pilot and the copilot. Teaching interactions (∆V (h, s), Fig. 3c) also
provided a useful window into pilot skill learning. Broadly, the behaviour patterns observed in this preliminary study
suggest that gradual addition of cues from a copilot, as in the Bandit policy-learning condition, is likely more appropriate
than a strictly Pavlovian control approach. These initial results also indicate that there is room for more complex copilot
architectures that can capture the appropriate timing of cues with respect to pilot activity (e.g., a pilot harvesting wrong
fruit, or hesitation as per Moon et al. (2013)), and motivate more detailed study into the impact that pilot head position,
gaze direction, light level, and other relevant signals have on a copilot’s ability to generate good cues. Time delays and
credit assignment matter in this joint-action setting and require further thought.

Conclusions: This work demonstrated a complete (though straightforward) cycle of human-agent co-training and
learned communication in a VR environment, where closing the loop between human learning (human learns then trains
an agent regarding patterns in the world) and agent learning (agent learns to make predictions and provide cues that
must be learned by the pilot) appears possible to realize even during brief interactions. The VR fruit foraging protocol
presented in this work proved to be an interesting environment to study pilot-copilot interactions in detail, and allowed
us to probe the way human-agent behaviour changed as we introduced copilots with different algorithmic capabilities.

3

Paper # 49 305

(a) (b)

(c)

Figure 3: Results from a single pilot participant for the three experimental conditions (NoCP, Pav, and Bandit). (a) Total score acquired
by the pilot in each condition during day and night, as summed over all three trials in a block, along with the total score excluding any
events with negative points (+); (b) total Bandit score with respect to fruit location to the front (F), middle (M) or back (B) with respect
to the pilot’s starting orientation; and (c) representative example of time-series data from the second trial for all three conditions, cross-
plotting cumulative score, changes in score (∆Score), light level, and bandit learning in terms of human teaching actions (∆V (h, s)),
copilot decisions to cue or not cue (up/down ticks), and post-cue updates to the copilot’s policy as a result of pilot activity (∆π).

References

Bicho, E., et al. (2011). Neuro-cognitive mechanisms of decision making in joint action: A human-robot interaction study. Human
Movement Science 30, 846–868.

Knoblich, G., et al. (2011). Psychological research on joint action: Theory and data. In WDK2003 (Ed.), The Psychology of Learning and
Motivation (Vol. 54, pp. 59-101). Burlington: Academic Press.

Modayil, J., Sutton, R. S. (2014). Prediction driven behavior: Learning predictions that drive fixed responses. AAAI Wkshp. AI Rob.

Moon, A., et al. (2013). Design and impact of hesitation gestures during human-robot resource conflicts. Journal of Human-Robot
Interaction 2(3), 18–40.

Parker, A. S. R., et al. (2014). Using learned predictions as feedback to improve control and communication with an artificial limb:
Preliminary findings. arXiv:1408.1913 [cs.AI]

Pesquita, A., et al. (2018). Predictive joint-action model: A hierarchical predictive approach to human cooperation. Psychon. Bull. Rev.
25, 1751–1769.

Pezzulo, G., Dindo, H. (2011). What should I do next? Using shared representations to solve interaction problems. Exp. Brain. Res.
211, 613–630.

Pilarski, P. M., et al. (2013). Real-time prediction learning for the simultaneous actuation of multiple prosthetic joints. Proc. IEEE Int.
Conf. Rehab. Robotics (ICORR), Seattle, USA, 1–8.

Pilarski, P. M., et al. (2017). Communicative capital for prosthetic agents. arXiv:1711.03676 [cs.AI]

Schultz, W., et al. (1997). A neural substrate of prediction and reward. Science 275(5306), 1593–9.

Sebanz, N., et al. (2006). Joint action: Bodies and minds moving together. Trends. Cogn. Sci. 10(2), 70–76.

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction. Second Edition. Cambridge: MIT Press.

Wolpert, D. M., et al. (2001). Perspectives and problems in motor learning. Trends Cogn. Sci. 5(11), 487–494.

4

Paper # 49 306

Learning Temporal Abstractions from Demonstration: A
Probabilistic Approach to Offline Option Discovery

Francisco M. Garcia, Chris Nota, and Philip S. Thomas
College of Information and Computer Sciences

University of Massachusetts Amherst
{fmgarcia,cnota,pthomas}@cs.umass.edu

Abstract

The use of temporally extended actions often improves a reinforcement learning agent’s ability to learn solutions to
complex tasks. The options framework is a popular method for defining closed-loop temporally extended actions, but
the question of how to obtain options appropriate for a specific problem remains a subject of debate. In this paper, we
consider good options to be those that allow an agent to represent optimal behavior with minimal decision-making by
the policy over options, and propose learning options from historical data. Assuming access to demonstrations of (near)-
optimal behavior, we formulate an optimization problem whose solution leads to the identification of options that allow
an agent to reproduce optimal behavior with a small number of decisions. We provide experiments showing that the
learned options lead to significant performance improvement and we show visually that the identified options are able
to reproduce the demonstrated behavior.

Keywords: Temporal abstraction; Options; Hierarchical RL

Paper # 113 307

1 Introduction
Traditionally, reinforcement learning techniques focus on learning how to solve a task by only taking into consideration
primitive actions that last for a single time-step. This approach makes learning complex tasks a difficult, mainly because
an agent would have to make a large number of decisions to reach a state that is far from its current state. To address
this difficulty, researchers have turned their attention to temporally extended actions that last for several time-steps.
Their potential to deal with complex problems has led to the development of techniques for discovering or learning
temporal abstractions autonomously in recent years [1, 4, 6, 9]; however, there is no consensus as to what constitutes
good abstractions or how to best identify them. Nonetheless, two frameworks in particular stand out in the literature:
macros [5] and options [7, 10].

One popular approach for learning abstractions is to identify specific states deemed important (subgoals) and learn
policies to reach those states, [4, 6]. For example, McGovern et al. [6] proposed finding bottleneck states—states often
found in trajectories reaching a goal state—and learn options to reach those bottlenecks discovered. Another technique
is to directly learn the parameters of stochastic options based on the reward function, as the agent learns how to solve
a new task [1, 3, 8]. In contrast to the methods previously described, we build on the intuition presented by Garcia
et al. [2], where the authors draw a connection between data compression and generally useful temporal abstractions.
They consider trajectories from optimal policies to be analogous to messages to be encoded, and the symbols available
for encoding represent primitives and macros. Therefore, using compression to reduce the number of symbols that
represent a trajectory leads to finding macros that reduce the number of decisions an agent must make to generate such
trajectory. For example, a trajectory obtained by the sequence of actions {a1, a1, a2, a1}, where a1 and a2 are two primitive
actions, is represented by 4 symbols. Given a macro, m1 = {a1, a1}, the same sequence of actions can be represented by
3 symbols as {m1, a2, a1}. The authors argue that desirable macros are those that frequently occur in optimal trajectories
and correspond to the macros that can be used to represent those trajectories with small number of symbols. Under this
perspective, compression techniques lead to a natural way of obtaining useful temporal abstractions.

In this paper, we extend this idea to the general setting of stochastic options. We make the observation that reducing
the number of symbols needed to represent trajectories from a policy is akin to reducing the number of the decisions
an agent makes to generate them. With that perspective in mind, we propose learning the options that minimize the
expected number of decisions needed to represent optimal trajectories and maximize the probability of generating them.

2 Background and Notation
A Markov decision process (MDP) is a tuple,M = (S,A, P,R, γ, d0), where S is the set of possible states of the environment,
A is the set of possible actions that the agent can take, P (s, a, s′) is the probability that the environment will transition
to state s′ ∈ S if the agent executes action a ∈ A in state s ∈ S , R(s, a, s′) is the real-valued reward received after taking
action a in state s and transitioning to state s′, d0 is the initial state distribution, and γ ∈ [0, 1] is a discount factor for
rewards received in the future. We use t to index the time-step and write St, At, and Rt to denote the state, action, and
reward at time t. A policy, π : S × A → [0, 1], provides a conditional distribution over actions given each possible state:
π(s, a) = Pr(At = a|St = s). We denote a trajectory of length t as ht = (s0, a0, r0, . . . , st−1, at−1, rt−1, st), that is ht is
defined as a sequence of states, actions and rewards observed after following some policy for t time-steps. We also use
Ht to denote a random variable representing a trajectory. Temporally extended actions change allow an agent to execute an
action composed of several primitive actions, lasting for multiple time-steps. Below we discuss in detail two common
types of temporal abstraction: macros and options.

Macros are open-loop temporally extended actions; that is, sequences of actions that are executed to termination regard-
less of the states encountered during execution. Formally, a macro of length k is a sequence of actionsm = (a1, a2, . . . , ak),
where ai represents the ith action in the sequence. If carefully constructed, macros can dramatically improve the speed
with which an agent learns to solve a task [5]. One way for discovering macros was recently proposed by Garcia et al.
[2], where the authors show how compression techniques can be used to identify repeating action patterns. They note a
relationship between the number of symbols needed to represent optimal trajectories and the reusability of the macros
represented by these symbols.

The options framework [10, 11] is a generalization of macros to closed-loop policies. An option, o = (Io, µo, βo), is a tuple
in which Io ⊆ S is the set of states in which option o can be executed (the initiation set), µo is a policy that governs the
behavior of the agent while executing o, and βo : S → [0, 1] is a termination function that determines the probability that
o terminates in a given state. We assume that Io = S for all options o; that is, the options are available at every state. We
also consider primitive actions to be options which always terminate and select one specific action with probability one.

We build on the idea that compressing trajectories to minimize the number of decisions an agent must make leads to
discovering generally useful abstraction, as described by Garcia et al. [2], and develop an analogous method for the
more general case of stochastic options. We propose an off-line technique where options are learned from historical data
(assumed to be obtained from (near)-optimal policies) by directly minimizing the expected number of decisions the agent
makes while simultaneously maximizing the probability of generating the observed trajectories.

1

Paper # 113 308

3 Offline Option Learning
To generalize the idea of using compression to identify macros to the setting of stochastic options, we first observe that the
use of a symbol in the compressed representation of a trajectory corresponds to the agent executing a different primitive
or macro. Therefore, compressing a trajectory results in minimizing the number of decisions the agent has to make. In
order to learn options from a set of trajectories, we minimize the expected number of decisions needed to generate the
observed trajectories while maximizing the probability of generating them.

3.1 Problem Formulation
Notice that that while solving a task, at every time-step, t, there was an option that was used to execute action At in
state St. We will consider primitive actions to be options which always terminate and select one specific action with
probability one; that is, for an option o corresponding to a primitive a the termination function would be given by
βo(s) = 1,∀s ∈ S and the policy by µ(s, a′) = 1 if a′ = a and µ(s, a′) = 0 otherwise, ∀s ∈ S . Let Tt be a Bernoulli
random variable, where Tt = 1 if the executing option terminates at the tth state in a trajectory H , and Tt = 0 if it did
not. This implies that if Tt = 1, the agent would have to pick a new option at state st. If Tt = 0, the agent does not pick
a new option. Note that the distribution of Tt depends on the set of available options and a policy over options. Let O
denote a set of options, {o1, . . . , on} , and let H be random variable denoting a trajectory of length |H| generated by a
near-optimal policy and Ht a random variable denoting the sub-trajectory of H up to the tth state. We seek to find a set,
O∗ = {o∗1, . . . , o∗n}, that maximizes the following objective: J(π,O) = E

[∑|H|
t=1 Pr(Tt = 0, Ht|π,O) + λ1g(H,O)

]
, where

g(h,O) is a regularizer that encourages a diverse set of options, and λ1 is a scalar hyperparameter. One choice is the
KL divergence: g(h,O) = 1

n

∑
o,o′∈O

∑|h|−1
t=0 DKL (µo(st)||µo′(st)). If we are also free to learn the parameters of π, then

O∗ ∈ arg max
O

arg max
π

J(π,O).

Intuitively, we seek to find options that terminate as infrequently as possible while still generating near-optimal trajecto-
ries with high probability. Given a set of options and a policy over options, we can calculate these probabilities exactly,
allowing us to optimize this objective directly using gradient-based methods. We can improve our results by averaging
over a set of near-optimal trajectories, rather than a single trajectory. In the next section, we show how these probabilities
can be calculated and present a slightly modified form of the objective that is more useful in practice.

3.2 Optimization Objective for Learning Options
We can approximate the objective J from a set of sample trajectoriesH obtained from optimal policies. Because the prob-
ability of generating any trajectory approaches 0 as the length of the trajectory increases, we make a slight modification
to the original objective that leads to better numerical stability. We explain these modifications after introducing the
objective Ĵ , which we optimize in practice:

Ĵ(π,O) =
1

|H|
∑

h∈H
λ2 Pr(H = h|π,O)︸ ︷︷ ︸
Probability of trajectory

−
∑|h|
t=1 E [Tt = 1|Ht = ht, π,O]

|h|︸ ︷︷ ︸
Expected number of terminations

+ λ1g(h,O)︸ ︷︷ ︸
Regularization term

.
(1)

Equation 1 is derived from J by expanding the joint probability into the product of Pr(Ht = ht|π,O) and
Pr(Tt = 0|Ht = ht, π,O). With some algebraic manipulation, we observe that maximizing Pr(H = h|π,O) while min-
imizing

∑|h|
t=1 Pr(Tt = 1|Ht = ht, π,O) maximizes the objective in J . Finally, we also introduce a scalar weight λ2 to

balance the contribution of each term to Ĵ . Equation 1 can be expressed entirely in terms of π, options O = {o1, . . . , on}
and the transition function, P , while removing the expectations and probabilities—this allows us to compute its value
exactly. These expressions are given in recursive form by the following theorems:

Theorem 1. Let Ot denote the option selected for execution at the tth state in a trajectory ht. Given a set of op-
tions O and a policy over options π, the expected number of terminations is given by:

∑|h|
t=1 E [Tt = 1|Ht = ht, π,O] =

∑|h|
t=1

(∑
o∈O βo(st)

µo(st−1,at−1) Pr(Ot−1=o|Ht−1=ht−1,π,O)∑
o′∈O µo′ (st−1,at−1) Pr(Ot−1=o′|Ht−1=ht−1,π,O)

)
,

where Pr(Ot−1 = o|Ht−1 = ht−1, π,O) =

[(
π(st−1, o)βo(st−1)

)
+

(
P (st−2, at−2, st−1)µo(st−2, at−2) Pr(Ot−2 = o|Ht−1 =

ht−1, π,O)(1− βo(st−1))

)]
,, and Pr(O0 = o|H1 = h1, π,O) = π(s0, o).

2

Paper # 113 309

Theorem 2. Given a set of options O and a policy over options π, the probability of generating a trajectory h is given by:

Pr(H = h|π,O) = d0(s0)
[∑

o∈O π(s0, o)µo(s0, a0)f(h, o, 1)
]∏|h|−1

k=0 P (sk, ak, sk+1), where f is the recursive function

f(h, o, i) =

1, if i = |h|[
βo(si)

∑
o′∈O π(si+1, o

′)µo′(si+1, ai+1)f(h, o
′, i+ 1)

+(1− βo(si))µo(si+1, ai+1)f(h, o, i+ 1)

]
, otherwise

Assuming a parametric representation for (µo, βo),∀o ∈ O, and for a policy over option π, we are able to differentiate the
objective in Ĵ with respect to their parameters and optimize with any standard optimization technique.

3.3 Learning Options Incrementally
One common issue in option discovery is identifying how many options are needed for a given problem. Oftentimes this
number is pre-defined by the user based on intuition. In such a scenario, one could learn options by simply optimizing
the proposed objective in Eq. 1. Instead, we propose not only learning options, but also the number of options needed,
by the procedure shown in Algorithm 1.

Algorithm 1 Option Learning Framework
Collect set of trajectoriesH
Initialize option set O with primitive options
done = false
Jprev = −∞
while done == false do

Initialize new option o′ = (µ′, β′)
O′ = O ∪ o′
Initialize policy π over O′

for epoch=1,. . . ,N do
maximize Ĵ w.r.t o′ and π

end
if Ĵ − Jprev < ∆ then

done = true
else
O = O ∪ o′ Jprev = Ĵ

end
end

The algorithm introduces one option at a time and alternates
training between π and the newly introduced option, o′, for N
epochs. Any previously introduced option is kept fixed. Af-
ter the new option is trained, we measure how much J has im-
proved; if it fails to improve above some threshold ∆, the pro-
cedure terminates. This results in a natural way of obtaining an
appropriate number of options to represent the observed trajec-
tories.

4 Experimental Results
We tested our approach in the four-room domain: a Gridworld
of size 40 × 40, in which the agent is placed in a randomly se-
lected start state and needs to reach a randomly selected goal
state. At each time-step the agent executes one of four available
actions: moving left, right, up or down, and receives a reward
of −1. Upon reaching the goal state, the agent receives a reward
of +10. To generate the data needed to apply our technique, we
collected ten sample trajectories from optimal policies for ten
randomly placed start and goal locations. Options were repre-
sented as 2-layer neural networks with a softmax output layer
over the four possible actions representing µ, and a separate sig-

moid layer representing β. We used the tabular form of Q-learning with ε-greedy exploration as the learning algorithm,
and compared our approach to two competing methods: the option-critic architecture [1] and eigenoptions [4].

Figure 1a shows the change in the loss while learning options, as new options are introduced and adapted to the sam-
pled trajectories. It shows how the expected number of decision (blue) decreases and the probability of generating the
observed trajectories (red) increases as training progresses. In this case, options were learned over the 10 sampled opti-
mal trajectories and every 50 epochs a new option was introduced to the option set O, for a total of 4 options. For every
new option, the change in probability of generating the observed trajectories as well as the change in expected number
of decisions reaches a plateau after 30 or 40 training epochs. When a new option is introduced, there is a large jump in
the loss because a new policy π is initialized arbitrarily to account for the new option set being evaluated. However, after
training the new candidate option, the overall loss improves beyond what it was possible before introducing it.

In Figure 1b we present the learning performance on 20 novel test MDPs (randomly selected start and goal states) after
each competing method was allowed to learn options on 10 train tasks from where optimal trajectories were obtained.
We contrast the performance of learned options without KL regularization, with λ1 = 0 (green), options with KL regular-
ization, with λ1 = 0.1 (red), options before learning (orange), only primitives (blue), eigen options (brown), option-critic
(purple). The plot shows the average return (and standard error) over 20 different start and goal locations on the y-axis
and the training episode on the x-axis. Our approach was able to identify options that, given a fixed number of episodes
used for training, allowed the agent to reach an optimal performance level when other methods failed to do so. This
difference became even more pronounced diversity was encouraged by using a KL regularization term. These results
provide compelling evidence that the learned options are efficient at solving new problems.

3

Paper # 113 310

(a) Visualization of objective in four rooms over 200 training
epochs. Every 50 epochs a new option is introduced;

decreasing the expected number of decisions (blue) and
increasing the probability of generating the observed

trajectories (red).

(b) Performance Comparison on four rooms among option critic
(purple), eigen options (brown), primitives (blue), initial options
(orange), learned options without KL regularization (green), and

learned options with KL regularization (red).

Figure 1: Results on four room environment. The figure on the left shows the evolution of the training loss as new
options are introduced, the figure on the right shows the learning curves on test domains.

5 Conclusion and Future Work
In this work we presented an optimization objective to learn options offline from historical data. We assume that trajecto-
ries are obtained from (near)-optimal policies and learn options that allow an agent to reproduce them while minimizing
the number of decisions the agent makes in order to do so. Our initial results show that options adapt to the trajectories
given and they lead to more efficient learning. There are some clear direction for future development. First, more ex-
perimentation is needed to asses how well this approach scales to more complex environments. Second, our approach
is only applicable for learning options offline; one interesting modification would be able to sample trajectories as the
agent is learning a task and apply the procedure online to find new, better policies. This preliminary work indicates that
the proposed optimization problem leads to the discovery of efficient options.

References

[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.
[2] Francisco M. Garcia, Bruno C. da Silva, and Philip S. Thomas. Identifying reusable macros for efficient exploration

via policy compression. CoRR, 2017.
[3] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option: Learning options

with a deliberation cost. In AAAI, 2018.
[4] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian Framework for Option Discovery in

Reinforcement Learning. CoRR, 2017.
[5] A. McGovern and R. Sutton. Macro actions in reinforcement learning: An empirical analysis. Technical report,

University of Massachusetts - Amherst, Massachusetts, USA, 1998.
[6] Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning using diverse

density. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML ’01, San Francisco, CA,
USA, 2001.

[7] Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, 2000.
[8] Jette Randløv. Learning macro-actions in reinforcement learning. In Proceedings of the 11th International Conference

on Neural Information Processing Systems, NIPS’98, Cambridge, MA, USA, 1998.
[9] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In Proceedings of the 5th International

Symposium on Abstraction, Reformulation and Approximation, London, UK, UK, 2002.
[10] Richard S. Sutton and Doina Precup. Intra-option learning about temporally abstract actions. In In Proceedings of the

15th International Conference on Machine Learning (ICML-1998), 1998.
[11] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between mdps and semi-mdps: A framework for temporal

abstraction in reinforcement learning. Artificial Intelligence, 1999.

4

Paper # 113 311

Unicorn: Continual learning with a universal, off-policy agent

Daniel J. Mankowitz∗† Augustin Žı́dek∗ André Barreto∗ Dan Horgan∗ Matteo Hessel ∗ John Quan∗

Junhyuk Oh∗‡ Hado van Hasselt∗ David Silver∗ Tom Schaul∗

Abstract

Some real-world domains are best characterized as a single task, but for others this perspective is limiting. Instead, some
tasks continually grow in complexity, in tandem with the agent’s competence. In continual learning, also referred to as life-
long learning, there are no explicit task boundaries. As learning agents have become more powerful, continual learning
remains one of the frontiers that has resisted quick progress. To test continual learning capabilities we consider a chal-
lenging 3D domain with an implicit sequence of tasks and sparse rewards. We propose a novel Reinforcement Learning
agent architecture called Unicorn, which demonstrates strong continual learning and outperforms several baseline agents
on the proposed domain. The agent achieves this by jointly representing and learning multiple policies efficiently, using
a parallel off-policy learning setup.

Keywords: Reinforcement Learning, Universal Value Function Approxima-
tors, Continual Learning

∗DeepMind. †Technion Israel Institute of Technology. ‡University of Michigan. Correspondence to: Daniel J. Mankowitz
dmankowitz@google.com

Paper # 133 312

Figure 1: (a): Treasure World; (b): The agent needs to find and pick up objects in the specific order key, lock, door,
chest. Any deviation from that order resets the sequence (dashed gray lines); (c): The (I) off-policy, (II) zero-shot
transfer and (III) zero-shot transfer with augmented shapes and colors setup; (d): The objective is to pick up as many
chests as possible (purple). The bottom left plot shows performance relative to final performance of the best baseline
(glutton, dashed line) as a function of training. Our method quickly learns to become competent on all 4 subtasks, one at
a time. The margin of improvement over the baseline is largest on the hardest subtasks (see section 4 for details). (e): The
stacked bar plot shows the average number of collected objects after training (1.5B frames). E.g., the Unicorn’s chest
policy typically collects 10 keys, 7 locks, 6 doors and 5 chests.

1 Introduction

Continual learning, that is, learning from experience about a continuing stream of tasks in a way that exploits previously
acquired knowledge or skills, has been a longstanding challenge to the field of AI [13, 7]. An ideal continual learning
agent should be able to (A) solve multiple tasks, (B) exhibit synergies when tasks are related, and (C) cope with deep
dependency structures among tasks (e.g., a lock can only be unlocked after its key has been picked up).

Previous work on continual learning with Reinforcement Learning (RL), and specifically on solving tasks with deep
dependency structures, has typically focused on separating learning into two stages [9, 11, 3]. In contrast, we aim to solve
tasks with deep dependency structures using RL in a single-stage end-to-end learning setup. In addition, we aim to train
the agent on all tasks simultaneously regardless of their complexity. We extend Universal Value Function Approximators
(UVFAs) [6, 8, 10] with off-policy learning [8, 12] about multiple goals simultaneously, and scale them up to a parallel
agent architecture [5, 2] and train them end-to-end. Our resulting novel continual learning agent, called Unicorn1, is
capable of consistently solving continual learning tasks with deep dependency structures, at scale, in complex domains
(Figure 1e). Additional contributions include adapting a parallelized policy-based state-of-the-art RL architecture [2]
to value-based as well as incorporating off-policy learning and off-policy corrections into the architecture. We present
a continual learning experiment whereby the Unicorn learns to solve tasks with deep dependency chains (e.g., collect
a key, unlock a lock, open a door, and collect a chest in that order. Then receive a reward upon completion of the
task). This was impossible for existing methods (see the ‘expert(chest)’ baseline in Figure 1e). We also present a detailed
investigation with multiple ablation experiments, showing that Unicorn effectively learns multiple tasks in parallel and
exhibits synergies when tasks are related.

2 Background

Reinforcement learning (RL) A Markov decision process is defined as a 5-tuple 〈S,A, r,P, γ〉 where S is a set of states,
A is a set of actions, r : S × A → R is the reward function, P : S × A × S → [0, 1] is a transition probability distribution
and γ ∈ [0, 1) is a discount factor. Action value functions Qπ(s, a) = Eπ[Rt|st = s, at = a] estimate the expected return
for an agent that selects an action a ∈ A in some state s ∈ S, and follows policy π thereafter. We define the n-step return
as G(n)

t =
∑n
k=1 γ

k−1rt+k + γnmaxaQ(st+n, a).

Universal Value Function Approximators (UVFA) extend value functions to be conditional on a goal signal g ∈ G, with
their function approximator (such as a deep neural network) sharing an internal, goal-independent representation of the
state f(s) [6]. As a result, a UVFA Q(s, a; g) can compactly represent multiple policies by conditioning on any goal signal
g and choosing actions greedily. UVFA’s have previously been implemented in a two-stage process involving a matrix
factorization step to learn embeddings and a separate multi-variate regression procedure. In contrast, the Unicorn learns
Q(s, a; g) end-to-end, in a joint parallel training setup with off-policy goal learning and corrections.

Tasks vs. goals. For the purposes of this paper, we assign distinct meanings to the terms task (τ) and goal signal (g). A
goal signal modulates the behavior of an agent (e.g., as input to the UVFA). In contrast, a task defines a pseudo-reward
rτ (e.g., rkey = 1 if a key was collected and 0 otherwise). During learning, a vector containing all pseudo-rewards is

1Unicorn stands for “UNIversal Continual Off-policy Reinforcement learNing”.

1

Paper # 133 313

visible to the agent on each transition, even if it is pursuing one specific goal. Each experiment defines a discrete set of
K tasks {τ1, τ2, . . . , τK}. In transfer experiments, tasks are split between K ′ training tasks and K −K ′ hold-out tasks.

3 Unicorn

This section introduces the Unicorn agent architecture with the following properties to facilitate continual learning. (A):
The agent should have the ability to simultaneously learn about multiple tasks. We use a joint parallel training setup with
a single learner but many actors working on different tasks to accomplish this (sections (II) and section (IV)). (B): As the
agent accumulates more knowledge, we want it to generalize by reusing some of its knowledge to solve related tasks.
This is accomplished using a single UVFA to capture knowledge about all tasks, with a separation of goal-dependent and
goal-independent representations to facilitate transfer (section (I)). (C): The agent should be effective in domains where
tasks have a deep dependency structure. This is the most challenging aspect, but is enabled by off-policy learning from
experience across all tasks (section (III)).

(I) Value function architecture: A key component of the Unicorn agent is a UVFA, which is an approximator, such as a
neural network, that learns to approximate Q(s, a; g). The power of this approximator lies in its ability to be conditioned
on a goal signal g. This enables the UVFA to learn about multiple tasks simultaneously where the tasks themselves
may vary in their level of difficulty (e.g., tasks with deep dependencies). Our proposed UVFA architecture is depicted
schematically in Figure 2 (Bottom Right): The output of the LSTM is concatenated with an “inventory stack” to form
a goal-independent representation of state f(s). This vector is then concatenated with a goal signal g and fed into a
multi-layer perceptron (MLP) to produce the output vector of Q-values (one for each possible action a ∈ A). The union
of trainable parameters from all these components is denoted by θ.

(II) Behaviour policy: At the beginning of each episode, a goal signal gi is sampled uniformly, and is held constant
for the entire episode. The policy executed is ε-greedy after conditioning the UVFA on the current goal signal gi: with
probability ε the action taken at is chosen uniformly from A, otherwise at = argmaxaQ(st, a; gi).

(III) Off-policy multi-task learning: Another key component of the Unicorn agent is its ability to learn about multiple
tasks off-policy. Therefore, even though it may be acting on-policy with respect to a particular task, it can still learn about
other tasks from this shared experience in parallel. Concretely, when learning from a sequence of transitions, Q-values
are estimated for all goal signals gi in the training set and n-step returns G(n)

t,i are computed for each corresponding task

τi as G(n)
t,i =

∑n
k=1 γ

k−1rτi(st+k, at+k) + γnmaxaQ(st+n, a; gi). When a trajectory is generated by a policy conditioned
on one goal signal gi (the on-policy goal with respect to this trajectory), but used to learn about the policy of another
goal signal gj (the off-policy goal with respect to this trajectory), then there are often action mismatches, so the off-
policy multi-step bootstrapped targets become increasingly inaccurate. Following [14], we therefore truncate the n-step
return by bootstrapping at all times t when the taken action does not match what a policy conditioned on gj would
have taken,2 i.e. whenever at 6=a Q(st, a; gj). The network is updated with gradient descent on the sum of TD errors
across tasks and unrolled trajectory of length H (and possibly a mini-batch dimension B), yielding the squared loss

L = 1
2

∑K′

i=1

∑H
t=0

(
G

(n)
t,i −Q(st, at; gi)

)2
where errors are not propagated into the targets G(n)

t,i .

(IV) Parallel agent implementation: We employ a parallel agent setup consisting of multiple actors, running on separate
(CPU) machines, that generate sequences of interactions with the environment, and a single learner (GPU machine) that
pulls this experience from a queue, processes it in mini-batches, and updates the value network (see Figure 2, Top Right).
Each actor continuously executes the most recent policy for some goal signal gi. Together they generate the experience
that is sent to the learner in the form of trajectories of length H , which are stored in a global queue. The learner batches
up trajectories pulled from the global queue (to exploit GPU parallelism), passes them through the network, computes
the loss (Section (III)), updates the parameters θ, and provides the most recent parameters θ to actors upon request.

4 Experiments
Following our stated motivation for building continual learning agents, we set up a number of experiments that test the
Unicorn’s capability to solve (A) multiple (Section 4A), (B) related (Section 4B) and (C) dependent tasks (Section 4C).

Domain: We developed a visually rich 3D navigation domain within the DM Lab framework [1] which we call Treasure
World (Figure 1a). The specific level used consists of one large room filled with 64 objects of multiple types and equal
frequency. Whenever an object is collected, it respawns at a random location in the room. Episodes last for 60 in-
game seconds, which corresponds to 450 time-steps. The continual learning experiments last for 120 in-game seconds.
The objects used in the multi-task and transfer domains are different color variations of cassettes, chairs, balloons and
guitars. For continual learning, the TV, ball, balloon and cake objects play the functional roles of a key, lock, door and
chest respectively. Visual observations are provided only via a first-person perspective, and are augmented with an

2Returns are also truncated for the on-policy goal when epsilon (i.e., non-greedy) actions are chosen.

2

Paper # 133 314

Figure 2: (a) Multi-task Learning A single Unicorn agent learns to collect any out of 16 object types in the environment.
Each thin red line corresponds to the on-policy performance for one such task; the thick line is their average. We ob-
serve that performance across all tasks increases together, and much faster, than when learning separately about each
task (black). See text for the baseline descriptions. (b) Off-policy ablative experiment; (c) Zero shot performance with
augmented tasks and (d) Zero shot performance without augmented tasks. Top Right: Unicorn Actor/Learner setup
Bottom Right: Network architecture.

inventory stack with the five most recently collected objects. Picking up is done by simply walking into the object. There
is no special pick-up action; however, pick-ups can be conditional, e.g., a lock can only be picked up if the key was
picked up previously. The goal signals are pre-defined one-hot vectors unless otherwise stated.

Baselines We compare four baselines to the Unicorn agent. The first two baselines have the same architecture and
training setup as the Unicorn but are conditioned and learn about a single goal g. We train one of these single-task
expert agents for each individual task. Baseline (1): expert (single), which is the single-task expert performance averaged
across all tasks. The horizontal axis for this baseline is not directly comparable as the experts together consume K times
more experience than the Unicorn (as each single-task expert is trained on a separate network). We therefore represent
this baseline with a dotted line to indicate an upper performance bound. Baseline (2): expert, which focuses on sample
complexity and takes all accumulated experience of all the single-task expert agents, across all tasks, into account. In this
case, the axes are directly comparable. Baseline (3): glutton, also uses the same architecture and training setup, but uses a
single composite task whose pseudo-reward is the sum of rewards of all the other tasks rglutton(s, a) =

∑K
i ri(s, a). This

is also a single-task agent that always acts on-policy according to this cumulative goal. Its performance is measured by
calculating the rewards the glutton policy obtains on the individual tasks. This baseline is directly comparable in terms
of compute and sample complexity. Baseline (4): a uniformly random policy.

(A) Learning multiple tasks: The multi-task Treasure World experiment uses 16 unique objects types (all objects have
one of 4 colors and one of 4 shapes), with an associated task τi for each of them: picking up that one type of object is
rewarding, and all others can be ignored. Figure 2a shows the learning curves for Unicorn and how they relate to the
baselines; data is from two independent runs. We see that learning works on all of the tasks (small gap between the
best and the worst), and that learning about all of them simultaneously is more sample-efficient than training separate
experts, which indicates that there is beneficial generalization between tasks. As expected, the final Unicorn performance
is much higher than that of the glutton baseline.

(B) Generalization to related tasks: The first transfer experiment (Figure 1c(II)) investigates zero-shot transfer to a
set of four hold-out tasks (objects within the orange boxes) that see neither on-policy experience nor learning updates.
Generalization happens only through the relation in how goal signals are represented: each gi ∈ R8 is a two-hot binary
vector with one bit per color and one bit per shape. Successful zero-shot transfer would require the UVFA to factor the set
of tasks into shape and color, and interpret the hold-out goal signals correctly. Figure 2d shows the average performance
of the hold-out tasks, referred to as zero-shot, compared to the training tasks and the additional baselines. We observe
that there is some amount of zero-shot transfer, because the zero-shot policy is clearly better than random.

The second transfer experiment (Figure 1c(III)) augments the set of training tasks by 8 abstract tasks (20 training tasks
in total) where reward is given for picking up any object of one color (independently of shape), or any object of one
shape (independently of color). Their goal signals are represented as one-hot vectors gi ∈ R8. Figure 2c shows that this

3

Paper # 133 315

augmented training set substantially helps the zero-shot performance, above what the glutton baseline can do. These
results are consistent with those of [4]. More detailed learning curves can be found in the appendix.

Ablative study - Learning only from off-policy updates: In a probing experiment (Figure 1c(I)), the Unicorn actors only
act on-policy with respect to the 12 training goal signals (all non-cyan objects), but learning happens for the full set of 16
objects; in other words the cyan objects (surrounded by the orange bounding box) form a partial hold-out set, and are
learned purely from off-policy experience. Figure 2b summarizes the results, which show that the agent can indeed learn
about goals from purely off-policy experience. Learning is not much slower than the on-policy goals.

(C) Continual learning with deep dependencies This section presents experiments that test the Unicorn agent’s ability
to solve tasks with deep dependency structures (C). For this, we modified the Treasure World setup slightly: it now
contains four copies of the four3 different object types, namely key, lock, door and chest, which need to be collected
in this given order (see Figure 1b). The vector of pseudo-rewards corresponding to these tasks are conditioned on precise
sequences in the inventory: to trigger a reward for the door task, the previous two entries must be key and lock,
in that order. Any object picked up out of order breaks the chain, and requires starting with the key again. Here,
improving the competence on one task results in easier exploration or better performance on the subsequent one as
shown in Figure 1d. The bar-plot in Figure 1e shows this stark contrast: compare the height of the violet bars (that is,
performance on the chest task) for ‘unicorn(chest)’ and ‘expert(chest)’ – the Unicorn’s continual learning approach
scores 4.75 on average, while the dedicated expert baseline scores 0.05, not better than random. Across 5 independent
runs, the chest expert baseline was never better than random. On the other hand, the glutton baseline learned a lot
about the domain: at the end of training, it collects an average of 38.72 key, 16.64 lock, 6.05 door and 1.05 chest
rewards. As it is rewarded for all 4 equally, it also encounters the same kind of natural curriculum, but with different
incentives: it is unable to prioritize chest rewards. In contrast, the Unicorn conditioned on gchest collects an average of
9.93 key, 6.99 lock, 5.92 door and 4.75 chest rewards at the end of training. A video of the Unicorn performance in
the 16 object setup is available online4.

5 Conclusion

We have presented the Unicorn, a novel agent architecture that exhibits the core properties required for continual learn-
ing. Unicorn is able to (A) efficiently learn about multiple tasks, (B) leverage learned knowledge to solve related tasks,
even with zero-shot transfer, and (C) solve tasks with deep dependencies. All of this is made efficient by off-policy
learning about multiple tasks simultaneously, using parallel streams of experience coming from a distributed setup. Ex-
periments in a rich 3D environment indicate that the Unicorn clearly outperforms the corresponding single-task baseline
agents, scales well, and manages to exploit the natural curriculum present in the set of tasks.

References

[1] Beattie et. al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.
[2] Espeholt et. al. Scalable distributed deep-rl with importance weighted actor-learner architectures. ICML, 2018.
[3] Finn et. al. Model-agnostic meta-learning for fast adaptation of deep networks. ICML, 2017.
[4] Hermann et. al. Grounded language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551, 2017.
[5] Mnih et. al. Asynchronous methods for deep reinforcement learning. In ICML, 2016.
[6] Schaul et. al. Universal value function approximators. In ICML, 2015.
[7] Schaul et. al. The barbados 2018 list of open issues in continual learning. NIPS workshop on Continual Learning, 2018.
[8] Sutton et. al. Horde. In AAMAS, 2011.
[9] Tessler et. al. A deep hierarchical approach to lifelong learning in minecraft. AAAI, 2017.

[10] Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer, 1993.
[11] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with multi-task deep

reinforcement learning. arXiv preprint arXiv:1706.05064, 2017.
[12] Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning Proceedings 1994, pages

226–232. Elsevier, 1994.
[13] Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis, University of Texas at Austin, 1994.
[14] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s College, 1989.

3With only 16 (respawning) objects in total, this is less dense than in the experiments above, in order to make it less likely that the
agent collects an out-of-sequence object by mistake.

4https://youtu.be/h4lawNq2B9M

4

Paper # 133 316

Penalty-Modified Markov Decision Processes:
Efficient Incorporation of Norms into

Sequential Decision Making Problems

Stephanie Milani ˚
Department of CSEE

University of Maryland, Baltimore County
Baltimore, MD 21250

stephmilani@umbc.edu

Nicholay Topin
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213
ntopin@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
katia@cs.cmu.edu

Abstract

In recent years, people have welcomed intelligent, autonomous agents into their homes and factories to perform various
useful tasks. We will increasingly rely on these agents to assist with and make important decisions in scenarios that
can be represented as sequential decision-making problems. In some of these problems, potential social ramifications
and trade-offs must be considered. In these situations, it is essential for these agents to integrate human norms with
traditional methods for learning in complex environments, such as reinforcement learning. In this work, we propose a
novel framework, called Penalty-Modified Markov Decision Processes, for reinforcement learning in environments with
potentially many norms. We formalize the learning and decision-making problem as solving a Markov decision process
that is modified only as norms are violated. We show that the upper bound on the number of states created using our
method is equivalent to the lower bound on the number of states created using existing approaches.

Keywords: norms, reinforcement learning, MDP, sequential decision making

Acknowledgements

Stephanie would like to thank the National Science Foundation Robotics Institute REU for funding this work.

˚Work done as an intern at Carnegie Mellon University.

Paper # 260 317

1 Introduction

Emerging autonomous agents will make increasingly more decisions that significantly impact human lives. These agents
will reason about and take action in social environments, in which there are many socially-constructed norms, culturally-
and socially-influenced preferences, and individual and collective values dependent on context and situation. To act
appropriately in environments where actions may have social ramifications, these agents must integrate human values,
norms, and preferences with traditional task-learning methods, such as reinforcement learning (RL). Integrating all of
the aforementioned components is a lofty goal, as it requires the agent to reason about interconnected pieces at different
levels of abstraction. Because norms are reflective of cultural, societal, and individual values and have an accompanying
grounded action prescription, they are less abstract than values (e.g., the norm “always tell the truth” instead of the
value “honesty”) and can reflect both individual and societal preferences. This expressivity makes focusing on norms
more desirable than focusing on values or individual preferences alone — especially in social environments.

Existing methods for incorporating normative reasoning into sequential decision-making problems suffer from a lack of
scalability. In part, this issue stems from the coupling of norms and their resulting penalties: norms with shared penalties
are considered to be separate, independent norms. However, penalties are often shared across various norm violations.
Consider the penalties that arise from moving violations. Some of these penalties, such as fines, are immediate, one-
time penalties that differ greatly in value (e.g., $75, $100). In addition to fines, a common long-term penalty for moving
violations is demerit points on one’s driving record. These points may arise from a number of different violations, such as
speeding, failing to comply with the seatbelt law, or reckless driving. One loses one’s driving license after accumulating
enough points — regardless of the norm violations that led to the accumulation of these points.

To incorporate the observation of shared long-term penalties across different norms and to address the issue of scalability,
we propose a novel framework, called Penalty-Modified Markov Decision Processes (PMMDPs), for RL agents to learn
appropriate behavior in social environments with norms. We formalize the problem as solving a Markov decision process
that is modified when norms are violated. We show that the upper bound for the number of states created by our method
is equivalent to the tight bound of the number of states created using previous methods.

2 Background and Related Work

Markov decision processes (MDPs) are the standard formalism for modeling sequential decision-making problems. An
MDP is a five-tuple consisting of a set of states S, a set of actionsA, a state transition probability function T : SˆAˆS Ñ
r0, 1s that defines the transition dynamics, a reward functionR : SˆAÑ R, and a discount factor γ P r0, 1s that represents
the importance of future rewards relative to immediate rewards. In general, the goal of a planning or reinforcement
learning (RL) agent is to maximize the expected cumulative discounted reward of its policy, π : S ˆAÑ r0, 1s, which is a
probability distribution over state-action pairs. Typically, in RL problems, the agent lacks direct access to T andR, while
planning problems assume that an agent has precise knowledge of these components.

Prior work in norm-aware reinforcement learning (RL) uses reward shaping to incorporate human desires that are inde-
pendent from the task-completion goals [7], or has the agent learn an ethical utility function that is a part of the hidden
state of a partially observable Markov decision process [1]. These approaches can only be used for norms with reward
penalties; they cannot be used for norms with long-term penalties, such as those that modify the state space and the tran-
sition function. This is important because some penalties, such as demerit points on one’s license for moving violations,
cannot be effectively captured by reward penalties alone.

An alternative way to incorporate human-specified restrictions is the framework of Constrained MDPs [2]. Under this
formulation, a domain contains multiple objectives. The goal is to maximize one of these objectives subject to constraints
on the other objectives. Though an existing MDP can be modified by adding addition constraints, Constrained MDPs
only restrict certain actions or apply immediate penalties. They do not provide a mechanism for changing environment
dynamics as a result of constraint violations, so they are suitable for a different set of applications than our framework.

Another work [5], which is employed in planning with normative constraints, expresses penalties (or sanctions) as mod-
ifications to the agent’s capability function and transition function. The capability function C : S Ñ A is a component
of the MDP that denotes the set of admissible actions for each state. This approach does not include reward function
modifications and strictly enforces action constraints on the agent.

A similar approach to ours, called Normative Markov Decision Processes (NMDPs), considers the full set of norms in the
state space [4]. However, as noted in [6], using this representation in an RL setting causes the problem to succumb to
the curse of dimensionality [3], meaning the problem is computationally intractable with a large number of norms. The
Modular Normative Markov Decision Process (MNMDP) framework seeks to mitigate the issue of scalability with NMDPs
by constructing a separate MDP for each individual norm and for each set of interacting norms [6], where the state
representation for each MDP consists of the original components of the state space in addition to the relevant norm(s).
Interacting norms are defined as norms which are simultaneously relevant to the agent’s decision and must be considered

1

Paper # 260 318

together. When there are many interacting norms in the environment, this representation suffers from increased state-
space size — especially when it is not known a priori which and how many norms will interact. In some cases, using the
NMDP approach is preferable over the MNMDP approach because the total number of states created is less in the former
than the latter, which we prove in Section VI.

3 Penalty-Modified Markov Decision Processes

We introduce a new method, Penalty-Modified Markov Decision Processes (PMMDPs), for norm-aware reinforcement
learning. Our method is motivated by the insight that, in the real world, norms often share penalties. We base our novel
method on the standard Markov decision process (MDP) framework. In our framework, each Penalty-Modified MDP is
a seven-tuple xS,A, T ,R, γ,N ,Py consisting of the common MDP components, a totally ordered set of norms N , and a
totally ordered set of penalties P that arise from violating norms in N . The set of norms and the set of penalties are each
ordered based on their precedence; members of these sets are applied based on the order.

We depart from previous literature in our representation of norms by decoupling the changes that arise when an agent
violates the norm from the norm itself. We present an initial, simplified norm representation with few components to
highlight the novelty of our contribution; however, we could easily extend our representation to include more compo-
nents used in other approaches, such as the authority that issued the norm. We represent a norm n in a totally ordered
set of norms N as n P N “ xC, σy, where C is the violation condition and σ consists of the set of MDP modifications, or
sanctions, that arise when n is violated. The violation condition C is a propositional function that determines whether a
norm has been violated, defined as C : stˆ aˆ st`1 Ñ t0, 1u. For example, consider the norm of yielding to a pedestrian
in a crosswalk. To test whether this norm has been violated by a driving agent, the propositional function tests for the
presence of a pedestrian and whether the agent chose to continue driving instead of stopping. If the agent did not yield
to the pedestrian, the propositional function evaluates to 1, indicating that the norm has been violated; otherwise, it
evaluates to 0, indicating that the norm has not been violated.

As a result of violating a norm, the corresponding sanctions in σ are applied to the MDP. There are two components,
σ “ xσR, σpy, which are modifications to the reward function and the state, respectively. The reward function modifier
is the immediate reward penalty for violating n. It is represented by σR : rt Ñ rm, where rt is the original reward
received for taking the action and rm is the new reward received based on the norm violation. This is akin to an agent
receiving a fine for speeding, or another moving violation: the reward that may result from reaching the destination more
quickly is augmented by the penalty for exceeding the speed limit. The state modifier consists of a penalty flag added to
the following state to indicate the ongoing application of a penalty due to a violation. Specifically, σp corresponds to a
specific feature which is normally 0 but is set to 1 when the norm is violated. This is akin to an agent receiving a demerit
point on its driving record for a moving violation. Unlike the one-time penalty of a fine, a demerit point is a long-term
penalty that remains on the agent’s record until another event causes it to be removed.

The penalty flags are used by the set of penalties P for restricting or modifying future agent behavior. For each σp penalty
flag set by one or more norms, P contains a transition function modifier Tp which modifies the transition function by
mapping each st`1 to an alternate st`1. Effectively, P defines a sequence of Tp which are applied after the standard
transition function T , but each Tp only changes the state if σp is 1 in the state. By separating norms from penalties,
several different norms which result in the same long-term sanctions can share a feature indicating that the sanction
should be applied due to a norm violation.

As in previous work, the other components of the MDP must also be modified to accommodate norms. The state space S
now includes all states in the original state space (with all norm violation features set to 0) and all reachable states with at
least one non-zero norm violation feature. This is similar to the modification performed when using an MNMDP, except
we do not restrict the number of norms which can be simultaneously violated. The reward function R and transition
function T are modified to be invariant to the norm violation features with the exception that T preserves norm violation
flags (i.e., Ppst`1|st, atq “ 0 if strσps ‰ st`1rσps for any σp). The action space A and discount factor γ remain unchanged.

4 Learning in an Environment with Norms

Using the PMMDP framework, an agent can learn how to perform desired tasks in an environment with norms. No-
tably, the PMMDP can either be pre-computed as a pre-processing step or modified during the learning process. In this
paper, we focus only on the modification of the PMMDP during the learning process; however, we plan to empirically
demonstrate the efficacy of both approaches as future work.

The application of norm penalties to the MDP during the learning process proceeds as shown in Algorithm 1. When an
agent takes an action in an environment, the original transition is computed without norms. Then, the transition is up-
dated to account for the ongoing effects of previous norm violations, if any exist. The transition update is accomplished
by sequentially applying the transition function modifiers, which correspond to the penalties of the violated norms. After

2

Paper # 260 319

Algorithm 1 Modifying an MDP with Norm-Violation Penalties
function APPLY-PENALTIES(st, a, rt, st`1)

for xC, xσR, σpyy in N do Ź sequentially check if norms are violated and apply corresponding sanctions
if IS-IN-VIOLATION(C, st, a, st`1) then Ź use condition function to check if agent violated norm

st`1rσps Ð 1
rt Ð σRprtq

return st`1, rt
function PERFORM-STEP-WITH-PMMDP(st, a)

st`1, rt Ð COMPUTE-TRANSITION(st, a) Ź compute transition for unmodified state
for xσp, Tpy in P do Ź sequentially apply transition function modifiers for norm violations

if st`1[σp] is 1 then
st`1 Ð Tppst`1q

st`1, rt Ð APPLY-PENALTIES(st, a, rt, st`1)
return st`1, rt

that, the transition is evaluated for norm violations. For each norm n P N , the corresponding propositional function is
evaluated. If the agent violated the norm in question, then σR is applied to the reward for this transition and σp is applied
to the following state. The agent then transitions to the new state st`1 that includes the new penalty modification and
receives the modified reward.

Consider an agent in a realistic driving domain. When the agent takes an action, the transition is computed without
considering traffic laws. Then, the transition is updated to account for the ongoing effects of previous moving violations
(if they exist), such as points on its driving record. After that, each relevant traffic norm (e.g., speed restrictions, turn-
signal regulations) is examined to determine if any of these norms were violated by agent. Any fines (reward penalties)
are then applied to the reward for this transition and any demerit points (penalty flags) are then applied to the following
state. The agent then transitions to the new, modified state that includes the demerit point(s) and receives the modified
reward that includes the fine(s). For example, if an agent did not yield to a pedestrian in a crosswalk, it would receive a
fine of $100 and a demerit point on its driving record. The modified reward would include this fine and the modified state
would include this demerit point. The demerit point will affect future transitions through the corresponding penalty-
specific transition function that will be applied after the standard transition function.

5 Analysis

In this section, we show an upper bound on the number of states in a PMMDP that is of the same order as the lower
bound on the number of states created using existing methods. This result shows that our formulation of norms scales
at least as well as existing methods, even in the worst case. We first demonstrate that there exist some cases where
using NMDPs is preferable to using MNMDPs, which has not previously been demonstrated. Then, we show that our
method is always at least as good as the MNMDP and NMDP approaches with respect to the number of states created.
Notably, with our approach, the state-space complexity of the MDP is only increased with the number of penalties that
are imposed by the norm violations. If the agent does not violate any norms, then no penalties are imposed, and, thus,
the agent solves the original MDP, making the best-case size of the state space equivalent to that of the original, normless
MDP. Importantly, this analysis is only for binary norm violation features; future work will extend this method to handle
non-binary features. See Table 1 for an overview of our analysis.

Theorem 1. There exist some cases where the NMDP formulation has fewer states than the MNMDP formulation.

Proof. Let n be the total number of norms and d be the total number of possible interactions between norms, where an
interaction is defined as two or more norms that are concurrently activated in a scenario. As shown by the authors when
the MNMDP approach was introduced [6], the number of states in the fully-normative MDP framework is of the order
Ωp2nq and the number of states in the MNMDP framework is of the order Ωpndq. That means that using the MNMDP
framework is preferable if nd ă 2n, which can be converted to log2pndq ă n. Then, dplog2 nq ă n, so d ă n{ log2 n.
Thus, the MNMDP framework is preferable to the fully normative MDP approach when the number of interactions, or
concurrently active norms, is less than n{ log2 n.

Theorem 2. The number of states in a PMMDP is never more than the number of states in the corresponding MNMDP nor the
number of states in the corresponding NMDP.

3

Paper # 260 320

Approach Number of States Created Note
NMDP Ωp2nq

MNMDP Ωpndq If d ą n{ log2pnq, more states created than NMDP
PMMDP Op2pq,Oppdq p ď n

Table 1: Analysis of the number of states created for each of the three methods. The state-space size for NMDPs is
exponential in n, where n is the number of norms that can be either on or off. The state-space size for MNMDPs is
exponential in d, where d is the maximum number of interactions between norms. The worst-case state-space size for
PMMDPs is exponential in p or exponential in d; importantly, p ď n, so no more states are ever created than in the other
two methods.

Proof. Let p be the number of possible penalties. In the worst case of a one-to-one mapping of penalties to norms, where
each norm has its own unique penalty, the number of penalties p is equivalent to the number of norms n (p “ n); however,
in general, p ď n because the set of norms to penalties consists of one-to-one or many-to-one mappings. Let |P | be the
number of possible concurrent penalties. Because p ď n, |P | ď 2p ď 2n. Continuing with the aforementioned notation in
the proof of Theorem 1, let d be the maximum number of concurrent norms. Then,

|P | “
dÿ

i“1

ˆ
p

d

˙
“
ˆ
p

1

˙
` ...`

ˆ
p

d

˙
Ñ p1 ` ...` pd (1)

Hence, the number of states created in our approach is Oppdq, meaning that the upper bound of the number of states
created in our approach is equivalent to the lower bound on the number of states created by the NMDP and MNMDP
methods.

6 Conclusion

We present a novel framework for RL with normative constraints. The number of states created in our framework is less
than other frameworks because it depends on the number of penalty flags, not on the number of norms (p ď n). The
computed worst-case bound on the number of states created by our method is of the same order as the lower-bounds
for previous work. Our framework also avoids redundant states, adding no more states than are included in the naive,
fully normative case. Furthermore, our framework is the first of its kind in an RL setting that includes penalties for norm
violations that modify the reward function, the transition function, and the state space.

References

[1] D. Abel, J. MacGlashan, and M. L. Littman. Reinforcement learning as a framework for ethical decision making. In
AAAI Workshop on AI, Ethics, and Society, 2016.

[2] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[3] R. E. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton University Press, 4th edition, 1971.

[4] M. S. Fagundes, S. Ossowski, J. Cerquides, and P. Noriega. Design and evaluation of norm-aware agents based on
normative markov decision processes. In International Journal on Approximate Reasoning, volume 78, 2016.

[5] M. S. Fagundes, S. Ossowski, M. Luck, and S. Miles. Using normative markov decison processes for evaluating
electronic contracts. In AI Communications, volume 25, 2012.

[6] V. Krishnamoorthy, W. Luo, M. Lewis, and K. Sycara. A computational framework for integrating task planning and
norm aware reasoning for social robots. In RO-MAN, 2018.

[7] Y.-H. Wu and S.-D. Lin. A low-cost ethics shaping approach for designing reinforcement learning agents. In AAAI,
2018.

4

Paper # 260 321

Inferring Value by Coherency Maximization of Choices and
Preferences

Adam N. Hornsby
Department of Experimental Psychology

University College London
London

adam.hornsby.10@ucl.ac.uk

Bradley C. Love
The Alan Turing Institute

United Kingdom
b.love@ucl.ac.uk

Abstract

In standard models of reinforcement learning (RL), the reward signal is objective and drives learning. For example,
in a video game, the points earned serve as an accessible and objective measure of reward that can be maximized by
an agent. However, outside the confines of such artificial environments, rewards are not specified. For example, no
objective rewards are associated with choosing to eat a pizza or spending time with a friend. In such cases, which
encompass almost all of human experience, the subjective value of the choice is interpreted by the agent by comparing
how well the choice aligns with the agent’s preferences. The agent can then update its preferences in the absence of
an objective reward, which in turn may alter future valuations of choices. To date, few RL models have formalized this
process of subjective reinforcement learning. We propose a new computational cognitive model which characterizes how
people make subjective decisions and update their preferences over time. The probability of a choice is a determined by
how similar choice options (e.g., pizza) are to the agent’s preference vector, where similarity is a function of attention-
weighted distance such that some attributes (e.g., taste) can be weighted more than others (e.g., calories). Preferences
are updated by gradient-descent learning rules that make repeating related choices (e.g., pizza over salad) more likely
in the future by adjusting attention weights and the position of the preference vector. These learning rules maximize
coherency by aligning preferences to match choices, a well-documented finding within the psychological literature of
free choice. This model, which radically departs from standard RL models, is validated by simulation and behavioral
experiments with humans. People updated their preferences and generalized to similar choices in a manner consistent
with the model.

Keywords: Subjectivity, Reinforcement Learning, Preferences, Cognitive
Modelling, Intrinsic Motivation, Coherency Maximization

Acknowledgements

A.N.H is supported by dunnhumby and the Royal Commission for the Exhibition of 1851. B.C.L. is supported by a Well-
come Trust Senior Investigator Award WT106931MA, and National Institute of Child Health and Human Development
Grant 1P01HD080679

Paper # 59 322

1 Introduction

Many standard models of reinforcement learning (RL) assume that rewards are the primary source of learning and that
agents are motivated to maximize them [1, 2]. It is therefore common to train RL agents in extrinsically rewarding
environments, where they can learn the correct policy by adapting to feedback from the environment. For example,
artificial agents have been shown to reach superhuman levels of play in games, where rewards are received for effective
play [3]. Those interested in human behaviour have demonstrated similarities between learning in artificial agents and
people in such tasks [2]. For example, evidence of a neural substrate for reward prediction error suggests that the brain
keeps track of extrinsic rewards associated with actions in a way similar to a popular RL algorithm, known as TD-learning
[4]. This has led to much excitement about the similarities between RL models and humans.

Despite these successes, many decisions in real life are made without an obvious extrinsic reward. For example, people
must choose between products in the supermarket and between presidential candidates when voting. Indeed, when
making such choices, people may feel strongly about choices that have little extrinsic advantage whatsoever. For exam-
ple, while cheaper instant coffee may be lighter on the wallet, it may taste worse than the competitors. This trade-off may
or may not be palatable, depending on people’s preferences for price and taste. In these cases, the subjective value of a
choice is determined by integrating over a range of different reward signals in relation to one’s preferences. The result is
a single measure of subjective value; a phenomenon that is predicted by dopamine signals in the brain [5, 6]. Yet — due
to use of extrinsically rewarding tasks — few models have formalized the process by which subjective preferences may
be learned and how they may interact with decisions over time.

To understand how people learn subjective preferences, it is necessary to consider people’s intrinsic motivations. Most
primitively, species are motivated to preserve homeostasis; seeking food when they’re hungry and rest when they’re
tired. Thus, some have proposed that intrinsic reward functions exist to motivate self-regulation [7, 8]. However, this
motivation may not fully account for all subjective decision making. For example, a large part of learning in childhood
is driven by play, suggesting that people are also driven by higher-level drives, such as curiosity [9]. Indeed, advances
have shown artificial curiosity to elicit good performance in sparsely-rewarding games [10, 11]. While this is promising,
there are likely other cognitive drives that motivate learning of subjective preferences beyond what has been explored
here.

In addition to being curious, people are also motivated to appear coherent with their past choices. For example, a recent
analysis of 280,000 real British consumers’ showed that they had a reduced tendency to explore new products the more
they repeat-purchased (i.e., exploited) the same one [12]. This is surprising, in that it is the opposite of what would be
expected of an agent motivated to minimize uncertainty in the environment. Rather, it suggests that people are motivated
to maximize the coherency between their preferences and past choices, meaning that they come to prefer the things they
choose. While simple, this kind of internal consistency is pivotal to many rational models of decision making [13]. For
example, it is often assumed that choices should be stochastically transitive [5]. Thus, in the absence of an extrinsic
reward signal, coherency may be the most rational strategy a person can fall back on. The notion that choices may be
self-reinforcing is not something that has been widely explored within RL and is therefore in need of investigation.

In this research, we present a new cognitive computational model of human preference formation and subjective decision
making. Inspired by RL, the model makes decisions and learns from these to update its preferences. However, unlike
standard models of RL, it does not assume that a reward must exist in order for an agent to learn. Specifically, the agent
makes choices and uses those as a basis to update their preferences and attentional focus. Thus, we say that the model
is motivated to maximize coherency between one’s past and present choices. Uniquely, the model learns preferences over
attributes of choices rather than choices themselves. This makes unique predictions about multi-attribute generalization
(or “spillover” effects), where people increase their preference towards attributes that discriminate in the choice just
made; a result predicted by “blocking effects” in associative learning [14]. In the remainder of this article, we introduce
the cognitive model and results from a laboratory experiment that confirms the existence of spillover effects caused by
coherency maximization and thus several key tenets of the model.

1.1 Model

We now describe our model of subjective preference learning and decision making. Note that vectors will now be denoted
in bold lowercase letters and matrices in bold uppercase letters.

Broadly speaking, the model works by maintaining an internal set of preferences and attention weights for attributes
across choices. For example, products in a supermarket can be described in terms of their nutritional content or whether
they are found in a salad [15]. Individuals will possess different preferences for those attributes, and pay differing
levels of attention to them. Preferences are therefore represented as ideal-points within a multidimensional space and
— alongside attention weights — used to determine how favourable a choice is at a given timepoint. In particular, the
higher the attention-weighted similarity, the more likely it will be to choose that option. Much like a reinforcement

1

Paper # 59 323

learning agent, the model takes an action, observes its environment, updates its internal state and then repeats the
process.

We denote the observation of options in the environment using the matrix O, which has a shape of N ×M . Here, N
denotes the number of choices available O = [o1,o2, ...,oN]T at a given timestep. For simplicity of notation, we assume
that the model must choose between two items at any one time (i.e. N=2). However — in principle — the model is not
constrained to this. M denotes the number of attributes for each option. Thus, each column oi (i ∈ {1, ...N}) is a vector
of M attributes oi = [oi1, oi2, ..., oiM]. Therefore, the element oij corresponds to the jth attribute (j ∈ {1, ...M}) of the ith
item.

Action selection

In order to determine the most appropriate choice, the model first calculates a probability over the available options
observed in O using the preference vector p = [p1, p2, ..., pM]T and the attention weight vector w = [w1, w2, ..., wM]T .
Each element of the preference and attention weight vectors pj and wj maps to an attribute j in the attribute vector oij .

In order to determine the probability of an action, the model calculates an attention-weighted similarity between the
preference vector and each of the N = 2 item vectors oi within the observation matrix O. We denote the attention-
weighted similarity as a(oi)

a(oi) = −γ

M∑

j=1

wj(oij − pj)2

1/2

(1)

Where γ is a scaling hyperparameter. Note that this weighted Euclidean similarity term is very similar to the one used
in the ALCOVE model of human categorization [16].

In order to determine the probability of selecting an option i, the attention-weighted similarity a(oi) is then fed into a
softmax function

f(oi) = P(Ii|O) = softmax(a(O))i =
exp a(oi)∑N
k=1 exp a(ok)

(2)

Action selection

Choices can be selected using one of the many popular strategies used in RL, such as ε-greedy or softmax action selection
[1]. In each case, higher probabilities for choices (i.e. stronger preferences) increase the likelihood of exploiting that
known favourite, rather than exploring disfavoured options. When using softmax selection specifically, the λ parameter
can be thought of as determining the “fussiness” of the agent’s choices, such that higher λ equates to a higher likelihood
of choosing the favorite. We denote the choice made by the agent as c.

Updating preference and attention-weight vectors

Following an action, the agent must then update its preference and attention weight vectors. As previously discussed,
people have a strong desire to make subjective choices in a way that is internally consistent. Data of consumer behaviour
has shown that — in subjective choice domains where there is no explicit feedback — preferences tend to follow choices
[12]. This has also been demonstrated inside the lab. Specifically, psychological studies of “free choice” have shown that
making a forced choice between items causes someone to increase their preference for it; a process that appears to be
reinforced by activity in the basal ganglia [17, 18]. We therefore update the preference and attention weight vectors so as
to maximize the likelihood of the previous choice.

The exact learning procedure used to update the preference and attention weight vectors is gradient descent on the cross-
entropy loss. After selecting an action, the cross-entropy loss is calculated between the action probabilities output by the
model f(oi) and the actual choice c that was made.

l(f(O), c) = −
N∑

i=1

1{c=i}log(f(oi)) (3)

After making an action, the preference and attention weights are updated so as to minimize the cross-entropy error.
Concretely, they are updated proportionally to the negative of the error gradient (i.e., gradient descent). For brevity, the
derivatives are not reported here.

2

Paper # 59 324

(a) (b)

Figure 1: Figure (a) shows results from the simulation, in which the agent is requested to choose between choice type 1
and 2 over 10,000 timeteps. The gray preference history is coloured by the ratio of the attention weights1, where lighter
values indicate a higher attention paid towards the second attribute. Figure (b) shows results from the experiment,
demonstrating the proportion that each pattern was chosen as a first, second and third preference.

2 Results and discussion

Model simulation

To demonstrate how this computational model behaves, we performed a simulation in a simple two-dimensional envi-
ronment, in which there are two choices that don’t vary on a first dimension but vary significantly on a second dimen-
sion. This is analogous to choosing between two cola brands that vary little in taste but differ distinctly in the color of the
branding. The results of this simulation are plotted in Figure 1a. After simulating 10,000 forced-choices using ε-greedy
action selection, one can see that the model eventually — due to happenstance — comes to prefer items with attributes
resembling those of choice type 1. Perhaps most interestingly, as it moves towards this choice type, the preferences and
attention of the model moves most in favour of the attributes of the choice that make it appear unique. Thus, the simu-
lation highlights two predictions made by our model. Firstly, it predicts that people will generalize their preferences to
novel items if they share attributes with items that they have already chosen. Secondly, people should overemphasize
their preference for attributes that made their choice unique. For example, a person should have an exaggerated prefer-
ence for other brands that use the colour unique to their preferred cola brand, even when they have never tried them. In
the remainder of this paper, we report results from a controlled experiment that attempts to test these key predictions.

Coherency maximization generalizes to similar options

To test the two aforementioned predictions of this model, 1003 participants were recruited to an online study via Amazon
Mechanical Turk. Participants were asked to design a robot. They were then introduced to a second robot, before both
turned around revealing previously unseen, randomly assigned patterns on their backs. Finally, participants were asked
to choose between three patterns; one that was unique to the back of the robot they had previously chosen (i.e. chosen
unique), another that was shared across the backs of the two robots and a final pattern that was unique to the back
of the robot they hadn’t designed (i.e. non-chosen). Firstly, it was hypothesized that — in accordance with the model
presented here — participants’ would prefer novel patterns that were associated with the robots they had previously
designed, implying that people reason about options and preferences within a multidimensional space. Secondly, it was
hypothesized that participants would have an exaggerated preference for patterns unique to the previously designed
robot; analogous to the well-documented “blocking effect” found in studies of associative learning [14]. To foreshadow,
results from the experiment confirmed both of these hypotheses.

Results from the experiment are shown in Figure 1b. To assess the significance of the effects, the rank sums of the
preferences for each choice type were computed for each participant. A non-parametric Friedman test of differences
among repeated-measures was conducted on the rank sums rendered significant (χ2 = 137.48, p < 0.001), suggesting
that there were significant differences among the preferences of participants for each choice type. To further assess
the significance of the differences between each of the choice types, three non-parametric Wilcoxon signed-rank tests
were conducted. Each p value was therefore compared to a Holm-Bonferroni corrected value. The first test comparing
the summed preferences between the chosen-unique (Median = 9, IQR = 4.0) and shared items (Median = 9, IQR =
3.0) was significant (Z = −2.91, p < 0.005, r = 0.09). The second test comparing the summed preferences between
the chosen-unique and non-chosen (Median = 11, IQR = 5.0) items was also significant (Z = −12.08, p < 0.001, r =
0.39). The final test comparing the summed preferences between the non-chosen and shared items was also significant
(Z = −11.70, p < 0.001, r = 0.38). These results therefore support our key hypotheses, in that they suggest making a

3

Paper # 59 325

forced-choice between options increases liking for novel options that are similar items just chosen and that people will
overemphasize their preference for attributes that made their choice unique.

In typical studies of RL, it is assumed that agents are motivated to maximize extrinsic reward and that this reward
forms the basis of learning. Yet, in real life, people often make decisions for which there is no clear reward signal. How
can people learn from such decisions? In this research, we argue that people have a fundamental desire to maximize
coherency between their past choices and present preferences. Uniquely, we extend existing results in the context of
“free choice” by showing that — as people reason about options in terms of a multi-attribute space — the desire to
maximize coherency can cause spillover effects, in which people come to prefer novel options that are similar (i.e., share
attributes) to ones previously chosen [17, 18]. In addition, the results show that — analogous to cue-competition effects
in associative learning [14] — people place an additional emphasis on the attributes of the choice that make it unique.

While in its infancy, this research hints at several challenges to the application of RL to subjective decisions. In partic-
ular, it suggests that learning and decision making are fundamentally different depending on the presence of extrinsic
reinforcement. For subjective decisions, people may not require reward to learn at all. Instead, it is possible that they
simply use their past choices to infer and update their preferences. Consequently, this can materialize in behaviour that
wouldn’t otherwise be predicted by uncertainty-minimizing agents, such as a reduced tendency to explore new options
the more they exploit [12]. Indeed, in this model, there are no “pure explorations”, as all choices exist within a known,
multi-dimensional space. In future research, we aim to evaluate the claim that uncertainty minimizing and coherency
maximizing can be elicited by rewards or the lack thereof, respectively. What is clear is that a new theory of subjective
RL may be required before these models can account for an important category of decisions made in the wild.

References

[1] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural Networks, vol. 9,
no. 5, pp. 1054–1054, 1998.

[2] W. Schultz, “Behavioral Theories and the Neurophysiology of Reward,” Annual Review of Psychology, vol. 57, no. 1,
pp. 87–115, 2006.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, 2015.

[4] J. P. O’Doherty, P. Dayan, K. Friston, H. Critchley, and R. J. Dolan, “Temporal difference models and reward-related
learning in the human brain,” Neuron, vol. 38, no. 2, pp. 329 – 337, 2003.

[5] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction and reward,” Science, 1997.
[6] A. Lak, W. R. Stauffer, and W. Schultz, “Dopamine prediction error responses integrate subjective value from differ-

ent reward dimensions,” Proceedings of the National Academy of Sciences, vol. 111, no. 6, pp. 2343–2348, 2014.
[7] S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically motivated reinforcement learning: An evolutionary

perspective,” IEEE Transactions on Autonomous Mental Development, vol. 2, pp. 70–82, 2010.
[8] M. Keramati and B. Gutkin, “Homeostatic reinforcement learning for integrating reward collection and physiologi-

cal stability,” eLife, vol. 3, p. e04811, dec 2014.
[9] P.-Y. Oudeyer, “Computational theories of curiosity-driven learning,” 2018.

[10] J. Schmidhuber, “Simple algorithmic principles of discovery, subjective beauty, selective attention, curiosity creativ-
ity,” 2007.

[11] Y. Burda, H. Edwards, D. Pathak, A. J. Storkey, T. Darrell, and A. A. Efros, “Large-Scale Study of Curiosity-Driven
Learning,” CoRR, vol. abs/1808.04355, 2018.

[12] P. S. Riefer, R. Prior, N. Blair, G. Pavey, and B. C. Love, “Coherency-maximizing exploration in the supermarket,”
Nature Human Behaviour, 2017.

[13] L. J. Savage, The Foundations of Statistics. Wiley Publications in Statistics, 1954.
[14] L. Kamin, “Predictability, surprise, attention and conditioning. in ba campbell & rm church (eds.), punishment and

aversive behavior (pp. 279-296),” New York: Appleton-Century-Crofts, 1969.
[15] A. N. Hornsby, T. Evans, P. Riefer, R. Prior, and B. C. Love, “Conceptual organization is revealed by consumer

activity patterns,” 2018.
[16] J. K. Kruschke, “ALCOVE: An exemplar-based connectionist model of category learning,” Psychological Review,

vol. 99, pp. 22–44, 1992.
[17] J. W. Brehm, “Postdecision changes in the desirability of alternatives,” Journal of Abnormal and Social Psychology, 1956.
[18] J. Cockburn, A. G. E. Collins, and M. J. Frank, “A Reinforcement Learning Mechanism Responsible for the Valuation

of Free Choice,” Neuron, vol. 83, no. 3, pp. 551–557, 2014.

4

Paper # 59 326

Learning Curriculum Policies for Reinforcement Learning∗

Sanmit Narvekar
Department of Computer Science

University of Texas at Austin
sanmit@cs.utexas.edu

Peter Stone
Department of Computer Science

University of Texas at Austin
pstone@cs.utexas.edu

Abstract

Curriculum learning in reinforcement learning is a training methodology that seeks to speed up learning of a difficult
target task, by first training on a series of simpler tasks and transferring the knowledge acquired to the target task.
Automatically choosing a sequence of such tasks (i.e., a curriculum) is an open problem that has been the subject of
much recent work in this area. In this paper, we build upon a recent method for curriculum design, which formulates
the curriculum sequencing problem as a Markov Decision Process. We extend this model to handle multiple transfer
learning algorithms, and show for the first time that a curriculum policy over this MDP can be learned from experience.
We explore various representations that make this possible, and evaluate our approach by learning curriculum policies
for multiple agents in two different domains. The results show that our method produces curricula that can train agents
to perform on a target task as fast or faster than existing methods.

Keywords: Reinforcement Learning; Transfer Learning; Curriculum Learning

Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported
in part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), Intel, Raytheon, and Lockheed Martin. Peter Stone serves on the
Board of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

∗A full-length, complete version of this paper will appear at AAMAS 2019, and can be found at https://arxiv.org/abs/
1812.00285

Paper # 70 327

1 Introduction

Over the past two decades, transfer learning [5, 11] is one of several lines of research that have sought to increase the
efficiency of training reinforcement learning agents. In transfer learning, agents train on simple source tasks, and transfer
knowledge acquired to improve learning on a more difficult target task. Typically, this has been a one-shot process,
where information is transferred from one or more sources directly to the target task. However, as the problems we task
reinforcement learning agents with become ever more complex, it may be beneficial (and even necessary) to gradually
acquire skills over multiple tasks in sequence, where each subsequent task builds upon knowledge gained in a previous
task. This insight is the basis for curriculum learning [1, 6].

The goal of curriculum learning is to design a sequence of source tasks (i.e. a curriculum) for an agent to train on, such that
after training on that sequence, learning speed or performance on a target task is improved. Automatically designing a
curriculum is an open problem that has only recently begun to be examined [4, 3, 8, 2, 7, 10]. One recent approach [7] pro-
posed formulating the selection of tasks using a (meta-level) curriculum Markov Decision Process (MDP). A policy over
this MDP, called a curriculum policy, maps from the current knowledge of an RL agent to the task it should learn next.
However they did not demonstrate whether the curriculum policy could actually be learned. Instead, they proposed an
algorithm to approximate a single execution of the curriculum policy, corresponding to an individual curriculum.

Until now, it was not known if curriculum policies could be learned: that is, whether it is possible to find a representation
that is both compact enough and generalizable enough to facilitate learning. Our main contribution is to demonstrate
that curriculum policies can indeed be learned, and we explore various representations that make this possible. In
addition, we generalize the curriculum MDP model proposed by Narvekar et al. [7] to handle different kinds of transfer
learning algorithms. Finally, we empirically show that the curricula produced by our method are at least as good as, or
better than those produced by two existing curriculum methods on two different domains. We also demonstrate that
curriculum policies can be learned for agents with different state and action spaces, agents that use different transfer
learning algorithms, and different representations for the curriculum MDP.

2 Learning Curriculum Policies

Our work extends the model proposed by Narvekar et al. [7], which formulates curriculum generation as an interaction
between two separate Markov Decision Processes: one is for a learning agent that is trying to solve a specific target task
MDP Mt, as is the standard case in reinforcement learning. The second is a curriculum agent, which interacts in a second,
higher level curriculum MDP (CMDP), and whose goal is to sequence tasks M for the learning agent. A curriculum
MDP was defined to be an MDP where: (1) the state space SC consists of all policies the learning agent can represent;
(2) the action space AC is the set of tasks to train on; (3) the transition function pC reflects the change in the learning
agent’s policy as a result of learning a task; and (4) the reward rC is the cost in time to learn the task. The starting
state corresponds to a random learning agent policy, and terminal states are learning agent policies that can achieve a
predefined performance level on a target task.

One limitation of the previous definition is that it assumes the underlying transfer learning mechanism is value function
or policy transfer. Intuitively, the state space of a CMDP should represent different states of knowledge. The goal of the
agent is to reach a state of knowledge that allows solving the target task in the least amount of time. As a case study, in
this paper we consider learning agents that use two different transfer algorithms: value function transfer and potential-
based reward shaping. In value function transfer, the value function learned in a source task is used to initialize the value
function in a subsequent task. In potential-based reward shaping, the value functions of a set of source tasks are used as
potential functions to create a shaping reward for a next task (see Svetlik et al. [10] for details). Thus, for an agent that
uses reward shaping, the CMDP state is represented as a set of potential functions, and the goal is to find a state whose
potentials allow learning the target task as fast as possible.

2.1 Representing CMDP State Space

In the standard reinforcement learning setting, the agent perceives its state as a set of state variables. These are typically
used to extract basis features φ(s), which transform the state variables into a space more suitable for learning and use in
function approximation. Given these features and a functional form, the goal is to learn weights θ for the value function
or policy. We introduce an analagous process for curriculum design agents acting in CMDPs. We will ground the
discussion assuming both the learning and curriculum agents use a value-function-transfer-based approach. However,
the idea is easily applied to a reward-shaping setting by noting that the reward can also be expressed as a product of
state features and weights r(s, a) = φ(s, a) · θ.

The first question is how to represent the raw state variables of a CMDP state. The representation chosen must be able
to represent any policy the underlying learning agent can represent (or equivalently, any shaping reward). Assuming
the learning agent derives its policy from an action-value function Qθ(s, a), the form of the function (such as network

1

Paper # 70 328

architecture, etc.) determines the class of policies that can be represented. This functional formQθ(s, a) and how learning
agent features φ are extracted are fixed. Thus, it is specific values of the weight vector θ that actually instantiates a policy
in this class. Therefore, it follows that we can represent the state variables for a particular CMDP state sC using the
instantiated vector of learning agent weights: sC = θ. Different instantiations of θ correspond to different CMDP states.
Typically, these weights θ will take on continuous values. Therefore, in order to learn a CMDP action-value function
QCθC (s

C , aC), it will be necessary to do some kind of function approximation.

First we consider one way of extracting CMDP state features and performing function approximation, when the domain
has a finite state space. Assume again the learning agent learns an action-value function Qθ(s, a), for each state-action
pair in the task. We can represent Q as a linear function of “one-hot” features φ(s, a) and their associated weights θ as
Qθ(s, a) = θ ·φ(s, a). In other words, all the action-values are stored in θ, and φ(s, a) is a one-hot vector used to select the
activated action-value from θ. One approach for designing φC is to utilize tile coding [9] over subsets of action-values
in θ. Specifically, the idea is to create a separate tiling for each primitive state s in the domain. Each such tiling will
be defined over the action-values in θ associated with state s. Thus, this creates |S| tiling groups, where each group is
defined over |A| CMDP state variables (i.e. action-values). To create the feature space, multiple overlapping tilings are
laid over each group.

The representation problem is harder in the continuous case, since each parameter θi is not local to a state, and we cannot
use a state-by-state approach to create a basis feature space. In principle, any continuous feature extraction and function
approximation scheme can form the basis of φC (tile coding, neural nets, etc.), and would need to be tailored to the
domain.

3 Experiments

We evaluated learning curriculum policies for agents on a grid world domain used in previous work [7] as well as a
Ms. Pac-Man domain. We will show the results as CMDP learning curves. The x-axis on these learning curves are
over CMDP episodes. Each CMDP episode represents an execution of the current curriculum policy for the agent. Thus,
multiple tasks are selected over the course of a single episode, with each task taking a varying number of steps/episodes,
which contributes to the cost on the y-axis. Tasks are selected until the desired performance can be achieved in the target
task, at which point the CMDP episode is terminated. In short, the curves show how long it would take to achieve a
certain performance threshold on the target task following a curriculum, where the curriculum is represented by the
CMDP policy, which is being learned over time.

We compare curriculum policies learned for each agent to two static curricula. The first is the baseline no curriculum
policy. In this case, on each episode, the agent learns tabula rasa directly on the target task. The flat line plotted represents
the average time needed to directly learn the target task. Note that the line is flat because the curriculum is fixed and
does not change over time. The second is a curriculum produced by following an existing curriculum algorithm ([7] for
the gridworld, [10] for Ms. Pac-Man, to compare with past work). We also compare to a naive learning-based approach,
which represents CMDP states using a list of all tasks learned by the learning agent. For example, the start state is
the empty list. Upon learning a task M1, the CMDP agent transitions to a new state [M1]. In order to deal with the
combinatorial explosion of the size of the state space, we limit the number of tasks that can be used as sources in the
curriculum to a constant (between 1 and 3 in our experiments), and force the selection of the target task after.

3.1 Gridworld Experiments

In this experiment, we examine learning curriculum policies for 3 learning agents that have different state and action
spaces (see [7] for learning agent details), but use the same transfer learning algorithm (value function transfer), in a
simple grid world domain. In particular, we examine and compare two different types of representations for the CMDP
state. The first CMDP representation is based on the finite state space representation discussed earlier. The learning
agents use Sarsa(λ) with an egocentric feature space. Thus, the parameters θ learned are not action-values for each state.
However, since the underlying domain has a fixed number of states, we can move the learning agent to each of the states
in the target task and compute action values for each grid cell. Let this new parameter of weights be θ′. We can now
utilize the procedure described in Section 2 to create a CMDP feature space φC(θ′). The second CMDP representation
was created directly from θ without using an intermediary state-based action-value representation. We did this by
creating a separate tile group directly for each θi.

A total of 9 different tasks were created to form the action space AC of the CMDP agent. Each of the learning agents
was trained until it could receive a return of 700 on the target task. The CMDP learning curves for each agent are
shown in Figures 1(a) - 1(c). The results show that each agent successfully learned curriculum policies using both CMDP
representations that were comparable in performance to the curricula generated by previous work [7].

2

Paper # 70 329

0 100 200 300 400 500

CMDP Episodes

−35000

−30000

−25000

−20000

−15000

−10000

−5000

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

no curriculum

Narvekar et al. (2017)

finite state representation

continuous state representation

naive length 2 representation

naive length 3 representation

0 100 200 300 400 500

CMDP Episodes

−35000

−30000

−25000

−20000

−15000

−10000

−5000

0

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

no curriculum

Narvekar et al. (2017)

finite state representation

continous state representation

naive length 2 representation

naive length 3 representation

0 100 200 300 400 500

CMDP Episodes

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

no curriculum

Narvekar et al. (2017)

finite state representation

continuous state representation

naive length 2 representation

naive length 3 representation

(a) (b) (c)

Figure 1: CMDP learning curves for the (a) basic agent, (b) action-dependent agent, and (c) rope agent using different
curriculum design approaches and CMDP state space representations. All curves are averaged over 500 runs.

0 100 200 300 400 500 600 700

CMDP Episodes

−250000

−200000

−150000

−100000

−50000

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

no curriculum

continuous state representation

naive length 1 representation

naive length 2 representation

0 100 200 300 400 500 600 700

CMDP Episodes

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

no curriculum

Svetlik et al. (2017)

continuous state representation

naive length 2 representation

0 100 200 300 400 500

CMDP Episodes

−500000

−400000

−300000

−200000

−100000

0

C
o
s
t
to
 L
e
a
rn
 T
a
rg
e
t
T
a
s
k

reward shaping (return-based)

reward shaping (small fixed)

value function (return-based)

value function (small fixed)

(a) (b) (c)

Figure 2: CMDP learning curves on the Ms. Pac-Man target task, using (a) value function transfer and (b) transfer with
reward shaping. All curves are averaged over 500 runs. Cost is measured in game steps for (a), and episodes for (b).

3.2 Ms. Pac-Man Experiments

We also evaluated learning CMDP policies in the game of Ms. Pac-Man. In this experiment, we explore learning a
curriculum policy for a Ms. Pac-Man agent, when the agent uses 2 different types of transfer learning methods: value
function transfer and reward shaping. The learning agents were based off the agents used in previous work [10]

In the value function case, the raw CMDP state variables sC are the weights θ of the Ms. Pac-Man agent’s linear function
approximator. To create the CMDP space φC , we normalize θ and use tile coding, creating a separate tiling over each θi.
In the reward shaping setting, each source task in the curriculum is associated with a potential function (derived from
the value function). As multiple tasks are learned, the potentials are added together, and used to create a shaping reward
(as done in [10]). Thus, the raw CMDP state variables are the summed weights of the potential functions. As in the value
function case, we use tile coding to create a separate tiling over each potential weight feature to create the CMDP basis
space.

We used the same 15 tasks used in the code release of Svetlik et al. [10] to form the action space AC . The set of terminal
states SCf were all states where the learning agent could achieve a return of at least 2000 on the target task. Figure 2(a)
shows CMDP learning curves for Ms. Pac-Man using value function transfer and Figure 2(b) shows the curves using
reward shaping. The results again clearly show that curriculum policies can be learned, and that such policies are more
useful than training directly on the target task. In addition, we compared the reward shaping approach with that of
Svetlik et al.[10], and found that a much better curriculum is possible in this more complex domain.1

Finally, we also study the effect of the hyperparameter that controls when to finish training on a source task. For the
previous two experiments in Ms. Pac-Man, training on a source was stopped after 35% of the max possible return in
the task was achieved, to replicate the experimental conditions of [10]. Since their approach precomputes a curriculum
and does not model the state of the learning agent’s progress, this termination condition must be carefully chosen to
ensure something can be learned in each source task. In contrast, with our approach, we can train on source tasks for an
arbitrarily small amount of time, as the curriculum policy can learn to reselect a task if additional experience in that task
is required.

1Our results are based on a reproduction of their experiments using their publicly released code. Interestingly, we get slightly better
results for their method than they report in their paper.

3

Paper # 70 330

In Figure 2(c), we reproduce the continuous state representation CMDP learning curves using value function transfer
from Figure 2(a) and reward shaping from Figure 2(b). These are denoted in the figure by “(return-based)”, and train
on sources until 35% of the max return is achieved. We compare them against an approach that is identical to “(return-
based)” approaches, but that trains for 5 episodes on a task at a time. These CMDP learning curves are denoted with
“(small fixed).” The results show that agents do not need to train for a long time or to convergence on source tasks, and
that our approach can adapt to this hyperparameter setting.

4 Conclusion

In this paper, we showed that a more general representation of a curriculum than previous work, a curriculum policy,
can be learned. The key challenge of learning a curriculum policy is creating a CMDP state representation that allows
efficient learning. We extended the original curriculum MDP definition to handle multiple types of transfer learning
algorithms, and described how to construct CMDP representations for both discrete and continuous domains to faciliate
such learning. Finally, we demonstrated that curriculum policies can be learned on a gridworld and pacman domain.
The results show that our approach is successful at creating curricula that can train agents to perform on a target task
as fast or faster than existing methods. Furthermore, our approach is robust to multiple learning agent types, multiple
transfer learning algorithms, and different CMDP representations.

One limitation of our approach is that learning a full curriculum policy can take significantly more experience data than
learning the target policy from scratch. An important direction for future work is investigating the extent to which this
cost can be amortized by reusing learned curricula for multiple, similar target tasks. The contributions of this paper are
an essential prerequisite for such an investigation. Another interesting direction for future work is to examine the extent
to which the methods presented here generalize to policy-gradient-based approaches and transfer learning algorithms,
in addition to the value-function-based algorithms that were used in all of our experiments.

References

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 41–48. ACM, 2009.

[2] Felipe Leno Da Silva and Anna Helena Reali Costa. Object-oriented curriculum generation for reinforcement learn-
ing. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

[3] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement learn-
ing agents. In Proceedings of the 35th International Conference on Machine Learning, pages 1515–1528, Stockholmsmssan,
Stockholm Sweden, July 2018.

[4] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse curriculum generation
for reinforcement learning. In Proceedings of the 1st Annual Conference on Robot Learning, 2017.

[5] A. Lazaric. Transfer in reinforcement learning: a framework and a survey. In M. Wiering and M. van Otterlo, editors,
Reinforcement Learning: State of the Art. Springer, 2011.

[6] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source task creation for curriculum learning.
In Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), May
2016.

[7] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task sequencing for customized curriculum design
in reinforcement learning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI),
August 2017.

[8] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele, Volodymyr
Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing-solving sparse reward tasks from scratch.
In Proceedings of the International Conference on Machine Learning (ICML), 2018.

[9] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[10] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone. Automatic curriculum

graph generation for reinforcement learning agents. In Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI), February 2017.

[11] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(1):1633–1685, 2009.

4

Paper # 70 331

Habits as a Function of Choice Frequency: A Novel Experimental
Approach to Study Human Habits

 Stephan Nebe André Kretzschmar
 Zurich Center for Neuroeconomics, Hector Research Institute of Educational
 Department of Economics, Sciences and Psychology,
 University of Zurich University of Tübingen
 Zürich, Switzerland Tübingen, Germany
 stephan.nebe@econ.uzh.ch andre.kretzschmar@uni-tuebingen.de

 Philippe N. Tobler

Zurich Center for Neuroeconomics,
Department of Economics,

University of Zurich
Zürich, Switzerland

 phil.tobler@econ.uzh.ch

Abstract

In habitual behavior, context information elicits responses without active deliberation. Habits reduce the
cognitive load in everyday life and abound in maladaptive conditions such as drug addiction. Due to the
ubiquity and clinical importance of habits, it is essential to study them in the lab. However, recent research
revealed that the current experimental approaches to human habitual behavior lack validity, replicability and
consistency. Previous experimental arrays examining habitual control often overlooked that habits by
definition should be independent from value, that is, the consequences of an action should neither be
considered nor even represented when performing a habit. Instead, habit strength should be proportional to
the frequency of performing a given behavior without reinforcement. Yet, it remained unclear whether such
a framework can be studied experimentally.

For this ongoing study, we have designed a new experimental task, which realigns the empirical approach to
habits with the theoretical, value-free, foundations. Our task assesses habitual control as a function of
previous choice frequency in addition to and even in the complete absence of reinforcement. In a pilot study,
we tested the influence of previous choice frequency on preferences in binary decisions. Surprisingly,
previous choice frequency affected choices in the opposite direction of the assumed habit strength in a
learning task with reinforcement or not at all in the focal task without reinforcement. These results highlight
the difficulties of assessing human habits experimentally and of aligning practice with theory of habits.

Keywords: habit, behavioral control, value-based decision making, experimental psychology

Acknowledgements

We thank Ifat Levy, Marc Guitart-Masip, Sam Gershman, Tal Yarkoni, and Lydia Hellrung for fruitful
discussions regarding the design of the experimental paradigm. This work was supported by grants
100014_165884 and 100019_176016 from the Swiss National Science Foundation.

Paper # 149 332

1 Habitual behavior

We typically think of our behavior as goal-directed and purposeful. However, research suggests that a large
part of our everyday behavior is habitual rather than goal-directed [1]. Habits have been defined as
counterpart of goal-directed behavior [2]. Per definition, goal-directed behavior is guided by knowledge
about the contingency between an action and its outcome and by knowledge about the incentive value of this
outcome [3]. Thereby, the goal-directed system enables flexible behavior based on beliefs about
environmental contingencies and the forward-looking achievement of valuable goals. In contrast, habitual
behavior corresponds to stimulus-response associations, which evolve over time and in which stimuli
eventually trigger behavior inflexibly. In theory, behavior is goal-directed when executed for the first time or
in new contexts. With repetition of actions in rather stable environments, behavioral control can get detached
from the knowledge of contingencies and outcomes values [4]. Thus, context-dependent automaticity ensues.
This process of habituation requires many repetitions, making habits slow to learn and slow to forget.

Yet, habits are ubiquitous in our daily life, from our morning routines in the bathroom to the leisure activities
with which we spend our evenings. Previous research has associated habitual control with a wide range of
behaviors, for example frequency of physical exercise [5]. Furthermore, there is cumulating evidence for
habits to play a role in pathologically altered choice behavior in substance use disorders [6], [7]. However,
habits are not disadvantageous in general. They free cognitive resources for other tasks, because habitual
control involves merely executing previously repeated behavior in a computationally simple and effortless
manner.

In view of the presumed ubiquity of habits, it has proven surprisingly difficult to study them in the lab, at
least with humans [8]. Classical examinations of goal-directed and habitual control investigated either of the
two defining criteria of goal-directed behavior, thus using outcome devaluation or contingency degradation
tasks, respectively. These tasks study how a learned instrumental response changes when the contingency
between action and outcome or the value of the outcome change. If response rates decrease when the outcome
is no longer valued or the actions are no longer necessary to achieve the outcome, actions are taken to be goal-
directed. In contrast, if the originally learned response perseverates, behavior is taken to be habitual [9].

Overtraining of an instrumental response in stable conditions or training in strong motivational or frustrating
states (e.g. hunger during training) is thought to lead to a shift in behavioral control from goal-directed to
habitual. Animal research has shown this shift time and again over the last decades reaching back to Tolman’s
studies of cognitive maps [10]. In contrast, only one study was able to demonstrate habituation of behavior
via overtraining in a human laboratory experiment [11]. Unfortunately, this finding could not be replicated
in two studies with a similar setup and larger sample sizes [8] questioning the original findings’ validity.

Researchers recently tried to overcome previous shortcomings by using a different experimental approach
involving sequential Markov decision tasks. These tasks operationalize habitual and goal-directed behavior
as model-free and model-based reinforcement learning, respectively [12]. The computational modeling
approach accompanying these paradigms makes the relative contribution of model-free and model-based
reinforcement learning measurable.

In contrast to habits, model-free reinforcement learning is driven entirely by the incentive value of outcomes
associated with behavior. In-keeping with this contrast, previous studies investigating the overlap of model-
free reinforcement learning and devaluation insensitivity found only statistically non-significant small to very
small associations, thereby contradicting the notion that they should both operationalize habitual behavior
[13]–[15]. These findings indicate that model-free reinforcement learning is neither conceptually nor
empirically equivalent to habitual behavior and reinforce the need for a better experimental approach to the
study of habits.

2 Experimental paradigm

We have designed a new experimental paradigm manipulating habit strength. It has been argued that

Paper # 149 333

habitual control might be driven solely by the frequency of choice irrespective of any outcomes associated
with behavior [16]. Indeed, many everyday choices do not yield their outcomes immediately. Therefore, the
new experimental paradigm comprised two binary-choice tasks. While the first task was a reinforcement-
learning paradigm manipulating choice frequency independently from rewards (see Figure 1), the second
task examined the possibility of developing habits without any obvious reinforcing outcomes of choice
behavior.

The first task began with a
training phase, in which
participants deduced optimal
choice behavior via trial-and-
error from the reward
feedback they got (winning 1-
5 points). Two stimuli each
yielded two, three, or four
points. One stimulus per
reward level was paired 20
times with a stimulus worth
less and 10 times with a
stimulus worth more points
and vice versa for the other
stimulus. Thus, participants
saw each stimulus equally
often, but chose one stimulus more often during training than the other one of the same reward level. Full
feedback about the chosen as well as unchosen option ensured that participants were similarly certain about
the reward levels associated with rarely and more frequently chosen stimuli. In a subsequent free-choice
phase in extinction, test trials combined for the first time the two stimuli which during training were
associated with the same reward level but different choice frequencies. If higher choice frequency translates
into stronger habits, participants should prefer the stimulus chosen more often in training to the other
stimulus of the same reward level.

The second task examined the
possibility of developing
habits from behavior that has
never been paired with
reinforcement. It began with
an instructed-choice phase, in
which participants viewed
two abstract stimuli and were
instructed to choose the one
highlighted by an arrow as
quickly and accurately as
possible. Unbeknownst to
them, the frequencies of
highlighting the different
stimuli were not uniformly
distributed. In one pair of

stimuli, the arrow highlighted both stimuli equally often, whereas in the other pair of stimuli one stimulus
was highlighted in 80% of trials. The two stimulus pairs were presented in ten alternating blocks of 12 trials
each. The presentation locations of the stimuli were fixed within participants but varied between participants.
Critically, there were no outcomes associated with the various stimuli. In the test phase, participants were
instructed to choose as quickly as possible one of the presented stimuli. Without any criterion to guide choice

Paper # 149 334

during the free-choice test phase, random decisions or choice according to simple rules (e.g. always choosing
the left stimulus) could be expected. In contrast, if habituation of behavior is indeed possible in this value-
free context, participants are expected to choose the stimulus more often that has been highlighted and
therefore selected more frequently during the instructed-choice phase.

3 Results of piloting

Twenty participants took part in a pilot study. In the training phase of the task with reinforcement,
participants chose some stimuli more often than others because the different stimuli were associated with
different reward levels. In the test phase, each stimulus was paired with every other. Participants showed a
strong tendency towards higher valued stimuli (Figure 3, left). Accordingly, logistic mixed effects regression
of the behavioral data revealed a strong effect of reward level (z=21.17, p<.001). More importantly, we also
found an effect of previous choice-frequency (z=8.82, p<.001) in the test phase. Surprisingly, the effect of
choice frequency was in the opposite direction of the hypothesis: When facing two stimuli of the same reward
level, participants chose the previously less frequently selected stimuli more often (Figure 3, right). Possibly,
the policy of choosing these stimuli has a higher novelty for participants and, thus, is preferred, but we need
to interpret this finding with caution due to the small sample size of this pilot study.

In the training of the task without reinforcement, there were two pairs of stimuli with choice probabilities of
50/50% and 80/20%, respectively. In a subsequent free-choice phase, participants were instructed to choose
intuitively between the presented stimuli. Again, each stimulus of this task was presented with every other.
A logistic mixed effects regression did not reveal an effect of prior choice frequency on decision making
during the test phase (z=1.00, p=.316; see Figure 4). During training, stimulus presentation locations were
fixed for each participant, theoretically enabling automatization of choice behavior in the 80/20% stimulus

Paper # 149 335

pair. In contrast, stimulus presentation location were balanced within subject during the test phase. Therefore,
half of the trials including both stimuli of the previous 80/20% pair were exact copies of the respective training
trials according to stimulus presentation, whereas the other half showed stimuli in exact opposition compared
to training. If there would be habituation in this context, the reversed stimulus presentation location should
have evoked switch costs in terms of response times (which arguably are more sensitive to habitual behavior
than overt choice; [17]). Response times did not differ between originally trained and reverse location
(pseudo-median of location shift between distributions=-0.02, 95% CI=[-0.05,0.01], p=.195; see Figure 4). Thus,
habits were not evident in this task without reinforcement reiterating the possibility that habitual behavior
can only ensue from actions that have been goal-directed in the beginning.

4 Discussion and outlook

These results indicate a process other than habituation leading participants’ choice behavior. Possibly, the
rarely chosen stimuli have a higher novelty for the participants, thus guiding choice towards themselves in
the first task. In contrast, habitual behavior could not be induced in an experimental setting without
reinforcement. Possibly, reinforcement is needed to boost learning of habits. The experimental setup of the
tasks will be adapted regarding the amount of training and the response time window to test whether
habituation of behavior will ensue under conditions, which are known to favor the development of habits.

References

[1] B. Verplanken and S. Orbell, “Reflections on Past Behavior: A Self-Report Index of Habit Strength,” Journal of
Applied Social Psychology, vol. 33, no. 6, pp. 1313–1330, Jul. 2006.

[2] R. J. Dolan and P. Dayan, “Goals and Habits in the Brain,” Neuron, vol. 80, no. 2, pp. 312–325, Oct. 2013.
[3] A. Dickinson and B. Balleine, “Motivational control of goal-directed action,” Animal Learning & Behavior, vol. 22,

no. 1, pp. 1–18, 1994.
[4] B. Verplanken, H. Aarts, A. Knippenberg, and C. Knippenberg, “Attitude Versus General Habit: Antecedents of

Travel Mode Choice,” Journal of Applied Social Psychology, vol. 24, no. 4, pp. 285–300, Feb. 1994.
[5] L. Fleig et al., “From intentions via planning and behavior to physical exercise habits,” Psychology of Sport and

Exercise, vol. 14, no. 5, pp. 632–639, Sep. 2013.
[6] K. D. Ersche et al., “Carrots and sticks fail to change behavior in cocaine addiction,” Science, vol. 352, no. 6292, pp.

1468–1471, Jun. 2016.
[7] V. Voon et al., “Disorders of compulsivity: a common bias towards learning habits,” Molecular Psychiatry, vol. 20,

no. 3, pp. 345–352, Mar. 2015.
[8] S. de Wit et al., “Shifting the balance between goals and habits: Five failures in experimental habit induction,”

Journal of Experimental Psychology: General, vol. 147, no. 7, pp. 1043–1065, 2018.
[9] C. D. Adams and A. Dickinson, “Instrumental responding following reinforcer devaluation,” The Quarterly

Journal of Experimental Psychology Section B, vol. 33, no. 2, pp. 109–121, May 1981.
[10] E. C. Tolman, “Cognitive maps in rats and men,” The Psychological Review, vol. 55, no. 4, pp. 189–208, 1948.
[11] E. Tricomi, B. W. Balleine, and J. P. O’Doherty, “A specific role for posterior dorsolateral striatum in human habit

learning,” European Journal of Neuroscience, vol. 29, no. 11, pp. 2225–2232, Jun. 2009.
[12] N. D. Daw, S. J. Gershman, B. Seymour, P. Dayan, and R. J. Dolan, “Model-Based Influences on Humans’ Choices

and Striatal Prediction Errors,” Neuron, vol. 69, no. 6, pp. 1204–1215, Mar. 2011.
[13] E. Friedel, S. P. Koch, J. Wendt, A. Heinz, L. Deserno, and F. Schlagenhauf, “Devaluation and sequential

decisions: linking goal-directed and model-based behavior,” Frontiers in Human Neuroscience, vol. 8, Aug. 2014.
[14] C. M. Gillan, A. R. Otto, E. A. Phelps, and N. D. Daw, “Model-based learning protects against forming habits,”

Cognitive, Affective, & Behavioral Neuroscience, vol. 15, no. 3, pp. 523–536, Sep. 2015.
[15] Z. Sjoerds et al., “Slips of Action and Sequential Decisions: A Cross-Validation Study of Tasks Assessing Habitual

and Goal-Directed Action Control,” Front. Behav. Neurosci., vol. 10, 2016.
[16] K. J. Miller, A. Shenhav, and E. A. Ludvig, “Habits without values,” Psychological Review, 2019.
[17] D. Luque, S. Molinero, P. Watson, F. J. López, and M. Le Pelley, “Measuring habit formation through goal-

directed response switching,” PsyArXiv, 2019.

Paper # 149 336

Pseudo-Learning Rate Modulation by the Forgetting of Action
Value when Environmental Volatility Changes

Susumu Oshima
Department of Cognitive and Psychological Sciences
Graduate School of Informatics, Nagoya University

Aichi 464-8601, Japan
s.oshima@prsnl.onmicrosoft.com

Kentaro Katahira
Department of Cognitive and Psychological Sciences
Graduate School of Informatics, Nagoya University

Aichi 464-8601, Japan
katahira.kentaro@b.mbox.nagoya-u.ac.jp

Abstract

Many studies have reported that animals modulate their speed of learning, measured by estimated learning rate, to cope
with the differing degree of stability in reward structure. While these studies have assumed some neural computation of
direct modulation, the actual process underlying it is not clearly understood. The present study proposes the possibility
that the observed difference in estimated learning rates may not be a consequence of the learning rate modulation, but
could be statistical artifacts of other characteristics of learning, such as forgetting of the learned value of choices. The
simulated probabilistic reversal learning tasks used in those studies revealed that the apparent learning rate modulation
emerges when the learner has been forgetting action value, and yet this was not considered in parameter estimation. The
same effect arises, albeit to a lesser degree, when the learning rate is asymmetric by prediction error, as well as when the
learner has a tendency to perseverate past choices. The findings call for re-evaluation of past studies, and pose a question
about the common practice of fitting only models with task-relevant components to behavior.

Keywords: forgetting process, learning rate, parameter estimation, statistical
artifacts, volatility

Acknowledgements

This study was supported by Grant-in-Aid for Scientific Research (B) (18KT0021 to KK).

Paper # 285 337

1 Introduction

Understanding how animals learn in uncertain environments is one of the goals of learning psychology. This uncertainty
can be divided into two forms: expected uncertainty, caused by noise in an action–outcome contingency (that is, reward
is given stochastically), and unexpected uncertainty, caused by volatility of the contingency (that is, reward probability
changes over time) (Bland & Schaefer, 2012; Yu & Dayan, 2005). These two forms of uncertainty differentiate optimal
choice strategy: averaging over a long history of outcomes for expected uncertainty and focusing on the most recent
outcomes for unexpected uncertainty. In terms of reinforcement learning, an optimal learner must implement a higher
learning rate when the contingency is volatile than when the only source of uncertainty is noise (Courville, Daw, & Touret-
zky, 2006; Preuschoff & Bossaerts, 2007). Behavioral studies have reported that the estimated learning rate was actually
higher when the reward environment was volatile than when it was stable (Behrens, Woolrich, Walton, & Rushworth,
2007; McGuire, Nassar, Gold, & Kable, 2014; Massi, Donahue, & Lee, 2018). Furthermore, the amount of difference
between the two learning rates was correlated with trait anxiety (Browning, Behrens, Jocham, O’Reilly, & Bishop, 2015).

These studies assumed that an animal’s brain implements a mechanism to modulate the learning rate, and many of them
tried to identify responsible regions with brain imaging. However, it is not clear whether the brain directly modulates
the learning rate or the observed difference was a by-product of other mechanisms that indirectly affected the estimated
learning rate. Here we propose the possibility that the learning rate modulation may be, at least partly, caused by the
forgetting of learned action value (or Q-value), represented as

Qt+1(aj) = (1− αF)Qt(aj) for all j 6= i,

when action ai(i 6= j) was chosen at trial t. Here Qt(aj) is the action value of aj at t and αF is a forgetting rate parameter.
This forgetting Q-learning model was proposed on a psychological assumption (Roth & Erev, 1995), and proved to fit
the behavior of animals better than the standard Q-learning model (Ito & Doya, 2009; Katahira, Yuki, & Okanoya, 2017;
Toyama, Katahira, & Ohira, 2017; Worthy, Hawthorne, & Otto, 2013). As far as we are aware, no study has investigated
the effect of forgetting on learning rate estimation, or incorporated it into learning rate estimation. We also briefly
show the effect by two other variants of the Q-learning model. The first, Q-learning with asymmetric learning rates, is
represented as

{
Qt+1(ai) = Qt(ai) + α+

(
Rt −Qt(ai)

) (
Rt −Qt(ai) ≥ 0

)
,

Qt+1(ai) = Qt(ai) + α−(Rt −Qt(ai)
) (

Rt −Qt(ai) < 0
)
,

where Rt represents the reward at t, α+ represents the learning rate when prediction error Rt − Qt(ai) is positive, and
α− represents the learning rate when it is negative (Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri, 2017;
Niv, Edlund, Dayan, & O’Doherty, 2012). The second variant, Q-learning with perseveration, is represented as follows
when coupled with the widely used softmax action selector (Worthy, Pang, & Byrne, 2013):

Ct+1(ai) = Ct(ai) + τ
(
I(a(t) = ai)− Ct(ai)

)
, where I(a(t) = ai) =

{
1 (ai was chosen at t),
0 (otherwise),

Pr(a1) =
1

1 + exp
{
−β
(
Qt(a1)−Qt(a2)

)
− ϕ

(
Ct(a1)− Ct(a2)

)} , Pr(a2) = 1− Pr(a1).

Here, C, τ, and ϕ represent choice kernel, choice learning rate, and degree of perseveration, respectively.

2 Method

We simulated probabilistic reversal learning tasks similar to the one in Browning et al. (2015), which consists of two
blocks: stable and volatile blocks. Each block contained 250 trials, and in each trial a simulated agent chose one of two
choices ai(i = 1, 2) to get reward Rt, which was either 1 or 0 (no reward). In the stable block, a1 and a2 gave reward with
75% chance and 25% chance, respectively. In the volatile block, at first a2 gave reward with 80% chance and a1 with 20%;
however, the probabilities switched on every 20 trials except for the final 10 trials. The simulation ran the forgetting Q-
learning model coupled with the softmax action selector in the task, and this was repeated 200 times for each forgetting
rate. αF ranged from 0 to 1.0, in increments of 0.01 for both stable-first-volatile-last and volatile-first-stable-last order. The
learning rate in each block was separately estimated by fitting the data to the standard Q-learning model, as performed
in many studies. In this process, fixed-effect maximum likelihood estimation was applied to the data produced by each
αF and each block order. The whole process was also applied to other two models—the asymmetric learning rate and
perseveration models—by adjusting the process of parameter manipulation. Values of Q1 = 0, α = 0.2, and β = 5.0
were used except for the asymmetric learning rate model, in which learning rates were varied from α+ = α− = 0.20 to
α+ = 0.01, α− = 0.39 by decrementing α+ and incrementing α− by 0.002 simultaneously.

1

Paper # 285 338

Figure 1: (A) Estimated parameters of forgetting Q-learning for each block. αs, αv, βs, and βv correspond to the learning rate in the
stable block, that in the volatile block, the inverse temperature in the stable block, and that in the volatile block, respectively.
(B) Log-transformed difference of the estimated learning rates between the two blocks (log (learning rate in volatile block) −
log (learning rate in stable block)), as a function of αF in the forgetting Q-learning.

3 Results

Figure 1 (A) shows how the degree of forgetting affected estimated parameters. Although the real learning rate (that is,
that used to produce the data) was constant, the estimated learning rate was consistently higher in the volatile block,
while the inverse temperature exhibited the opposite pattern. Figure 1 (B) shows how the difference of the learning rate
changed when αF increased, represented by the relative log scale used in Browning et al. (2015) to show correlation
with trait anxiety. In this scale, 0 means that the learning rates of the two blocks were equivalent, while 1.0 means that
the learning rate in the volatile block was 2.718 times higher than that in the stable block. Although it did not reach
1.0, which is the value the least anxious subjects in Browning et al. (2015) exhibited, the difference became larger as αF
increased. Figure 2 is comparable to Figure 1 (B) but it was produced by the asymmetric learning rate (Figure 2 (A))
and perseveration (Figure 2 (B)) model. Although the differences were smaller than those of the forgetting model, they
exhibited the same pattern: they became larger as the normalized learning rate asymmetry or τ increased, in both models.

4 Discussion and Conclusion

We demonstrated that the forgetting of action value can cause apparent learning rate modulation when the environ-
mental volatility changes, and, to a lesser degree, asymmetry in learning rates and perseveration can do the same. This

Figure 2: (A) The log-transformed difference of the estimated learning rates as a function of normalized learning rate asymmetry
(α− − α+)/(α+ + α−) in the asymmetric learning rate model. (B) The log-transformed difference of the estimated learning
rates as a function of τ in the perseveration model.

2

Paper # 285 339

suggests that the results of studies that reported learning rate modulation by fitting a standard Q-learning model may
be statistical artifacts caused by neglecting the forgetting, and possibly other factors such as asymmetric learning rate or
perseveration, though this cannot be confirmed.

A legitimate question is why the pseudo-modulation occurred. The key to answering the question is, in addition to the
contingency switch, the initial conditions of the action values (Q-values). In stable-first-volatile-last order, the stable block
starts with Q1 = 0 for both choices; however, before entering into the volatile block, the Q-values approach the expected
values of each choice. In contrast, in volatile-first-stable-last order, the volatile block starts with Q1 = 0; however, as the
volatile block repeatedly switches the contingency, the effect of these first trials on parameter estimation will be offset by
the subsequent switches, which lead to different Q-values. However, they will not converge to the expected value of each
choice before entering into the stable block, particularly because the last part of the volatile block only contained 10 trials
(this was also true in Browning et al. (2015)). Importantly, if the initial Q-values are equally low the forgetting mostly
slows the learning down by reducing the learned value of the better choice. (Note that either choice can be chosen with
enough chance in the early stages of learning in this case.) Compared to this, reducing the value of the worse choice is not
important because the expected Q-value for this choice will be low even without forgetting, and thus reducing it will not
contribute much to the action selection. In contrast, when the initial Q-value of the choice that was formerly preferred
is higher, the forgetting starts to reduce the Q-value once the current better choice is chosen, leading to quicker learning.
However, forgetting also causes the Q-value of the formerly worse choice to regress to 0, provided the chance of making
this choice has been low enough in the stable block. This is disadvantageous for quicker learning, because it leads to a
larger difference between initial Q-values and thus causes the new better choice not to be chosen. However, from the
perspective of standard Q-learning (recall that the finding emerged when the data produced by the forgetting model
were fitted to standard Q-learning), this larger difference can be interpreted as a higher inverse temperature β, which
partly nullifies the disadvantage. Once the learner switches its preferred choice, the forgetting expands the difference
between Q-values. This can appear to be a sign of a higher learning rate, but also will be interpreted as a sign of a higher
β.

We also analytically let standard Q-learning minimize the difference between the expected values of the choice probabil-
ities for the first three choices in each block with the forgetting Q-learning, as follows:
Proposition. Let PH and P st be the reward probability for better choice (a1 for the stable block and a2 for the volatile
block) and choice probability of a1 at trial t(t = 1, 2, 3) in the stable block produced by the softmax action selector.
Also let α0, β0, α

s, and βs be fixed learning rate of the forgetting Q-learning model, fixed inverse temperature of the
forgetting Q-learning, learning rate of the standard Q-learning in the stable block that minimizes the difference in
expected choice prediction with the forgetting Q-learning, and inverse temperature of the standard Q-learning in the
stable block that minimizes that, respectively. In the same manner, P vt , αv, and βv are defined for the volatile block, and
the reward probability for the worse choice is 1 − PH . Assume that Q1 = 0 for both models in the stable block, while
in the volatile block (trial number restarts from 1), E(Q1(a1)) = PH and E(Q1(a2)) = 0 for the forgetting Q-learning
and E(Q1(a1)) = PH and E(Q1(a2)) = 1 − PH for the standard Q-learning, where E(·) means the expected value. In
addition, assume that αF = α0 as well as conditions P, S, V1, and V2.
P: E

(
Qt(a1) − Qt(a2)

)
= E

(
Q

′
t(a1) − Q′

t(a2)
)
⇒ Pt = P

′
t : This is required because, as a result of the nonlinearity of the

softmax function, the same values of E(Qt(a1) − Qt(a2)) do not necessarily mean that the choice probabilities are the
same.
S: P s2 < PH : This is satisfied unless αs and βs are too high, and ensures that the choice predictions of the two models
differ in the stable block.
V1: βv = β0PH/(2PH − 1): This ensures that the P v1 for both models are the same.
V2: P v1 = PH : This ensures that the P v2 for both models are the same. V1 and V2 also ensure that the forgetting
Q-learning will explore lower-valued actions, which is important for the forgetting to work in the limited trials of three.

Then the following holds:
αs < α0 < αv, βs = β0 < βv

Sketch. E(Q3(a1) − Q3(a2)) for the forgetting and standard Q-learning (denoted as E(∆QF3) and E(∆Q3)) in the stable
block are as follows: {

E(∆QF3) = 0.5α0(4PH − 2α0PH + 2P2 + α0 − 3)

E(∆Q3) = 0.5αs(4PH − αsPH + 2P2 − αsP2 + αs − 3)

By condition S, the difference between the choice predictions can only be minimized by either decreasing αs or βs;
however, both operations affect the currently calculated Q-values. Numerical analyses showed that the effect of the
former operation is smaller. If the former operation is applied and the difference in P s2 is ignored1, αs can be represented

1In the setting used in Section 2, except for β0 ≈ 1.465 to meet condition V2, εs is around 0.01 and the differences of P s
2 and P s

3 are
about 9×10−4 and 1.7×10−3 in probability. While the difference in P s

2 can be completely nullified by expanding βs to β0α0/(α0−εs),
this in turn causes the differences in ∆QF

3 − ∆Q3 to not be reducible to less than 0.5α0(PH − P s
2), which is not negligible.

3

Paper # 285 340

as α0 − εs with

εs =
2α0A−B +

√
4α2

0A(2PH − 1)− 4α0AB +B2

2A
> 0,

where A := PH + P s2 − 1, B := 4PH + 2P s2 − 3.

In a similar way, αv can be represented as α0 − εv with

εv =
−PH(1− α0C) +

√
P 2
H(1− α0C)2 − PHCD
C

< 0,

where C := 2P v2 PH − P v2 − PH + 1,

D := P v2
{
α2
0PH(PH − 1) + α0(P 2

H + PH − 1)− PH
}

+ α0PH(1− PH).

The findings not only call for further research to elucidate the mechanism underlying the learning rate modulation, but
also pose a more general question about the common practice of fitting behavioral data to standard Q-learning and/or
models with directly task-relevant components only. While computational modeling helps to uncover otherwise hidden
processes of neural computation, problems arise if incomplete models are fitted (Katahira, 2018; Nassar & Gold, 2013).
Fitting models that incorporate task-irrelevant characteristics not only minimizes the risk of statistical artifact, but will
also help to increase the understanding of the actual computation of the brain. However, the degree of difference in
the estimated learning rates did not reach that of the least anxious subjects in Browning et al. (2015), and as shown
in Figure 1 (A), forgetting also has effects on the inverse temperature, which may suggest that forgetting alone is not
enough to explain the learning rate modulation. Further research is required to elucidate the actual process of learning
rate modulation.

References
Behrens, T., Woolrich, M., Walton, M., & Rushworth, M. (2007). Learning the value of information in an uncertain world.

Nature Neuroscience, 10(9), 1214-1221.
Bland, A. R., & Schaefer, A. (2012). Different varieties of uncertainty in human decision-making. Frontiers in Neuroscience,

6(85).
Browning, M., Behrens, T., Jocham, G., O’Reilly, J., & Bishop, S. (2015). Anxious individuals have difficulty learning the

causal statistics of aversive environments. Nature Neuroscience, 18(4), 590-596.
Courville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends in cognitive

sciences, 10(7), 294-300.
Ito, M., & Doya, K. (2009). Validation of decision-making models and analysis of decision variables in the rat basal

ganglia. Journal of Neuroscience, 29(31), 9861-9874.
Katahira, K. (2018). The statistical structures of reinforcement learning with asymmetric value updates. Journal of

Mathematical Psychology, 87, 31-45.
Katahira, K., Yuki, S., & Okanoya, K. (2017). Model-based estimation of subjective values using choice tasks with

probabilistic feedback. Journal of Mathematical Psychology, 79, 29-43.
Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., & Palminteri, S. (2017). Behavioural and neural charac-

terization of optimistic reinforcement learning. Nature Human Behaviour, 1(4), 0067.
Massi, B., Donahue, C., & Lee, D. (2018). Volatility facilitates value updating in the prefrontal cortex. Neuron, 99(3),

598-608.e4.
McGuire, J., Nassar, M., Gold, J., & Kable, J. (2014). Functionally dissociable influences on learning rate in a dynamic

environment. Neuron, 84(4), 870-881.
Nassar, M., & Gold, J. (2013). A healthy fear of the unknown: perspectives on the interpretation of parameter fits from

computational models in neuroscience. Journal of Neuroscience, 37(29), 7023-7035.
Niv, Y., Edlund, J., Dayan, P., & O’Doherty, J. (2012). Neural prediction errors reveal a risk-sensitive reinforcement-

learning process in the human brain. Journal of Neuroscience, 32(2), 551-562.
Preuschoff, K., & Bossaerts, P. (2007). Adding prediction risk to the theory of reward learning. Annals of the New York

Academy of Sciences, 1104, 135-146.
Roth, A., & Erev, I. (1995). Learning in extensive-form games: Experimental data and simple dynamic models in the

intermediate term. Games and Economic Behavior, 8(1), 164-212.
Toyama, A., Katahira, K., & Ohira, H. (2017). A simple computational algorithm of model-based choice preference.

Cognitive, Affective, & Behavioral Neuroscience, 17(4), 764-783.
Worthy, D., Hawthorne, M., & Otto, A. (2013). Heterogeneity of strategy use in the iowa gambling task: a comparison of

win-stay/lose-shift and reinforcement learning models. Psychonomic bulletin & review, 20(2), 364-371.
Worthy, D., Pang, B., & Byrne, K. (2013). Decomposing the roles of perseveration and expected value representation in

models of the iowa gambling task. Frontiers in psychology, 4(640).
Yu, A., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681-692.

4

Paper # 285 341

Multi-Preference Actor Critic

Ishan Durugkar
Department of Computer Science

University of Texas at Austin
Austin, TX 78712, USA

ishand@cs.utexas.edu

Matthew Hausknecht & Adith Swaminathan & Patrick MacAlpine
Microsoft Research

Redmond, WA
{matthew.hausknecht, adswamin, Patrick.MacAlpine}@microsoft.com

Abstract

Policy gradient algorithms typically combine discounted future rewards and an estimated value function, to compute the
direction and magnitude of parameter updates. However, for most Reinforcement Learning tasks, humans can provide
additional insight to constrain the policy learning process. We introduce a general method to incorporate multiple different
types of feedback into a single policy gradient loss. In our formulation, the Multi-Preference Actor Critic (M-PAC), these
different types of feedback are implemented as constraints on the policy. We use a Lagrangian relaxation to approximately
enforce these constraints using gradient descent while learning a policy that maximizes rewards. We also show how
commonly used preferences can be incorporated into this framework. Experiments in Atari and the Pendulum domain
verify that constraints are being respected and in many cases accelerate the learning process.

Keywords: reinforcement learning; actor critic; human preferences; con-
strained optimization

Paper # 199 342

1 Introduction

We examine how to incorporate human preferences into policy gradient reinforcement learning algorithms to achieve
higher performance in fewer environment interactions. Many existing papers have studied how human preferences
can be incorporated into reinforcement learning: Human expert demonstrations, one of the more direct expressions of
human preference, have been incorporated through a behavior-cloning pre-training phase or by mixing demonstrations
with episodic experiences during updates [Hester et al., 2018, Nair et al., 2017]. When an expert is available to provide
on-policy feedback, methods such as Dagger [Ross et al., 2011] and Aggrevate [Ross and Bagnell, 2014] query the expert to
gain access to on-policy demonstrations, reducing the problem of covariate shift. Inverse Reinforcement Learning (IRL)
attempts to use demonstrations to infer the demonstrator’s reward function [Abbeel and Ng, 2004, Ziebart et al., 2008, Ho
and Ermon, 2016]. IRL methods are particularly useful in tasks in which there are no explicit rewards and only expert
demonstrations are available.

In certain domains, it is difficult for humans to provide direct demonstrations. Therefore a number of alternate ways of
specifying human preferences have been explored: The TAMER framework [Knox and Stone, 2009] uses human feedback
as an estimate of the value function. COACH [MacGlashan et al., 2017] shows that positive and negative feedback signals
provided by humans during the course of an episode can be used to learn advantages over actions. Christiano et al. [2017]
show that it is possible to learn complex behavior in environments using only a reward function inferred from asking
humans to repeatedly choose between two potential policies.

Other human preferences are encoded as a part of the agent’s loss function. For example, maximum-entropy reinforcement
learning [Ziebart et al., 2008, Haarnoja et al., 2017] reflects the intuition that a policy should exhibit as much randomness
as possible while maximizing rewards. This preference for greater entropy is expressed as a regularization term applied
to the agent’s objective function. Similarly, trust region methods [Schulman et al., 2015] enforce the preference that the
learning agent’s policy should not change drastically between updates.

Motivated by the variety of human preferences and feedback modalities, we construct a unifying architecture for
learning from diverse human preferences. Multi-Preference Actor Critic (M-PAC) uses a single-actor network paired
with multiple critic networks, where each source of preference feedback is encoded by a different critic. We formulate a
constrained optimization problem in which each critic represents a soft constraint applied to the actor’s policy, enforcing
the corresponding human preference. This formulation allows us to use a Langrangian relaxation to automatically and
dynamically learn the relative weighting of each preference. For example, in the early stages of the learning process, the
agent may place strong emphasis on the critic encouraging similarity to human demonstrations, but later in the learning
process, switch emphasis to ensure safe policy updates.

We conduct experiments combining four types of preferences: entropy regularization, safe policy updates, behavior
cloning of expert demonstrations, and GAIL. Our experiments demonstrate that incorporating these preferences as critics
in a constrained optimization framework allows faster learning and higher eventual performance. Furthermore, using this
framework it is possible to incorporate other forms of human feedback in a straightforward manner.

2 Background

In this paper, we look at the setting of a Markov Decision Process 〈S,A, r,P, µ, γ〉 defined by a set of states S, a set of
actionsA, a reward function r(s, a, s′) and transition probabilities P(s, a, s′) = Pr(st+1 = s′|st = s, at = a), where s, s′ ∈ S
and a ∈ A. µ is the initial state distribution of the MDP and γ ∈ [0, 1) is the discount factor.

A policy π(a|s) maps states to a probability distribution over actions. The discounted value of starting in a particular state
at time t and then following policy π is given by

Vπ(s) :=Eπ

[∞∑

t=0

γtr(st, at, st+1)|s0 = s

]
(1)

The advantage of taking an action at in state st can be considered as the additional value that the agent would get if it took
action at and then followed policy π from state st+1 over just following policy π in state st.

Aπ(st, at) := r(st, at, st+1) + γVπ(st+1)− Vπ(st) (2)

The aim of training a reinforcement learning agent is to find a policy that can maximize the agent’s value over all states.

π∗ : = argmax
π

Es∼µVπ(s) (3)

This search can be done using gradient descent by minimizing the loss L = Eπ [−Aπ(s, a)]. Since Aπ(s, a) cannot be
directly optimized in closed form, we typically use the policy gradient trick whereby the policy gradient is ∇θL =

1

Paper # 199 343

−Eπθ
Aπθ

(s, a)∇θ log πθ(a|s). In practice, the A2C algorithm also adds an entropy term (H) to the loss, to prevent early
convergence to a sub-optimal policy.

L = Eπθ
[−Aπθ

(s, a)− βH(πθ(a|s)] (4)

3 Multi-Preference Actor Critic

Consider K possible preferences. We define preference ck(π) as a function mapping inputs π to R+. This preference
metric measures the amount by which the preference is violated, and is 0 if the preference is perfectly satisfied. As a
concrete example, consider a preference on agent behavior expressed through demonstrations (s1, a1, s2, a2, . . .). We
can do behavior cloning to learn a policy πbc using this demonstration data. A preference ck(π) can then simply be the
KL-divergence between π and πbc: ck(π) = Eπ log π(s, a)− log πbc(s, a). All the preferences we study in this paper can be
viewed as expectations over samples drawn from π. As shorthand, we express these preferences as ck(π) = Eπdk(π, s, a);
in the example above, dk(π, s, a) = log π(s, a)− log πbc(s, a).

When we consider incorporating the above preferences into our policy search, observe that each ck can be naturally
interpreted as a critic in actor-critic architectures. So, one possibility is to add the preferences as additional costs incurred
by the policy. The different preferences can then be folded into a single reward function by weighting each cost with a
hyper-parameter.

L = Eπ

[
−Aπ(s, a) +

∑

k

λkdk(π, s, a))

]
(5)

This is the approach we see in Kang et al. [2018], Gao et al. [2018], Hester et al. [2018], Nair et al. [2017]. It can be difficult
to find the right hyperparameter values to weigh these preferences against each other. Moreover, the relative usefulness of
individual preferences might change as the agent’s proficiency increases.

A technique to incorporate varied preferences into the policy learning procedure that can weigh preferences in a principled
manner is required. Consider instead a policy search procedure that is done only in the space of policies that satisfy the
preferences. This leads to a constrained formulation of Equation 3.

Consider again the preference metric ck(π). We can specify how much the policy can stray from this preference by setting
a threshold lk. The search for the optimal policy can then be written as

π∗ : = argmax
π

Es∼µVπ(s) (6)

s.t. ∀k
[
Es∼µ

∑

a

dk(π, s, a)

]
≤ lk (7)

If our preferences are sufficiently diverse, the set of policies that satisfies the above constraints will be much smaller than
the set of all policies we were searching over when we had only the environmental returns to guide us.

We can now turn to Lagrangian relaxation of these constraints so that they are no longer hard constraints and furthermore,
we can use policy gradient to find a feasible policy. If the agent policy is a function with parameters θ, Lagrangian
relaxation with parameters λk ∈ R+ on the constraints leads to the following saddle point problem.

min
θ

max
λ

Eπθ

[
−Aπθ

(s, a) +
∑

k

λk (dk(πθ, s, a)− lk)
]
. (8)

When we use policy gradients or any other stochastic gradient method to optimize this saddle point formulation, the λk
weight is increased if the preference is violated beyond our threshold. It decreases to 0 if the preference metric stays within
that threshold. Policy gradient simultaneously updates θ to minimize the joint objective. Equation 8 looks remarkably like
Equation 5, but also offers a principled way to adjust the weighting on the preferences.

4 Examples of Preferences

We now consider how the preferences that we discussed in Section 1 can be incorporated in the M-PAC framework we set
up in Section 3. To incorporate preferences we convert a preference into the form of a function (dk) that maps π, s, a to R.
We show below that this conversion is fairly straightforward for all the preferences we have considered.

2

Paper # 199 344

(a) Demonstrations (b) No Demonstrations (c) Changing λ

Figure 1: We assess the relative importance of each preference, and how lambdas change over time. In Figure 1a, we
utilize demonstrations provided by a policy learned by A2C to learn the reference policy and GAIL reward. In Figure 1b
we compare the performance when no demonstrations are available. We see that both entropy and conservative update
preferences accelerate learning compared to vanilla A2C. Figure 1c shows change of λ values for different preferences.

• Entropy:
A high entropy policy is a common preference [Haarnoja et al., 2017] that is usually enforced as a regularization by
means of a surrogate loss. We can present a high entropy policy as a preference, and define the entropy preference
dentropy(π, s) as

dentropy(π, s) = KL(π(s)||q) (9)

∀a ∈ A : q(a) =
1

‖A‖ . (10)

• Conservative Updates:
We introduce a preference of staying close to a previous policy, updated slowly closer to the current one. Let θ′ be
the parameters of this older policy. The conservative policy preference is given by

dconserve(πθ, s) = KL(πθ(s)||πθ′(s)). (11)

• Reference Policy:
A reference policy can be given a priori, or learnt from expert demonstrations by Behavior Cloning.

dreference(πθ, s) = KL(πθ(s)||πref (s)). (12)

• Inverse RL:
Preferences can also be expressed as a cost-to-go function. Here we consider a reward function deduced from
demonstrations using GAIL [Ho and Ermon, 2016]. We learn a value function Vgail(s) and use it to calculate the
advantage Agail(s, a) (using Eqn (2)) of taking an action. The GAIL preference is then defined as

dgail(πθ, s, a) = − log πθ(a|s)Agail(s, a). (13)

5 Experiments

We instantiated M-PAC using Advantage Actor Critic (A2C) as the base policy gradient learning algorithm upon which the
preferences in Section 4 were incorporated. To show that M-PAC is capable of incorporating various types of preferences,
we compare M-PAC and A2C on the Pendulum domain. An ablation analysis is also performed to analyze the effect of the
different preferences in this domain. Refer to Figure 1 for the results.

We save demonstrations by running a pre-trained policy trained using A2C that gets an average score of −195. These
demonstrations are then used for behavior cloning and for learning the GAIL reward. Both the A2C and M-PAC policies
are learned through a multi-layer perceptron with 2 layers of 512 units each. Figures are plotted by taking an average of 10
independent runs with separate seeds.

From Figure 1a, we can see that with enough data, both GAIL and Behavior Cloning can provide enough guidance for
the agent to explore and reach the optimal behavior faster than A2C. Learning from a reference policy directly is very
beneficial initially, while GAIL provides a more indirect exploration signal due to its adversarial learning procedure.

To compare the benefits of the preferences for conservative updates and a high entropy policy, we consider Figure 1b.
Both these preferences individually and in tandem help the policy learn faster than A2C. Although A2C already employs
entropy regularization, we hypothesize that our entropy constraint does better because it affects the policy learning only
when the policy violates the determinism threshold.

Another important aspect of M-PAC is the λ parameters and how they change with respect to violated constraints. Figure
1c compares the λ parameters for the different preferences considered when we are using all the preferences (M-PAC from

3

Paper # 199 345

Game A2C PPO M-PAC

MsPacman 1686.1 2096.5 2495.22
BeamRider 3031.7 1590.0 3157.36
Breakout 303.0 274.8 326.675

Pong 19.7 20.7 20.41
Seaquest 1714.3 1204.5 908.33

SpaceInvaders 744.5 942.5 600
Qbert 5879.25 14293.3 3769.37

Table 1: Comparison on ALE Using only conservative updates and entropy regularization, M-PAC outperforms A2C and
PPO on three games, ties on one, and performs worse on three.

Figure 1a). Here we see that the λ associated with behavior cloned reference policy preference (BC) and conservative
update preference (conserve) shoots up to a value where they can control these values according to the threshold we set. λ
associated with the GAIL advantages keeps climbing steadily as the advantages keep providing signal to the policy, and is
eventually weighted more than the behavior cloned reference policy. In all this while, the policy entropy does not stray far
enough away from a high entropy reference to cause its λ to increase from 0.

Since M-PAC provides a novel way to enforce trust-region and entropy constraints, we perform a parameter sweep on
seven well-known Atari games and compare to A2C (with entropy regularization) and PPO (with trust-region constraints).
The results in Table 1 show that, even without any additional human feedback, there are some environments where
M-PAC’s way of enforcing these constraints can yield a substantially better policy and merits further study.

References
Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-first

International Conference on Machine Learning, 2004.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human
preferences. In Advances in Neural Information Processing Systems, pages 4299–4307, 2017.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement learning from imperfect demonstrations. arXiv preprint
arXiv:1802.05313, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-based policies. In
Proceedings of the Thirty-Fourth International Conference on Machine Learning, 2017.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian
Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Z Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In Annual
Meeting of the Association for the Advancement of Artificial Intelligence (AAAI), 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural Information Processing Systems 29,
pages 4565–4573. 2016.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In International Conference on Machine Learning, pages
2474–2483, 2018.

W. Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The TAMER framework. In The Fifth
International Conference on Knowledge Capture, September 2009.

James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, Guan Wang, David L. Roberts, Matthew E. Taylor, and Michael L. Littman.
Interactive learning from policy-dependent human feedback. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 2285–2294, 2017.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming exploration in reinforcement
learning with demonstrations. arXiv preprint arXiv:1709.10089, 2017.

Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret learning. CoRR, abs/1406.5979,
2014.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online
learning. In AISTATS, volume 15 of JMLR Proceedings, pages 627–635, 2011.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In Proceedings of the
32nd International Conference on Machine Learning (ICML-15), pages 1889–1897, 2015.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement learning. In Proceedings
of the 23rd National Conference on Artificial Intelligence - Volume 3, AAAI’08, pages 1433–1438. AAAI Press, 2008.

4

Paper # 199 346

Joint Goal and Constraint Inference using Bayesian Nonparametric
Inverse Reinforcement Learning

Daehyung Park
daehyung@csail.mit.edu

Michael Noseworthy
mnosew@mit.edu

Rohan Paul
rohanp@csail.mit.edu

Subhro Roy
subhro@csail.mit.edu

Nicholas Roy
nickroy@csail.mit.edu

Computer Science and AI Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Inverse Reinforcement Learning (IRL) aims to recover an unknown reward function from expert demonstrations of a task.
Often, the reward function fails to capture a complex behavior (e.g., a condition or a constraint) due to the simple structure
of the global reward function. We introduce an algorithm, Constraint-based Bayesian Non-Parametric Inverse Reinforcement
Learning (CBN-IRL), that instead represents a task as a sequence of subtasks, each consisting of a goal and set of constraints,
by partitioning a single demonstration into individual trajectory segments. CBN-IRL is able to find locally consistent
constraints and adapt the number of subtasks according to the complexity of the demonstration using a computationally
efficient inference process. We evaluate the proposed framework on two-dimensional simulation environments. The
results show our framework outperforms state-of-the-art IRL on a complex demonstration. We also show we can adapt
the learned subgoals and constraints to randomized test environments given a single demonstration.

Keywords: Learning from Demonstration, Inverse Reinforcement Learning,
Markov Decision Process

Acknowledgements

We gratefully acknowledge funding support in part by the U.S. Army Research Laboratory under the Robotics Collabora-
tive Technology Alliance (RCTA) Program, Lockheed Martin Co., and the Toyota Research Institute Award LP-C000765-SR.

Paper # 242 347

1 Introduction

Inverse Reinforcement Learning (IRL) aims to recover an unknown reward function from an expert’s demonstrations of a
task. Often, this reward function will need to represent complex behaviour which is a function of both the final state and
local properties of the demonstrations. For example, in a peg-in-hole assembly task, the peg should be vertically aligned
when placed into the hole but while moving through free-space, it is not necessary to keep the peg upright. Previous
work has approached the problem of learning a complex reward function by composing a set of task-relevant features. As
conventional approaches (which represent a task as a single reward function) are often data-intensive, Michini and How
[3] proposed Bayesian Nonparametric IRL (BN-IRL) as a way to recover reward functions from considerably less data by
decomposing a task into a sequence of simpler tasks, each consisting of a simple 0-1 reward. The approach segments each
demonstration into an a priori unknown number of subtasks and infers a subgoal per segment. This approach provides
superior performance in IRL tasks when the state space is large and the demonstration dataset is small. Specifically, the
model imposes a Chinese Restaurant Process (CRP) prior [5] on the partitions of the demonstration. However, to capture
complex behaviour, BN-IRL requires a large number of subtasks, increasing the computational complexity of inference.
In this work, we propose Constraint-Based BN-IRL (CBN-IRL) that captures the behaviour of each subtask with both a
subgoal and set of constraints. The constraints allow more complex behaviour to be encoded in each segment and reduces
the number of subtasks needed to represent the entire task. We provide an efficient algorithm to extend the BN-IRL Gibbs
sampling to handle constraints and compare its performance with other IRL algorithms in 2D environments.

2 Background : BN-IRL

Figure 1: A 2D navigation environ-
ment. Plus and circle markers show
subgoals and assignment-variables esti-
mated from BN-IRL. Black blocks repre-
sent walls.

IRL aims to recover the reward function for a Markov Decision Process (MDP) defined
by the 5-tuple, (S,A, T,R, γ). S, A, and γ ≤ 1 are the state-space, action-space, and
a discount factor. T is a stochastic transition function and R a reward function.
The agent is provided with a set of demonstrations that are assumed to have come
from an optimal policy. We represent a demonstration as a set of observations
O = {O1,O2, ...}where each observation is a state action pair Oi = (si, ai).

BN-IRL uses an infinite mixture model to segment the demonstration into a set
of partitions, each represented as a simple reward function given by a subgoal
Rg(si) = 1(si = g) . For each timestep in the demonstration, a latent assignment-
variable zi ∈ N is introduced to associate the observed state-action at each time
step i in the demonstration with a specific partition and corresponding subgoal.
The distribution over assignments from observed Oi to partition zi is modeled by
a CRP to handle an unknown number of subgoals.

The goal of BN-IRL is to infer the most likely set of partitions and correspond-
ing subgoals, g, and assignment-variables, z, given a demonstration. The joint
distribution of observations, goals, and partitions is:

p(O,g, z) =

N∏

i=1

p(Oi|gzi)︸ ︷︷ ︸
likelihood

p(zi|z−i, η)︸ ︷︷ ︸
CRP

Ji∏

j=1

p(gj)︸ ︷︷ ︸
prior

, (1)

where Ji is the number of observations assigned in the ith partition. The likelihood represents how likely an agent
behaving optimally with respect to the given goal would have generated the observation. The conditional distribution of
the assignment-variables is represented as:

p(zi|z−i, η) =

{
mi

n−1+η if 1 ≤ i ≤ K
η

n−1+η otherwise,

where n is the total number of observations, and mi is the number of observations in partition i. η is the concentration
parameter of the CRP andK is the current number of partitions. The CRP prior with a high concentration hyper-parameter
η allows infinite partitions and hence grows the model complexity with respect to new observations. Inference is performed
using uncollapsed Gibbs sampling, which is discussed further in Section 3.

3 Constraint-based BN-IRL (CBN-IRL)

CBN-IRL extends BN-IRL by assuming that the trajectory in each partition can be modelled as a subgoal, gi, and active
constraints, ci. Each constraint places strict restrictions on which states an agent can visit. The problem therefore is to
infer the segmentation of the demonstrated trajectory into smaller partitions and for each partition, infer the subgoal and
constraints, that when given as input to a planner, result in a trajectory that maximizes the likelihood of the observation.

1

Paper # 242 348

A state is represented by a set of features, f , and each constraint operates on these features to denote valid and invalid
regions of the state space. In this work, we use a set of handcrafted features calculated using the state of the agent with a
world model (the world model represents environment variables such as the location of an obstacle). In particular, we use
coordinate-free continuous features such as minimum distance from a goal, minimum distance from obstacles, etc.

Each constraint c is a conjunction of simple inequality constraints, which ensures all constraints are satisfied: c = c1c2 · · · cK ,
where K is the number of features used to define c. Each inequality constraint, ci, is computed from the ith feature and
used to check if a feature, f i ∈ f falls within a bound ζ ∈ R of some given expected feature value f̂ i:

ci :| f i − f̂ i |< ζ → {1, 0}. (2)

In practice, we estimate f̂ i as the feature-mean of all the states belonging to the same subtask.

3.1 Generative Model

A trajectory can be seen as the observations of a generative process where the subgoals and constraints are latent
variables θ = {(g1, c1), ..., (gN , cN)}. In this work, we assume subgoals g are a subset of the states observed in an expert
demonstration and that the demonstration satisfies all task constraints. We further assume the demonstration is the only
optimal path from a start state to a goal state. Then, the joint probability distribution of a new state-action trajectory of
length l, x = {s0, a0, s1, a1, ..., sl, al}, and a demonstration, O, is:

p(x,O) = p(x|O)p(O) =

∫

θ,z

p(x|θ, z)︸ ︷︷ ︸
Likelihood

p(θ, z|O)︸ ︷︷ ︸
subgoals&

-constraints inference

p(O). (3)

3.2 Inference

We now describe how to estimate the posterior over latent variables, (θ, z), given a demonstration, which can be used to
get the MAP estimate of the likelihood of the subgoals, active constraints for each partition, and assignment variables
associated with the demonstration:

θ∗, z∗ = arg max
θ,z

p(θ, z|O). (4)

Since the space of (θ, z) is larger than BN-IRLs latent space (g, z), exact inference is intractable. To approximate it we use
Block Gibbs Sampling which iteratively samples g, c, and z by conditioning on the others (see Algorithm 1). After running
Gibbs sampling, the empirical mode of the samples θ1:t and z1:t will have converged to values that approximate the true
values of the latent parameters assuming the generative process of Eq. 3 (see Lemma 6.1). We describe the Gibbs sampling
updates of z and θ below.

3.2.1 Partitions

Algorithm 1: CBN-IRL

Input: O = {xd} = {(x1, a1, x2, ...)},θ(0), z(0)
Pre-computation of Q∗-functions given potential
θ = (g, c)

for t← 1 to MaxIter do
for i← 1 to |z| : Draw θ

(t)
i ∼ p(θi |z,O)

for i← 1 to |O| : Draw z
(t)
i ∼ p(zi|z−i,θ,O, η)

end
return θ(1:t), z(1:t)

The conditional probability distribution of a partition zi given
the other partitions, z−i, observations, O, and goals/constraints,
θ, is:

p(zi|z−i,θ,O, η) ∝ p(Ozi |θzi)︸ ︷︷ ︸
likelihood

p(zi|z−i, η)︸ ︷︷ ︸
CRP prior

, (5)

where Ozi are the observations assigned to partition zi and de-
pend on the subgoal and constraint pair for that partition, θzi .

The likelihood represents the probability that an agent acting
optimally under the current constraints and subgoal generates
the given observations similar to [3]:

p(Ozi |θzi) = p(ai|si, gzi , czi) =
eαQ

∗(si,ai,Rgzi
,czi)

∑
eαQ

∗(si,ai,Rgzi
,czi)

, (6)

where α is a parameter representing the degree of confidence and Q∗ is the optimal Q-function from the constrained
MDP/< Tc, Rg >. Rg is a reward function, Rg(si) = 1(si = g). To represent constraints, c, we define a constraint-based
transition probability function, Tc, that disallows transitions into invalid states (i.e., a truncated transition function),

Tc(s, a, s
′) =

{
0 if c(s′) = false
T (s, a, s′)/Σs′′T (s, a, s′′) otherwise,

(7)

2

Paper # 242 349

where T (s, a, s′) is a transition probability function,
∑
s′ T (s, a, s′) = 1, and s′′ ∈ {s|s ∈ S, c(s) = true}. To expedite the

learning process, we pre-compute Q∗ for each combination of gi and ci. We can also use constrained Markov decision
process (CMDP) [1] or its latest variants to obtain the Q-function given complex constraints.

3.2.2 Subgoals and Sub-Constraints

We define the conditional distribution of a subgoal and constraint pair θj = (gj , cj) given a specific partition z as:

p(θj |z,O) ∝ p(Oj |θj , z,O−j)p(θj |z,O−zj) =
∑

i∈Ij
p(Oi|θzi)︸ ︷︷ ︸

likelihood

p(θj)︸ ︷︷ ︸
prior

, (8)

where Ij = {i : zi = j}. The inference of the joint subgoals and constraints is computationally expensive due to the
combinatorially large space of constraints. To simplify this, we sample goals and constraints independently assuming
conditional independence. Specifically, the goal is sampled from the set of observations assigned to the given partition. In
general, a constraint could consist of simple constraints for any subset of features. To sample constraints, we limit the
class of constraints considered to either be a conjunction of every feature or the empty set representing no constraints:
cj =

∏
{k|f̂k∈f̂free} c

k
j or ∅. The features used for these constraints are goal-free ffree (e.g., distance from objects) which allow

constraints that can generalize to new goals.

The likelihood is calculated as in the previous section. As the sampling process requires re-estimation of the valid feature
range, f̂kj , used to compute constraints based on partition assignments at each update, it is hard to pre-compute Q∗ as
previously done. To resolve these issues, we pre-compute a list of potential feature-means, F = {f̂k,1, f̂k,2, ..., f̂k,M},
from a discretized feature space, where M is the resolution and the extent of the space (f̂k,1, f̂k,M) is obtained from the
minimum and maximum value of features in the demonstration O, respectively. CBN-IRL then pre-computes Q per
potential constraint defined from each feature-mean in F . During the sampling, CBN-IRL selects a pre-computed Q from
the closest pre-computed feature-mean as Q∗.

3.3 Prediction

CBN-IRL predicts a current partition z of a current state s and then predicts the maximum likelihood of action a given the
current z and the empirical mode of samples (θ∗, z∗): z∗, a∗ = arg max

zi,a
p(a|s, gzi , czi).

4 Evaluation

Figure 2: Comparison between BN- and CBN-IRL
given a semi-circular path demonstration. Red
markers show start and goal locations, respec-
tively. Black blocks represent walls that an agent
cannot pass through.

We evaluate CBN-IRL and 4 baseline methods with respect to their ability
to reproduce the demonstrated trajectory both within the same 2D envi-
ronment and in novel 2D environments. Performance is measured by the
distance between a generated and demonstrated trajectory. Here we use
Dynamic Time Warping (DTW) [2] to measure the distance between the
trajectories. The underlying discrete state space S of the MDP is given by
a random sampling of positions in the 2D environment.

We first show the benefit of constraints by reproducing a non-linear trajec-
tory in a 2D semi-circular obstacle environment. Fig. 2 shows a manually-
drawn expert demonstration (red line) that keeps a certain distance from
the black obstacles. BN-IRL was able to infer two subgoals but failed
to keep a consistent distance from the obstacle. By increasing the num-
ber of subgoals (by changing η), BN-IRL was able to reduce the loss
(DTW distance) from the expert demonstration (see Fig. 3 Left). On the
other hand, CBN-IRL also found two subgoals but was able to produce
a demonstration-like trajectory by limiting its actions to stay close to the
obstacle. Fig. 3 Left shows CBN-IRL resulted in the lowest loss from the
demonstration. Conventional IRL methods, such as MaxEnt [7] and Deep-
MaxEnt IRL [6], resulted in significantly lower performance due to the
single demonstration and simple features. These baselines used the same two features as in CBN-IRL and the distance
from the center of the circle.

We now show the generalization performance by comparing with BN-IRL in 1,000 randomized sinusoidal passages
(= h · sin(wθ + θ0)), where we uniform-randomly sampled (h,w, θ0) in 0.5 ≤ h ≤ 3, 0.5 ≤ w ≤ 3, and −π ≤ θ0 ≤ π. Each
method was trained on just one demonstrated passage. We generate an optimal path that keeps a certain distance between

3

Paper # 242 350

two passage walls to measure performance against. Fig. 3 Right shows CBN-IRL resulted in lower average loss than
BN-IRL. Regardless of the number of subgoals, CBN-IRL was able to produce consistent results using the feature-based
constraints. BN-IRL resulted in the highest loss given η = 0.1 which only recovered 2-4 partitions. The simple reward
structure from BN-IRL with few subgoals cannot draw sinusoidal curves. This emphasizes the fact that the subgoal-only
model requires many more subgoals to reproduce complex behavior.

5 Conclusion and Future Work

2 3 4 5 6 7 8 9

Number of sub-goals

0

500

1000

1500

2000

2500

3000

D
TW

D
is

ta
nc

e
fro

m
D

em
on

st
ra

tio
n

CBN-IRL (N=120)
BN-IRL (N=320)
MaxEnt (N=20, ‖f‖ = 3)
Deep-MaxEnt (N=20, ‖f‖ = 3)
Dijkstra (N=20)

CBN-IRL BN-IRL
0

200

400

600

800

1000

D
TW

D
is

ta
nc

e
fro

m
D

em
on

st
ra

tio
n η = 0.1

η = 1.

Figure 3: Evaluation in a 2D environment. Left: DTW performance comparison
with four baseline methods given the semi-circular path demonstration in Fig. 2
Right: Generalization performance in 1,000 randomized sinusoidal path. η is the
concentration hyperparameter in the CRP. The black caps show standard error.

We introduced a Constraint-based Bayesian
Non-parametric Inverse Reinforcement
Learning framework (CBN-IRL) which
partitions a demonstration into a series
of tasks each represented by a subgoal
and set of sub-constraints. Our approach
increases the expressivity while maintain-
ing the data efficiency of BN-IRL. Like
BN-IRL, our method does not require the
number of subgoals and constraints to be
pre-specified, and the addition of constraints
results in a more compact and therefore
computationally efficient approach overall.
By adding constraints, our method was
able to significantly reduce the loss from a
demonstration and generalize to new environments without increasing the number of subgoals. This work will be
extended to high-dimensional robotic assembly tasks where task constraints are required to successfully complete
assigned tasks.

6 Appendix: Effectiveness of Constraints

As in BN-IRL [3], we let L(·, ·) measure the distance between the estimated and true latent variables, (ẑ, ĝ, ĉ).
Lemma 6.1. Assuming an expert state-action trajectory x∗ is generated from the model defined by Eq. (3), the expected loss,
L((θ, z), (θ̂, ẑ)), between the predicted and true underlying latent variables, is minimized by the empirical mode of the samples (θ, z)
as the number of iterations t→∞.
Proof. The expected loss between the true and inferred latent variables in the sub-goal-only model, BN-IRL, is minimized
by the empirical mode of the samples (g, z) as the number of Gibbs sampling iterations t→∞ according to Theorem 1 in
[3]. Likewise, given a set of valid constraints, c, the Markov chain in the block Gibbs sampling for CBN-IRL also converges
to the true mode of values, θ and z, from the true posterior p(θ, z|O). The sufficient condition for ergodicity of the Markov
chain [4] is the conditional probabilities defined by Eq. (5) and (8) are non-zero for all states and constraints. In Eq. (5),
both the likelihood of the observation (i.e., expert trajectory) and the CRP are always positive by the assumption of valid
and discrete constraint sets. In Eq. (8), the likelihood is greater than zero and the prior is a positive constant. Thus, by the
strong law of large numbers, as the number of Gibbs sampling iterations t→∞, the empirical mode of the samples is

(θ, z) = arg max
θ(1:t),z(1:t)

p(θ, z|O). (9)

References

[1] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.
[2] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In KDD workshop,

volume 10, pages 359–370. Seattle, WA, 1994.
[3] Bernard Michini and Jonathan P How. Bayesian nonparametric inverse reinforcement learning. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pages 148–163. Springer, 2012.
[4] Radford M Neal. Probabilistic inference using markov chain monte carlo methods. Department of Computer Science,

University of Toronto Toronto, ON, Canada, 1993.
[5] Jim Pitman et al. Combinatorial stochastic processes. Technical report, Dept. Statistics, UC Berkeley, 2002.
[6] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforcement learning.

arXiv preprint arXiv:1507.04888, 2015.
[7] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforcement

learning. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, volume 8, pages 1433–1438, 2008.

4

Paper # 242 351

ProtoGE: Prototype Goal Encodings for
Multi-goal Reinforcement Learning

Silviu Pitis*
University of Toronto, Vector Institute

Toronto, ON, Canada
spitis@cs.toronto.edu

Harris Chan*
University of Toronto, Vector Institute

Toronto, ON, Canada
hchan@cs.toronto.edu

Jimmy Ba
University of Toronto, Vector Institute

Toronto, ON, Canada
jba@cs.toronto.edu

Abstract

Current approaches to multi-goal reinforcement learning train the agent directly on the desired goal space. When goals
are sparse, binary and coarsely defined, with each goal representing a set of states, this has at least two downsides. First,
transitions between different goals may be sparse, making it difficult for the agent to obtain useful control signals, even
using Hindsight Experience Replay [1]. Second, having trained only on the desired goal representation, it is difficult to
transfer learning to other goal spaces.

We propose the following simple idea: instead of training on the desired coarse goal space, substitute it with a finer—more
specific—goal space, perhaps even the agent’s state space (the “state-goal” space), and use Prototype Goal Encodings
(“ProtoGE”) to encode coarse goals as fine ones. This has several advantages. First, an agent trained on an appropriately
fine goal space receives more descriptive control signals and can learn to accomplish goals in its desired goal space
significantly faster. Second, finer goal representations are more flexible and allow for efficient transfer. The state-goal
representation in particular, is universal: an agent trained on the state-goal space can potentially adapt to arbitrary goals,
so long as a Protoge map is available. We provide empirical evidence for the above claims and establish a new state-of-
the-art in standard multi-goal MuJoCo environments.

Keywords: multi-goal reinforcement learning, task specification, transfer
learning, hindsight experience replay

Paper # 155 352

1 Introduction, Background & Related Work

Humans can often accomplish specific goals more readily that general ones. Although more specific goals are, by def-
inition, more challenging to accomplish than more general goals, evidence from management and educational sciences
supports the idea that “specific, challenging goals lead to higher performance than easy goals” [9]. We find evidence of
this same effect for reinforcement learning (RL) agents in multi-goal environments. Our work establishes a new state-of-
the-art in standard multi-goal MuJoCo environments and suggests several novel research directions.

Fig. 1: In Push, the agent must push
the black box onto the red target.

Multi-Goal Reinforcement Learning We consider the multi-goal RL setting,
where an agent interacts with an environment and learns to accomplish differ-
ent goals. The problem is described by a generalized Markov Decision Process
(MDP) 〈S,A, T,G〉, where S, A, T , and G are the state space, action space, transi-
tion function and goal space, respectively [15, 16]. In the most general version of
this problem each goal is a tuple g = 〈Rg, γg〉, whereRg : S → R is a reward func-
tion and γg ∈ [0, 1] is a discount factor [16], so that “solving” goal g ∈ G amounts
to finding an optimal policy in the classical MDP 〈S,A, T,Rg, γg〉. We focus on
the sparse, binary reward case where each goal g corresponds to a set of “suc-
cess” states, S(g), with Rg : S → {−1, 0} and Rg(s) = 0 if and only if s ∈ S(g)
[13]. In this setting, the agent must learn to achieve and maintain success.

We use three multi-goal Fetch environments from OpenAIGym [3]: Push, PickAndPlace, and Slide (v0) [13]. In
Push and PickAndPlace, the agent must use its gripper to move a box to the desired location (Figure 1). In Slide,
the agent must hit a puck so it slides onto and stops in the desired location beyond the reach of the robot. A discount
factor of γ = 0.98 is used and the environments reset (a new goal is sampled) every 50 steps. Goals are specified by a
3-dimensional vector of x, y and z coordinates. The goal is satisfied and reward of 0 is obtained so long as the box or
puck is within an epsilon ball of the goal. An episode is a “success” only if the goal is satisfied on the final (50th) step.

Goal-Conditioned Actor-Critic Algorithms Many RL algorithms can be decomposed into actor (policy) and critic
(value function). The DQN algorithm, for discrete action spaces, parameterizes both a greedy actor and a critic using
the same deep neural network [10]. DDPG [7], the continuous action space equivalent of DQN, parameterizes actor and
critic separately. Both DQN and DDPG are off-policy algorithms and use a replay buffer to store past experiences; this
buffer is sampled from to train the actor and critic networks. To use DQN and DDPG in the multi-goal setting, we adopt
the standard approach, which generalizes the actors (critics) to be functions of not only the state s (and action a), but also
the goal g. A goal-conditioned critic is referred to as a GVF [16] or UVFA [14].

Hindsight Experience Replay An untrained agent acting in a sparse reward environment rarely achieves success,
which makes standard training of goal-conditioned actors and critics difficult. Hindsight Experience Replay (HER) [1]
accelerates learning by augmenting real experiences in the agent’s replay buffer with fake “potential” goals. The intuition
behind HER is that failures are informative: a failed attempt to reach g may have led to some other potential goal g′. By
pretending that g′ was the agent’s true goal, the agent can learn something useful even from failed attempts.

When applying HER, one must choose an appropriate sampling strategy for potential goals. The previous best strategy
was the future strategy, which chooses potential goals to correspond to future states visited along the same trajectory.
Since future requires us to map visited states to goals that would have been achieved in those states, we must assume
that “given a state s we can easily find a goal g which is satisfied in this state” [1]. Below, we propose a novel goal
sampling strategy futureactual, which results in state of the art performance when used together with Protoge.

2 Protoge

Desired goals in Fetch are completely specified by the object’s (box or puck) target location—the position of the gripper
is irrelevant, as are other state variables. Such goals are coarse, in that each goal corresponds to a large number of states.
Using a coarse goal specification during training has at least two downsides. First, as coarser goals have larger success
state sets, “achieving” a goal provides relatively less control signal. An untrained agent acting in Push, for example,
often fails to move the box at all. In this case, the future strategy samples only a single potential goal, which is satisfied
by all states in the trajectory, and little is learned. Second, it is difficult for an agent to transfer its learning to another
goal space: there is no natural way for a trained Push agent to transfer its knowledge in order to both (1) push the box
to location A, and then (2) move the gripper to location B.

To address these difficulties, we propose to train the agent on a finer—more specific—goal space and use Prototype Goal
Encodings (ProtoGE) to encode coarse goals as fine ones. Formally, we say that goal space A is coarser than goal space
B if and only if there exists Protoge map f : A → B such that for each goal a ∈ A, the success state set SB(f(a)) of its

1

Paper # 155 353

State	Space	S

0.5ϵ

SS

0.8ϵ1.0ϵ

State	Space	S

ϵ

ϵ

S S

ϵ

ϵ

ϵ

ϵ

Fig. 2: Concept diagrams of feature Protoges (left) and epsilon Protoges (right). Each frame represents a different goal space over the
same underlying state space, and the colored shapes inside represent success state sets for two example goals. On both the left and
right, the middle goal space is finer than the adjacent spaces, which are incomparable. The goals (squares, small circles) in the middle
spaces are valid Protoges for the corresponding goals (slices, large shapes) in the outer spaces.

Protoge, f(a), is a subset of a’s success state set SA(a). IfA is coarser thanB, B is finer thanA. If neither is coarser, A and
B are incomparable. Below, we consider two types of Protoges: feature Protoges, which expand the dimensionality of
the goal feature representation, and epsilon Protoges, which use tighter epsilon balls for determining goal achievement.
See Figure 2 for conceptual diagrams of each. Note that any topological basis of S is finer than any goal space whose
elements are open sets in S (an “open goal space”). In particular, if S ⊂ Rn, the standard basis of epsilon balls about each
state s ∈ S, Bε(s) = {x | ‖x − s‖ < ε} where ε ∈ R+, is finer than all open goal spaces. We call this the (ε-) state-goal
space. Finally, note that two goal spaces A and B can both be finer than the other (as are, e.g., any two topological bases).

For example, we replace the 3-dimensional goals in Push with 6-dimensional goals indicating not only a target box
position, but also a gripper position. Because any gripper position satisfies the original desired goal, we use a feature
Protoge and require that the agent place the gripper above the target box location. An agent must achieve the original
goal in order to achieve the Protoge. Using Protoges has at least two advantages, described below.

3 Accelerated Learning with Protoge

Although finer goals are, by definition, harder to accomplish than coarse ones, transitions between fine goals are less
sparse and provide the agent with more control signal. When the gripper position is added to the agent’s goal represen-
tation in the Push task, every movement achieves a new potential goal, even when the box remains unmoved, allowing
the agent to learn how to control the gripper when using HER’s future strategy. The intuition here is similar to that of
auxiliary tasks [6] and GVFs [16]: learning to control things—even if not directly connected to the agent’s primary goal—
results in better overall control and improved performance. Our results suggest that a balance between the additional
difficulty and control information introduced by specificity can accelerate learning.

Fetch Results We demonstrate accelerated learning in Push, PickAndPlace and Slide by (1) expanding the dimen-
sionality of the Push and PickAndPlace goal spaces using feature Protoges, and (2) increasing the specificity of the
Slide goal space using an epsilon Protoge. Test success is always measured with respect to the original goal space. See

0 2.5K 5K 7.5K 10K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPush

HER (OBJ, f)
HER (OBJ, fa)
Protoge (ALL, f)
Protoge (ALL, fa)
Protoge (OBJGRIP, f)
Protoge (OBJGRIP, fa)

0 5K 10K 15K 20K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPickAndPlace

HER (OBJ, f)
HER (OBJ, fa)
Protoge (ALL, f)
Protoge (ALL, fa)
Protoge (OBJGRIP, f)
Protoge (OBJGRIP, fa)

0 40K 80K 120K 160K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchSlide

HER (OBJ-0.05, f)
HER (OBJ-0.05, fa)
Protoge (OBJ-0.03, f)
Protoge (OBJ-0.03, fa)

Fig. 3: In Push and PickAndPlace, the standard goal representation OBJ is greatly outperformed by the finer OBJGRIP represen-
tation, which uses 6-dimensional Protoges. The ALL state-goal representation does not do as well as OBJGRIP, but is able to a learn
even when thresholds are hard-coded. In Slide, our epsilon Protoge (OBJ-0.03) approach outperforms the standard OBJ-0.05
approach. In all cases, the futureactual strategy (fa) performed better than the future strategy (f). When used together, Protoge
and futureactual establish a new state-of-the-art. Our results can be compared to the baselines of Plappert et al. (2018) [13] by
noting that our 10K episodes are roughly equal to 5 Plappert epochs. Our greatly improved baseline results are due to implementation
differences (see main text). For all environments, each configuration was run with the same 3 random seeds.

2

Paper # 155 354

Figure 3. In Push and PickAndPlace we experiment with a 6-dimensional object-gripper goal specification (OBJGRIP),
which reports both the box position and the gripper position, and a 25-dimensional state-goal specification (ALL), which
reports all 25-dimensions of the state. In each case we use a hand-coded Protoge map to encode desired goals into the
expanded goal space. The Protoge places the hand above the box, and encodes the other dimensions (e.g., speed and ob-
ject rotation) in the state-goal case to have a value of 0. We use the same epsilon threshold as the original environments
with respect to the original goal dimensions (thus, the expanded goal space is finer than the original goal space, and
achieving an expanded goal necessarily achieves the original goal), and use an element-wise epsilon threshold for added
dimensions, which we manually set to 0.05. In Slide we experiment with a tighter goal specification, which reduces
the distance threshold for goal satisfaction from 0.05 to 0.03 (meters). We plan to experiment with automatically learning
optimal thresholds in future work. We expect that learned thresholds will greatly improve performance, especially that
of the state-goal representation (ALL).

A Novel HER Strategy As a result of the increase in goal specificity, the agent’s state rarely satisfies the Protoge of
any potential desired goal (e.g., the agent’s gripper is rarely directly above the box); as such, when using the future
strategy, very few desired goal Protoges are added to the agent’s replay buffer. To combat this effect, we propose the
futureactual strategy, which mixes goals sampled according to future with goals sampled from a buffer of past
actual goals (in the agent’s goal space; i.e., using Protoge). This focuses the agent’s learning effort on actual desired goals
while still providing the agent with enough initial reward signal to benefit from HER. In our experiments we always
sample 80% of the agent’s training experiments using HER, with 40% sampled according to future and 40% sampled
according to actual. Although Protoge still works with future, we find that futureactual improves performance,
even in absence of Protoge (Figure 3).

Implementation Highlights We use DDPG together with our own implementation of HER. Rather than distribute
training across parallel workers (as done by Plappert et al. [13]), we train a single agent in 12 parallel environments. Our
actors and critics use 3 layer-normalized [2] hidden layers of 512 units each. We train with a batch size of 1000 every two
environment steps, and update our target network every 40 training steps using an update factor of 0.05. We apply L2

action normalization with coefficient 0.1. Our Push and PickAndPlace agents use epsilon exploration with an epsilon
of 0.3, whereas our Slide agent does not use any epsilon exploration. Other hyperparameters are similar to those used
by Plappert et al. [13]. Our baseline future agents learn significantly faster than the agents of Plappert et al., as well as
the more recent agents of Liu et al [8], most likely due to the different training regime.

4 Transfer Learning with Protoge

0 5K 10K 15K 20K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPushAndReach

HER (from scratch)
Transferred Protoge (ALL)
Transferred Protoge (OBJGRIP)

Fig. 4: Transferred Protoge agents, trained on Push,
solve PushAndReach faster than an agent trained
from scratch (5 random seeds each).

Finer goal representations are more flexible and allow for efficient
transfer. The state-goal representation in particular, is universal:
an agent trained on the state-goal space can potentially adapt to
arbitrary goals, regardless of their form, so long as Protoges are
available. This effectively reverses the HER assumption: instead
of assuming that given state s we can find a goal g that is satis-
fied in s [1], we assume that given goal g we can find a state s
that satisfies g. Our present work demonstrates transferability us-
ing hand-designed Protoge maps, but we are working towards an
effective method for learning Protoges maps online.

In Figure 4, we show that both the OBJGRIP and ALL agents
from the previous Section can effectively transfer their knowl-
edge to a PushAndReach environment, which has 6-dimensional
goals and requires the agent to both (1) push the box to a 3-
dimensional target location and (2) move its gripper to another
3-dimensional target location. The target locations are indepen-
dently sampled (the box goal is sampled according to the same dis-
tribution as Push, and the gripper goal is sampled roughly accord-
ing to the same distribution as the FetchReach environment).
Since PushAndReach is harder than Push, we see that the stan-
dard HER approach learns slightly slower than it does in Push.
The transferred agents are able to learn much faster, even though the distribution of desired goals has changed signifi-
cantly. Note that while the transferred OBJGRIP agent is now using the native goal space (no Protoge), the transferred
ALL agent is using a Protoge map, as before, to expand the native 6-dimensional goal into a 25-dimensional goal.

3

Paper # 155 355

5 Future Work

This work is still in its early stages, and we are exploring several avenues going forward:

• In our Fetch experiments, we use a hard-coded element-wise success threshold for expanded goal dimensions.
Can we learn these thresholds automatically? We are currently exploring a curriculum learning approach [5].

• In particular, many aspects of the state space are usually outside of the agent’s control, and it is unreasonable
to ask an agent to achieve arbitrary goals in the state-goal space. How can we automatically recognize control-
lable aspects of the state and use only those when defining Protoges? One promising approach is to learn a
“controllable” latent space by predicting inverse dynamics f(at|st, st+1) [12].

• In our Fetch experiments, we use the native feature space to define goals and Protoges. How can we generalize
this approach to the agent’s latent feature space?

• More generally, we may wish to learn Protoge maps between two complex goal spaces (recall that two goal
spaces can both be finer than the other). For example, we might want to map the natural language goal space
[4], describing the task that the agent needs to perform, to raw pixels (an image) showing the agent’s first person
view [11], or vice versa. How can we learn such maps automatically?

• For a given coarse goal, there are many candidate Protoges, any of which satisfy the original goal. It would be
interesting explore the generation of optimal Protoges, conditioned on the current state and goal.

• In our experiments, we used the original Push goal space to generate Protoges in order to train the ALL agent,
which agent was able to quickly transfer its knowledge to PushAndReach. It seems likely, however, that the ALL
agent could have designed its own goal curriculum, separately from Push, and trained itself in an unsupervised
fashion by taking advantage of, e.g., curiousity [12].

References

[1] ANDRYCHOWICZ, M., WOLSKI, F., RAY, A., SCHNEIDER, J., FONG, R., WELINDER, P., MCGREW, B., TOBIN, J., ABBEEL, O. P.,
AND ZAREMBA, W. Hindsight experience replay. In Advances in Neural Information Processing Systems (2017), pp. 5048–5058.

[2] BA, J. L., KIROS, J. R., AND HINTON, G. E. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
[3] BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHULMAN, J., TANG, J., AND ZAREMBA, W. Openai gym,

2016.
[4] CHAN, H., WU, Y., KIROS, J., FIDLER, S., AND BA, J. Actrce: Augmenting experience via teacher’s advice for multi-goal

reinforcement learning. arXiv preprint arXiv:1902.04546 (2019).
[5] EPPE, M., MAGG, S., AND WERMTER, S. Curriculum goal masking for continuous deep reinforcement learning. arXiv preprint

arXiv:1809.06146 (2018).
[6] JADERBERG, M., MNIH, V., CZARNECKI, W. M., SCHAUL, T., LEIBO, J. Z., SILVER, D., AND KAVUKCUOGLU, K. Reinforcement

learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397 (2016).
[7] LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ, T., TASSA, Y., SILVER, D., AND WIERSTRA, D. Continuous control

with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[8] LIU, H., TROTT, A., SOCHER, R., AND XIONG, C. Competitive experience replay. In International Conference on Learning Repre-

sentations (2019).
[9] LOCKE, E. A., SHAW, K. N., SAARI, L. M., AND LATHAM, G. P. Goal setting and task performance: 1969–1980. Psychological

bulletin 90, 1 (1981), 125.
[10] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M. Playing atari

with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[11] NAIR, A. V., PONG, V., DALAL, M., BAHL, S., LIN, S., AND LEVINE, S. Visual reinforcement learning with imagined goals. In

Advances in Neural Information Processing Systems (2018), pp. 9209–9220.
[12] PATHAK, D., AGRAWAL, P., EFROS, A. A., AND DARRELL, T. Curiosity-driven exploration by self-supervised prediction. In

ICML (2017).
[13] PLAPPERT, M., ANDRYCHOWICZ, M., RAY, A., MCGREW, B., BAKER, B., POWELL, G., SCHNEIDER, J., TOBIN, J., CHOCIEJ, M.,

WELINDER, P., ET AL. Multi-goal reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464 (2018).

[14] SCHAUL, T., HORGAN, D., GREGOR, K., AND SILVER, D. Universal value function approximators. In International Conference on
Machine Learning (2015), pp. 1312–1320.

[15] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction. MIT press, 2018.
[16] SUTTON, R. S., MODAYIL, J., DELP, M., DEGRIS, T., PILARSKI, P. M., WHITE, A., AND PRECUP, D. Horde: A scalable real-

time architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2 (2011), pp. 761–768.

4

Paper # 155 356

Measuring how people learn how to plan

Yash Raj Jain
Rationality Enhancement Group, MPI for Intelligent Systems, Tübingen, Germany

Birla Institute of Technology & Science-Pilani, Hyderabad, India

Frederick Callaway
Department of Psychology, Princeton University, NJ, USA

Falk Lieder
Rationality Enhancement Group, MPI for Intelligent Systems, Tübingen, Germany

Bernstein Center for Computational Neuroscience, Tübingen, Germany

Abstract

The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its
ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important
manifestation of cognitive plasticity is learning to make better – more far-sighted – decisions via planning. A serious
obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cog-
nitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity
and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures
of human planning and how they change over time. We then invert a generative model of the recorded changes to in-
fer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more
accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote
cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of
metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plas-
ticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling
people to acquire complex cognitive skills such as planning and problem solving.

Keywords: cognitive plasticity; planning; decision-making; process-tracing; statistical methods

Paper # 27 357

1 Introduction

The way we think and decide is remarkably plastic. This cognitive plasticity enables people to learn how to make bet-
ter decisions. Despite initial research on how people acquire cognitive skills (van Lehn, 1996), the underlying learning
mechanisms are still largely unknown. Reverse-engineering how people learn how to think and how to decide is very
challenging because we can neither observe people’s cognitive strategies, nor how they change with experience – let
alone the underlying learning mechanisms. To make these learning mechanisms visible, we develop a computational
microscope for measuring how people learn how to plan. Our method has two components: i) a recently developed
process-tracing paradigm that renders people’s behavior highly diagnostic of their planning strategies, and ii) the inver-
sion of a generative model of how changes in this observable behavior arise from cognitive plasticity. Our computational
microscope makes it possible to observe how people’s planning strategies change from each decision to the next. This
sheds new light on the time course and the nature of metacognitive learning and allows us to test theories of cognitive
development and characterize the effects of feedback and individual differences on cognitive plasticity.

2 Methods

2.1 Process-tracing using the Mouselab-MDP paradigm

Planning, like all cognitive processes, cannot be observed directly but has to be inferred from observable behavior. This
is generally an ill-posed problem. To address this challenge, researchers have developed process-tracing methods that
elicit behavioral signatures of latent cognitive processes. In the Mouselab paradigm, for example, decision strategies can
be traced by recording the order in which people inspect the payoffs of different gambles (Payne, Bettman, & Johnson,
1993). While these behavioral signatures are still indirect measures of cognitive processes, they do provide additional
information about what the underlying cognitive strategy might be.

Here, we employ an extension of the Mouselab paradigm to the domain of sequential decision making (Callaway, Lieder,
Krueger, & Griffiths, 2017; Callaway et al., 2018). In the Mouselab-MDP paradigm, illustrated in Figure 1a, participants
are presented with a series of route planning problems in which each location (the gray circles) harbors a gain or loss.
On each trial, participants choose among the six possible paths to maximize the total reward they receive across the three
locations on the path. Initially, these rewards are occluded; however, participants can reveal the reward at a each location
by clicking on it. This explicit clicking action corresponds to evaluating the quality of a future state, a fundamental
cognitive operation in planning. The cognitive cost of this operation is externalized by an explicit cost of one point
for each reward revealed. Participants are thus encouraged to not immediately click every location, but instead reveal
information as necessary. The order of clicks reveals, for example, whether participants engage in forwards planning
(starting from the current state), or backwards planning (starting from the possible end states).

a b c

Figure 1: a) Illustration of the Mouselab-MDP paradigm. Rewards are revealed by clicking. b) Feedback boosted cogni-
tive plasticity at the beginning of learning. c) Time course of the frequencies of the five most common strategies.

2.2 Measurement model

To construct a computational microscope for measuring cognitive plasticity, we model the trial-by-trial sequence of peo-
ples’ cognitive strategies (S1, S2, · · · , S31) as a hidden Markov chain that emits the observed process tracing data. Our
models require methodological assumptions about i) how cognitive strategies manifest in process-tracing data, ii) the
space of cognitive mechanisms that can be learned, and iii) the nature and amount of cognitive plasticity that might
occur. The following paragraphs detail our assumptions about each of these three components in turn.

1

Paper # 27 358

Observation model. Our observation model thus specifies the probability of observing a sequence of clicks dt on trial t
if the strategy was St (i.e., P (dt|St)). To achieve this, we quantify each strategy’s propensity to generate a click c (or stop
collecting information) in belief state b by a weighted sum of the features f1(b, c), · · · , f29(b, c). The belief state encodes
observed rewards.The features describe the click c relative to this information (e.g., by the value of the largest reward
that can be collected from the inspected location) and in terms of the action it gathers information about (e.g., whether it
pertains to the first, second, or third step)1. The features and weights jointly determine the strategy’s propensity to make
click c in belief state b:

P (dt|St) =

|dt|∏

i=1

exp
(

1
τ ·
∑|w(S)|
k=1 w

(S)
k · f (S)k (ct,i, bt,i)

)

∑
c∈Cbt exp

(
1
τ ·
∑|w(S)|
k=1 w

(S)
k · f (S)k (c, bt,i)

) , (1)

where dt,i is the ith click in trial t (or the decision to stop clicking), τ is the decision temperature, and w(S) are the weights
of strategy S.

Space of cognitive mechanisms. The process tracing data from Lieder (2018) suggested that people use 38 different
planning strategies (S)1). These strategies differ in how much they plan (ranging from none to all), which informa-
tion they focus on, and in which order they collect it. Building on the observation model in Equation 1, we represent
each strategy by a weight vector w = (w1, · · · , w29) that specifies its preference for more vs. less planning, considering
immediate vs. long-term consequences, satisficing vs. maximizing, avoiding losses, and other desiderata.

Ward’s hierarchical clustering method suggested 11 types of planning strategies including acting impulsively without
any planning, five types of goal-setting strategies, three types of forward-planning strategies similar to depth-first search,
best-first search, and breadth-first search respectively. To use this method we defined the distance ∆(s1, s2) between
strategy s1 and s2 as the Jensen-Shannon divergence (Lin, 1991) between the distributions of click sequences and belief
states induced by strategies s1 and s2and approximated it using Monte-Carlo integration.

Prior on strategy sequences. Inferring a strategy from a single click sequence could be unreliable. Our method therefore
exploits temporal dependencies between subsequent strategies to smooth out its inferences. Transitions from one strategy
to the next can be grouped into three types: repetitions, gradual changes, and abrupt changes. While most neuroscientific
and reinforcement-learning perspectives emphasize gradual learning, others suggest that animals change their strategy
abruptly when they detect a change in the environment (Gershman, Blei, & Niv, 2010). Symbolic models and stage
theories of cognitive development also assume abrupt changes (e.g., Piaget, 1971), and it seems plausible that both types
of mechanisms might coexist. To accommodate these perspectives, we consider three prior distributions on participants’
trial-by-trial sequence of cognitive strategies.

The gradual learning prior in Equation 2 assumes that strategies changes gradually, that is

(2)P (St+1 = s|St,mgradual) =
exp(− 1

τ ·∆(s, St))∑
s′∈S exp(− 1

τ ·∆(s′, St))
,

where |S| is the number of strategies. The abrupt changes prior assumes that transitions are either repetitions or jumps:

(3)P (St+1 = s|St,mabrupt) = pstay · I(St+1 = St) + (1− pstay) · I(s 6= St)

|S|−1
.

Finally, the mixed prior in Equation 4 assumes that both types of changes coexist.

(4)P (St+1 = s|St,mmixed) = pgradual · P (St+1 = s|St,mgradual) + (1− pgradual) · P (St+1 = s|St,mabrupt).

In either case, we model the probability of the first strategy by a uniform distribution over the space of decision strategies.

Together with the observation model and the strategy space described above each of these priors defines a generative
model of a participant’s process tracing data d; this model has the following form:

P (d, S1, · · · , ST) =
1

|S| ·
T∏

t=2

P (St|St−1,m) · P (dt|St). (5)

The three measurement models differ in the identity of m ∈ {mgradual,mabrupt,mmixed}. Inverting these models gives rise
to a computational method for measuring cognitive plasticity.

1The features were devised to be able to capture the whole range of strategies exhibited by our participants. A detailed description
of the features and strategies is available at https://osf.io/y58d3/?view_only=fa2f89de3aa04d4d87af3d050bb1a64c

2

Paper # 27 359

2.3 Computational microscopy by model inversion

The models above describe how cognitive plasticity manifests in process-tracing data. To measure cognitive plasticity
we have to reason backwards from the process tracing data to cognitive changes that generated it. That is, we can build
a computational microscope for measuring cognitive plasticity by inverting these measurement models. To achieve
this, we leverage the Viterbi algorithm to compute maximum a posteriori (MAP) estimates of the hidden sequence of
planning strategies given the observed process tracing data, the measurement model, and its parameters (pstay formabrupt
and pgradual and pstay for mmixed).

3 Validating the computational microscope

Validation on synthetic data. To validate our computational microscope, we apply it to simulated process tracing data.
To avoid bias towards any one measurement model, we sampled 100 simulated trials from each of the three measurement
models and combined them into a single data set. We then invert the three measurement models on each of the simulated
trials (d) and compared the MAP estimate of each strategy sequence (Ŝ) against the ground truth (S) in terms of the
proportion of correctly inferred strategies and the distance between the inferred strategies and the ground truth.

As a baseline, we evaluated the computational method that inverts the observation model in Equation 1 on each click
sequence independently. This simple approach was sufficient to infer the correct strategy about 81% of the time (95%
confidence interval: [80.2%, 81.8%]). The average distance ∆ from the inferred strategy to the true one was only 21% of the
average distance from each strategy to its closest neighbor (∆rel(̂s

baseline, s) = 0.215, 95% confidence interval: [0.20, 0.23]).
This shows that the simulated click sequences were highly diagnostic of the strategies that generated them.

We found that exploiting temporal dependencies among subsequent strategies by using our measurement models sig-
nificantly improved the proportion of correctly inferred strategies to 88.5%, 88.3%, and 88.5% for mgradual, mabrupt, and
mmixed respectively (all p < 0.0001) and decreased the average distance between the inferred strategies and the ground
truth by more than 40% (∆rel(̂s

gradual, s) = 0.124, ∆rel(̂s
mixed, s) = 0.124, and ∆rel(̂s

abrupt, s) = 0.127, all p < 0.0001). These
results suggest that – under reasonable, theory-agnostic assumptions about what cognitive plasticity might be like – our
computational microscope is more accurate than simpler methods.

Validation on empirical data. To validate our computational microscope on empirical data, we applied it to the
Mouselab-MDP process-tracing data from Experiments 1–3 by Lieder (2018) where 176 participants solved 31 differ-
ent 3-step planning problems of the form shown in Figure 1a. We asked if our computational microscope can detect the
effect of the feedback participants in the second condition of Experiment 1 received on the (sub)optimality of their cho-
sen actions. Our computational microscope successfully detected this manipulation. As shown in Figure 1b, the inferred
learning-induced changes were significantly larger in the feedback condition than in the control condition in the first 15
trials and in trials 21–25 (all p ≤ 0.012). Action feedback selectively increased the probability of 8 performance-increasing
strategy changes (and only 2 performance-decreasing ones) while decreasing the probability of 5 performance-decreasing
transitions, 5 self-transitions, and only 1 performance-increasing transition. Our method’s ability to detect the plasticity-
enhancing effects of feedback suggests that its inferences provide a valid measure of cognitive plasticity. Figure 1b also
shows that cognitive plasticity slowed down as participants adapted to the experiment’s stationary environment.

4 Shedding light on cognitive plasticity

Having validated our computational microscope on both simulated and empirical data, we now apply it to measure how
people learned how to plan in the control condition of Experiment 1 and the training phase of the control conditions of
Experiments 2 and 3 from Lieder (2018).

Temporal evolution of strategy frequencies. As shown in Figure 1c, we found that the most common initial strategy
was to act impulsively without any planning (No Planning). Over time the prevalence of this strategy decreased from
34% to 26% (χ2(1) = 7.95, p = 0.0048).Conversely, the frequency of the near-optimal Goal Setting strategy increased from
4% to 30% (χ2(1) = 148.85, p < .0001). The frequencies of the two maladaptive strategies that decide based on immediate
rewards (Myopic Satisficing and Myopic Impulsive) dropped from about 11% to 5% (χ2(1) = 11.74, p = .0006) and from
and 4% to 0.6% (χ2(1) = 11.62, p = 0.0006) respectively, whereas the frequency of the strategy One Final Outcome that
prioritizes long-term consequences increased from 1% to 6% (χ2(1) = 20.22, p < 0.0001).

Testing theories of cognitive development. Prominent theories disagree about whether cognitive development is a
gradual process (Siegler, 1996) or proceeds in discrete stages (Piaget, 1971) with abrupt transitions. Our computational
microscope suggested that cognitive plasticity includes both gradual and abrupt strategy changes. The majority of in-
ferred strategy changes was gradual (i.e., 59.1%, χ2(1) = 56.8, p < 0.0001) but there was also a non-negligible percentage

3

Paper # 27 360

of abrupt changes (i.e., 40.9%). Consistent with Siegler’s overlapping waves theory (Siegler, 1996) we found that i) mul-
tiple different strategies were being used at each point in time throughout the learning process (i.e., 2.2 strategies on
average), and ii) high-performing strategies become more prevalent over time whereas low-performing strategies be-
come less prevalent (i.e., there was a significant rank correlation between each strategy’s average performance and the
change in its frequency; Spearman’s ρ(37) = 0.39, p = 0.0154).

Learning trajectories. To identify the most common learning trajectories, we categorized each inferred strategy as be-
longing to one of the 11 types of strategies described earlier and extracted the order in which they appeared. We found
that 86.0% of the learning trajectories were unique and the remaining trajectories were exhibited by only 2–4 learners
each. Zooming in on the 49 participants who learned the near optimal goal setting strategy, we found that they reached it
via 38 unique learning trajectories. Consistent with the overlapping waves theory, we found that 83.8% of these learning
trajectories included at least one intermediary strategy and identified three gateways to optimal planning: 35% of the
intermediary strategies inspected all potential final states – whereas the optimal strategy stops once it encounters the
best possible outcome – and sometimes planned backwards from undesirable states; 27% inspected potential final states
like the optimal strategy but wastefully inspected paths towards undesirable final outcomes, and 21% of the penultimate
strategies inspected both immediate and final outcomes while ignoring the intermediate states. Interestingly, all of these
intermediary strategies performed gratuitous planning operations.

5 Discussion

We have successfully validated our method on both synthetic and human data. The results suggest that our computa-
tional microscope can measure cognitive plasticity in terms of the temporal evolution of people’s cognitive strategies. We
believe this method has great potential for uncovering the mechanisms of cognitive plasticity and how they are impacted
by the learning environment, individual differences, time pressure, motivation, and interventions – including feedback
and instructions. We are optimistic that computational microscopes will become useful tools for reverse-engineering the
learning mechanisms that enable people to acquire complex cognitive skills and shape how we think and decide. To
make this possible, we will extend the proposed measurement model to continuous strategy spaces defined in terms of
the interaction between the goal-directed system, the Pavlovian system, and habits (O’Doherty, Cockburn, & Pauli, 2017;
van der Meer, Kurth-Nelson, & Redish, 2012). Our findings should be taken with a grain of salt because a more psycho-
logically plausible distance metric or a more realistic strategy representation could lead to different conclusions. Future
work will evaluate our method on synthetic data generated according to extant models of cognitive plasticity and quan-
tify how well the inferred strategy sequences explain empirical data. Our approach makes it possible to more directly
observe the previously hidden phenomenon of cognitive plasticity in all of its facets – ranging from skill acquisition and
cognitive development to the progression of psychiatric symptoms and mental disorders. Finally, reverse-engineering
people’s ability to discover and continuously refine their own algorithms could enable substantial advances towards
self-improving (general) artificial intelligence.

References
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A resource-rational analysis of human planning. In

Proceedings of the 40th annual conference of the cognitive science society.
Callaway, F., Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017). Mouselab-mdp: A new paradigm for tracing how people plan. In The

3rd multidisciplinary conference on reinforcement learning and decision making.
Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, learning, and extinction. Psychological review, 117(1), 197.
Lieder, F. (2018). Developing an intelligent system that teaches people optimal cognitive strategies. In F. Lieder (Ed.), Beyond bounded

rationality: Reverse-engineering and enhancing human intelligence (chap. 8).
Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory, 37(1), 145–151.
O’Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision making. Annual review of psychology, 68, 73–100.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press.
Piaget, J. (1971). The theory of stages in cognitive development. McGraw-Hill.
Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press.
van der Meer, M., Kurth-Nelson, Z., & Redish, A. D. (2012). Information processing in decision-making systems. The Neuroscientist,

18(4), 342–359.
van Lehn, K. (1996). Cognitive skill acquisition. Annual review of psychology, 47(1), 513–539.

4

Paper # 27 361

A continuity result for optimal memoryless planning in POMDPs

Johannes Rauh
MPI MIS

jarauh@mis.mpg.de

Nihat Ay
MPI MIS / Uni Leipzig / Santa Fe Institute

nay@mis.mpg.de

Guido Montúfar
UCLA Math and Stat / MPI MIS
montufar@math.ucla.edu

Abstract

Consider an infinite horizon partially observable Markov decision process. We show that the optimal discounted reward
under memoryless stochastic policies is continuous under perturbations of the observation channel. This implies that
we can find approximately optimal memoryless policies by solving an approximate problem with a simpler observation
channel.

Keywords: POMDPs, memoryless stochastic policy, optimal policy

1 Introduction

Policy optimization in partially observable Markov decision processes (POMDPs) is known to be a difficult problem. In
order to better understand this problem, we can study special cases where the system has some additional structure (e.g.,
the observations identify the world state to within a few possibilities), or we can also restrict the optimization problem to
policies with some additional structure (e.g., memoryless policies). The optimization problem over memoryless policies
has been discussed in various works (see, e.g., Ross, 1983; Vlassis et al., 2012; Azizzadenesheli et al., 2016).

In this context, the connections between information, memory and value are of particular interest (see Kaelbling et al.,
1998). We are interested in the relations that exist between the observation channel, on the one hand, and the structure of
the optimal memoryless policies, on the other hand. In particular, we are interested in whether certain types of POMDP
optimization problems allow for optimal or nearly optimal policies that have a particularly simple structure.

Previous work in this direction has characterized families of policies that contain optimal memoryless policies for any
POMDP of a particular type (see Montúfar and Rauh, 2017; Montúfar et al., 2015; Montúfar et al., 2015). In particular,
these works consider the number of actions that a memoryless policy needs to randomize at a given observation, depend-
ing on the number of world states that are compatible with that observation. In other words, depending on the properties
of the observation channel, they conclude that there exists a simple optimal memoryless policy. A natural question is: If
the observation channel nearly satisfies the conditions under which it is known that a simple optimal policy exists, can
we conclude that there exists a simple policy that is nearly optimal? In this short article, we show that this is indeed the
case. Thereby, we contribute to the understanding of approximate memoryless stochastic planning in POMDPs.

2 POMDPs and localization of optimal policies

We briefly introduce the definitions and settings.

Definition 1. A Partially Observed Markov Decision Process (POMDP) is a tuple (W,S,A, α, β,R) consisting of

1. finite setsW (world states), S (sensor states/observations) and A (actions),

2. Markov kernels/channels α :W ×A →W (world state transition) and β :W → S (observation channel),

3. and a reward function R :W ×A → R.

A Markov decision process (MDP) is the special case where β conveys full information about the world state.

We consider time independent memoryless stochastic policies.

Definition 2. A policy is a Markov kernel π : S → A. Denote ∆S,A the set of all such policies.

Paper # 103 362

Wt

St At

Wt+1

α

β

π

Figure 1: The graphical structure of a POMDP.

A POMDP, a policy π, and a starting distribution µ onW , together, define a stochastic process (W t, St, At)t, which is a
sequence of random variables (W t)t (world states), (St)t (sensor states), and (At)t (actions). The graphical structure is
shown in Figure 1.

We consider infinite horizon discounted rewards.
Definition 3. Given a POMDP and a policy π, the discounted reward with discount factor γ is

Rγ(π) = (1− γ)

∞∑

t=0

γt
∑

w,a

R(w, a)P (W t = w,At = a).

We denoteR∗γ = supπ∈∆S,A
Rγ(π) the optimal value over the set of memoryless stochastic policies.

We are interested in the following theorem by Montúfar and Rauh (2017), which provides a type of extension of the well
known fact that any MDP has an optimal policy over the set of memoryless stochastic policies which is deterministic.
Given π : S → A, let supp(π(·|s)) = {a ∈ A : π(a|s) > 0}.
Theorem 4. Consider a POMDP (W,S,A, α, β,R). Then there is a policy π∗ ∈ ∆S,A with | supp(π∗(·|s))| ≤ | supp(β(s|·))| for
all s ∈ S, andRγ(π∗) ≥ Rγ(π) for all π ∈ ∆S,A.

This result implies that, in order to optimize a POMDP over the set of memoryless stochastic policies, it suffices to
consider a subset of policies. This can be translated into a choice of a policy model with few parameters or also into
heuristics for the policy optimization. The result is optimal in the sense that there are POMDPs (W,S,A, α, β,R) where
each policy π∗ ∈ ∆S,A withRγ(π∗) ≥ Rγ(π) for all π ∈ ∆S,A satisfies | supp(π∗(·|s))| ≥ | supp(β(s|·))|.
A problem with Theorem 4 is that, in concrete situations, we might not be able to exclude world states with absolute
certainty, meaning that | supp(β(s|·))| = |W|. Moreover, the number of world states might be as large or larger than the
number of possible actions, |W| ≥ |A|, in which case the statement of the theorem is vacuous.

3 Continuity of the reward and localization of nearly optimal policies

In order to remedy the shortcomings of Theorem 4, we need a continuous version of the characterization. Our continuous
extension is as follows. We show that if the observation channel β is close to some other channel β′, in an appropriate
sense, then we can find a near to optimal policy π with | supp(π(·|s))| ≤ | supp(β′(s|·))| for all s ∈ S.
Theorem 5. Consider a POMDP with γ < 1 and ‖R‖∞ := maxw,a |R(w, a)|. Let β′ be a Markov kernelW → S that satisfies

‖β(·|w)− β′(·|w)‖TV =
1

2

∑

s

∣∣β(s|w)− β′(s|w)
∣∣ ≤ ε for all w ∈ W .

Then there is a policy π that satisfies | supp(π(·|s))| ≤ | supp(β′(s|·))| for all s andRγ(π) ≥ R∗γ − 2 ε
1−γ ‖R‖∞.

We prove this theorem based on a continuity result for the discounted reward function with respect to the observation
channel.
Theorem 6. Consider two POMDPs (W,S,A, α, β,R) and (W,S,A, α, β′, R) that satisfy

‖β(·|w)− β′(·|w)‖TV =
1

2

∑

s

∣∣β(s|w)− β′(s|w)
∣∣ ≤ ε for all w ∈ W .

Then the discounted reward functionsRγ ,R′γ of the two POMDPs satisfy

|Rγ(π)−R′γ(π)| ≤ ε

1− γ ‖R‖∞ for any policy π ∈ ∆S,A and any γ < 1,

where ‖R‖∞ := maxw,a |R(w, a)|. This implies, in particular, |R∗γ −R′∗γ | ≤ ε
1−γ ‖R‖∞.

We present the proofs in the following section.

2

Paper # 103 363

4 Proofs of the continuity result

Lemma 7. Under the assumptions of Theorem 6, denote by At,W t the action and world process of the POMDP with β, and denote
by A′t,W ′t the action and world process of the POMDP with β′, where both POMDPs are controlled by the same policy π. Then,

|Pr(At = a|W t = w)− Pr(A′t = a|W ′t = w)| ≤ ε for all a,w.

Proof. (Proof of Lemma 7) The inequality follows from∣∣∣Pr(At = a|W t = w)−Pr(A′t = a|W ′t = w)
∣∣∣

=

∣∣∣∣
∑

s

π(a|s)(β(s|w)− β′(s|w))

∣∣∣∣

=

∣∣∣∣
∑

s:β(s|w)≥β′(s|w)

π(a|s)(β(s|w)− β′(s|w))−
∑

s:β′(s|w)>β(s|w)

π(a|s)(β′(s|w)− β(s|w))

∣∣∣∣

≤max

{ ∑

s:β(s|w)≥β′(s|w)

π(a|s)(β(s|w)− β′(s|w)),
∑

s:β′(s|w)>β(s|w)

π(a|s)(β′(s|w)− β(s|w))

}

≤max

{ ∑

s:β(s|w)≥β′(s|w)

(β(s|w)− β′(s|w)),
∑

s:β′(s|w)>β(s|w)

(β′(s|w)− β(s|w))

}

=‖β′(·|w)− β(·|w)‖TV.

Lemma 8. Under the assumptions of Lemma 7, for all t ≥ 0,
∑

aw

|Pr(AtW t = aw)− Pr(A′tW ′t = aw)| ≤ (t+ 1)ε, (1a)

∑

w

|Pr(W t = w)− Pr(W ′t = w)| ≤ tε. (1b)

Proof. (Proof of Lemma 8) The proof is by induction. For t = 0, Pr(W 0 = w) = Pr(W ′0 = w), so (1b) holds for t = 0.
Assuming that (1b) holds for some t,

∑

aw

|Pr(AtW t = aw)− Pr(A′tW ′t = aw)|

≤
∑

w

|Pr(W t = w)− Pr(W ′t = w)|
∑

a

|Pr(At = a|W t = w)|

+
∑

aw

|Pr(At = a|W t = w)− Pr(A′t = a|W ′t = w)||Pr(W ′t = w)|

≤
∑

w

|Pr(W t = w)− Pr(W ′t = w)|

+ sup
w

∑

a

|Pr(At = a|W t = w)− Pr(A′t = a|W ′t = w)|

≤ tε+ ε = (t+ 1)ε.

Assuming that (1a) holds for t− 1,
∑

w

|Pr(W t = w)− Pr(W ′t = w)|

=
∑

w

∣∣∣∣
∑

a,w′

α(w|a,w′)
(

Pr(At−1W t−1 = aw′)− Pr(A′t−1W ′t−1 = aw′)
)∣∣∣∣

≤
∑

a,w′

∑

w

α(w|a,w′)
∣∣∣∣Pr(At−1W t−1 = aw′)− Pr(A′t−1W ′t−1 = aw′)

∣∣∣∣

≤
∑

a,w′

∣∣∣∣Pr(At−1W t−1 = aw′)− Pr(A′t−1W ′t−1 = aw′)

∣∣∣∣ ≤ tε.

3

Paper # 103 364

Proof. (Proof of Theorem 6) Using
∞∑

t=0

(t+ 1)γt =
1

γ

∞∑

t=1

tγt =
∂

∂γ

∞∑

t=0

γt =
∂

∂γ

1

1− γ =
1

(1− γ)2

and Lemma 8,

|R(π)−R(π′)|

≤ (1− γ)
∞∑

t=0

∑

w,a

γtR(w, a)|P (W t, At = w, a)− P (W ′t, A′t = w, a)|

≤ (1− γ)
1

γ

∞∑

t=1

γt‖R‖∞tε =
ε

1− γ ‖R‖∞.

LetR(β, π) be the expected reward for observation kernel β and policy π.
Lemma 9. Let Rγ , R′γ be the discounted reward functions of two POMDPs (W,S,A, α, β,R), (W,S,A, α, β′, R), and suppose
that there exists c > 0 with |Rγ(π)−R′γ(π)| ≤ c for all policies π. If π′∗ is the optimal policy forR′γ , thenR∗γ ≥ Rγ(π′∗) ≥ R∗γ−2c.

Proof. (Proof of Lemma 9) The first inequality is by definition ofR∗γ . For any policy π forRγ ,

Rγ(π′∗) ≥ R′(π′∗)− c ≥ R′(π)− c ≥ Rγ(π)− 2c.

The second inequality follows when π is an optimal policy forRγ .

Proof. (Proof of Theorem 5) This follows from Theorem 6 and Lemma 9 and Theorem 4.

5 Discussion

We presented a continuity result that extends the applicability of previous theoretical results on the structure of optimal
policies of POMDPs, and allows us to discuss approximately optimal policies. Continuity, in the way that we studied
here, could be investigated not only in terms of the observation channel, but also in terms the state transition kernel.
These continuity results might also serve to make statements about consistency in policy optimization in reinforcement
learning, when the agent needs to estimate the world model (i.e., the kernels β and α).

Acknowledgment This project has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement no 757983).

References
K. Azizzadenesheli, A. Lazaric, and A. Anandkumar. Open problem: Approximate planning of pomdps in the class of

memoryless policies. In V. Feldman, A. Rakhlin, and O. Shamir, editors, 29th Annual Conference on Learning Theory,
volume 49 of Proceedings of Machine Learning Research, pages 1639–1642. PMLR, 2016.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1):99–134, 1998.

G. Montúfar and J. Rauh. Geometry of policy improvement. In Geometric Science of Information, LNCS 10589, pages
282–290. Springer, 2017.

G. Montúfar, K. Ghazi-Zahedi, and N. Ay. A theory of cheap control in embodied systems. PLoS Computational Biology,
11(9):1–22, 2015.

G. Montúfar, K. Ghazi-Zahedi, and N. Ay. Geometry and determinism of optimal stationary control in POMDPs.
arXiv:1503.07206, 2015.

S. M. Ross. Introduction to Stochastic Dynamic Programming: Probability and Mathematical. Probability and Mathematical
Statistics: A Series of Monographs and Textbooks. Academic Press, Inc., 1983.

N. Vlassis, M. L. Littman, and D. Barber. On the computational complexity of stochastic controller optimization in
POMDPs. ACM Transactions on Computation Theory, 4(4):12:1–12:8, 2012.

4

Paper # 103 365

Posterior Sampling Networks

Vikranth R Dwaracherla
Stanford University

vikranth@stanford.edu

Benjamin Van Roy
Stanford University
bvr@stanford.edu

Morteza Ibrahimi
morteza@ibrahimi.org

Abstract

In this article, we propose a new approach for efficiently generating approximate samples from a poste-
rior over complex models such as neural networks, induced by a prior distribution over the model family
and a set of input-output data pairs. While there are other applications, we are particularly motivated in
this work by its application in Thompson sampling, a technique for efficient exploration in reinforcement
learning. Thompson sampling requires sampling from a posterior distribution over models, which can be
achieved in special cases under restrictive assumptions. Approximations are called for when this can not
be done exactly. Ensemble sampling offers an approach that is viable in complex settings such as deep rein-
forcement learning. However, ensemble sampling requires fitting a substantial number of separate models,
which although tractable is far more computationally demanding than one would hope. We propose a new
approach that is based on point estimation in an elevated model space. This elevated model space is made
up of models that map the input space and a d-dimensional Euclidean index space to the output space.
After learning the mapping, by sampling a random index, one effectively samples a random neural net-
work that maps predictors to output. Our approach aims to learn a mapping so that this random model is
approximately distributed according to the posterior over neural networks conditioned on observed data.
As a sanity check, we prove that in the special case of linear models with Gaussian noise our approach can
generate exact samples from the posterior. We also demonstrate empirically the efficacy of our approach in
the context of bandit learning with linear and neural network models.

Keywords: approximate posterior, posterior sampling over networks

Paper # 277 366

1 Introduction

It is often useful to learn not just a point estimate but a posterior distribution over models. When learning
a linear model with a Gaussian prior over coefficients from observations perturbed by Gaussian noise,
this can be accomplished via the Kalman filter. However, computing or even approximating a posterior
distribution over more complex model classes, like neural networks, poses a far greater challenge.

Though addressing this challenge could serve many purposes, our immediate motivation is in the use of
posterior samples to guide exploration in reinforcement learning. For example, approaches motivated by
Thompson sampling, such as those discussed in [1], call for approximately sampling neural networks from
posterior distributions. Among such approximation methods, ensemble sampling [2] stands out as one that
is relatively tractable and applicable in complex problems such as deep reinforcement learning [3].

We will propose a new approach that learns a mapping from predictors and a random index to an output.
After learning the mapping, by sampling a random index, one effectively samples a random model that
maps predictors to output. Our approach aims to learn a mapping so that this random model is approxi-
mately distributed according to the posterior over models conditioned on observed data.

Ensemble sampling can be viewed as a special case of this approach. In ensemble sampling, K separate
models are learned. The distribution of this ensemble can be viewed as an approximation to the posterior
over models, in a spirit similar to particle filtering. To produce a random model with distribution approx-
imating the posterior, a model is sampled uniformly from the ensemble. By viewing the selection in terms
of sampling a random index uniformly from {1, . . . ,K}, the ensemble can be seen as a mapping from input
and index to output.

Our new approach aims to offer efficiency gains over ensemble sampling by alleviating the need to learn
K separate complex models. We instead learn a single model. We expect this model to be more complex
than each element of the ensemble since it takes a random index as additional input. However, rather than
increases the number of free parameters by a factor of K, as is done in ensemble sampling, our hope is that
our new approach entails a much smaller multiple.

Our approach may sound related to generative networks [4], though there is some difference. In adversarial
generative networks, a random index is mapped to an output in a manner that approximates an output
distribution reflected by observed data. [5] presents some crucial shortcomings of some existing generative
methods like [6], [7] for posterior approximation through some sanity checks. Please refer to [5] for more
details. Our approach aims to sample a model, such as a neural network, rather than an output. Further,
we aim to approximately sample from a posterior distribution rather than a distribution that generated
observe data.

2 Training

Given data samples D = ((xt, yt) : t = 1, . . . , T), a common approach to estimating the associated mapping
between x and y entails selecting θ̂ to minimize a loss function of the form

L(θ̂,D) =

T∑

t=1

(fθ̂(xt)− yt)2 + ψ(θ̂).

However, we wish to sample θ̂ approximately from a posterior distribution of models conditioned on D .
Our general framework for doing this involves defining a perturbed loss function

Lz(θ̂,D) =
T∑

t=1

(fθ̂(xt, z)− yt)2 + ψz(θ̂) (1)

and minimizing

L(θ̂,D) =

∫

z

pz(dz)Lz(θ̂,D), (2)

for some distribution pz . Then, we sample a mapping from x to y by sampling z ∼ pz and using fθ(x, z).

2.1 Neural Networks

Let us now describe one example. Suppose fθ : <N 7→ < represents a neural network with weights θ, for
which the prior distribution is N (0, σ2

0I). Suppose we are given data pairs D = ((xt, yt) : t = 1, . . . , T). Let

1

Paper # 277 367

pz be unit Gaussian over a K-dimensional space. In general, K will be much smaller than T . Let the rows
of B ∈ <N×K and at, for each t = 1, . . . , T , be sampled uniformly at random from the K-dimensional unit
sphere. Consider minimizing a loss function

L(θ̂,D) =

∫

z

pz(dz)

(
T∑

t=1

(fθ̂(xt, z)− yt − a>t z)2 +
1

σ2
0

‖θ̂ − θ̃‖22

)
, (3)

with θ̃ = σ0Bz. Then, by sampling z ∼ N(0, I), fθ̂(·, z) serves as an approximate posterior sample. Here,
after fixing the index z, fθ̂(., z) can be considered a new neural network with weights as θ̂(z).

As discussed in [5], regularizing as done in the above loss function can cause problems with the workings of
neural network training procedures based on stochastic gradient descent. As such, it may be more effective
to use a modified loss function of the form

L(θ̂,D) =

∫

z

pz(dz)

(
T∑

t=1

(fθ̂(xt, z) + gθ̃(xt)− yt − a>t z)2
)

(4)

Here, gθ̃ can be thought of as a random prior network.

2.2 Linear Regression

As a sanity check, we consider in this section a version of the approach specialized to linear regression.
Examining this case offers intuition for how and why our approach can work.

Suppose that θ is an N -dimensional vector with prior distribution N(µ0,Σ0) and that, for each t, yt =
θTxt + wt with wt ∼ N (0, σ2

w). As discussed in [2], minimizing the following perturbed loss function gives
θ̂, a sample from the posterior distribution of θ conditioned on D:

L(θ̂,D) =
T∑

t=1

1

σ2
w

(θ̂Txt − yt − w̃t)2 + (θ̂ − θ̃)>Σ−10 (θ̂ − θ̃),

where w̃t ∼ N (0, σ2
w) and θ̃ ∼ N (µ0,Σ0). The resulting posterior sample θ̂ can be thought of as a function of

θ̃ and (w̃t : t = 1, . . . , T}. Now suppose we want to sample approximately from the posterior in a way that
depends on a random vector z ∼ N(0, I) of fixed dimensionK rather than a random object with dimension
growing with T . We can do this minimizing a loss function of the form

Lz(θ̂,D) =
∑T
t=1

1
σ2
w

(θ̂Txt − yt − σwaTt z)2 + (θ̂ − θ̃)>Σ−10 (θ̂ − θ̃), (5)

with θ̃ = µ0 + Σ
1/2
0 Bz. As a function of z, the optimal solution takes the form θ̂ = δ+Mz, for some δ ∈ <N

and M ∈ <N×K . Letting f(δ,M)(x, z) = (δ +Mz)Tx, we can alternatively minimize

L((δ,M),D) =
∫
z
pz(dz)

∑T
t=1

1
σ2
w

((δ +Mz)Txt − yt − σwaTt z)2 + (θ̂ − θ̃)>Σ−10 (θ̂ − θ̃), (6)

to obtain the same values of δ and M . This is a special case of (3).

Note that the minimizing arguments of (6) are

δ =

(
1

σ2
w

T∑

t=1

xtx
T
t + Σ−10

)−1(
1

σ2
w

T∑

t=1

xtyt + Σ−10 µ0

)
, (7)

M =

(
1

σ2
w

T∑

t=1

xtx
T
t + Σ−10

)−1(
1

σw

T∑

t=1

xta
T
t + Σ

−1/2
0 B

)
. (8)

Lets consider C be a matrix with rows a1, a2 . . . , aT concatenated with the rows of B. It is easy to see that
if the rows of C are orthogonal then θ̂ = δ + Mz is an exact sample from the posterior. However, we
will generally want to use a fixed value of K that is much smaller than T , and as such, the rows of C will
generally fail to be orthogonal. Nevertheless, this approach can serve to offer a useful approximation to a
posterior sample.

2

Paper # 277 368

3 Computational Results

In Section 2.2, we have provided an intuition of why our method approximates sampling from posterior.
In this section we will present some computational results to deepen the insight. We aim to paint a clearer
picture which enhances our understanding than solving a difficult problem. In order to measure how well
our estimated distribution approximates the posterior we look at it’s performance in bandit settings where
an agent picks an action from set of plausible actions and observe a stochastic reward corresponding to the
chosen action. The agent aims to pick the best possible actions to maximize the cumulative reward. We
compare our method which samples the model from an approximate posterior with Thompson sampling
which samples from the actual posterior distribution. But for complicated models like neural networks ob-
taining posterior is very difficult if not computationally intractable. In such cases, we resort to comparing
performance of our method with Ensemble sampling [2], which samples a model from a fixed size ensem-
ble. Performance of an algorithm is quantified by regret(difference between maximum possible reward and
reward obtained by the algorithm). For ease of convention we will be refering to our proposed method as
Index sampling.

3.1 Gaussian Linear Bandit

We will first look at Gaussian linear bandits, an online linear optimization setting where rewards are given
by bandit feedback where for each t, any action xt ∈ <N , ‖xt‖2 ≤ 1 the observed reward yt is given
by xTt θ + wt, where wt ∼ N (0, σ2

w) is Gaussian noise with known variance σ2
w and θ ∈ <N is the fixed

unknown parameter which characterizes the model. Given a prior N (µ0,Σ0) over θ, we initialize δ1 = µ0

and M1 = Σ
1/2
0 B. At any time t, we sample a model θ̂t from approximate posterior by picking a random

index z ∈ <K and computing θ̂t = δt + Mtz. Now assuming that θ̂t is the true parameter we choose xt
which is optimal w.r.t θ̂t and observe yt. Once observing (xt, yt), we update our model parameters δ,M
incrementally using (7) and (8).

For comparing different methods we simulated a linear bandit with N dimensional input, with σ2
w = 100

and each coordinate of µ0 is sampled uniformly from [0, 10] and Σ0 = 10IN . Index sampling is imple-
mented with index dimension as K and Ensemble sampling is implemented with M ensembles. Results
are shown in the form of cumulative regret vs time on Figures 1a, 1b. Plots are obtained by averaging over
25 realizations for N = 10 and 5 realizations for N = 50.

(a) N = 10, Index Sampling with K = 5 and K = 10,
Ensemble Sampling with M = 5 and M = 10

(b) N = 50, Index Sampling with K = 20 and K = 50,
Ensemble Sampling with M = 25 and M = 50

Figure 1: Cumulative regret vs time for Index Sampling, Thompson Sampling and Ensemble Sampling

We observe that the index sampling method performs similar to that of Thompson sampling even for small
values ofK suggesting that the distribution from which we sample is approximately posterior. Performance
of Index sampling when compared with ensemble sampling of M ≈ K is similar if not better.

3

Paper # 277 369

3.2 Neural Network Bandit

Now we will consider a more complicated model, a 2-layer neural network bandit model for which ob-
taining posterior is difficult, computationally expensive. For the neural network bandit setting we compare
performance of our method with ensemble sampling. Let the neural network be represented as fθ : <N → <
and at any time t, the observed output/reward for an action xt ∈ X ⊂ <N is given by yt = fθ(xt) + wt
where wt ∼ N (0, σ2

w) and θ are the unknown weights which define the neural network.

Our aim is to maximize the cumulative reward by picking actions from a finite set, X . In case of index
sampling, during inference a K-dimensional index is sampled and appended along with the input and
passed to the neural network fθ̂ : <N+K → <, effectively sampling a fθ from the approximate posterior.

Figure 2: Cumulative regret for Index Sampling (K =
5, 10, 25) and Ensemble Sampling (M = 3, 5, 10)

We will consider a neural network fθ(x) =
WT

2 max(0,W1x) with D hidden neurons and θ =
(W1,W2) where W1 ∈ <N×D, W2 ∈ <D are weights
of first and second layer respectively. For index
sampling neural network is modified to fθ̂(x, z) =

ŴT
2 max(0, Ŵ11x + Ŵ12z) where Ŵ11 ∈ <N×D and

Ŵ12 ∈ <K×D are weights corresponding to first
layer and Ŵ2 are weights of the second layer.

Experimental results are shown in Figure 2. In this
experiment a neural network bandit with similar
architecture as [2] simulated with input dimension
N = 100, D = 50 hidden neurons, 100 actions are
chosen uniformly at random from a unit box with
last dimension set to 1, weights W ∼ N (0, σ2I)
with σ = 1 and σ2

w = 100. A learning rate of 0.01
and with a mini batch size of 64 samples are used
while training. The results are averaged over 5 re-
alizations.

We observe that even for K = 25, Index Sampling
performs close to ensemble sampling with M = 10
even though index sampling has eight times fewer
number of parameters. This resulted in a faster execution of index sampling saving both computation time
and space.

References

[1] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
Thompson sampling. Foundations and Trends R© in Machine Learning, 11(1):1–96, 2018.

[2] Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In Advances in Neural Information Processing
Systems, pages 3258–3266, 2017.

[3] Ian Osband, Daniel Russo, Zheng Wen, and Benjamin Van Roy. Deep exploration via randomized value
functions. arXiv preprint arXiv:1703.07608, 2017.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[5] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pages 8626–8638, 2018.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059, 2016.

[7] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learn-
ing. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 449–458.
JMLR. org, 2017.

4

Paper # 277 370

Self-improving Chatbots based on Reinforcement Learning

Elena Ricciardelli, Debmalya Biswas
AI Center of Excellence

Philip Morris International
Lausanne, Switzerland

firstname.lastname@pmi.com

Abstract

We present a Reinforcement Learning (RL) model for self-improving chatbots, specifically targeting FAQ-type chatbots.
The model is not aimed at building a dialog system from scratch, but to leverage data from user conversations to improve
chatbot performance. At the core of our approach is a score model, which is trained to score chatbot utterance-response
tuples based on user feedback. The scores predicted by this model are used as rewards for the RL agent. Policy learning
takes place offline, thanks to an user simulator which is fed with utterances from the FAQ-database. Policy learning is
implemented using a Deep Q-Network (DQN) agent with epsilon-greedy exploration, which is tailored to effectively
include fallback answers for out-of-scope questions.

The potential of our approach is shown on a small case extracted from an enterprise chatbot. It shows an increase in
performance from an initial 50% success rate to 75% in 20-30 training epochs.

Keywords: Reinforcement Learning, Chatbots, NLP

Paper # 178 371

Figure 1: Architecture of the RL model used in this work. The DQN agent is initially trained offline in a warm-up phase on the NLU.
The score model is also trained offline with the data from real user conversations. In the RL loop, the user state (user utterance) is
provided by the user simulator, the action (chatbot response) is provided by the DQN agent and the reward is provided by the score
model. Each tuple (st, at, rt) feeds the experience replay buffer, which is used to re-train the DQN after nepisodes episodes, which is a
tunable parameter.

1 Introduction

The majority of dialog agents in an enterprise setting are domain specific, consisting of a Natural Language Understand-
ing (NLU) unit trained to recognize the user’s goal in a supervised manner. However, collecting a good training set for a
production system is a time-consuming and cumbersome process. Chatbots covering a wide range of intents often face
poor performance due to intent overlap and confusion. Furthermore, it is difficult to autonomously retrain a chatbot tak-
ing into account the user feedback from live usage or testing phase. Self-improving chatbots are challenging to achieve,
primarily because of the difficulty in choosing and prioritizing metrics for chatbot performance evaluation. Ideally, one
wants a dialog agent to be capable to learn from the user’s experience and improve autonomously.

In this work, we present a reinforcement learning approach for self-improving chatbots, specifically targeting FAQ-type
chatbots. The core of such chatbots is an intent recognition NLU, which is trained with hard-coded examples of question
variations. When no intent is matched with a confidence level above 30%, the chatbot returns a fallback answer. For all
others, the NLU engine returns the corresponding confidence level along with the response.

Several research papers [2, 3, 7, 8] have shown the effectiveness of a RL approach in developing dialog systems. Critical
to this approach is the choice of a good reward model. A typical reward model is the implementation of a penalty term
for each dialog turn. However, such rewards only apply to task completion chatbots where the purpose of the agent is
to satisfy user’s request in the shortest time, but it is not suitable for FAQ-type chatbots where the chatbot is expected to
provide a good answer in one turn. The user’s feedback can also be used as a reward model in an online reinforcement
learning. However, applying RL on live conversations can be challenging and it may incur a significant cost in case of
RL failure. A better approach for deployed systems is to perform the RL training offline and then update the NLU policy
once satisfactory levels of performance have been reached.

2 Reinforcement Learning Model

The RL model architecture is illustrated in Figure 1. The various components of the model are: the NLU unit, which is
used to initially train the RL agent in a warm-up phase; the user simulator, which randomly extracts the user utterances
from the database of user experiences; the score model trained on the user’s conversation with feedback and the RL
agent based on a Deep Q-Network (DQN) network.

1

Paper # 178 372

2.1 Dialog System

We apply the reinforcement learning approach on a FAQ-type chatbot. At the core of the chatbot, there is an intent1

recognition NLU, which is trained with hard-coded examples of question variations. For this work, we have chosen the
open-source NLU from Rasa2, using the TensorFlow pipeline. However the RL approach is independent from the NLU
chosen and for systems in production it can easily be extended to NLU engines such as IBM Watson or Amazon LEX.

2.2 Real User Conversations

We used user feedback obtained during the development an actual internal chatbot for our work. The scope of the
chatbot was to answer employee queries related to office building facilities, HR policies and benefits, etc. All the 10 users
participating in the test phase were informed that their feedback would be used to improve the chatbot performance. The
testers provided a (binary) feedback after each conversation turn, thus rating the utterance-response tuples. The historical
data thus contains quadruples of the following format: (utterance, response, NLU confidence level and feedback). By
removing non valid conversations (i.e. those lacking or with invalid feedback) we end up with 550 user conversations,
triggering about 120 intents. Although we have tested the score model on all the conversations, the RL model has been
applied only on a subsample of 155 conversations, triggering the top 5 intents. On this subset, the user’s satisfaction is
50%.

Table 1: Example of conversation from the database, as well as the score provided by the model and by the user

Utterance Response Model
score

User
feedback

What is Interact? I can help you mainly with GS service-related ques-
tions on topics like transportation (your mobility
plan/benefit car), business travel, hospitality and
events, gym, mailroom etc.

0.30 0

where can I find my salary payment I was getting bored, but now you are here. 0.26 0
Have a nice day Bye bye! Thanks for the chat! 0.81 1

2.3 Reward Function: the Score Model

Evaluating chatbot performance is a long-standing issue in computational linguistic. Automatic metrics borrowed from
machine translations (e.g. [6]) do not perform well on short sentences (e.g. [4]), such as the chatbot utterance-response
tuples. On the other hand, human rating of chatbots is by now the de-facto standard to evaluate the success of a chatbot,
although those ratings are often difficult and expensive to gather.

To evaluate the correctness of chatbot responses, we propose a new approach which makes use of the user conversation
logs, gathered during the development and testing phases of the chatbot. Each user had been asked to provide a binary
feedback (positive/negative) at each chatbot turn. In order to use the user feedback in an offline reinforcement learning,
we have developed a score model, capable of modeling the binary feedback for unseen utterance-response tuples. In
a supervised fashion, the score model learns how to project the vector representations of utterance and response in a
linearly transformed space, such that similar vector representations give high score. As for the vector representation of
sentences, we compute sentence embedding through the universal sentence encoder [1], available through TensorFlow
Hub 3. To train the model, the optimization is done on a squared error (between model prediction and human feedback)
loss with L2 regulation. To evaluate the model, the predicted scores are then converted into a binary outcome and
compared with the targets (the user feedbacks). For those couples of utterances having a recognized intent with both
a positive feedback and a NLU confidence level close to 1, we perform data augmentation, assigning low scores to the
combination of utterance and fallback intent.

A similar approach for chatbot evaluation has been suggested by [4]. The authors model the scores by using a labelled
set of conversations, that also include model and human-generated responses, collected through crowdsourcing. Our
approach differs from the above authors in that it just requires a labelled set of utterance-response tuples, which are
relatively straightforward to gather during the chatbot development and user testing phases.

1An intent is defined as the user’s intention, which is formulated through the utterance
2https://rasa.com/
3https://www.tensorflow.org/hub

2

Paper # 178 373

Figure 2: Performances of the score model. Left-hand panel: cross-validated test set accuracy with 95% confidence interval for
different sub-samples having different number of intents. The horizontal red line indicates the performances for the entire sample.
Right-hand panel: ROC curves for the different subsamples.

2.4 Policy Learning with DQN
To learn the policy, the RL agent uses a Q-learning algorithm with DQN architecture [5]. In DQN, a neural network
is trained to approximate the state-action function Q(st|at, θ), which represents the quality of an action at provided a
state st, and θ are the trainable parameters. As for the DQN network, we have followed the approach proposed by [3],
using a fully-connected network, fed by an experience replay pool buffer, that contains the one-hot representation of
utterance and response and the corresponding reward. An one-hot representation is possible in this case as we have a
finite possible values for utterances (given by the number of real users’s question in the logs) and responses (equal to
the number of intents used on out test-case, 5). In a warm-up phase, the DQN is trained on the NLU, using as a reward
the NLU confidence level. The DQN training set is augmented whenever a state-action pair has a confidence above a
threshold, by assigning zero weight to the given state and all the other available actions. Thus, at the starting of the RL
training, the agent performs similar to the NLU unit.

During RL training, we use an ε-greedy exploration, where random actions are explored according to a probability ε. We
use a time-varying ε which facilitates the exploration at the beginning of the training with εt0 = 0.2 and εt = 0.05 during
the last epoch. To speed-up the learning when picking random actions, we also force higher probability to get a ”No
intent detected”, as several questions are actually out of the chatbot scope, but they are erroneously matched to a wrong
intent by the NLU. During an epoch we simulate a batch of conversations of size nepisodes (ranging from 10 to 30 in our
experiments) and fill an experience replay buffer with the tuple (st, at, rt). The buffer has fixed size and it is flushed the
first time when the agent performance increases above a specified threshold. In those episodes where the state-action
tuple gets a reward greater than 50%, we perform data augmentation by assigning zero reward to the assignment of any
other action to the current state.

3 Model Evaluation

3.1 Score Model Evaluation
To evaluate the model, we select subsets of conversations, triggering the top N intents, with N between 5 and 50. The
results of the score model are summarized in Figure 2, showing the cross-validated (5-fold CV) accuracy on the test set
and the ROC curve as a function of the number of intents. For the whole sample of conversations, we obtain a cross-
validated accuracy of 75% and an AUC of 0.84. However, by selecting only those conversations triggering the top 5
intents, thus including more examples per intent, we obtain an accuracy of 86% and an AUC of 0.94. For the RL model
evaluation, we have focussed on the 5 intents subsets; which ensures that we have the most reliable rewards.

3.2 Reinforcement Learning Model Evaluation
The learning curve for the RL training is shown in Figure 3. In the left-hand panel, we compare the RL training with the
reward model with a test done with a direct reward (in interactive way), showing that the score model is giving similar
performances to the reference case, where the reward is known. Large fluctuations in the average score are due to a
limited batch size (nepisodes = 10) and a relatively large ε. We also show the success rate on a test set of 20 conversations,
extracted from the full sample, where a ”golden response” is manually provided for all the utterances. The agent success
rate increases from an initial∼ 50% to 75% in only∼30 epochs, showing the potential of this approach. In the right-hand
panel, we show the results using nepisodes = 30, showing similar performances but with a smoother learning curve.

3

Paper # 178 374

Figure 3: Learning curves showing the DQN agent’s average score (continuous black line) per training epoch and success rate (purple
shaded area) based on a labelled test set of 20 conversations. Left-hand panel: learning curves for direct RL with interactive reward
(black line) and the reward model (blue dotted line), using 10 episodes per epoch. Right-hand panel: learning curves for the model
reward, using 30 episodes per epoch.

4 Conclusions
In this work, we have shown the potential of a reinforcement learning approach in improving the performance of FAQ-
type chatbots, based on the feedback from a user testing phase. To achieve this, we have developed a score model, which
is able to predict the user’s satisfaction on utterance-response tuples, and implemented a DQN reinforcement model,
using the score model predictions as rewards. We have evaluated the model on a small, but real, test case, demonstrating
promising results. Further training on more epochs and including more data, as well as extensive tests on the model
hyper-parameters are in progress. The value of our approach is in providing a practical tool to improve large-scale
chatbots (with a large set of diverse intents), in an automated fashion based on user feedback.

Finally, we notice that although the reinforcement learning model presented in this work is suitable for FAQ-type chat-
bots, it can be generalised to include the sequential nature of conversation by incorporating a more complex score model.

References

[1] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes,
Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal sentence encoder. CoRR, abs/1803.11175,
2018.

[2] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforcement learning for dialogue
generation. arXiv preprint arXiv:1606.01541, 2016.

[3] Xiujun Li, Yun-Nung Chen, Jianfeng Gao, and Asli Celikyilmaz. End-to-end task-completion neural dialogue systems. In 8th
International Joint Conference on Natural Language Processing, 2017.

[4] Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, and Joelle Pineau. Towards
an automatic turing test: Learning to evaluate dialogue responses. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1116–1126. Association for Computational Linguistics, 2017.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Ried-
miller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dhar-
shan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529 EP –, 02 2015.

[6] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, pages 311–318, 2002.

[7] Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-Fai Wong. Deep dyna-q: Integrating planning for task-completion
dialogue policy learning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2182–2192. Association for Computational Linguistics, 2018.

[8] Iulian Vlad Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim,
Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Mudumba, Alexandre de Brébisson, Jose Sotelo, Dendi Suhubdy, Vincent
Michalski, Alexandre Nguyen, Joelle Pineau, and Yoshua Bengio. A deep reinforcement learning chatbot. CoRR, abs/1709.02349,
2017.

4

Paper # 178 375

Modeling models of others’ mental states: characterizing Theory of
Mind during cooperative interaction
 Tessa Rusch Prashant Doshi
 Inst. for Systems Neuroscience Dept. of Computer Science
 University Hamburg University of Georgia
 t.rusch@uke.de pdoshi@cs.uga.edu

 Martin Hebart Saurabh Kumar
 National Inst. of Mental Health Inst. for Systems Neuroscience
 Bethesda University Hamburg
 martin.hebart@nih.gov s.kumar@uke.de

 Michael Spezio Jan Gläscher
 Psychology & Neuroscience, Scripps College Inst. for Systems Neuroscience
 Inst. for Systems Neuroscience, University Hamburg University Hamburg
 mspezio@scrippscollege.edu glaescher@uke.de

Abstract
Humans are experts in cooperation. To effectively engage with others they have to apply Theory of Mind
(ToM), that is they have to model others beliefs, desires, and intentions and predict their behavior from these
mental states. Here, we investigate ToM processes during real-time reciprocal coordination between two
players engaging in a cooperative decision game. The game consists of a noisy and unstable environment. To
succeed participants have to model the state of the world and their partner’s belief about it and integrate both
pieces of information into a coherent decision. Thereby the game combines social and non-social learning into
a single decision problem. To quantify the learning processes underlying participants’ actions, we modeled
the behavior with Interactive Partially Observable Markov Decisions Processes (I-POMDP). The I-POMDP
framework extends single agent action planning under uncertainty to the multi-agent domain by including
intentional models of other agents. Using this framework we successfully predicted interactive behavior.
Furthermore, we extracted participants’ beliefs about the environment and their beliefs about the mental
states of their partners, giving us direct access to the cognitive operations underling cooperative behavior. By
relating players’ own beliefs with their partners’ model of themselves we show that dyads whose beliefs are
more aligned coordinate more successfully. This provides strong evidence that behavioral coordination relies
on mental alignment.

Keywords: Theory of Mind, mentalizing, state uncertainty, cooperation, modeling
Acknowledgements
J. G. was supported by the Bernstein Award for Computational Neuroscience (BMBF 01GQ1006) and J.G. and
M.S. were supported by a Collaborative Research in Computational Neuroscience (CRCNS) grant (BMBF
01GQ1603; NSF 1608278). T.R. was supported by a PhD scholarship from the German National Merit
Foundation.

Paper # 108 376

Extended Abstract

Cooperation is the capacity to act in accordance with the perceptions, goals, and beliefs of others to facilitate
the own and other’s gain equitably. Humans are distinctly skilled at this capacity. Examples encompass a
teacher passing on knowledge to a student, or engineers working together to develop self-driving cars or new
means of producing renewable energy. Cognitively, cooperation without prior coordination often requires
Theory of Mind (ToM), i.e. the capacity to estimate and represent others’ mental states and predict rational
behavior based on these mental states. To successfully cooperate, humans have to combine the predictions of
their partners’ behavior with their knowledge of the world and act according to the combined requirements
of the interactive situation. Here we set out to investigate the cognitive processes allowing humans to
cooperate in a formalized and quantifiable way. We aim at capturing the models that humans build of others’
mental states and the world and how they integrate these pieces of information to produce coordinated
actions.
To examine the processes underlying cooperative behavior in a truly interactive setting we developed a novel
decision-making task that requires participants to make cooperative choices on probabilistic and occasionally
changing options. The reward structure of the task facilitates cooperation by incentivizing identical joint
actions by both partners. This is complicated by the facts that participants receive only noisy observations of
the underlying reward structure and that the players’ reward contingencies can reverse unpredictably.
Additionally, one player has more knowledge about the reward contingencies than the other player. The
asymmetry of knowledge between two agents resembles the situation in the classic false-belief-task (Wimmer
& Perner, 1983), in which the (all-knowing) participant has to realize that the girl in the story has a false belief
about the environment and therefore makes an incorrect choice. In our setup, the less informed player has a
false belief and the informed player a correct belief about the world. This divergent knowledge prompts
participants to observe and learn about the reward contingencies, but also to model and track the partner’s
belief about the world (as well as their partner’s belief about themselves) because the reward is maximal,
when both players coordinate their actions. Therefore, they need to bring their world knowledge and their
model of the partner’s mental state together into a single valuation process.
To gain access to the private cognitive operations that allow humans to coordinate in a complex setting, we
model the behavioral data in the context of the I-POMDP framework (Gmytrasiewicz & Doshi, 2005). I-
PODMPs extend single-agent action planning in an uncertain environment to the interactive domain by
including intentional models of other agents that themselves engage in action planning. These models of
others may themselves include models of the original agent allowing the capture of recursive reasoning
processes humans can engage in during strategic interaction.

Task Details

The task used here extends the
concept of the classic false belief task
to the interactive domain. We
therefore refer to it as the “Interactive
False Belief Task” (IFBT). In the IFBT
two players choose between two
options ("left" or "right") for
probabilistic rewards. One option has
a high probability for a high reward
(10), the other a high probability for a
low reward (5). Using trial and error
the participants have to figure
whether the high reward is on the left or on the right. When both partners obtain the same individual
outcome, they are rewarded by a ten-fold increase of their individual outcomes. If individual outcomes differ,
they receive the nominal individual outcomes. Their own reward distribution and the partner’s action are
unknown to the players, but have to be inferred form the received outcome. The partner’s reward distribution
is openly presented to the players at the beginning of each trial. Prior to their own choice, participants have
to predict the partner’s action. In the displayed reward matrices, the initial setting is shown on the left. Both
players need to choose option “A” to receive the individual high outcome. Thereby, the probability of
receiving the maximum reward of 100/100 is highest. However, due to the probabilistic choice-outcome

Paper # 108 377

relation, all other outcomes are also possible. After a few trials, one player’s (here: Player y’s) reward
contingencies are reversed, i.e. this player's high option moves from left to right or vice versa, while the
partner's reward contingencies remain the same. This player remains uninformed about the change and is
therefore referred to as the “Learner”. As Learners are ignorant to reversals, they hold a false belief about the
reward structure of the task. The partner is informed about the contingency reversal, hence we call this player
“Teacher”. For the rest of this abstract, for ease of reference we will refer to the Teacher as “she” and the
Learner as “he”. This is unrelated to the participants' gender, as we tested an equal number of male and female
participants and all participants played both roles (total N = 50, 25 female). Taking the Learner’s false belief
into account the Teacher has to choose the less valuable option “B” at the reversal. The most likely ensuing
reward of 50/50 signals the Learner that his reward contingencies have reversed. After a period of stable
coordination, reversals repeat. Throughout the game reversals are unpredictable and players are randomly
assorted to the roles of Teacher and Learner. Thereby, participants have to stay attentive at all times.

Model-free analysis

The Learner’s main task in the IFBT is to detect
and react to changes in the reward-
contingencies. The Teacher is fully informed
about the change. Her goal is to
“communicate” these reversals through her
choices. She has to react to the Learner’s
decisions at the reversal and to his choice
adaptation after the reversal.
Players’ predictions about the partner’s choices
are shown in the (A), players’ own choices in
(B). The respective response times (RTs) are
shown in (B) and (C). Model free analyses
show, that the Learner detects reversals and
gradually shifts his choices after a reversal.
During the reversal, the Teacher correctly
predict that the Learner stays with his previous
choice but switches her own choice to “B”.
Even though the Teacher's prediction is
identical to his pre-reversal prediction, her RTs
are 6-fold increased (purple RTs curve in (C)) at reversal. In post reversal trials, the Teacher accurately predicts
the partner’s choice curve (purple prediction curve in (A) and green choice curve in (B)) and matches the
Learner’s choice switching by returning to her pre-reversal choice at the same rate (purple choice curve in
(B)). During this period, the Teacher's prediction RTs
remain elevated. These results strongly suggest, that
participants actively engage in mentalizing to solve
the task. Further, the response times show that
mentalizing is a computationally demanding
cognitive process.
The beneficial effect of mentalizing is shown in a
strong correlation between players’ accuracy in
predicting their partner’s choice and their average
obtained return. This entails that successful
mentalizing facilitates cooperative behavior.

Computational Modeling with the I-POMDP

In the IFBT outcomes are probabilistically associated with the participants’ choice options. The goal of the
task is to maximize the joint outcome, which by design of the payoff matrix is identical to maximizing the
individual reward. To achieve this goal the participants have to generate beliefs about which option is
currently the best. Using their actions and the observations of the resulting joint outcome they can update this
belief distribution. After a reversal, the Learner does not know that his state has changed. His belief is

Paper # 108 378

therefore false. The Teacher is aware of the state change. Further, she is informed that the Learner does not
know about the reversal. Thereby, she can infer the Learner’s false belief, correctly predict the Learner’s
(wrong) action, and accommodate for it by switching her own choice. Previous studies examining ToM in
interactive tasks did not include state uncertainty (Devaine, Hollard, & Daunizeau, 2014; Hill et al., 2017;
Yoshida, Dolan, & Friston, 2008). In these studies, representing another persons’ beliefs is unnecessary, as in
a fully and perfectly observable world, others’ beliefs about the states should be identical to one’s own belief.
In this study, however, participants interacted in a highly uncertain environment. Therefore, we need to
address the attribution of beliefs to others, a core component of ToM.
Single agent action planning under uncertainty is
well captured by partially observable Markov
Decision Processes (POMDPs) (Kaelbling, Littman, &
Cassandra, 1998). The innovative element of
POMDPs is that the agent maintains a belief about
which states he could be in. Beliefs are represented
by probability distributions over all possible states.
At each time step the agent’s belief is updated with a
Bayesian learning rule. In the context of the IFBT,
states are specified by the location of the high reward
option (possible states are “High Left (HL)” and
“High Right (HR)”). Here, we extend the problem to the multi-agent domain. To capture humans mentalizing
during interaction in an uncertain environment, we apply Interactive POMDPs (I-POMDPs) (Gmytrasiewicz
& Doshi, 2005), graphically illustrated on the right. In contrast to single agent POMDPs, I-POMDPs contain
an agent’s belief about the states of the world and a belief about the mental states of the other agent, which is
the other agent's belief about the states of the world. For the IFBT this means that agents form a belief about
the location of their own and their partner's high option, and about the partner's belief about the distribution
of rewards. As in the single agent model, beliefs are updated at each time step. In the multi-agent framework,
the belief about the other’s mental state is updated by simulating the partner’s learning process. These core
features of the framework make it an ideal candidate for modeling participants’ behavior in the IFBT and
access the underlying critical belief computations.
We fitted parametrized I-POMDP models to behavioral
data from the IFBT and found that I-POMDPs predict the
Teacher’s and the Learner’s actions with high accuracy.
The Teacher’s and Learner’s beliefs about the Learner’s
reward contingencies (HL/HR) as computed by fitted I-
POMDPs are shown on the right. The Teacher’s own
belief about the Learner's reward contingencies is
represented by the solid purple line. The Teacher is fully
informed and therefore knows, that the Learner’s reward
contingencies are reversed at trial 0. This is reflected in
the sudden drop in the curve illustrating the Teacher’s
belief about the Learner’s high option. The Learner’s own
belief about his rewards is shown in the solid green line
(partially hidden beneath the dotted purple line). Before
a reversal, he correctly represents the state of the task. At
the reversal, his belief becomes false, but he is not aware
of it yet. The shift in the Learner’s belief only starts in the
post-reversal period reflecting gradual adaptation to the
change in reward contingencies. The Teacher’s belief
about the Learner’s belief is illustrated by the dotted
purple line. It matches the Learner’s own beliefs almost
perfectly. This shows that Teachers accurately represent
their partner’s mental state.
In a subsequent step we examine the consequences of these beliefs on the coordination of behavior. In the
IFBT, successful cooperation is achieved by a matching of choices between the two players of a dyad. We find

Paper # 108 379

that in dyads, in which the Teacher’s representation of the Learner’s
belief is more similar to the Learner’s own belief (i.e., the belief
difference is small), choice matching is more pronounced as
illustrated in the significant negative correlation on the right. These
results suggest that successful cooperation is enhanced by a
coordination of mental states.

Conclusion

Successful cooperation often requires the coordination of joint
actions. Here we provide behavioral and computational evidence
that humans represent their partners as rational intentional agents
and model their mental states. Using the I-POMDP framework we
can formalize and quantitatively estimate these Theory of Mind
processes. Our modeling findings suggests that humans incorporated mental models of their partners into
their own model of the world and use it to guide coherent decision making leading to successful cooperation
through mental coordination.

References

Devaine, M., Hollard, G., & Daunizeau, J. (2014). The Social Bayesian Brain: Does Mentalizing Make a
Difference When We Learn? PLoS Computational Biology, 10(12).
http://doi.org/10.1371/journal.pcbi.1003992

Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings.
Journal of Artificial Intelligence Research, 24, 49–79. http://doi.org/10.1613/jair.1579

Hill, C. A., Suzuki, S., Polania, R., Moisa, M., Doherty, J. P. O., & Ruff, C. C. (2017). A causal account of the
brain network computations underlying strategic social behavior, 20(8).
http://doi.org/10.1038/nn.4602

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and Acting in Partially Observable Stochastic
Domains. Artificial Intelligence, 101(1–2), 99–134. http://doi.org/10.1016/S0004-3702(98)00023-X

Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraircing function of wrong
bekfs in young children’s understanding of deception. Cognition, 13(1), 103–128.

Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game theory of mind. PLoS Computational Biology, 4(12),
e1000254. http://doi.org/10.1371/journal.pcbi.1000254

Paper # 108 380

Learning from Suboptimal Demonstrations:
Inverse Reinforcement Learning from Ranked Observations

Daniel S. Brown∗
Department of Computer Science
The University of Texas at Austin
dsbrown@cs.utexas.edu

Wonjoon Goo∗
Department of Computer Science
The University of Texas at Austin
wonjoon@cs.utexas.edu

Prabhat Nagarajan
Preferred Networks

Tokyo, Japan
prabhat@preferred.jp

Scott Niekum
Department of Computer Science
The University of Texas at Austin
sniekum@cs.utexas.edu

Abstract

A critical flaw of existing imitation learning and inverse reinforcement learning methods is their inability, often by design,
to significantly outperform the demonstrator. This is a consequence of the general reliance of these algorithms upon some
form of mimicry, such as feature-count matching or behavioral cloning, rather than inferring the underlying intentions of
the demonstrator that may have been poorly executed in practice. In this paper, we introduce a novel reward-learning-
from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of ranked
suboptimal demonstrations in order to infer a high-quality reward function. We leverage the pairwise preferences in-
duced from the ranked demonstrations to perform reward learning without requiring an MDP solver. By learning a
state-based reward function that assigns greater return to higher-ranked trajectories than lower-ranked trajectories, we
transform a typically expensive, and often intractable, inverse reinforcement learning problem into one of standard bi-
nary classification. Moreover, by learning a reward function that is solely a function of state, we are able to learn from
observations alone, eliminating the need for action labels. We combine our learned reward function with deep reinforce-
ment learning and show that our approach results in performance that is better than the best-performing demonstration
on multiple Atari and MuJoCo benchmark tasks. In comparison, state-of-the-art imitation learning algorithms fails to
exceed the average performance of the demonstrator.

Keywords: Inverse Reinforcement Learning, Learning from Observations,
Learning from Ranked Demonstrations, Suboptimal Demonstra-
tions, Reward Learning

Acknowledgements

This work has taken place in the Personal AutonomousRobotics Lab (PeARL) at The University of Texas at Austin.
PeARL research is supported in part by the NSF (IIS-1724157, IIS-1638107, IIS-1617639, IIS-1749204) and ONR(N00014-
18-2243).

∗Equal contribution

Paper # 213 381

1 Introduction

When goals or rewards are difficult for a human to specify, inverse reinforcement learning (IRL) [1] techniques can be
applied to infer the goals of a user from demonstrations. Unfortunately, high-quality demonstrations are often difficult
to provide for many tasks—for instance, consider a non-expert user attempting to give kinesthetic demonstrations of a
household chore to a robot. Even for human experts, tasks such as high-frequency stock trading, complex video games,
or sports involving fine motor skills can be virtually impossible to perform optimally.

If a demonstrator is suboptimal, but his intentions can be ascertained, then in principle, a learning agent ought to be
able to exceed the demonstrator’s performance. However, current IRL algorithms fail to do this, typically searching for
a reward function that makes the demonstrations appear near-optimal [1]. When demonstrations are suboptimal, these
methods are, by design, unable to learn a policy that is significantly better than the demonstrator. Imitation learning
approaches that mimic behavior directly, such as behavioral cloning [8], also suffer from this limitation.

To overcome this critical flaw in current imitation learning methods, we propose a novel IRL algorithm, Trajectory-ranked
Reward EXtrapolation (T-REX) that utilizes a ranking amongst the demonstrations to extrapolate a user’s underlying in-
tent beyond the best demonstration. This, in turn, enables a reinforcement learning agent to exceed the performance
of the demonstrator by learning to optimize this extrapolated reward function. Specifically, we use ranked demonstra-
tions to learn a state-based reward function that assigns greater total return to higher-ranked trajectories. Learning a
reward function from ranked demonstrations in this way has three key advantages: (1) rather than imitating suboptimal
demonstrations, it allows us to identify whether features are positively or negatively correlated with the ground-truth
reward, allowing for better-than-expert performance; (2) by leveraging the pairwise preferences contained in the ranked
demonstrations, reward learning becomes a standard binary classification problem, without the need to repeatedly solve,
or partially solve, an MDP; and (3) by learning a reward function that is solely a function of state, we are able to learn a
reward function from observations without requiring access to the demonstrator’s actions.

Our work builds on recent work on reward learning through active queries [3] and is similar to recent work which
combines an initial set of good demonstrations together with active preference queries to learn a reward function [6].
However, we explore the problem of extrapolating from ranked suboptimal demonstrations, rather than learning a re-
ward from active queries during policy training.

We evaluate T-REX on a variety of standard Atari and MuJoCo benchmark tasks. Our experiments show that T-REX
is capable of good extrapolation, often outperforming the best demonstration, as well as significantly outperforming
state-of-the-art imitation learning and IRL algorithms that learn from observations.

2 Problem Definition

We model the environment as a Markov decision process (MDP) consisting of a set of states S, actions A, transition
probabilities T , reward function r, and discount factor γ. A policy is a mapping from states to probabilities over actions,
π(a|s) ∈ [0, 1]. The discounted expected return of a policy is given by J(π) = E[

∑∞
t=0 γ

tRt|π]. We are concerned with
the problem of inverse reinforcement learning from observation, where we do not have access to the reward function
of the MDP. Instead, an agent is given a set of demonstrations D consisting of trajectories (sequences of states) from
which it seeks to recover the reward function that the demonstrator is attempting to optimize. Given a sequence of m
ranked trajectories τt for t = 1, . . . ,m, where τi ≺ τj if i < j, we wish to find a parameterized reward function, r̂θ, that
approximates the true reward function r. Given r̂θ, we then seek to optimize a policy π̂ that can outperform the best
demonstration via reinforcement learning on r̂θ.

3 Methodology

We now describe Trajectory-ranked Reward EXtrapolation (T-REX)1, an algorithm for using ranked suboptimal demon-
strations to extrapolate a user’s underlying intent beyond the demonstrations (see [2] for the full version of this paper).
Given a sequence of m demonstrations ranked from worst to best, τ1, . . . , τm, T-REX has two steps: (1) reward inference
and (2) policy optimization.

Given the ranked demonstrations, T-REX performs reward inference by approximating the reward at state s using a
neural network, r̂θ(s), such that

∑
s∈τi r̂θ(s) <

∑
s∈τj r̂θ(s) when τi ≺ τj . The parameterized reward function r̂θ can be

trained with ranked demonstrations using the generalized loss function:

L(θ) = Eτi,τj∼Π

[
ξ
(

P
(
Ĵθ(τi) < Ĵθ(τj)

)
, τi ≺ τj

)]
, (1)

1Code available at https://github.com/hiwonjoon/ICML2019-TREX

1

Paper # 213 382

where Π is a distribution over demonstrations, ξ is a binary classification loss function, Ĵ is the cumulative return from
the parameterized reward function r̂θ, and ≺ is an indication of the preference between the demonstration trajectories.

We specifically represent the probability P as a softmax-distribution and we represent ξ using a cross entropy loss:

P
(
Ĵθ(τi) < Ĵθ(τj)

)
≈

exp
∑

s∈τj
r̂θ(s)

exp
∑

s∈τi
r̂θ(s) + exp

∑

s∈τj
r̂θ(s)

, L(θ) ≈ −
∑

τi≺τj
log

exp
∑

s∈τj
r̂θ(s)

exp
∑

s∈τi
r̂θ(s) + exp

∑

s∈τj
r̂θ(s)

. (2)

This loss function trains a classifier that can predict whether one trajectory is preferable to another based on the predicted
returns of each trajectory, and has been used previously for reward inference in active learning settings [3, 6].

To increase the number of training examples, T-REX trains on partial trajectory pairs rather than full trajectory pairs. This
results in noisy preference labels that are only weakly supervised; however, using data augmentation to obtain pairwise
preferences over many partial trajectories allows T-REX to learn expressive neural network reward functions from only
a small number of ranked demonstrations. Given the learned reward function r̂θ(s), T-REX then seeks to optimizes a
policy π̂ with better-than-demonstrator performance through reinforcement learning.

4 Experiments and Results

We evaluated T-REX on three simulated robotic locomotion tasks and eight Atari games. We used the OpenAI Gym im-
plementations for all tasks. For policy optimization we used the Proximal Policy Optimization (PPO) [7] implementation
from OpenAI Baselines [4].

4.1 MuJoCo

We first examined the performance of T-REX on the HalfCheetah, Hopper, and Ant locomotion tasks. In all three tasks,
the goal of the agent is to move forward as fast as possible without falling to the ground. To generate demonstrations, we
trained a PPO agent for 500 training steps (64,000 simulation steps) and saved its policy after every 5 training steps. This
provides us with different policies of varying quality. For each checkpoint we generated a trajectory of length 1,000. We
then ranked the trajectories based on the ground truth returns. We divided the trajectories into three stages, consisting
of overlapping training sets. We used 3 stages for HalfCheetah (the first 9, 12, and 24 trajectories) and Hopper (the first
9, 12, and 18 trajectories). For Ant we used two stages with the first 12 and 40 trajectories, respectively. We trained
the reward network using 5,000 random pairs of partial trajectories of length 50, with preference labels based on the
trajectory rankings, not the ground-truth return of the partial trajectories. We represented the reward function using
an ensemble of five deep neural networks, trained separately with different random pairs. Each network has 3 fully
connected layers of 256 units with ReLU nonlinearities. It was trained using the Adam optimizer with a learning rate of
1e-4 and a minibatch size of 64 for 10,000 time steps.

To evaluate the quality of our learned reward, we then trained a policy to maximize the inferred reward function via
PPO. The agent receives the average of the ensemble as the reward, plus the control penalty used in OpenAI Gym. This
control penalty represents a standard safety prior over reward functions for robotics tasks, namely to minimize joint
torques. We found that optimizing a policy based solely on this control penalty does not lead to forward locomotion,
thus learning a reward function from demonstrations is still necessary.

Learned Policy Performance We measured the performance of the policy learned by T-REX under the ground-truth
reward function. We compared against Behavior Cloning from Observations (BCO) [8], a state-of-the-art learning from
observation method, and Generative Adversarial Imitation Learning (GAIL) [5], a state-of-the-art IRL method. GAIL
requires action labels, whereas T-REX and BCO learn from state observations only. We compared against three different
levels of suboptimality (Stage 1, 2, and 3), corresponding to increasingly better demonstrations. The results are shown
in Table 1. The policies learned by T-REX perform significantly better than the provided suboptimal trajectories in all
the stages of HalfCheetah and Hopper. This provides evidence that T-REX can discover reward functions that extrap-
olate beyond the performance of the demonstrator, while behavioral cloning fails to perform better than the average
demonstration performance in all tasks.

Reward Extrapolation We next investigated the ability of T-REX to accurately extrapolate beyond the demonstrator.
To do so, we compared ground-truth return and T-REX-inferred return across trajectories from a range of performance
qualities, including trajectories much better than the best demonstration given to T-REX. The extrapolation of the reward
function learned by T-REX is shown in Figure 1. The plots in Figure 1 give insight into the performance of T-REX. When
T-REX learns a reward function that has a strong positive correlation between the ground-truth reward function and the
inferred reward function, then it is able to surpass the performance of the suboptimal demonstrations. However, in Ant
the correlation is not as strong, resulting in worse-than-demonstrator performance in Stage 2.

2

Paper # 213 383

Table 1: The results on three robotic locomotion tasks when given suboptimal demonstrations. For each stage and task,
the best performance given suboptimal demonstrations is shown on the top row, and the best achievable performance
using RL on the ground-truth reward is shown on the bottom row. The mean and standard deviation are based on 25
trials (obtained by running PPO five times and for each run of PPO performing five policy rollouts).

HalfCheetah Hopper Ant
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2

Best Demo
Performance

12.52
(1.04)

44.98
(0.60)

89.87
(8.15)

3.70
(0.01)

5.40
(0.12)

7.95
(1.64)

1.56
(1.28)

54.64
(22.09)

T-REX 46.90
(1.89)

61.56
(10.96)

143.40
(3.84)

15.13
(3.21)

10.10
(1.68)

15.80
(0.37)

4.93
(2.86)

7.34
(2.50)

BCO 7.71
(8.35)

23.59
(8.33)

57.13
(19.14)

3.52
(0.14)

4.41
(1.45)

4.58
(1.07)

1.06
(1.79)

26.56
(12.96)

GAIL 7.39
(4.12)

8.42
(3.43)

26.28
(12.73)

8.09
(3.25)

10.99
(2.35)

12.63
(3.66)

0.95
(2.06)

5.84
(4.08)

Best w/
GT Reward

199.11
(9.08)

15.94
(1.47)

182.23
(8.98)

(a) HalfCheetah (b) Hopper (c) Ant

Figure 1: Extrapolation plots for T-REX for MuJoCo Stage 1 demonstrations. Red points correspond to demonstrations
and blue points correspond to trajectories generated from PPO checkpoints not given as demonstrations. All predicted
returns are normalized to have the same scale as the ground-truth returns.

4.2 Atari

In the next set of experiments, we evaluated T-REX on eight Atari games. For each game we generated 12 full-episode
trajectories using PPO policies checkpointed every 50 training updates for all games except for Seaquest where we used
every 5th training update due to the faster learning in this game. We used an architecture for reward learning similar to
the one proposed by Ibarz et al. (2018), with four convolutional layers with sizes 7x7, 5x5, 3x3, and 3x3, with strides 3, 2,
1, and 1. Each convolutional layer used 16 filters and LeakyReLU non-linearities. We then used a fully connected layer
with 64 hidden units and a single scalar output. We fed in stacks of 4 frames with values normalized between 0 and 1.
We additionally mask the Atari game score and number of lives. We optimized the reward function using Adam with a
learning rate of 5e-5. For all games except for Enduro we train the reward network using partial trajectories between 50
and 100 observations long. For Enduro, we used randomly subsampled full trajectories, which resulted in much better
performance. Given the learned reward function, we optimized a policy by training a PPO agent on the learned reward
function for 50 million frames. We normalized the learned reward function by feeding the output of r̂θ(s) through a
sigmoid function before passing it to the PPO algorithm. We ran experiments on the eight different Atari games shown
in Table 2.

Learned Policy Performance The average performance of T-REX under the ground-truth reward function and the best
and average performance of the demonstrator are shown in Table 2. We also compare against Behavioral Cloning from
Observation (BCO) [8] and Generative Adversarial Imitation Learning (GAIL) [5]. Table 2 shows that T-REX outperforms
BCO and GAIL in 7 out of 8 games. More importantly, T-REX outperforms the best demonstration in 7 out of 8 games.

Reward Extrapolation We also examined the extrapolation of the reward function learned using T-REX on several
games. Results are shown in Figure 2. T-REX achieves accurate extrapolation between normalized predicted and ground-
truth returns for Beam Rider, Enduro, and Seaquest—three games where we are able to outperform the best demonstra-
tion. The extrapolation plot for Hero has less correlation between ground-truth and predicted rewards which is likely
the cause of the poor performance of T-REX on this game.

3

Paper # 213 384

Table 2: Comparison of T-REX with a state-of-the-art behavioral cloning algorithm (BCO) [8] and state-of-the-art IRL
algorithm (GAIL) [5]. Performance is evaluated on the ground-truth reward. T-REX achieves better-than-demonstrator
performance on 7 out of 8 games and surpasses the BCO and GAIL baselines on 7 out of 8 games. Results are the best
average performance over 3 random seeds with 30 trials per seed.

Ranked Demonstrations LfD Algorithm Performance

Game Best Average T-REX BCO GAIL

Beam Rider 1,332 686.0 3,335.7 568 355.5
Breakout 32 14.5 221.3 13 0.28
Enduro 84 39.8 586.8 8 0.28

Hero 13,235 6,742.0 0 2,167 0
Pong -6 -15.6 -2.0 -21 -21

Q*bert 800 627 32,345.8 150 0
Seaquest 600 373.3 747.3 0 0

Space Invaders 600 332.9 1,032.5 88 370.2

(a) Beam Rider (b) Enduro (c) Hero (d) Seaquest

Figure 2: Ground-truth returns over demonstrations compared with the predicted returns using T-REX (normalized to be
in the same range as the ground-truth returns). Red points represent suboptimal demonstration trajectories used to train
the reward function. Blue data points represent trajectories not given as demonstrations. The solid line represents the
performance range of the demonstrator. Games with more accurate extrapolation have better performance (see Table 2).

5 Conclusion and Future Work

In this paper, we introduced T-REX, a reward learning technique for high-dimensional tasks that can learn to extrapolate
intent from suboptimal ranked demonstrations. To the best of our knowledge, this is the first IRL algorithm that is able
to significantly outperform the demonstrator and that scales to high-dimensional Atari games. In the future, we plan
to study the robustness of T-REX when given noisy rankings over demonstrations and to apply T-REX to actual human
demonstrations.

References
[1] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and progress. arXiv preprint

arXiv:1806.06877, 2018.

[2] Daniel S Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond suboptimal demonstrations via
inverse reinforcement learning from observations. arXiv preprint arXiv:1904.06387, 2019.

[3] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from
human preferences. In Advances in Neural Information Processing Systems, pages 4299–4307, 2017.

[4] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.

[5] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural Information Processing Systems,
pages 4565–4573, 2016.

[6] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward learning from human preferences
and demonstrations in atari. In Advances in Neural Information Processing Systems, pages 8022–8034, 2018.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[8] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. International Joint Conference on Artificial
intelligence, 2018.

4

Paper # 213 385

A Top-down, Bottom-up Attention Model for Reinforcement
Learning

Mehraveh Salehi

Department of Electrical Engineering

Yale University

mehraveh.salehi@yale.edu

Eser Aygun

Google DeepMind

eser@google.com

Shibl Murad

Google DeepMind

shibl@google.com

Doina Precup

Google DeepMind

doinap@google.com

Abstract

Reinforcement Learning (RL) agents typically have to process massive amounts of sensory data in order to execute a
specific task. However, a large portion of the sensory input may not be directly related to the task at hand. Here, inspired
by the human brain’s attention system, we develop a novel augmented attention mechanism for RL agents, which enables
them to adaptively select the most relevant information from the input. In order to evaluate the proposed algorithms, we
use an attention-demanding grid-world environment and compare our model’s performance against two other attentive
agents and one naive agent. We demonstrate that our proposed augmented attention model outperforms other agents
both in terms of scalability and ability to perform transfer learning.

Keywords: Attention, Reinforcement Learning, Neuroscience

Acknowledgements

Of the many who assisted in this work, we are especially thankful to Sasha Vezhnevets and Daniel Toyama.

Paper # 225 386

1 Introduction

RL agents typically receive massive amounts of data from the environment. Processing these data can be expensive, both
computationally and in terms of memory, yet the amount of relevant information about the task at hand may be small.
Attention mechanisms have been developed to help RL agents adaptively select the most relevant information from the
input and discard non-relevant data, without jeopardizing task performance [1, 7, 9]. However, it is often challenging to
decide what makes a piece of information relevant to the task.

The majority of previous work on attention models has focused on supervised learning settings, where the relevance
of information can be grounded in the model accuracy, measured using output labels. However, in RL settings, a piece
of information which is not relevant at the current time step may be relevant later as the agent progresses through its
trajectory as well as through the learning process. Therefore, a fixed strategy for attention might not be applicable.
Furthermore, RL agents often deal with complex tasks, each including multiple sub-tasks. In such settings, there is a
need for an adaptive attention mechanisms that are sensitive to the requirements of the task.

Recent works in RL have addressed the requirements of an adaptive attention in RL domain by designing an end-to-
end model, where the attention is fully learned by the agent in parallel to the task[6, 5]. These approaches have shown
great success in boosting the model performance, yet they require processing the entire environment before learning the
attention mechanism. Despite their performance boost, their scalability to large environments and their generalizability
to different settings is not clear. Here, we take inspiration from the human brain attention system and develop an
augmented attention mechanism which both boosts performance and reduces computational cost.

2 Background and Motivation

The human brain attention system is complex and notoriously hard to characterize. Yet, one of the most influential
models of attention describes it as a dual-network approach with two neural mechanisms [3]: (i) A top-down mechanism
for orienting attention in a goal-driven or task-oriented fashion, and (ii) a bottom-up mechanism for directing attention
in a stimulus-driven or observation-oriented fashion. For example, when we are reading a book, our brain executes the
top-down attention as we are actively engaged in the reading task; as soon as our phone starts ringing, our bottom-up
attention circuitry gets involved to adapt to the requirements coming from the environment, which may or may not be
relevant to the task.

Inspired by this taxonomy of attention, we developed an augmented attention mechanism which includes both the top-
down and the bottom-up attention systems. We evaluated our agent in an attention-demanding environment, designed
such that it requires both task-oriented and observation-oriented attentions. We tested our agent’s performance, scala-
bility, and transferability in comparison to a naive agent (without any attention mechanism), an agent with top-down
attention alone, and an agent with bottom-up attention alone. We will now report on our findings.

3 Methods

3.1 Environment Design

As the testing framework, we developed a grid world environment which includes 1 or more players, 1 or more obstacles,
and 1 goal. At every time step, the agent has to decide which player to move and in what direction (left, right, up, and
down). Next, the obstacles move with some probability in a random direction (left, right, up, and down), and if any of
the players are hit by the obstacles, the game is over. The rewarding system is designed to promote both survival and
catching the goal, so the agent collects +1 reward for every time step of survival and +500 reward if any of the players
catches the goal.

3.2 Agent Design

The proposed model consists of two independent attention systems: (i) a top-down attention, which is learned in an
end-to-end fashion parallel to the task, and (ii) a bottom-up attention, which is hard-wired in the model. At every time
step t, the agent decides the attention parameters (Θt) and the action that it wants to perform (at), such that it maximizes
the total expected return resulting from its interaction with the environment. We used Q-Learning [10] as our learning
strategy. Below, we first describe each attention system separately, and then discuss how the two systems were combined
to create the agent with the augmented attention. Note that although we use this environment for concreteness, our
approahc is general and could be applied to other RL tasks with visual inputs.

1

Paper # 225 387

3.2.1 Top-down attention

The top-down attention system (Figure 1a) is modeled as a sequential decision process, following the work by Mnih
et al. [6] and Gregor et al. [5]. At every time-step, the agent observes the environment only partially through the lens
of the attention kernel. This partial observation, called glimpse, is fed into a convolutional long short-term memory
(ConvLSTM) unit. The output of the ConvLSTM is used to learn both the attention parameters Θt and the environment
action at. The output is fed into a series of convolutional and linear layers and Q-values are generated for every state-
action pair.

The attention model is adapted from DRAW [5] and contains an array of 2-dimensional Gaussian kernels with 5 param-
eters: the coordinates of the attention center (x, y), the distance between the kernels (δ), the isotropic variance (σ2) and a
scalar intensity (γ). These parameters are learned in an end-to-end fashion via back-propagation. The Gaussian attention
kernel is multiplied by the current observation to generate the partial observation, or glimpse, for the agent.

3.2.2 Bottom-up attention

The bottom-up attention model (Figure 1b) is designed to only depend on the direct observation, and is hard wired to
only include very limited information from the environment that is immediately related to the agent’s survival. At every
time step, this model crops the immediate neighborhood around each player and feeds it into a series of 1D convolutional
layers. Similarly to the top-down approach, the entire RNN model is learned via backpropagation.

Figure 1: A visual illustration of the top-down and bottom-up attention systems

3.2.3 Augmented attention

The augmented attention model (Figure 2) combines the above attention systems using a linear layer. The output of each
attention system is flattened and fed into a linear model, which then generates the Q-values. The entire model is learned
end-to-end using back-propagation. Note that the top-down attention receives the output of the ConvLSTM model as
the input, whereas the bottom-up attention receives input directly from the observation. This juxtaposition mimics our
understanding of the human brain’s top-down and bottom-up attention systems [8].

4 Experimental Results

We evaluated our augmented attention agent using two criteria: (i) scalability, and (ii) transferability. In all cases, we
compared our agent with a naive Q-learning agent without attention, an agent using only the top-down attention system,
and an agent using only the bottom-up attention system.

2

Paper # 225 388

Figure 2: A visual illustration of the augmented attention system

4.1 Scalability

We assessed the scalability of all four agents by testing how their performance changes as we increase the world size and
the number of players in the environment. We increased the world size from 10 × 10 with 5 obstacles to 20 × 20 with
20 obstacles. We also increased the complexity of the game by increasing the number of players from 1 to 5. Figure 3
displays the mean episode return for all four agents. We observe that the augmented attention scales better than all the
other agents.

Figure 3: Evaluation of the model’s scalability to larger world sizes and more players

3

Paper # 225 389

4.2 Transferability

We assessed the transferability of the model using zero-shot transfer learning. We trained the agent in a 10 × 10 world
with 5 obstacles and 2 players and tested the agent in a 50 × 50 world with 100 obstacles and 2 players. The naive Q-
learning agent could not transfer because of its design limitations. The mean return after 10,000 time steps is reported in
Table 1. We observe that the augmented attention model outperforms all the other agents in zero-shot transfer learning.

Attention Models

Top-down Bottom-up Augmented

Mean return 27.50 67.70 83.97

Table 1: Zero-shot learning evaluations

5 Conclusion and future work

In this work, inspired by the human brain attention mechanism, we designed an augmented attention system for an RL
agent, which includes two independent components: a top-down attention which manages the goal-driven behavior of
the agent, and a bottom-up attention, which gets triggered in a stimulus-driven fashion. Using an attention-demanding
environment, we demonstrated that a model with augmented attention outperforms the agent without attention and the
agents with only one attention system implemented, both in terms of scalability and transfer learning abilities. In the
future, we hope to extend the experimental evaluation of this approach to other tasks. To take our findings back to the
field of Neuroscience, we plan to extend our analysis to explicitly compare the proposed model with the human brain
attention mechanism by employing a range of cognitive attention tasks that are widely used in the human brain research,
such as the Attention Network Test (ANT) [4] and the Continuous Performance Task (CPT) [2].

References

[1] Jinyoung Choi, Beom-Jin Lee, and Byoung-Tak Zhang. Multi-focus attention network for efficient deep reinforce-
ment learning. In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[2] C Keith Conners, MHS Staff, V Connelly, S Campbell, M MacLean, and J Barnes. Conners continuous performance
test ii (cpt ii v. 5). Multi-Health Syst Inc, 29:175–96, 2000.

[3] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-driven attention in the brain.
Nature reviews neuroscience, 3(3):201, 2002.

[4] Jin Fan, Bruce D McCandliss, Tobias Sommer, Amir Raz, and Michael I Posner. Testing the efficiency and indepen-
dence of attentional networks. Journal of cognitive neuroscience, 14(3):340–347, 2002.

[5] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A recurrent neural network
for image generation. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1462–1471, Lille, France, 07–09 Jul
2015. PMLR.

[6] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In Advances in neural
information processing systems, pages 2204–2212, 2014.

[7] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory, active perception, and
action in minecraft. In Proceedings of the 33rd International Conference on International Conference on Machine Learning -
Volume 48, ICML’16, pages 2790–2799. JMLR.org, 2016.

[8] Yair Pinto, Andries R van der Leij, Ilja G Sligte, Victor AF Lamme, and H Steven Scholte. Bottom-up and top-down
attention are independent. Journal of vision, 13(3):16–16, 2013.

[9] Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, and Anastasiia Ignateva. Deep attention recur-
rent q-network. arXiv preprint arXiv:1512.01693, 2015.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

4

Paper # 225 390

Scalable methods for computing state similarity in
deterministic Markov Decision Processes

Pablo Samuel Castro
Google Brain

psc@google.com

Abstract

Markov Decision Processes (MDPs) are the standard formalism for expressing sequential decision problems, typically in
the context of planning or reinforcement learning (RL). One of the central components of this formalism is the notion of a
set of states S. Each state in S is meant to encode sufficient information about the environment such that an agent can
learn how to behave in a (mostly) consistent manner. There is no canonical way of defining the set of states for a problem.
Indeed, improperly designed state spaces can have drastic effects on the learning algorithm. A stronger notion of state
identity is needed that goes beyond the labeling of states and which is able to capture behavioral indistinguishability. We
explore notions of behavioral similarity via state metrics and in particular those which assign a distance of 0 to states that
are behaviorally indistinguishable. Our work builds on bisimulation metrics (Ferns et al., 2004) which provide us with
theoretical properties such as guaranteeing states that are close to each other (with respect to the metric) will have similar
optimal value functions. These metrics are unfortunately expensive to compute and require fully enumerating the states,
which renders them impractical for problems with large (or continuous) state spaces.

We address this impracticality in the deterministic setting in two ways. The first is by providing a new sampling-based
online algorithm for exact computation of the metric with convergence guarantees. The second is by providing a learning
algorithm for approximating the metric using deep nets, enabling approximation even for continuous state MDPs. We
provide empirical evidence of the efficacy of both.

The methods presented in this paper enable the use of these theoretically-grounded metrics in large planning and learning
problems. Possible applications include state aggregation, policy transfer, automatic construction of temporally extended
actions, and representation learning.

Keywords: markov decision processes reinforcement learning planning

Acknowledgements

The author would like to thank Marc G. Bellemare, Gheorghe Comanici, Carles Gelada, Doina Precup, and everyone else
in the Google Brain team in Montreal for their helpful suggestions and advice in preparing this work. Additionally, the
author would like to thank the reviewers for their helpful comments.

Paper # 76 391

1 Introduction

Markov Decision Processes (MDPs) are the standard formalism for expressing sequential decision problems, typically in
the context of planning or reinforcement learning (RL). One of the central components of this formalism is a set of states
S. Each state in S is meant to encode sufficient information about the environment such that an agent can learn how to
behave in a (mostly) consistent manner. Figure 1 illustrates a simple MDP where each cell represents a state.

Original

Copy

Figure 1: A grid MDP (bot-
tom) with a copy of itself (top).
The goal of an agent is to find
the shortest path to the green
cells. Blue arrows indicate
transitions that can switch be-
tween the two copies.

There is no canonical way of defining the set of states for a problem. Indeed, improperly
designed state spaces can have drastic effects on the learning algorithm. Consider the
grid MDP in the bottom of Figure 1, where an agent must learn how to navigate to
the green cells, and imagine we create an exact replica of the MDP such that the agent
randomly transitions between the two layers for each move. By doing so we have
doubled the number of states and the complexity of the problem. However, from a
planning perspective the two copies of each state should be indistinguishable. A stronger
notion of state identity is needed that goes beyond the labeling of states and which is able
to capture behavioral indistinguishability (Castro (2011) provides a thorough investigation
of behavioral equivalence in MDPs).

We explore notions of behavioral similarity via state metrics d : S × S → R, and in par-
ticular those which assign a distance of 0 to states that are behaviorally indistinguishable.

Our work builds on bisimulation metrics (Ferns et al., 2004) which provide us with
theoretical properties such as guaranteeing states that are close to each other (with respect
to the metric) will have similar optimal value functions. These metrics are unfortunately expensive to compute (Chen et al.
(2012) provides a theoretical analysis) and require fully enumerating the states, which renders them incompatible with
large state spaces.

2 Background

Definition 1. A finite Markov Decision Process (MDP) is defined as a 5-tupleM = 〈S,A,P,R, γ〉, where

• S is a finite set of states

• A is a finite set of actions

• P : S ×A → Dist(S) is the next state transition function1

• R : S ×A → R is the reward function (assumed to be bounded by Rmax)

• γ ∈ [0, 1) is a discount factor

Each policy π : S → Dist(A) induces a corresponding state-value function V π : S → R, known as the Bellman equa-
tion (Bellman, 1957):

V π(s) = Ea∼π(s)
[
R(s, a) + γEs′∼P(s,a)V π(s′)

]

In the control setting, we are typically interested in finding the optimal value function V ∗:

V ∗(s) = max
a∈A

[
R(s, a) + γEs′∼P(s,a)V ∗(s′)

]

Bisimulation relations, originally introduced in the field of concurrency theory, was adapted for MDPs by Givan et al.
(2003). They capture a strong form of behavioral equivalence: if two states s, t ∈ S are bisimilar, then V ∗(s) = V ∗(t).
Definition 2. Given an MDPM, an equivalence relation E ⊆ S × S is a bisimulation relation if whenever (s, t) ∈ E the
following properties hold, where SE is the state space S partitioned into equivalence classes defined by E:

1. ∀a ∈ A. R(s, a) = R(t, a)
2. ∀a ∈ A.∀c ∈ SE .P(s, a)(c) = P(t, a)(c), where P(x, y)(c) =∑z∈c P(x, y)(z)

Two states s, t ∈ S are bisimilar if there exists a bisimulation relation E such that (s, t) ∈ E. Note that there can be a number of
equivalence relations satisfying these properties. The smallest is the identity relation, which is vacuously a bisimulation relation. We
are interested in the largest bisimulation relation, which we will denote as ∼.

1Dist(X) denotes a probability distribution over the set X .

1

Paper # 76 392

Ferns et al. (2004) generalized the notion of MDP bisimulation relations to metrics. Let M be the set of all metrics on S.
A pseudometric2 d ∈M induces an equivalence relation Rd by equating all states with zero distance. Ferns et al. (2004)
defines a pseudometric d ∈M as a bisimulation metric if Rd is ∼.

The following theorem introduces the operator F which can be used to iteratively compute a bisimulation metric, where
W(d) is the Wasserstein metric between two probability distributions under the state metric d (Villani, 2008).
Theorem 1. (Ferns et al., 2004): Define F : M→M by

F(d)(s, t) = max
a∈A

(|R(s, a)−R(t, a)|+ γW(d)(P(s, a),P(t, a)))
Then F has a least-fixed point, d∼, and d∼ is a bisimulation metric.

3 Bisimulation metrics for deterministic MDPs

Although the study of bisimulation metrics has largely focused on MDPs with stochastic transitions, there are many
problems of interest with deterministic transitions. By focusing on these types of problems we are able to design a new set
of algorithms that can handle large or continuous state spaces. We believe this provides a strong foundation for future
research extending these ideas to stochastic environments.
Definition 3. A deterministic MDPM is one where all next-state transitions P(·, ·) are deterministic. For convenience, we denote
this unique next state as N (s, a).
Lemma 1. Given a deterministic MDPM, for any two states s, t ∈ S, action a ∈ A, and pseudometric d ∈M,

W(d)(P(s, a),P(t, a)) = d(N (s, a),N (t, a))

By Lemma 1 we can rewrite the equation in Theorem 1 as: F(d)(s, t) = maxa∈A (|R(s, a)−R(t, a)|+ γd(N (s, a),N (t, a))).
Note the close resemblance to the Bellman equation. There is in fact a strong connection between the two: Ferns & Precup
(2014) proved that d∼ is the optimal value function of an optimal coupling of two copies of the original MDP.

4 Computing bisimulation metrics with sampled trajectories

The update operatorF is generally applied in a dynamic-programming fashion: all state-pairs are updated in each iteration
by considering all possible actions. However, requiring access to all state-pairs and actions in each iteration is often not
possible, especially when data is concurrently being collected by an agent interacting with an environment. In this section
we present an algorithm for computing the bisimulation metric via access to trajectory samples. Specifically, assume we are
able to sample pairs of transitions {〈s, a,R(s, a),N (s, a)〉, 〈t, a,R(t, a),N (t, a)〉} from an underlying distribution D (note
the action is the same for both). This can be, for instance, a uniform distribution over all transitions in a replay memory
(Mnih et al., 2015) or some other sampling procedure. Let T be the set of all pairs of valid transitions; for legibility we
will use the shorthand τs,t,a ∈ T to denote a pair of transitions from states s, t ∈ S under action a ∈ A. We assume that
D(τ) > 0 for all τ ∈ T .
Theorem 2. Let d0 ≡ 0 be the everywhere-zero metric. At step n, let τsn,tn,an ∈ T be a sample from D and define dn as:

• dn(sn, tn) = max (dn−1(sn, tn), |R(sn, an)−R(tn, an)|+ γdn−1(N (sn, an),N (tn, an)))

• dn(s, t) = dn−1(s, t). ∀s 6= sn, t 6= tn

Then limn→∞ dn = d∼ almost surely.

|S| DP Method Sampling method
9 0.477± 0.002 0.027± 0.0002

25 4.244± 0.002 0.357± 0.0005
100 63.705± 0.011 16.058± 0.0046
400 915.609± 0.1062 252.547± 0.0407
900 5128.54± 0.5255 2164.077± 0.6043

Figure 2: Comparison of running time (in seconds)
between the standard DP method and our proposed
sampling method.

In Figure 2 we demonstrate the efficacy of our iterative proce-
dure on grid world domains of varying sizes. The results suggest
that even in cases where we do have access to all state-pairs
and actions at each iteration (as is required by the traditional
dynamic-programming approach), using the sampling method
we introduce here can yield a significant computational advan-
tage.

5 Learning an approximation

The previous section addresses the case when states are only
accessible via sampling of the underlying state space, but still
requires full enumerability of the states. In this section we present
a method for dealing with continuous state spaces by means of three key components (Sections 5.1, 5.2, and 5.3).

2A pseudometric is a metric d where ∀s, t ∈ S.s = t =⇒ d(s, t) = 0, but not the converse.

2

Paper # 76 393

5.1 Approximating bisimulation metrics with deep neural networks

h hidden units

x1

x2

y1

y2 ψ
(x

1
,

y 1
,

x 2
,

y 2
)

Figure 3: The network topol-
ogy used for learning ψ as an
approximant to d∼

We make use of deep neural networks to approximate the bisimulation distance between
any two states in an MDP. Let φ : S → Rk be a k-dimensional representation of the state
space and let ψθ : R2k → R be a deep neural network parameterized by θ that receives
a concatenation of two state representations such that ψθ([φ(s), φ(t)]) ≈ d∼(s, t). Figure 3
illustrates one such network with a single hidden layer of dimension h.

5.2 A differentiable loss

Following the practice introduced by Mnih et al. (2015) we make use of online parameters
θ and target parameters θ−, where the online parameters are updated at each iteration
while the target parameters are updated every C iterations. Given a pair of states s 6= t
and action a ∈ A, at iteration i we define our target objective Tθ−i

(s, t, a) as:

max
(
|R(s, a)−R(t, a)|+ γψθ−i

([φ(N (s, a)), φ(N (t, a))]), ψθ−i
([φ(s), φ(t)])

)

and equal to 0 whenever s = t.

Our loss is then: Ls,t,a = ED
(
Tθ−i

(s, t, a)− ψθi([φ(s), φ(t)])
)2

.

5.3 Learning with mini-batches

We proceed to specify a set of matrix operations for computing them on a batch of states. This allows us to efficiently train
this approximant using specialized hardware like GPUs. At each step we assume access to a batch of b samples of states S,
actions A, rewards R, and next states N, where Si = φ(si), Ri = R(si, ai), etc. Letting [X,Y] stand for the concatenation
of two vectors X and Y , from S we construct a new square matrix S2 of dimension b × b such that S2

i,j = [φ(si), φ(sj)].
Each element in this matrix is a vector of dimension 2k. We then reshape this matrix to be a “single-column” tensor of
length b2. We can perform a similar exercise on the reward and next-state batches. Finally, we define a mask W which
enforces that we only consider pairs of samples that have matching actions: Wi,j = [ai == aj].

In batch-form, the target defined above becomes: T = (1− I) ∗max
(
R2 + γβψθ−i

(N2), βψθ−i
(S2)

)
.

where ψ(X) indicates applying ψ to a matrix X elementwise. We multiply by (1− I) to zero out the diagonals, since those
represent approximations to d∼(s, s) ≡ 0. The parameter β is a stability parameter that begins at 0 and is incremented
every C iterations. Its purpose is to gradually “grow” the effective horizon of the bisimulation backup and maximization.
This is necessary since the approximant ψθ can have some variance initially, depending on how θ is initialized; in particular,
we cannot in general guarantee ψθ0 ≡ 0, as is required by Theorem 2. Further, Jiang et al. (2015) demonstrate that using
shorter horizons during planning can often be better than using the true horizon, especially when using a model estimated
from data. Finally, our loss Li at iteration i is defined as: Li(θi) = ED

[
W ⊗

(
ψθi(S

2)−T
)2], where ⊗ stands for the

Hadamard product. Note that, in general, the approximant ψ is not a metric: it can violate the identity of indiscernibles,
symmetry, and subadditivity conditions.

(a) GridWorld re-
ward dynamics.

(b) Bisimulation distances
between top left cell and the
rest of the cells.

(c) Bisimulation distances
between the hallway cell
and the rest of the cells.

0.5
4.5

1.5
4.5

2.5
4.5

3.5
4.5

4.5
4.5

0.5
3.5

1.5
3.5

2.5
3.5

3.5
3.5

4.5
3.5

0.5
2.5

1.5
2.5

2.5
2.5

3.5
2.5

4.5
2.5

0.5
1.5

1.5
1.5

2.5
1.5

3.5
1.5

4.5
1.5

0.5
0.5

1.5
0.5

2.5
0.5

3.5
0.5

4.5
0.5

(d) 5x5 GridWorld with
noise (in yellow). The top
and bottom numbers in each
cell are the x and y coords.

Figure 4: GridWorld dynamics and bisimulation distances from two rooms. The distances from the center cell highlight
the symmetries in the environment.

3

Paper # 76 394

0 500 1000 1500 2000

Step
40

60

80

100

120

140

160

A
b
so

lu
te

 m
e
tr

ic
 e

rr
o
rs

Absolute metric errors
With noise

Without noise

(a) Absolute metric errors on the GridWorld.

0 500 1000 1500 2000

Step
10-3

10-2

10-1

N
o
rm

a
liz

e
d
 m

e
tr

ic
 e

rr
o
rs

Normalized metric errors
With noise

Without noise

(b) Normalized metric errors.
Figure 5: Metric errors for the learned metric as training progresses over 10 independent runs; the shaded areas represent
the 95% confidence interval. γ = 0.99, C = 500, b = 256, β = 0.9, and h = 729; we used the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.01.

5.4 Empirical Evaluation

We evaluate our learning algorithm in the 31-state GridWorld environment illustrated in Figure 4a. There are 4 actions (up,
down, left, right) with deterministic transitions, and where an action driving the agent towards a wall keeps the agent
in the same cell. There is a single reward of +1.0 received upon entering either of the green cells, and a reward of −1.0
for taking an action towards a wall. We display the bisimulation distances relative to two cells in this environment in
Figure 4b and Figure 4c. The distances highlight the symmetries in the environment, especially Figure 4c.

We represent each state by its coordinates (x, y) ∈ R2, as illustrated in Figure 4d. To estimate d∼ we use a network with an
input layer of dimension 4, one fully connected layer of length h, and an output of length 1. The input is the concatenation
of two state representations, normalized to be in [−1, 1], while the output value is the estimate to d∼.

To evaluate the learning process, we measure ‖d∼ − ψ‖∞ (absolute metric errors) as well as ‖ d∼
‖d∼‖2 −

ψ
‖ψ‖2 ‖∞ (normalized

metric errors) using the true underlying state space for which we know the value of d∼ (Figure 5a and Figure 5b).

In addition to training the network on the 31 states, we experimented with adding noise to the state representations.
Specifically, when a state (x, y) is sampled, we add Gaussian noise centered at (0, 0) with stddev 0.1, and clipped to be in
[−0.3, 0.3], effectively converting the 31 state MDP into a continuous-state MDP (e.g. Figure 4d).

Because our estimate ψ is part of the maximization in the target objective, it can be difficult to prevent continuous growth
of the metric approximants. This can be seen happening towards the end of training in the line without noise in Figure 5a.

Figure 6: Aggregating sam-
ples drawn from a continuous
MDP using the learned bisim-
ulation metric approximant.

Although the normalized errors suggest that the relative magnitudes of the distances
remain stable, we found that doubling the value of C halfway through training helped
mitigate this “overshooting” phenomenon.

As can be seen, there is little difference between learning the metric for the 31-state MDP
versus learning it for the continuous MDP. In fact, training under the continuous MDP
seems to add stability and improve performance. This suggests that the learning process
suffers more from the overshooting phenomenon when there are few data points to train
on: the continuum of data points in the continuous setting are possibly helping regularize
the network.

Finally, in Figure 6 we explore aggregating a set of states sampled from the continuous
MDP. We sampled 100 independent samples for each underlying cell, computed the
distances between each pair of sampled states, and then aggregated them by incrementally
growing “clusters” of states while ensuring that all states in a cluster are within a certain
distance of each other. As can be seen, our learned distance is able to capture many
of the symmetries present in the environment: the orange cluster tends to gather near-
goal states, the dark-brown and dark-blue clusters seem to gather states further away
from goals, while the bright red states properly capture the unique “hallway” cell. This
experiment highlights the potential for successfully approximating bisimulation metrics
in continuous state MDPs, which can render continuous environments more manageable.

References
Bellman, R. Dynamic Programming. University Press, Princeton, NJ, USA, 1957.

4

Paper # 76 395

Castro, P. S. On planning, prediction and knowledge transfer in Fully and Partially Observable
Markov Decision Processes. PhD thesis, McGill University, 2011.

Chen, D., van Breugel, F., and Worrell, J. On the Complexity of Computing Probabilistic
Bisimilarity. In Foundations of Software Science and Computational Structures, pp. 437–451,
2012.

Ferns, N. and Precup, D. Bisimulation Metrics are Optimal Value Functions. 2014.
Ferns, N., Panangaden, P., and Precup, D. Metrics for Finite Markov Decision Processes.

In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp.
162–169, 2004.

Givan, R., Dean, T., and Greig, M. Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147:163–223, July 2003.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. The Dependence of Effective Planning
Horizon on Model Accuracy. In Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-15), 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
Human-level control through deep reinforcement learning. Nature, 2015.

Villani, C. Optimal Transport. Springer-Verlag Berlin Heidelberg, 2008.

5

Paper # 76 396

Constrained Policy Improvement
for Safe and Efficient Reinforcement Learning

Elad Sarafian
Bar-Ilan University, Israel

elad.sarafian@gmail.com

Aviv Tamar
Technion, Israel

aviv.tamar.mail@gmail.com

Sarit Kraus
Bar-Ilan University, Israel
sarit@cs.biu.ac.il

Abstract

We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Im-
provement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in
RL when learning the Q-value from finite past experience data. Greedy policies or even constrained policy optimization
algorithms which ignore these errors may suffer from an improvement penalty (i.e. a negative policy improvement). To
minimize the improvement penalty, the RBI idea is to attenuate rapid policy changes of low probability actions which
were less frequently sampled. This approach is shown to avoid catastrophic performance degradation and reduce regret
when learning from a batch of past experience. Through a two-armed bandit with Gaussian distributed rewards exam-
ple, we show that it also increases data efficiency when the optimal action has a high variance. We evaluate RBI in two
tasks in the Atari Learning Environment: (1) learning from observations of multiple behavior policies and (2) iterative
RL. Our results demonstrate the advantage of RBI over greedy policies and other constrained policy optimization algo-
rithms as a safe learning approach and as a general data efficient learning algorithm. A Github repository of our RBI
implementation is found at https://github.com/eladsar/rbi/tree/rbi.

Keywords: Safe Reinforcement Learning, Constrained Policies Algorithms

Acknowledgements

This research has been partly supported by the Israel Innovation Authority and by the Ministry of Science and Technol-
ogy, Israel.

Paper # 96 397

1 Introduction

While Deep Reinforcement Learning (DRL) is the backbone of many of the recent Artificial Intelligence breakthroughs
[14, 10], it suffers from several factors which inhibit deployment of RL systems to real-world tasks. Two of these elements
are: (1) data efficiency and; (2) safety. DRL is notoriously data and time inefficient, requires up to billions of history states
[6] or weeks of wall-clock time [5] to train to expert level. While it is partially due to the slow training process of deep
neural networks, it is also due to inefficient, yet simple to implement, policy improvement routines. For example, a
greedy policy improvement (with a fix exploration parameter) is known to have a higher regret than other methods such
as Upper Confidence Bound (UCB) [2], but the latter is much more difficult to adjust to a deep learning framework [3].
This transformation from the countable state space of bandit and grid-world problems to the uncountable state-space in
a DRL framework, calls for efficient improvement methods which fit into existing deep learning frameworks.

For some real-world problems, like autonomous cars [13], safety is a crucial factor. Random initialized policies and even
a RL algorithm that may suffer from sudden catastrophic performance degradation are both unacceptable in such envi-
ronments. While policy initialization may be solved with Learning from Demonstrations (LfD) algorithms [1], changing
the policy in order to improve performance is still a risky task. Largely since the Q-value of a current policy can only
be estimated from the past data. Therefore, for safe RL, it is desirable to design improvement algorithms that model the
accuracy of the Q-value evaluation and can mitigate between fast improvement and a safety level [4, 17].

In this work, we propose a policy improvement method that addresses both the sample efficiency of the learning process
and the problem of safe learning from incomplete past experience. We start by analyzing the improvement penalty of
an arbitrary new policy π(a|s) based on an estimated Q-function of a past behavior policy β(a|s). We find that under
a simplified model of learning the Q-values from i.i.d samples, the variance of a potential improvement penalty is pro-
portional to |β(a|s)−π(a|s)|2

β(a|s) . Therefore, we design a constraint, called reroute, that limits this term. We show that finding
the optimal policy under the reroute constraint amounts to solving a simple linear program. Instead of optimizing this
policy via a gradient descent optimization, we take a different approach and solve it in the non-parameterized space for
every new state the actor encounters. In order, to learn the new improved policy with a parameterized Neural Network
(NN), we store the calculated policy into a replay buffer and imitate the actor’s policy with a KL regression.

While RBI is designed for safe learning from a batch of past experience, we show that it also increase data efficiency with
respect to a greedy step and other constraints such as the Total Variation (TV) [7] and PPO [12]. In fact it is akin in practice
to the forward KL constraint [18], however, unlike the KL constraint, it does not require different scaling for different
reward signals and it is much more intuitive to design. We validate our findings both in simple environments such as a
two-armed bandit problem with Gaussian distributed reward and also in a complex distributed actors framework when
learning to play Atari.

2 Rerouted Behavior Improvement

Let us start by examining a single improvement step from a batch of past experience of a behavior policy. Define by β the
behavior policy of a dataset D and by Qβ , and Q̂β its true and approximated Q-functions. Theoretically, for an infinite
dataset with infinite number of visitations in each state-action pair, one may calculate the optimal policy in an off-policy
fashion [19]. However, practically, one should limit its policy improvement step over β when learning from a realistic
finite dataset. To design a proper constraint, we analyze the statistics of the error of our evaluation of Q̂β . This leads
to an important observation: the Q-value has a higher error for actions that were taken less frequently, thus, to avoid
improvement penalty, we must restrict the ratio of the change in probability π

β . We will use this observation to craft the
reroute constraint, and show that other well-known monotonic improvement methods (e.g. PPO and TRPO) overlooked
this consideration, hence they do not guarantee improvement when learning from a finite experience.

2.1 Soft Policy Improvement

Before analyzing the error’s statistics, we begin by considering a set of policies which improve β if our estimation of
Qβ is exact. Out of this set we will pick our new policy π. Recall that the most naive and also common improvement
method is taking a greedy step, i.e. deterministically acting with the highest Q-value action in each state. This is known
by the policy improvement theorem [16], to improve the policy performance. The policy improvement theorem may be
generalized to include a larger family of soft steps.

Lemma 2.1 (Soft Policy Improvement). Given a policy β, with value and advantage V β , Aβ , a policy π improves β, i.e. V π ≥
V β ∀s, if it satisfies

∑
a π(a|s)Aβ(s, a) ≥ 0 ∀s with at least one state with strict inequality. The term

∑
a π(a|s)Aβ(s, a) is called

the improvement step.1

1The proof adhere to the same steps of the greedy improvement proof in [16], thus it is omitted for brevity.

1

Paper # 96 398

Essentially, every policy that increases the probability of taking positive advantage actions over the probability of taking
negative advantage actions achieves improvement. Later, we will use the next Corollary to prove that RBI guarantees a
positive improvement step.

Corollary 2.1.1 (Rank-Based Policy Improvement). Let (Ai)
|A|
i=1 be an ordered list of the β advantages in a state s, s.t. Ai+1 ≥

Ai, and let ci = πi/βi. If for all states (ci)
|A|
i=1 is a monotonic non-decreasing sequence s.t. ci+1 ≥ ci, then π improves β.

2.2 Standard Error of the Value Estimation

To provide a statistical argument for the expected error of the Q-function, consider learning Q̂β with a tabular represen-
tation. The Q-function is the expected value of the random variable zπ(s, a) =

∑
k≥0 γ

krk|s, a, π. Therefore, the Standard
Error (SE) of an approximation Q̂β(s, a) for the Q-value with N i.i.d. MC trajectories is

σε(s,a) =
σz(s,a)√
Nsβ(a|s)

, (1)

where Ns is the number of visitations in state s in D, s.t. N = β(a|s)Ns. Therefore, σε(s,a) ∝ 1√
β(a|s)

and specifically for

low frequency actions such estimation may suffer large SE.2 Notice that we ignore recurrent visitations to the same state
during the same episode and hence, the MC discounted sum of rewards are independent random variables.

2.3 Policy Improvement in the Presence of Value Estimation Errors

We now turn to the crucial question of what happens when one applies an improvement step with respect to an inaccurate
estimation of the Q-function, i.e. Q̂β .
Lemma 2.2 (Improvement Penalty). Let Q̂β = V̂ β + Âβ be an estimator of Qβ with an error ε(s, a) = (Qβ − Q̂β)(s, a) and let
π be a policy that satisfies lemma 2.1 with respect to Âβ . Then the following holds

V π(s)− V β(s) ≥ −E(s) = −
∑

s′∈S
ρπ(s′|s)

∑

a∈A
ε(s′, a) (β(a|s′)− π(a|s′)) , (2)

where E(s) is called the improvement penalty and ρπ(s′|s) = ∑
k≥0 γ

kP (s
k−→ s′|π)) is the unnormalized discounted state distri-

bution induced by policy π.

Since ε(s′, a) is a random variable, it is worth to consider the variance of E(s). Define each element in the sum of Eq. (2)
as x(s′, a; s) = ρπ(s′|s)ε(s, a)(β(a|s′)− π(a|s′)). The variance of each element is therefore

σ2
x(s′,a;s) = (ρπ(s′|s))2σ2

ε(s′,a)(β(a|s′)− π(a|s′))2 =
(ρπ(s′|s))2σ2

z(s′,a)

Ns′

(β(a|s′)− π(a|s′))2
β(a|s′) .

To see the the need for the reroute constraint, we can bound the total variance of the improvement penalty
∑

s′,a

σ2
x(s′,a;s) ≤ σ2

E(s) ≤
∑

s′,a,s′′,a′

√
σ2
x(s′,a;s)σ

2
x(s′′,a′;s),

where the upper bound is due to the Cauchy-Schwarz inequality, and the lower bound is since ε(s, a) elements have a
positive correlation (as reward trajectories overlap). Hence, it is evident that the improvement penalty can be extremely
large when the term |β−π|2

β is unregulated and even a single mistake along the trajectory, caused by an unregulated
element, might wreck the performance of the entire policy. However, by using the reroute constraint which tame each of
these terms we can bound the variance of the improvement penalty.

While we analyzed the error for independent MC trajectories, a similar argument holds also for Temporal Difference
(TD) learning [16]. [8] studied ”bias-variance” terms in k-steps TD learning of the value function. Here we present their
results for the Q-function error with TD updates. For any 0 < δ < 1, and a number t of iteration through the data for the
TD calculation, the maximal error term abides

ε(s, a) ≤ max
s,a
|Q̂β(s, a)−Qβ(s, a)|≤ 1− γkt

1− γ

√
3 log(k/δ)

Nsβ(a|s)
+ γkt. (3)

While the ”bias”, which is the second term in (3), depends on the number of iterations through the dataset, the ”variance”
which is the square root of the first term in (3) is proportional to 1

β(a|s)Ns
, therefore, bounding the ratio |β−π|

2

β bounds the
improvement penalty also for TD learning.

2Note that even for deterministic environments, a stochastic policy inevitably provides σz(s,a) > 0.

2

Paper # 96 399

2.4 The Reroute Constraint

In order to confine the ratio |β−π|
2

β , we suggest limiting the improvement step to a set of policies based on the following
constraint.
Definition 2.1 (Reroute Constraint). Given a policy β, a policy π is a reroute(cmin, cmax) of β, if π(a|s) = c(s, a)β(a|s)
where c(s, a) ∈ [cmin, cmax]. Further, note that reroute is a subset of the TV constraint with δ = min(1 −
cmin,max(cmax−1

2 , 1−cmin

2)).

With reroute, each element in the sum of (2.2) is proportional to
√
β(a|s)|1 − c(s, a)| where c(s, a) ∈ [cmin, cmax]. Unlike

reroute, other constraints such as the Total Variation (TV), forward and backward KL and PPO were not design to bound
the improvement penalty.

2.5 Maximizing the Improvement Step under the Reroute Constraint

We now turn to the problem of maximizing the objective function J(π) under the reroute constraint and whether such
maximization yields a positive improvement step. Maximizing the objective function without generating new trajectories
of π is a hard task since the distribution of states induced by the policy π is unknown. Therefore, usually we maximize
a surrogate off-policy objective function JOP (π) = Es∼β [

∑
a π(a|s)Aβ(s, a)]. It is common to solve the constrained max-

imization with a NN policy representation and a policy gradient approach [15, 11]. Here we suggest an alternative:
instead of optimizing a parametrized policy that maximizes JOP , the actor (i.e. the agent that interact with the MDP
environment) may ad hoc calculate a non-parametrized policy that maximizes the improvement step

∑
a π(a|s)Aβ(s, a)

(i.e. the argument of the JOP objective) for each different state. This method maximizes also the JOP objective since the
improvement step is independent between states. Note that with an ad hoc maximization, the executed policy is guaran-
teed to maximize the objective function under the constraint whereas with policy gradient methods one must hope that
the optimized policy avoided NN caveats such as overfitting or local minima and converged to the optimal policy.

For the reroute constraint, solving the non-parametrized problem amounts to solving the following simple linear pro-
gram for each state

Maximize: (Aβ)Tπ

Subject to: cminβ ≤ π ≤ cmaxβ

And:
∑

πi = 1.

(4)

Where π, β and Aβ are vector representations of (π(ai|s))|A|i=1, (β(ai|s))|A|i=1 and (Aβ(s, a))
|A|
i=1 respectively. We term the

algorithm that solves this maximization problem as Max-Reroute. Similarly, one may derive other algorithms that maxi-
mize other constraints.

Notice that Max-Reroute satisfies the conditions of Corollary 2.1.1, therefore it always provides a positive improvement
step and hence, at least for a perfect approximation ofQβ it is guaranteed to improve the performance. In addition, notice
that Max-Reroute uses only the action ranking information in order to calculate the optimized policy. We postulate that
this trait makes it more resilient to value estimation errors. This is in contrast to policy gradient methods which optimize
the policy according to the magnitude of the advantage function.

3 Two-armed bandit with Gaussian distributed rewards

To gain some insight into the nature of the RBI step, we examine it in a simplified model of a two-armed bandit with
Gaussian distributed rewards [9]. To that end, define the reward of taking action ai as ri ∼ N (µi, σ

2
i) and denote action

a2 as the optimal action s.t. µ2 ≥ µ1. Consider the learning curve of off-policy learning where a behavior policy is mixed
with a fix exploration parameter, i.e. β(a) = π(a)(1 − ε) + ε

na
(where na is the number of actions and ε = 0.1). The

Q-function is learned with Qπ(a) = (1 − α)Qπ(a) + αr, where α is a learning rate, possibly decaying over time. We
evaluate several constrained policies: (1) RBI with (cmin, cmax) = (0.5, 1.5), (2) PPO with ε = 0.5, (3) TV with δ = 0.25, (4)
greedy step and; (5) forward KL with λ = 1. RBI, TV and PPO were all maximized with our maximization algorithms
(without gradient ascent). To avoid absolute zero probability actions, we clipped the policy such that π(ai) ≥ 10−3. In
addition we added 10 random sample at the start of the learning process. The learning curves are plotted in Figure 1.

The learning curves exhibit two different patterns. For the scenario of σ1 > σ2, a fast convergence of all policies was
obtained. Essentially, when the better action has low variance it is easy to discard the worse action by choosing it and
rapidly improving its value estimation and then switching to the better action. On the other hand, for the case of σ1 < σ2

it is much harder for the policy to improve the estimation of the better action after committing to the worse action. We
see that RBI defers early commitment and while it slightly reduces the rate of convergence in the first (and easy) scenario,
it significantly increases the data efficiency in the harder scenario.

3

Paper # 96 400

In the second scenario, RBI has the best and KL has the second-best learning curves in terms of initial performance.
However, there is another distinction between the ideal learning rate (LR) of α = 1

n and a constant rate of α = 0.01. In
the ideal LR case, the advantage of RBI and KL reduces over time. This is obvious since a LR of α = 1

n takes into account
the entire history and as such, for large history, after a large number of iterations, there is no need for a policy which
learns well from a finite dataset. On the other hand, there is a stable advantage of RBI and KL for a fix LR as fix LR does
not correctly weight the entire past experience. Notice that in a larger than 1-step MDP, it is unusual to use a LR of 1

n
since the policy changes as the learning progress, therefore, usually the LR is fixed or decays over time (but not over state
visitations). Hence, RBI has a positive advantage over greedy policies through the entire training process.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
= 1

n , (1, 2) = (1, 12)

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.2

0.4

0.6

0.8

1.0
= 1

n , (1, 2) = (12, 1)

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

= 0.01, (1, 2) = (1, 12)

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
= 0.01, (1, 2) = (12, 1)

rbi
ppo
tv
greedy
kl

Figure 1: Different constrained policies performances in a two-armed bandit with Gaussian distributed reward setting

4 Experiments in the Atari environment

Figure 2: RBI in a distributed RL setting

We implemented an RBI learning agent in the Atari Learning Envi-
ronment. We adopted a distributed learning setting, similar to the
setting of Ape-X [6]. In this experiment we set out to verify: (1)
whether RBI is a good approach for Deep RL in terms of better final
performance and (2) whether our approach of solving the optimal
policy in the non-parametrized space as part of the actor’s routine,
can be generalized to iterative Deep RL.

To that end, we designed an actor that fetches a stored parametrized
policy πθk and Q-function Qπφk

. The actor solves the non-
parametrized reroute constrained optimization problem (Eq. (4))
and generates an optimized constrained policy π. Our centralized
learner imitates the actor’s policy with a parametrized policy πθk+1

by minimizing a KL divergence loss DKL(π, πθk+1
). The learner

keeps track of the history Q-function by minimizing the Huber
loss L(Qπφk+1

− R), where R is an n-steps target value R(s, a) =
∑n−1
k=0 γ

krk + γn
∑
a′ π(s

′, a′)Qπ
φ̄
(s′, a′). Performance curves of 4

Atari games are presented in figure 3 and compared to our Ape-X
algorithm implementation. The initial results demonstrate the ben-
efit of using RBI as an efficient general RL learning algorithm.

0 1M 2M 3M
Minibatches (# of backward passes)

-20
-10

0
10
20
30
40
50

icehockey

Ape-X
RBI

0 1M 2M 3M
Minibatches (# of backward passes)

0

2K

4K

6K

8K

10K

12K

14K
mspacman

0 1M 2M 3M
Minibatches (# of backward passes)

0

10K

20K

30K

40K
qbert

0 1M 2M 3M
Minibatches (# of backward passes)

0

5K

10K

15K

20K

25K

spaceinvaders

Figure 3: Performance curves of 4 Atari games. The second and third quartiles are shadowed.

4

Paper # 96 401

References

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demon-
stration. Robotics and autonomous systems, 57(5):469–483, 2009.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[3] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-
based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems, pages 1471–1479,
2016.

[4] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of Machine
Learning Research, 16(1):1437–1480, 2015.

[5] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal
Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning.
arXiv preprint arXiv:1710.02298, 2017.

[6] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt, and David Silver.
Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

[7] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In ICML, volume 2,
pages 267–274, 2002.

[8] Michael J Kearns and Satinder P Singh. Bias-variance error bounds for temporal difference updates. In COLT, pages
142–147. Citeseer, 2000.

[9] Andreas Krause and Cheng S Ong. Contextual gaussian process bandit optimization. In Advances in Neural Infor-
mation Processing Systems, pages 2447–2455, 2011.

[10] OpenAI. Openai five, Jul 2018.
[11] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization.

In International Conference on Machine Learning, pages 1889–1897, 2015.
[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347, 2017.
[13] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement learning for au-

tonomous driving. arXiv preprint arXiv:1610.03295, 2016.
[14] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,

Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. Nature,
550(7676):354, 2017.

[15] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in neural information processing systems, pages 1057–1063,
2000.

[16] RS Sutton and AG Barto. Reinforcement learning: An introduction, (complete draft), 2017.
[17] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy improvement. In

International Conference on Machine Learning, pages 2380–2388, 2015.
[18] Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforcement learning. 2018.
[19] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

5

Paper # 96 402

Does phasic dopamine signalling play a causal role in
reinforcement learning?

Peter Shizgal∗
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

peter.shizgal@concordia.ca

Ivan Trujillo-Pisanty
Center for the Neurobiology of Addiction, Pain, and Emotion

Department of Anesthesiology and Pain Medicine
Department of Pharmacology

University of Washington
Seattle, WA 98195
ivantp@uw.edu

Marie-Pierre Cossette
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

mpy cossette@hotmail.com

Kent Conover
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

kentlconover@gmail.com

Francis Carter
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

francis44carter@gmail.com

Vasilis Pallikaras
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

vpallikaras@gmail.com

Yannick-André Breton
Caprion Biosciences

Montréal, QC H2X 3Y7
yannick.breton@gmail.com

Rebecca Brana Solomon
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University

Montréal, QC H4B 1R6
Canada

rb solomon@hotmail.com

Abstract

The reward-prediction-error hypothesis holds that payoff from future actions can be maximized and reward predic-
tions optimized by incremental adjustment of connection weights in neural networks underlying expectation and choice.
These adjustments are driven by reward prediction errors, discrepancies between the experienced and expected reward.
Phasic firing in midbrain dopamine neurons is posited to both represent reward-prediction errors and to cause the weight
changes these errors induce. There is abundant correlational evidence from rodents, monkeys, and humans that midbrain
dopamine neurons encode reward-prediction errors. The work discussed here tests and challenges the causal component
of the reward-prediction-error hypothesis of dopamine activity. Rats were trained to self-administer rewarding electrical
stimulation of the medial forebrain bundle or optical stimulation of midbrain dopamine neurons. Stimulation-induced
release of dopamine was monitored by means of fast-scan cyclic voltammetry. Both forms of stimulation triggered re-
liable, recurrent release of dopamine in the nucleus accumbens. According to the RPE-DA hypothesis, such repeated,

∗David Munro built and maintained the computer-controlled equipment for experimental control and data acquisition.
Software for experimental control and data acquisition was written and maintained by Steve Cabilio. PS web site:
http://www.concordia.ca/research/neuroscience/faculty.html?fpid=peter-shizgal. Video re ICSS and the measurement of reward
intensity: https://spectrum.library.concordia.ca/978205/

Paper # 159 403

response-contingent release should eventually drive action weights into saturation. If unopposed by a countervailing
influence, the repeated release of dopamine should render stable reward-seeking performance at non-maximal levels
impossible. Instead, the rats performed at stable non-maximal levels in response to intermediate stimulation strengths.

Keywords: brain stimulation reward; intracranial self-stimulation; medial
forebrain bundle; ventral tegmental area; nucleus accumbens;
electrical brain stimulation; optogenetics; fast-scan cyclic voltam-
metry

Acknowledgements

The authors are grateful to Peter Dayan, Ritwik Niyogi, and Sanjeevan Ahilan for many fruitful discussions of the issues
addressed here, for their original modeling work on other aspects of the phenomena, and for sharing their insights and
interpretations. Steve Cabilio developed and maintained the experimental-control and data acquisition software used
in this study. The experimental-control and data acquisition hardware was designed, built, and maintained by David
Munro. This work was supported by a Natural Sciences and Engineering Research Council of Canada grant (RGPIN-
2016-06703) to PS. The TH-Cre rats were sourced from a colony estabilshed with founders kindly donated by Ilana Witten
and Karl Deisseroth.

2

Paper # 159 404

Reward-prediction errors, dopamine, and intracranial self-stimulation
An elegant, enormously influential hypothesis about the nature and neural mechanisms of learning holds that reward-
prediction errors (RPEs), encoded in the firing of dopamine (DA) neurons, optimize expectations about future rewards
and the values assigned to reward-seeking actions [1]. The seminal paper introducing this reward-prediction-error
hypothesis of dopamine neuron activity (RPE-DA hypothesis) [1] applies temporal-difference reinforcement-learning
(TDRL) methods [2] within an actor-critic framework [3].

+ -

+ +

Reward prediction
at time t

Reward prediction
at time (t - 1)

Value of current
reward

Weight-
changing
mechanism

r

V(t) V(t-1)

V = V(t) - V(t-1)•

RPE = r + V = r + [V(t) - V(t-1)]•

Probability of
reward-seeking
action

Electrical excitation of
DA axons in the MFB

Figure 1: Portrayal of eICSS in [1]

Paramount in the paper by Montague et al. [1] is their inci-
sive account of DA activity in monkeys performing tasks
that combine Pavlovian and operant conditioning. Also
included is a brief discussion of how the TDRL model
applies to electrical intracranial self-stimulation (eICSS),
the performance of instrumental tasks to trigger activa-
tion of brain circuitry. The authors point out that DA
cell bodies in the ventral tegmental area give rise to axons
that course through eICSS sites along the medial forebrain
bundle (MFB). Fig. 1 summarizes their portrayal of eICSS,
which holds that stimulation of eICSS sites produces a fic-
tive RPE by activating DA neurons.

Optogenetic methods make it possible to activate mid-
brain DA neurons exclusively, unlike electrical stimula-
tion, which is less selective. Rodents will work for such
optical stimulation (oICSS) [4, 5, 6]. Specific optical activa-
tion of midbrain DA neurons has also been shown to aug-
ment responding to a redundant reward-predicting cue
that would otherwise have been behaviorally ineffective
and to delay extinction of responding to a cue no longer
paired with the delivery of a sucrose reward [7]. These results were interpreted as evidence for a causal role of DA-
mediated RPEs in learning.

Here, we summarize eICSS and oICSS experiments that reassess the causal role of DA-mediated RPEs in learning. The
behavioral and electrochemical findings are not easily explained by the RPE-DA hypothesis.

Two problems with the original TDRL portrayal and a potential remedy
We note two problems with the portrayal in Fig. 1 as it applies to eICSS of the most extensively studied stimulation site:
the lateral hypothalamic (LH) level of the MFB. First, the positioning of the electrode isolates the RPE from its corrective
consequences. In the case of natural rewards earned under stable conditions, the RPE ”predicts itself away.” The RPE
renders the prediction progressively more accurate, and hence the RPE shrinks progressively to zero. In contrast, an RPE
elicited by means of direct axonal stimulation of DA axons in the MFB would be of constant magnitude because it arises
beyond the regions where the signals encoding the predicted (Vt−Vt−1) and experienced (r) rewards must be combined:
the somatodendritic region of the DA neurons and/or their afferent network. (Recall that once the value function (V)
has been at least partially learned, DA firing is perturbed in opposite directions by these two signals.) If the DA neurons
were activated downstream from the point(s) at which these two input signals converge, both the reward prediction and
the weight assigned to the reward-seeking action (e.g., lever pressing) would be driven over repeated iterations to their
maximal (saturated) values. Stable performance for electrically induced rewards of intermediate magnitude would thus
be impossible. This prediction is contradicted by abundant evidence from operant matching experiments on eICSS in
which the value of intermediate-strength rewards is stable over many repeated reward encounters, e.g. [8].

The consequences of weight saturation due to stimulation of DA axons are illustrated in panel A of Fig. 2. The agent earns
rewards by performing a sustained action (”work”), such as depressing a lever for a required duration. Multiple rewards
can be earned during a trial. When the reward is weak (r = 1), the latency to begin working is long. However, due to the
unconditional RPE, the action weight is boosted by delivery of each reward. Thus, the cumulative work-time accelerates
until it attains its maximal velocity. The stronger the reward (r5 > r4 > r3 > r2 > r1), the shorter the latency to reinitiate
responding after reward delivery and the faster the growth of the action weight. Panel B shows the contrasting case of
a natural reward. The RPE shrinks as the prediction improves, and the action weights stabilize at values proportional to
the reward strength. Thus, the slope of the cumulative work-time trajectory is scaled by the reward strength.

A second problem with the schema in Fig. 1 is the implicit attribution of the behavior to direct activation of DA axons.
These small-diameter axons are unmyelinated and have very high thresholds to activation by extracellular currents [9].
Moreover, psychophysical estimates of conduction velocity, recovery from refractoriness, and frequency following in the
directly activated MFB fibers subserving eICSS of the MFB implicate neurons with myelinated axons much more readily
excited than those of the DA neurons [10].

1

Paper # 159 405

proportion trial time
0 0.2 0.4 0.6 0.8 1

pr
op

or
tio

n
w

or
k

tim
e

0

0.2

0.4

0.6

0.8

1
accumulating dopamine

r=5
r=4
r=3
r=2
r=1

proportion trial time
0 0.2 0.4 0.6 0.8 1

pr
op

or
tio

n
w

or
k

tim
e

0

0.2

0.4

0.6

0.8

1
cancelling dopamine

r=5
r=4
r=3
r=2
r=1

DA burst produced by every train
DA bursts decline to zero as prediction

improves
A B

strong

weak

strong

weak

Simulated results

Simulation by Peter Dayan

Unconditional RPE RPE nulled by improving predictions

Unstable performance at non-
asymptotic levels

Stable performance at non-
asymptotic levels

Simulations by Peter Dayan

cu
m

ul
at

iv
e

w
or

k
tim

e
/ t

ria
l d

ur
at

io
n

cu
m

ul
at

iv
e

w
or

k
tim

e
/ t

ria
l d

ur
at

io
n

DA burst produced by each stimulation DA burst declines as prediction improves

Proportion of trial time elapsed Proportion of trial time elapsed Proportion of trial time elapsed Proportion of trial time elapsed Proportion of trial time elapsed Proportion of trial time elapsed

DA burst produced by each stimulation DA burst declines as prediction improves

R=5
R=4
R=3
R=2
R=1

R=5
R=4
R=3
R=2
R=1

Figure 2: Simulations by Peter Dayan

+ -

+ +

Reward prediction
at time t

Reward prediction
at time (t - 1)

Value of current
reward

Weight-
changing
mechanism

r

V(t) V(t-1)

V = V(t) - V(t-1)•

RPE = r + V = r + [V(t) - V(t-1)]•

Probability of
reward-seeking
action

Electrical excitation of
non-DA MFB axons

Optical excitation of
midbrain DA neurons

Figure 3: Revised TDRL account of eICSS and oICSS

Both problems could be solved by changing the assump-
tion about where the stimulation intervenes in the TDRL
schema (Fig. 3). The rewarding effects of MFB stimulation
and intraoral sucrose compete and summate, suggesting
that electrical stimulation of the MFB mimics the value
of a natural reward [11]. If the electrode indeed excites
neurons subserving the primary reward signal (r) instead
of those subserving the RPE, then the temporal-difference
signal (Vt − Vt−1) could come to null this electrically in-
duced input, and trajectories such as those shown in panel
B of Fig. 2 could be achieved. However, as we show below,
this remedy is unavailable in the case of oICSS, which en-
tails direct, unconditional activation of DA neurons. Thus,
Fig. 3 predicts: a) oICSS trajectories like those in panel A
of Fig. 2 coupled to continued simulation-induced DA re-
lease, but b) eICSS trajectories like those in panel B of Fig. 2
coupled to decline and cessation of simulation-induced
DA release. We tested these predictions.

Methods
ICSS. Electrodes for eICSS were aimed at the LH level of
the MFB. Stimulation consisted of 0.5 s trains of constant-current pulses, 0.1 ms in duration. To prepare TH-Cre(+/-)
rats for oICSS, channelrhodopsin-2 (ChR2) was expressed in midbrain DA neurons via Cre-Lox recombination and viral
transfection, and 300 µm-core optical fibers were aimed at the ventral tegmental area (VTA). Optical stimulation consisted
of 1 s trains of 462 or 473 nm pulses, 5 ms in duration.

The triadic-trial paradigm. Experimental sessions were comprised of trials arranged in cycling triads. During the leading
trial of each triad, the strength (pulse frequency) of the stimulation was set to the maximum the rat could tolerate,
whereas during the trailing trial, it was set to a negligibly rewarding value. The stimulation strength on offer during
each central (”test”) trial of the triads was also constant within a trial, but it varied across triads, and was selected at
random from a vector 3-14 elements in length.The maximum and minimum values of the vector were the strengths used
in the leading and trailing trials, respectively.

Electrochemistry. The extracellular DA concentration was measured by means of fast-scan cyclic voltammetry (FSCV).
Carbon-fiber microsensors were aimed at the nucleus accumbens (NAc), and an Ag/AgCl reference electrode was po-
sitioned 10.7 mm caudal to the NAc. Cyclic voltammograms were generated at 10 Hz by applying an 8.5 ms triangular
waveform that ramped from −0.4 V to +1.3 V and back to −0.4 V at a scan rate of 400 V/s. A modification of the
method of Kishida et al. [12] was used to extract DA concentrations: principal-component regression was substituted for
elastic-net regression.

Results and discussion
Fig. 4 shows empirical data from one rat, averaged over 19 sessions, from test trials during which the stimulation strength
was sampled randomly from a 14-element vector. Cumulative work time rises at a roughly constant rate, which de-
pends systematically on the strength of the rewarding stimulation. In 22 rats performing eICSS, we obtained 29 datasets

2

Paper # 159 406

cu
m

ul
at

iv
e

w
or

k
tim

e
/ t

ria
l d

ur
at

io
n

Proportion of trial time elapsed

 40
50

Stimulation strength (pps)

60
66
74
84
94

106
118
134
150
166
200
250

Figure 4: eICSS: stable performance for
intermediate-strength electrical rewards

using test-trial stimulation-strength vectors 9 or 14 elements in length.
Like those in Fig. 4, the slopes of the cumulative work-time trajecto-
ries vary systematically as a function of stimulation strength and are
linear or mildly concave downwards. In no case do the data resemble
the simulated results in panel A of Fig. 2, which show initial accelera-
tion towards a constant terminal slope due to the unconditional RPE.
Instead, the results are consistent with panel B of Fig. 2, in which ter-
minal slopes are related systematically to reward strength, and with
the revised TDRL schema in Fig. 3. In the revised schema, stable per-
formance at intermediate levels is achieved because the TD signal can
null the input from the stimulation electrode, thus eliminating the RPE
and the firing of DA neurons that encodes it. To find out whether DA
release indeed ceases during stable eICSS performance at intermedi-
ate levels of performance, we measured DA release in the NAc during
eICSS by means of FSCV.

The FSCV recordings were obtained while the rat performed eICSS in
a simplified version of the triadic-trial paradigm. Only three stimula-
tion strengths were sampled on test trials: the High and Low values
were the same as on leading and trailing trials, respectively, whereas
the Med value was intermediate. Behavioral data from one rat, aver-
aged over two test sessions, are shown in panel B of Fig. 5. Again,
performance for the medium-strength (Med) reward is roughly stable over the course of the trial. Panel A shows the cor-
responding measurements of DA concentration, which are cumulations of the peak post-stimulation DA concentration
measured following delivery of each stimulation train (panel A of Fig. 6). According to the RPE-DA hypothesis, roughly
stable performance at intermediate work levels can be achieved only in the absence of persistent, recurring DA-mediated
RPEs. However, panel A of Figs. 5 and 6 show that stimulation-induced DA release continued throughout the eICSS trial,
thus calling the hypothesis into question.

Proportion of trial time elapsed Proportion of trial time elapsed

cu
m

ul
at

iv
e

w
or

k
tim

e
/ t

ria
l d

ur
at

io
n

[D
A]

 /
m

ax
im

al
 [D

A]

High (leading)
High (test)
Med (test)
Low (test)
Low (trailing)

High (leading)
High (test)
Med (test)
Low (test)
Low (trailing)

A B

Figure 5: Concurrently acquired FSCV and behavioral data

Panel B of Fig. 6 shows that op-
tical stimulation of midbrain DA
neurons, like electrical stimula-
tion of the MFB (panel A), per-
sistently and reliably elicits tran-
sient increases in DA concentra-
tion. According to the RPE-
DA hypothesis, such transients
should alter action weights in the
manner depicted in panel A of
Fig. 2: when an intermediate-
strength reward is on offer during
the test trial, the cumulative work
trajectory should accelerate until
it achieves the maximum slope
that the rat’s physical capacity al-
lows. This is not what we found.

R
ew

ar
d

#

 Time (s)

[D
A

] / m
ax([D

A
])

R
ew

ar
d

#

 electrical stimulation

 2 4 6 8 10

R
ew

ar
d

#

 Time (s)

[D
A

] / m
ax([D

A
])

 optical stimulation

 2 4 6 8 10

BA

Figure 6: DA transients driven by electrical or optical stimulation

3

Paper # 159 407

Proportion of trial time elapsed

cu
m

ul
at

iv
e

w
or

k
tim

e
/ t

ria
l d

ur
at

io
n

Stimulation strength
 Low (4 pps)
 Med (20 pps)
 High (56 pps)

Figure 7: Stable performance for medium-
strength optical activation of DA neurons

Fig. 7 shows data from a rat working for optical stimulation of mid-
brain DA neurons in the simplified triadic-trial paradigm. When the
reward strength was intermediate, a stable, linear work trajectory
is observed. Linear or slightly concave-downward trajectories were
also shown by five additional rats performing oICSS in the simpli-
fied triadic-trial paradigm. Like the eICSS data, these results call into
question a key aspect of the RPE-DA hypothesis, the notion that DA-
mediated RPEs cause changes in action weights.

Reconciling the results with the RPE-DA hypothesis. Peter Dayan
has proposed a way to reconcile the present findings with the RPE-
DA hypothesis. Could reward predictions come to decrease DA fir-
ing in unstimulated neurons, thus compensating for the excitation of
the subpopulation of DA neurons recruited by the stimulation? The
low baseline firing rate (3-5 spikes s−1) of DA neurons poses a prob-
lem for this proposal: the baseline is much closer to zero than to the
maximum firing rate. Thus, inhibition of multiple unstimulated DA
neurons would be required to compensate for the excitation of each
stimulated neuron. This would be difficult to achieve given the mas-
sive, bilateral recruitment of midbrain DA neurons by electrical MFB
stimulation. That said, this proposal merits rigorous experimental test.

Limitations. In the different versions of the triadic-trial paradigm,
stable behavioral data has been obtained from 26 rats performing working for electrical stimulation and 9 rats working
for optical stimulation. However, concurrent measurements of behavior and DA concentration have been carried out
successively in only two rats to date. Additional subjects must be tested, and the FSCV recording sites must be adjusted
in the light of recent findings showing functional specialization of NAc subregions [13].

Conclusion. The findings reported here raise serious questions about the causal component of the RPE-DA hypothesis
and provide several proofs of principle for novel ways to test this foundational idea.

References
[1] P. R. Montague, P. Dayan, & T. J. Sejnowski, “A framework for mesencephalic dopamine systems based on predictive

Hebbian learning”, The Journal of neuroscience, vol. 16, no. 5, pp. 1936–1947, 1996.
[2] R. S. Sutton, “Learning to predict by the methods of temporal differences”, Machine Learning, vol. 3, no. 1, pp. 9–44,

1988.
[3] J. C. Houk, J. L. Adams, & A. G. Barto, “A model of how the basal ganglia generate and use neural signals that

predict reinforcement”, in J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Models of information processing in the Basal
Ganglia, pp. 249–270, The MIT Press, 1995.

[4] A. R. Adamantidis, H.-C. Tsai, B. Boutrel, et al., “Optogenetic Interrogation of Dopaminergic Modulation of the
Multiple Phases of Reward-Seeking Behavior.”, The Journal of neuroscience, vol. 31, no. 30, pp. 10829–10835, 2011.

[5] C. D. Fiorillo, “Transient activation of midbrain dopamine neurons by reward risk”, Neuroscience, vol. 197, no. C,
pp. 162–171, 2011.

[6] I. B. Witten, E. E. Steinberg, T. J. Davidson, et al., “Recombinase-driver rat lines: tools, techniques, and optogenetic
application to dopamine-mediated reinforcement.”, Neuron, vol. 72, no. 5, pp. 721–733, 2011.

[7] E. E. Steinberg, R. Keiflin, J. R. Boivin, et al., “A causal link between prediction errors, dopamine neurons and
learning”, Nature Neuroscience, vol. 16, pp. 966–973, 2013.

[8] M. I. Leon, V. Rodriguez-Barrera, & A. Amaya, “The effect of scopolamine on matching behavior and the estimation
of relative reward magnitude.”, Behavioral Neuroscience, vol. 131, no. 5, pp. 406–420, 2017.

[9] J. S. Yeomans, N. T. Maidment, & B. S. Bunney, “Excitability properties of medial forebrain bundle axons of A9 and
A10 dopamine cells.”, Brain research, vol. 450, no. 1-2, pp. 86–93, 1988.

[10] P. Shizgal, “Neural basis of utility estimation”, Current Opinion in Neurobiology, vol. 7, no. 2, pp. 198–208, 1997.
[11] K. L. Conover & P. Shizgal, “Competition and summation between rewarding effects of sucrose and lateral hypotha-

lamic stimulation in the rat”, Behavioral Neuroscience, vol. 108, no. 3, pp. 537–548, 1994.
[12] K. T. Kishida, I. Saez, T. Lohrenz, et al., “Subsecond dopamine fluctuations in human striatum encode superposed

error signals about actual and counterfactual reward”, Proceedings of the National Academy of Sciences, vol. 113, no. 1,
pp. 200–205, 2016.

[13] J. W. de Jong, S. A. Afjei, I. Pollak Dorocic, et al., “A Neural Circuit Mechanism for Encoding Aversive Stimuli in the
Mesolimbic Dopamine System”, Neuron, vol. 101, no. 1, pp. 133–151.e7, 2019.

4

Paper # 159 408

Robust Pest Management Using Reinforcement Learning

Talha Siddique
Department of Natural Resources and the Environment

University of New Hampshire
Durham, NH 03824

ts1121@wildcats.unh.edu

Jia Lin Hau
Department of Computer Science

University of New Hampshire
Durham, NH 03824

jh1111@wildcats.unh.edu

Shadi Atallah
Department of Natural Resources and the Environment

University of New Hampshire
Durham, NH 03824

shadi.atallah@unh.edu

Marek Petrik
Department of Computer Science

University of New Hampshire
Durham, NH 03824

mpetrik@cs.unh.edu

Abstract

Developing effective decision support systems for agriculture matters. Human population is likely to peak at close 11
billion and changing climate is already reducing yields in the Great Plains and in other fertile regions across the world.
With virtually all arable land already cultivated, the only way to feed the growing human population is to increase
yields. Making better decisions, driven by data, can increase the yield and quality of agricultural products and reduce
their environmental impact.

In this work, we address the problem of an apple orchardist who must decide how to control the population of codling
moth, which is an important apple pest. The orchadist must decide when to apply pesticides to optimally trade off apple
yields and quality with the financial and environmental costs of using pesticides. Pesticide spraying decisions are made
weekly throughout the growing season, with the yield only observed at the end of the growing season. The inherent
stochasticity driven by weather and delayed rewards make this a classical reinforcement learning problem.

Deploying decision support systems in agriculture is challenging. Farmers are averse to risk and do not trust purely
data-driven recommendations. Because weather varies from season to season and ecological systems are complex even
a decade worth of data may be insufficient to get good decisions with high confidence.

We propose a robust reinforcement learning approach that can compute good solutions even when the models or rewards
are not known precisely. We use Bayesian models to capture prior knowledge. Our main contribution is that we evaluate
which model and reward uncertainties have the greatest impact on solution quality.

Keywords: Natural Resources, Small Data, Markov Decision Process, Robust
Optimization.

Paper # 228 409

1 Introduction

Apple is the most consumed fruit in the USA. In 2015, an average person in the USA consumed about 115.4 pounds of
fresh and processed fruits and 24.7 pounds of apple in other forms such as juice, canned, frozen etc (USDA ERS, 2015).
One of the most problematic apple pests is the codling moth (Cydia Pomonella). If left unchecked, it can claim up to 95
percent of the seasons apple crops [8]. Common pest management actions are mostly dependent on chemical pesticides.
Avoiding the use of a pesticide improves the quality of an apple crop and increases profits but waiting too long after the
pest is detected can lead to a crop failure [4, 10, 11].

There is a need for effective decision support tools. However, developing cheap and effective strategies can be chal-
lenging because natural systems are complex, difficult to model, and expensive to observe [6]. Recently, reinforcement
learning has been used with great success to model such complex domains [7]. The drawback of using such techniques is
that they require data sets of appropriate size and accuracy. Even though thousands of samples can be generated using
domain simulators but any form of available data sets on the distribution of invasive species like pests tend to suffer
from biases and inaccuracy [5]. To make more effective and timely decisions, there is a need for decision support systems
that recommend safe actions in the face of limited and flawed data [1].

In this paper, we address the problem of an orchard manager who must decide, given a pest population level, whether
to apply pesticides, in order to maximize the value of the orchard over a finite time horizon. We can formulate the
management problem using the reinforcement learning methodology. The pesticide application policies must be based
on data consisting of imperfect observations of the pest population level. For our solutions to be immune to such data
and parameter uncertainties, there is a need for our method to be robust. A robust method will compute solutions that
trade-off brittle optimality for increased confidence.

We develop and evaluate a new method for robust reinforcement learning, which can reliably compute pest management
policies from imperfect observational data. They can determine pest control policies that are likely to work well even if
observations of pest population levels are scattered and does not resemble the true distribution accurately. To address
such uncertainties from data and parameters in a tractable way, we combine the flexibility of Bayesian modeling with
the computational tractability of robust optimization. We will be using the Bayesian modeling tool Stan to implement
our approach.

Unfortunately, planning directly with posterior distributions leads to intractable optimization problems [2, 3, 9]. We
are, instead, proposing to use the posterior distributions to construct the ambiguity set and then use tractable robust
optimization methods.

The contributions of this paper is to advance the understanding of uncertainty in reinforcement learning. Our research
provides new insights into the benefits and drawbacks of considering uncertainty given a specific problem structure.

2 Experiments and Results

Given our model, we compare the performance of different pesticide application schedules using threshold policies. A
threshold policy applies the pesticide only when the pest level exceeds the given threshold.

For each threshold policy π, we determine the best case, worst case, and average case scenario returns, when we apply
it to the set of different pest growth rates: λ. The pest growth rates λ are sampled from our Bayesian model. In addition,
we will also determine the robust return given our π and λ.

Let ρ(π, λ) be the return of policy π under the growth rate λ. Following are the mathematical definitions of each of our
objectives:

1. Best case scenario return: maxλ,ε,r ρ(π, λ)
2. Worst case scenario return: minλ,ε,r ρ(π, λ)
3. Average case scenario return: Eλ,ε,rρ(π, λ)
4. Robust return: maxπminλ,ε,r ρ(π, λ)

According to Figure 1(a), we plot the graph where we only consider the uncertainty of the growth rate λ. Since the best,
worst, and average cases have similar optimal threshold policies, the robustness does not really make a difference com-
pared to the regular approach. All objectives suggest the farmer to always spray the plant because the lower threshold
has a higher reward. The intuition of the policy is, if a farmer always sprays pesticide to their apples, the number of
moths will be the least and they will likely to get a good apple and a high reward (revenue).

However, this is not realistic, spraying pesticides frequently could damage the soil or your plant which is the cost that
our model does not capture. The second issue of the simulation and our model did not capture, is when an apple
turns bad, some of the damage of an apple is not reversible, we could kill the moth in the apple but the apple will still
remain damage. Therefore, to make the reward function more realistic, we included 2 variables (i) cost of spraying and

1

Paper # 228 410

(a) Uncertainty of Growth Rate λ (b) Added Uncertainty of Cost and Penalty

Figure 1: Returns as a Function of Application Threshold

(ii) irreversible financial penalty for infected apples. Since we do not know the real underlying cost for spraying and
irreversible penalty we created a distribution of possible cost and explore the effect of the cost.

In Figure 1(b), we depict the costs of spraying and an irreversible penalty for a bad apple to make the model more
realistic. After we added the cost of spraying and penalty for irreversible apple damage, we can see that the robust
policy which maximizes the worst case and the regular approach which maximize the average case are totally different
to each other.

3 Conclusion

To conclude, robust optimization is not always necessary if we have uncertainty on a linear function. However, robust
optimization is crucial if we have uncertainty in other types of function. From our experiment, we show the importance
to identify and define the uncertainties of all important factors in a model, which otherwise could lead to a very different
solution. An example is the solutions determined by our model where after defining the cost of spraying and penalty for
infected apples, we can see an obvious change in policy.

References

[1] L R Carrasco, R Baker, a Macleod, J D Knight, and J D Mumford. Optimal and robust control of invasive alien species
spreading in homogeneous landscapes. Journal of the Royal Society, Interface / the Royal Society, 7(September):529–540,
2010.

[2] Michael Castronovo, Damien Ernst, Adrien Couëtoux, and Raphael Fonteneau. Benchmarking for Bayesian rein-
forcement learning. PLoS ONE, 11(6):1–25, 2016.

[3] Arthur Guez, David Silver, and Peter Dayan. Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based
Search. In Advances in Neural Information Processing Systems (NIPS), 2012.

[4] Darwin C. Hall and Richard B. Norgaard. On the Timing and Application of Pesticides: Reply. American Journal of
Agricultural Economics, 56(3):644, 2006.

[5] Koji Kotani, Makoto Kakinaka, and Hiroyuki Matsuda. Optimal invasive species management under multiple
uncertainties. Mathematical Biosciences, 233(1):32–46, 2011.

[6] Andreas Lydakis, Jenica M. Allen, Marek Petrik, and Tim M. Szewczyk. Robust strategies for managing invasive
plants. In IJCAI Workshop: Artificial Intelligence for Wildlife Conservation, 2018.

[7] Matthew H. Meisner, Jay A. Rosenheim, and Ilias Tagkopoulos. A data-driven, machine learning framework for
optimal pest management in cotton. Ecosphere, 7(March):1–13, 2016.

[8] M.Gregory Peck and Ian A. Merwin. A Grower ’ s Guide to Organic Apples. Agriculture, 208(NYS IPM Publication
No 223):43–56, 2016.

[9] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An Analytic Solution to Discrete Bayesian Reinforce-
ment Learning. In International Conference of Machine Learning (ICML), 2006.

[10] W. D. Shaw. Environmental and Natural Resource Economics: Decisions Under Risk and Uncertainty. Encyclopedia
of Energy, Natural Resource, and Environmental Economics, 3-3(979):10–16, 2013.

[11] Richard T. Woodward and David Tomberlin. Practical Precautionary Resource Management Using Robust Opti-
mization. Environmental Management, 54(4):828–839, 2014.

2

Paper # 228 411

Learning Powerful Policies by Using Consistent Dynamics Model

Shagun Sodhani ∗

Mila
University of Montreal

Anirudh Goyal
Mila

University of Montreal

Tristan Deleu
Mila

University of Montreal

Yoshua Bengio
CIFAR Senior Fellow and Mila

University of Montreal

Sergey Levine
University of California

Berkeley

Jian Tang
Mila

University of Montreal

Abstract

Model-based Reinforcement Learning approaches have the promise of being sample efficient. Much of the progress in
learning dynamics models in RL has been made by learning models via supervised learning. There is enough evidence
that humans build a model of the environment, not only by observing the environment but also by interacting with the
environment. Interaction with the environment allows humans to carry out experiments: taking actions that help uncover
true causal relationships which can be used for building better dynamics models. Analogously, we would expect such
interactions to be helpful for a learning agent while learning to model the environment dynamics. In this paper, we
build upon this intuition, by using an auxiliary cost function to ensure consistency between what the agent observes (by
acting in the real world) and what it imagines (by acting in the “learned” world). We consider several tasks - Mujoco
based control tasks and Atari games - and show that the proposed approach helps to train powerful policies and better
dynamics models.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Model-
Free RL, Model-Based RL,

Acknowledgements

The authors acknowledge the important role played by their colleagues at Mila throughout the duration of this work.
The authors would like to thank Bhairav Mehta and Gautham Swaminathan for their feedback on the initial manuscript.
The authors are grateful to NSERC, CIFAR, Google, Samsung, Nuance, IBM, Canada Research Chairs, Canada Graduate
Scholarship Program, Nvidia for funding, and Compute Canada for computing resources. We are very grateful to Google
for giving Google Cloud credits used in this project.

∗Corresponding author: sshagunsodhani@gmail.com

Paper # 141 412

1 Introduction

Reinforcement Learning (RL) consists of two fundamental problems: learning and planning. Learning refers to improving
the agent’s policy by interacting with the environment while planning refers to improving the policy without interacting
with the environment. These problems evolve into the dichotomy of model-free methods (which primarily rely on learning)
and model-based methods (which primarily rely on planning). While model-free methods have shown many successes
[1, 2, 3], their high sample complexity remains a major challenge. In contrast, model-based RL methods aim to improve
the sample efficiency by learning a dynamics model of the environment. But these methods have several caveats. If the
policy takes the learner to an unexplored state in the environment, the learner’s model could make errors in estimating
the environment dynamics, leading to sub-optimal behavior. This problem is referred to as the model-bias problem [4].

To make predictions about the future, dynamics models are unrolled step by step leading to “compounding errors”
[5, 6]: an error in modeling the environment at time t affects the predicted observations at all subsequent steps. In
the model-based approaches, the dynamics model is usually trained with supervised learning techniques and the state
transition tuples (collected as the agent acts in the environment) become the supervising dataset. Hence the process of
learning the model has no control over what kind of data is produced for its training. That is, from the perspective of
learning the dynamics model, the agent just observes the environment and does not “interact” with it. On the other
hand, there’s enough evidence that humans learn the environment dynamics not just by observing the environment but
also by interacting with the environment [7, 8]. Interaction is useful as it allows the agent to carry out experiments in the
real world which is clearly a desirable characteristic when building dynamics models.

This leads to an interesting possibility. Consider a learning agent training to optimize an expected returns signal in a
given environment. At a given timestep t, the agent is in some state st ∈ S (State space). It takes an action at ∈ A (action
space) according to its policy at ∼ πt(at|st), receives a reward rt (from the environment) and transitions to a new state
st+1. The agent is trying to maximize its expected returns and has two pathways for improving its behaviour:

1. Close-loop path: The agent interacts with the environment acting in the real world at every step. The agent starts
in state s0 and is in state st at time t. It chooses an action at to perform (using its policy πt), performs the chosen
action, and receives a reward rt. It then observes the environment to obtain the new state st+1, uses this state to
decide which action at+1 to perform next and so on.

2. Open-loop path: The agent interacts with the learned dynamics model by imagining to act and predicts the future
observations (or future belief state in case of state space models). The agent starts in state s0 and is in state st at
time t. Note that the agent “imagines” itself to be in state sIt and can not access the true state. It chooses an action
at to perform (using its policy πt), acts in the “learner’s” world (dynamics model) and imagines to transition
to the new state sIt+1. The current “imagined” state is used to predict the next “imagined” state. During these
“imagined” roll-outs, the agent only interacts with the learner’s “world” and not with the environment.

The agent could use both the pathways simultaneously. It could, in parallel, (i) build a model of the environment (dy-
namics model) and (ii) engage in interaction with the real environment as shown in Figure 1. As such, the two pathways
may not be consistent given the challenges in learning a multi-step dynamics model. By consistent, we mean the behavior
of state transitions along the two paths should be indistinguishable. Had the two pathways would be consistent and we
could say that the learner’s dynamics model is grounded in reality. To that end, our contributions are the following:

1. We propose to ensure consistency by using an auxiliary loss which explicitly matches the generative behavior
(from the open loop) and the observed behavior (from the closed loop) as closely as possible.

2. We evaluate our approach on 7 Mujoco based continuous control tasks and 4 Atari games and observe that the
proposed approach helps to train more powerful policies.

3. We compare our proposed approach to the state-of-the-art state space models [9] and show that the proposed
method outperforms the sophisticated baselines despite being very straightforward.

2 Consistency Constraint

We impose the consistency constraint by encoding the state transitions (during both open-loop and closed-loop) into
fixed-size real vectors using recurrent networks and enforce the output of the recurrent networks to be similar in the
two cases. Encoding the sequence can be seen as abstracting out the per-step state transitions into how the dynamics of
the environment evolve over time. This way, we do not focus on mimicking each state but the high-level dynamics of
the state transitions and the dynamics model focuses only on information that makes the multi-step predictions indistin-
guishable from the actual observations from the environment (figure 1). We minimize the L2 error between the encoding
of predicted future observations as coming from the learner’s dynamics model (during open-loop) and the encoding of
the future observations as coming from the environment (during closed loop).

1

Paper # 141 413

Figure 1: The agent, in parallel, (i) Builds a model of the world and (ii) Engages in an interaction with the world. The
agent can now learn the model dynamics while interacting with the environment. We show that making these two
pathways consistent helps in simultaneously learning a better policy and a more powerful generative model.

Let us assume that the agent started in state s0 and that a0:T−1 denote the sequence of actions that the agent takes in the
environment from time t = 0 to T−1 resulting in state sequence s1:T that the agent transitions through. Alternatively, the
agent could have “imagined” a trajectory of state transitions by performing the actions a0:T−1 in the learner’s dynamics
model. This would result in the sequence of states sI1:T . The consistency loss is computed as follows:

lcc(θ, φ) = ‖enc(s1:T))− enc(sI1:T))‖ (1)
where ‖‖ denotes the L2 norm, enc(s1:T)) = RNN([s1, s2, ..., sT]) and enc(sI1:T)) = RNN([sI1, s

I
2, ..., s

I
T]). The agent

which is trained with the consistency constraint is referred to as the consistent dynamics agent. The overall loss for such a
learning agent can be written as follows:

ltotal(θ, φ) = lrl(θ, φ) + αlcc(θ, φ) (2)

θ refers to the parameters of the agent’s transition model f̂ and φ refers to the parameters of the agent’s policy π. The
first component, lrl(θ, φ), corresponds to the RL objective i.e maximizing expected return and is referred to as the RL loss.
The second component, lcc(θ, φ), corresponds to the loss associated with the consistency constraint and is referred to as
consistency loss. α is a hyper-parameter to scale the consistency loss component with respect to the RL loss.

We consider both observation space models (where the environment is modeled as a Markov Decision Process) and
state-space models where the learning agent encodes the observation into a high-dimensional latent space. State space
models are useful when the observation space is high dimensional, as in case of pixel-space observations. For the state
space models, the agent learns to model the environment dynamics in the latent space.

3 Rationale Behind Using Consistency Loss

Our goal is to provide a mechanism for the agent to have a direct “interaction” between the policy and the dynamics
model. This interaction is different from the standard RL approaches where the trajectories sampled by the policy are
used to train the dynamics model. In those cases, the model has no control over what kind of data is produced for its
training and there is no (“direct”) mechanism for the dynamics model to affect the policy, hence a “direct interaction”
between the policy and the model is missing. A practical instantiation of this idea is the consistency loss where we ensure
consistency between the predictions (from the dynamics model) and the actual observations (from the environment). This
simple baseline works surprisingly well compared to the state-of-the-art methods (as demonstrated by our experiments).

Our approach is different from just learning a k-step prediction model as in our case, we have two learning signals for the
policy: The one from the reinforcement learning loss (to maximize return) and the other due to consistency constraint.
This provides a mechanism where learning a model can itself change the policy (thus “interacting” with the policy).
In the standard case, the state transition pairs (collected as the agent acts in the environment) become the supervising
dataset for learning the model and there is no feedback from the model learning process to the policy.

4 Experimental Results

We evaluate how well does the proposed Consistent Dynamics model compares against the state-of-the-art approaches
for observation space models and state space models. All the results are reported after averaging over 3 random seeds.
Note that our simplistic approach outperforms the state-of-the-art Learning to Query model [9].

2

Paper # 141 414

4.1 Observation Space Models

0 500 1000 1500 2000 2500
Number of Batches

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn
Ant

Consistent Dynamics
Mb-Mf

0 1000 2000 3000 4000
Number of Batches

0

200

400

600

800

1000

1200

Humanoid

Consistent Dynamics
Mb-Mf

0 500 1000 1500 2000
Number of Batches

1000

2000

3000

4000

5000

Half-Cheetah

Consistent Dynamics
Mb-Mf

0 20 40 60 80 100 120
Number of Batches

50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5

Swimmer

Consistent Dynamics
Mb-Mf

Figure 2: Comparison of the average episodic returns, for Mb-Mf agent and consistent dynamics agent on the Ant, Hu-
manoid, Half-Cheetah and Swimmer environments (respectively). Note that the results are averaged over 100 batches
for Ant, Humanoid and Half-Cheetah and 10 batches for Swimmer.

We use the hybrid Model-based and Model-free (Mb-Mf) algorithm [10] as the baseline model. The policy and the
dynamics model are learned jointly. We consider 4 Mujoco environments from RLLab [11]: Ant (S ∈ R41, A ∈ R8),
Humanoid (S ∈ R142, A ∈ R21), Half-Cheetah (S ∈ R23, A ∈ R6) and Swimmer (S ∈ R17, A ∈ R3). For computing the
consistency loss, the learner’s dynamics model is unrolled for k = 20 steps and GRU model is used[12].

Figure 2 compares the average episodic returns for the baseline Mb-Mf model (does not use consistency loss) and the
proposed consistent dynamics model (Mb-Mf model + consistency loss). Using consistency helps to learn a better policy
in fewer updates for all the environments. We also study the effect of changing k (during training) (k ∈ {5, 10, 20}) and
observe that a higher value of k (k = 20) leads to better returns for all the tasks.

4.2 State Space Models

We use the state-of-the-art Learning to Query model [9] as the baseline. We train an expert policy for sampling high-reward
trajectories which are used to train the policy (using imitation learning) and the dynamics model (by max-likelihood).
We consider 3 continuous control tasks from the OpenAI Gym suite [13]: Half-Cheetah, Fetch-Push and Reacher. During
the open loop, the dynamics model is unrolled for k = 10 steps for Half-Cheetah and k = 5 for other tasks.

Half-Cheetah
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
ita

tio
n

Le
ar

ni
ng

 L
os

s

Consistent Dynamics
Learning to Query

Reacher
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Consistent Dynamics
Learning to Query

Fetch-Push
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Consistent Dynamics
Learning to Query

Figure 3: Comparison of imitation learning loss for the Consistent Dynamics agent (ie Learning to Query agent + consistency
loss) and the baseline (just Learning to Query) for Half-Cheetah and Reacher environments. The plot for Fetch-Push
environment is in the appendix. The bars represents the values corresponding to the trained agent, averaged over the
last 50 batches of training. Using consistency constraint leads to a more powerful policy.

In figure 3, we compare the imitation learning loss for the Consistent Dynamics agent (Learning to Query agent with
consistency loss) and the baseline (Learning to Query agent) and show that consistency constraint helps to learn a more
powerful policy. Sampling from recurrent dynamics model is prone to compounding errors as even small prediction errors
can compound when sampling for a large number of steps. We evaluate the robustness of the proposed model by
unrolling the model for much longer (50 timesteps) than it was trained on (10 timesteps). We observe that the auxiliary
cost (which is not solely focused on predicting the next observation) helps to learn a better model

4.3 Atari Environment

We evaluate the proposed approach on Atari games [14] using A2C as the baseline model and by adding consistency
loss to A2C to obtain the Consistent Dynamics model. Specifically, we consider four environments - Seaquest, Break-

3

Paper # 141 415

1 2 3 4 5 6
Number of frames (in millions)

500

1000

1500

2000

2500
E

pi
so

di
c

R
ew

ar
d

A2C
Consistent Dynamics

(a) Seaquest

0 1 2 3 4
Number of frames (in millions)

0

200

400

600

E
pi

so
di

c
R

ew
ar

d

A2C
Consistent Dynamics

(b) Breakout

0 2 4 6
Number of frames (in millions)

1000

2000

3000

4000

E
pi

so
di

c
R

ew
ar

d

A2C
Consistent Dynamics

(c) MsPacman

0 1 2 3 4 5
Number of frames (in millions)

150

200

250

E
pi

so
di

c
R

ew
ar

d

A2C
Consistent Dynamics

(d) Frostbite

Figure 4: Comparison of average episodic return on four Atari environments (Seaquest, Breakout, MsPacman and Frost-
bite respectively), for the Consistent Dynamics agent (ie A2C agent + consistency loss) and the baseline (just A2C). Using
consistency constraint leads to a more powerful policy. Note that the results are average over 100 episodes.

out, MsPacman, and Frostbite and show that the proposed approach is more sample efficient as compared to the A2C
approach thus demonstrating the applicability of our approach to different environments and learning algorithms.

5 Conclusion

In this work, we formulate a way to ensure consistency between the predictions of a dynamics model and the real
observations from the environment thus allowing the agent to learn powerful policies. We apply an auxiliary loss which
encourages the state transitions in the actual environment to be indistinguishable from state transitions in the learner’s
dynamics model. We consider both observation space and state space models and show that the proposed method
outperforms the sophisticated baselines despite being quite simple.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[2] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. ArXiv e-prints, February 2016.

[3] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust Region Policy Optimization. ArXiv e-prints,
February 2015.

[4] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–472, 2011.

[5] Erik Talvitie. Model regularization for stable sample rollouts. In UAI, 2014.
[6] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor Forcing: A New Algorithm for

Training Recurrent Networks. ArXiv e-prints, October 2016.
[7] Claire Cook, Noah D Goodman, and Laura E Schulz. Where science starts: Spontaneous experiments in preschoolers

exploratory play. Cognition, 120(3):341–349, 2011.
[8] Bryan C Daniels and Ilya Nemenman. Automated adaptive inference of phenomenological dynamical models.

Nature communications, 6:8133, 2015.
[9] L. Buesing, T. Weber, S. Racaniere, S. M. A. Eslami, D. Rezende, D. P. Reichert, F. Viola, F. Besse, K. Gregor, D. Hass-

abis, and D. Wierstra. Learning and Querying Fast Generative Models for Reinforcement Learning. ArXiv e-prints,
February 2018.

[10] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural Network Dynamics for Model-Based Deep Reinforce-
ment Learning with Model-Free Fine-Tuning. ArXiv e-prints, August 2017.

[11] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking Deep Reinforcement Learning for
Continuous Control. ArXiv e-prints, April 2016.

[12] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation. ArXiv e-prints, June 2014.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

[14] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evalua-
tion platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

4

Paper # 141 416

An Attractor Neural-Network for Binary Decision Making

 Ashley Stendel Thomas R. Shultz
 Department of Computer Science Department of Psychology
 McGill University McGill University
 ashley.stendel@mail.mcgill.ca thomas.shultz@mcgill.ca

Abstract

We apply an attractor neural-network model to experiments on monkeys who decide which direction tokens
are moving, while firing rates of large numbers of neurons in premotor cortex are being recorded. Using
pools of artificial excitatory and inhibitory neurons, our network model accurately simulates the neural
activity and decision behavior of the monkeys. Among the simulated phenomena are decision time and
accuracy, commitment, patterns of neural activity in trials of varying difficulty, and an urgency signal that
builds over time and resets at the moment of decision.

Keywords: Decision making; computer simulation; attractor neural-networks; inhibition and excitation;
urgency.

Acknowledgements

This work was supported in part by grants from NSERC (Natural Sciences and Engineering Research
Council of Canada RGPIN/7927-2012) and UNIQUE (Unifying Neuroscience and artificial Intelligence in
Quebec 2020-RS4-265502). We thank Dr. Paul Cisek for his feedback and pointers.

Paper # 83 417

1 Introduction

We focus on simulating experiments tracking neural firing in a pair of Macaque monkeys who were trying to
decide the predominant direction in which a population of 15 jumping tokens were moving, to the left or
right, under three levels of trial difficulty (Thura & Cisek, 2014). The monkeys were rewarded with juice if
they correctly predicted the direction. Neural activity recordings were taken from individual neurons in the
dorsal premotor (PMd) and primary motor cortex (M1). During deliberation, activity in both cortical regions
tracked token movement information and combined it with a growing urgency signal that predicted the end
of a trial. Neural activity responded to changes in token jumps. Approximately 280 ms before reach onset,
PMd activity tuned to the selected target reached a consistent peak while activity tuned to the unselected
target was suppressed.
Easy, ambiguous, and misleading trials were classified post hoc from fully random trials. The monkey’s
reaches were earlier in easy trials than in difficult or misleading trials. There was also a trend for decisions to
be made at a lower level of accuracy as time passed. Both monkeys and humans (Cisek, Puskas, & El-Murr,
2009) performing this task decreased their accuracy criterion over time. Other work suggested that this was
due to a growing urgency signal (Churchland, Kiani, & Shadlen, 2008; Cisek et al., 2009; Standage, You, Wang,
& Dorris, 2011). Faced with a time sensitive decision, there is an increased need to act as the deadline looms.

2 Methods

2.1 Network Architecture

We simulate the monkey experiment (Thura & Cisek, 2014) with a custom, attractor neural-network having
two pools of excitatory units each tuned to a particular decision (left vs. right). Each token jump sends an
excitatory signal to the pool that is tuned to a particular side. Each of the two excitatory pools, in turn, excites
its own pool of inhibitory units, which send inhibitory signals to the opposing excitatory pool. These differing
numbers correspond to the approximate ratio of excitatory to inhibitory brain neurons (Song, Yang, & Wang,
2016). Such attractor networks have been used to simulate both decision-making and working-memory
phenomena in a variety of contexts (Grossberg, 1982; Wang, 2009).

Figure 1: Network architecture

2.2 Inputs

A trial consists of a randomly generated sequence of a total of 15 left or right token jumps. A jump is simulated
by presenting a 1 to the excitatory pool that is tuned to the corresponding side. We control level of difficulty
by the proportions of token jumps to each side. The proportion of tokens jumping toward the correct side and
incorrect side for easy, medium, and hard difficulty are 0.8 and 0.2, 0.7 and 0.3, and 0.55 and 0.45, respectively.
Each time cycle is represented by one token jump.

2.3 Connection weights and activation changes

Units within each excitatory pool are fully interconnected with connection weights of .0325. The 75 excitatory
units in each pool send excitatory signals to a linked pool of 25 inhibitory units to which they are fully and
unidirectioanlly connected, with connection weights of .15. These inhibitory units are not inter-connected, but
send inhibitory signals to the opposite excitatory pool due to weights of -.06, also unidirectionally.

Paper # 83 418

At decision time, the excitatory pool with the higher activation is considered the chosen side, and the
suppressed excitatory pool is the unchosen side. A unit’s activation level is updated by taking its net input
and applying an excitatory or inhibitory shifted sigmoidal activation function scaled by our urgency function.
The excitatory activation function is shifted such that activation is at rest when net input is 0. Inhibitory unit
activations stem from positive excitatory units and positive weights, and have a minimum net activation of
0. To ensure that inhibitory units can have activations ranging from 0-1, we shift the curve such that activation
is also 0 when net input is 0. The urgency signal is modulated by time and the absolute difference of tokens
at each of the two sides.
Each time cycle, 150 excitatory units are randomly selected, with replacement, to be updated. When an
excitatory unit is updated, its 25 corresponding inhibitory units are then updated. At the end of each time
cycle, the units decay according to a decay rate.

2.4 Simulations

We run our model for single decision trials and commitment tests. We analyze time to decision, activation
levels, and commitments, and compare simulation results to monkey results (Thura & Cisek, 2014). To test
whether commitment is reached, we fix the current value of urgency at decision time and continue the current
trial. After 15 token jumps, the same network continues with another 15 jumps, using an easy trial favoring
the alternate target.

3 Results

3.1 Activation patterns for single decisions

Activation patterns behave much the same at each level of difficulty. As seen in Figure 2B, activation in an
excitatory pool increases when a token moves to that side, and decreases for the alternate excitatory pool. As
seen in Figure 2A, there is a gradual buildup to an activation peak at decision, and mean peak activation for
increasing difficulty is 0.39, 0.39, and 0.38 for the selected pool and 0.1 for suppressed pool. Immediately after
the peak, activation quickly returns back to baseline (driven by resetting urgency). The network’s activation
fluctuates based on the remaining evidence. This pattern is consistent with the monkey evidence (Thura &
Cisek, 2014).

3.2 Decision time and decision correctness

To determine whether the model differentiates between levels of difficulty, we test the three levels of difficulty
and record the decision time and the percentage of choosing the correct target. Mean decision times (in cycles),
are 6.35 for easy, 7.7 for medium, and 9.3 for hard trials. A 1-way ANOVA linear trend test is significant, F(1,
57) = 20.4, p < .001. With an LSD multiple comparison, all three means differ from each other, ps < .05, thus
simulating the monkey data.
A B

Figure 2: A) Activation levels for three single replications, illustrating the timing of activation peaks and
resetting of urgency at decision. B) Example of excitatory activations in a medium trial, along with token
jumps at each time cycle. Activation follows the evidence presented, and reaches a peak at decision before
returning back to baseline.

Paper # 83 419

Decisions are more accurate simpler trials, reproducing the trend in the monkey data. Over 20 trials, the model
selects the correct target in 100% of easy trials, 95% of medium trials, and 65% of hard trials. Overall !"2(2) =
12.4, p < .005. For hard trials vs. the rest, #"2(1) = 12.1, p < .001.
3.3 Commitment
To determine if commitment is reached at decision time, we test to see if the network falls into a stable attractor
state. Activation in the selected excitatory pool rises until it reaches an asymptote, falling into a stable
attractor, where contradictory new evidence over the last 15 cycles does not change the initial decision. To
assess whether commitment varies with trial difficulty, we do a one-way ANOVA of last cycle activation in
the winning excitatory pool with trial difficulty as the between-replication factor, F(1, 57) = 719, p < .001,
$%&'()&*" 	= .96. All three means differ from each other by the LSD test, ps < .001. Although there is no
comparable measure of commitment in the monkey data, this simulation result confirms the attractor
characteristics of our model.

4 Discussion
Our results show that an attractor neural network with a pair of excitatory and inhibitory pools with a winner-
take-all competition mediated by mutual inhibition provides a computationally sufficient way to simulate
dynamic decisions in continually changing environments. Our neural attractor algorithm accurately
simulates several empirical results seen in monkey experiments (Thura & Cisek, 2014): (1) an activity pattern
of rising in one of two pretuned pools of excitatory neurons, (2) the correctness and latency of decisions made
in various trial types, (3) approximately uniform activation levels reached in trials of varying difficulty.
There are a few additional phenomena in the monkey results that we have not yet tried to simulate, including
a comparison of fast vs. slow blocks of trials, the effects of misleading evidence and analyze activation changes
in the pools of inhibitory units. Analogously, the study of inhibitory neurons in neural recording experiments
have not yet documented the functioning of inhibitory neurons. A study of inhibitory pools in our models
could furnish useful predictions for monkey inhibitory neurons in neural recording experiments.
The current model is limited to binary decisions, whereas many realistic decisions involve more than two
options. Recent eye-tracking research has found that humans decide among multiple options by making
pairwise comparisons of options (Noguchi & Stewart, 2014). It could be interesting to implement such
pairwise comparisons to simulate multi-option decision making. It has been proposed that there are dedicated
brain circuits for processing binary decisions (Wang, 2009). Perhaps these circuits could also process multiple
options using a pairwise method.
Although there are widely accepted models for simulating binary decision tasks that would produce similar
results, our model offers a biologically detailed neural mechanism for making committed decisions based on
continually changing evidence and confirms the role of urgency in such decisions. Additionally, this model
will serve as a prediction for the role of inhibitory units in an urgency gating, attractor model. Two pools of
excitatory neurons each compete through mutual inhibition. A decision is made when the excitatory activity
of one pool suppresses the other excitatory pool.

5 References

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature
Neuroscience, 11(6), 693–702.

Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: the urgency-gating model. J.
Neurosci., 29, 11560–11571.

Grossberg, S. (1982). Studies of mind and brain: Neural principles of learning, perception, development, cognition, and
motor control. Boston, MA: Reidel.

Song, H. F., Yang, G. R., & Wang, X. J. (2016). Training excitatory-inhibitory recurrent neural networks for
cognitive tasks: A simple and flexible framework. PLoS Computational Biology, 12(2), 1–30.

Standage, D., You, H., Wang, D.-H., & Dorris, M. C. (2011). Gain modulation by an urgency signal controls
the speed–accuracy trade-off in a network model of a cortical decision circuit. Frontiers in Computational
Neuroscience, 5(February), 1–14.

Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during
dynamic decision making. Neuron, 81(6), 1401–1416.

Wang, X. J. (2009). Attractor network models. Encyclopedia of Neuroscience, 1, 667–679.

Paper # 83 420

Reinforcement learning for mean-field teams

Jayakumar Subramanian
Department of Electrical and Computer Engineering

McGill University
Montreal, QC H3A0G4

jayakumar.subramanian@mail.mcgill.ca

Raihan Seraj
Department of Electrical and Computer Engineering

McGill University
Montreal, QC H3A0G4

raihan.seraj@mail.mcgill.ca

Aditya Mahajan
Department of Electrical and Computer Engineering

McGill University
Montreal, QC H3A0G4

aditya.mahajan@mcgill.ca

Abstract

We develop reinforcement learning (RL) algorithms for a class of multi-agent systems called mean-field teams (MFT).
Teams are multi-agent systems where agents have a common goal and receive a common reward at each time step. The
team objective is to maximize the expected cumulative discounted reward over an infinite horizon. MFTs are teams
with homogeneous, anonymous agents such that the agents are coupled in their dynamics and rewards through the
mean-field (i.e., empirical distribution of the agents’ state). In our work, we consider MFTs with a mean-field sharing
information structure, i.e., each agent knows its local state and the empirical mean-field at each time step. We obtain a
dynamic programming (DP) decomposition for MFTs using a decomposition approach from literature called the common
information approach, which splits the decision making process into two parts. The first part is a centralized coordination
rule that yields the second part, which are prescriptions to be followed by each agent based on their local information.
We develop an RL approach for MFTs under the assumption of parametrized prescriptions. We consider the parameters
as actions and use conventional RL algorithms to solve the DP. We illustrate the use of these algorithms through two
examples based on stylized models of the demand response problem in smart grids and malware spread in networks.

Keywords: Reinforcement learning, mean-field teams, multi-agent reinforce-
ment learning.

Paper # 254 421

1 Introduction

In this paper, we look at reinforcement learning in cooperative multi-agent systems. Several algorithms for multi-agent
reinforcement learning have been proposed in the literature [2–4, 9–12, 18–21]. These algorithms perform well on certain
benchmark domains but there is little theoretical analysis on whether these algorithms converge to a team optimal solution.
In this paper, we present a different view on multi-agent reinforcement learning. Our central thesis is that multi-agent
systems for which the team optimal planning solution can be obtained by dynamic programming [13–15], it should be
straightforward to translate these dynamic programs to reinforcement learning algorithms.

2 Model

Consider a multi-agent team with n agents, indexed by the set N = {1, . . . , n}. The team operates in discrete time for an
infinite horizon. Let Xi

t ∈ X and U it ∈ U denote the state and action of agent i ∈ N at time t. Note that the state space X
and action space U are the same for all agents. For ease of exposition, we assume that X and U are finite sets. Given a vector
x = (x1 . . . xn) ∈ Xn of length n, let ξ(x) denote the mean-field (or empirical distribution) of x, i.e., ξ(x) = 1

n

∑
i∈N δxi .

Let Zt = ξ(Xt) denote the mean-field of the team at time t and Z denote the space of space of realizations of Zt. Note that
Z has at most (n+ 1)|X | elements. Let ({xt}t≥0, {ut}t≥0) denote a realization of ({Xt}t≥0, {Ut}t≥0) and let zt = ξ(xt). We
assume that the initial states of all agents are independent, i.e., P(X0 = x0) =

∏
i∈N P(Xi

0 = xi0) =:
∏
i∈N P0(xi0), where

P0 denotes the initial state distribution of agents. We assume that the global state of the system evolves in a controlled
Markov manner, i.e., P(Xt+1 = xt+1 | X0:t = x1:t, U0:t = u0:t) = P(Xt+1 = xt+1 | Xt = xt, Ut = ut). All agents are
exchangeable, so the state evolution of a generic agent depends on the states and actions of other agents only through the
mean-fields of the states, i.e., for agent i:

P(Xt+1 = xt+1 | Xt = xt, Ut = ut) =
∏

i∈N
P(Xi

t = xit, U
i
t = uit, Zt = zt) =:

∏

i∈N
P (xit+1 | xit, uit, zt),

where P denotes the control transition matrix. Combining all of the above, we have

P(Xt+1 = xt+1 | X0:t = x0:t, U0:t = u0:t) =
∏

i∈N
P (xit+1 | xit, uit, zt). (1)

The system has mean-field sharing information-structure, i.e., the information available to agent i is given by: Iit = {Xi
t , Zt}.

We assume that all agents use identical (stochastic) control law: µt : X × Z → ∆(U) to choose the control action at time t,
i.e., U it ∼ µt(Xi

t , Zt). Let µ = (µ1, µ2, . . .) denote the team policy for all times. Note that, in general, restricting attention to
identical policies may lead to a loss of optimality. See [1] for an example. Nonetheless, identical policies are attractive for
reasons of fairness, simplicity, and robustness.

The team receives a per-step reward given by: Rt ∼ r(Xt,Ut). Given strategy µ = (µ1, µ2, . . .) the expected total reward
incurred by the team is given by:

J(µ) = Eµ
[∞∑

t=0

γtRt

]
, (2)

where γ ∈ (0, 1) is the discount factor. The objective is to choose a policy µ to maximize the performance J(µ) given by (2).

3 Solution approach

The mean-field team model formulated above is a multi-agent team problem with non classical information structure. A
planning solution of this model was presented in [1], which we summarize below for completeness. We then present a
framework for using reinforcement learning in such models.

3.1 Planning solution for mean-field teams

Given any policy µ = (µ1, µ2, . . .) and any realization, z = (z1, z2, . . .) of the mean-field, define prescriptions ht : X → ∆(A)
given by ht(x) = µt(x, zt), ∀x ∈ X . LetH denote the space of all such prescritions. When the mean field trajectory is a
random process, the prescriptions ht is a random vector which we denote Ht. The results of [1] relies on the following two
key properties. Let (z1:t+1, h1:t) denote any realization of (Z1:t+1, H1:t). We have:

1. {Zt}t≥1 is a controlled Markov process with control action ht, i.e., Pµ(Zt+1 = zt+1 | Z1:t = z1:t, H1:t = h1:t) =
P(Zt+1 = zt+1 | Zt = zt, Ht = ht). Note that the right hand side does not depend on the choice of de-
cision rule µ. Furthermore, the right hand side can be simplified as: P(Zt+1 = zt | Zt = zt, Ht = ht) =∑
xt+1:ξ(xt+1)=zt+1

∏
i∈N P (xit+1 | xit, ht(xit), zt), where xt is any state such that ξ(xt) = zt.

1

Paper # 254 422

2. The expected per-step reward simplifies as follows. E[r(Xt,Ut)|Z1:t, H1:t] = E[r(Xt,Ut)|Zt, Ht] =: r̃(Zt, Ht).

It is shown in [1] that these two properties imply that the optimal policy µ can be identified as follows.

Theorem 1 Let V : Z → R be the unique bounded fixed point of the following equation:

V (z) := max
h∈H

E[r̃(z, h) + γV (Zt+1)|Zt = z,Ht = h]. (3)

Let ψ(z) be an arg max of the right hand side of (3). Then the policy, µ(x, z) = ψ(z)(x), is an optimal policy for Problem (2). 2

The action space H of the above dynamic program is all functions functions from X to ∆(U). We assume that H is
approximated by some family of parametrized functions HΦ = {hφ}φ∈Φ (where Φ is a compact and convex set) such
as Gibbs/Boltzmann functions or neural networks. With such a parametrization, the dynamic program of (3) may be
approximated as:

V (z) = max
φ∈Φ

E[r̃(z, hφ) + γV (Zt+1) | Zt = z,Ht = hφ] (4)

Let ψ̂(z) be an arg max of the right hand side of (4). Then the policy, µ(x, z) = hψ̂(z)(x), is the best policy for Problem (2)
when µt(·, zt) is restricted to belong toHΦ.

3.2 Reinforcement learning for mean-field teams (MFT-RL)

In this section, we present a reinforcement learning algorithm for the special case where the reward is a cumulative
reward, i.e., Rt = 1

n

∑
i∈N R

i
t, where Rit ∼ r̂(Xi

t , U
i
t , Zt). We assume that we have access to a simulator for P (· | xit, uit, zt)

and r̂(xit, u
i
t, zt). This simulator is for a generic agent and takes the current local state, current local action and current

mean-field as input and generates a sample of the local next state and the total reward as output. Using n copies of this
simulator, we create a simulator for the mean-field dynamics. We start with n agents with initial local state sampled
according to P0. We assume that all these agents use a common stochastic policy ψ̂ : Z → Φ to generate prescription
parameters φt ∼ ψ̂(zt). Given this sampled value of φt, each agent independently samples a control action uit ∼ hφt(x

i
t).

The actions uit of agent i and the current mean-field zt are given as input to the ith simulator and the sampled output
(Xi

t+1, R
i
t) are averaged to obtain (Zt+1, Rt). Thus, we have a simulator with internal state zt. This simulator takes φt as

an input and gives (Zt+1, Rt) as sampled next mean-field state and reward. Thus, this is a simulator for P (zt+1 | zt, hφt
)

and r̃(zt, hφt
). We can use this simulator with any standard RL algorithm to find the optimal policy for the dynamic

program (4). In our experiments below, we use TRPO [16], PPO [17] and NAFDQN [5].

4 Numerical experiments

4.1 Benchmark domains

We consider the following domains to illustrate different decentralized reinforcement learning algorithms.

4.1.1 Demand response in smart grids

This is a stylized model for demand response in smart grids [1]. The system consists of n agents, where X = {0, 1},
U = {∅, 0, 1},

P (· | ·, ∅, z) = M (5)
P (· | ·, 0, z) = (1− ε1) [1 0

1 0] + ε1M (6)
P (· | ·, 1, z) = (1− ε2) [0 1

0 1] + ε2M, (7)

where M denotes the “natural” dynamics of the systems and ε1 and ε2 are small positive constants.

The per-step reward is given by: Rt = −
(

1
n

∑
i∈N

(
c01{Ui

t=0} + c11{Ui
t=1}

)
+ KL(Zt‖ζ)

)
, where c0 and c1 are costs for

taking actions 0 and 1 respectively, ζ is a given target distribution and KL(Zt‖ζ) denotes the Kullback-Leibler divergence
between Zt and ζ. In our experiments, we consider we consider a system with n = 100 agents, initial state distribution
P0 = [1/3, 2/3], M = [0.25 0.75

0.375 0.625], c0 = 0.1, c1 = 0.2, ζ = [0.7, 0.3], ε1 = ε2 = 0.2 and discount factor γ = 0.9.

2

Paper # 254 423

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps ×105

−3.0

−2.5

−2.0

−1.5

−1.0

R
et

ur
ns

Smart Grid - 100 Agents

VI

NAFDQN

PPO

TRPO

Figure 1: Demand response domain (25 independent runs).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps ×105

−4.6

−4.4

−4.2

−4.0

R
et

ur
ns

Malware Spread - 100 Agents

NAFDQN

PPO

TRPO

Figure 2: Malware spread domain (15 independent runs).

4.1.2 Malware spread in networks

This is a stylized model for malware spread in networks [6–8]. The system consists of n agents where X = [0, 1], U = {0, 1}.
The dynamics are given by:

Xi
t+1 =

{
Xi
t + (1−Xi

t)ωt, for Ut = 0,

0 for Ut = 1,

where ωt ∼ Uniform[0, 1]. The per-step reward is given by: Rt = −
(

1
n

∑
i∈N (k + 〈Zt〉)Xi

t + λU it

)
, where 〈Zt〉 denotes

the average of Zt, and λ is the cost of taking action 1. In our experiments, we consider k = 0.2, initial state distribution
P0 = Uniform(X), λ = 0.5 and discount factor γ = 0.9. For the simulation, we discretize the state space into 11
bins—0, 0.1, . . . , 1.

4.2 Simulation results

We consider three variants of MFT-RL algorithms, which use different RL algorithms for the mean-field system—TRPO,
PPO and NAFDQN. Figure 1 shows the result for the demand response domain and Figure 2 shows the result for the
malware spread domain. For each of the MFT-RL algorithms, the dark line shows the median performance and the shaded
region shows the region between the first and third quartiles across multiple independent runs. For the demand response
domain we also show the optimal performance obtained using the value iteration algorithm presented in [1]. All these
variants of MFT-RL algorithms converge almost to the optimal value.

4.3 Mean-field approximations

Mean-field approximations are a common approach to simplify the planning solution of mean-field coupled systems. The
main idea is to approximate a large population system with an infinite population system, find the optimal policy for the
infinite population system and use that policy in the finite population system. Under appropriate regularity conditions, it
can be shown that such an approximate policy is ε-optimal where ε is O(1/n) or O(1/

√
n). Such approximations rely on

the system model and are not appropriate in the learning setup. However, the mean-field approximation results suggest
some form of continuity in the optimal policy as the number of agents becomes large. This motivates us to investigate the
reverse question. Can we find an approximate policy for a n−agent mean-field team by running MFT-RL on m agents,
where m < n?

We investigate this idea in the demand response domain. We use MFT-RL for m = 100 agents using TRPO and PPO, and
use the resultant policy in the systems with n > 100 agents. We compare this performance with optimal planning solution
obtained using value iteration. The results are shown in Figure 3. This shows that the policy obtained for the 100 agent RL
environment performs reasonably well in environments with larger number of agents as well.

5 Conclusion

There are many results in the Dec-POMDP/decentralized control literature where a team optimal solution can be obtained
using dynamic programming. Our central thesis is that for such models one can easily translate the dynamic program to a
reinforcement learning algorithm. We illustrate this point by using mean-field teams as an example. This allows us to use
standard off-the-shelf RL algorithms to obtain solutions for some MARL setups. The numerical results show that standard
single agent RL algorithms work for RL for MFTs.

3

Paper # 254 424

100 200 300 400 500 600 700 800 900 1000
Number of agents

1.4

1.2

1.0

0.8

0.6

Pe
rfo

rm
an

ce

VI
TRPO
PPO

Figure 3: Performance of policy obtained in 100 agent system in systems with larger number of agents.

References

[1] ARABNEYDI, J., AND MAHAJAN, A. Team optimal control of coupled subsystems with mean-field sharing. In IEEE
CDC (2014), pp. 1669–1674.

[2] BUŞONIU, L., BABUŠKA, R., AND DE SCHUTTER, B. Multi-agent reinforcement learning: An overview. In Innovations
in multi-agent systems and applications-1. Springer, 2010, pp. 183–221.

[3] FOERSTER, J., NARDELLI, N., FARQUHAR, G., TORR, P., KOHLI, P., WHITESON, S., ET AL. Stabilising experience
replay for deep multi-agent reinforcement learning. arXiv:1702.08887, 2017.

[4] FOERSTER, J. N., SONG, F., HUGHES, E., BURCH, N., DUNNING, I., WHITESON, S., BOTVINICK, M., AND BOWLING,
M. Bayesian action decoder for deep multi-agent reinforcement learning. arXiv:1811.01458, 2018.

[5] GU, S., LILLICRAP, T., SUTSKEVER, I., AND LEVINE, S. Continuous deep Q-learning with model-based acceleration.
In ICML (2016).

[6] HUANG, M., AND MA, Y. Mean field stochastic games: Monotone costs and threshold policies. In IEEE CDC (2016),
pp. 7105–7110.

[7] HUANG, M., AND MA, Y. Mean field stochastic games with binary action spaces and monotone costs.
arXiv:1701.06661, 2017.

[8] HUANG, M., AND MA, Y. Mean field stochastic games with binary actions: Stationary threshold policies. In IEEE
CDC (2017), pp. 27–32.

[9] LEIBO, J. Z., ZAMBALDI, V., LANCTOT, M., MARECKI, J., AND GRAEPEL, T. Multi-agent reinforcement learning in
sequential social dilemmas. In AAMAS (2017).

[10] LITTMAN, M. L. Markov games as a framework for multi-agent reinforcement learning. In ICML. (1994).
[11] LITTMAN, M. L. Friend-or-foe q-learning in general-sum games. In ICML. (2001).
[12] LITTMAN, M. L. Value-function reinforcement learning in markov games. Cogn. Sys. Research 2, 1 (2001), 55–66.
[13] MAHAJAN, A., AND MANNAN, M. Decentralized stochastic control. Ann Oper Res., 241 (June 2016), 109–126.
[14] NAYYAR, A., MAHAJAN, A., AND TENEKETZIS, D. Decentralized stochastic control with partial history sharing: A

common information approach. IEEE TAC 58, 7 (2013), 1644–1658.
[15] OLIEHOEK, F. A., AND AMATO, C. A concise introduction to decentralized POMDPs, vol. 1. Springer, 2015.
[16] SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M., AND MORITZ, P. Trust region policy optimization. In ICML

(2015).
[17] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV, O. Proximal policy optimization

algorithms. arXiv:1707.06347, 2017.
[18] YANG, J., YE, X., TRIVEDI, R., XU, H., AND ZHA, H. Deep mean field games for learning optimal behavior policy of

large populations. In ICLR (2018).
[19] YANG, Y., LUO, R., LI, M., ZHOU, M., ZHANG, W., AND WANG, J. Mean field multi-agent reinforcement learning.

In ICML (2018).
[20] YIN, H., MEHTA, P. G., MEYN, S. P., AND SHANBHAG, U. V. Learning in mean-field games. IEEE TAC (Mar 2014),

629–644.
[21] ZHANG, K., YANG, Z., LIU, H., ZHANG, T., AND BASAR, T. Fully decentralized multi-agent reinforcement learning

with networked agents. In ICML (2018).

4

Paper # 254 425

Approximate information state for partially observed systems

Jayakumar Subramanian
Electrical and Computer Engineering

McGill University, Montreal, QC H2T2A7
jayakumar.subramanian@mail.mcgill.ca

Aditya Mahajan
Electrical and Computer Engineering

McGill University, Montreal, QC H2T2A7
aditya.mahajan@mcgill.ca

Abstract

The standard approach for modeling partially observed systems is to model them as partially observable Markov deci-
sion processes (POMDPs) and obtain a dynamic program in terms of a belief state. The belief state formulation works
well for planning but is not ideal for learning because the belief state depends on the model and, as such, is not observable
when the model is unknown.

In this paper, we present an alternative notion of an information state for obtaining a dynamic program in partially
observed models. In particular, an information state is a sufficient statistic for the current reward which evolves in a
controlled Markov manner. We show that such an information state leads to a dynamic programming decomposition.
Then we present a notion of an approximate information state and present an approximate dynamic program based on
the approximate information state. Approximate information state is defined in terms of properties that can be estimated
using sampled trajectories. Therefore, they provide a constructive method for reinforcement learning in partially ob-
served systems. We present one such construction and show that it performs better than the state of the art for three
benchmark models.

Keywords: Partially observable Markov decision processes; reinforcement
learning; planning; approximate information state.

Paper # 265 426

1 Introduction

The theory of Markov decision processes focuses primarily on systems with full state observation. When systems with
partial state observations are considered, they are converted to systems with full state observations by considering the
belief state (which is the posterior belief on the state of the system given the history of observations and actions). Al-
though this leads to an explosion in the size of the state space, the resulting value function has a nice property—it is
piecewise linear and convex in the belief state [14]—which is exploited to develop efficient algorithms to compute the
optimal policy [9, 13]. Thus, for planning, there is little value in studying alternative characterizations of partially ob-
served models.

However, the belief state formulation is not as nice a fit for learning. Part of the difficulty is that the construction of
the belief state depends on the system model. So, when the system model is unknown, the belief state cannot be con-
structed using the observations. Therefore, critic based methods are not directly applicable. There are some results that
circumvent this difficulty [3, 7, 10]. However, many of the recent results suggest that using RNNs (Recurrent Neural
Networks [12]) or LSTMs (Long Short Term Memories [8]) for modeling the policy function (actor) and/or the action-
value function (critic) works for reinforcement learning in partially observed systems [1, 2, 5, 6, 16, 17]. In this paper, we
present a rigorous theory for planning and learning in partially observed models using the notions of information state
and approximate information state. We then present numerical experiments that show that the approximate information
state based works well on benchmark models.

2 Model

A general system with partial observations may be represented using the following stochastic input-output model. Con-
sider a system that takes two inputs: a control input Ut ∈ U and a stochastic input Wt ∈ W and generates two outputs:
an observation Yt ∈ Y and a real-valued reward Rt. The spacesW , U , and Y are Banach spaces and the stochastic inputs
(W1, . . . ,WT) are independent random variables defined on a common probability space.

Formally, we assume that there are observation functions {ft}Tt=1 and reward functions {rt}Tt=1 such that Yt =
ft(Y1:t, U1:t−1,Wt) and Rt = rt(Y1:t, U1:t,Wt). An agent observes the history Ht = (Y1:t, U1:t−1) of observations and
control inputs until time t and chooses the control input Ut = πt(Ht) according to some history dependent policy
π := {πt}Tt=1. The performance of policy π is given by

J(π) = Eπ
[T∑

t=1

Rt

]
. (1)

The objective of the agent is to choose a policy π to maximize the expected total reward J(π).

A dynamic programming decomposition. Recursively define the following value functions. VT+1(hT+1) := 0 and for
t ∈ {T, . . . , 1}:

Qt(ht, ut) = E[Rt + Vt+1(Ht+1) | Ht = ht, Ut = ut] and Vt(ht) = max
ut∈U

Qt(ht, ut). (2)

Theorem 1 A policy π = (π1, . . . , πT) is optimal if and only if it satisfies πt(ht) ∈ arg maxut∈U Qt(ht, ut).

The above dynamic program uses the history of observations and actions as state and as such a dynamic program is not
efficient for computing the optimal policy but it will serve as a reference for the rest of the analysis.

Information state and a simplified dynamic program. Let Ft = σ(Ht) denote the filtration generated by the history of
observations and control actions.
Definition 1 An information state {Zt}t≥1, Zt ∈ Z , is an Ft adapted process (therefore, there exist functions {ϑt}Tt=1
such that Zt = ϑt(Ht)) that satisfies the following properties:

(P1) Sufficient for performance evaluation, i.e., E[Rt | Ht = ht, Ut = ut] = E[Rt | Zt = ϑt(ht), Ut = ut].

(P2) Sufficient to predict itself, i.e., P(Zt+1 = zt+1|Ht = ht, Ut = ut) = P(Zt+1 = zt+1|Zt = zt, Ut = ut), for all zt+1.

There is no restriction on the space Z , although an information state is useful only when the space Z is “small” in an
appropriate sense. We have assumed that the space Z is time-homogeneous for convenience. In some situations, it may
be more convenient to construct an information state which takes values in spaces that are changing with time.

For some models, instead of (P2), it is easier to verify the following stronger conditions:

(P2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕt}Tt=1 such that Zt+1 = ϕt(Zt, Yt+1, Ut).

1

Paper # 265 427

(P2b) Is sufficient for predicting future observations, i.e., for any yt+1

P(Yt+1 = yt+1 | Ht = ht, Ut = ut) = P(Yt+1 = yt+1 | Zt = ϑt(ht), Ut = ut).

Proposition 1 (P2a) and (P2b) imply (P2).

Note that Zt = Ht is always an information state, so an information state always exists. It is straight-forward to show
that if we construct a state space model for the above input-output model, then the belief on the state given the history
of observations and controls is an information state. Below we present an example of a non-trivial information state that
is much simpler than the belief state.
Example 1 (Machine Maintenance) Consider a machine which can be in one of n ordered states where the first state is
the best and the last state is the worst. The production cost increases with the state of the machine. The state evolves in
a Markovian manner. At each time, an agent has the option to either run the machine or stop and inspect it for a cost.
After inspection, s/he may either repair it (at a cost that depends on the state) or replace it (at a fixed cost). The objective
is to identify a maintenance policy to determine to minimize the cost of production, inspection, repair, and replacement.

Let τ denote the time of last inspection and Sτ denote the state of the machine after inspection, repair, or replacement.
Then, it can be shown that (Sτ , t− τ) is an information state for the system.

The main feature of an information state is that one can always write a dynamic program based on an information state.

Theorem 2 Let {Zt}Tt=1 be an information state. Recursively define value functions {Ṽt}T+1
t=1 , where Ṽt : Zt 7→ R as follows:

ṼT+1(zT+1) = 0 and for t ∈ {T, . . . , 1}:
Q̃t(zt, ut) = E[Rt + Ṽt+1(Zt+1) | Zt = zt, Ut = ut] and Ṽt(zt) = max

ut∈U
Qt(zt, ut). (3)

Then, Qt(ht, ut) = Q̃t(ϑt(ht), ut) and Vt(ht) = Ṽt(ϑt(ht)).

Remark 1 In light of Theorem 2, an information state may be viewed as a generalization of the traditional notion of
state [11, 18]. Traditionally, the state of an input-output system is sufficient for input-output mapping. In contrast, the
information state is sufficient for dynamic programming.

The notion of information state is also related to sufficient statistics for optimal control [15]. However, in contrast to [15],
we do not assume a state space model for the underlying system so it is easier to develop reinforcement learning algo-
rithms using our notion of an information state.

Coming back to Example 1, Theorem 2 shows that we can write a dynamic program for that model using the information
state (Sτ , t − τ), which takes values in a countable set. This countable state dynamic program is considerably simpler
than the standard belief state dynamic program typically used for that model. Another feature of the information state
formulation is that the information state (Sτ , t − τ) does not depend on the transition probability of the state of the
machine or the cost of inspection or repair. Thus, if these model parameters were unknown, we can use a standard
reinforcement learning algorithm to find an optimal policy which maps (Sτ , t− τ) to current action.

Given these benefits of a good information state, it is natural to consider a data-driven approach to identify an informa-
tion state. An information state identified from data will not be exact and it is important to understand what is the loss
in performance when using an approximate information state. In the next section, we present a notion of approximate
information state and bound the approximation error.

3 Approximate information state (AIS)

Roughly speaking, a compression of the history is an approximate information state if it approximately satisfies (P1) and
(P2). This intuition can be made precise as follows.

Definition 2 Given positive numbers ε and δ, an (ε, δ)-approximate information state {Ẑt}Tt=1, where Ẑt takes values in
a in a Polish metric space (Ẑ, d), is an Ft adapted process (therefore, there exist functions {ϑ̂t}Tt=1 such that Ẑt = ϑ̂t(Ht))
that satisfies the following properties:

(AP1) Sufficient for approx. performance evaluation, i.e.,
∣∣E[Rt | Ht = ht, Ut = ut]−E[Rt | Ẑt = ϑ̂t(ht), Ut = ut]

∣∣ ≤ ε.

(AP2) Sufficient to predict itself approximately. For any Borel subset A of Ẑ define, µt(A) = P(Ẑt+1 ∈ A | Ht = ht,

Ut = ut) and νt(A) = P(Ẑt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut). Then, Kd(µt, νt) ≤ δ, where Kd(·, ·) denotes the
Wasserstein or Kantorovich-Rubinstein distance1 between two distributions.

1Let (X , d) be a Polish metric space. For any two probability measures µ, ν on X , the Wasserstein distance between µ and ν is:
Kd(µ, ν) = infπ∈Π(µ,ν)

∫
X d(x, y)pdπ(x, y) where Π represents the product space of the two distributions.

2

Paper # 265 428

Our main result is that one can write an approximate dynamic program based on an approximate information state.

Theorem 3 Let {Ẑt}Tt=1 be an (ε, δ)-approximate information state. Recursively define value functions {V̂t}T+1
t=1 , where V̂t : Ẑt 7→

R as follows: V̂T+1(ẑT+1) = 0 and for t ∈ {T, . . . , 1}:
Q̂t(ẑt, ut) = E[Rt + V̂t+1(Ẑt+1) | Ẑt = ẑt, Ut = ut] and V̂t(ẑt) = max

ut∈U
Q̂t(ẑt, ut).

Suppose V̂t is Lipschitz continuous with Lipschitz constant LV . Then, we have the following:

|Qt(ht, ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε and |Vt(ht) = V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.

Based on Prop. 1, we provide an alternative characterization of an approximate information state. We can replace (AP2)
with the following stronger conditions:

(AP2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕ̂t}Tt=1 such that Ẑt+1 = ϕ̂t(Ẑt, Yt+1, Ut).
Moreover, these functions are Lipschitz in Y with Lipschitz constant LU .

(AP2b) Is sufficient for predicting future observations approximately. For any Borel subset A of Y define, µt(A) =

P(Yt+1 ∈ A | Ht = ht, Ut = ut) and νt(A) = P(Yt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut). Then, K(µt, νt) ≤ δ,
Proposition 2 If (AP2) is replaced by (AP2a) and (AP2b), the result of Theorem 3 holds with LV replaced by LULV .

Corollary 1 Suppose {Zt}Tt=1 is an information state and {Ẑt}Tt=1 is an (ε, δ)-approximate information state. Then for any real-
ization ht of Ht, we have the following:

|Qt(ϑt(ht), ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε and |Vt(ϑt(ht))− V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.

4 Reinforcement learning using approximate information state

In this section, we use an approximate information state to design reinforcement learning algorithms for infinite horizon
POMDPs. We split our approach into two steps—a data-driven approach to construct an approximate information state
and reinforcement learning using this approximate information state.

Constructing an approximate information state. The definition of approximate information state suggests two ways
to construct an information state from data: either use ϑ̂(ht) to determine an approximate information state that satisfies
conditions (AP1) and (AP2) or conditions (AP1), (AP2a), and (AP2b). We present the second approach here.

We use two function approximators: (i) A recurrent neural network (RNN) or its refinements such as LSTM or GRU with
state Ct−1, inputs (Yt, Ut−1) and output Ẑt. We denote this function approximator by ρ. (ii) A feed forward network as
in the previous case, except that ν̃t+1 is the prediction of νt+1, the distribution of the next approximate information state
Ẑt+1. We denote this function approximator as ψ.

To minimize ε and δ, we train the networks ρ and ψ using the loss function Lρ,ψ = λLR + (1 − λ)Lν where LR =
1
B

∑B
t=1 smoothL1(R̃t − Rt), (where B is the batch size and smoothL1 is the standard smooth approximation for L1

loss) and Lν = −∑B−1
t=1 log(ν̃t+1(Yt+1)), which is the negative log likelihood loss for ν̃t and thus approximates the

KL-divergence between µt and νt. We use the KL-divergence as a surrogate for the Wasserstein distance because: (i)
Wasserstein distance is computationally expensive to compute; and (ii) KL-divergence upper bounds the total variation
(due to Pinsker’s inequality), which in turn upper bounds Wasserstein distance for metric spaces with bounded diameter.

Reinforcement learning. Let πθ : Ẑt 7→ ∆(Ut) be a parametrized stochastic policy, where the parameters θ lie in a closed
convex set Θ. For example, πθ could be a feed forward neural network with input Ẑt and output to be a |Ut| dimensional
vector η, where: πθ(u|ẑ) = exp(τηu)/

∑
w∈U exp(τηw), where τ is a hyperparameter. In such a policy, θ corresponds to the

weights of the network. The basic idea behind policy based reinforcement learning is to get sample path based estimates
of the performance gradient ∇θJ , which is then used as a gradient loss function for updating the parameters θ using
stochastic gradient descent.

RNN: 𝜌
NN: 𝜋𝜃 Softmax

NN: 𝜓

State: 𝐶𝑡−1

𝑌𝑡

𝑈𝑡−1 𝜂𝑡

�̂�𝑡

𝑈𝑡

To environment

�̃�𝑡

�̃�𝑡+1

An architecture for combining the construction of the approximate in-
formation state with reinforcement learning is shown on the right. In
this architecture, we train the networks (ρ, φ) and πθ in parallel using
a two time-scale algorithm. In particular, by a slight abuse of notation,
let ρ and ψ denote the weights of the corresponding networks. Then,[

ρk+1

ψk+1

]
=

[
ρk
ψk

]
+ ak∇ρ,ψLρ,ψ and θk+1 = θk + bk∇θJ(πθk),

3

Paper # 265 429

0 20000 40000 60000 80000 100000 120000 140000
Samples

−100

−80

−60

−40

−20

0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(a) Voicemail problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

−800

−600

−400

−200

0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(b) Tiger problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(c) 4× 4 grid problem

Figure 1: Performance versus samples for all examples. The solid line shows the median value and the shaded region
shows the region between the first and third quartiles over 25 runs.

where the learning rates {ak}k≥1 and {bk}k≥1 satisfy the standard two time-scale stochastic approximation conditions [4].

The results of the experiment for three small dimensional POMDP benchmarks—voicemail, tiger, and 4 × 4 grid—are
shown in Fig. 1.

References
[1] A. Baisero and C. Amato. Learning internal state models in partially observable environments;. Reinforcement Learning under

Partial Observability, NeurIPS Workshop, 2018.

[2] B. Bakker. Reinforcement learning with long short-term memory. In NIPS, 2002.

[3] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. JAIR, 15:319–350, 2001.

[4] V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):291–294, 1997.

[5] M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[6] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. Memory-based control with recurrent neural networks. arXiv:1512.04455, 2015.

[7] A. Hefny, Z. Marinho, W. Sun, S. Srinivasa, and G. Gordon. Recurrent predictive state policy networks. arXiv:1803.01489, 2018.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial
intelligence, 101(1-2):99–134, 1998.

[10] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In NIPS, 2002.

[11] A. Nerode. Linear automaton transformations. Proceedings of American Mathematical Society, 9:541–544, 1958.

[12] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning representations by back-propagating errors. Nature, 323(9):533–536,
1986.

[13] G. Shani, J. Pineau, and R. Kaplow. A survey of point-based POMDP solvers. AAMAS, 2013.

[14] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable markov processes over a finite horizon. Operations
research, 21(5):1071–1088, 1973.

[15] C. Striebel. Sufficient statistics in the optimal control of stochastic systems. Journal of Mathematical Analysis and Applications,
12:576–592, 1965.

[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory POMDPs with recurrent policy gradients. In
International Conference on Artificial Neural Networks, 2007.

[17] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal of the IGPL, 18(5):620–634, 2010.

[18] H. S. Witsenhausen. Some remarks on the concept of state. In Y. C. Ho and S. K. Mitter, editors, Directions in Large-Scale Systems,
pages 69–75. Plenum, 1976.

4

Paper # 265 430

Validation of cognitive bias represented by reinforcement learning
with asymmetric value updates

Michiyo Sugawara
Department of Cognitive and Psychological Sciences

Nagoya University
Nagoya, Aichi 4648601, Japan

sugawara.michiyo@j.mbox.nagoya-u.ac.jp

Kentaro Katahira
Department of Cognitive and Psychological Sciences

Nagoya University
Nagoya, Aichi 4648601, Japan

katahira.kentaro@b.mbox.nagoya-u.ac.jp

Abstract

Reinforcement learning (RL) models, which update the value related to a specific behavior according to a reward predic-
tion error, have been used to model choice behavior in organisms. Recently, the magnitude of the learning rate has been
reported to be biased depending on the sign of the reward prediction error. Previous studies concluded that these asym-
metric learning rates reflect positivity and confirmation biases. However, Katahira (2018) reported that the tendency to
repeat the same choice (perseverance) leads to pseudo asymmetric learning rates. Therefore, this study aimed to clarify
whether asymmetric learning rates are the result of cognitive bias, perseverance, or both by reanalyzing the data of a
previous study (Palminteri, Lefebvre, Kilford, & Blakemore, 2017). The data from the previous study consisted of two
types of learning: factual and counterfactual. In the factual learning task, participants were shown the outcome of only
the chosen option. By contrast, in the counterfactual learning task, participants were shown the outcomes of both the
chosen and the forgone options. To accomplish the purpose of this study, we evaluated multiple RL models, includ-
ing asymmetric learning rate models, perseverance models, and hybrid models. For factual learning, the asymmetric
learning rate model showed that the positive learning rate was higher than the negative one, confirming the presence of
positivity bias. A hybrid model incorporating the perseverance factor into the asymmetric learning rate model signifi-
cantly reduced the difference between the positive and negative learning rates. In contrast to factual learning, the hybrid
model did not affect the difference between positive and negative learning rates in counterfactual learning. Previous
studies suggested that these biases are common in learning systems, but on the basis of these results, it is possible that
different factors were present in factual and counterfactual learning (such as ambiguity).

Keywords: reinforcement learning; asymmetric learning rates; confirmation
bias; positivity bias; perseverance

Acknowledgements

This study was supported by Grant-in-Aid for Scientific Research (B) (18KT0021 to KK).

Paper # 87 431

1 Introduction

Reinforcement learning (RL) models have been broadly used in modeling the choice behavior of humans and animals
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Redish & Johonson, 2008). Standard RL models suppose that agents
learn action-outcome associations from obtained outcomes on a trial-and-error basis (Barto, 1997). The learned action
values are assumed to be updated according to the reward prediction error, which is the difference between the actual and
the expected rewards (Rescorla & Wagner, 1972; Sutton & Barto, 1998). Recent studies have noted that the magnitude of
an update is biased depending on the sign of the prediction error (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Gershman, 2015, 2016; Niv, Edlund, Dayan, & O’Doherty, 2012). This bias is represented in RL models by differential
learning rates for positive and negative prediction errors. Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri,
(2017) suggested that this learning asymmetry reflects the human positivity bias in factual learning, in which feedback is
given only for the option the participant choses. Palminteri et al. (2017) suggested that the learning asymmetry represent
the confirmation bias in counterfactual learning, in which feedback is given for both the chosen and forgone options.

However, Katahira (2018) suggested the possibility that the estimation of asymmetric learning rates suffered from sta-
tistical artifacts caused by model misspecification. Specifically, Katahira (2018) reported that the tendency to repeat the
same choices (perseverance) leads to pseudo asymmetric learning rates. The rationale is as follows. The asymmetry in
the value updates induces autocorrelation of choice (i.e., the tendency to repeat the same choice or to switch to another
choice, irrespective of past outcomes): the relatively larger learning rate for positive outcomes enhances the effect of
positive outcomes but diminishes the effect of negative outcomes, leading to choice repetition. If an RL model without
components that can directly represent the intrinsic autocorrelation–we call this component perseverance factors–is fit-
ted to data that possess intrinsic autocorrelation (e.g., perseveration), the model tends to represent the perseveration by
asymmetric learning rates. Therefore, a statistical bias that overestimates the difference in learning rates will arise.

According to the results of Katahira (2018), there is a possibility that the previous results reporting asymmetry in learning
rates are due to this statistical artifact because most RL models in such studies did not include choice autocorrelation
factors. However, this possibility has not yet been examined. In this study, we examine this possibility by reanalyzing
the empirical data reported in Palminteri et al. (2017) with models that include the choice autocorrelation factor. We
expect that if the asymmetry in estimated learning rates disappears after incorporating the choice autocorrelation factor,
then the asymmetry reported in previous studies is likely to be due to artifacts caused by model misspecification.

2 Methods

2.1 Data

We used open data (https://figshare.com/authors/ /2803402) for which the analysis has been reported in Palminteri et
al. (2017). Here, we briefly explain their methods. Their study included two experiments, and each experiment involved
20 participants. The participants performed a two armed-bandit task that involved choosing between two cues that were
associated with outcome probabilities. The possible outcomes were either winning or losing a point. Each experiment
consisted of a total of 192 trials. In the factual learning task (Experiment 1), participants were informed about the outcome
of only the chosen option. In the counterfactual learning task (Experiment 2), participants were informed about both the
obtained and forgone outcomes.

2.2 Models

For data from the factual learning task (Experiment 1), we used four RL models: Q model (the standard Q-learning
model, also called‘One model’in Palminteri et al., 2017), Valence model (VQ model), Perseverance model (Q-P model)
and Valence with Perseverance model (VQ-P model). The Q and VQ models were used in Palminteri et al. (2017). The
Q-P and VQ-P models are newly included in this study to validate the perseverance factor. In the Q model, the action
value for the chosen option is updated according to Qc(t + 1) = Qc(t) + α(Rc(t) − Qc(t)). The outcome of trial t is
denoted by Rc(t). Rc(t) − Qc(t) represents the prediction error, which is denoted as δc. The learning rate α determines
how much the model updates the action value with the prediction error. The initial action value of each option is set
to zero. For data from the factual learning task (Experiment 1), only the Q value for the chosen option is updated
because participants are informed about the outcome of only the chosen option. Choice probability Pc(t) is determined
by softmax function Pc(t) = 1/ [1 + exp(−β(Qc(t) − Qu(t)))]. Qc is the Q value for the chosen option, and Qu is the
value for the unchosen option. β, called as the inverse temperature parameter, determines the sensitivity of the choice
probabilities to the difference between the Q values for the two options.

The VQ model is extended from the Q model to allow for asymmetric learning rates (α+
c , α−

c) depending on the sign of
the prediction error. Thus, the Q values are updated as follows:

Qc(t + 1) =

{
Qc(t) + α+

c δc(t) if δc(t) ≥ 0
Qc(t) + α−

c δc(t) if δc(t) < 0
(1)

1

Paper # 87 432

In the Q-P model, the choice trace Ci(t) is defined to introduce the effect of past choice into the choice probability:

Pc(t) =
1

1 + exp(−β(Qc(t) − Qu(t)) − φ(Cc(t) − Cu(t)))
(2)

where φ is the choice trace weight, which is a parameter that controls the tendency to repeat or avoid recently chosen
options. The choice trace is computed using the following update rule:

Ci(t + 1) = Ci(t) + τ(I(a(t) = i) − Ci(t)) (3)

where the indicator function I(·) takes on a value of 1 if the statement is true and 0 if the statement is false. The parameter
τ is the decay rate of the choice trace. The VQ-P model is a hybrid of the VQ and Q-P models.

For data from the counterfactual learning task (Experiment 2), we used six RL models: Q model, Valence×Information
model (VIQ model), Confirmation model (CQ model), Perseverance model (Q-P model), Valence×Information with
Perseverance model (VIQ-P model), and Confirmation with Perseverance model (CQ model). The first three models
were used in Palminteri et al. (2017), and the last three models were newly added in this study. Here, all models are
allowed to update the Q values of both the chosen and unchosen options because participants were informed about both
outcomes. The Q and Q-P models have the same parameters as in the factual learning task (Experiment 1). In these
models, only one learning rate is used to update the values of both the chosen and unchosen options, regardless of the
sign of the prediction error. In the VIQ model, four different learning rates are defined to represent the asymmetric
updating for the chosen (α+

c , α−
c) and forgone (α+

u , α−
u) options. The Q value for the forgone option is computed as

follows:

Qu(t + 1) =

{
Qu(t) + α+

u δu(t) if δu(t) ≥ 0
Qu(t) + α−

u δu(t) if δu(t) < 0
(4)

where δu denotes the prediction error of the forgone option. The VIQ-P model is a hybrid of the VIQ and Q-P models.

Finally, the CQ model integrates the four learning rates used in the VIQ model into two rates (αcon, αdis) corresponding
to the confirmation bias (αcon = α+

c = α−
u , αdis = α−

c = α+
u). The CQ-P model is a hybrid of the CQ and Q-P models.

2.3 Parameter estimation and model comparison

Parameter estimation was conducted using the maximum a posteriori method. The prior distributions and constraints
followed Palminteri et al. (2017). All the learning rates were constrained to the range of 0 ≤ α ≤ 1 with a Beta (1.1, 1.1)
prior distribution. The inverse temperature was constrained to the range of 0 ≤ β ≤ ∞ with a Gamma (shape = 1.2, scale
= 5.0) distribution. In the Perseverance model, τ was constrained to the range of 0 ≤ τ ≤ 1 with a Beta (1, 1) distribution,
and φ was constrained to the range of −10 ≤ φ ≤ 10 with a Norm (µ = 0, σ2 = 5) distribution. To compare models, we
used the log marginal likelihood, which was estimated by Laplace approximation (Daw, 2011).

2.4 Statistical tests

One-way repeated measures analysis of variance (rmANOVA) was conducted to compare the log marginal likelihoods
of the models. We also investigated the difference between learning rates. For the VQ and VQ-P models in the factual
learning task, the difference between the two learning rates was compared by using a paired t test. For the VIQ and
VIQ-P models in the counterfactual learning task, two-way rmANOVAs were performed to test for differences among
the four learning rates. To correct for the violation of the sphericity assumption, Greenhouse-Geiser’s adjustment of the
degrees of freedom was used for all rmANOVAs when appropriate. Post hoc pairwise comparisons were performed
based on Shaffer’s correction for multiple comparisons.

3 Results

3.1 Factual learning task

To investigate which model could best explain the data from the factual learning task, we compared four models. We
found that the Q-P model had the highest log marginal likelihood. The log marginal likelihood for the models differed
significantly (F3,57 = 6.51, p = .018; Table 1). Post hoc comparisons showed that three models (VQ, Q-P, and VQ-P)
had higher log marginal likelihoods than the Q model (ps < .076). There was no difference between these three models
(ps > .129), suggesting that the Perseverance model was comparable with the Valence model when participants chose
their behavior in factual learning. We investigated how the degree of the asymmetry in RL varied with the models.
The positive learning rate was significantly greater than the negative learning rate in the VQ model (t19 = 2.36, p = .029;
Figure 1A), replicating Palminteri et al. (2017), but this difference was not observed in the VQ-P model (t19 = .78, p = .44;
Figure 1B). Comparison of the difference between positive and negative learning rates showed that the VQ-P model
significantly reduced the difference compared with VQ model (t19 = 3.95, p = 8.62 × 10−4).

2

Paper # 87 433

Table 1: The list of models and model selection results
Model Learning rates Perseverance Inverse # of Log marginal

temperature free parameters likelihood
Experiment 1 Q α - β 2 -99.22 (5.39)
(Factual learning) VQ α+

c , α−
c - β 3 -90.20 (5.84)

Q-P α τ, φ β 4 -88.88 (6.01)
VQ-P α+

c , α−
c τ, φ β 5 -89.49 (5.91)

Experiment 2 Q α - β 2 -89.17 (5.80)
(Counterfactual learning) VIQ α+

c , α−
c , α+

u , α−
u - β 5 -76.14 (6.67)

CQ αcon, αdis - β 3 -75.66 (6.61)
Q-P α τ, φ β 4 -78.13 (6.28)
VIQ-P α+

c , α−
c , α+

u , α−
u τ, φ β 7 -77.28 (6.69)

CQ-P αcon, αdis τ, φ β 5 -76.51 (6.59)

*

0.0

0.1

0.2

0.3

0.4

0.5

αc+ αc−

L
e
a
rn

in
g

 r
a
te

A

0.0

0.1

0.2

0.3

0.4

0.5

αc+ αc−

L
e
a
rn

in
g

 r
a
te

B
*** ***

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

αc+ αc− αu+ αu−

L
e
a
rn

in
g

 r
a
te

C
*** *

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

αc+ αc− αu+ αu−

L
e
a
rn

in
g

 r
a
te

D

Figure 1: Learning rates for the VQ model (A) and VQ-P model (B) in the factual learning task (Palminteri et al. 2017).
*p < .05, two-tailed paired t test. Learning rates for the VIQ model (C) and VIQ-P model (D) in the counterfactual
learning task (Palminteri et al. 2017). ***p < .001, *p < .05. Post hoc analyses used the modified sequentially rejective
Bonferroni procedure. All error bars represent the standard error of the mean.

3.2 Counterfactual learning task

Similar to the factual learning task, we compared six models by using the log marginal likelihood and found that the
CQ model had the highest value. ANOVA showed a significant difference between models (F5,95 = 30.09, p < .001).
Post hoc comparisons indicated that the log marginal likelihood for the Q model was different from that of the other
models (ps < .001). In addition, the CQ model had a higher log marginal likelihood than the Q-P (p = .022) and VIQ-P
(p = .04) models, meaning that even with the added perseverance factor, the CQ model best explained the data of the
counterfactual learning task. Then, we compared the four learning rates in the VIQ model. ANOVA showed that the
interaction between valence and information was significant (F1,19 = 124.88, p < .001; Figure 1C) but that the main
effects of valence and information were not significant (F1,19 = .04, p = .837; F1,19 = 6.0 × 10−4, p = .981). According
to the post hoc comparisons, α+

c and α−
u were greater than α−

c and α+
u (ps < .001), whereas the other pairs did not

show any significant differences. Additionally, the ANOVA for the VIQ-P model indicated a significant interaction
(F1,19 = 37.95, p < .001; Figure 1D) but no main effects (F1,19 = 5.0 × 10−4, p = .982; F1,19 = .30, p = .594). The
four learning rates showed the same relationship as in the VIQ model; that is, α+

c and α−
c were greater than α−

c and α+
u

(ps < .001). Although we directly compared the magnitude of the asymmetric learning rates (α+
c − α−

c + α−
u − α+

u) in the
VIQ and VIQ-P models, the difference was not significant (t19 = 1.24, p = .23). These results support the idea that the
pattern of choice behavior in the counterfactual learning task reflects confirmation bias (Palminteri et al., 2017).

4 Discussion and Conclusion

This study aimed to validate the findings in Palminteri et al. (2017) about the underlying mechanisms of the asymmetric
learning rates in the RL model by examining the possibility of the statistical artifact suggested in Katahira (2018).

For data from the factual learning task (Experiment 1), the results suggested that the Q-P model, which incorporated the
perseverance factor into a single learning rate model, was the best model. Additionally, the asymmetric learning rate
model (VQ) was comparable with the hybrid model (VQ-P). Although the VQ model had a positive learning rate that

3

Paper # 87 434

was greater than the negative learning rate, in the VQ-P model, this asymmetry diminished. These results support the
idea of Katahira (2018) that asymmetric learning rates cause an autocorrelation of choice, which can be explained by the
perseverance factor. By contrast, the CQ model was the best in the counterfactual learning task (Experiment 2). Similar
to the VIQ model, the VIQ-P model, which incorporates the perseverance factor into the VIQ model, showed robust
asymmetric learning rates in accordance with confirmation bias. Thus, these results support the findings of Palminteri et
al. (2017).

The present findings raise new questions about the effects of learning context. The results of this study suggest that
the apparently asymmetric learning rates in the factual learning task (Experiment 1) can be explained by a confounding
factor, that is, intrinsic perseveration. However, the asymmetric learning rates in the counterfactual learning task (Exper-
iment 2) cannot be explained solely by the perseverance factor. Palminteri et al. (2017) suggested that both factual and
counterfactual learning are different aspects of a common learning system. However, our present findings imply the ex-
istence of another factor. One possibility is the increased information in counterfactual learning. In factual learning, the
outcome of the forgone option remains unclear. This ambiguity leads to decreased choice probability of that option (Hsu,
Bhatt, Adolphs, Tranel, & Camerer, 2005). Ambiguity aversion leads to repeated selection of the same choice, indepen-
dent of reward expectations. Because counterfactual learning provides the outcomes of both the chosen and unchosen
options, it is reasonable that the effect of cognitive bias results from decreased ambiguity.

The present study found that whether perseverance explains the asymmetric learning rates depends on the learning con-
text and that cognitive bias can explain the asymmetric learning rates in certain contexts. Taken together, both cognitive
bias and perseverance are important factors to explain choice behavior, in which the dominance of these factors may
depend on the available information.

References

[1] Barto, A. G. (1997). Neural Systems for Control. (O. M. Omidvar & D. L. Elliott, Eds.), Reinforcement learning.
[2] Daw, N. D. (2011). Trial-by-trial data analysis using computational models. In Decision Making, Affect, and Learn-

ing: Attention and Performance XXIII Oxford University Press, 3–38.

[3] Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans ’
Choices and Striatal Prediction Errors. Neuron, 69(6), 1204–1215.

[4] Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation
reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences,
104(41), 16311–16316.

[5] Gershman, S. J. (2015). Do learning rates adapt to the distribution of rewards? Psychonomic Bulletin & Review,
22(5), 1320–1327.

[6] Gershman, S. J. (2016). Empirical priors for reinforcement learning models. Journal of Mathematical Psychology, 71,
1–6.

[7] Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of
uncertainty in human decision-making. Science, 310(5754), 1680–1683.

[8] Katahira, K. (2018). The statistical structures of reinforcement learning with asymmetric value updates. Journal of
Mathematical Psychology, 87, 31–45.

[9] Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., & Palminteri, S. (2017). Behavioural and neural
characterization of optimistic reinforcement learning. Nature Human Behaviour, 1(4), 1–9.

[10] Niv, Y., Edlund, J., Dayan, P., & O’Doherty, J. (2012). Neural prediction errors reveal a risk-sensitive reinforcement-
learning process in the human brain. Journal of Neuroscience, 32(2), 551–562.

[11] Palminteri, S. stefano palminteri’s public data. https://figshare.com/authors/ /2803402
[12] Palminteri, S., Lefebvre, G., Kilford, E. J., & Blakemore, S. (2017). Confirmation bias in human reinforcement learn-

ing: Evidence from counterfactual feedback processing. PLOS Computational Biology, 13(8), e1005684.
[13] Redish, A. D., & Johnson, A. (2008). A unified framework for addiction: vulnerabilities in the decision process.

Behavioral Brain Science, 31(4), 415–487.
[14] Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of rein-

forcement and nonreinforcement. In: Classical conditioning II: current research and theory. (P. W. Black AH, Ed.).
[15] Sutton, R. S., & Barto., A. G. (1998). Reinforcement Learning: An Introduction. (C. U. Press, Ed.), Kybernetes (Vol.

27).

4

Paper # 87 435

Inverse Reinforcement Learning from a Learning Agent

Vincent Kubala
Department of Computer Science

Brown University
Providence, RI 02912

vincent kubala@alumni.brown.edu

George Konidaris
Department of Computer Science

Brown University
Providence, RI 02912
gdk@cs.brown.edu

Amy Greenwald
Department of Computer Science

Brown University
Providence, RI 02912
amy@cs.brown.edu

Abstract

We consider the problem of inferring the reward function and predicting the future behavior of an agent that is learning.
To tackle this problem, we generalize an existing Bayesian inverse reinforcement learning algorithm to allow the actor’s
policy to change over time, as a function of their experiences, and to simultaneously infer the actor’s reward function
and methods of learning and making decisions. We show experimentally that our algorithm outperforms its traditional
inverse reinforcement learning counterpart.

Keywords: Inverse reinforcement learning, Bayesian inference

1 Introduction

Inverse reinforcement learning (IRL) is the problem of inferring an actor’s reward function in a Markov decision process
(MDP) based on their actions in that MDP. Traditional IRL algorithms assume that the actor is an expert, in the sense that
their observed actions are generated by a fixed policy that is (nearly) optimal according to their reward function. In
particular, traditional IRL algorithms do not allow for the possibility that the actor is learning.

However, there are many situations in which it would be useful to infer the reward function of a learning actor. We might
wish to learn from an agent that has not yet converged to an optimal policy. Or, we might possess knowledge of the
MDP’s dynamics and wish to advise a learning actor on how to reach their goals. Or, we might wish to recover the
reward function or predict the future behavior of one actor who is interacting with another and learning how to do so.

We generalize Bayesian IRL to accommodate an actor whose policy may change over time. We model an actor as being
characterized by a utility function, jointly determined by a reward function and an exponential discounting factor, and a
behavior rule that maps the actor’s utility function and experiences to a policy. We then generalize an existing IRL algo-
rithm to simultaneously infer the actor’s reward function and behavior rule, assuming that the discount factor is known.
We show experimentally that our algorithm outperforms its traditional IRL counterpart when the actor is learning.

2 Background: MDPs and IRL1

We model the environment as a controlled Markov process (CMP), which is a triple ν = (S,A, T), where S is a finite set of
possible states of the environment and A is a finite set of actions that the actor can execute in every state. The transition
dynamics T is a collection {τ(·|s, a) : s ∈ S, a ∈ A} of probability distributions on S that describe how the state of the
environment changes between timesteps; that is, τ(s′|s, a) gives the probability that the environment will “transition”
from state s at time t to a state s′ at time t+ 1 if the actor takes action a. Further, τ(s) alone gives the probability that the
initial state of the CMP will be s.

We observe the actor taking actions in the environment, and denote the state of the environment after the actor has taken
t actions as st and the action that the actor chose from that state as at. A sequence of states and actions form a trajectory
z = (s0, a0, s1, ...) from a set Z of possible trajectories, and we write zt to denote the t-step prefix, (s0, a0, s1, ..., st), of a
given trajectory, z. We assume that the actor has preferences over trajectories that are described by some von Neumann-
Morgenstern utility function U : Z → R. We further assume that the actor has an unknown, deterministic reward
function ρ over states, and that their utility for a trajectory can be expressed as the time-discounted sum of their rewards

1This section follows the superb presentation of IRL by Rothkopf and Dimitrakakis [8].

Paper # 288 436

for each of the states in that trajectory: U(z) ,
∑
t γ

tρ(st), where γ ∈ [0, 1], called the discount factor, defines the extent to
which the actor cares about the later states in z. We assume as usual and that ρ is parameterized by some vector, θ, from
a set, Θ, of possible such vectors. We use ρθ to denote the reward function induced by parameters θ.

The combination of a CMP and a utility function define a Markov decision process (MDP), µ = (S,A, T , ρ, γ), which fully
specifies the actor’s problem setting. The actor’s problem is then to choose a policy such that the probability distribution
over their trajectory yields maximal expected utility. A policy is a collection {π(·|s) : s ∈ S} of probability distributions
on A, such that π(a|s) gives the probability that the actor takes action a from state s. We use Pν to denote the set of
valid policies in a CMP ν.2 Together with T , a policy π induces a probability distribution ζν(·|π) on trajectories, such
that ζν(z|π) gives the probability that the actor will experience trajectory z if they enact policy π in CMP ν. The expected
utility achieved by enacting π in MDP µ is Wπ

µ , Ez∼ζµ(·|π) [U(z)], and the maximum expected utility that a policy can
achieve in µ is W ∗µ , supπ∈PµW

π
µ . Sometimes it is useful to consider the expected utility of a trajectory that begins with

an arbitrary state and action. Qπµ(s, a) gives the expected value of taking action a from state s, and thereafter choosing
actions according to π, and Q∗µ(s, a) , supπ∈Pµ Q

π
µ(s, a), for all s ∈ S, a ∈ A. Finally, a policy π is said to be optimal if

Wπ
µ = W ∗µ . Any finite MDP is guaranteed to have at least one optimal policy [6]. We use π∗µ to denote one such policy.

Abusing notation, we will sometimes use a subscript θ rather than a subscript µ on W , Q, and π∗, when all aspects of the
MDP except the parameters θ that define the reward function are clear from context.

The inverse reinforcement learning (IRL) problem can be stated as follows: Given a CMP ν, a trajectory z that an actor
has experienced in ν while enacting a fixed policy π, and the actor’s discount factor γ, achieve one of the three objectives
below:

• Reward learning. Infer the actor’s reward parameters θ. The solution takes the form of an approximation, θ̂, and
is evaluated according to its Euclidean distance from θ: Jreward(θ̂; θ) , ||θ̂ − θ||2.3

• Apprenticeship learning [1]. Produce a policy π̂ that performs as well as possible in ν according to the actor’s
unknown utility function.4 The produced policy is evaluated according to the regret of enacting it, compared to
enacting an optimal policy: Japprenticeship(π̂; θ) ,W ∗θ −W π̂

θ .

• Imitation learning. Produce a policy π̂ that replicates the actor’s policy π, either for the purpose of imitating the
actor or predicting their future behavior. The inferred policy π̂ can be evaluated at a particular state s according to
the following family of objective functions: Jimitation(π̂;π, s) , Ea∼π(·|s) [−σ(π̂(·|s), a)], where σ is a strictly proper
scoring rule [5]. In our experiments, we use a normalized version of the logarithmic scoring rule, σ(π̂(·|s), a) =

log π̂(a|s)
π(a|s) , for which Jimitation reduces to the Kullback-Leibler divergence of π̂(·|s) from π(·|s).

We focus on Bayesian IRL [2, 7, 8], where the goal is to estimate a joint posterior φ(·, ·|z) on Θ × Pν and then choose
θ̂ or π̂ to minimize one of the above objectives in expectation with respect to φ(·, ·|z). In Bayesian IRL, one starts with
a joint prior φ(·, ·) on Θ × Pν , such that φ(R,P) gives the probability that the actor’s reward parameters are in R ⊂ Θ
and policy is in P ⊂ Pν . The prior can be separated into a prior ξ(·) on Θ, and a collection of conditional distributions
{ψ(·|θ) ∀θ ∈ Θ} on Pν , such that φ(R,P) ,

∫
R
ψ(P |θ)dξ(θ),∀R ⊂ Θ, P ⊂ Pν . The posterior can be analogously divided

into ξ(·|z) and {ψ(·|θ, z) ∀θ ∈ Θ}. The statistical model of Bayesian IRL is θ ∼ ξ(·), π ∼ ψ(·|θ), z ∼ ζν(·|π).

3 IRLLA

The problem of inverse reinforcement learning from a learning agent (IRLLA) is a generalization of IRL in which the
actor’s policy may change over time as a function of their experiences: i.e., as they learn. The actor’s policy is updated
by a function that we call their behavior rule.

Definition 1. A behavior rule is a function βν , such that βν(θ, γ, z) gives the policy that the actor would enact in CMP ν after
experiencing z if their reward parameters were θ and their discount factor were γ.

A familiar kind of behavior rule maintains a Q-function, which is an estimate of Q∗µ, and uses it to guide policy selection.
We call this kind of behavior rule a value-based behavior rule (VBBR). A VBBR has three components: (1) an initial
Q-function; (2) a learning rule, such as Q-learning or SARSA [9], that specifies how to update the Q-function in light

2Pν is one of several notations to come that has a subscript CMP. When it is more convenient, we will instead subscript by an MDP
(e.g., Pµ) to refer to the CMP that comprises the MDP.

3Alternatively, θ̂ could be evaluated using the Eucidean distance between the induced and the actual reward functions.
4This objective is traditionally interpreted as learning how to perform well in µ from the actor, but it can also be interpreted as

learning how to properly advise the actor to perform well in µ, which is especially relevant when the actor is learning.

2

Paper # 288 437

of new experiences; and (3) a decision rule, such as softmax, that specifies how to choose a policy based on the Q-
function. Softmax specifies a policy π from a Q-function Q as π(a|s) ∝ exp[ηQ(s, a)], with non-negative parameter η
controlling how close the produced policy is to being optimal according to Q. Another important kind of behavior rule
is the softmax-optimal behavior rule, which uses softmax to select a policy based on the optimal Q-function, Q∗µ.

The statistical model of IRLLA is similar to that of IRL, with one small modification. In IRLLA, “the actor’s policy”
is imprecise, since it changes over time. On the other hand, the actor’s behavior rule is not only well-defined, but also
sufficient for the actor’s policy at any timestep, when paired with the actor’s reward parameters and the actor’s trajectory
up to that timestep. To see this in our notation, let πt denote the policy from which at was sampled. Then πt = βν(θ, γ, zt).
We thus infer a joint posterior over the actor’s reward parameters and behavior rule. The statistical model of IRLLA is
θ ∼ ξ(·), βν ∼ ψ(·), πt = βν(θ, γ, zt), zt+1 ∼ ζν(·|zt, πt) , where ζν(zt+1|zt, πt) = πt(at|st)τ(st+1|at, st) denotes the
probability that the t + 1-step subtrajectory of the actor’s trajectory would have been zt+1 if they had sampled at from
πt(·|st), given that their t-step subtrajectory is zt.

Now, suppose that we have (an approximation of) φ(·, ·|z) and can marginalize over behavior rules to obtain ξ(·|z). How
can we optimize the reward, apprenticeship, and imitation learning objective functions with respect to φ(·, ·|z)? Reward
learning is solved with the mean of ξ(·|z), θ̂ = Eθ∼ξ(·|z)[θ], and apprenticeship learning is solved with a policy that is
optimal according to the expected reward function, Eθ∼ξ(·|z)[ρθ] [7].5

Imitation learning is less straightforward. Because the actor’s policy changes over time in IRLLA, there are several
reasonable ways to generalize the imitation learning objective from traditional IRL to IRLLA. One is to infer the actor’s
current policy, πt; another is to predict the actor’s next action, at; yet another is to predict a sequence of the actor’s future
policies, (πt, πt+1, ...), which may be of interest when interacting with the actor in, for example, a Markov game. In all
three cases, inferring πt is either sufficient or necessary (or both), so we focus on inferring πt. For simplicity, we write
π ∼ φ(·|z) to represent generating π by sampling θ, β ∼ φ(·, ·|z) and then creating π = β(θ, γ, zt) from the sample.
Theorem 1. Let σ be a strictly proper scoring rule. Then the expected value with respect to φ(·, ·|z) of the imitation objective defined
by σ, Eπ∼φ(·|z)[Ea∼π(·|s) [−σ(π̂(·|s), a)]], is minimized for all states s ∈ S by only π̂ = Eπ∼φ(·|z)[π].

Thus, regardless of our objective, we wish to compute Eθ,β∼φ(·,·|z) [g(θ, β)] for some function g, where g(θ, β) , θ for re-
ward learning, g(θ, β) , ρθ for apprenticeship learning, and g(θ, β) , β(θ, γ, z) for imitation learning. By self-normalized
importance sampling from the prior, we obtain the following consistent estimator [3]:

E
θ,β∼φ(·,·|zT)

[g(θ, β)] ≈
N∑

i=1

g(θi, βi)P iT P iT , ζν(zT |θi, βi)∑N
j=1 ζν(zT |θj , βj)

(
θi, βi

)
∼ φ(·, ·) ∀i ∈ {1, 2, ..., N} (1)

To use this, we must compute ζν(zT |θ, β), the likelihood of (θ, β), which is the probability that in T timesteps the actor
experiences zT in ν if their reward parameters and behavior rule are θ and β, respectively. One can show by rolling out
zT one timestep at a time that ζν(zT |θ, β) =

[
τ(s0)

∏T−1
t=0 τ(st+1|st, at)

]∏T−1
t=0 β(θ, γ, zt)(at|st). When we compute P iT for

sample i, the transitions factor in the brackets on the left will appear in the numerator as well as every addend in the
denominator, since it doesn’t depend on θ or β, so it will cancel out.6 Thus, P iT = M(

∏T−1
t=0 βi(θi, γ, zt)(at|st)), where we

use M(h(i)) to abbreviate normalization over samples: M(h(i)) , h(i)∑N
j=1 h(j)

. Notice from this that for any time T and for

every sample i, P iT+1 = M(βi(θi, γ, zT)(aT |sT)P iT). This indicates that P can easily be updated incrementally over time,
which enables a simple anytime algorithm, consisting of three phases:

1. Initialization phase: Sample θi, βi ∼ φ(·, ·) for i ∈ {1, 2, ..., N}. For each sample i, compute πi0 = βi(θi, γ, z0).

2. Update phase: Upon observing (sT , aT), compute P i(T+1) = M(βi(θi, γ, zT)(aT |sT)P iT). P i0 = M(τ(s0)) = 1
N .

3. Query phase: Upon request, return our approximation of Eθ,β∼φ(·,·|zT) [g(θ, β)], which is
∑N
i=1 g(θi, βi)P iT .

In the special case that we are a priori certain that the actor’s behavior rule is softmax-optimal, as we might be in the
traditional IRL setting, this algorithm reduces to the importance sampling algorithm of Dimitrakakis and Rothkopf [2],
which is similar to their Metropolis-Hastings algorithm [8], but with the improvement that all of the expensive planning
is done in the initialization phase.

4 Experimental Results

We next demonstrate that our algorithm outperforms its traditional IRL counterpart and, preliminarily, that it is robust
to a priori uncertainty over the actor’s behavior rule. We evaluate our approach in experiments that take place in a

5Ramachandran and Amir [7] use a slightly different objective function for apprenticeship learning. The difference doesn’t matter.
6The transitions term would be 0 only if zT contains an impossible transition. Since zT is observed, this will never happen.

3

Paper # 288 438

Figure 2: The performance of each instance of the algorithm, averaged over 200 trials. Shading shows one standard error on each side.

Navigation CMP [4], pictured in Figure 1. Each cell in the environment is a state. The blue cell is a terminal state.
The actor’s reward for a state is determined by the color of that state: 0.4 for blue, 0 for white, -0.4 for red, -0.195 for
yellow, and 0.005 for green. The actor’s discount factor is 0.95. Their behavior rule is a VBBR, so it consists of an initial
Q-function, a learning rule, and a decision rule. They start off completely naive about the CMP’s dynamics, thinking
that after each action they take, their next state is sampled uniformly at random from S, and their initial Q-function is
the result of planning from these beliefs. Their learning rule is Q-learning, with learning rate 0.05. Their decision rule is
softmax with parameter η = 20.

Figure 1: Navigation CMP.
The arrows show the ac-
tor’s optimal policy.

We compare three instances of our algorithm, which differ only in their priors: traditional,
knowing, and unsure. Each approximates the posterior with 2,000 samples. They share the
same prior over reward functions but have different priors over behavior rules. The prior
over reward functions is uniform over the set Θ , {θ ∈ R5 : ||θ||1 = 1}.7 In addition, all
instances are a priori certain that the actor’s decision rule is softmax, though they are unsure of
the parameter η, over which they share an exponential prior with mean 50.

Traditional represents traditional IRL, which is the control in the experiment. It is certain that
the actor uses a softmax-optimal behavior rule. Unsure starts off 50% sure that the actor uses
a softmax-optimal behavior rule, 25% sure that the actor learns via SARSA with learning rate
0.05, and 25% sure that the actor learns via Q-learning with learning rate 0.05.

The three instances are evaluated according to each of the three objectives. In the apprentice-
ship learning graph, the “actor” bar shows the evaluation of the policy that the actor is using.
Being under this bar indicates that we are giving the actor good advice. In the imitation learn-
ing graph, the cohorts are evaluated according to the Kullback-Leibler divergence imitation
objective at the current state. The “baseline” bar shows the performance of always predicting
that the actor chooses actions uniformly at random.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the twenty-first international conference on Machine learning,

page 1. ACM, 2004.

[2] Christos Dimitrakakis and Constantin A Rothkopf. Bayesian multitask inverse reinforcement learning. In European Workshop on Reinforcement Learning, pages 273–284.
Springer, 2011.

[3] Siem Jan Koopman, Neil Shephard, and Drew Creal. Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1):2–11, 2009.

[4] James MacGlashan and Michael L Littman. Between imitation and intention learning. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[5] Edgar C Merkle and Mark Steyvers. Choosing a strictly proper scoring rule. Decision Analysis, 10(4):292–304, 2013.

[6] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

[7] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, volume 7, pages 2586–2591, 2007.

[8] Constantin A Rothkopf and Christos Dimitrakakis. Preference elicitation and inverse reinforcement learning. In Joint European conference on machine learning and knowledge
discovery in databases, pages 34–48. Springer, 2011.

[9] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

7This follows the methodology used by Dimitrakakis and Rothkopf [2]. The softmax parameter η plays the same role as ||θ||1, since
they both scale θ. Forcing ||θ||1 = 1 cleans this up by giving η unique power in this regard.

4

Paper # 288 439

Sparse Imitation Learning for Text Based Games with
Combinatorial Action Spaces

Chen Tessler∗
Technion Institute of Technology

Haifa, Israel

Tom Zahavy
Technion Institute of Technology

Haifa, Israel

Deborah Cohen
Google Research
Tel-Aviv, Israel

Daniel Mankowitz
Google DeepMind
London, England

Shie Mannor
Technion Institute of Technology

Haifa, Israel

Abstract

We propose a computationally efficient algorithm that combines compressed sensing with imitation learning to solve
sequential decision making text-based games with combinatorial action spaces. To do so, we derive a variation of the
compressed sensing algorithm Orthogonal Matching Pursuit (OMP), that we call IK-OMP, and show that it can recover a
bag-of-words from a sum of the individual word embeddings, even in the presence of noise. We incorporate IK-OMP
into a supervised imitation learning setting and show that this algorithm, called Sparse Imitation Learning (Sparse-IL),
solves the entire text-based game of Zork1 with an action space of approximately 10 million actions using imperfect, noisy
demonstrations.

Keywords: Imitation Learning, Compressed Sensing, Combinatorial Action
Spaces

∗Corresponding author: chen.tessler@campus.technion.ac.il

Paper # 56 440

1 Introduction

The curses of dimensionality, e.g., large state and action spaces, pose a major challenge when attempting to apply
reinforcement learning (RL) in practice. The goal is thus to find efficient approaches which enable the agent to cope in
such scenarios.

Visual based tasks are a common example of infinitely large state spaces for which there exist efficient approaches
[Mnih et al., 2015]. Efficiency is achieved through imitation of the human visual system. A network of convolutional
filters extracts spatial information from the image and returns a low dimensional dense representation. This efficient
representation enables agents to generalize across states and thus efficiently solve complex problems. We turn to the
Action Assembly Theory (AAT) [Greene, 2008] in order to understand how to produce an efficient approach for large
action spaces.

According to Greene [2008], behavior is described by two essential processes: representation and processing. Representation
refers to the way information is coded and stored in the mind, whereas processing refers to the mental operations
performed to retrieve this information. Having good representations of information and an efficient processing procedure
allows us to quickly exploit highly rewarding nuances of an environment upon first discovery.

Inspired by the AAT [Greene, 2008], we propose Sparse Imitation Learning (Sparse-IL), a computationally efficient algorithm
(see Figure 1). Our approach can be seen as an Encoder-Decoder scheme, in which the state is encoded into a low
dimensional continuous embedding vector which is then decoded, resulting in a viable action. This scheme dramatically
reduces the time complexity required to select the action.

Our approach Sparse-IL is presented in Figure 1. The Encoder is trained using imitation learning. At each state s, the goal
of the Encoder is to predict a continuous action aSoE, which is a dense representation of the action aenv. Specifically, aSoE is
the sum of the word embeddings of the words in the action/sentence aenv, an efficient representation from which the
words can be recovered. This dense representation is then fed into a Decoder (Retrieval Mechanism). Our decoder is
composed of 3 major components: (1) Given the vector aSoE, a Compressed Sensing (CS) algorithm reconstructs the K
best Bag-of-Words (BoW - an unordered list of words) actions aBoW, composed of up to l = 4 words. We do this using an
algorithm that we term Integer K-Orthogonal Matching Pursuit (IK-OMP). (2) The optimal BoW vector aBoW, between the
suggested K candidates, is selected based on a fitness function. In this work, we consider the reconstruction loss, i.e., the
candidate which has the closest embedding to aSoE. Finally, the BoW vector aBoW is fed into (3) a language model to yield
an action sentence aenv which is a valid environment action.

Main contributions: We propose a computationally efficient algorithm called Sparse-IL that combines CS with imitation
learning to solve natural language tasks with combinatorial action spaces. We demonstrate that Sparse-IL can solve the
entire game of Zork1, for the first time, when considering a combinatorial action space of approximately 10 million actions,
using noisy, imperfect demonstrations.

2 Background & Problem Setting

Our work focuses on the domain of Zork1, an interactive text-based game [Côté et al., 2018], for which an example is
provided in Figure 2. We model text-based games using the standard RL formulation [Sutton and Barto, 1998], where the
states are paragraphs and the actions are sentences. We consider two tasks (1) the ‘Troll Quest’, a sub-task within Zork1
in which the agent must collect a sword, find a troll and kill it with the sword, and (2) ‘Open Zork’ in which the goal is
to solve the entire game of Zork1, an open problem until now. In Zork1, the agent receives reward for advancing the
story-line, this includes reaching certain checkpoints and collecting various items. An optimal policy will receive a reward
of 45 in the ‘Troll Quest’ and 350 in ‘Open Zork’.

0
.1

1
.3

5
.4

0
.8

state

Encoder

d
oor

op
e
n

tre
e

clim
b

Language
Model

Retrieval Mechanism

actionFitness
FunctionIK-OMP

Figure 1: A graphical representation of our algorithm. Figure 2: Zork1 example screen.

1

Paper # 56 441

While Zork1 has many challenges, we focus in this work on the large and complex action space. As the actions are
free-text, it is possible to issue complex commands such as “drop all except the egg and sword” and “look under the rug”.
The walkthrough (optimal policy) we used, solves the game in ≈ 400 steps, using d = 112 unique words and sentences
composed of up to l = 4 words. Thus, the number of possible, unordered, word combinations are |A| = dl/l!, i.e., the
dictionary size to the power of the maximal sentence length, divided by the number of possible permutations. This results
in approximately 10 million possible actions.

In order to isolate the problem, we solve the task using imitation learning. Similar to Silver et al. [2016], by removing the
element of self-play, we are able to deepen our analysis and look into the the various components of our approach. We
show that our approach is capable of solving the entire game of Zork1 when considering the entire set of possible actions.
This is performed using an efficient Encoder-Decoder scheme, in which the encoding is the sum of word embeddings
aSoE, a continuous dense vector. In this work, we use pre-trained word embeddings. The decoding is performed using
a CS approach (IK-OMP, Section 3) to recover the sparse BoW representation of the action aBoW from the sum of word
embeddings aSoE. Note that this algorithmic approach does not require training and is not domain specific.

CS is concerned with recovering sparse representations, such as aBoW from low-dimensional, dense, continuous represen-
tations, here, aSoE. The former can be written as a linear combination of the latter:

min ||aBoW||0 subject to DaBoW = aSoE , (1)

where D is the embeddings matrix, whose i-th column contains the embeddings vector of the i-th token in the dictionary
D. We refer the reader to Elad [2010] for an overview which covers recovery guarantees and ability to cope with noise, in
addition to an overview of the existing approaches.

A common recovery algorithm for solving (1) is OMP [Blumensath and Davies, 2008]. The popular OMP algorithm
proceeds by iteratively finding the dictionary entry with the highest correlation to the signal residual, computed by
subtracting the contribution of a partial estimate of aBoW from aSoE. The coefficients over the selected support set are
then chosen so as to minimize the residual error. In this work, we derive our own variant OMP, referred to IK-OMP and
presented in Section 3.

3 Method

Our method combines CS with imitation learning in order to produce an efficient approach to coping with combinatorial
action space. The Encoder E(s) = aSoE, a Convolutional Neural Network (CNN) that is suited to NLP tasks [Kim, 2014], is
trained to predict the sum of word embeddings of the demonstrated action aenv, e.g., aSoE =

∑
w∈aenv

embedding(w). A
CS (Decoder) algorithm R(aSoE) = aBoW, namely IK-OMP (see explanation below), reconstructs the most plausible BoW
vector aBoW, e.g., it recovers the words which compose aSoE. Finally, the BoW vector aBoW is fed into a Language Model
M(aBoW) = aenv. The goal of the language model is to output the most likely ordering of the provided words, such that it
yields a grammatically correct sentence. In this paper, we use a rule based approach. Our rules are relatively simple, yet
work surprisingly well - e.g., given a verb and an object, the verb comes before the object - e.g., [‘sword’, ‘take’] 7→ ‘take
sword’.

The standard approaches compute the Q value for each action [Mnih et al., 2015, He et al., 2016] or compare the predicted
embedding to all the possible action embeddings [Dulac-Arnold et al., 2015], hence their time complexityO(|A|) = O(dl/l!)
operations at each step. In our approach, the Encoder is a feed-forward neural network which is invariant to the size of
the action space O(1), and the Decoder (IK-OMP) enjoys a complexity of O(l ∗ k ∗ d), as it is required to reconstruct an l
length sentence using a given dictionary D.

Integer K-OMP (IK-OMP) is an alternative CS algorithm, which we introduce in this work. We observe that the standard
CS algorithms attempt to recover a continuous BoW vector. However, as the BoW represents a sentence, it must reside in
∈ Nd. IK-OMP leverages this prior knowledge by adding an integer constraint. Additionally, as OMP iteratively adds
atoms to the recovered support, the choice of a new element in an iteration is blind to its effect on future iterations. To
mitigate this phenomenon, we suggest to use a beam-search procedure which maintains a set of K possible candidates at
each iteration. Our approach is presented in Algorithm 1. Given the final K candidates, the selected BoW vector is the one
which minimizes

argmin
ai

BoW∈[a1
BoW,...,a

k
BoW]

||aSoE −DaiBoW||22 .

4 Experiments

We focus on two experiments, in which we make use of a walkthrough of the game - a sequence of 400 actions required to
solve the game. Our first experiment evaluates the Decoder under a controlled setting, specifically, we test the ability of

2

Paper # 56 442

Algorithm 1 IK-OMP

Input: Measurement vector y ∈ Rm, dictionary D ∈ Rm×d,
maximal number of characters L and beam width K
Initial solutions X0 = [0d, . . . ,0d]
for l = 1, L do

for i ∈ [1, . . . , k] do
Extend: Append Xl−1

i +1j ,∀j ∈ [1, ..., d] to Xl−1

end for
Trim: Xl = K- argminXi∈Xl−1 ||y −DXi||22

end for
return XL

Figure 3: Runtime comparison of various
CS approaches.

Algorithm Seconds per Action
OMP 0.008
IK-OMP, K=1 0.008
IK-OMP, K=3 0.021
IK-OMP, K=20 0.166
IK-OMP, K=112 1.116
FISTA (Basis Pursuit) 0.881

the various CS approaches to reconstruct the original action given a noisy and imperfect demonstration. In the second
experiment, we add the Encoder, which is trained using imitation learning, and test the performance of the system as a
whole (Encoder + Decoder).

4.1 Compressed Sensing

We begin by comparing several CS approaches. At each state s, we take the ground-truth action aenv(s) from the
walkthrough, calculate the sum of word embeddings aSoE(s), add noise ε and test the ability of various CS methods
to reconstruct aenv(s). For each method, we compare the run-time (Figure 3), the reconstruction accuracy and the reward
gained in the presence of noise (Figure 4). Specifically, the measured action is ames(s) = aSoE(s) + ε, where ε ∼ N(0, 1)
is normalized based on aSoE(s) and the signal to noise ratio (SnR). While accuracy and reward might seem similar, an
inaccurate reconstruction at an early stage results in an immediate failure, even when the accuracy seems high.

We compare 4 CS methods: FISTA (Basis Pursuit, Arora et al. [2018]), OMP and IK-OMP. The dictionary is composed of
d = 112 possible words which can be used in the game. The dimension of the embedding is m = 50 and the sentence
length is limited to at most 4 words. This yields a total number of ≈ 10 million actions, from which the agent must choose.

Our experiments show that our suggested approach, IK-OMP, outperforms the various baselines (OMP and FISTA) both
in terms of run-time and performance and is capable of correctly reconstructing the original action aBoW, even in the
presence of relatively large noise. This gives evidence that the integer prior, in particular, and the beam search strategy
significantly improve the sparse recovery performance when considering textual signals.

Troll Quest Open Zork

Figure 4: Compressed Sensing: Comparison of the accuracy, and accumulated reward, of the various reconstruction
algorithms on the ‘Troll Quest’ and in ‘Open Zork’. FISTA with λ = 0.8 is selected based on the comparison in the ‘Troll
Quest’. The SnR denotes the ratio between the norm of the original signal aSoE and that of the added noise.

4.2 Imitation Learning

Given a data set of state-action pairs (s,aenv), provided by an expert, the goal is to learn a policy that achieves the best
performance possible. In an imitation learning (IL) setting, the goal is to learn to predict the action aenv the expert took.

The embedding network Eθ(s) is trained to predict (imitate) the sum of word embeddings aSoE(s) of the demonstrated
actions aenv(s), by minimizing the mean squared error between the predicted actions and those demonstrated. We
consider three setups: (1) Perfect demonstrations, where the goal is to test errors due to architecture capacity and function

3

Paper # 56 443

Open Zork

Figure 5: Sparse Imitation Learning: Comparison of the accuracy of each reconstruction algorithm on an agent trained
using imitation learning to solve the entire game. Left - Training, center - Gaussian Noise, right - Discrete Action Noise.
In the left graph, IK-OMP with K=20 and K=112 result in identical performance.

approximation, (2) Gaussian noise, ames(s) = aSoE(s) + ε, where the noise is encountered in the embedding space, and (3)
discrete-action noise, in which, with a fixed probability (the x-axis in Figure 5), we replace the ground truth of each sample
with a random, different, action.

Our results, depicted in Figure 5, show that the combination of CS and imitation learning is capable of solving the entire
game of Zork1 (the maximal reward is 350), even in the presence of discrete-action noise. We observe that IK-OMP
outperforms the other methods and shows improved robustness to noise. In the Gaussian noise test, we observe that
all methods are incapable of handling imperfect demonstrations - this is attributed to the additive noise, that of the
approximation error of the network and the Gaussian noise present during training.

5 Conclusions

In this work, we tackled the problem of combinatorial action spaces. We demonstrated that IK-OMP, an improved variant
of the CS algorithm OMP, is able to recover aBoW given noisy observations of aSoE. In addition, we presented a combined
approach of CS with imitation learning. Our approach, Sparse Imitation Learning, is capable of solving the entire game of
Zork1 for the first time, even when provided imperfect demonstrations. In future work, we would like to consider replacing
the fitness function, which selects between the K candidate actions, with a critic network, such that our approach will be
able to improve the performance over the noisy imitation results.

References
Sanjeev Arora et al. A compressed sensing view of unsupervised text embeddings, bag-of-n-grams, and lstms. 2018.

Thomas Blumensath and Mike E Davies. Gradient pursuits. IEEE Transactions on Signal Processing, 56(6):2370–2382, 2008.

Marc-Alexandre Côté et al. Textworld: A learning environment for text-based games. arXiv, 2018.

Gabriel Dulac-Arnold et al. Deep reinforcement learning in large discrete action spaces. arXiv, 2015.

Michael Elad. Sparse and Redundant Representations: From Theory to Applications. Springer, 2010.

John O Greene. Action assembly theory. The International Encyclopedia of Communication, 2008.

Ji He et al. Deep reinforcement learning with a natural language action space. In ACL, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv, 2014.

Volodymyr Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015.

David Silver et al. Mastering the game of go with deep neural networks and tree search. nature, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.

4

Paper # 56 444

Action Robust Reinforcement Learning and Applications in
Continuous Control

Chen Tessler∗ †

Technion Institute of Technology
Haifa, Israel

Yonathan Efroni∗

Technion Institute of Technology
Haifa, Israel

Shie Mannor
Technion Institute of Technology

Haifa, Israel

Abstract

A policy is said to be robust if it maximizes the reward while considering a bad, or even adversarial, model. In this work
we formalize a new criterion of robustness to action uncertainty. Specifically, we consider a scenario in which the agent
attempts to perform an action a, and with probability α, an alternative adversarial action ā is taken. We show that our
criterion is related to common forms of uncertainty in robotics domains, such as the occurrence of abrupt forces, and suggest
algorithms in the tabular case. Building on the suggested algorithms, we generalize our approach to deep reinforcement
learning (DRL) and provide extensive experiments in the various MuJoCo domains. Our experiments show that not only
does our approach produce robust policies, but it also improves the performance in the absence of perturbations. This
generalization indicates that action-robustness can be thought of as implicit regularization in RL problems.

Keywords: Robustness, Reinforcement Learning, Continuous Control

∗equal contribution
†chen.tessler@campus.technion.ac.il

Paper # 58 445

1 Introduction

Recent advances in Reinforcement Learning (RL) have demonstrated its potential in real-world deployment. However,
since in RL it is normally assumed that the train and test domains are identical, it is not clear how a learned policy
would generalize under small perturbations. For example, consider the task of robotic manipulation in which the task is to
navigate towards a goal. As the policy is trained on a specific parameter set (mass, friction, etc...), it is not clear what
would happen when these parameters change, e.g., if the robot is slightly lighter/heavier.

The advantage of robust policies is highlighted when considering imperfect models, a common scenario in real world tasks
such as autonomous vehicles. Even if the model is trained in the real world, certain variables such as traction, tire pressure,
humidity, vehicle mass and road conditions may vary over time. These changes affect the dynamics of our model, a property
which should be considered during the optimization process. Robust MDPs (Nilim & El Ghaoui, 2005; Iyengar, 2005)
tackle this issue by solving a max-min optimization problem over a set of possible model parameters, an uncertainty set,
e.g., the range of values which the vehicle’s mass may take - the goal is thus to maximize the reward, with respect to
(w.r.t.) the worst possible outcome.

Previously, Robust MDPs have been analyzed extensively in the theoretical community, in the tabular case (Nilim &
El Ghaoui, 2005; Iyengar, 2005) and under linear function approximation (Tamar et al., 2013). However, as these works
analyze uncertainty in the transition probabilities: (i) it is not clear how to obtain these uncertainty sets, and (ii) it
is not clear if and how these approaches may be extended to non-linear function approximation schemes, e.g., neural
networks. Recently, this problem has been tackled, empirically, by the Deep RL community (Pinto et al., 2017). While
these approaches seem to work well in practice, they require access and control of a simulator and are not backed by
theoretical guarantees - a well known problem in adversarial training (Barnett, 2018).

Our approach tackles these problems by introducing a natural way to define robustness - robustness w.r.t. action
perturbations - a scenario in which the agent attempts to perform an action and due to disturbances, such as noise or
model uncertainty, acts differently than expected. In this work, we consider a probabilistic robustness criterion: given an
action provided by the policy the Probabilistic Action Robust MDP (PR-MDP, Section 3) criterion considers the case in
which, with probability α, a different possibly adversarial action is taken. This criterion is strongly correlated to real world
uncertainty, for instance, abrupt interruptions such as a sudden push.

2 Preliminaries

2.1 Markov Decision Process

We consider the framework of infinite-horizon discounted Markov Decision Process (MDP) with continuous action space.
An MDP is defined as the 5-tuple (S,A, P,R, γ) Puterman (1994), where S is a finite state space, A is a compact and
convex action metric space. We assume P ≡ P (s′ | s,a) is a transition kernel and is weakly continuous in a, R ≡ r(s,a)
is a reward function continuous in a, and γ ∈ (0, 1). Let π : S → P(A) be a stationary policy, where P(A) is the set of
probability measures on the Borel sets of A. We denote Π as the set of stationary deterministic policies on A, i.e., if π ∈ Π
then π : S → A, and P(Π) as the set of stationary stochastic policies. Let vπ ∈ R|S| be the value of a policy π, defined in
state s as vπ(s) ≡ Eπ[

∑∞
t=0 γ

tr(st,at) | s0 = s], where at ∼ π(st) is a random-variable, Eπ denotes expectation w.r.t. the
distribution induced by π and conditioned on the event {s0 = s}.

3 Probabilistic Action Robust MDP1

Definition 1. Let α ∈ [0, 1]. A Probabilistic Action Robust MDP is defined by the 5-tuple of an MDP (see Section 2.1).
Let π, π̄ be policies of an agent an adversary. We define their probabilistic joint policy πmix

P,α(π, π̄) as ∀s ∈ S, πmix
P,α(a | s) ≡

(1− α)π(a | s) + απ̄(a | s).

Let π be an agent policy. As opposed to standard MDPs, the value of the policy is defined by

vπP,α = minπ̄∈Π Eπ
mix
P,α(π,π̄)[

∑
t γ

tr(st,at)], where at ∼ πmix
P,α(π(st), π̄(st)). The optimal probabilistic robust policy is the opti-

mal policy of the PR-MDP

π∗P,α ∈ arg max
π∈P(Π)

min
π̄∈Π

Eπ
mix
P,α(π,π̄)[

∑

t

γtr(st,at)]. (1)

Simply put, an optimal probabilistic robust policy is optimal w.r.t. a scenario in which, with probability α, an adversary
takes control and performs the worst possible action. This approach formalizes a possible inability to control the system
and to perform the wanted actions.

1Proofs are provided in the full version: https://arxiv.org/abs/1901.09184

1

Paper # 58 446

Algorithm 1 Probabilistic Robust PI

Initialize: α, π̄0, k = 0
while not changing do

πk ∈ arg maxπ′ vπ
mix
P,α(π′,π̄k)

π̄k+1 ∈ arg minπ̄ r
π̄ + γP π̄vπ

mix
P,α(πk,π̄k)

k ← k + 1
end while
Return πk−1

Algorithm 2 Soft Probabilistic Robust PI

Initialize: α, η, π̄0, k = 0
while criterion is not satisfied do

πk ∈ arg maxπ′ vπ
mix
P,α(π′,π̄k)

π̄ ∈ arg minπ̄′

〈
π̄′,∇π̄vπ

mix
P,α(πk,π̄) |π̄=π̄k

〉

π̄k+1 = (1− η)π̄k + ηπ̄
k ← k + 1

end while
Return πk−1

In-order to obtain the optimal probabilistic robust policy, one needs to solve the zero-sum game as defined in (1). It is
well known that any zero-sum game has a well defined value on the set of stochastic policies, but not always on the set of
deterministic policies. Interestingly, and similarly to regular MDPs, the optimal policy of the PR-MDP is a deterministic
one as the following proposition asserts.

Proposition 1. For PR-MDP, there exists an optimal policy which is stationary and deterministic, and strong duality

holds in Π, v∗P,α = maxπ∈Π minπ̄∈Π Eπ
mix
P,α(π,π̄)[

∑
t γ

tr(st,at)] = minπ̄∈Π maxπ∈Π Eπ
mix
P,α(π,π̄)[

∑
t γ

tr(st,at)] .

3.1 Probabilistic Action Robust and Robust MDPs

Although the approach of PR-MDP might seem orthogonal to the that of Robust MDPs, the former is a specific case of
the latter. By using the PR-MDP criterion, a class of models is implicitly defined, and the probabilistic robust policy is
optimal w.r.t. the worst possible model in this class. To see the equivalence, define the following class of models,

Pα = {(1− α)P + αPπ : P(Π)} , Rα = {(1− α)r + αrπ : π ∈ P(Π)}.
A probabilistic robust policy, which solves (1), is also the solution to π∗P,α ∈ arg maxπ′∈Π minP∈Pα,r∈Rα Eπ

′
P [
∑
t γ

tr(st,at)],
where EπP is the expectation of policy π when the dynamics are given by P . This relation explicitly shows that π∗P,α is also
optimal w.r.t. the worst model in the class Pα,Rα, which is convex and rectangular uncertainty set , and formalizes the
fact that PR-MDP is a specific instance of RMDP.

3.2 Policy Iteration Schemes for PR-MDP

The Probabilistic Robust PI (PR-PI, Algorithm 1) is a two player PI scheme adjusted to solving a PR-MDP. PR-PI repeats
two stages, (i) given a fixed adversary strategy, it calculates the optimal counter strategy, and (ii) it solves the 1-step
greedy policy w.r.t. the value of the agent and adversary mixture policy.

The Soft Probabilistic Robust PI (Soft PR-PI, Algorithm 2) is updated using gradient information, unlike the PR-PI.
Instead of updating the adversary policy using a 1-step greedy update, the adversary policy is updated using a Frank-Wolfe
update. The Franke-Wolfe update, similar to the gradient-projection method, finds a policy which is within the set of
feasible policies. Since a convex mixture of two policies is a valid policy, the new policy is ensured to be a valid one.

While the two algorithms might seem disparate, Soft PR-PI merely generalizes the ‘hard’ updates of PR-PI to ‘soft’ ones.
This statement is formalized in the following proposition, a direct consequence of Theorem 1 in Scherrer & Geist (2014).

Proposition 2. Let π, π̄ be general policies. Then, arg minπ̄′∈Π r
π̄′
+γP π̄

′
vπ

mix
P,α(π,π̄) =arg minπ̄′∈Π

〈
π̄′,∇π̄vπ

mix
P,α(π,π̃) |π̃=π̄

〉
.

Note that when η = 1 we have that both Algorithms 1 and 2 are identical. In addition, the following result shows that
both algorithms converge to the unique optimal value of the Nash-Equilibrium.

Theorem 3. Denote by vk
def
= vπ

mix
P,α(πk,π̄k). Then, for any η ∈ (0, 1], in Algorithm 2 (or η = 1 for Algorithm 1), vk

contracts toward v∗P,α with coefficient (1− η + γη), i.e.,

||vk − v∗P,α||∞ ≤ (1− η + γη)||vk−1 − v∗P,α||∞ .

4 Experiments

Our approach adapts the Soft PR-PI algorithm to the high dimensional scenario. We train both an actor and an adversary
using gradient ascent/descent. As, in practice, it is hard to measure convergence; we train the actor for N gradient steps
followed by a single adversary gradient step.

2

Paper # 58 447

We focus on a robust variant of DDPG which we call Action-Robust DDPG. In DDPG Lillicrap et al. (2015), the output of
the policy network is a deterministic policy µθ : S → A. As opposed to DDPG, in Action-Robust DDPG two networks
output two deterministic policies, the actor and adversary policies, denoted by µθ and µ̄θ̄. The critic is trained to estimate
the q-function of the joint-policy, e.g., πmix

P,α(u |s; θ, θ̄)=(1− α)δ(u− µθ(s)) + αδ(u− µ̄θ̄(s)) .

Proposition 4. Let µθ, µ̄θ̄ be the agent’s and adversary’s deterministic policies, respectively. Let π(µθ, µ̄θ̄) be the joint
policy given the agent and adversary policies. i.e., π = πmix

P,α .

Let J(π(µθ, µ̄θ̄)) = Es∼ρπ [vπ(s)] be the performance objective. The gradient of the actor and adversary parameters is:

∇θJ(π(µθ, µ̄θ̄)) = (1−α)Es∼ρπ [∇θµθ(s)∇aQ
π(s,a)] , ∇θ̄J(π(µθ, µ̄θ̄)) = αEs∼ρπ [∇θ̄µ̄θ̄(s)∇aQ

π(s, ā)] .

Figure 1: Hopper-v2: Robust param-
eter comparison.

The Action-Robust DDPG has several parameters that need to be tuned. The scalar
α which measures the adversary’s ‘strength’, the type of exploration scheme, and
the ratio between the number of gradient steps of the actor and adversary. We tune
these parameters by a naive parameter scan; we find optimal parameter given the
others are fixed, as we show in Figure 1. The parameters we choose are the ones
that attain the best performance on the Hopper domain.

We test the selected configuration, across a range of continuous control tasks in
MuJoCo, on a robustness to abrupt forces and model uncertainty task (see Figure
2). We end the experiments section with an attempt to provide some additional
insight into how and why the approach works.

4.1 Training

We test various α values, actor update steps N and exploration schemes. Each
configuration, is trained on 5 random seeds and evaluated across 100 episodes.
The evaluation is performed without adversarial perturbations, on a range of mass
values not encountered during training. We compare to the non-robust DDPG with
parameter space noise, the best performing method in the Hopper-v2 domain.

Figure 1 presents the ablation results. It is clear that the best performing exploration
scheme is OU noise, the perturbation parameter α is 0.1 (optimal under the worst
case mass perturbation during the evaluation) and the number of Actor gradient
steps (per each single Adversary step) is 10. An interesting observation is that even
when lacking additional external noise, the agent reaches high performance, this
suggests that the adversary induces an efficient exploration scheme.

4.2 Testing on various MuJoCo domains

Figure 2 presents our results, on various MuJoCo domains. It is apparent that while
in the Hopper-v2 domain, the PR-MDP outperformed the NR-MDP criterion; this
does not hold on all domains. Moreover, in most of the domains, both operators
outperform the baseline, both in terms of robustness and in terms of performance
in the absence of perturbations.

Failures: It is also important to acknowledge the scenarios in which our algorithm
does not outperform the baseline. Such an example is the InvertedPendulum domain,
in which the performance of the robust operators was found to be inferior to that of
its non-robust counterpart. We find two possible explanations for this phenomenon (i) the parameters are pre-selected
based on the performance in the Hopper domain. (ii) Specifically in the InvertedPendulum domain, where the task is to
balance a pole, an adversary which is too strong (large α value) prevents the agent from solving the task.

4.3 Diving Deeper

We attempt to analyze the behavior of our criteria (Figure 3) by asking two questions: (i) Does the performance increase
due to the added perturbations from the adversary, or does the operator itself induce a prior, e.g., regularization, on the
policy which leads to improved performance. (ii) How close is the empirical behavior to its theoretical counterpart.

Off-Policy Action Robustness: In previous experiments, during training, the action was drawn from the joint policy
of the agent and adversary, where the joint policy is specified in the PR-MDP approaches (see Definition 1). A natural
alternative approach is to act with the actor’s policy, yet, to acquire an action-robust policy in an off-policy fashion.
Meaning, use the same algorithms while obtaining the data without the effect of the adversary. A possible advantage of

3

Paper # 58 448

Hopper Walker2d

Figure 2: Robustness to model uncertainty.

such an approach is minimizing the number of bad actions (since the adversary does not intervene), while still benefiting
from the presence of robust learning.

Figure 3: (Left) Testing Off-Policy Action-Robustness,
and (Right) Solving the MaxMin operator.

Figure 3 presents the results of this experiment. Surprisingly, the
off-policy nature, e.g., not acting with the adversarial policy, leads
to performance degradation.

Does MaxMin equal MinMax? While so far we trained our
agent through N actor updates followed by a single adversary
gradient update, this corresponds to the MinMax operator, in
theory the opposite should result in an identical performance for
the PR-MDP approach. Experimentally (Figure 3), we see that
indeed there exists a large correlation between the theoretical
results and those seen in practice. The results are similar to the
regular ratio (Figure 1) with slight improvement.

5 Summary

We have presented a new criteria for robustness, the Probabilistic Action Robust MDP. Additionally; we developed the
Soft PR-PI (Algorithm 2), a policy iteration scheme for solving PR-MDPs. Building upon the Soft PR-PI algorithm, we
presented a deep reinforcement learning approach, which is capable of solving our criterion. We analyzed how the various
parameters affect the behavior and how the empirical results correlate with the theoretical approach. Most importantly, we
notice that not only does training with our criterion result in robust policies, but our approach improves performance even
in the absence of perturbations.

Lastly, for solving an action-robust policy, there is no need in providing an uncertainty set. The approach requires only a
scalar value, namely α (or possibly a state-dependent α(s)), which implicitly defines an uncertainty set (see Section 3.1).
This is a major advantage compared to standard robust approaches in RL and control, which, to the best of our knowledge,
require a distribution over models or perturbations. Of course, this benefit is also a restriction - the Action Robust approach
is unable to handle any kind of worst-case perturbations. Yet, due to its simplicity, and its demonstrated performance, it is
worthwhile to be considered by an algorithm designer.

References

Barnett, S. A. Convergence problems with generative adversarial networks (gans). arXiv preprint arXiv:1806.11382, 2018.

Iyengar, G. N. Robust dynamic programming. Mathematics of Operations Research, 30(2):257–280, 2005.

Lillicrap, T. P. et al. Continuous control with deep reinforcement learning. arXiv, 2015.

Nilim, A. and El Ghaoui, L. Robust control of markov decision processes with uncertain transition matrices. Operations
Research, 2005.

Pinto, L. et al. Robust adversarial reinforcement learning. In ICML, 2017.

Puterman, M. L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 1994.

Scherrer, B. and Geist, M. Local policy search in a convex space and conservative policy iteration as boosted policy search.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2014.

Tamar, A. et al. Scaling up robust mdps by reinforcement learning. arXiv, 2013.

4

Paper # 58 449

Non-Parametric Off-Policy Policy Gradient

Samuele Tosatto
Intelligent Autonomous System

Technische Universität Darmstadt
64289 Darmstadt, Germany

samuele@robot-learning.de

Jan Peters∗
Intelligent Autonomous System

Technische Universität Darmstadt
64289 Darmstadt, Germany
mail@jan-peters.net

Abstract

Policy gradients methods typically require a sample estimate of the state distribution induced by the policy, which results
into excessive interaction with the environment after each policy update in order to avoid poor gradient estimation. In
real applications, such as robotics, sample efficiency is a critical aspect.

Off-Policy policy gradient algorithms has been yet proposed in the literature, but they classically require the introduction
of some strong approximations. For this reason, many works which relies on the off-policy policy gradient theorem, need
to ensure the behavioral policy to be close to the optimization policy, eluding de facto the benefits provided by being
off-policy.

We well define these source of approximations, and we propose an off-policy algorithm which does not rely on these
approximations, leading to a better off-policy gradient estimation. We employ kernel regression and density estimation to
obtain an approximation of both the value function and the state-distribution in closed form. This estimation directly
yields an approximated analytical solution for the policy gradient. We show that the resulting policy gradient estimate is
surprisingly accurate even with a fixed small amount of off-policy samples.

Keywords: policy gradient; non-parametric estimation; off-policy

Acknowledgements

This research has been funded by Bosch-Forschungsstiftung.

∗Max Planck Institute for Intelligent Systems, 72024 Tübigen, Germany.

Paper # 67 450

1 Introduction

Policy gradient estimation requires the computation of an integral w.r.t. the state distribution induced by the policy. A
common choice is to approximate the integral by monte-carlo estimation, thus by sampling directly from the environment
[14, 7, 10, 9]. When the policy is updated, the state-distribution changes, and new samples are required. This is the main
cause of high sample complexity. The eventual decision to postpone the sampling, or to sample from another distribution,
introduces an error in the estimation of the gradient. A common technique to mitigate this inefficiency is to introduce
a divergence constraint between the estimated new distribution and the current sampled distribution [6, 9]. Since the
state-distribution and the value-function can be computed in closed form for discrete Markov Decision Processes (MDPs)
[13], we use non-parametric estimation, which allows us to work directly on samples.

2 State-of-the-art Off-Policy Policy Gradient

In the literature, there are various off-policy policy-gradient algorithms. Those algorithms are very often based on [1],
which introduces three approximation in order to obtain the off-policy theorem: 1) return modification ; 2) gradient
approximation ; and 3) action detachment.

Return modification. A gradient estimation is said to be off-policy if it can be computed by utilizing a state-action
distribution different from the one induced from the policy. A first step to reach this goal is to introduce a new state-
distribution ρβ (usually the one induced by a behavioral policy) and by modifying the objective Jπ,β =

∫
X ρβ(x)V π(x) dx

so that to maximize the expected return under ρβ [11, 1]. It is very difficult to understand the meaning of the modified
return in equation (2), since the value function depends on the policy π, while the state-distribution is generated by the
behavioral policy. This objective has been inherited to all those algorithm which are developed upon the work from [11]
or from [1], such as A3C [5], DDPG [4], TRPO [9] and PPO [10].

Gradient approximation. To avoid the dependency from the on-policy state-distribution [1] and [11] needed to introduce
a further approximation in the computation of the gradient

∂

∂θ
Jπ,θ =

∫

X
ρβ(x)

∫

A

(
∂

∂θ
πθ(a|x)

)
Qπ(x,a) + πθ(a|x)

(
∂

∂θ
Qπ(x,a)

)
dadx

≈
∫

X
ρβ(x)

∫

A

(
∂

∂θ
πθ(a|x)

)
Qπ(x,a) da dx.

The gradient obtained in this way does not depend on the state distribution µπ induced by the optimization policy π.
However this approximation introduces a relevant source of error.

Action detachment. In order to obtain an off-policy algorithm, being independent on the state distribution is not
enough. One needs to be independent on how the actions are sampled. For the deterministic gradient the computation of
Q(x, πθ(x)) there is no need to know how actions are sampled. On the contrary, the stochastic policy gradient needs to
exploit the log-ratio trick, hence it requires the introduction of the importance sampling [2].

The first two approximations are coarse, and we think that this is the reason for which many methods introduce a KL
constraint between the two policy distributions. By enforcing ρβ to be close to µπ, we are eluding the benefit of being
off-policy.

3 Reinforcement Learning in Discrete World

In reinforcement learning’s literature there is a special focus on the value function vπ, which approximates the expected
return for each observed state. On the contrary there is less focus on the dual counterpart of the value function, which is
the state distribution1 µπi =

∑∞
t=0 Pr(st = i|s0, π) [8]. With µπ we refer to the discounted state visit count dπ introduced

in the work of [12] or the discounted version of Nπ introduced by [13]. The value function and the state distribution can
be defined as

vπ = rπ + γPπvπ, µπ = µ0 + γPTπ µπ (1)
where rπ is a vector of the mean reward, Pπ is the transition matrix, and µ0 is the initial state distribution. It is important
to notice that equation on vπ is also referenced as Bellman equation, and it is extensively used also in the continuous
world, since the integral

∫
P (x′|x)V (x′) dx′ is easy to approximate by sampling. On the contrary, the equation involving

µ0 is almost never used in the continuous world, since
∫
P (x′|x)µ(x) dx is difficult to obtain. This difficulty is the main

1The term distribution is improper since (
∑

i µπi 6= 1), but is just a matter of a multiplying factor.

1

Paper # 67 451

reason why µπ is usually estimated on-policy (thus from the interaction of the policy with the environment). In the case of
a discrete world, the equations in (1) are linear and can be solved in closed form

vπ = Λπrπ, µπ = ΛTπµ0

where Λπ = (I − γPπ)−1 is referenced as the resolvent kernel. The objective of reinforcement learning is usually to
maximize a quantity called return Jπ = µT0 vπ = µTπrπ = µT0 Λπrπ which estimates the average cumulative discounted
reward.

Supposing that ∂
∂πPπ and ∂

∂π rπ are known, we are able to obtain the policy gradient by

∂

∂π
Jπ =

∂

∂π
µT0 Λπrπ = µT0 Λπ

(
∂

∂π
rπ

)
+ µT0

(
∂

∂π
Λπ

)
rπ = µT0 Λπ

(
∂

∂π
rπ

)
+ γµT0 Λπ

(
∂

∂π
Pπ

)
Λπrπ

= µTπ

((
∂

∂π
rπ

)
+ γ

(
∂

∂π
Pπ

)
vπ

)
. (2)

4 Non-Parametric Policy Gradient

We notice in the previous sections that in the discrete world is possible to obtain the state-distribution in closed form.
However, its estimation in the continuous world is much more complex. Let us focus our attention to the continuous
world view. We identify Vπ(x) as the value function evaluated in the state x, µ0(x) the initial state distribution, r(x,a) the
average reward observed by the application of the action a in state x, p(x′|x,a) the state transition distribution. We define
two different objectives, one for stochastic policies πθ(a|x) and one for deterministic ones πθ(x) .
Definition 1. Objective with Stochastic Policy

maxθ Jπ = maxθ
∫
X Vπ(x)µ0(x) dx

s.t.Vπ(x) =
∫
A

(
r(x,a) + γ

∫
X V (x′)p(x′|x,a) dx′

)
πθ(a|x) da ∀x ∈ X

Definition 2. Objective with Deterministic Policy
maxθ Jπ = maxθ

∫
X Vπ(x)µ0(x) dx

s.t.Vπ(x) = r(x, πθ(x)) + γ
∫
X V (x′)p(x′|x, πθ(x)) dx′ ∀x ∈ X

The constraints in definitions 1 and 2 are continuous in the sense that they are valid for ∀x ∈ X . This condition makes
the problem intractable, and requires the introduction of an approximation. Very interestingly it is possible to solve the
constraint in closed form following a non-parametric dynamic programming approach [3].

Non-Parametric Modelling. Let us assume to observe a set of n samples from the interaction with the system D ≡
{xi,ai, ri,x′i}i=1...n. Notice that there is no assumption on how the states xi and the actions ai are sampled, however the
reward must be observed ri ∼ r(xi,ai) from the interaction with the environment, as well as the next state x′i ∼ p(·|x,a).
At this point, following the work proposed by [3], we introduce three kernel functionsψ : X×X → R+, ϕ : A×A → R+ and
φ : X × X → R+, which have to be symmetric, positive definite and must sum up to one (e.g.,

∫
s∈Sset ψ(x,y) dx ∀y ∈ X).

Let us define ψi(x) = ψ(x,xi), ϕi(a) = ϕ(a,ai) and φi(x) = φ(x,x′i). We approximate the reward function by using the
Nadaraya-Watson regression and the transition with kernel density estimation

r̃(x,a) =

∑n
i=1 ψi(x)ϕi(a)ri∑n
i=1 ψi(x)ϕi(a)

, p(x′|x,a) =
p(x′,x,a)

p(x,a)
≈
∑
i φi(x)ψi(x)ϕi(a)∑

i ψi(x)ϕi(a)
= p̃(x′|x,a),

since p̃(x′,x,a) = n−1
∑
i φi(x)ψi(x)ϕi(a) and p̃(x,a) = n−1

∑
i ψi(x)ϕi(a). Following a similar reasoning as the one

in [3] we can obtain a closed form solution for the value function, by using algebraic manipulation and the Galerkin’s
projection. Due to space constraint we omit the mathematical passages, but we recommend to the interested reader to
read the work from [3] in order to have a rough idea. The approximated value function is

Ṽπ(x) = κT (x)Λ̃πΠr (3)
where

Πi,j =

{ ∫
A εj(xi,a)πθ(a|xi) da for stoch. policy
εj(xi, πθ(xi)) otherwise

, Pi,j =

∫

X
φj(x

′)
ψi(x

′)∑
k ψk(x′)

dx′, εi(x,a) =
ψi(x)ϕi(a)∑
j ψj(x)ϕj(a)

,

κi(x) = ψi(x)/
∑
j ψj(x) and Λ̃π = (I − γΠP)−1. We have solved the constraint, and we can now use the approximation

of Vπ obtained in order to compute the return and derive the gradient. Considering that

J̃π =

∫

X
µ0(x)κT (x)Λ̃πΠr and

∂

∂θ
Λ̃π = γΛ̃π

(
∂

∂θ
Π

)
P Λ̃π (4)

it is possible to compute the gradient w.r.t. Jπ using our set of samples D.

2

Paper # 67 452

Table 1: Experiment 1. Performance per dataset.

DATASET α α̇ ACTIONS SAMPLES NOPG-D NOPG-S DDPG DDPG-Q

A 25 25 2 1250 -905± 434 -628± 263 -4344± 177 -3972± 135
B 27 27 2 1458 -480± 219 -593± 310 -4608± 116 -3946± 141
C 30 30 2 1800 -577 ± 345 -512± 232 -4310± 167 -4064± 132
D 40 40 2 3200 -487± 218 -371± 2.3 -4365± 189 -3966± 74

Experiment 1: Results obtained on three different datasets. The columns α, α̇ and ACTIONS contains the number of the discretization.
Column SAMPLES refers to the number of samples contained in each dataset. The algorithm performance are evaluated over 50 runs.

Definition 3. Gradient Approximated with Kernel Regression

∂

∂θ
J̃π =

∫

X
µ̃Tπ (x)

(
∂

∂θ
Π

)(
r + γP̃ ṽπ

)
dx with

∂

∂θ
Πi,j =

{ ∫
A εj(xi,a)πθ(a|x) ∂∂θ log πθ(a|xj) da
∂
∂aεj(xi,a)|a=πθ(xi) ∂∂θπθ(xi)

(5)

and µ̃Tπ (x) = κT (x)Λ̃µ0(x).

Notice, that differently from the known policy gradient methods, there is no need to approximate µ̃π by collecting samples
from the environment under the policy π On the contrary, it is possible to compute it in closed form given our set of
off-policy samples D. Notice that all the remaining integrals can be approximated with Monte-Carlo sampling, and often
one sample is enough to obtain a good estimation (we cannot discuss this point in detail due to space constraints).

5 Empirical Results

We tested NOPG in two different settings. The purpose of the first experiment is to test the ability of our algorithm to be
truly off-policy, compared to DDPG (which is chosen here among off-policy algorithms for his sample efficiency). The
second experiment aims to test the sample efficiency of NOPG.

5.1 Experiment 1: Off-Policy Analysis

−2 0 2

α

−8

−6

−4

−2

0

2

4

6

α̇

µ̃π0

−2 0 2

α

Ṽπ0

−2 0 2

α

µ̃π300

−2 0 2

α

Ṽπ300

Figure 1: An example of the state-distribution and the value
function estimated in the task of swing-up pendulum with
our method. The plots shows the estimations before any
policy improvement the optimal policy computed by NOPG-
D algorithm (green correspond to higher values). Notice that
the algorithm is able to predict that the system will reach the
goal state (α = 0, α̇ = 0) (third figure from the left).

The under-actuated swing-up pendulum is a classic task
in reinforcement learning. We sampled the action-states
using an uniform grid, and we observed for each state-
actions pair the resulting reward and next state. We build
four different size of dataset, with a different granularity
of the grid. We compared the deterministic (NOPG-D) and
the stochastic version (NOPG-S) of NOPG with DDPG,
and DDPG-Q, which employs for the estimation of the
Q-function the closed form solution obtained with NOPG.
The idea of DDPG-Q is to provide a fairer comparison
with NOPG. Table 1 summarizes the results. We want
to note that our usage of DDPG and DDPG-Q on a fixed
off-policy setting is improper, since DDPG prescribes a
continuous interaction with the environment. In Figure 1 is
possible to observe that the algorithm is able to recompute
accurately the state distribution and the value function
even if a uniform dataset was used.

5.2 Experiment 2: Sample Complexity

We selected the CartPole-v1 from the OpenAI Gym’s li-
brary, in order test NOPG on a more complex system. In order to analyze the sample complexity we collected datasets of
different sizes by the interaction of a random policy with the environment, until the desired number of samples is reached.
The dataset is generate at the beginning of each run of the experiment using a random policy, so to obtain more variability.

In figure 2 we can observe the average number of steps obtained by the interaction of the policy found with NOPG.
The maximal length of the episode is of 200 steps, but the episodes terminates before if physical limits are reached.
every experiment is averaged on 50 seeds. Notice that since the dataset is generated with a random policy, the end
of the track is never observed by the system, yielding an undeniable negative effect on the performances. We used
in all our experiments a neural network of 50 neurons, with two output in the case of stochastic policy for encod-
ing the mean and the log-standard-deviation of a Gaussian. We used Gaussian kernels for NOPG and for DDPG-Q.

3

Paper # 67 453

10 50 100 250 500 1000 1500

0

50

100

150

200

Dataset size (samples)

Jπ

NOPG-S

10 50 100 250 500 10001500
0

50

100

150

200

Dataset size (samples)

Jπ

NOPG-D

Figure 2: Performance of the proposed algorithms for the cart-pole envi-
ronment. The return Jπ indicates the average number of steps performed
per episodes. It is possible to observe that NOPG-D generally is less
efficient for a small number of samples, but it achieve higher results with
a bigger datasets, in comparison to NOPG-S.

5.3 Results

From the off-policy analysis in Section 5.1 is
possible to argue that NOPG-D and NOPG-S
are able to work in an off-line fashion (table 1),
given a small fixed dataset obtained off-policy.
Our technique is able to estimate accurately
the state-distribution and the value function
(figure 1), and to obtain a good policy-gradient
estimation. On contrary, DDPG and DDPG-Q
fail in finding a good solution.

Our sample complexity analysis carried out
in Section 5.2 it is possible to argue that the
proposed technique is sample efficient. The
performance is negatively affected by the fact
that in the generated dataset the limit of the
cart are never reached.

6 Conclusion and Future Work

We presented an off-line off-policy policy gradient algorithm, which overcomes the issues presented both for stochastic
and deterministic policies. We tested our algorithm two environments, and achieve good solutions with minimal amount
of samples. We also empirically showed that off-policy algorithms such as DDPG fail in converging to a good solution if
fed with a fixed off-policy dataset. There is however vast space for improvement. The most critical aspect of NOPG is its
poor scalability w.r.t. data. This aspect can be improved by introduce some sparsification in the matrix computation.

In conclusion, we have proposed a sample-efficient off-line policy gradient. This can be viewed as a possible starting point
for developing more sample efficient on-line policy-gradient algorithms, which will potentially benefit the application of
reinforcement learning directly to real system.

References
[1] T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.
[2] T. Jie and P. Abbeel. On a connection between importance sampling and the likelihood ratio policy gradient. In

Advances in Neural Information Processing Systems, pages 1000–1008, 2010.
[3] O. B. Kroemer and J. R. Peters. A non-parametric approach to dynamic programming. In Advances in Neural

Information Processing Systems, pages 1719–1727, 2011.
[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International Conference on Machine Learning, pages 1928–1937, 2016.
[6] J. Peters, K. Mülling, and Y. Altun. Relative entropy policy search. In AAAI, pages 1607–1612. Atlanta, 2010.
[7] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.
[8] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
[9] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In International Conference

on Machine Learning, pages 1889–1897, 2015.
[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347, 2017.
[11] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms. In

ICML, 2014.
[12] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with

function approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.
[13] X. Wang and T. G. Dietterich. Model-based policy gradient reinforcement learning. In Proceedings of the 20th

International Conference on Machine Learning (ICML-03), pages 776–783, 2003.
[14] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992.

4

Paper # 67 454

Forgetting Process in Model-Free and Model-Based Reinforcement
Learning

 Asako Toyama Kentaro Katahira
 Department of Cognitive and Department of Cognitive and
 Psychological Sciences Psychological Sciences
 Nagoya University Nagoya University
 Furo-cho, Chikusa-ku, Nagoya, Japan Furo-cho, Chikusa-ku, Nagoya, Japan
 asako.toyama@gmail.com katahira.kentaro@b.mbox.nagoya-u.ac.jp

 Hideki Ohira
 Department of Cognitive and
 Psychological Sciences
 Nagoya University
 Furo-cho, Chikusa-ku, Nagoya, Japan
 ohhira.hideki@a.mbox.nagoya-u.ac.jp

Abstract

In commonly used standard reinforcement learning models, values are updated only for the chosen options
while the values remain unchanged for the other options. On the other hand, when applying reinforcement
learning models to animals and humans, it is more natural to assume that the learned values are lost over
time as a consequence of memory decay (i.e., the forgetting process). Thus, we compared a standard
reinforcement learning model to a reinforcement learning model that includes a forgetting process, using
human choice data from a two-stage decision task in which the reward probability changed slowly and
randomly over the trials. The algorithm used to implement the forgetting process was similar to that of the
learning process. In the learning process, the values of the chosen options were assumed to be updated toward
the obtained outcome and a learning rate adjusts the degree of updating. On the other hand, in the forgetting
process, the values of the unchosen options were assumed to gradually approach towards a default value,
which is a new concept introduced in our model, and it was also assumed that a forgetting rate adjusts the
degree of change. The data were well fitted by including the forgetting process. Moreover, our simulation
data demonstrated possible estimation biases due to fitting data using a model without the forgetting process.

Keywords: Reinforcement Learning; Model-Based; Forgetting Process; Default Value; Estimation Bias

Acknowledgements

This study was supported by Grant-in-Aid for Early-Career Scientists (18K13366 to AT), by Grant-in-Aid for
Scientific Research (B) (18KT0021 to KK) and by Grant-in-Aid for Scientific Research (B) (17H02649 to HO).

Paper # 125 455

1 Introduction

In standard reinforcement learning (RL) models, values are updated only for the chosen options while the
values remain unchanged for the other options. On the other hand, when applying RL models to animals and
humans, it is more natural to assume that the early-learned values are lost over time as a consequence of

memory decay (i.e., the forgetting process). It has been reported that the inclusion of the forgetting process in

RL models improved fits to actual choice data obtained from rats (Ito & Doya, 2009), monkeys (Barraclough,

Conroy, & Lee, 2004), and humans (Niv et al., 2015). In these models, the values of the unchosen options were

assumed to gradually approach zero. This assumption may be proper when the calculated values represent

the association strength between action and outcome. However, when the values express expected values

rather than association strengths, it is possible to encounter a case in which unchosen options increase their

values because of their increased uncertainty. Thus, we introduce a new concept, default value, which

represents the endpoint that the values of the unchosen options gradually approach (Toyama, Katahira, &

Ohira, 2017). It also corresponds to an expected value for options in the absence of experience or knowledge

regarding the relationship between option and outcome. In this study, we examine the validity of the

forgetting process in an RL model using experimental data. For this purpose, we used a two-stage decision-

making task developed by Daw, Gershman, Seymour, Dayan, and Dolan (2011) and their computational

model which provides a parameter representing the balance between model-based and model-free learning.

We also simulated possible biases in estimating this parameter from the data including the forgetting process

by using a model which does not include the forgetting process.

2 Methods

In the experiment, 23 students participated. The same task was used in both the experiment and the

simulations.

1.1 Task

Participants conducted a two-stage decision-making task including 303 trials (Figure 1). In each trial, they

were required to choose one of two options at the first and second stages successively and the second-stage

choice produced a feedback (rewarded or unrewarded). Importantly, each option at the first stage has a

propensity to transition to a particular state of the second stage. That is, an option in the first stage leads to

one of the second-stage states in 70% cases and the other in 30% cases,

whereas the other option leads to these states in a reversed manner. Thus,

different choice preferences can be predicted between when participants use

a transition model or not. The reward probabilities of each second-stage

option changed slowly and in random directions over the trials, and the same

reward probabilities were used for all participants.

1.2 Computational model

We used a model proposed by Daw et al. (2011). The model-free system uses SARSA(λ) TD learning

(Rummery & Niranjan, 1994) to update state-action values, 𝑄𝑀𝐹(𝑠𝑖 , 𝑎𝑖), at each stage i in each trial. The action

values chosen at the first stage, 𝑄𝑀𝐹(𝑠1, 𝑎1), and at the second stage, 𝑄𝑀𝐹(𝑠2, 𝑎2), are updated, respectively,

by the state prediction error and the reward prediction error (RPE) as follows:

𝑄𝑀𝐹(𝑠1, 𝑎1) ← 𝑄𝑀𝐹(𝑠1, 𝑎1) + 𝛼𝐿1(𝑄𝑀𝐹(𝑠2, 𝑎2) − 𝑄𝑀𝐹(𝑠1, 𝑎1)), (1)

𝑄𝑀𝐹(𝑠2, 𝑎2) ← 𝑄𝑀𝐹(𝑠2, 𝑎2) + 𝛼𝐿2(𝑟2 − 𝑄𝑀𝐹(𝑠2, 𝑎2)), (2)

Figure 1. The behavioral task

Paper # 125 456

where 𝛼𝐿1 and 𝛼𝐿2 are the learning-rate parameters of each stage and 𝑟2 denotes the reward (1 or 0). The

first-stage value is again updated by the second-stage RPE but its impact is discounted as follows,

𝑄𝑀𝐹(𝑠1, 𝑎1) ← 𝑄𝑀𝐹(𝑠1, 𝑎1) + 𝛼𝐿1𝜆(𝑟2 − 𝑄𝑀𝐹(𝑠2, 𝑎2)), (3)

where 𝜆 is an eligibility-trace decay parameter. Regarding the second stage, 𝑄𝑀𝐹 calculated with Eq. (2) is

equal to the model-based value, 𝑄𝑀𝐵, because there is no transition to a further stage. On the other hand, the

model-based values of the first-stage actions (𝑎𝑘 ∈ 𝑎1,1, 𝑎1,2) are computed anew each time as follows:

𝑄𝑀𝐵(𝑠1, 𝑎𝑘) = ∑ 𝑇(�́�|𝑠1, 𝑎𝑘)max
𝒂

𝑄𝑀𝐵(�́�, 𝒂)

�́�

, (4)

where 𝑇(�́�|𝑠1, 𝑎𝑘) is a transition-probability function that describes the probability of moving to a second-

stage state �́� after choosing action 𝑎𝑘 at the first stage. 𝒂 is the set of possible actions in state �́�. 𝑇(�́�|𝑠1, 𝑎𝑘)

was simply defined as a value of either 0.7 or 0.3 depending on the experienced transition frequency. Finally,

the first-stage 𝑄𝑀𝐹 and 𝑄𝑀𝐵 are integrated into a net value, 𝑄𝑁𝐸𝑇, with a weighting parameter 0 ≤ 𝑤 ≤ 1.

𝑄𝑁𝐸𝑇(𝑠1, 𝑎𝑘) = 𝑤𝑄𝑀𝐵(𝑠1, 𝑎𝑘) + (1 − 𝑤)𝑄𝑀𝐹(𝑠1, 𝑎𝑘). (5)

For action selection, the net values are converted to probabilities of choosing each action using a softmax

function where the degree of value-dependency and the tendency towards value-independent perseveration

are adjusted respectively by the inverse temperature, 𝛽1 and 𝛽2, and the choice trace weight, 𝜙.

Forgetting process: To implement the forgetting process in the above model, we introduced a forgetting

parameter, 0 ≤ 𝛼𝐹 ≤ 1, in each stage (𝛼𝐹1and 𝛼𝐹2). The values of unchosen actions are updated as follows:

𝑄𝑀𝐹(�̃�𝑖 , �̃�𝑖) ← 𝑄𝑀𝐹(�̃�𝑖 , �̃�𝑖) + 𝛼𝐹(𝜇 − 𝑄𝑀𝐹(�̃�𝑖 , �̃�𝑖)), (6)

where 𝑄𝑀𝐹(�̃�𝑖 , �̃�𝑖) represents the values of the unchosen actions and the values of the unvisited-state actions

in stage i. The parameter 0 ≤ 𝜇 ≤ 1 is a default value to which unchosen action values are regressed. Under

this rule, all initial 𝑄𝑀𝐹 values are set to equal 𝜇. Hereafter, the model including the forgetting process is

called the model with forgetting and the model excluding this process is called the model without forgetting.

3 Experimental results

Parameter estimation and model comparison: The parameters were estimated for each participant by a

maximum log-likelihood method. For a comparison of the models, we computed the Bayesian information

criterion (BIC; Schwarz, 1978) for each participant in each model as BIC = -2LL + k log(n), where LL is the log

likelihood of the choice probabilities, k is the number of free parameters, and n is the total number of choices.

The model with forgetting was significantly favored (with smaller BIC values) over the model without

forgetting [t(22) = 3.33, p = .003, d = 0.69]. Of the 23 participants, 17 supported the model with forgetting, as

shown in Figure 2A, which indicates the differences in BIC between the two models for each participant.

Default value parameter: From Eq. (6), it is predictable that a high default value 𝜇 increases the values of

the unchosen options. Therefore, a high 𝜇 will capture a type of exploration behavior or a choice shift caused

by an expectation for recently unchosen uncertain options. To confirm this prediction, we conducted Pearson

correlation analysis between the estimated 𝜇 and the average stay probabilities at the first stage. There was

a negative correlation (r = –.56, p = .005; Figure 2B). In other words, those who had a higher default value or

a higher expectation for unchosen options showed greater exploration behavior.

Forgetting process and estimation of parameter 𝒘: Figure 2C shows the correspondence of the estimated

model-based weighting parameters 𝑤 of the two models. The values of 𝑤 for 20 of 23 participants were

estimated to be lower when estimated by the model without forgetting than the model with forgetting. The

degree of difference was different among the participants (minimum = 0.52, mean = -0.11, maximum = -0.88).

Paper # 125 457

4 Simulations

Next, we examined possible parameter estimation biases, especially the biases in the model-based weight

parameter, when data is fitted using a model without forgetting. For this purpose, synthetic datasets with

various forgetting rates and model-based weights were prepared. These were then fitted for the model with

forgetting and the model without forgetting.

Synthetic data: Synthetic datasets for four simulations were generated from the models with forgetting.

Simulations 1 and 2 tested the effect of the first-stage forgetting rate 𝛼𝐹1, and simulations 3 and 4 tested the

effect of the second-stage forgetting rate 𝛼𝐹2. These parameters were varied from 0 to 0.3 in steps of 0.05. The

parameter 𝑤 was also changed from 0 to 1 in steps of 0.2. Thus, there were 42 true parameter sets in each

simulation. Considering the direction of value changes in the forgetting process, we examined two cases: 𝜇 =

0 (simulations 1 and 3) and 𝜇 = 1 (simulations 2 and 4). The other parameters were fixed (𝛼𝐿1 = 0.2, 𝛼𝐿2 =

0.3, 𝛽1 = 7, 𝛽2 = 7, 𝜆 = 0.4, 𝜙 = 0.8 and 𝛼𝐹1 = 0.2 or 𝛼𝐹2 = 0.3). From each true parameter set, the choice

data of 100 agents performing the two-stage task with 303 trials were produced.

Fitting by the models with and without forgetting: The generated data were fitted with the model including

the full set of free parameters (the full model) or with the model in which the target parameter, 𝛼𝐹1 or 𝛼𝐹2,

was set to zero, and the parameter 𝜇 was fixed at the true value. Figure 3 shows the estimated values of 𝑤

when the data were fitted with the full model (solid blue line), or the model that lacked the forgetting process

in either the first stage (simulations 1 and 2, solid red line) or the second stage (simulations 3 and 4, solid red

line). Regardless of the value of 𝜇, if the model lacked the first-stage forgetting process, the larger the true

𝛼𝐹1 was, the more the estimated 𝑤 was biased in the model-based direction (simulations 1 and 2). In contrast

to this, when the model lacked the second-stage forgetting process, the larger the true 𝛼𝐹2 was, the more the

estimated 𝑤 was biased in the model-free direction (simulations 3 and 4).

To consider the possible causes of the observed biases, we focused on the first-stage model-free and model-

based values because the parameter 𝑤 only has meaning in this stage. From the equations of the

computational model, it is clear that parameter 𝛼𝐹1 relates to the calculation of the first-stage model-free

values but not the model-based values, whereas the parameter 𝛼𝐹2 relates to the calculation of the first-stage

model-based values but not the first-stage model-free values. In general, the parameter estimation is biased

to weight the more accurate part of the calculation to enhance the fit to the data. Hence, the parameter 𝑤 is

biased in the model-based direction when the fitting model lacks 𝛼𝐹1 (simulations 1 and 2) and in the model-

free direction when the fitting model lacks 𝛼𝐹2 (simulations 3 and 4). In addition, our simulations showed

that the larger the true forgetting rate was, the more the estimation of 𝑤 was biased.

A. B. C.

Figure 2. (A) Differences between the model with forgetting and the model without forgetting in the Bayesian

information criterion (BIC) scores for each participant. (B) Relationship between the average stay probabilities of all

trials at the first stage and the parameter 𝜇 estimated by using the model with forgetting. (C) Relationship between

the parameter 𝑤 estimated by the model without forgetting and 𝑤 estimated by the model with forgetting.

Paper # 125 458

5 Conclusion

In the experimental study, the inclusion of the forgetting process in the model lead to an improvement in the

model fit. Considering that many studies have demonstrated that uncertainty prompts exploration behavior

(Badre, Doll, Long, & Frank, 2012), it is supposed that recently unchosen options might carry some vague

expectation related to their increased uncertainty. This may be captured by the default-value parameter

introduced in our model which showed a positive correlation with the exploration behavior. However, most

of the previous studies used models without forgetting. Model misspecification is known to cause undesirable

biases in parameter estimation (Katahira, 2018). In our simulations, it was revealed that the weighting

parameter 𝑤 was biased towards the model-based direction when the fitting model lacked the first-stage

forgetting process. However, it was biased towards the model-free direction when the fitting model lacked

the second-stage forgetting process. Considering the fact that the estimations from the experimental data were

biased to the model-free direction, the forgetting process in the second stage is more critical in this task. This

is reasonable because the second-stage has more options than the first-stage and the effect of the forgetting

process may be more severe than at the first-stage. In summary, our study proposes the inclusion of the

forgetting process into RL models and also shows the possible estimation biases arising from the use of a

model without forgetting.

6 References

Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal cortex and individual differences in

uncertainty-driven exploration. Neuron, 73(3), 595-607.

Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal cortex and decision making in a mixed-strategy game. Nature

Neuroscience, 7(4), 404-410.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and

striatal prediction errors. Neuron, 69(6), 1204-1215.

Ito, M., & Doya, K. (2009). Validation of decision-making models and analysis of decision variables in the rat basal ganglia.

Journal of Neuroscience, 29(31), 9861-9874. 9

Katahira, K. (2018). The statistical structures of reinforcement learning with asymmetric value updates. Journal of Mathematical

Psychology, 87, 31-45.

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., & Wilson, R. C. (2015). Reinforcement learning in

multidimensional environments relies on attention mechanisms. Journal of Neuroscience, 35(21), 8145-8157.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. (Technical Report CUED/F-INFENG/TR 166).

Cambridge: Cambridge University.

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464.

Toyama, A., Katahira, K., & Ohira, H. (2017). A simple computational algorithm of model-based choice preference. Cognitive,

Affective & Behavioral Neuroscience, 17(4), 764-783.

Figure 3. Estimation bias for the parameter 𝑤. The synthetic data for simulations 1 and 3 were generated by the

model with forgetting in which 𝜇 was set to zero, and those for simulations 2 and 4 were generated by the model

with forgetting in which 𝜇 was set to one. The panels show the true 𝑤 in the generating model (dashed black

line), the median of the estimated 𝑤 according to the full model (solid blue line), and the median of the estimated

𝑤 according to the model without forgetting (no-F1 mode is 𝛼𝐹1 = 0 and no-F2 mode is 𝛼𝐹2 = 0; solid red line).

Paper # 125 459

A Human-Centered Approach
to Interactive Machine Learning

Kory W. Mathewson∗

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
korymath@gmail.com

Abstract

The interactive machine learning (IML) community aims to augment humans’ ability to learn and make decisions over
time through the development of automated decision-making systems. This interaction represents a collaboration be-
tween multiple intelligent systems—humans and machines. A lack of appropriate consideration for the humans involved
can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. This work presents
a human-centred thinking approach to applying IML methods. This guide is intended to be used by AI practitioners
who incorporate human factors in their work. These practitioners are responsible for the health, safety, and well-being of
interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness,
and abiding by applicable legal statutes. With these values and principles in mind, we as a research community can bet-
ter achieve the collective goal of augmenting human ability. This practical guide aims to support many of the responsible
decisions necessary throughout iterative design, development, and dissemination of IML systems.

Keywords: human-in-the-loop, applied interactive machine learning, respon-
sible machine learning, fairness, accountability, transparency,
human-centred design

Acknowledgements

This research was partially supported by the University of Alberta, Alberta Machine Intelligence Institute (Amii), the
Natural Sciences and Engineering Research Council (NSERC), and the Alberta Innovates Technology Fund (AITF). I am
grateful to Dr. Patrick Pilarski, Dr. Matt Taylor, Alex Kearney, Johannes Günther, Jamie Brew, Lana Cuthbertson, Katya
Kudashkina, Keyfer Mathewson, and Dr. Piotr Mirowski for sharing their comments during the preparation of this
manuscript. Any errors are my own.

∗https://korymathewson.com

Paper # 189 460

1 Introduction and Background

Machine learning (ML) comprises a set of computing science techniques for automating knowledge acquisition rather
than relying on explicit human instruction. Interactive ML (IML) systems incorporate humans with ML techniques. The
goals of IML include the amplification and augmentation of human abilities. All ML system have humans at some point
in the learning loop; some interactions are more evident than others. For example, interacting humans may provide
data, objective functions, direct feedback, algorithms, or code. Some system designers choose to acknowledge and feel a
responsibility for these humans more than others.

Examining ML from a human-centred perspective requires re-framing work-flows to include humans during concep-
tualization, implementation, and interaction. Human-centred thinking will lead to more usable ML systems, improved
mutual understanding, and augmented communication between intelligent systems [18]. These benefits come at the
increased cost of time and energy to understand human factors and many designers choose to ignore social factors.
Ignorance has serious implications (i.e. reward misalignment between humans and machines [6, 2, 22, 12].

Human-centred design develops solutions to problems by involving the human perspective in all steps of the process.
Human-centred systems put people before machines, and delight in the ability and ingenuity of humans [3].

Fails and Olsen (2003) [5] introduced interactive machine learning (IML). Amershi et al. (2014) [1] discuss interaction
modalities, and the AAAI-17 tutorial, “Interactive Machine Learning: From Classifiers to Robotics”, presented a com-
prehensive history of the field [9]. Incorporating human decision making with ML systems continues to be an active
area of research [15, 8, 12, 13]. Previous work has discussed the virtues of human-centered thinking in ML [7, 14]. But,
there continues to be a gap between the mental models of responsible ML practitioners and many contemporary ML
deployments.

A good proportion of ML research happens at institutions with ethics review boards. These groups should rigorously
apply ethical principles through review of proposed studies. But, they may not exist in your organization, or they may
not provide a comprehensive review. This guide details many of the ethics review board questions and extends beyond
these considerations. Many ML systems will find their way out of laboratory settings without ethics review. For instance,
many ML studies will have no human subjects, but this research (i.e. the code, data, and models) will be released and
used by the general public. Design, development, and deployment can happen without subscribing human subjects
directly.

Sec. 2 focuses on the humans-in-the-loop, the goals and hypotheses of the research, and the data. This section also
presents two design thinking exercises: a whiteboard model–which can help identify streamlined processes, and a pre-
mortem–which can help identify potential risks and failure modes early in the process. Sec. 3 concerns itself with the the
iterative development process. It advocates for checking in with the humans-in-the-loop at each iteration. Sec. 4 focuses
on questions of model deployment and public communication. It can be helpful to read through this guide before
starting the project and to continually check-in with it for design, development, and dissemination of human-interactive
decision-making systems.

2 Human-Centered Design

Step 1: Define the hypothesis State the investigated question of interest. Can you pose it as a testable hypothesis [20],
which can be supported by evidence? The premise is the starting point and motivation for investigation.

Step 2: Loop in humans Define your values and principles. How will you align this work with human needs? Identify
individual and societal social factors in the problem. Start by considering why your hypothesis is essential not just to
you, but to the larger community of people who might interact with it. How will the system augment human lives?

Consider the question of interest from multiple stakeholder perspectives. For instance, think about three groups of
individuals: those invested in the success of the work, those impacted by your work, and those who might be interested
in the work. Empathize with stakeholders to appreciate how the problem, and potential solutions, will affect them.

Consent starts with communication. Build open-communication channels with stakeholders in these groups. Gather
from them ideas, design requirements, concerns, and questions. You should review your values alongside the values of
these individuals. How will these stakeholders engage with your system? Thinking about this now will help during Step
9: Deploy. How might the interaction look? Ask each of them how they will evaluate the performance of your system?
Discuss how the system might be used both constructively and misapplied to harm. This dual-use discussion is ongoing
in the field of ML [21].

Choices you make will impact these people directly, and you are responsible for the impact of your work on them.
Embrace this responsibility. These stakeholders can champion your system if you engage them early in the process and
often through iteration.

1

Paper # 189 461

Step 3: Define the goal Define a specific, measurable, attainable, relevant, and timely goal. It should be linked directly
to the hypothesis from Step 1: Hypothesis. The goal should clearly define success. This definition will embrace the ways
that your stakeholders will engage with, and evaluate the performance of your system.

Often there are multiple metrics which define success for a given problem. ML system designers often refine optimization
to a single metric of interest. Consider both your optimization metric (i.e. model performance indicator) and your
measures of system success. How does this learning objective align with the ways that your stakeholders will evaluate
your system? Define a testing suite for safety which you will use in Step 6: Evaluate your model. These tests should
consider human health, safety, and well-being. As well, they should evaluate your system on biases, fairness, and
equality across hidden features in your data [11].

It can help to align your work with familiar categories of existing ML work [10]. Is this project developing a new model,
applying existing methods to new data, or presenting a new model of human behaviour? Does the system test the
limitations of current models on a new problem?

Given your goal, what are the technical, scientific, implementation problems which need to be solved? You should be
able to break your system into small components (e.g. data, processing, evaluation). Doing so will make addressing each
part individually easier. What are some of the downstream impacts of accomplishing your goal? That is, if the results
support your hypothesis, what else might be true?

Step 4: Define the data An ML system is a reflection of the training data it learns on. It can reflect many common
human biases. What is your ideal data set? How much data do you desire? How much data do you need? Why might
these amounts be different? What are the dependent and independent variables? How will the data be organized and
represented for the learning system? How might possible data sources stray from the ideal ort data? How will you define
what outliers, and bad data points, are?

How will you accumulate, clean, parse, label, and safely store your data? How might you fill in blanks in your data?
Can you use software to simulate data? Experiments on simulated data designed to test assumptions and gain intuition
provide valuable insights. How will you incorporate new data which arrives after deployment?

How will you handle participant recruitment and compensation? If you pay for data (e.g. through crowd-sourcing,
direct payment to humans, or a third party), what are the costs of accumulating data? What are the usage rights and
responsibilities of your data? What is the ownership model for this data?

If you have humans in your data collection, consider the ethical implications of collecting their data. How are your data
generating humans informed of the use of their data? How are data privacy and security communicated? What are the
potential biases and sensitivities in human-collected data (i.e. personal or identifying information)?

Once you collect your data, split it into training, evaluation (i.e. validation), and held-out testing data segments. Do this
early, lest you leak information from the test segment into your model selection and parameter tuning processes.

2.1 Design Thinking Exercises

The Whiteboard Model For the whiteboard model exercise consider the following: given your hypothesis, stakeholder
analysis, and goal, how would you get to a solution given a short amount of time and only a whiteboard? It is tempting to
think about novel techniques which might address your goal. Preferably, it is often more effective to make something that
works (i.e. your whiteboard model) and then make iterative improvements. This thought exercise will also provide an
opportunity to mentally zoom-out from the problem and think about how potential solutions fit into a broader direction.

The Pre-mortem For the pre-mortem exercise, imagine that the project fails for a variety of reasons. Write down these
failure modes. Then, for each failure mode, work backwards to identify what might have lead to different results. This
process of prospective hindsight can increase the ability to identify reasons for future outcomes by 30% [17] correctly.
A pre-mortem can provide insights and ideas which you can use in the next iterative development steps and can help
reduce the chances of arriving at predictable failure modes.

3 Develop, Analyze, Evaluate, and Iterate

Step 5: Build model Safe design is the first step towards safe use. Think about model misuse starting with the first
model you build. Step 2: Loop in Humans covered much of this preparation.

Consider simple models for your learning from your data. A simple model serves as a baseline for comparing model
improvements. What is your baseline model? It might be a model that generates random outputs; random is a perfectly
reasonable baseline and can help to identify other bugs in the development pipeline. Other reasonable benchmarks

2

Paper # 189 462

include a ’majority-class’ model that predicts the most common output in the training set and a ’by-hand’ model which
invites a human to consider the inputs and generate an output.

The ’by-hand’ model is often called a Wizard-of-Oz, or human-assisted model, and has been used at scale by large tech
companies to help understand human interactions [16]. Similar to the whiteboard model, these baselines will help to define
essential features in your data for the given performance metric.

Step 6: Evaluate model Your evaluation data will serve as a consistent comparison for model improvement. Test your
model on your evaluation data segment. Track your key metric. The performance of your baseline model starts as your
’best,’ and ’worst,’ performing model. Keep your model performances as comparators as you iterate in Step 8: Re-
evaluate and Iterate. What the limitations of your evaluation scheme? What are the unaccounted costs or errors? How
does the model perform on the evaluation data and the safety suite designed in Step 3: Define the goal.

With each model evaluation iteration, it is essential to think about biases, fairness, and equality across diverse groups.
Each iteration is a crucial checkpoint to communicate with stakeholders. Your stakeholders’ discussions should include
how they feel your model has addressed the ideas, interests, design requirements, concerns, and questions brought up
in Step 2: Loop in Humans. How do they evaluate system performance? How would the baseline model impact them?
Consider your stakeholders might be satisfied with your baseline model.

Step 7: Analyze trade-offs You will make trade-offs as you make iterate models, and model parameters, towards opti-
mizing your crucial metric. Consider these trade-offs by listing each of them and their associated impacts independently.
Trade-offs often include factors such as cost, storage, learning speed, inference speed, computation complexity, model
serving, deployment, and human interpretability. It helps to perform ablation studies which systematically remove
model components to determine their relative contributions. Considering each of these trade-offs will help you iterate
on your model development.

Step 8: Re-evaluate and iterate Given the trade-offs defined in Step 7, review your key metrics. Ensure you capture
all the information required before continuing. For instance, how do you log experimental parameters (i.e. model
information) and results? Once you are confident that you can systematically make model improvements towards your
evaluation metric, then it is time to iterate through Steps 5, 6, and 7. Once your evaluation performance converges, only
then should you test your model(s) on the held out test set data segment. This testing should be used to compare models,
and not to tune model parameters.

4 Disseminate

Step 9: Deploy the system Present and test the system with your stakeholders and individuals you have not engaged
with up to this point. When testing with humans, focus on usability. How are stakeholders interacting with your model?
Usability can have a profound effect on the perceived quality and capability of models. These are valuable interactions,
note how these humans interpret the performance of your system.

Consider that many humans may act against the system, by accident or on purpose. How will you handle attacks on your
model? What are the technical security implications of model security and the value-based human-experience design
choices you have made which may influence human-behaviour? What are the fail-safes and procedural safeguards and
how can you adapt them during deployment? How are you communicating the risks of interaction?

Step 10: Communicate The purpose of communication is to convey the key ideas to your audience clearly so that they
may comprehend them with minimal effort. You should be able to state your key results and how it aligns with your
hypothesis? Do your results match or contradict similar work? What are the limitations of the current model? How
might these problems be addressed in the future? Do the results challenge any of the ideas or beliefs of the stakeholders?

When communicating the project, it is helpful to follow the ML Reproducibility checklist [19]. Can you open source your
code, data, models, and deployment? Consider how and why others might attempt reproduction.

5 Conclusions

Human-centred thinking for design and development can lead to substantial improvements in the development and
adoption processes. By empathizing with those invested in, impacted by, or adversaries of ML systems, developers
can better serve the needs of all humans involved. Enabling human to efficiently and effectively interact with systems
continues to be a key design challenge [4]. Human-centric design in ML can help address ongoing challenges of bias
and unfairness and potentially improve the transparency and accountability of the choices which go into designing,
developing and deploying new systems.

3

Paper # 189 463

References

[1] Saleema Amershi et al. “Power to the people: The role of humans in interactive machine learning”. In: AI Magazine
35.4 (2014), pp. 105–120.

[2] Danton S Char, Nigam H Shah, and David Magnus. “Implementing machine learning in health care - addressing
ethical challenges”. In: The New England journal of medicine 378.11 (2018), p. 981.

[3] Mike Cooley. “On human-machine symbiosis”. In: Human Machine Symbiosis. Springer, 1996, pp. 69–100.
[4] John J Dudley and Per Ola Kristensson. “A Review of User Interface Design for Interactive Machine Learning”. In:

ACM Transactions on Interactive Intelligent Systems (TiiS) 8.2 (2018), p. 8.
[5] Jerry Alan Fails and Dan R. Olsen Jr. “Interactive Machine Learning”. In: Proceedings of the 8th International Confer-

ence on Intelligent User Interfaces. IUI ’03. Miami, Florida, USA: ACM, 2003, pp. 39–45. ISBN: 1-58113-586-6.
[6] Fairness, Accountability, and Transparency in Machine Learning. http://www.fatml.org/. 2019-02-26.
[7] Human Centred Machine Learning CHI2016. http://hcml2016.goldsmithsdigital.com/. 2019-02-26.
[8] Borja Ibarz et al. “Reward learning from human preferences and demonstrations in Atari”. In: CoRR

abs/1811.06521 (2018). arXiv: 1811.06521.
[9] Interactive Machine Learning: From Classifiers to Robotics. https : / / eecs . wsu . edu / ˜taylorm /

17AAAITutorial.html. 2019-02-26.
[10] Pat Langley. “Crafting papers on machine learning”. In: ICML. 2000, pp. 1207–1216.
[11] Jan Leike et al. “AI Safety Gridworlds”. In: CoRR abs/1711.09883 (2017). arXiv: 1711.09883.
[12] Jan Leike et al. “Scalable agent alignment via reward modeling: a research direction”. In: arXiv preprint

arXiv:1811.07871 (2018).
[13] Zhiyu Lin et al. “Explore, Exploit or Listen: Combining Human Feedback and Policy Model to Speed up Deep

Reinforcement Learning in 3D Worlds”. In: CoRR abs/1709.03969 (2017). arXiv: 1709.03969.
[14] Josh Lovejoy and Jess Holbrook. Human-Centered Machine Learning. https://medium.com/google-design/

human-centered-machine-learning-a770d10562cd. 2019-02-26.
[15] Kory Wallace Mathewson and Patrick M. Pilarski. “Simultaneous Control and Human Feedback in the Training of

a Robotic Agent with Actor-Critic Reinforcement Learning”. In: CoRR abs/1606.06979 (2016). arXiv: 1606.06979.
[16] Cade Metz. Facebook’s Human-powered Assistant May Just Supercharge AI. https://www.wired.com/2015/08/

how-facebook-m-works/. 2019-02-26.
[17] Deborah J Mitchell, J Edward Russo, and Nancy Pennington. “Back to the future: Temporal perspective in the

explanation of events”. In: Journal of Behavioral Decision Making 2.1 (1989), pp. 25–38.
[18] Patrick M Pilarski et al. “Communicative Capital for Prosthetic Agents”. In: arXiv preprint arXiv:1711.03676 (2017).
[19] Joelle Pineau. The Machine Learning Reproducibility Checklist. https://www.cs.mcgill.ca/˜jpineau/

ReproducibilityChecklist.pdf. 2019-02-26.
[20] Karl Popper. The logic of scientific discovery. Routledge, 2005.
[21] Some thoughts on zero-day threats in AI, and OpenAI’s GP2. https://fast.ai/2019/02/15/openai-gp2.

2019-02-26.
[22] Muhammad Bilal Zafar et al. “Fairness beyond disparate treatment & disparate impact: Learning classification

without disparate mistreatment”. In: Proceedings of the 26th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee. 2017, pp. 1171–1180.

4

Paper # 189 464

Thompson Sampling for a Fatigue-aware
Online Recommendation System

Yunjuan Wang
Electrical and Computer Engineering

University of Illinois at Chicago
ywang581@uic.edu

Theja Tulabandhula∗
Information and Decision Sciences

University of Illinois at Chicago
tt@theja.org

Abstract

In this paper we consider an online recommendation setting, where a platform recommends a sequence of items to its
users at every time period. The users respond by selecting one of the items recommended or abandon the platform due
to fatigue from seeing less useful items. Assuming a parametric stochastic model of user behavior, which captures posi-
tional effects of these items as well as the abandoning behavior of users, the platform’s goal is to recommend sequences
of items that are competitive to the single best sequence of items in hindsight, without knowing the true user model a
priori. Naively applying a stochastic bandit algorithm in this setting leads to an exponential dependence on the number
of items. We propose a new Thompson sampling based algorithm with expected regret that is polynomial in the number
of items in this combinatorial setting, and performs extremely well in practice. We also show a contextual version of our
solution.

Keywords: Thompson sampling, sequential choice, online recommendations,
fatigue, regret upper bound.

Acknowledgements

∗Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding
agencies.

Paper # 10 465

1 Introduction

In applications such as email newsletters or app notifications, the platform’s goal is to carefully tailor items so as to
maximize revenue while maintaining user retention. Both these metrics depend not only on the intrinsic quality of the
items themselves, but also on the way they are positioned when the users view them. When the user’s precise behavior
is not known a priori, the platform may have to learn and maximize revenue simultaneously. In many such platforms,
users can be categorized into different types and the platform has the ability to interact with multiple users of the same
type sequentially and independently. If the items are well aligned with the interests of the users, then the platform
benefits from increased sales, its brand gets promoted and may also cause steady user growth. On the other hand, if
the items are not interesting to the users, then it may induce fatigue (a state where their perceived value of the platform
decreases) leading to user abandonment (for instance, canceled subscriptions or app uninstalls).

In this paper, we consider the following setting: the platform needs to learn a sequence of items (from a set of N items)
by interacting with its users in rounds. In particular, it wants to maximize its expected utility when compared to the
best sequence in hindsight. When a user is presented with a sequence of items, they view it from top-to-bottom and at
each position they make decisions: whether satisfy with the current items and whether abandon the platform. One could
attempt to model the above problem using the stochastic Multi-armed Bandit (MAB) formalism, where the decision
maker selects one arm out of (say N) arms in each round, and receives feedback in the form of a reward sampled from
a reward distribution. In our setting, the platform can choose both the length of the sequence as well as the order of
the items, and this is essentially a combinatorial problem in each round. The recommended sequence of items should
balance the penalty of user abandonment versus the upside of user choosing a high revenue item. The probability
of a user choosing a high revenue item is not independent of other items in the recommended list. We assume that the
aforementioned user behavior has a particular parametric form (see Section 2), whose parameters are not known a priori.

In this extended abstract, we design a fatigue-aware online recommendation solution, which we call the Sequential Bandit
Online Recommendation System (SBORS). SBORS is generated from Thompson Sampling (TS) based algorithm with pos-
terior approximation and correlated sampling to control exploration-vs-exploitation trade-off. We give the regret upper
bound of SBORS (Section 3) isC1N

2
√
NT log TR+C2N

√
T log TR · log T+C3N/R (hereC1, C2 andC3 are constants, and

R is a tunable algorithm parameter that captures the number of times that we sample the relevant random variables, see
Section 3). We also propose a variant of our algorithm in the contextual setting where the user’s context/profile affects
the preference and abandonment parameters (Section 4). Additional details for theoretical analysis and experiments are
provided in the full version [4].

2 Model

Our setting is similar to that of [2]. Consider a platform containing N different items indexed by i. let its corresponding
revenue be ri if selected. User’s intrinsic preference for an item i is denoted by ui. After viewing each item from a
recommended list, the user has a probability p of abandoning the platform, and the occurrence of this event causes the
platform to incur a penalty cost c. Note that ri, ui, p, c ∈ [0, 1]. We represent the sequence of items at time/round t as
St = (St1, S

t
2, ..., S

t
m), where Sti denotes the ith item, and m represents the length of the sequence.

After the user at time t sees item i, s/he has three options based on behavior parameters u and p: (1) The user is satisfied
with the item i (perhaps clicks the item’s link and navigates to a target page), then no further items are presented to
the user. In this situation, the platform earns revenue ri. (2) The user is not satisfied with item i and decides to see the
following item i + 1 in the sequence of items (for instance, the next notification) if it exists. When the sequence runs
out, the user exits the platform. In this situation, the platform will neither earn a reward nor pay a penalty cost. (3) The
user has lost interest in the platform (presumably after viewing uninteresting items) and s/he decides to abandons the
platform (for instance, by uninstalling the app). In this situation, the platform incurs a penalty c.

The behavior parameters u and p parameterize the following distributions. Consider a random variable W t following a
distribution FW . W t measures the tth user’s patience, capturing the number of unsatisfied items the user sees without
abandoning the platform. In particular, FW is a geometric distribution with parameter p. Let q = 1 − p. Then qk =
qk−1(1 − q) denotes the probability that a user abandons the platform after receiving kth unsatisfying item. Further,
let F̃W (k) = P (W > k) = 1 − P (W ≤ k) = qk denote the probability that a user does not abandon the platform
after receiving the kth unsatisfying item. The probability of each item i being selected is ui, which is only determined
by its content. The probability of each item i being selected when it belongs to the sequence of items S (dropping the
superscript t for simplicity) is denoted as pi(S). pi(S) not only depends on the item’s intrinsic value to the user, but
also depends on its position and the other items shown before it. The probability of total abandonment is denoted as
pa(S), and represents the sum of the probabilities that the platform is abandoned after receiving k unsatisfying items. In

1

Paper # 10 466

summary,

pi(S) =

ui if i ∈ S1,

F̃W (l − 1)
∏l−1
k=1(1− uI(k))ui if i ∈ Sl, l ≥ 2,
0 if i /∈ S.

And pa(S) =
∑m
k=1 qk

∏k
j=1(1− uI(j)), where I(k) means that in the sequence of items S, the kth items is i, i.e. Sk = {i}.

We denote U(S,u, q) as the total utility (payoff) that the platform receives from a given sequence of items S. The goal is
to find the optimal sequence of items that can optimize the expected utility E[U(S,u, q)] =

∑
i∈S pi(S)ri − cpa(S):

max
S

E[U(S,u, q)] s.t. Si ∩ Sj = ∅,∀i 6= j. (1)

The constraint above specifies that all the items contained in the sequence are distinct. We denote the optimal sequence
of items for a given u, q pair using S∗ = argmax

S
E[U(S,u, q)]. If it is not unique, ties are broken arbitrarily.

3 SBORS: Sequential Bandit for Online Recommendation System & Regret Analysis

We first describe an algorithm that captures the TS approach. Unfortunately, a direct analysis of this version is difficult,
so we modify it suitably to design our proposed algorithm SBORS. Due to length limitation, we will not discuss the
precursor to SBORS here. For more information, please see full version [4].

Denote ci(t) as the total number of users selecting item i, and fi(t) as the total number of users observing item i without
selection. Let Ti(t) = ci(t) + fi(t). Denote na(t) as the number of users who abandon the platform by time t, ne(t) as
the number of times that users do not select an item and do not abandonment by time t. Let Nq(t) = ne(t) + na(t). Let
I(·) denote the index function such that I(k) = i if and only if Sk = i. As shown in [2] (Lemma 5), we can get unbiased
estimates of the true parameters as follows:

Lemma 1 Unbiased estimates: ûi(t) =
ci(t)
Ti(t)

is an unbiased estimator for ui and q̂i(t) =
ne(t)
Nq(t)

is an unbiased estimator for q.

Motivated by [1], in algorithm SBORS we maintain a Gaussian posterior distribution for the selection parameter ui and
the abandonment distribution parameter q, which we update as we observe the user’s feedback to our current recom-
mended list. We also perform correlated sampling (which boosts variance boosting and allows for a finer exploration-
exploitation trade-off). For a user arriving at time t, we calculate the current optimal sequence of items based on samples
u′(t) and q′(t). When the sequence of items is shown, we observe the user’s feedback, then update the corresponding
parameters of the relevant Beta distributions.

Posterior approximation: We approximate the posteriors for ui, q by Gaussian distributions with approximately the
same mean and variance as the original Beta distributions. In particular, let

ûi(t) =
ci(t)

ci(t) + fi(t)
=
ci(t)

Ti(t)
, σ̂ui

(t) =

√
αûi(t)(1− ûi(t))

Ti(t) + 1
+

√
β

Ti(t)
, (2)

q̂(t) =
ne(t)

ne(t) + na(t)
=
ne(t)

Nq(t)
, σ̂q(t) =

√
αq̂(t)(1− q̂(t))
Nq(t) + 1

+

√
β

Nq(t)
, (3)

where α > 0, β ≥ 2 are constants, be the means and standard deviations of the approximating Gaussians.

Controlling exploration via correlated sampling: Instead of sampling u′ and q′ independently, we correlate them by
using a common standard Gaussian sample and transforming it. That is, in the beginning of a round t, we generate a
sample from the standard Gaussian θ ∼ N(0, 1), and the posterior sample for item i is computed as ûi(t)+ θσ̂ui(t), while
the posterior sample for abandonment is computed as q̂(t)+θσ̂q(t). This allows us to generate sample parameters for i =
1, · · · , N that are highly likely to be either simultaneously high or simultaneously low. As a consequence, the parameters
corresponding to items in the ground truth S∗, will also be simultaneously high/low. Because correlated sampling
decreases the joint variance of the sample, we can counteract by generating multiple Gaussian samples. In particular,
we generate R independent samples from the standard Gaussian, θ(j) ∼ N(0, 1), j ∈ [R]. We take the maximum from j
samples. Precisely, the parameters are generated as:

u′i(t) = max
j=1,··· ,R

ûi(t) + θ(j)σ̂ui
(t)2, and q′(t) = max

j=1,··· ,R
q̂(t) + θ(j)σ̂q(t)

2

Then we solve the optimization problem to get St = argmax
S

E[U(St,u′(t), q′(t))].

Our main result is shown in Theorem 1. We omit the theoretical analysis for brevity. Please refer to [4] for more details.

2

Paper # 10 467

Algorithm 1 SBORS algorithm
Initialization: Set ci(t) = fi(t) = 1 for all i ∈ X ; ne(t) = na(t) = 1; t = 1;
while t ≤ T do

Update ûi(t), q̂(t), σ̂ui(t), σ̂q(t) from (2) and (3);
(a) Correlated sampling:
for j = 1, ..., R do

Get θ(j) ∼ N(0, 1) and compute u′(j)i (t),q
′(j)(t)

For each i ≤ N , compute u′i(t) = max
j=1,··· ,R

u
′(j)
i (t) and q′(t) = max

j=1,··· ,R
q′(j)(t).

(b) Sequence selection:
Compute St = argmax

S
E[U(S,u′(t), q′(t))]; Observe feedback upon seeing the kt = |St| items;

(c) Posterior update:
for j = 1, · · · , kt do

Update

(cI(j)(t), fI(j)(t), ne(t), na(t)) =

(cI(j)(t) + 1, fI(j)(t), ne(t), na(t)) if select and leave
(cI(j)(t), fI(j)(t) + 1, ne(t) + 1, na(t)) if not select and not abandon
(cI(j)(t), fI(j)(t) + 1, ne(t), na(t) + 1) if not select and abandon

ci(t+ 1) = ci(t), fi(t+ 1) = fi(t) for all i; ne(t+ 1) = ne(t), na(t+ 1) = na(t)
t = t+ 1;

Theorem 1 (Main Result) Over T rounds, the regret of SBORS (Algorithm 1) is bounded as:

Reg(T ;u, q) ≤ C1N
2
√
NT log TR+ C2N

√
T log TR · log T +

C3N

R
,

where C1, C2 and C3 are constants and R is an algorithm parameter.

4 SBORS in the Contextual Setting

We now consider a more realistic setting where the diversity of users affects the offered sequence of items. Let each user’s
information be denoted as a d dimensional vector xt at round t, which determines this user’s preference parameter u(xt)
and abandonment parameter q(xt). User’s feedback for each item is whether it is selected or not, and the feedback for
abandonment is also binary. Let Rui(t) and Rq(t) represent the feedback after showing a sequence St in round t. Thus,
Rui(t) = ci(t) − ci(t − 1), Rq(t) = na(t) − na(t − 1). Since Rui(t) and Rq(t) are binary, we assume that a logistic map
µ(x) = 1

1+e−x relates the context and the parameters. That is,

ui(xt) =
1

1 + e−γ
T
i xt

, and q(xt) =
1

1 + e−δTxt
, (4)

where γi and δ are unknown parameters. We can estimate γi (for each i ∈ [N]) and δ by solving the following equations
at each round [3]:

T−1∑

t=1

1(i ∈ St) ·
(
Rui(t)− µ(γTi xt)

)
xt = 0, and

T−1∑

t=1

(
Rq(t)− µ(δTxt)

)
xt = 0. (5)

This allows us to extend SBORS (Algorithm 1) in a natural way (see Algorithm 2). To initialize, we offer each of item
once to an initial set of users. Then in each round t, we first update γi(t) and δ(t) based on (5). Next we compute ũi(t,x)
, q̃(t,x) and their corresponding σ̃s, given context x using (4). Next, we sample u′i(t,x) and q′(t,x) from Gaussians as
before and solve max

S
E[U(S,ut(xt), qt(xt))].

5 Empirical Experiments & Conclusion

In this section, we only demonstrate the robustness of Algorithm 1 by comparing how the regret changes with respect to
different values of u and other relevant parameters. For more scenarios and discussion, please refer to [4].

Setting: N = 30, reward ri is uniformly distributed between [0, 1], abandonment distribution probability p = 0.1 and the
cost of abandonment c = 0.5. Additionally, we generate u form [0,0.1], and discuss the influence of sampling parameter
R, and fixed constants α, β on the regret separately.

3

Paper # 10 468

Algorithm 2 Contextual SBORS algorithm
Initialization: Set ci(t) = fi(t) = 1 for all i ∈ [N]; ne(t) = na(t) = 1; t = 1;
Offer each item to users 1, · · · , N and collect feedback. Update t = N ;
while t ≤ T do

(a) Posterior sampling:
Update γi(t) and δ(t) by quasi-MLE according to (5); Observe user’s contextual information xt
Get ũi(t,xt) and q̃(t,xt) according to (4), and

σ̃ui
(t,xt) =

√
αũi(t,xt)(1−ũi(t,xt))

Ti(t)+1 +
√

β
Ti(t)

, σ̃q(t,xt) =
√

αq̃(t,xt)(1−q̃(t,xt))
Nq(t)+1 +

√
β

Nq(t)
,

where Ti(t) = ci(t) + fi(t), Nq(t) = ne(t) + na(t), and α and β are the same as Algorithm 1;
For each item i ∈ [N], sample u′i(t,xt) and q′(t,xt) from the corresponding Gaussian distribution:
u′i(t,xt) ∼ N(ũi(t,xt), σ̃ui(t,xt)); q′(t,xt) ∼ N(q̃(t,xt), σ̃q(t,xt))
(b) Sequence selection:
Compute St = argmax

S
E[U(S,u′(t,xt), q′(t,xt))]; Offer St and observe feedback.

(c) Posterior update: Same as step (c) of Algo. 1.

Influence of u: We present four scenarios, when the preference parameter u is uniformly generated from [0, 0.1], [0, 0.2],
[0, 0.3], [0, 0.5], element-wise. Fig. 1(a) shows that the regrets eventually tend to stop growing steeply. The more u is
spread out, the lower the regret is.

Influence of R: We set α = 1, β = 2 and vary R. Fig. 1(b) shows that lower R values reduce the regret. One extreme case
is R = 1, which essentially removes variance boosting and still performs well empirically.

Influence of α: We set R = 10, β = 2 and change α. Fig. 1(c) shows that lower α values reduce the regret.

Influence of β: We set R = 10, α = 1 and change β. Fig. 1(d) shows that lower β reduce regret. For analysis, we needed
β ≥ 2, but we observe that choosing β < 2 can still lead to better regret hinting at a potential slack in our analysis.

0 20000 40000 60000 80000 100000
T

0

500

1000

1500

2000

2500

3000

3500

R
eg

re
t u belongs to [0,0.1]

u belongs to [0,0.2]
u belongs to [0,0.3]
u belongs to [0,0.5]

(a) ui is uniformed generated
from 0 to 0.1, 0.2, 0.3, 0.5, resp.

0 20000 40000 60000 80000 100000
T

0

1000

2000

3000

4000

5000

R
eg
re
t

R=1
R=10
R=100

(b) R is 1, 10, 100, resp.

0 20000 40000 60000 80000 100000
T

0

1000

2000

3000

4000

R
eg

re
t

alpha=0.1
alpha=1
alpha=10

(c) α is 0.1, 1, 10, respectively.

0 20000 40000 60000 80000 100000
T

0

2000

4000

6000

8000

R
eg

re
t

beta=0.2
beta=2
beta=20

(d) β is 0.2, 2, 20, respectively.

Figure 1: Plots for SBORS with different u, R, α, and β.

In this extended abstract, we present a new Thompson Sampling based algorithm for making recommendations where
users experience fatigue. We use techniques such as posterior approximation using Gaussians, correlate sampling
and variance boosting to control the exploration-exploitation trade-off and derive rigorous regret upper bounds. Our
bounds depend polynomially on the number of items and sub-linearly on the time horizon (C1N

2
√
NT log TR +

C2N
√
T log TR · log T + C3N/R). Our algorithm is easily extendable to the contextual setting.

References

[1] Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Thompson sampling for the mnl-bandit. arXiv
preprint arXiv:1706.00977, 2017.

[2] Junyu Cao and Wei Sun. Dynamic learning of sequential choice bandit problem under marketing fatigue. The Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

[3] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The generalized linear
case. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems 23, pages 586–594. Curran Associates, Inc., 2010.

[4] Yunjuan Wang and Theja Tulabandhula. Thompson sampling for a fatigue-aware online recommendation system.
ArXiv Preprint, abs/1901.07734, 2019.

4

Paper # 10 469

Privacy-preserving Q-Learning with Functional Noise in
Continuous State Spaces

Baoxiang Wang Nidhi Hegde

Borealis AI, Edmonton, Canada

{ baoxiang.wang, nidhi.hegde } @ borealisai.com

Abstract

We consider privacy-preserving algorithms for reinforcement learning with continuous state spaces. The aim is to release
the value function which does not distinguish two neighboring reward functions r(·) and r′(·). Existing studies that
guarantee differential privacy are not extendable to infinity state spaces, since the noise level to ensure privacy will scale
accordingly. We use functional noise, which protects the privacy for the entire value function approximator, without
regard to the number of states queried to the function. With analyses on the RKHS of the functional, the uniform bound
such samples noise and the composition of iteratively adding the noise, we show the rigorous privacy guarantee. Under
the discrete space setting, we gain insight by analyzing the algorithm’s utility guarantee. Experiments corroborate our
theoretical findings.

Our code is available at https://github.com/wangbx66/differentially-private-q-learning. For all the
technical details the full paper is at https://arxiv.org/abs/1901.10634.

Keywords: differential privacy, RKHS, reinforcement learning, q-learning

Paper # 11 470

1 Introduction

Increasing interest in reinforcement learning (RL) and deep reinforcement learning has led to recent advances in a wide
range of algorithms [SB18]. While a large part of the advancement has been conducted on the space of games, the
applicability of RL extends to other practical cases such as recommendations and search engines [BHM12]. With the
popularity of the RL algorithms raised the concerns about their privacy. Namely, the released policy function and value
function are trained based on the reward signal and other inputs, which are commonly relying on sensitive data. For
example, an RL recommendation system may use the reward signals simulated by users’ historical records. This historical
information can thus be inferred by recursively querying the released functions.

RL methods learn by carrying out actions, receiving rewards observed for that action in a given state, and transitioning to
the next states. Observation of the learned policy and value can reveal the following sensitive information: the reward
function is a succinct description of the task and the preference; the visited states may carry important contextual information
on the users, such as age, gender occupation, and etc.; the transition function includes the dynamic of the system and the
impact of actions on the dynamic. Among those, the reward function is the most vulnerable and valuable component. The
former is by the fact that the reward involves the least amount of randomness. The later is due to the rich information
contained in the reward function that directly describes the users. In this paper the aim is to protect the reward function.

In order to achieve this under continuous space settings, we investigate the Gaussian process mechanism, proposed by
[HRW13]. The mechanism provides functional noise-adding to the value function approximation hence the function can
be evaluated at arbitrary many states while preserving the privacy. The mechanism requires a reproducing kernel Hilbert
space (RKHS) and our choice of RKHS ensures that neural networks are included in the functional space hence can be used
as the approximation. With the use of the mechanism, we can modify the deep Q-learning algorithm [MKS+15, WD92] so
that the value function is protected after each update. The privacy guarantee follows a series of techniques elaborated.

Utility analysis of our algorithm is given under the tractable discrete state space case to gain some insight.

We provide an implementation of our algorithms and our experiments corroborate the theoretical findings.

Related Works. There is a significant line of research that discusses privacy-preserving approaches on online learning and
bandits [SB18, Sze10]. The algorithms protect the neighboring rewards sequences from being distinguished, which is close
to our definition of neighboring reward functions. The works [TD17, MT15, TS13] share the similar motivation as our
work, but they do not scale to the continuous space due to the

√
N or

√
N logN factor involved where N is the number

of arms. Similarly motivated are the the online learning settings [GUK17, ALMT17, AS17], where analyses are based on
optimizing a fixed objective and thus will not apply to our setting.

More closely related are studies on contextual bandits [SS19, SS18, LWZC16], where a contextual vector is analogous to
the states in reinforcement learning. Equivalently, policy evaluation [BGP16] considers a similar setting where the value
function is learned for a one-step MDP. The major challenge to extend these work is that reinforcement learning, which is
an iterative process of policy evaluation and policy improvement, requires access to the reward sequence. Our proposed
approach will be for both the evaluation and the improvement, while also extending it to non-linear approximations.

A general approach that can be applied to continuous spaces is the differential privacy deep learning framework [ACG+16].
The method perturbs the gradient estimator in the updates of neural networks to preserve privacy. In our problem,
applying this method will require a large noise level which makes it unrealistic to keep a competitive performance. In fact,
the framework relies on the setting where at most one data point can be different in the neighboring inputs. It therefore
benefits from a 1/B factor on the noise level where B is the batch size. This no longer holds as in reinforcement learning
all reward signals can be different for neighboring reward functions, causing the noise to scale B times.

2 Preliminaries

2.1 Notations on Markov Decision Process and Reinforcement Learning

An MDP includes the state space S, the action space A = {1, . . . ,m}, the transition kernel T , the reward function
r : S × A → R, and the discount factor γ ∈ [0, 1). We investigate bounded and continuous state space S ⊆ R and
without loss of generality assume that S = [0, 1]. Denote the corresponding action-state value function as Qπ(s, a) =
Eπ[
∑∞
t≥0 γ

tr(st, at)|s0 = s, a0 = a,π]. When the context is clear, we omit π and write Q(s, a) instead.

2.2 Differential Privacy

Differential privacy [DKM+06, DMNS06] ensures that data analysis should not differ at the aggregate level whether any
given user is present in the input or not. This latter condition on the presence of any user is formalized through the notion
of neighboring inputs. In this paper, r and r′ are considered neighboring inputs if ‖r − r′‖∞ ≤ 1.

1

Paper # 11 471

Definition 1. A randomized mechanismM : D → U satisfies (ε, δ)-differential privacy if for any two neighboring inputs d and d′
and for any subset of outputs Z ⊆ U it holds that

P(M(d) ∈ Z) ≤ exp(ε)P(M(d′) ∈ Z) + δ.

An important parameter of a mechanism is the (global) sensitivity of the output.

Definition 2. For all d, d′ ∈ D neighboring inputs, the sensitivity of a mechanismM is defined as

∆M = max
d,d′∈D

‖M(d)−M(d′)‖, (1)

where ‖ · ‖ is some norm defined on U .

Vector-output mechanisms. For converting vector-valued functions into a (ε, δ)-DP mechanism, one of the standard
approaches is the Gaussian mechanism. This mechanism adds N (0,σ2I) to the outputM(d). In this case U = Rn and ‖ · ‖
in (1) is the `2-norm ‖ · ‖2 of the Euclidean space.

Proposition 3 (Vector-output Gaussian mechanism [DR14]). If 0 < ε < 1 and σ ≥
√

2 ln(1.25/δ)∆M/ε, thenM(d) + y is
(ε,δ)-differentially private, where y is drawn from N (0,σ2I).

Function-output mechanisms. In this setting the output of the function is a function, which means the mechanism is a
functional. We consider the case where U is an RKHS and ‖ · ‖ in (1) is the RKHS norm ‖ · ‖H. Hall et al. [HRW13] have
shown that adding a Gaussian process noise G(0,σ2K) to the outputM(d) is differentially private, when K is the RKHS
kernel of U .

Proposition 4 (Function-output Gaussian process mechanism [HRW13]). If 0 < ε < 1 and σ ≥
√

2 ln(1.25/δ)∆M/ε, then
M(d) + g is (ε,δ)-differentially private, where g is drawn from G(0,σ2K) and U is an RKHS with kernel function K.

3 Differentially Private Q-Learning

3.1 Our Algorithm

Algorithm 1 Differentially Private Q-Learning with Functional Noise
1: Input: the environment and the reward function r(·)
2: Parameters: target privacy (ε, δ), time horizon T , batch size B, action space size m, learning rate α, reset factor J
3: Output: trained value function Qθ(s, a)
4: for j in [T/B] do
5: ĝk[B][2]← {} if j ≡ 0 mod T/JB;
6: for b in [B] do
7: t← jT/B + b;
8: Execute at = arg maxaQθ(st, a) + ĝa(st);
9: Receive rt and st+1, s← st+1;

10: for a ∈ [m] do
11: Insert s to ĝa[:][1] such that the list is increasing;
12: Sample zat ∼ N (µat,σdat)), according to Eq. (2), Appendix A;
13: Update the list ĝa(s)← zat;
14: end for
15: yt ← rt + γmaxaQθ(st+1, a) + ĝa(st+1);
16: lt ← 1

2 (Qθ(st, at) + ĝa(st)− yt)2;
17: end for
18: Run one step SGD θ ← θ + α 1

B∇θ
∑(j+1)B
t=jB lt;

19: end for

We present our algorithm for privacy-preserving Q-learning under the setting of continuous state space. We perturb the
updated value function at each iteration by adding a Gaussian process noise. This is described by line 18 and 19 of the
algorithm, where ĝ is the noise. Line 13-17 describes the necessary steps for ĝ to simulate the Gaussian process. Line 6-8
re-sample a Gaussian process sample path for every J iterations. Other steps are similar to [MKS+15].

Insights into the algorithm design. We require two reward functions r and r′ to not be distinguished by observing the
learned functions. Since the reward signal r(s, a) can appear at any s. Therefore, we need a stronger mechanism that
covers the entire state space, which leads to our utilization of the tools provided by Hall et al. [HRW13].

2

Paper # 11 472

Figure 1: Empirical results on differentially private q-learning. The y-axis denotes the score. The x-axis is the number of
samples the agent has trained on. Averaged over 10 random seeds.

3.2 Privacy, Efficiency, and Utility of the Algorithm

Privacy analysis. There are three main components in the privacy analysis. Analysis of the RKHS, composition of the
mechanism, and the uniform bound of the noise. With these components our privacy guarantee is shown in the below
Theorem 5.
Theorem 5. The Q-learning algorithm in Algorithm 1 is (ε, δ + J exp(−(2k − 8.68

√
βσ)2/2))-DP, provided that 2k > 8.68

√
βσ,

and
σ ≥

√
2(T/B) ln(e+ ε/δ)C(α, k,L,B)/ε,

where C(k,L,B) = ((4α(k + 1)/B)2 + 4α(k + 1)/B)L2, L is the Lipschitz constant of the value function approximation, B is the
batch size and T is the number of iterations, and α is the learning rate.

Time complexity. We show that the noise adding in our algorithm is efficient. In fact, the most complex step introduce by
the noise-adding is the insertion in line 14, which takes logarithmic time.
Proposition 6. The noised value function in Algorithm 1 can respond to Nq rounds of queries in O(log(Nq)) time.

Utility analysis. To the best of our knowledge, there is no study to rigorously analyze the utility of deep reinforcement
learning. However, we gain insight by analyzing the algorithm’s learning error in the discrete state space setting.
Proposition 7. Let v′ and v∗ be the value function learned by our algorithm and the optimal value function, respectively. In the case
J = 1, |S| = n <∞, and γ < 1, the utility loss of the algorithm satisfies E[1n‖v′ − v∗‖1] ≤ 2

√
2σ√

nπ(1−γ) .

3.3 Discussion

Extending to other RL algorithms. Our algorithm can be extended towards the actor-critic method and its variants
[MBM+16, YWT18]. Any post-processing of the private Q function will not break the privacy guarantee, including
experience replay and ε-greedy policies [MKS+15]. In the case where the reward is directly accessed in the policy gradient
estimation [SML+15, LW18, PFW+18] one should add noise to the policy function as well.

Extending to high-dimensional tasks. Our approach can also be extended to high-dimension spaces by choosing a high
dimensional RKHS. For example, the kernel function exp(−β‖x− y‖1) where ‖ · ‖1 is now the Manhattan distance. It is
also possible to use other RKHS for the Gaussian process noise, such as the space of band-limited functions.

4 Experiments

We test Algorithm 1 using our designed MDP settings and plot the learning curve with a variety of noise levels and
J values in Figure 1. Intuitively, with the increase of the noise level, the algorithm takes more samples to achieve the
performance of the non-noisy version. However, we observe that with the noise being reset every round (J = T/B), the
algorithm is likely to converge with limited sub-optimality.

References

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

3

Paper # 11 473

[ALMT17] Jacob Abernethy, Chansoo Lee, Audra McMillan, and Ambuj Tewari. Online linear optimization through the
differential privacy lens. arXiv preprint arXiv:1711.10019, 2017.

[AS17] Naman Agarwal and Karan Singh. The price of differential privacy for online learning. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 32–40. JMLR.org, 2017.

[BGP16] Borja Balle, Maziar Gomrokchi, and Doina Precup. Differentially private policy evaluation. In Proceedings of
the 33th International Conference on Machine Learning, pages 2130–2138, 2016.

[BHM12] Siddhartha Banerjee, Nidhi Hegde, and Laurent Massoulié. The price of privacy in untrusted recommendation
engines. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
920–927. IEEE, 2012.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 486–503. Springer, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference, pages 265–284. Springer, 2006.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends R©
in Theoretical Computer Science, 9(3–4):211–407, 2014.

[GUK17] Pratik Gajane, Tanguy Urvoy, and Emilie Kaufmann. Corrupt bandits for preserving local privacy. arXiv
preprint arXiv:1708.05033, 2017.

[HRW13] Rob Hall, Alessandro Rinaldo, and Larry Wasserman. Differential privacy for functions and functional data.
Journal of Machine Learning Research, 14(Feb):703–727, 2013.

[LW18] Jiajin Li and Baoxiang Wang. Policy optimization with second-order advantage information. arXiv preprint
arXiv:1805.03586, 2018.

[LWZC16] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading bandits. In
ICML, volume 16, pages 1245–1253, 2016.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings
of the 33th International Conference on Machine Learning, pages 1928–1937, 2016.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[MT15] Nikita Mishra and Abhradeep Thakurta. (nearly) optimal differentially private stochastic multi-arm bandits.
In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 592–601. AUAI Press,
2015.

[PFW+18] Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, and Daniel Nikovski.
Reinforcement learning with function-valued action spaces for partial differential equation control. arXiv
preprint arXiv:1806.06931, 2018.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[SML+15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional

continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.
[SS18] Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. In Advances in Neural Information

Processing Systems, pages 4301–4311, 2018.
[SS19] Touqir Sajed and Or Sheffet. An optimal private stochastic-mab algorithm based on an optimal private

stopping rule. In Proceedings of the 36th International Conference on Machine Learning. JMLR.org, 2019.
[Sze10] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and machine

learning, 4(1):1–103, 2010.
[TD17] Aristide Charles Yedia Tossou and Christos Dimitrakakis. Achieving privacy in the adversarial multi-armed

bandit. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.
[TS13] Abhradeep Guha Thakurta and Adam Smith. (nearly) optimal algorithms for private online learning in

full-information and bandit settings. In Advances in Neural Information Processing Systems, pages 2733–2741,
2013.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
[YWT18] Kenny Young, Baoxiang Wang, and Matthew E Taylor. Metatrace actor-critic: Online step-size tuning by

meta-gradient descent for reinforcement learning control. arXiv preprint arXiv:1805.04514, 2018.

4

Paper # 11 474

PAC-Bayesian Analysis of Counterfactual Risk in
Stochastic Contextual Bandits

Junhao Wang
McGill University / Mila

junhao.wang@mail.mcgill.ca

Bogdan Mazoure
McGill University / Mila

bogdan.mazoure@mail.mcgill.ca

Gavin McCracken
McGill University / Mila

gavin.mccracken@mail.mcgill.ca

David Venuto
McGill University / Mila

david.venuto@mail.mcgill.ca

Audrey Durand
McGill University / Mila

audrey.durand@mcgill.ca

Abstract

This work tackles the off-policy evaluation problem within the contextual bandit setting, where only the action and
reward recommended by the logging policy were recorded and thus available at evaluation. This kind of situation
is encountered in applications where one wants to compute the optimal policy using data previously collected in an
offline manner. Previous work have extended the PAC-Bayesian analysis to this setting, providing bounds on the clipped
importance sampling risk estimator using a recent regularization technique known as counterfactual risk minimization. The
contribution of this work is to tighten this existing result through the application of various PAC-Bayesian concentration
inequalities: Kullback-Leibler divergence, Bernstein, and Azuma-Hœffding. This yields bounds on the empirical risk
estimator that either converge at a faster rate given the amount of prior data, or that are more robust to the clipping
factor.

Keywords: contextual bandits, PAC-Bayes

Acknowledgements

The authors would like to thank Vincent Luczkow and Nadeem Ward for insightful discussions.

Paper # 219 475

1 Introduction

In many applications of interactive learning, one wants to leverage previously collected data in an offline manner in
order to compute the optimal policy at a later stage. For instance, this is the case of recommender systems, where data
may have been gathered previously under some recommendation policy (e.g. best top results) and one wants to use
this data to evaluate an alternative recommendation policy. This is known as off-policy or offline evaluation. In this work,
we will tackle the off-policy evaluation problem within the contextual bandit setting, where only the action and reward
recommended by the logging policy were recorded and thus available at evaluation (Li et al., 2011).

The PAC-Bayesian analysis (Shawe-Taylor and Williamson, 1997; Shawe-Taylor et al., 1998; McAllester, 1999) has been
dominantly focusing on studying supervised setting of statistical learning, where data is assumed to be independently
and identically distributed (i.i.d), within the PAC (Probably Approximately Correct) learning framework (Valiant, 1984).
Such analysis highlights the trade-off between the complexity of individual models from the hypothesis space and their
empirical performance, with high probability guarantees on their expected performance. Seldin et al. (2011, 2012) have
extended the framework to non-i.i.d setting such as bandits and reinforcement learning. Additionally, London and
Sandler (2018) applied PAC-Bayesian analysis on a recent regularization technique known as counterfactual risk minimiza-
tion (Swaminathan and Joachims, 2015) for off-policy evaluation on stochastic contextual bandits. The contribution of
this work is to tighten this existing result through the application of various PAC-Bayesian concentration inequalities.

2 Contextual bandits

The stochastic contextual bandit (Langford and Zhang, 2008) is described by an arbitrary context spaceX , an action space
K = {1, . . . ,K}, and a distribution D over tuples (x, ρ), with x ∈ X and ρ : X × K 7→ Y . Without loss of generality, we
will assume in the following that Y = [0, 1]. The problem can then be formulated as an episodic game where on each
episode t ∈ N>0:

1. a context and reward function (xt, ρt ∼ D) are generated from the environment;

2. the learner observes the context xt ∈ X but does not observe the function ρt;

3. the learner selects an action kt ∈ K;

4. the learner observes the reward yt = ρt(xt, kt)

5. the learner updates its knowledge based on this experience.

Assuming thatK is finite, the goal of the learner is to learn a policy π : X 7→ ∆(K) for choosing actions over the probability
simplex according to the context such that to maximize the expected reward G(π) = E(xt,ρt)∼DEkt∼π(xt)ρt(xt, kt). This is
equivalent to minimizing the counterfactual risk: R(π) = 1−G(π).

3 Off-policy evaluation

The task of off-policy policy evaluation consists in estimating either the true expected reward G(π) or the true counter-
factual risk R(π) of an arbitrary policy π based on a n-length history Fπ0

n = {(x1, k1, y1), . . . , (xn, kn, yn)} generated by
some policy π0. This is often referred to as learning from logged bandit feedback (Li et al., 2011, 2012; Mary et al., 2014). For
simplicity, we will only focus on analyzing the counterfactual risk R due to its similarity to expected reward G.

Assumption 1 (Time-invariance of π0). We assume that the logging policy π0 is stationary, such that for every timestep
i 6 n, the corresponding action ki ∈ Fπ0

n has been sampled from the initial policy π0.

A challenge in off-policy evaluation is to derive consistent estimators R̂(π,Fπ0
n) for some policy π 6= π0, with low bias

with regard to true counterfactual R(π) and low variance with regard to the any history Fπn for any policy π. Main
methods for creating such estimators are direct modelling (Hassanpour and Greiner, 2018), importance sampling (Kearns
et al., 2000; Precup, 2000), and doubly robust (Dudı́k et al., 2011), which combines the two previous to produce an
estimator with lower variance and bias. This work focuses on the importance sampling (IS) counterfactual risk estimator

R̂IS(π,Fπ0
n) = 1− E(xi,ρi)∼D

[
Eki∼π(xi)

[
ρi(xi, ki)

π0(xi, ki)

]]
≈ 1− 1

n

n∑

i=1

π(xi, ki)

π0(xi, ki)
ρi(xi, ki), (1)

More specifically, we consider one important variant, that is the clipped importance sampling with counterfactual risk
minimization objective (Hassanpour and Greiner, 2018).

1

Paper # 219 476

Clipped importance sampling The essence of this approach is to set a lower bound on the propensity score π0(xi, ki),
resulting in a clipped importance sampling risk estimator (CIS):

R̂CIS(π,Fπ0
n) = 1− 1

n

n∑

i=1

π(xi, ki)

max{π0(xi, ki), pmin}
ρi(xi, ki)

︸ ︷︷ ︸
yCIS
i

. (2)

Clipping by pmin trades off variance for bias in the estimator. Empirical variance regularizer for the clipped importance
sampling weighted reward yCIS

i can be applied to lead to faster shrinking of the difference between true counterfactual
risk and empirical counterfactual risk, in comparison to without such regularizer. The variance penalty term, known as
counterfactual risk minimization (CRM), is based on the following generalization error bound.

Theorem 3.1 (Counterfactual Risk Minimization (Swaminathan and Joachims, 2015)). Let Π denote the space of policies.

R(π) 6 R̂CIS(π,Fπ0
n) +O

(√
V̂[R̂CIS(π,Fπ0

n)] + C(Π)

n
+

C(Π)

n

)
, (3)

where C(Π) ∝ N∞(ε,Π) measures the cardinality of the minimal ε−covering of Π, and V̂[R̂CIS(π,Fπ0
n)] is the unbiased sample

variance of the CIS risk estimator.

4 PAC-Bayesian Counterfactual Risk Minimization

London and Sandler (2018) provide a Bayesian perspective of CRM by applying PAC-Bayesian analysis (McAllester,
1999) on contextual bandits, in a manner similar to Seldin et al. (2011). They achieve the following CRM bound, which
depends on prior distribution P and posterior distribution Q over known deterministic hypothesis space H : X → K
such that πQ(x, k) = Eh∼Q[I{h(x) = k}] corresponds to the posterior probability that a random hypothesis h maps an
action k to context x. From the PAC-Bayesian perspective, the learner, which can be seen as a Gibbs classifier, samples h
from Q(H) and selects action k = h(x). In the off-policy evaluation setting considered in this work, the logging policy π0
induced by P generated the history Fπ0

n , and the goal consists in estimating R(π) using R̂CIS(π,Fπ0
n).

Theorem 4.1 (PAC-Bayesian Counterfactual Risk Minimization (London and Sandler, 2018)). Let H ⊆ {h : X → K}
denote a hypothesis space mapping contexts to actions and let KL(Q||P) denote the Kullback-Leibler divergence between (absolutely
continuous) probability measures Q,P over the set H. In particular, let P and Q be the prior and posterior distributions over H,
respectively. For any n > 1, δ ∈ (0, 1), pmin ∈ (0, 1) , with probability at least 1 − δ over FP

n , which is history generated by π0
induced by P, the following holds simultaneously for all Q and its corresponding induced πQ:

R(πQ) 6 R̂CIS(πQ,FP
n) +

√
2(1
pmin
− 1 + R̂CIS(πQ,FP

n))(KL(Q||P) + ln n
δ)

pmin(n− 1)
+

2(KL(Q||P) + ln n
δ)

pmin(n− 1)
(4)

Note 1. When R̂CIS(πQ,FP
n) = 1− 1

pmin
, the generalization bound yields O(1

n) converging rate. In particular, minimizing
R̂CIS(πQ,FπP

n) and keeping policy πQ close to logging policy πP through the KL minimizes R(πQ).

This result is obtained using the PAC-Bayesian-Hœffding inequality (McAllester, 2003). The following proposed result
tightens the bound using various concentration inequalities.

4.1 Proposed result

By applying PAC-Bayes-KL inequality (Seeger, 2002), PAC-Bayes-Berstein inequality (Tolstikhin and Seldin, 2013), and
PAC-Bayes-Azuma-Hœffding inequality (Seldin et al., 2012) (Theorems A.1,A.3,and A.2) on PAC-Bayesian CRM (Theo-
rem 4.1), we obtain the following result.

Theorem 4.2 (PAC-Bayesian Counterfactual Risk Minimization Extensions). Let H ⊆ {h : X → K} denote a hypothesis
space mapping contexts to actions. For any n > 1, δ ∈ (0, 1), pmin ∈ (0, 1) and fixed prior, P on H and its corresponding induced

2

Paper # 219 477

policy π0, with probability at least 1− δ over FP
n , the following bounds holds simultaneously for all Q with induced policy πQ:

(KL) R(πQ) 61−δ R̂CIS(πQ,FP
n) +

1

pmin

√
KL(Q||P) + ln n+1

δ

2n
(5)

(Bernstein) R(πQ) 61−δ R̂CIS(πQ,FP
n) +O

(KL(Q||P) + ln 1
δ

n

)
if Q satisfies Eq.17 (6)

R(πQ) 61−δ R̂CIS(πQ,FP
n) +O

(
√

KL(Q||P) + ln 1
δ

npmin

)
otherwise (7)

(Azuma-Hœffding) R(πQ) 61−δ R̂CIS(πQ,FP
n) +O

(
√
p2minKL(Q||P) + ln 2

δ

n

)
. (8)

4.2 Outline of proof

The complete proof is provided in Appendix B. Let D and Dn respectively denote the true and empirical joint distribu-
tions of context x and reward function ρ. The idea consists in constructing empirical counterfactual risk functions rD and
rDn such that distributions P, Q over deterministic hypothesis spaceH can be applied to them:

rD(h) =

〈
D, 1− E(xi,ρi)∼DEki∼πP(xi)

I{h(ci) = ki}ρi(xi, ki)
max{pmin, πP(xi, ki)}

〉
(9)

rDn(h) =

〈
Dn, 1− E(xi,ρi)∼DEki∼πP(xi)

I{h(xi) = ki}ρi(xi, ki)
max{pmin, πP(xi, ki)}

〉
. (10)

Recall that we can express the true and estimated CIS risk for πQ as

RCIS(πQ) = 〈Q, rD〉 and R̂CIS(πQ, τ
πP
n) = 〈Q, rDn〉 (11)

and then use that
1

max{pmin, πP(xi, ki)}
6 1

πP(xi, ki)
in order to obtain that RCIS(πQ) > R(πQ) and

R(πQ)− R̂CIS(πQ,FπP
n) 6 RCIS(πQ)− R̂CIS(πQ,FπP

n) = 〈Q, rD〉 − 〈Q, rDn〉. (12)

Theorem 4.2 is then obtained by applying various inequalities to bound the right side of the following where (xi, ki) ∈ FP
n :

n〈Q, rD − rDn〉 =

〈
Q,

n∑

i=1

[
rD −

(
1− Eh∈H

I{h(xi) = ki}ρ(xi, ki)

max{pmin, πP(xi, ki)}
)]〉

(13)

and dividing by n.

4.3 Discussion

Using the PAC-Bayes-KL, PAC-Bayes-Bernstein and PAC-Bayes-Azuma-Hœffding bounds for an arbitrary martingale
process allows to provide tight bounds on the true counterfactual risk of a contextual bandit. One observes that the
previous result (Theorem 4.1) originally proposed by London and Sandler (2018) isO

(
KL(Q||P)+ln n

δ

pminn

)
. In comparison, the

proposed result offers the following gains:

• the proposed KL-based bound (Eq. 5) tightens at a faster rate 1/
√
n;

• the Azuma-Hœffding-based bound (Eq. 8) saves a rate 1/pmin and tightens at a faster rate 1/
√
n;

• the Bernstein-based bound (Eq. 6 and 7) saves a rate 1/pmin if Q satisfies the condition of Eq. 17, otherwise it
saves a rate 1/

√
pmin and tightens at a faster rate 1/

√
n.

In other words, all three bounds are more efficient than the existing result, in the sense that they either converge faster
(better dependence on n) or they are less impacted by the clipping factor (better dependence on pmin). A detailed ar-
gument outlining dominance of Eq. 5 by Theorem 4.1 under a looser condition on R̂CIS(πQ,FP

n) can be found in the
appendix.

3

Paper # 219 478

5 Conclusion

We derived three bounds on the true counterfactual risk within the contextual bandit setting based on PAC-Bayes-KL,
PAC-Bayes-Bersntein and PAC-Bayes-Azuma-Hœffding inequalities, which improve upon existing results (London and
Sandler, 2018). A natural line of extension would be to study the efficiency of PAC-Bayes bounds in the sequential
decision making setting as applied to offline (Mandel et al., 2016) or doubly robust off-policy (Farajtabar et al., 2018)
policy evaluation.

References
R. Bhatia and C. Davis. A better bound on the variance. The American Mathematical Monthly, 107(4):353–357, 2000.
M. Dudı́k, J. Langford, and L. Li. Doubly robust policy evaluation and learning. arXiv preprint arXiv:1103.4601, 2011.
M. Farajtabar, Y. Chow, and M. Ghavamzadeh. More robust doubly robust off-policy evaluation. arXiv preprint

arXiv:1802.03493, 2018.
N. Hassanpour and R. Greiner. A novel evaluation methodology for assessing off-policy learning methods in contextual

bandits. In Advances in Artificial Intelligence: 31st Canadian Conference on Artificial Intelligence, Canadian AI 2018, Toronto,
ON, Canada, May 8–11, 2018, Proceedings 31, pages 31–44. Springer, 2018.

M. J. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning in large pomdps via reusable trajectories. In Advances in
Neural Information Processing Systems, pages 1001–1007, 2000.

J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In NIPS, 2008.
L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommen-

dation algorithms. In WSDM, 2011.
L. Li, W. Chu, J. Langford, T. Moon, and X. Wang. An unbiased offline evaluation of contextual bandit algorithms with

generalized linear models. In Proceedings of the Workshop on On-line Trading of Exploration and Exploitation 2, 2012.
B. London and T. Sandler. Bayesian counterfactual risk minimization. arXiv, abs/1806.11500, 2018.
T. Mandel, Y.-E. Liu, E. Brunskill, and Z. Popović. Offline evaluation of online reinforcement learning algorithms. In

AAAI, 2016.
J. Mary, P. Preux, and O. Nicol. Improving offline evaluation of contextual bandit algorithms via bootstrapping tech-

niques. In ICML, 2014.
D. McAllester. Simplified pac-bayesian margin bounds. In Learning theory and Kernel machines, pages 203–215. Springer,

2003.
D. A. McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):355–363, 1999.
D. Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series,

page 80, 2000.
M. Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. Journal of machine learning research,

3(Oct):233–269, 2002.
Y. Seldin, P. Auer, J. S. Shawe-Taylor, R. Ortner, and F. Laviolette. Pac-bayesian analysis of contextual bandits. In NIPS,

2011.
Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-Taylor, and P. Auer. Pac-bayesian inequalities for martingales. IEEE

Transactions on Information Theory, 58(12):7086–7093, 2012.
J. Shawe-Taylor and R. C. Williamson. A pac analysis of a bayesian estimator. In Annual Workshop on Computational

Learning Theory: Proceedings of the tenth annual conference on Computational learning theory, volume 6, pages 2–9, 1997.
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent

hierarchies. IEEE transactions on Information Theory, 44(5):1926–1940, 1998.
A. Swaminathan and T. Joachims. Counterfactual risk minimization: Learning from logged bandit feedback. In ICML,

2015.
I. O. Tolstikhin and Y. Seldin. Pac-bayes-empirical-bernstein inequality. In NIPS, 2013.
L. G. Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages

436–445. ACM, 1984.

4

Paper # 219 479

A Appendix

Theorem A.1 (PAC-Bayes-KL Inequality (Seeger, 2002)). Let H be a hypothesis space, let Z1, . . . , Zn be a sequence of random
functions, such that Zi : H → [0, 1] for i = 1, . . . , n. Assume E[Zi|Z1 . . . Zi−1] = b, where b : H → [0, 1] is a deterministic
function.

Let Sn =
∑n
i=1 Zi. Fix a prior distribution P over H. Then for any δ ∈ (0, 1), with probability greater than 1− δ over Z1 . . . Zn,

for all distributions Q overH simultaneously:

KL

(
〈 1
n
Sn,Q〉||〈b,Q〉

)
6

KL(Q||P) + ln n+1
δ

n
, (14)

which is tight if 〈 1nSn,Q〉 is close to zero or one, otherwise

∣∣∣∣〈
1

n
Sn,Q〉 − 〈b,Q〉

∣∣∣∣ 6

√
KL(Q||P) + ln n+1

δ

2n
(15)

is tighter.

Theorem A.2 (PAC-Bayes-Azuma-Hœffding Inequality (Seldin et al., 2012)). Let H be a hypothesis space, let Z1, . . . , Zn be
a sequence of random functions, such that Zi : H → [αi, βi] where αi, βi ∈ R for i = 1, . . . , n and pick c > 1. Let M i =

∑i
j=1 Zj .

Fix a prior distribution P over H. Then for any δ ∈ (0, 1), with probability greater than 1 − δ over Z1 . . . Zn, for all distributions
Q overH simultaneously:

|〈Q,Mn〉| 61−δ
1 + c

2
√

2

√√√√
(

KL(Q||P) + ln
2

δ
+ ε(Q)

) n∑

i=1

(βi − αi)2 (16)

where

ε(Q) =
ln 2

2 ln c

(
1 + ln

{
KL(Q||P)

ln 2
δ

})
.

Theorem A.3 (PAC-Bayes-Bernstein Inequality (Tolstikhin and Seldin, 2013)). Let H be a hypothesis space, let Z1, . . . , Zn
be a sequence of random functions, such that Zi : H → R. Assume E[Zi|Z1 . . . Zi−1] = 0. Thus ∀h ∈ H, Z1(h), . . . , Zn(h) is
a martingale difference sequence. Let M i =

∑i
j=1 Zj and hence E[M i+1|M1 . . .M i] = M i. Then ∀h ∈ H, M1(h), . . . ,Mn(h)

is a martingale. Let V i : H → R be such that V i(h) =
∑i
j=1 E[Zj(h)2|Z1(h), . . . , Zj−1(h)]. Assume that ||Zi||∞ 6 K ∀i with

probability 1 and pick λ 6 1
K . Fix a prior distribution P over H and pick c > 1. Then for any δ ∈ (0, 1), with probability greater

than 1− δ over Z1 . . . Zn, for all distributions Q overH simultaneously which satisfy:
√

KL(Q||P) + ln 2v
δ

(e− 2)〈Q, V n〉
6 1

K
(17)

the following holds:

|〈Q,Mn〉| 6 (1 + c)

√
(e− 2)〈Q, V n〉(KL(Q||P) + ln

2v

δ
) (18)

where

v =

ln

(√
(e−2)n
ln(2

δ)

)

ln(c)

+ 1,

and for all other Q:

|〈Q,Mn〉| 6 2K(KL(Q||P) + ln
2v

δ
). (19)

Theorem A.4 (Bhatia-Davis Inequality (Bhatia and Davis, 2000)). Let P be a distribution with support (m,M) ⊆ R and
E[P] = µ. Then, the following holds:

V[P] 6 (M − µ)(µ−m). (20)

5

Paper # 219 480

Tightness of PAC-Bayes-KL extension. To show that 4.1 is looser than (28) is equivalent to showing that there exists an
N > 0 such that, for all n > N ,

√
2(1
pmin
− 1 + R̂CIS(πQ,FP

n))(KL(Q||P) + ln n
δ)

pmin(n− 1)
+

2(KL(Q||P) + ln n
δ)

pmin(n− 1)
−
√

KL(Q||P) + ln n+1
δ

p2min2n
> 0.

Note that for n > 1, the second term is non-negative by properties of KL divergence and the fact that, for δ ∈ (0, 1) and
n > 1, lnn− ln δ > 0.

√
4n(n− 1)(1 + R̂CIS(πQ,FP

n)pmin − pmin)(KL(Q||P) + ln n
δ)

p2min(n− 1)22n
−
√

(n− 1)2(KL(Q||P) + ln n+1
δ)

p2min(n− 1)22n

Completing the difference of squares and getting rid of the common denominator yields

4n(n− 1)(1 + R̂CIS(πQ,FP
n)pmin − pmin)(KL(Q||P) + ln

n

δ
)− (n− 1)2(KL(Q||P) + ln

n+ 1

δ
)

Factoring out terms dependent on sample complexity yields

4n(n− 1) lnn− (n− 1)2 ln(n+ 1) = (n− 1)(3n+ 1) lnn+ 1 > 0

for n > 1 and R̂CIS(πQ,FP
n) = 1

pmin
(c − 1) where c > (n−1)2 ln(n+1)

4n(n−1) lnn . Therefore, picking N large enough ensures a tighter
bound in the limit and completes the argument.

B Detailed proof of Theorem 4.2

Proof. LetD andDn respectively denote the true and empirical joint distributions of context x and reward function ρ. We
construct empirical counterfactual risk functions rD and rDn such that distributions P, Q over deterministic hypothesis
spaceH can be applied to them:

rD(h) =

〈
D, 1− E(xi,ρi)∼DEki∼πP(xi)

I{h(ci) = ki}ρi(xi, ki)
max{pmin, πP(xi, ki)}

〉
(21)

rDn(h) =

〈
Dn, 1− E(xi,ρi)∼DEki∼πP(xi)

I{h(xi) = ki}ρi(xi, ki)
max{pmin, πP(xi, ki)}

〉
(22)

. (23)

We can express the true and estimated CIS risk for πQ as

RCIS(πQ) = 〈Q, rD〉 and R̂CIS(πQ, τ
πP
n) = 〈Q, rDn〉 (24)

then use that
1

max{pmin, πP(xi, ki)}
6 1

πP(xi, ki)
to obtain that RCIS(πQ) > R(πQ) and

R(πQ)− R̂CIS(πQ,FπP
n) 6 RCIS(πQ)− R̂CIS(πQ,FπP

n) = 〈Q, rD〉 − 〈Q, rDn〉. (25)

We will then apply different inequalities that bound the right side of the following with (xi, ki) ∈ FP
n :

n〈Q, rD − rDn〉 =

〈
Q,

n∑

i=1

[
rD −

(
1− Eh∈H

I{h(xi) = ki}ρ(xi, ki)

max{pmin, πP(xi, ki)}
)]〉

. (26)

Using PAC-Bayes-KL inequality (Theorem A.1) Scaling rD and 1 − I{h(xi)=ki}ρ(xi,ki)
max{pmin,πP(xi,ki)} to [0, 1], constant (pmin − 1)

addition and subtraction cancel out, we have

〈Q, pmin(rD − rDn)〉 61−δ

√
KL(Q||P) + ln n+1

δ

2n
(27)

thus 〈Q, (rD − rDn)〉 61−δ
1

pmin

√
KL(Q||P) + ln n+1

δ

2n
. (28)

6

Paper # 219 481

Using PAC-Bayes-Azuma-Hœffding inequality (Theorem A.2) For any c > 1, we have

n〈Q, rD − rDn〉 61−δ
1 + c

2
√

2

√(
KL(Q||P) + ln

2

δ
+

ln 2

2 ln c

(
1 + ln

(KL(Q||P)

ln 2
δ

))) n

p2min

. (29)

Using PAC-Bayes-Bernstein inequality (Theorem A.3) For any λ > 0, we have

n〈Q, rD − rDn〉 61−δ
KL(Q||P) + ln 2

δ

λ
+ (e− 2)λ〈Q, V n〉 (30)

where V i(h) =
i∑

j=1

E[Zj(h)2|Z1(h), . . . , Zj−1(h)]

and Zi(h) = rD −
(

1− I{h(xi) = ki}ρ(xi, ki)

max{pmin, πP(xi, ki)}
)

noting that ||Zi|| 6 K =
1

pmin
.

For Q that satisfies

√
KL(Q||P) + ln 2v

δ

(e− 2)〈Q, V n〉
6 1

K
= pmin, we have that for any c > 1,

n〈Q, rD − rDn〉 61−δ (1 + c)

√
(e− 2)〈Q, V n〉

(
KL(Q||P) + ln

2v

δ

)
where v =

ln (e−2)n
ln 2
δ

2 ln c

+ 1. (31)

By using the facts that Zi ∈ [−1,
1

pmin
] and E[Zj |Z1, . . . , Zj−1] = 0 combined with the Bhatia-Davis inequality (Theo-

rem A.4, Bhatia and Davis (2000)), we can bound

E[Zn(j)2|Z1(h), . . ., Zj−1(h)] 6
(1

pmin
− 0
)(

0− (−1)
)

=
1

pmin
s.t. V n 6 n

pmin
. (32)

Thus,

n〈Q, rD − rDn〉 6 O

(√
〈Q, V n〉

(
KL(Q||P) + ln

1

δ

))
6 O

(√
n
(KL(Q||P) + ln 1

δ

pmin

))
. (33)

For all other Q:

n〈Q, rD − rDn〉 61−δ 2K

(
KL(Q||P) + ln

(2v

δ

))
. (34)

7

Paper # 219 482

MinAtar: An Atari-inspired Testbed
for More Efficient Reinforcement Learning Experiments

Kenny Young
Department of Computing Science

University of Alberta
Edmonton, AB, Canada
kjyoung@ualberta.ca

Tian Tian
Department of Computing Science

University of Alberta
Edmonton, AB, Canada
ttian@ualberta.ca

Abstract

The Arcade Learning Environment (ALE) is a popular platform for evaluating reinforcement learning agents. Much
of the appeal comes from the fact that Atari games are varied, showcase aspects of competency we expect from an
intelligent agent, and are not biased towards any particular solution approach. The challenge of the ALE includes 1) the
representation learning problem of extracting pertinent information from the raw pixels, and 2) the behavioural learning
problem of leveraging complex, delayed associations between actions and rewards. In many cases, the research questions
we are interested in pertain more to the latter, but the representation learning problem adds significant computational
expense. In response, we introduce MinAtar, short for miniature Atari, a new evaluation platform that captures the
general mechanics of specific Atari games, while simplifying certain aspects. In particular, we reduce the representational
complexity to focus more on the behavioural challenges. MinAtar consists of analogues to five Atari games which play
out on a 10x10 grid. MinAtar provides the agent with a 10x10xn state representation. The n channels correspond to game-
specific objects, such as ball, paddle and brick in the game Breakout. While significantly simplified, these domains are
still rich enough to allow for interesting behaviours, similar to those observed in the ALE. To demonstrate the challenges
posed by these domains, we evaluated a smaller version of the DQN architecture. We also tried variants of DQN without
experience replay, and without a target network, to assess the impact of those two prominent components in the MinAtar
environments. In addition, we evaluated a simpler agent that used actor-critic with eligibility traces, online updating,
and no experience replay. We hope that by introducing a set of simplified, Atari-like games we can allow researchers to
more efficiently investigate the unique behavioural challenges provided by the ALE.

Keywords: Reinforcement Learning, Evaluation Environment

Acknowledgements

The authors would like to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) and Alberta Innovates. We would also like to thank Martha White, Andy Patterson and the rest of the Univer-
sity Alberta RLAI group for helpful comments and feedback.

Paper # 136 483

1 Motivation

The arcade learning environment (Bellemare, Naddaf, Veness, & Bowling, 2013) (ALE) has become widely popular as a
testbed for reinforcement learning (RL), and other AI algorithms. An important aspect of the ALE’s appeal is that the
environments are designed to be interesting for human players, and not to be amenable to any particular approach to
AI. Because of this design, the platform is largely free of experimenter bias and provides diverse challenges which we
associated with the kind of general intelligence seen in humans.

The challenges provided by the ALE can be broadly divided into two aspects: 1) the representation learning problem of
extracting pertinent information from the raw pixels, and 2) the behavioural learning problem of leveraging complex,
delayed associations between actions and rewards.

While it is important to have testbeds that provide this kind of broad-spectrum challenge, it is not always what we want
as experimenters. Often, the work flow when evaluating a new RL idea is to first experiment with very simple domains,
such as Mountain Car or a tabular MDP, then jump to complex domains, like those provided by the ALE, to validate the
intuition. We believe that this jump tends to leave a wide gap in understanding that would be best filled by domains of
intermediate complexity.

MinAtar is intended to bridge this gap by providing environments designed to capture the spirit of specific Atari 2600
games, while simplifying certain aspects. One aspect of the ALE that makes it difficult to use as an RL testbed is that
much of the computing power expended to train a deep RL agent goes toward learning a semantically meaningful
representation from the raw pixel input. When the first deep RL agents were shown to succeed in the ALE, this was
an interesting challenge. Presently, however, this challenge is usually addressed with some variant of convolutional
neural network and often the interesting research questions come not from this visual representation learning problem,
but instead from the higher level behavioural challenges involved in the various games. A major goal of MinAtar is,
thus, to reduce the complexity of this representation learning problem while maintaining the mechanics of the original
games as much as possible. While our simplification also reduces the behavioural complexity of the games, the MinAtar
environments are still rich enough to showcase interesting behaviours, similar to those observed in the ALE.

We emphasize that MinAtar is not a challenge problem, like Go, StarCraft (Vinyals et al., 2017) or the ALE when it was
first introduced. The purpose is to serve as a more efficient way to validate intuition, and provide proof of concept for
artificial intelligence ideas, which is closer to how the ALE is often used today.

2 The MinAtar Platform

Aside from replicating the spirit of a set of Atari 2600 games, the design goals of MinAtar can be broken down as follows:

• Reduce spatial dimension: In MinAtar, each game takes place on a 10x10 grid. This is a significant reduction
from the Atari 2600 screen size of 160x210. Often, in the ALE, the input to the learning agent is down-sampled.
For example, Mnih et al. (2015) downsample to 64x64. MinAtar provides a much smaller input without the need
for this step.

• Reduce action space: In MinAtar, the action space consists of moving in one of the 4 cardinal directions, firing,
or no-op. This makes for a total of just 6 actions. On the other hand, in the ALE, it is possible to move in 8
directions or stand still. For each of these choices, the player can also either fire or not fire. This makes for a total
of 18 actions.

• Provide semantically meaningful input: Instead of raw color channels, each MinAtar environment provides a
number of semantically meaningful channels. For example, for the game Breakout, MinAtar provides channels
for ball, paddle and brick. The total number of such channels is game-dependent. The state provided to the agent
consists of a stack of 10x10 grids, one for each channel, giving a total dimensionality of 10x10xn where n is the
number of channels.

• Reduce partial observability: Many games in the ALE involve some benign form of partial observability. For
example, the motion direction of objects is often not discernible from a single frame. Techniques like frame
stacking (Mnih et al., 2015) reduce such partial observability. Minitar mitigates the need for such techniques by
making the motion direction of objects discernible within a single frame. Depending on the situation, we convey
motion direction either by providing a trail channel indicating the last location of certain objects, or by explicitly
providing a channel for each possible direction of motion. We do not aim to eliminate partial observability, but
merely mitigate the more trivial instances.

• Simplify certain game mechanics: Reduction to a 10x10 grid means that some of the more nuanced mechanics
of certain Atari 2600 games are difficult or impossible to replicate. Other mechanics we left out for simplicity.
For example, in Space Invaders we do not include the destructible defence bunkers or the mystery ship which

1

Paper # 136 484

periodically crosses the top of the screen. We also limit each game to one life, terminating as soon as the agent
dies.

• Add stochasticity: The Atari 2600 is deterministic. Each game begins in a unique start state and the outcome
is uniquely determined by the action sequence that follows. This deterministic behaviour can be exploited by
simply repeating specific sequences of actions, rather than learning policies that generalize. Machado et al. (2017)
address this by adding sticky-actions, where the environment repeats the last action with probability 0.25 instead
of executing the agent’s current action. We incorporate sticky-actions in MinAtar, but with a smaller probability
of 0.1. This is based on the assumption that individual actions have a larger impact in MinAtar than in the ALE
due to the larger granularity of the movement discritization, thus each sticky-action can have a potentially larger
negative impact. In addition, we make the spawn location of certain entities random. For example, in Seaquest
the enemy fish, enemy submarines and divers emerge from random locations on the side of the screen.

So far, we have implemented five games for the MinAtar platform. Visualizations of each of these games are shown in
Figure 1. MinAtar is available as an open-source python library under the terms of the GNU General Public License. The
source code is available at:

https://github.com/kenjyoung/MinAtar

You can find links to videos of trained DQN agents playing the MinAtar games in the README.

Seaquest Breakout

Asterix Freeway Space Invaders

Figure 1: Visualization of each MinAtar game. Colour indicates active channel at each spatial location, but note that the
representation provided by the environment consists of binary values for each channel and not RGB values.

3 Experiments

We provide results for several variants of two main algorithms on each of the five MinAtar environments. We trained
each agent for a total of 5 million frames, compared to 50 million for Mnih et al. (2015) (200 million if you count in terms of

2

Paper # 136 485

emulator frames since they use frame-skipping). The reduction in the number of frames allowed us to run more repeats
without inordinate expense. We were able to train 30 different random-seeds per agent-environment combination to
obtain results with tighter confidence intervals. These results serve to provide a baseline for future work, as well as to
illustrate the challenge posed by these new environments.

Deep Q-Network

Our DQN architecture consisted of a single convolutional layer, followed by a fully connected hidden layer. Our con-
volutional layer used 16 3x3 convolutions with stride 1, while our fully connected layer had 128 units. 16 and 128 were
chosen as one quarter of the final convolutional layer and fully connected hidden layer respectively of Mnih et al. (2015).
We also reduced the replay buffer size, target network update frequency, epsilon annealing time and replay buffer fill
time, each by a factor of ten relative to Mnih et al. (2015) based on the reasoning that our environments take fewer
frames to master than the original Atari games. We trained on every frame and did not employ frame skipping. The
reasoning behind this decision is that each frame of our environments is more information rich. Other hyperparameters,
including the step-size parameter, were set to match Mnih et al. (2015). We also tested variants of the DQN architecture
without experience replay and without a target network to assess the usefulness of these components in the simpler
environments.

The smaller architecture and input size means that running on CPU instead of GPU was feasible. For DQN with experi-
ence replay running on Seaquest, the total wall-clock time per frame was around 8 milliseconds when running on a single
CPU, compared to 5 milliseconds when running on GPU. We report these times for Seaquest because it has the largest
number of input channels and thus the largest number of network parameters.

Actor-Critic with Eligibility Traces

We also experimented with an online actor-critic with eligibility traces (AC(λ)) agent (Degris, Pilarski, & Sutton, 2012;
Sutton & Barto, 2018). This agent used no experience replay or multiple parallel actors. We used a similar architecture
to the one used in our DQN experiments, except that we replaced the relu activation functions with the SiLU and dSiLU
activation functions introduced by Elfwing, Uchibe, and Doya (2018). Their work showed these activations to be helpful
when using online eligibility traces with nonlinear function approximation. Specifically, we applied SiLU in the convo-
lutional layer and dSiLU in the fully connected hidden layer. We set the step-size to 2−8, the largest value that was found
to yield stable learning across games by Young, Wang, and Taylor (2018), who used online AC(λ) to train a similar archi-
tecture for several ALE games. We tested AC(λ) with trace decay parameter of 0.8 and 0, where the latter corresponds to
one-step actor-critic with no eligibility trace.

Discussion

The results of our experiments are shown in Figure 2. The first thing to note is that the MinAtar environments clearly
show the advantage of using experience replay in DQN. On the other hand, the target network appeared to have little
performance impact. To verify that the poor performance of DQN without experience replay was not due to a poorly
tuned step-size parameter, we tried running DQN without experience replay with various values of the step-size on
Seaquest. We choose Seaquest for the step-size sweep because it showed the largest discrepancy in results with and
without experience replay. Specifically, we tried 30 random-seeds with each value of the step-size from the set {α0 ·2i|i ∈
{1, 0, ...,−4}}, where the original value was α0 = 0.00025. We swept primarily lower values, reasoning that the lack of
batching would lead to higher variance, potentially requiring a lower step-size relative to DQN with experience replay.
For all the step-size choices, none of the average returns over the final 100 training episodes were above 1.0.

DQN significantly outperformed the simpler AC(λ) agent in 3 of the games. In each of these 3 games, AC(λ) barely
learned at all. On the other hand, perhaps surprisingly, AC(λ) significantly outperformed DQN at Space Invaders. The
two performed similarly at Breakout, though DQN converged faster to it’s final performance. To verify that the AC(λ)’s
poor performance was not due to a poorly tuned step-size, we performed a step-size sweep on Seaquest running AC(0.8).
Specifically, we tried 30 random-seeds with each value of the step-size from the set {α0 · 2i|i ∈ {−1, 0, ..., 4}}, where
α0 = 2−8 is the original AC(λ) step-size. We swept primarily higher step-size values, reasoning that the initial step-size,
chosen for stability on ALE games, was potentially unnecessarily low for some MinAtar games. With the best step-size
of α0 ·23, we observed performance improvement of AC(λ), achieving a final average return of 4.4±0.6 over the final 100
episodes in 5 million training frames. However, this was still far below the performance of DQN with experience replay.

Taken together, these results suggest that the MinAtar environments are effective at highlighting the strengths and weak-
nesses of different approaches.

3

Paper # 136 486

seaquest breakout

moving average
of returns over
100 episodes

DQN

 DQN without target

AC(0.8)
AC(0)

DQN without replay

asterix

frames (in millions) frames (in millions)

freeway

frames (in millions)

space invaders

Figure 2: Average return v.s. training frames for all games and agents.

4 Conclusion

We introduce MinAtar, a new evaluation platform for reinforcement learning designed to allow for more efficient ex-
periments by providing simpler versions of Atari 2600 games. These environments aim to reduce the representation
learning burden to focus more on interesting behavioral aspects of the games, which are often of greater interest to RL
experimenters. Currently the platform consists of five environments. In the future, we plan to add more. Of particular
interest are the games typically considered hard exploration problems, such as Montezuma’s Revenge and Pitfall. It would
also be interesting to explore how other DQN additions, such as double DQN, perform in the MinAtar environments.

References

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An evaluation platform
for general agents. Journal of Artificial Intelligence Research, 47, 253–279.

Degris, T., Pilarski, P. M., & Sutton, R. S. (2012). Model-free reinforcement learning with continuous action in practice. In
American control conference (acc), 2012 (pp. 2177–2182). IEEE.

Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in
reinforcement learning. Neural Networks, 107, 3–11.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., & Bowling, M. (2017). Revisiting the arcade
learning environment: Evaluation protocols and open problems for general agents. arXiv preprint arXiv:1709.06009.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540), 529.

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., . . . Schrittwieser, J., et al. (2017). StarCraft II:

A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782.
Young, K., Wang, B., & Taylor, M. E. (2018). Metatrace: Online step-size tuning by meta-gradient descent for reinforcement

learning control. arXiv preprint arXiv:1805.04514.

4

Paper # 136 487

