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Abstract

Path integral stochastic optimal control based learning methods are among the most efficient and scalable reinforcement
learning algorithms. In this work, we present a variation of this idea in which the optimal control policy is approximated
through linear regression. This connection allows the use of well-developed linear regression algorithms for learning of
the optimal policy, e.g. learning the structural parameters as well as linear parameters. In path integral reinforcement
learning, Policy Improvement with Path Integral (PI2) algorithm is one of the most efficient and most similar algorithms
to the algorithm we propose here. However, in contrast to the PI2 algorithm that relies on the Dynamic Movement
Primitive (DMPs) to become a model free learning algorithm, our proposed method is formulated for an arbitrary pa-
rameterized policy represented by a linear combination of nonlinear basis functions. Additionally, as the duration and
the goal of the task is part of the optimization in some tasks like shortest-time path optimization problem, our proposed
method can directly optimize these quantities instead of assuming them to be given, fixed parameters. Furthermore PI2
needs a batch of rollouts for each parameter update iteration whereas our method can update after just one rollout. The
simulation result in this work shows that a simple implementation of our proposed method can at least perform as well
as PI2 despite only using ’out-of-the-box’ regression and a ’naive’ sampling strategy. In this light, the here presented
should only be considered as a preliminary step in the development of our new approach which addresses some issues
in the derivation of previous algorithms. Basing the development on this improvements, we believe that this work will
ultimately lead to more efficient learning algorithms.

Keywords: reinforcement learning, stochastic optimal control, path integral,
linear regression approximation.
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1 Introduction

Learning motor control is one the essential components for versatile autonomous robots. In order to guide the learning,
we need to define a cost (or reward) function that mirrors the requirements for a given task. Therefore learning motor
control can be considered as a constraint optimization problem where the constraints are in general a set of stochastic
differential equations plus some limits on the joint variables and torques. This naturally leads to formulating learning
motor control in a stochastic optimal control framework, where the main difference is the availability of a model (opti-
mal control) vs. no model (learning). Taking a model based optimal control perspective and then developing a model
free reinforcement learning algorithm based on an optimal control framework has proven very successful. Under the
assumption of stochastic dynamics the key for the step from model based control to model free learning is a path in-
tegral formulation of optimal control. Recently, algorithms based on these developments [10, 4] have shown superior
performance in practical applications [9, 1].

Using path integral to solve the optimal control problem was introduced by Kappen in [3]. He demonstrates how path
integral allows to replace the backward computation, by forward computation of a diffusion process. But his formu-
lation is not model-free and also it is restricted to a special class of systems i.e. system with state independent control
transition. In Theodorou et al. [10], the generalized path integral formulation (the control transition can be a function
of the states) is used to derive a model-free, iterative learning algorithm named Policy Improvement with Path Integral
(PI2). The original formulation of PI2 is based on Dynamic Movement Primitives (DMPs) [2]. The DMPs add an artificial
limitation to the optimization problem by restricting the space of the achievable trajectories. DMPs also introduce two
open algorithmic parameters i.e. the goal and duration of movement. In [9] an approach to learn the goal parameter is
presented, but still the duration of movement is an open parameter. In [7] a variation of PI2 is presented in which the
control input is directly parameterized. However this variation is not model-free (the control transition is needed) and
suffers from over parameterization. To solve this problem as proposed in [1] a fast intermediate system between the real
system input and parameterized input is needed (the same version of PI2 is used here for the sake of comparison). In
addition to the policy representation issue PI2 needs a batch of rollouts for each iteration of parameter update which is
not ideal for learning on real systems e.g. robots. Here every additional roll-out is time consuming and leads to unneces-
sary wear and tear. Also PI2 relies on a task-dependent heuristic formula to sum up the time-indexed policy parameter
vector to one time-independent parameter vector. In contrast to PI2 our proposed algorithm addresses all these issues in
a more systematic way.

In this work, we follow up on the idea of path integral stochastic optimal control as a basis for formulating a learning
algorithm. However, instead of confining policy parametrization to the DMPs, we utilize an arbitrary linear parametriza-
tion for optimal policy by using linear combinations of nonlinear basis functions. We also try to avoid any kind of task
dependent heuristic in order to develop a more general learning algorithm. As will be detailed, the estimation of the
optimal control policy can be transformed into a linear regression problem. This connection to the linear regressions
gives the opportunity of using well developed algorithms for learning both the model structure and the parameters.
This approach also makes it possible to update parameter vector after each rollout (Although in current implementation
this ability is not used).

2 Path Integral Stochastic Optimal Control Learning Algorithm

In this section, we are going to demonstrate how the problem of estimating the optimal policy boils down to a linear
regression problem. For this reason, we will briefly introduce the path integral stochastic optimal control. Then, we will
derive our main formula which is a linear regression optimal control policy.

Path Integral Stochastic Optimal Control – First, we briefley introduce the basics of path integral stochastic optimal
control (for more details refer to [3, 4, 10]). We assume a finite horizon cost function

J(xi, ti) = min
u(t→tf )

C (xi, t, u (ti → tf )) (1)

C (xi, ti, u (.)) =Eτ |xi

{
φ(x(tf )) +

∫ tf

ti

(
q(x, t) +

1

2
uTRu

)
dt

}

where x is the state vector and u is the control input vector. The trajectory τ |xi is generated by the stochastic dynamics
modelled by

ẋ = f(x, t) + g(x)(u+ ε) ε ∼ N(0,Σ) (2)

with initial condition x(ti) = xi, control trajectory u(.), and zero mean Gaussian input noise ε with covariance Σ. The
solution to this optimization problem can be derived by solving the stochastic Hamilton-Jacobi-Bellman (HJB) equation
which is a nonlinear second order Partial Differential Equation (PDE). This PDE can be transformed into a linear second
order PDE through the transformation J = −λ log Ψ and assumption Σ = λR−1. Using the Feynman-Kac formula, the
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solution to this linear PDE can be found by simulating random paths of the stochastic process which is associated with
the uncontrolled noise driven system. After several steps of calculation, the control input can also be derived by a path
integral formulation. Equation (3) shows this relation to the path integral. In this equation gc is the nonzero vertical
partition of the matrix g and Q(τ |x) is the accumulated cost (without the control cost) on trajectory τ which starts form
state x and evolves according to equation (4) (uncontrolled noise driven system).

u∗(x, t) =T (x)
Eτ |x

{
exp

(
− 1
λQ(τ |x)

)
εt
}

Eτ |x
{

exp
(
− 1
λQ(τ |x)

)} (3)

T (x) =R−1gTc
(
gcR

−1gTc
)−1

gc

Q(τ |x) =

(
φ(x(tf )) +

∫ tf

t

q(x′, t′)dt′
)

τ |x

ẋ′ =f(x′, t′) + g(x′)ε (4)

Equation (3) can also be written in the form of equation (5). This equation will be used in the next section.

Eτ |x

{
exp

(
− 1

λ
Q(τ |x)

)(
u∗(x, t)− T (x)εt

)}
= 0 (5)

Proposed Learning Algorithm – Using a parameterized policy makes the learning problem tractable in high dimen-
sion. Among different possible choices for function approximation a linear combination of basis functions, θTΦ(x, t),
represents theoretical and practical advantages. In general the basis functions Φ(x, t) of these models can be a nonlinear
function of any set of features from time and states. In addition, any approximation problem needs a suitable metric
to calculate the difference between the approximated and real optimal solution. Equation (6) shows the sum square
error criterion, L(θ), which is calculated over an arbitrary distribution (ideally the optimal trajectory distribution) for
approximating the optimal control input. Here ‖ . ‖2 is the norm two of the vector.

L(θ) = Ex
{
‖ u∗(x, t)− θTΦ(x, t) ‖22

}
(6)

The gradient of L(θ) is equal to zero at the optimal solution which implies equation (7).

∂L(θ∗)
∂θ

= Ex

{(
u∗(x, t)− θ∗TΦ(x, t)

)
Φ(x, t)T

}
= 0 (7)

By multiplying and dividing Eτ |x
{

exp
(
− 1
λQ(τ |x)

)}
and further steps we omit for brevity we get

Ex

{
1

Eτ |x
{

exp
(
− 1
λQ(τ |x)

)}Eτ |x
{

exp

(
− 1

λ
Q(τ |x)

)(
u∗(x, t)− θ∗TΦ(x, t)

)
Φ(x, t)T

}}
= 0 (8)

by adding and subtracting the term T (x)εt from the previous expression we derive the following expression

Ex

{
1

Eτ |x
{

exp
(
− 1
λQ(τ |x)

)}Eτ |x
{

exp

(
− 1

λ
Q(τ |x)

)(
u∗(x, t)− T (x)εt + T (x)εt − θ∗TΦ(x, t)

)
Φ(x, t)T

}}
= 0 (9)

After several further steps and using equation (5) it can be shown that the underlined term will vanish. Therefore, we
get

ExEτ |x

{
exp

(
− 1
λQ(τ |x)

)

Eτ |x
{

exp
(
− 1
λQ(τ |x)

)}
(
θ∗TΦ(x, t)− T (x)εt

)
Φ(x, t)T

}
= 0 (10)

which is equivalent to the following minimization problem

θ∗ = arg min
θ
ExEτ |x

{
exp

(
− 1
λQ(τ |x)

)

Eτ |x
{

exp
(
− 1
λQ(τ |x)

)} ‖ θTΦ(x, t)− T (x)εt ‖22

}
(11)

Equation (11) shows that the problem of finding the optimal parameterized policy is reduced to a Weighted Linear
Regression (WLR) problem.

To turn this method into a model free algorithm, the matrix T (x) should be omitted from regression. This can be achieved
by assuming that the real system dynamics is augmented by a square MIMO (Multiple-Input Multiple-Output) linear
system in which its states are the real system control input. This system should have a unique output-to-input gain and
faster dynamics than the real, underlying system and does therefore not interfere with the real system dynamics. In
this case the real system control inputs become part of the states of the augmented system and it causes matrix T (x) to
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Table 1 Path Integral Stochastic Optimal Control (PISOC) Learning
Algorithm:

Given: Initial parameter θ, Exploration noise covariance, Linear
model structure u = θT Φ(x, t), Cost function.
while Convergence of the trajectory cost do

- Create K rollouts through the system in equation (2).
- Compute S in equation (12) for each rollout.
- Compute minS and maxS over K rollouts.
- Compute S̃ in equation (12) for each rollout.
- Update θ by solving the minimization in equation (12) over
K rollouts.
- Anneal the exploration noise.

end while

Figure 1 The evaluation results, the cost versus iteration for
(a) mass point (b) 50-link arm

depend only on the input matrix of the linear system which is a invertible square matrix. This means T (x) = I . This
simplification borrows the idea of the adiabatic elimination technique in physics [1].

Note that the sampling distribution in equation (11) comes from the noise driven system. This can cause two major
problems. First, we expect that the performance of the learning agent increases during the time which obviously contra-
dicts with sampling from noise driven system. Second, it causes the probability of finding good trajectories to decrease
exponentially as the dimension of the problem increases. This makes the learning problem intractable in high dimension
and real word problems. One possible remedy is using the importance sampling method. In this method, instead of
sampling the whole solution space, samples are taken from a suitable sampling distribution. One natural choice for cur-
rent learning problem will be sampling from active system where the control inputs are computed as the last estimation
of the optimal control inputs with respect to the samples collected so far. The only remaining issue is to add importance
sampling correction weight to the regression problem. By Gaussian noise assumption the final regression problem is as
equation (12). Here the τa illustrates that the sampling system is the active system. In equation (12) S̃ is the normalized
version of S. This accomplished by choosing the λ = maxS−minS

10 and multiplying the nominator and denominator by
exp( 10minS

maxS−minS ). Table 1 illustrates the pseudo code for a simple learning algorithm based on equation (12).

θ∗ = min
θ
ExEτa|x





exp
(
−S̃(τa|x)

)

Eτa|x
{

exp
(
−S̃(τa|x)

)} ‖ θTΦ(x, t)− εt ‖22



 (12)

S̃(τa|x) = 10× S(τa|x)−minτa|x S(τa|x)

maxτa|x S(τa|x)−minτa|x S(τa|x)

S(τa|x) =

(
φ(x(tf )) +

∫ tf

t

(
q(x′, t′) +

1

2
uTRu+ uTRε

)
dt′
)

τa|x

3 Simulation

In this section the algorithm in the Table 1 is used for learning the two different tasks. Both of the evaluation are the via
point and reaching task combination in the 2D environment. The first on is a single point mass and the second one is a 50-
link planar arm. We compare our solution against a modified version of PI2 algorithm for the performance comparison.
The here used variant of PI2 does not use the DMPs for policy parameterization. Whereas it directly parameterizes the
control input (i.e. as our proposed algorithm). In both of the algorithms, the exploration noise, number of rollouts, and
other open parameters are the same. The control input is represented by linear combination of time-based Gaussian
kernels.

Point Mass – The first evaluation considers learning the optimal policy for controlling a point mass moving on a
horizontal plane. The task is to start from a particular point, then to pass through another particular point in a specific
time, and finally to reach to a goal point in the predefined time with zero velocity. We also try to minimize the control
input quadratic cost. In both algorithms 15 trials per update are considered which consist of 10 new trials and the best 5
trials form previous updates. The covariance of the noise is set to 20 which is decreased linearly over parameter update
iterations. The initial value for the parameter vector is set to zero. Figure 1.a shows the cost of task versus iteration for
both algorithms. The figure shows that the both algorithms have comparable performances.

Robotic Arm – In the second evaluation, a 50-link planar robot is considered. The goal of the task is the same as in the
previous example but this time the end-effector position and velocity is considered. The learning setup is also the same.
Figure 1.b shows the result of learning curve. The results show that the proposed algorithm performs slightly better.

3
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4 Discussion

As the simulation results demonstrate, the performance of current implementation of equation (12) is not significantly
better than the PI2. The results just confirm that a simple implementation of this linear regression based learning algo-
rithm can work at least as well as PI2. We consider this work as a basis for future development, as it addresses some
issues of previous developments and it will allow for more efficient learning algorithms. There are a few interesting
aspects of the proposed algorithm that we are discussing in the following.

– One of the advantages of the formulation in equation (12) is that it transforms the problem of the learning optimal
control in to a linear regression problem which allows us to use the well developed framework and tools of regression.

– While we have not demonstrated this fact here, the structural parameters can be learned automatically. There exist a
number of algorithms in the framework of linear model for regression which make it possible to automatically adapt the
distribution and number of the base functions. Although it is possible to use the same methods for PI2 algorithm, some
practical considerations in the implementation of PI2 will slow down structural parameter learning. Before starting
to describe the reason, note that one of the difference between these two algorithm is the way they add noise to the
system for exploration. In our proposed algorithm (like gradient based policy search) the noise is added directly to the
action while in PI2, exploration noise is added to the parameter vector (like stochastic gradient descend methods and
evolutionary algorithms). As shown in [8] it is better not to add time dependent noise to the parameter vector but just
to add a constant perturbation during each trial. This consideration will cause that for a single update of structural
parameters, we require the information of several different rollouts. Whereas in the new formulation noise is varied
during execution of a rollout which makes it possible to update the structural parameters after each rollout. In general
we believe that adding noise directly to the control action increases the amount of information we can retrieve from the
system. Although some may argue that it is not suitable for real systems to have non smooth input but it would be fine
for simulation phase. In the case of real system experiment, we can assume a low pass filter before the system input
which smooth out the control input signal. But again even by this assumption we can add a time varying noise in each
rollouts (It would be colored noise not a white noise).

– According to the current formulation it is possible to do an update after each rollout. Consequently it can be expected
that the accumulative reward during the agent life will increase quicker. Because not only the living policy is improved
constantly but also the sampling distribution is modified.

– In the inference related methods for policy search, it is common to introduce the probability of reward in order to
transform the optimization problem into inference problem [5, 6]. This reward probability is proportional to the expo-
nential of the negative trajectory cost. Our proposed method lends support to this assumption. As shown, the problem
of finding optimal parameter vector for arbitrary linear approximation of the optimal control input will be WLR, in
which the weights are the reward probability. By the assumption of the Gaussian noise, The proposed WLR problem is
equivalent to the maximum-likelihood estimation problem for a parameterized policy where the a-posterior distribution
is proportional to the reward probability.

As future work, we will test this algorithm on real robotic systems. We also aim to implement a better algorithm for
equation (12). This implementation should be able to learn the structural parameters (e.g. number of base functions and
their distribution) as well as the linear parameters. It also should be able to update the parameterized policy after each
rollout.
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Abstract

Temporally extended actions or options have primarily been applied to speed up reinforcement learning by directing
exploration to critical regions of the state space. We show that options may play a critical role in planning as well. To
demonstrate this, we analyze the convergence rate of Fitted Value Iteration with options. Our analysis reveals that for
pessimistic value function estimates, options can improve the convergence rate compared to Fitted Value Iteration with
only primitive actions. Furthermore, options can improve convergence even when they are suboptimal. Our experi-
mental results in two different domains demonstrate the key properties from the analysis. While previous research has
primarily considered options as a tool for exploration, our theoretical and experimental results demonstrate that options
can play an important role in planning.
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1 Introduction

Although temporally extended actions or options have been primarily studied as a method for directing exploration,
options may provide a complementary tool for efficient planning [5, 4]. Under most analyses of iterative planning algo-
rithms, one iteration corresponds to planning one additional timestep into the future. On the other hand, by performing
a single iteration with temporally extended actions, one iteration could instead correspond to planning several timesteps
into the future. We derive bounds that help us reason about when approximate dynamic programming with temporally
extended actions may converge faster than approximate dynamic programming with only primitive actions.

The options framework is appealing for investigating planning with temporally extended actions. For one thing, the
class of options includes both primitive actions as well as a wide range of temporally extended actions, and many of the
well-known properties of Markov Decision Processes generalize when arbitrary options are added (e.g., Value Iteration
and Policy Iteration still converge [5]). In addition, much effort has gone into algorithms that learn “good” options
for exploration. These algorithms may produce options that are also useful for planning. Lastly, options allow for
greater flexibility when modeling problems where actions do not have the same temporal resolution. For example, in
inventory management problems where placing orders may not occur at regular intervals. Thus, options are an important
candidate for investigating planning with temporally extended actions.

We argue that planning can benefit from using options. To show this, we introduced a generalization of the Fitted Value
Iteration (FVI) algorithm that incorporates samples generated by options. When the given set of options contains the
primitive actions, our generalized algorithm converges at least as fast as FVI with only primitive actions. Then we de-
velop precise conditions where our generalized FVI algorithm converges faster with options than with only primitive
actions. These conditions turn out to depend critically on whether the iterates produced by FVI underestimate the opti-
mal value function. Finally, our experimental results in two different domains demonstrate that the convergence rate of
planning with options can be significantly faster than planning with only primitive actions. However, as predicted by
our theoretical analysis, the improvement in convergence only occurs when the iterates of our algorithm underestimate
the optimal value function, which can be controlled in practice by setting the initial estimate of the optimal value func-
tion pessimistically. Our analysis of FVI suggests that options can play an important role in planning by inducing fast
convergence.

2 Background

A Markov Decision Process (MDP) is defined by a is a set of states X , a finite set of primitive actions A, a mapping P
from state-action pairs to probability distributions over states, a mapping R from state-action pairs to bounded reward
distributions, and a discount factor γ ∈ [0, 1). Let B(X;VMAX) denote the set of functions with domain X and range
bounded by [−VMAX, VMAX] and M(X) the set of all probability measures on X . The objective of planning in an MDP
is to derive a policy π that maximizes V π(x) = E [

∑∞
t=0 γ

tRt(xt, π(xt))|x0 = x, π] , where x is the long-term value of
following π starting in state x. We denote an optimal policy by π∗ and V ∗ = V π

∗
= maxπ V

π . The MDP Bellman oper-
ator T performs the backup T V (x) = maxa∈AR(x, a) + γ

∫
P (y|x, a)V (y)dy, which defines the popular value iteration

algorithm.

The Primitive action Fitted Value Iteration (PFVI) algorithm is a generalization of value iteration to handle MDPs with
large or continuous state spaces. PFVI runs iteratively producing a sequence of K ≥ 1 estimates {Vk}Kk=1 of the optimal
value function and returns a policy πK that is greedy with respect to the final estimate VK . During each iteration k, the
algorithm computes a set of empirical estimates V̂k of T Vk−1 for N states, and then fits a function approximator to V̂k. To
generate V̂k, N states {xi}Ni=1 are sampled from a distribution µ ∈ M(X). For each sampled state xi and each primitive
action a ∈ A, L next states {yai,j}Lj=1 and rewards {rai,j}Lj=1 are sampled from the MDP simulator S. For the kth iteration,
the estimates of the Bellman backups are computed by V̂k(xi) = maxa∈A 1

L

∑L
j=1

(
rai,j + γVk−1(yai,j)

)
, where V0 is the

initial estimate of the optimal value function given as an argument to PFVI. The kth estimate of the optimal value func-

tion is obtained by applying a supervised learning algorithm A, that produces Vk = arg minf∈F
∑N
i=1

∣∣∣f(xi)− V̂k(xi)
∣∣∣
p

,

where p ≥ 1 and F ⊂ B(X;VMAX) is the hypothesis space of the supervised learning algorithm.

Munos and Szepesvári [3] showed that given an MDP, if we select probability distributions µ, ρ ∈ M(X), a positive
integer p, a supervised learning algorithm A over a bounded function space F that returns the function f ∈ F that
minimizes the empirical p-norm error, V0 ∈ F an initial estimate of the optimal value function, and ε > 0 and δ ∈ (0, 1],
then for any K ≥ 1, with probability at least 1− δ, there exists parameters N and L such that the policy πK returned by
PFVI satisfies

||V ∗ − V πK ||p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ dp,µ(T F ,F) + ε+ γ

K+1
p

(
2 ‖V ∗ − V0‖∞

(1− γ)2

)
, (1)
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where dp,µ(T F ,F) = sup
f∈F

inf
g∈F
‖T f−g‖p,µ is the inherent Bellman error of F with respect to Bellman operator T and C1/p

ρ,µ

describes the smoothness of the MDP’s future state distributions. The inherent Bellman error is a measure of how well
the chosen hypothesis space F can represent V̂k at each iteration. The first term in (1) is called the approximation error
and corresponds to the error introduced by the inability of the supervised learning algorithm to exactly capture V̂k at
each iteration, while the second term, the estimation error, is due to using a finite number of samples to estimate V̂k. The
last term is controlled by the number of iterationsK of the algorithm. By increasingK the last term shrinks exponentially
fast. This last term characterizes the convergence rate of the algorithm. The size of the discount factor γ controls the rate
of convergence. Convergence is faster when γ is smaller. Unfortunately, γ is part of the problem definition. However,
because options execute for multiple timesteps, an option can have an effective discount factor that is smaller than γ.

An MDP paired with a set of options O defines a Semi-Markov Decision Process (SMDP). An option o is defined by
a set of states Io that o can be initialized from, a policy πo defined over primitive actions followed during the lifetime
of o, and a mapping βo : X → [0, 1] that determines the probability that o will terminate in a given state [5]. Op-
tions have primarily been applied to direct exploration in reinforcement learning. However, Sutton et al. [5] and Silver
and Ciosek [4] provide experimental results demonstrating that options can speed up planning in finite state MDPs,
but these works did not apply options to tasks with continuous state spaces and there is no theoretical analysis of the
convergence rate compared to planning with only primitive actions. We denote the transition probability matrix of an
option o by Po and the discounted transition probability matrix by P̃ o. The SMDP Bellman operator T is defined by
TV (x) = maxo∈O R(x, o) +

∫
P̃ o(y|x)V (y)dy.

We introduce a generalization of the FVI algorithm for the case where samples are generated by options (with prim-
itive actions as a special case). The algorithm, Options Fitted Value Iteration (OFVI), takes the same arguments
as PFVI, but operates on an SMDP simulator instead of an MDP simulator S. When an option is sampled, S re-
turns a termination state, cumulative reward, and duration that the option executed 〈yoi,j , roi,j , τoi,j〉 ∼ S(xi, o). Then
the update resulting from applying the Bellman operator to the previous iterate Vk−1 is estimated by V̂k(xi) ←
maxo∈Oxi

1
L

∑L
j=1

[
roi,j + γτ

o
i,jVk−1(yoi,j)

]
, and we apply a supervised learning algorithm to obtain the best fit in F . The

given simulator S differs from the simulator for PFVI. In addition to returning a next state and reward, S also returns the
number of timesteps that the option executed before terminating. Otherwise the differences between PFVI and OFVI are
minor and it is natural to ask if OFVI has similar finite-sample and convergence behavior compared with PFVI.

3 Theoretical Analysis

It turns out that, with no special assumptions about the given options or iterates of OFVI, it is possible to derive a bound
that is similar to (1). We omit this result for brevity. In this section, we investigate when the convergence rate of OFVI is
strictly faster than PFVI.

Faster convergence depends critically on the optimism or pessimism of the sequence of iterates produced by OFVI. We
say that an estimate V ∈ B(X;VMAX) of the optimal value function is optimistic if V (x) > V ∗(x) for all x ∈ X , and we
say that V is pessimistic if V (x) ≤ V ∗(x) for all x ∈ X . It turns out that the SMDP Bellman operator T has the same
convergence rate as the MDP Bellman T operator (although the SMDP Bellman operator can converge slightly slower
in practice) when acting on entries of V ∈ B(X;VMAX) that are optimistic. This means that we can only expect OFVI to
converge more quickly than PFVI when some of the iterates {Vk}Kk=0 are pessimistic in at least part of the state space.
For standard value iteration this is not a problem because we can set the initial estimate V0 to be pessimistic and the fact
that T is monotonic and converges to V ∗ ensures that every iterate is also pessimistic. The situation for OFVI is more
complicated because of the algorithm’s fitting step. However, Theorem 1 (below) describes when we can expect OFVI to
converge faster than PFVI provided that the first few iterates happen to be pessimistic with respect to V ∗.

Another important factor is the given set of options O. We have already assumed that O contains the primitive actions
in A. We need additional options that are somehow useful for planning. In the following theorem, we will assume that
there exists a near-optimal option policy φ : X → O and that φ is temporally extended so that its effective discount factor
γ̄ < γ.
Theorem 1. For any ε, δ > 0, γ̄ ∈ (0, γ), K ≥ 1, and 1 ≤ Z ≤ K. Fix p ≥ 1. Let ρ, µ ∈ M(X). Suppose there exists an option
policy ϕ : X → O that is α-optimal (i.e., V ϕ(x) > V ∗(x)−α for all x ∈ X) and P̃ϕ ≤ γ̄Pϕ. Given V0 ∈ B(X,VMAX), if the first
Z iterates {Vk}Zk=0 produced by the algorithm are pessimistic (i.e., Vk(x) ≤ V ∗(x) for all x ∈ X), then there exists positive integers
N,L such that when OFVI is executed,

||V ∗ − V πK ||p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ (dp,µ(TF ,F) + 2α) + ε+

(
γK−Z+1γ̄Z

)1/p(2 ‖V ∗ − V0‖∞
(1− γ)

)
(2)

holds with probability at least 1− δ.
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(a) Optimistic (V0 ≥ V ∗) (b) Pessimistic (V0 ≤ V ∗)

Figure 1: Optimal Replacement Task: Convergence rates of PFVI and OFVI. (a) When the initial value function estimate is
optimistic, there is no difference between the convergence rates of PFVI and OFVI. (b) However, when the value function
estimate is pessimistic, OFVI converges faster than PFVI.

We omit the proof of Theorem 1 for brevity. In this theorem, we have assumed that there exists an option policy ϕ that is
both near-optimal and temporally extended throughout the state space. The OFVI algorithm runs exactly as PFVI using
the same parameters and requires no special prior knowledge or preparation besides setting V0 to be pessimistic. For the
results of the theorem to hold, at least the first Z iterates produced by the algorithm must be pessimistic. This condition
is difficult to control in general, but it may be possible to control for specific applications and function approximation
architectures.

As with (1), the bound in Theorem 1 has three terms: (1) approximation error, (2) estimation error, and (3) convergence
error. The main advantage of Theorem 1 can be seen in the third term, which characterizes the convergence rate of the
algorithm. The first Z iterations converge at a rate of γ̄ instead of γ. Since γ̄ < γ, we can see that γK−Z+1γ̄Z < γK+1. In
other words, when the conditions of Theorem 1 are met, OFVI converges faster than PFVI.

The main limitation is due to the first term, which controls the approximation error. This term is slightly worse than
the approximation error in (1) due to our exploitation of the α-optimal option policy ϕ. However, this does not imply
that the algorithm converges to a worse solution than (1). It reflects the fact that when such an option policy ϕ exists,
convergence will be rapid up to a point. Once the algorithm has achieved a value function estimate that is close to ϕ,
the convergence rate may slow because the SMDP Bellman operator may not be able to improve on the current estimate
further by selecting temporally extended actions.

4 Experiments & Results

We compared PFVI and OFVI in two different tasks: (1) the optimal replacement problem considered in Munos and
Szepesvári [3], and the Taxi domain introduced in Dietterich [1]. In both experiments, we see that options can dramati-
cally improve convergence rates of FVI, but only when V0 is pessimistic with respect to V ∗.

In the optimal replacement problem, the agent selects from one of two actions K and R, whether to maintain a product
(action K) at a maintenance cost c(x) that depends on the product’s condition x or replace (action R) the product with a
new one for a fixed cost C. We used parameter values identical to those used by Munos and Szepesvári [3]. Similar to
Munos and Szepesvári [3], we used polynomials to approximate the value function. Results presented here used fourth
degree polynomials. The optimal policy keeps the product up to a point x̄ and replaces the product once the state equals
or exceeds x̄. For OFVI, we introduced a single option that keeps the product up to a point x̄ and terminates once the state
equals or exceeds x̄. For an optimistic initial value function, the behavior of PFVI and OFVI was almost identical (Figure
1a). With a pessimistic initial value function estimate, convergence of OFVI is significantly faster than PFVI (Figure 1b).

The Taxi task is to traverse a taxi to a passenger waiting in one of four landmarks, and then drop off the passenger at
his desired location [1]. To approximate the value function, we used fourth order polynomial functions, but the state
space was partitioned by landmarks and passenger locations so that the value function was approximated by a separate
polynomial function for each partition. For OFVI, we introduced four options. Each option causes the agent to navigate
to one of the four landmarks along the shortest path. Each option terminates either when it has reached its respective
landmark or the option has exceeded the maximum trajectory length. Figure 2 shows average convergence rates for OFVI
and PFVI with optimistic (Figure 2a) and pessimistic (Figure 2b) initial value functions. Similar to what was observed for
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Figure 2: Taxi Task: Convergence rates of PFVI and OFVI. (a) When the initial value function estimate is optimistic,
there is no difference between the convergence rates of PFVI and OFVI. (b) However, when the value function estimate
is pessimistic, OFVI converges faster than PFVI.

the Optimal Replacement Task, in the Taxi Task, OFVI and PFVI have similar convergence rates when the initial value
function is optimistic, but OFVI has a much faster convergence rate when the initial value function is pessimistic.

5 Conclusion

We have analyzed Fitted Value Iteration applied to SMDPs. Our analysis shows that when the value function estimate is
pessimistic with respect to the optimal value function, the convergence rate of OFVI can be significantly faster than PFVI
because OFVI can take advantage of temporally extended actions that have a smaller effective discount factor. Further-
more, options can improve convergence even when they are suboptimal. For other conditions, OFVI has a comparable
convergence rate to PFVI.

Options may have other benefits for planning besides improving the convergence rate. For example, options may enable
a planning algorithm to “skip over” regions of the state space with highly complex dynamics without impacting the
quality of the planned policy. In partially observable environments, options may be exploited to decrease uncertainty
about the hidden state by “skipping over” regions of the state space where there is large observation variance, or “testing”
hypotheses about the hidden state. Options may also play an important role in robust optimization, where the dynamics
of temporally extended actions are known with greater certainty than the dynamics of primitive actions.

References
[1] Thomas G Dietterich. The MAXQ method for hierarchical reinforcement learning. In International Conference on

Machine Learning, pages 118–126, 1998.
[2] Milos Hauskrecht. Planning with macro-actions: Effect of initial value function estimate on convergence rate of value

iteration. Technical report, Brown University, 1998.
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Abstract

This work introduces Policy Reuse for Safe Reinforcement Learning (PR-SRL), an algorithm that combines Probabilistic Pol-
icy Reuse and teacher advices for safe exploration in dangerous and continuous state and action reinforcement learning
tasks. The algorithm uses a progressive risk function which permits to identify the probability to end up in a fail from
a given state. Such risk function is defined in terms of how far such state is from the state space known by the learning
agent. Probabilistic Policy Reuse is used to safely balance the exploitation of actual learned knowledge, the exploration
of new actions and the request of teacher advice in considered dangerous parts of the state space. Specifically, the π-
reuse exploration strategy is used. Using experiments in the helicopter hover task, we show that the π-reuse exploration
strategy reduces drastically the number of times that the learning system damages in training when compared with pre-
vious approaches, obtaining similar performance (in terms of the classical long-term accumulated reward) of the learned
policy. We also show interesting results in to improve a basic walking behavior of the humanoid robot NAO.

Keywords: Safe Reinforcement Learning, Probabilistic Policy Reuse, Learning
from Demonstration, Case Based Learning
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1 Introduction

While most Reinforcement Learning (RL) tasks [6] are focused on maximizing a long-term cumulative reward, RL re-
searchers are paying increasing attention also to the safety of the approaches (e.g., avoiding collisions, crashes, etc.)
during the learning process [3, 2]. Thus, when using RL techniques in dangerous control tasks, an important question
arises; namely, how can we ensure that the exploration of the state-action space will not cause damage or injury while,
at the same time, learning (near-)optimal policies? The matter, in other words, is one of ensuring that the agent is able to
explore a dangerous environment both safely and efficiently.

Policy Improvement through Safe Reinforcement Learning (PI-SRL) [2] is an algorithm for safe exploration in dangerous and
continuous control tasks. Such a method requires a predefined (and safe) baseline policy, provided by a teacher, which is
assumed to be suboptimal (otherwise, learning would be pointless). The method has shown the best performance in all
the domains evaluated when compared with previous approaches, like the evolutionary RL approach selected winner of
the helicopter domain in the 2009 RL Competition [4] and Geibel and Wysotzki’s risk-sensitive RL approach [3]. PI-SRL
is based in a risk function, %B(s), that measures the risk of a state in terms of its similarity to previously visited (and
secure) states in a case base, B. When the distance to the closer state in the case base is larger than a parameter θ, the risk
is maximum, while the risk is minimal if such distance is lower than θ [2]. Therefore, in that work, the risk function is
defined as a step function. However, to define the risk function in such a way has demonstrated that still may produce
damages in the learning agent. The reason is that to follow the teacher advice only when the distance to the closest
known state is larger than θ may be very late. Opposite, one would expect that the risk function is progressive. In such
a way, while the limit of θ is approaching, the risk should start to grow, and the learning agent could start to use the
teacher advice.

In this work we propose the use a progressive risk function that determines the probability to follow the teacher advice.
To integrate such advice, Probabilistic Policy Reuse is used, specifically, the π-reuse explotation strategy. In its initial
definition, the π-reuse strategy is an exploration strategy able to bias a new learning process with a previously acquired
policy [1], but recent works have suggested also its use to incorporate teacher advice [8] and even human demonstra-
tions [7]. We use this exploration strategy to incorporate the teacher advice in a safe exploration process. In this way, we
minimize the number of times that the learning system damages in training, while maintaining the performance of the
final policy achieved.

2 Safe Reinforcement Learning

Figure 1: Exploration strategy based on the addition of small amounts of noise to baseline policy behavior.

The notion of risk considered in this paper is related to the fact that, during the exploration process, the agent can visit
regions for which it has no information about how to act. As a result, the probability of incurring damage or injury is
greatly increased. To illustrate this concept of risk, a navigation problem is presented in Figure 1. In this problem, small
amounts of gaussian noise are added to a baseline policy to discover new trajectories to complete the task. However, the
exploration of new trajectories leads the robot to unknown regions of the state space (the dashed red lines). The robot
is assumed to be able to detect such situations with a risk function and, then, the baseline behavior is used to provide
information about how to act.

In our approach, we represent a policy following a Case Based Reasoning Approach. A case-base is a set of cases B =
{c1 . . . , cη} with ci =< si, ai, V (si) >, where the first element represents the case’s problem part and corresponds to the
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state si, the following element ai depicts the case solution (i.e., the action expected when the agent is in the state si) and
the final element V (si) is the value function associated with the state si. Hence, the cases in B describe a Case Based
Policy of the agent, πθB , and its associated value function V π

θ
B . When the agent receives a new state sq , the agent first

retrieves the nearest neighbor to the sq point in B according to some similarity metric and then the associated action is
performed. In this paper we consider the Euclidian distance as similarity metric.

A density threshold, θ, is used to determine when a new case should be added to the memory. When the agent receives a
new state s, it performs the action ai of the case ci for which d(s, si) = min1≤j≤η d(s, sj) < θ (known state). However, if
the agent receives a state s where, by definition, the distance to any state in B is larger than θ (unknown state), no case
is retrieved. Consequently, the action to be performed from that state is unknown to the agent. In that case, a baseline
behavior, πT , is used to support the exploration process conducted to obtain a better policy. In this step, πT acts as a
backup policy in the case of an unknown state with the intention of guiding the learning away from catastrophic errors
or, at least, reducing their frequency. It is important to note that the baseline behavior cannot demonstrate the correct
action for every possible state. However, while the baseline behavior might not be able to indicate the best action in all
cases, the action it supplies should, at the very least, be safer than that obtained through random exploration.

2.1 Supporting the Exploration Process: the Risk Function

A main contribution of this work is the definition of a continuous risk function (Figure 2 (b)). Given a case base B =
{c1 . . . , cη} composed of cases ci = (si, ai, V (si)), the risk for each state s is defined as Equation 1.

%B(s) = 1− 1

1 + e
k
θ ((min1≤j≤η d(s,sj)− θk )−θ)

(1)

Equation 1 allows us to obtain a smoother transition between risk-free states (i.e., known states) and risk states (i.e.,
unknown states). The parameter k has a double effect. On one hand, depending on its value, the width of the sigmoid
function varies. A lower value of k implies a wider sigmoidal function. This results in a less aggressive exploration of
the state space during the learning process since the baseline behavior advices are more frequently required (being able
to affect negatively the final performance of the algorithm). On the other hand, the parameter k is used to displace the
sigmoid function to the left, reducing in this way the probability of consider unknown states as known states. However,
it is important to note that this probability does not disappear completely, i.e., this displacement allows also to keep
the smooth transition to the right of the θ parameter. From Equation 1, the application of Probabilistic Policy Reuse to
measure the advice of a teacher in safe RL is easy, by using the risk function %B(s) as a transfer function. Therefore, the
transfer rate depends on the safety of the learning agents: if safety is high, probability to use the advice of the teacher is
very low, while if safety is low, such probability increases. This integration is explained next.

2.2 The PR-SRL Algorithm

Table 2 shows Safe π-reuse, a version of the π-reuse algorithm to incorporate the teacher advice in the exploration process.
The main elements over the original π-reuse strategy are:

• the past policy Πpast is replaced by the baseline behavior πT
• the new policy to be learned Πnew is replaced by the case base policy πθB
• the parameter ψ is replaced by %B(s)

• no ε-greedy strategy is used, because actions are continuous. A random gaussian noise with standard deviation
σ is used instead to generate exploratory actions

The algorithm builds a case for each step of an episode. For each new state sh, the closest case < s, a, V (s) >∈ B is
computed using the Euclidean distance metric (see line 05 in algorithm of Figure 2). At this point, the π-reuse strategy
is followed, using the %B(s) function as a transfer probability: with a probability of %B(s) the policy of the baseline
behavior πT is followed, while with a probability of 1−%B(s), the action suggested by current base case policy is executed.
Therefore, in areas far from the known states, the probability to use the baseline behavior advice is very high, while this
advice is rarely used in known areas (see lines 07 and 08).

If the algorithm follows the baseline behavior, the action ah performed is suggested by the baseline behavior, πT , which
defines safe behavior, and a new case < sh, ah, 0 > is built (line 07). In this case, the state sh is considered an un-
known state. If the algorithm exploits the new policy, the action ah is performed (line 08). In this case, the new case
< s, ah, V (s) > is built replacing the action a corresponding to the closest case in < s, a, V (s) >∈ B, with the new action
ah resulting from the application of random Gaussian noise to a. Thus, the algorithm only produces smooth changes in
the cases of B where ah ∼ a. In this case, the state sh is considered a known state. Finally, the reward obtained in the
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Safe π-reuse (πT , H,B, σ)
00 listCasesEpisode←∅.
01 totalRwEpisode = 0.
02 Set h = 1.
03 Set the initial state, sh.
04 for h toH
05 Compute the case< s, a, V (s) >∈ B closest to the current state sh
06 Set %B(sh) = 1− 1

1+e
k
θ
((min1≤j≤η d(sh,sj)− θk )−θ)

07 With a probability of %B(sh): ah = πT (sh), cnew := (sh, ah, 0)

08 With a probability of 1− %B(sh):
08 ah = rnd gaussian(πB(sh), σ), cnew := (s, ah, V (s))

09 Execute ah and receive the next state s′h, and reward, r(sh, ah)
10 totalRwEpisode := totalRwEpisode+ r(sh, ah)

11 listCasesEpisode := listCasesEpisode ∪ cnew
12 Set sh ← s′h
13 Return listCasesEpisode, totalRwEpisode

(a) (b)

Figure 2: (a) Safe π-reuse Exploration Strategy for Safe Exploration of the State and Action Spaces. (b) Continuous risk
function.
episode is accumulated, where r(sh, ah) is the immediate reward obtained when action ah is performed in state sh (line
10) and the new case is added to the list of cases (line 11). PR-SRL uses the Safe π-reuse algorithm following iteratively
the same steps of the Improving the Learned Baseline Behavior Step of PI-SRL described in [2], where the Case Generation step
is replaced by the algorithm in Figure 2 (a).

3 Experimental Results

Firstly, we show the results in the classical generalized helicopter hovering domain [5] used in previous RL competitions.
We propose to learn a near-optimal policy minimizing the failures, i.e., the helicopter crashes during the learning phase.
The results of PR-SRL are compared with the results of PI-SRL, which in a previous work [2], where more details about
the domain and previous experiments can be found, proved to have less failures (i.e., collisions, bankrupts) than an
Evolutionary approach and a Risk-Sensitive approach. The experiments reported in Figure 3 (a) demonstrate that PR-
SRL using a non-displaced continuous risk function with k = 3 and k = 6 generate failures. Additionally, the number
of failures with PR-SRL k = 3 is higher since there is a higher probability to consider unknown states as known states.
However, in both cases, PR-SRL obtains a lower number of failures than PI-SRL, proving that using the continuous
risk function is better than using the discrete one. Figure 3 (b) shows the performance of PI-SRL and PR-SRL using
the displaced risk function. In this case, the probability of consider known states as unknown states slightly affects the
performance of PR-SRL, which is more evident in PR-SRL k = 3, where this probability is higher. The values k = 3 and
k = 6 does not generate failures, but as the sigmoid function begins to look like the discrete function used by the PI-SRL
algorithm (k = 12 and k = 48), the failures appear.

Figure 3: (a) Mean cumulative reward per episode obtained by PI-SRL and by PR-SRL using different values of k for
nondisplaced sigmoid functions. (b) Mean cumulative reward per episode obtained by PI-SRL and by PR-SRL using
different values of k for displaced sigmoid functions. The means have been computed from 10 different executions.
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We also have used PR-SRL for improving in a simulated environment the default walking pattern provided by the Nao
Robot avoiding falls. In our walking problem, the state and action spaces are continuous. The state space is represented
by a 3-dimensional tuple, < x, y, θ >, composed of the lengthwise separation in meters of a feet with the opposite,
x, the crosswise separation, y, and a rotational component in the vertical axis, z in radians, θ. The action space is a
4-dimensional tuple, < ∆x,∆y,∆θ, t >, that represents the displacement that performs a foot relative to the opposite
one for each state variable, and the time used to make such displacement, t. In these experiments, PR-SRL uses the
default pre-configured walking pattern as baseline behavior, πT . Figure 4(b) shows two learning process with different
risk configurations and, for each one, the cumulative reward obtained per episode. In this case, the high level of risk
(σ = 9 × 10−3) obtains a better policy than the low level of risk (σ = 9 × 10−4). However, both risk configurations
outperform the default pre-configured walking pattern. Figure 4(a) shows the same evaluation but using a tuned (faster)
baseline behavior. We show that a better baseline produces better learned behavior (note y axis have different ranges).
In this case, the Nao Robot never falls during the learning process.

Figure 4: (a) Mean cumulative reward per episode for different risk configurations (σ) using the fastest pre-configured
walking pattern as baseline behaviour. (b) Mean cumulative reward per episode for different risk configurations (σ)
using the default pre-configured walking pattern as baseline behaviour. The means have been computed from 5 different
executions.

4 Conclusions
In this work, we have introduced the Policy Reuse for Safe Reinforcement Learning algorithm. It is based on the introduc-
tion of a safe teacher advice in a new learning process. The π-reuse exploration strategy is used to balance exploration,
exploitation, and the advice transference. The three elements are weighted by the new risk function, that defines a
probability to follow the advice, and the risk parameter, σ that defines the level of randomness (or noise) in action exe-
cution. The experiments have demonstrated its suitability in risky domains, where fails must be avoided. Current work
is oriented to test the approach in real robotic environments instead of simulated ones.
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Abstract

In many marketing applications, companies use technology for interacting with their customers and making product
or services recommendations. Today, these marketing decisions are mainly made in a myopic (best opportunity right
now) approach and optimize short-term gains. In our research we are exploring new ways of marketing interactions for
optimizing Life-Time Value (LTV). In particular, we are exploring marketing recommendations through Reinforcement
Learning (RL) and Markov Decision Processes (MDPs). In this paper we compute the LTV policies for several real world
data sets using various state of the art reinforcement learning algorithms. In addition, we propose an offline evaluation
method for these methods using a well-crafted simulator, according to which LTV policies outperform myopic policies.
Finally, we characterize the error of the estimated value of the policies on the simulator, using the simulator’s prediction
errors.

Keywords: Reinforcement learning, marketing, lifetime value modeling.

Paper F21 19



1 Introduction

In many marketing application, a company or organization uses technology for interacting with their end customers and
making recommendations. For example, a department store might offer customers discount coupons or promotions;
an online store might serve targeted “on sale now” offers; or a bank might email appropriate customers new loan or
mortgage offers. Today, these marketing decisions are mainly made in a myopic (best opportunity right now) approach
and optimize short-term gains. In our research we are exploring new ways of marketing interactions for optimizing Life-
Time Value (LTV). LTV can be thought of as long-term objectives such as revenue, customer satisfaction, or customer
loyalty. These long-term objectives can be represented as the sum of an appropriate reward function.

These sums of rewards can be computed through a stream of interactions between the company and each customer,
including both actions from the company (e.g. promotions, advertisements, or emails) and actions by the customer
(e.g. purchases, clicks on a website, or signing up for a newsletter). In our work we are proposing technologies for
computing interaction strategies by the company that maximizes the sum of rewards. In particular, we are exploring
Reinforcement Learning (RL) and Markov Decision Processes (MDPs) - powerful paradigms for sequential decision-
making under uncertainty. In RL problems, an agent interacts with a dynamic, stochastic, and incompletely known
environment, with the goal of finding an action-selection strategy, or policy, to maximize some measure of its long-term
performance.

In our RL formulation for marketing the agent is an algorithm that takes actions such as showing an ad and offering a
promotion; the environment can be thought of as features about customer demographics, the web content and customer’s
behaviors such as recency (last time the webpage was visited), frequency (how often the page has been visited), and
monetary (how much was spent so far); the reward can be thought of as the price of products purchased by the customer
in response to an action taken by the marketing algorithm; finally, the goal of the marketing agent is to maximize its
long-term revenue.

Using MDPs and RL to develop algorithms for LTV marketing is still in its infancy. Related work has used toy examples
and has appeared mostly in marketing venues [11] [3] [7]. An approached directly related to our work first appeared in
[6] where the authors used public data of an email charity campaign, and showed that RL policies produce better results
than myopic. The authors there used off-line batch RL methods and heuristic simulators for evaluation. Recently in [9]
the authors proposed an on-line RL system which learns concurrently from multiple customers. The system was trained
and tested on a simulator.

Unlike previous work, we deal with real and big data problems, where we are faced with both the challenge of learning
RL policies from high dimensional problems as well as evaluating them off-line. In the rest of the paper we describe our
experiments on a few real data sets, where our results show that RL policies are better than myopic. Our evaluation was
done on a simulator, which we build using system identification techniques. We also propose theory to characterize the
error of the estimated value of the policies on the simulator, given the simulator’s error in predicting the dynamics and
the rewards.

2 Data and Algorithms

Our data sets originated from various companies from the automotive and banking industry. On the company websites
when customers visit, they are shown one of a finite number of offers. The reward is one when a user clicks on the
offer and zero otherwise. For every company we extracted/created features as shown in Table 1. The data is highly
unbalanced and often has disproportional number of data points for the different offers. To mitigate the problem in our
experiments we merge actions together by scoring them according to immediate reward and then clustering them using
K-means.

We used a few state of the art Reinforcement learning algorithms, which are able to handle high dimensional continuous
variables. A few of them are model-based, where various quantization techniques are applied on the data and for each a
state space is obtained. For these methods the transition probabilities and rewards are then inferred from the data, and
the optimal policy and its value can be found using standard MDP methods. Below we describe all the algorithms we
used:

KBRL-RS Kernel Based Reinforcement learning on Representative States (KBRL-RS) [4], selects the representative
states of the data using a cover tree [1]. The algorithm then applies Kernel-Based RL on top of the representative states
and in effect shows that this is equivalent to learning and solving an MDP on top of the representative states. A new
state interpolates its value from the representative states according to the kernel.

K-means-RL K-means-RL creates representative states using the K-means algorithm [5]. It then learns an MDP on top
of those states and solves it. New observations are labeled and assigned the actions of their nearest states.
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Cum action There is one variable for each offer, which counts number of times each offer was shown
Visit time recency Time since last visit
Cum success Sum of previous reward
Visit The number of visits so far
Success recency The last time there was positive reward
Longitude Geographic location [Degrees]
Latitude Geographic location [Degrees]
Day of week Any of the 7 days
User hour Any of the 24 hours
Local hour Any of the 24 hours
User hour type Any of weekday-free, weekday-busy, weekend
Operating system Any of unknown, windows, mac, linux
Interests There a finite number of interests for each company. Each interest is a variable

that gets a score according to the content of areas visited within the company websites
Demographics There are many variables in this category such as age, income, home value...

Table 1: Features

FQI Fitted Q iteration (FQI) [2] is a practical RL algorithm. The method is a variation of Q iteration, where the exact
Q function is computed by function approximation. The approximation is fitted by a non-parametric regressor, such as
ensembles of regression trees. A new state uses the regressor for each action to estimate its Q value.

FQI-sarsa Fitted Q iteration sarsa is the same as FQI but with sarsa style updates. This algorithm learns the value of
the behavior policy that produced the data. During execution though the algorithm choses the action with maximum Q
value and in effect does one step improvement from the behavior policy.

3 Experiments

A major issue when considering the dynamics of the problem is evaluating a policy offline, i.e. without seeing it in
practice. This matter can be solved with importance sampling [8], or when using linear function approximation [10].
However, in practice these methods are limited.

We devise a different approach, fitted for data sets of similar nature to ours - construct a simulator of the dynamics using
careful inspection of each feature. The main idea is that if the simulator is similar enough to the true dynamics, the value
function of any policy will be close as well to its actual value.

Our simulator is constructed as follows: First we recognize the easy to predict features. These can be static features
such as geographic location and income, or other simple features such as cumulative action counter. Next, we identify
features that act stochastically and have high impact on other features, such as the time difference and the reward; these
are simulated using random sampling from their distribution. All remaining features are predicted using regression trees
on the previous observation and the sampled stochastic features.

We performed various sanity checks to test the quality of the simulator such as measuring the error of one step predictions
and in examining the return of the behavior policy seen in the data. We also observed that when a policy and the
simulator are trained on the same data set, then as the number of states is increased in the policy estimation, using an
algorithm such as K-means-RL, so does the performance between the optimal and the myopic policy. This is evidence
that the simulator is behaving in a similar overfitting fashion as the underlying K-means MDP used to compute a policy.

We experimented with three big data sets of approximately 600000 interaction each. To avoid overfitting we split each of
the data sets into two parts. In the first part we compute the policies and in the second part we use the data to learn a
simulator. To obtain error bars we do the data splitting multiple times. For each data set we split it 10 times and run 500
experiments of maximum length 100. We record the average reward and the standard error shown in the parenthesis in
Table 2. We compared the optimal strategies with myopic and random. LTV strategies were produced by setting γ = 0.99,
while myopic strategies were produced by setting γ = 0; in the table we show the average reward per time step. The
results in Table 2 highlighted in bold, show that optimal RL policies are better than myopic and random strategies.

4 Simulation Error Characterization

It seems intuitive that a simulator for which the rewards and dynamics are close to the actual system will yield similar
values to the actual system for various policies, we can show this is correct in theory. To ease the notation we insert the
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Data KBRL-RS K-means -RL FQI FQI-sarsa KBRL-RS K-means-RL FQI Random
set optimal optimal optimal optimal myopic myopic myopic
1 0.054 0.06 0.007 0.015 0.037 0.03 0.044 0.033

(0.01) (0.01) (0.01) (0.002) (0.006) (0.007) (0.01) (0.01)
2 0.038 0.03 0.04 0.04 0.036 0.02 0.026 0.033

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.005) (0.003)
3 0.003 0.003 0.003 0.004 0.003 0.002 0.002 0.002

(10−4) (10−4) (10−4) (10−4) (10−4) (10−4) (10−4) (10−4)

Table 2: Results

policy inside the function itself. Lets assume the true dynamics are given by:

xt+1 = f(xt); rt = g(xt); V (x0) =
∞∑

t=0

γtE[g(f t(x0))],

where f t is the t’th functional power. However, we falsely believe the dynamics are:

xt+1 = f̂(xt); rt = ĝ(xt); V̂ (x0) =
∞∑

t=0

γtE[ĝ(f̂ t(x0))]

Assume the following bounds:
∀x, y : |E[g(x)]− E[ĝ(y)]| ≤ αd(x, y) + δ,

∀x, y : d(f(x), f̂(y)) ≤ βd(x, y) + ε,

where d is some distance function and α, β, δ, ε are positive numbers such that β · γ < 1. These assumptions embody
the idea that even for different initial points, the rewards and transitions cannot be too far apart considering the original
distance, this way we can guarantee iteratively the rewards are close as well.

When these assumption are true the following is correct:

∀x0 : ‖V (x0)− V̂ (x0)‖ ≤
αεγ

(1− γ)(1− βγ) +
δ

1− γ . (1)

Proof: First observe that:
d(f t(x), f̂ t(y)) ≤ βd(f t−1(x), f̂ t−1(y)) + ε

≤ β(βd(f t−2(x), f̂ t−2(y)) + ε) + ε

... ≤ 1− βt
1− β ε+ βtd(x, y)

Now we can bound the value difference as follows:

|V (x0)− V̂ (x0)| ≤
∞∑

t=0

γt|E[g(f t(x0))]− E[ĝ(f̂ t(x0))]|

≤ δ

1− γ +

∞∑

t=0

γtαd(f t(x0), f̂
t(x0))

≤ δ

1− γ +

∞∑

t=0

γtαε
1− βt
1− β

[demand β · γ < 1 for convergence] =
δ

1− γ +
αεγ

(1− γ)(1− βγ)

The parameters in the bound can be estimated empirically depending on the distance d used. For example, by using
d(x, y) = E‖x− y‖ and the triangle inequality, the following inequalities yield easy-to-find bounds:

|E[g(x)]− E[ĝ(y)]| ≤ |E[g(x)]− E[ĝ(x)]|+ |E[ĝ(x)]− E[ĝ(y)]|
E‖f(x)− f̂(y)‖ ≤ E‖f(x)− f̂(x)‖+ E‖f̂(x)− f̂(y)‖

The right hand side of these inequalities can be related to as the variance (first term) and bias (second term) of the
model. The first term in the right hand side of the inequalities can be bounded using classical bounds, depending on any
previous assumptions on g and f . The second term depends on our own choice of model and therefore can be bounded
by construction or empirically. We have yet to find this bound on our data.
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5 Conclusions

In our paper we tried to tackle the marketing problem using the less established LTV approach. Although this approach
results in a richer representation of the communication with the customer, it is often disregarded due to its assumed
higher complexity and the difficulty in evaluating the resulting strategies without expensive testing.

To prove the legitimacy of this approach, we implemented several state of the art algorithms and applied them on
the data to obtain LTV maximizing policies. In order to evaluate these offline, we developed a novel simulator based
offline evaluation method. In addition, we developed a simple bound that justifies this method, and can be estimated
empirically.

Our estimations of the myopic policies versus the LTV optimal policies showed a clear advantage for the latter, but these
results are still preliminary. In the future we plan to test our paradigm on more data sets, estimate the simulator’s error,
optimize the parameters for the planning algorithms and visualize the LTV policies.
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Abstract

An off-policy Bayesian nonparameteric approximate reinforcement learning framework, termed as GPQ, that employs
a Gaussian Processes (GP) model of the value (Q) function is presented in both the batch and online settings. Sufficient
conditions on GP hyperparameter selection are established to guarantee convergence of off-policy GPQ in the batch
setting, and theoretical and practical extensions are provided for the online case. In particular, the convergence results
in the batch case extend theoretical results on the Fitted Q-Iteration family of algorithms and the online results provide
a theoretical grounding for the use of sparse, budgeted GP representations. These results reveal a reason for potential
divergence of off-policy approximate reinforcement learning employing Gaussian kernels as well as hyperparameter
selection conditions to eliminate this possibility. Empirical results demonstrate GPQ has competitive learning speeds in
addition to its convergence guarantees and its ability to automatically choose its own basis locations.
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1 Introduction

Reinforcement learning (RL) [17] in continuous or large state spaces often relies on function approximation to maintain
a compact model of the value (Q) function [4, 5, 10], but often requires a precise choice of features to achieve good
performance. Gaussian Processes (GPs) [15] are Bayesian Nonparametric (BNP) models that are capable of automatically
adjusting features based on the observed data and have been successfully employed in high-dimensional approximate
RL domains [4], but several properties of RL with GPs, particularly convergence guarantees, off-policy learning, and
exploration techniques have not been fully addressed.

More specifically, no convergence results for RL algorithms with GPs exist, and existing RL methods with GPs either
require a planner [14, 3, 7] or are restricted to on-policy learning [4]. The latter approach is less general than off-policy
RL, which enables learning the optimal value function using samples collected with a safe or exploratory policy. In
addition, existing model-free GP RL methods (e.g. [4]) do not fully leverage the Bayesian notion of predictive variance
inherent to a GP model in guiding the exploration strategy.

In this abstract, the three problems mentioned above for approximate RL using GPs are addressed: convergence, off-
policy learning, and exploration. More specifically, a model-free off-policy approximate reinforcement learning tech-
nique, termed as GPQ, that uses a GP model to approximate the value function is presented. Sufficient conditions for
convergence of GPQ to the best achievable optimal Q-function given the data (Q∗) are presented in the batch and online
settings, and it is shown that these properties hold even as features are added or removed to maintain computational
feasibility. We also present an exploration scheme baed on the GPs explicit confidence intervals over Q∗. Unlike other
recent papers on off-policy RL with fixed-parameter linear function approximation [18, 10, 8, 9], our approach allows the
basis functions to be automatically identified from data. Furthermore, our condition for convergence reveals why GPQ
or kernel base Fitted Q-Iteration [6] could diverge, and how this divergence can be prevented by tuning a regularization-
like parameter of the GP. More broadly, this work helps to connect the fields of BNP modeling and RL by combining BNP
strengths such as prior distributions and data-driven basis construction with RL architectures such as Fitted Q-Iteration
[5] in a theoretically grounded manner.

2 Background

We consider domains modeled as a Markov Decision Process (MDP) [17] with standard notation: M = 〈S,A,P,R, γ〉,
policy π : S 7→ A and optimal value (Q-)function Q∗ (st, at) = Est+1 [r(st, at) + maxa′ γQ

∗ (st+1, a
′)]. Reinforcement

learning is concerned with finding the optimal policy π∗(s) = argmaxaQ
∗(s, a) when P and R are unknown. When an

RL method learns the value function of the same policy with which samples were collected it is classified as on-policy;
when the policy employed to obtain samples is different, it is termed off-policy. For continuous RL domains, linear value
function approximation is often used to model the Q-function as a weighted combination of fixed bases φ(s, a), that is
Q(st, at) = φT (st, at)θ. However, function approximation can cause divergence for off-policy RL methods [1, 19].

Gaussian Processes (GPs) [15] are BNP function approximation models: they do not specify a model structure and ex-
plicitly model noise and uncertainty. A GP is defined as a collection of random variables, any finite subset of which
has a joint Gaussian distribution with mean (prediction) function m(z) and covariance kernel k(z′, z), for input points
z and z′ (z = 〈s, a〉 in our case). Define K(Z,Z) as the kernel matrix with entries Kl,m = k(zl, zm). k(Z, zτ+1) ∈ Rτ
denotes the kernel vector corresponding to the τ + 1th measurement, and ω2

n represents the variance of the measurement
uncertainty. The conditional probability can be calculated as a normal variable [15] with mean m(zτ+1) = αTk(Z, zτ+1),
where α = [K(Z,Z) + ω2

nI]−1~y are the kernel weights, and covariance

Σ(zτ+1) = k(zτ+1, zτ+1) + ω2
n − kT (Z, zτ+1)[K(Z,Z) + ω2

nI]−1k(Z, zτ+1) (1)

In this paper, we use the sparsification method of [2], which allows for sequential updates. This sparsification algorithm
works by building a dictionary of basis vector points. In order to determine when a new point should be added to the
dictionary, a linear independence test is performed:

βτ+1 = k(zτ+1, zτ+1)− k(Zd, zτ+1)TK(Zd, Zd)
−1k(Zd, zτ+1). (2)

When βτ+1 is larger than a specified threshold βtol, then a new data point is added to the dictionary. Otherwise, the
weights ατ are updated, but the dimensionality of ατ remains the same.

GPs have previously been used in on-policy model-free RL [4] and also model-based RL [14, 3, 7]. For linear fixed-basis
(non-GP) value function approximation, several recent approaches ensure convergence in the online case by adding some
form of regularization to TD algorithms, as done in GQ [10], LARS-TD [8], and RO-TD [9]. In contrast to these algorithms,
GPQ attempts to directly minimize the Q-learning TD error and does not require a priori basis function placement. Other
algorithms, such as Bellman Error Basis Functions [13], dynamically construct features for linear function approximators,
but are primarily used in policy evaluation. In the batch case, several algorithms belonging to the Fitted Q-Iteration (FQI)

1

Paper F24 25



Algorithm 1 Batch GPQ (GP-FQI)

1: Input: Experience tuples 〈s, a, r, s′〉1...N
2: Output: A GP representing Q̂∗

3: Q̂← Initialized GP.
4: repeat
5: Q̂′ ← Initialized GP.
6: for each experience tuple 〈s, a, r, s′〉i do
7: yi = ri + γmaxb Q̂(s′, b)
8: Train Q̂ on all (〈si, ai〉, y〉i
9: Q̂ = Q̂′

10: until The convergence condition is satisfied

Algorithm 2 Online GPQ

1: for for each time step τ do
2: Choose aτ from sτ , using ε-greedy exploration
3: Take action aτ , observe rτ , sτ+1

4: Let zτ = 〈s, a〉 and yτ = r + γmaxbQ̂(s′, b)
5: if βτ+1 > βtol then
6: Add zτ to the BV set.
7: Compute kzτ+1

and ατ+1 according to [2]
8: if |BV| > Budget then
9: Delete zi ∈ BV with lowest score according to

[2]
10: update Q̂(zτ+1) =

∑∞
i=1 αik(zi, ·)

family of algorithms [5] can guarantee off-policy convergence with specific function approximators, including averagers
[12] and certain forms of regularized least squares [6].

3 Off-Policy RL with a GP

Our goal is to perform posterior inference using available information so that the current estimate of the mean m̂ ap-
proaches the mean of Q∗. Let the current estimate of the mean of the Q-function be Q̂(s, a) = m̂(s, a). Since samples of
Q∗ are not available, posterior inference needs to be performed using the best estimate of Q∗ at the current time as:

Q̂(st, at) = r(st, at) + γmax
a′

(Q̂(st+1, a
′)). (3)

Whenever we update the model of Q̂(st, at) with a new observation, the accuracy of the observation is dependent on the
accuracy of the current model. Typically, the parameter ω2

n is viewed as a uncorrelated, Gaussian measurement noise in
GP literature. Here, we offer an alternative interpretation of ω2

n as a regularization term, which accounts for the fact that
current measurements are not necessarily drawn from the true model and therefore prevents our model from converging
too quickly to an incorrect estimate of Q∗. As we show later, ω2

n plays a pivotal role in preventing divergence as well.

3.1 Batch GP-Fitted Q-Iteration

Using GPs and the update rule in Equation 3 in the batch setting gives us Algorithm 1, which we call GP-FQI because it is
a member of the Fitted Q-Iteration [5] family of algorithms. Below, we prove that GP-FQI can diverge if the regularization
parameter is not properly set. However, we also prove that for any set of hyperparameters and desired density of data,
a proper regularization constant can be determined to ensure convergence. We begin with a counter-example showing
divergence in the batch setting if ω2

n is insufficient, but show convergence when ω2
n is large enough.
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Figure 1: The maximum error ‖Q̂−Q∗‖
is plotted for GP-FQI with insufficient
regularization ω2

n = 0.1 and sufficient
regularization ω2

n = 1.

Consider a system with three nodes on the real line at locations −1, 0, and 1. At
each time step, the agent can move deterministically to any node or remain at its
current node. The reward associated with all actions is zero. All algorithms are
initialized with Q̂(z) = 1∀z, γ = 0.9999, and we use a RBF kernel with band-
width σ = 1 in all cases. We consider two settings of the regularization parameter,
ω2
n = 0.1 and ω2

n = 1. Figure 1 shows that when ω2
n is set too low, the Bellman

operator can produce divergence in the batch setting. If the regularization is set to
the higher value, GP-FQI converges. In the following sections, we show that de-
termining the sufficient regularization parameter ω2

n depends only on the density
of the data and the hyperparameters, not the initialization value of Q̂ or γ.

In the following theorem, we show that in the case of finite data, a finite regular-
ization term always exists which guarantees convergence.
Theorem 1. Given a GP with data Z of finite size N , and Mercer kernel that is bounded
above by kmax, there exists a finite regularization parameter ω2

n such that the Bellman
operator T is a contraction in the batch setting. In particular, ω2

n = 2(‖K(Z,Z)‖∞ − kmax) ≤ 2N

The crux of the proof is showing that the approximate Bellman operator is a contraction if the term ‖K(Z,Z)‖‖(K(Z,Z) +
ω2
nI)−1‖ ≤ 1 when ω2

n is set in this way. In the next theorem, we show that for a GP with infinite data that only adds data
points which exceed the linear independence test βtol, a finite regularization term also exists.
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Theorem 2. Given a GP with infinite data generated using a sparse approximation with acceptance tolerance βtol, and given a
Mercer kernel function that decays exponentially, there exists a finite regularization parameter ω2

n such that the Bellman operator T
is a contraction in the batch setting.

The key to the proof is that ‖K(Z,Z)‖ = maxj
∑
i k(zj , zi), which is convergent for an infinite number of data points

selected using the linear independence test in (2). Theorem 2 provides a powerful insight into the convergence properties
of GPs in the context of the Bellman operator. As the density of basis vectors increases or as the bandwidth of the kernel
function grows, corresponding to decreasing βtol, the basis vector weights αi become increasingly correlated. As the
weights become correlated, changing the weight at one basis vector also changes the weights of nearby basis vectors. It
is this sharing of weights that can result in divergence, as seen in [1]. Theorem 2 shows that for a given βtol and kernel
function, there exists a finite regularization parameter ω2

n that will prevent divergence. In the next theorem, we bound
the approximation error from using a sparse representation of a GP versus a full GP. The key to the proof is that the
maximum error is linear in βtol.

Theorem 3. If the sparse GP algorithm is used, the error ‖E[Q̂−Q∗]‖ is uniformly, ultimately bounded for the Bellman operator.

3.2 Online Learning and Exploration with GPQ

In theory, GP-FQI provides a method for learning the Q-function online with provable convergence. Specifically, one
could employ an ε-greedy exploration policy to guarantee sufficient data collection and perform the batch updates after
every step. However, because of the computational costs of such a “batch-sequential” algorithm, we now consider a
different GPQ algorithm: Online GPQ (Algorithm 2). At each step of Online GPQ, an action is taken using a policy π

that ensures ergodicity of the induced Markov chain, and the value yτ = r + γmaxbQ̂τ (s′, b) at location zτ is calculated.
The sparse online GP algorithm of [2] is used to determine whether or not to add a new basis vector to the active bases
set BV and then the kernel weights are updated. Below we provide a set of sufficient conditions for convergence in the
online case, where Ct and K−1t are positive definite matrices related to the posterior and the prior covariance. The proof
uses similar techniques to Theorem 17 of [11], using an ODE representation of α: α̇(t) = Eπ [qtSt] and then showing that
α→ α∗ for each active basis set.
Theorem 4. With an ergodic sampling policy π, for each active basis set, a sufficient condition for convergence of m̂(zt)→ m∗(zt)
as t→∞ online GPQ is Eπ

[
Ctktk

T
t +K−1t ktk

T
t

]
≥ γEπ

[
Ctktk

α
t +K−1t ktk

α
t

]
, where kαt αt = maxa′(k

T (xt+1, a
′))αt.

While ε-greedy exploration helps guarantee convergence, in practice it is often inefficient at gathering useful samples. A
guiding principle of more sample-efficient RL algorithms (e.g. [16]) is “optimism in the face of uncertainty”, specifically
using over-estimates of the value function and greedy actions to balance exploration/exploitation. We propose using the
upper confidence tails from the GP as an optimistic value function. Specifically, for any point 〈s, a〉, the GP will report an
upper confidence tail ofm(s)+2Σ(sτ+1) wherem and Σ are defined in Section 2. We can then modify Online GPQ to use
greedy actions with respect to this upper tail and change the GP update to Q̂(si, ai) = r(si)+γmaxa[Q̂(si+1, a)+2Σ(s, a)]
That is, we use the upper tail of the next state’s Q-value in the Bellman update to overestimate the value function
(reminiscent of Model-Based Interval Estimation [16]). We leave a detailed theoretical analysis of this technique to future
work.

4 Empirical Results and Conclusions

We now present experiments with two variants of Online GPQ, one with the ε-greedy exploration and the other using the
optimistic values mentioned above. Comparisons are made to Q-learning with function approximation and fixed bases
(QL-FB), the GQ [10] algorithm with fixed bases, and tabular Q-learning. Our experiments cover three domains, a discrete
5 × 5 Gridworld, a continuous state Inverted Pendulum, and continuous state Puddle-World. After parameter tuning
(including basement placement for GQ and QL-FB) and cross-validation, the policy learned from all these methods for
the three domains are evaluated based on discounted cumulative reward averaged over 20 independent runs and are
shown in Figure 2.

In the Gridworld experiments, while all of the algorithms find the optimal policy, the GPQ based methods converge
must faster by quickly identifying important areas for basis points. We also see that optimistic exploration using the
GP’s variance is advantageous, as the algorithm very quickly uncovers the optimal policy. In Inverted pendulum, GPQ
quickly finds adequate bases and converges to a near optimal policy while GQ requires more samples. Beyond the “best
parameter” results shown in this graph, we also observed GPQ methods are more resilient against small quantizations
(budgets) because they are able to select their own bases, while GPQ and QL-FB are far more sensitive to the number and
placement of bases. In Puddle-World, basis placement is more challenging and GPQ sometimes converges to a cautious
(puddle adverse) policy. Multiple lines are shown for QL-FB and GQ, depicting their best and wort case in terms of
parameter settings, as they were extremely sensitive to these settings in this domain. While the best case versions of GQ
and QL-FB reached better policies than GPQ, in the worst case, their Q-values appear to diverge, as illustrated in the final
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Figure 2: The first 3 figures show the average sum of discounted rewards. The GQ and the QL variants are given more information
because their bases are specified a priori, yet GPQ is able to reach comparable performance (often faster) while choosing its own basis
functions. The final graph shows the steps to the goal in Puddle World, where the worst-case divergence of GQ and QL-FB is evident.

graph showing the number of steps to the goal, where the worst-case QL-FB and GQ stay near the initial state for all 500
steps. While GQ has convergence guarantees when data comes from a fixed policy, those conditions are violated here,
hence the potential for divergence. In summary, while very careful selection of parameters for QL-FB and GQ leads to
slightly better performance, GPQ performs almost as well as their best case with less information (since it does not need
the bases a priori) and far outperforms their worst-case results.

In this abstract, we presented a NPB framework (GPQ) that uses GPs to approximate the value function in off-policy
RL. We presented algorithms using this framework in the batch and online case and provided sufficient conditions for
their convergence. Our results show that GPQ’s representational power allows it to perform as well or better than other
off-policy RL algorithms and that a regularization-like term can help decouple parameters and avoid divergence.
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Abstract

Reinforcement learning (RL) techniques with cheap computational complexity and minimal hand-tuning that scale to
large problems are highly desired among RL practitioners. Linear function approximation has scaled existing RL tech-
niques to large problems [Lagoudakis and Parr, 2003; Silver et al., 2012], however that technique has two major draw-
backs: 1) conventional off-policy techniques such as Q-Learning can be unstable when combined with linear function
approximation [Baird, 1995] and 2) finding the “right” set of features for approximation can be challenging.

The first drawback has been recently addressed with the introduction of the Greedy-GQ algorithm, a convergent exten-
sion of Q-Learning [Maei et al., 2010]. The second drawback led to representation expansion techniques that add new
features along the learning process [Geramifard et al., 2011; Keller et al., 2006; Parr et al., 2007]. Amongst these techniques,
incremental Feature Dependency Discovery (iFDD) has shown great potential as it scaled to large problems while enjoy-
ing convergence results [Geramifard et al., 2011]. Recently, iFDD+ [Geramifard et al., 2013b] improved the performance
of iFDD in the prediction problem while outperforming the previous state-of-the-art batch expansion technique OMP-TD
[Painter-Wakefield and Parr, 2012].

This paper connects Greedy-GQ learning with iFDD+ and, for the first time, introduces an online off-policy learning
with automatic feature expansion technique. Given sparse features, the new algorithm has per-time-step complexity
independent of the total number of features, while for most existing techniques feature discovery is at least quadratic in
the number features [Keller et al., 2006; Parr et al., 2007]. Empirical results across 3 domains with sizes up to 77 billion
state-action pairs verify the scalability of our new approach.

Keywords: temporal difference learning, representation expansion, off-policy,
scaling learning

Acknowledgements

We would like to thank Hamid Maei for his insightful feedback on the use of Greedy-GQ. This research was sponsored
by ONR grants N00014-07-1-0749 and N00014-11-1-0688.

Paper F25 29



1 Introduction

The RL community made a big leap by using linear function approximators to tackle large problems [Lagoudakis and
Parr, 2003; Silver et al., 2012]. While using small number of features is much more scalable compared to working with
large number of states, it renders off-policy techniques such as Q-Learning unstable [Baird, 1995] and demands careful
crafting of the “right” set of features. Off-policy techniques are important part of RL family, as they allow the policy being
learnt to be different from the policy used for sampling. To address the latter, Maei et al. [2010] recently introduced the
Greedy-GQ algorithm as a convergent off-policy technique that employs linear function approximation. To automate the
feature crafting process, several representation expansion techniques were developed [Geramifard et al., 2011; Keller et
al., 2006; Parr et al., 2007]. Among these methods, the incremental Feature Dependency Discovery (iFDD) [Geramifard et
al., 2011] algorithm has shown promise because it successfully scaled to problems with 150 million state-action pairs and
has low computational complexity. Recent theoretical analysis on iFDD led to the iFDD+ algorithm that outperformed
the previous state-of-the art feature expansion technique in the prediction problem [Geramifard et al., 2013b].

This paper combines Greedy-GQ and iFDD+ algorithms, introducing the first online off-policy technique with automatic
feature expansion. Given sparse features, Greedy-GQ-iFDD+ has per-time-step complexity independent of the number
of features. Empirical results in domains with up to 77 billion state-action pairs verifies the scalability of our new method.

2 Preliminaries

Markov Decision Processes (MDPs) [Sutton and Barto, 1998] are defined as a tuple (S,A,P ,R,S0,γ) with S being the
set of all states and A the finite set of all actions. The transition model P : S × A × S → [0,1] specifies the probability of
moving from state s to state s′ following action a. R : S ×A×S → R is the corresponding reward value. The initial state
distribution is given by S0 : S → [0,1]. γ ∈ [0,1[ is a discount factor. A policy π : S → A maps each state to an action. A
trajectory is a sequence of s0, a0, r0, s1, a1, r1, s2 . . . , where s0 ∼ S0, at = π(st) and st+1 ∼ P(st,at,·) for t > 0. The value
of a state-action pair under policy π is defined as the expected cumulative discounted reward (i.e., return) the agent will
receive when it takes action a at state s and follows policy π thereafter:

Qπ(s,a) = Eπ,P

[ ∞∑

t=0

γtrt

∣∣∣∣s0 = s,a0 = a

]
. (1)

An optimal policy π∗ maximizes the state-action values, satisfying the Bellman equation:

π∗(s) = argmax
a∈A

Qπ
∗
(s,a) ∀s ∈ S

Consequently, calculatingQπ
∗

will be sufficient to find the optimal policy. However this approach requires the storage of
|A||S| parameters, not amenable for MDPs with large or infinite number of states. Linear function approximation elevates
this problem by representing Qπ in a lower dimensional space: Qθ = θTφ(s,a) ≈ Qπ where θ ∈ Rn is a parameter vector
and φ : S × A → Rn is a feature function associating an n-dimensional feature-vector to each state-action pair. For the
rest of the paper, we assume φ(s,a) is formed in two steps. First φ maps state s to Rm. Then the resulting vector is copied
to the ath slot of a zero vector with |A|m = n elements, where |A| is small.

Temporal Difference (TD) learning algorithms improve Qθ based on the current estimates of Qθ using sampling tech-
niques. By taking r0 out of the sum in Equation 1, it can be verified that the value function satisfies

Qπ(st,at) = TπQπ(st,at) , EP [rt] + γEP,π [Qπ(st+1,at+1)] .

Hence, the value function is a fixed-point of the Bellman operator Tπ . The SARSA algorithm [Rummery and Niranjan,
1994] updates the parameters θt of the value function estimate at time-step t by θt+1 = θt +αtδtφt, where αt is a step-size
decreasing over time and δt is the TD error of the current transition:

δt = rt + γQθt(st+1,at+1)−Qθt(st,at). (2)

The policy π incorporates exploration using the ε-greedy policy, where on each step the agent takes a random action with
probability ε and acts greedy based on the current Qθ with probability 1 − ε. Under mild conditions with decaying ε,
SARSA converges to the optimal policy π∗ [Sutton and Barto, 1998]. SARSA is an on-policy technique, because in the TD
error calculation (i.e., Equation 2), at+1 is selected according to the current policy π that involves the randomness. Hence,
if the random function selects a poor at+1 for which Q(st+1,at+1) has a low value, Q(st,at) will be panelized accordingly.

Off-policy techniques address this problem by allowing the agent to learn the value function of policy π while collecting
samples using a different policy π′. For example Q-Learning [Watkins and Dayan, 1992] can learn about the greedy
policy, while collecting samples using an ε-greedy policy. Q-Learning updates θ identical to SARSA, yet the TD error
is calculated as δt = rt + γ argmaxaQθt(st+1,a) − Qθt(st,at). Unfortunately Q-Learning has been shown to be unstable
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with linear function approximation [Baird, 1995]. Recently the Greedy-GQ algorithm [Maei et al., 2010] addressed this
drawback by maintaining a second vector ωt that helps tracking the sub-gradient of the projected Bellman error. The
updates for both θ and ω estimates are given by

a′ = argmaxaQθ(st+1,a), (3)

θt+1 = θt + αt
[
δtφt − γ(ω>t φ(st,at))φ(st+1,a

′)
]
, (4)

ωt+1 = ωt + βt
[
δt − (ω>t φ(st,at))

]
φ(st,at), (5)

where δt is computed as in Q-Learning and βt is the learning rate for ωt. Notice that by setting βt = 0 and ω0 = 0̄ we
retrieve the Q-Learning algorithm.

Incremental Feature Dependency Discovery (iFDD) [Geramifard et al., 2011] is a recent algorithm for expanding the set
of features used for linear function approximation. iFDD assumes the existence of an initial set of binary features (F ),
where φf : S → {0,1},∀f ∈ F . Through the learning process, iFDD identifies potential features as the conjunction of
existing features. For example if F contains 20 features, then a potential feature f can be the conjunction of features 10
and 17, that is φf (s) = 1 ⇐⇒ (φ10(s) = 1∧φ17(s) = 1). Potential features are added as new features once their relevance,
ηt, reaches a certain threshold. In the original iFDD algorithm [Geramifard et al., 2011] the relevance of potential feature
f at time t is calculated as the cumulative absolute TD error ηt(f) =

∑t
i=0,φf (si)=1 |δi|. Recently a better relevance criteria

was introduced [Geramifard et al., 2013b] based on the rate of convergence analysis of iFDD and its relation to orthogonal
matching pursuit algorithms in the prediction case. The new algorithm named, iFDD+, calculates the relevances as

ηt(f) =

∣∣∣
∑t
i=0,φf (si)=1 δi

∣∣∣
√∑t

i=0,φf (si)=1 1
. (6)

3 Off-policy Learning with Automatic Feature Expansion

This section combines the Greedy-GQ algorithm with iFDD+ and introduces a novel online off-policy algorithm with
feature expansion capability. Algorithm 1 shows the main process. αt and βt are the two step size learning parameters
(Equations 4-5). ε is the exploration used in the ε-greedy policy. ξ is the discovery threshold controlling feature expansion.
F is the initial set of binary features. ψ and N are two hash maps calculating the sum of TD errors and number of times
a feature visited (numerator and denominator of Equation 6). The algorithm follows an ε-greedy policy and performs
Greedy-GQ updates (Equations 3-5), except for lines 11 and 12. Line 11 executes the Discover function defined in Algo-
rithm 2 to expand features. Notice that instead of φ(s,a), φ(s) is passed for feature discovery, as all features are shared
across all actions. Line 12 pads θ and ω vectors in case of feature expansion. In Algorithm 2, changes to the original iFDD
algorithm [Geramifard et al., 2011] to reflect iFDD+ (i.e., Equation 6) are highlighted with the yellow background. All φ
functions call Algorithm 3 to incorporate new expanded features. Note that, we fixed a drawback of the earlier version
of this function [Geramifard et al., 2011] (shown as yellow) which could have led to activation of unnecessary features.

3.1 Per-Time-Step Complexity

Define kt as the maximum number of non-zero elements for all feature vectors at time t. It can be verified that the
per-time-step complexity of Greedy-GQ is O(|A|kt) = O(kt). The transition from iFDD to iFDD+ does not raise the
per-time-step complexity of the algorithm which is O(kt2

kt) [Geramifard et al., 2011]. Hence Greedy-GQ-iFDD+has per-
time-step complexity of O(kt2

kt). Furthermore, it has been shown that using iFDD, ∀i > j → ki ≤ kj [Geramifard
et al., 2011], meaning as new features are discovered the sparsity increases resulting in faster calculations. Due to the
exponential term introduced in the complexity of iFDD, the resulting algorithm will be applicable when sparse features
are used (i.e., k0 � m). Section 4 shows that this condition can be met even in very large domains.

4 Experimental Results

This section investigates the performance of Greedy-GQ (shown as GQ), Q-Learning (i.e., GQ with βt = 0), and SARSA
with feature expansion (i.e., iFDD+) and without feature expansion (i.e., fixed sparse representation, FSR) across three
MDPs: Inverted Pendulum Balancing, BlocksWorld, and Persistent Search and Track. Results are generated using the
RLPy framework which is available online [Geramifard et al., 2013a]. For each method 30 runs were used in which after
each tenth part of the experiment, a single return of the algorithm was sampled with no exploration. All methods used
the same set of random seeds. αt took the form

αt =
α0

kt

N0 + 1

N0 + Episode#1.1
,
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Algorithm 1: Greedy GQ-iFDD+

Input: αt,βt,ε,ξ,F
Output: Qθ

1 Initialize ψ,N to empty maps.
2 while time permits do
3 initialize s from S0
4 repeat
5 a← ε-greedy w.r.t Qθ
6 s′,r ← execute a
7 a′ ← argmaxa′ Qθ(s

′,a′)
8 δ ← r +Qθ(s

′,a′)−Qθ(s,a)

9 θ ← θ + αt
[
δφ(s,a)− γ

(
ω>φ(s,a)

)
φ(s′,a′)

]

10 ω ← ω + βt
[
δ − φ(s,a)>ω

]
φ(s,a)

11 φ← Discover(φ(s),δ,ξ,F ,ψ,N)
12 Pad ω and θ if new features are added.
13 s← s′

14 until s is terminal;

fuel = 10

Refuel CommunicationBase

Advance
Retreat
Loiter

✧

fuel = 10

fuel = 10

fuel = 10

TargetUAVs

Surveillance

Figure 1: The Persistent Search and Track domain.

Algorithm 2: Discover
Input: φ(s),δ,ξ,F ,ψ,N
Output: F ,ψ

1 foreach (g,h) ∈ {(i,j)|φi(s)φj(s) = 1} do
2 f ← g ∧ h
3 if f /∈ F then
4 ψf ← ψf + δ

5 Nf ← Nf + 1

6 if |ψf |/
√
Nf > ξ then

7 F ← F ∪ f

Algorithm 3: Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)

1 φ(s)← 0̄
2 activeInitialFeatures← {i|φ0i (s) = 1}
3 Candidates← SortedPowerSet(activeInitialFeatures)
4 while activeInitialFeatures 6= ∅ do
5 f ← Candidates.next()
6 if f ⊂ activeInitialFeatures and f ∈ F then
7 activeInitialFeatures← activeInitialFeatures rf
8 φf (s)← 1

9 return φ(s)

where the best parameters α0 and N0 were empirically found from {0.1,1} and {100,1000,106} for each algorithm and
domain. Greedy-GQ used βt = 10−6αt and we set ε = 0.1.

Inverted Pendulum Balancing is a widely used benchmark in the control and reinforcement learning community, where
a pole mounted on a cart has to be balanced upright by applying force on the cart. We followed the setting of Lagoudakis
and Parr [2003] where angle and angular velocity of the pole define the state. The agent can either apply no force or
push the cart with 50N to the right or left. The pendulum is initialized vertically and the episode stops as soon as the
pole reaches the horizontal position with reward −1. All other steps have reward 0. The pendulum is disturbed by
uniform noise on the actions between±10N . We set γ = 0.95. Episodes were capped at 3,000 steps. Each state dimension
was discretized into 20 bins resulting in 40 initial features per action and k0 to be 2. This MDP has 1,200 discretized
state-action pairs. ξ was empirically found from the set {0.1,0.2,0.5}.

BlocksWorld is a classical planning problem with the goal of stacking all blocks with a predefined order. We used 6
blocks all initially on the table [Geramifard et al., 2011]. The noise for each movement was 30% resulting in dropping
the moving block on the table. The reward is +1 for a successful tower build and −0.001 for every other step. The state
was defined by a 6 dimensional vector where si = j corresponds to block i being on top of block j. For compactness,
we interpreted si = i for block i being on the table. This MDP has about 1.6× 106 state-action pairs. Initial features were
generated by indicator functions for the position of each block, amounting to 36 features per action and k0 = 6. We set
γ = 1, episodes were capped at 1,000 steps, and ξ was empirically found from the set {0.02,0.05,0.1}.

Persistent Search and Track (PST) is an MDP with the task of surveilling a target using unmanned aerial vehicles (UAVs)
as described in [Geramifard et al., 2011] and shown in Figure 1-(c). Each UAV has three actions {retreat,loiter,advance}
moving it along the graph. The state of each UAV is described by its {fuel,location,motor,camera}, where fuel is a
discrete value between 0 and 10. The location is the node on the graph. The motor and camera are binary variables
indicating the functionality of the corresponding equipment. An additional UAV was added to the previous instantiation
of the domain [Geramifard et al., 2011], raising the size of the state-action space to more than 77 billion state-action pairs.
The movement of UAVs are deterministic. The motor and the camera of each UAV have 5% chance of failure on each
step. The reward of +20 is collected when a UAV with a working camera is at the surveillance node and a UAV with
a working motor hovers at the communication node. UAVs lose one fuel cell per action and gain full fuel at the refuel
node. Both the motor and the camera of a UAV are fixed upon its arrival at base. A scenario is terminated if a UAV
crashes due to fuel depletion with a reward of −50. Initial features were generated using indicator functions for each
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SARSA-iFDD+

GQ-iFDD+

SARSA-FSR

GQ-FSR

Q-Learning-FSR

Q-Learning-iFDD+

(a) Inverted Pendulum Balancing

SARSA-iFDD+

GQ-iFDD+

SARSA-FSR

GQ-FSR

Q-Learning-FSR

Q-Learning-iFDD+

(b) Blocksworld

SARSA-iFDD+

GQ-iFDD+

SARSA-FSR

GQ-FSR

Q-Learning-FSR

Q-Learning-iFDD+

(c) Persistent Search and Track

Figure 2: Learning performance in three domains: results are averaged over 30 runs. Shaded areas indicate the standard
error of the sampled mean.

dimension of each UAV ignoring zero values for binary dimensions amounting to 17× 4 = 68 features and k0 = 16. We
set γ = 0.9, episodes were capped at 1,000 steps, and ξ was empirically found from the set {75,100,150} .

Discussion of Results Figure 2 depicts the simulation results. The Y-axis is the average return of each technique, and the
X-axis shows the number of interactions. Shaded areas highlight the standard error of the mean. For the first two prob-
lems, the number of interactions were capped to 105 steps. For the last domain, due to the large size of the problem, this
number was increased to 5×105. In the pendulum domain (Figure 2-(a)), the feature expansion ability enabled all learning
techniques to perform close to optimal after 30,000 steps, while no agent with the fixed representation could reliably
balance the pendulum by the end of the learning horizon. The same trend can be observed in the BlocksWorld domain
(Figure 2-(b)), although one can observe that SARSA-FSR learns better policies compared to off-policy techniques using
FSR. Furthermore, among agents using iFDD+, the gap between GQ and Q-Learning has widened. In the largest prob-
lem (Figure 2-(c)), among agents using iFDD+, GQ and Q-Learning performed well, while SARSA performed poorly. We
suspect this phenomenon is due to higher noise in on-policy TD errors caused by random actions. Off-policy techniques
discard the random actions during TD error calculation, providing better criteria for feature expansion. This effect is
visible in this domain, because the consequence of random actions can be much more substantial. Agents using FSR per-
formed similar to SARSA-iFDD+ resulting in poor policies. Notice that compared to iFDD, table-lookup representations
have been shown to lead to drastic increase in the sample complexity for all three domains [Geramifard et al., 2011].

5 Conclusion

We combined Greedy-GQ algorithm with iFDD+ and introduced the first online off-policy control algorithm with the
ability to expand the representation. As shown in Section 3.1, given sparse features, the new algorithm has a per-time-
step complexity independent of the total number of features. Empirical results across three domains with sizes up to 77
billion state-action pairs verified the great potential of using off-policy learning with automated feature expansion.
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Abstract

How can we find a target as quickly as possible? This question lies at the core of search theory. Its answer depends on
the motion and observation models of the searcher and the target.

We have been studying a classical version of this search problem where the searcher tries to find a target performing
a random walk. Our study is motivated by our ongoing field work on using Autonomous Surface Vehicles (ASVs) to
find radio-tagged fish in inland lakes. For this problem, it has been observed that the fish are likely to be close to the
shore. As a result, its motion can be projected onto a line segment and the search task can be modeled as the problem
of finding a one-dimensional random walker. Surprisingly, very little is known about this basic search problem. In our
application, an interesting aspect is that the interference between the motor and the radio signal from the fish makes the
sensing during the ASVmotion unreliable. Therefore, the ASVmust briefly stop and listen to the signal to detect the fish.
Otherwise, the ASV and the fish can cross each other without the ASV detecting the fish.

The problem can be described as follows. Let L be a set of N discrete locations on the line. We can model the search
task using a Markov Decision Process (MDP) with states corresponding to (x, y, t, e) where x, y ∈ L are the locations of
the searcher and the target respectively, t is the current time step and e is the battery level of the searcher. The target is
detected if x = y. At each time step, the searcher chooses one of the left, right or stay actions and pays the associated
energy cost. The target’s choice is given by the random-walk model. The goal of the searcher is to choose its actions so as
to maximize the capture probability within a time or energy budget. Since the searcher does not know the location of the
target unless they are co-located, the variable y is partially observable. The searcher’s belief state can now be represented
as a tuple (x, Y, t, e) where the new variable Y is a distribution which represents the probability that the target is at a
particular location.

In this extended abstract, we provide a summary of our ongoing work. In particular, we show how the POMDP men-
tioned above can be solved efficiently by binning the distribution into log(N) cells. This solution provided insights into
the structure of optimal solutions, which led us to focus on a class of strategies (RkS)n. We report our progress toward
finding the optimal choice of k and further providing bounds on the quality of this solution.

Our goal is to leverage these insights and to find the optimal strategy for this fundamental search problem first for the
one-dimensional case and then in higher dimensions. These strategies can in turn provide insights also for solving more
general POMDPs which arise in robotics applications.

Keywords: Pursuit Evasion, Random Walk, POMDP.
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Robots are being used in a large number of applications such as surveillance, rescue and environmental monitoring.
In many of these cases, the task can be modeled as a pursuit evasion game where the goal of the robot (the pursuer)
is to capture a target (the evader). Our motivating application is monitoring the radio-tagged invasive fish using an
Autonomous Surface Vehicle (ASV) [1]. Here, the target (fish) is not adversary and since its motion model is unknown
we can model it as a simple random walk. Also, since the noise from the motors interferes with the signal from the fish
when the ASV is moving, we fix a discrete set of locations for detecting the fish.

At each time step, from any of these locations, the searcher can move to the left, to the right, or stay on its current node.
Upon performing each of these actions, the searcher incurs the associated cost, e.g. the energy required for executing
the action. These costs can vary along the path, as in the case of a robot equipped with a solar panel [2] that can harvest
energy during the task. Therefore, the total cost of an action is the sum of the corresponding loss and gain. The goal is
designing search strategies that maximizes the probability of capturing the target given the initial energy budget for the
searcher.

In the following, we first present the problem statement and then we explain our POMDP approach for finding the
optimal strategy.

1 Problem Statement

The environment is composed of a discrete set of locations [0, 1, . . . , N ] on a line segment. The target starts from an
unknown node, and thus we assume that the initial probability distribution of target’s possible locations is uniform 1

N+1 .
Afterward, the target performs a simple random walk as follows. From location 0 < i < N , with probability q it moves one
unit to the right, and with the remaining probability (1 − q) it moves one unit to the left. We assume that the boundary
points 0 and N are reflective (see Fig. 1(a)). Moreover, throughout the paper, we consider a symmetric random walk, i.e.
q = (1 − q) = 0.5, but our proposed approach works for other values of q as well as for the case that there is a non-zero
probability of stay for the target.

The searcher starts from the left-most point i = 0. At each time step, it can move to the right or to the left or stay at its
current node. Throughout the paper, we refer to these actions as R, L, S respectively. The searcher’s strategy is defined
as a sequence of these actions, e.g. RiSjLk represents i steps to the right, followed by j stay actions and then k steps to
the left.

One definition of capture is when searcher and target are both on the same node at the same time. In this definition, the
crossing events such as the one shown in Fig. 1(b) are not considered as capture events [3]. Alternatively, allowing also
sensing on edges, these crossing events can be included in the capture events [2].

Finally, the objective is to design the capture strategy S such that the probability of capture is maximized subject to
limitations on either a time budget [3] or an energy budget [2, 4]. In the former case, the cost of all actions is the same
and we have the constraint on the total number of actions i.e. T . In the latter case, each action has a different cost and the
constraint is on the initial energy of the searcher.

q
q q p

p
p

(a) (b)

Figure 1: (a) Target’s motion model. Here p = (1 − q). (b) The pursuer will miss the target if they cross each other.

2 The POMDP approach

Since the only observation that the searcher has is that it has not captured the target yet, the problem can be formulated
as a Partially Observable Markov Decision Process (POMDP) which can be converted to an MDP by including the belief
of the searcher as part of the state. By defining the reward function as described in [2], the policy that maximizes the
collective reward is in fact the one that maximizes the probability of capture. Fig. 2 depicts the state diagram of this MDP.

The challenge in this formulation is the large number of states. The belief itself is N -dimensional: if we discretize the
values in each dimension to k, there will be O(kN ) possible values for the belief which is impossible to track. When
crossing is not allowed, the belief is smooth and thus it can be approximated by a specific function which can be repre-
sented by a small number of parameters [2]. However, in the crossing case the belief has a jagged pattern and hence
the aforementioned approximation approach does not work. See Fig. 3(a) for an example of the belief function when
crossing is allowed. In this case, we represent the belief by bins with exponentially increasing width as follows. The ith
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captures
P (R, capture)

P (L, capture)

P (S, capture)

1− P (R, capture)

1− P (L, capture)

1− P (S, capture)

Figure 2: MDP state transitions. In state s, by performing a ∈ {R, L, S}, with probability P (a, capture) the searcher
captures the target and with the remaining probability the state becomes s′.

bin starts at c ± 2i, 0 ≤ i ≤ log(N) where c is the current location of the searcher. The approximate belief in each bin is
uniform and can be computed as follows. We first compute the cumulative belief in each bin. Then we take the average
of this cumulative value in the corresponding bin. Finally, we assign the closest discretization level to this average as the
bin value. An example is shown in Fig. 3(b).
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Figure 3: (a) Searcher’s belief after a complete sweep i.e. 21 right actions. (b) Belief approximation by bins. The searcher
is at i = 14.

The solutions obtained from our POMDP formulation suggest that strategies of the form (RkS)m are comparable with
the POMDP strategies [3]. We show that the capture probability of these strategies can be closely approximated by T+m

2N .
Furthermore, the maximum probability is achieved for k = 2.

3 Analytical Results

For some determined scenarios, we studied this problem also from an analytical point of view. The main idea is, firstly,
to find an analytical approximation for the expected probability of capturing the target given a class of strategies. In [2],
where we analyzed the case in which crossing without capture is not possible, we showed that an optimal strategy has
to assume a particular structure. For a searcher starting from the left-most point, it is RjSk, i.e. the searcher moves for
j consecutive steps to the right and then keeps the position for k steps. The parameters j and k are constrained by the
time/energy constraint. For this class of strategy we showed that the capture probability can be expressed by:

Pc ≈ L + 1

N
+

(
1 − L + 1

N

)(
1 − e

− 6(E0−cmL)

cs[4(N−L−1)2−3(N−L−1)−1]

)
(1)

where L is the final searcher’s location, E0 is the energy budget and cm, cs are the cost for one step move and stay actions
respectively. Note that, since the considered function is continuous in the closed and bounded interval [0, Lmax], where
Lmax = E0/cm, it always admits a maximum value.

In Figure 4 the comparison between the expected capture probability and the results obtained in simulation is shown. In
particular, we considered a segment composed by N = 50 nodes. The initial energy budget is E0 = 50 and the cost for
moving cm = 2. The three plots presented in Figure 4 correspond to different values of the cost cs. We see that with these
values the solution of the optimization problem is not trivial and the best final searcher position L∗ is 0 < L∗ < Lmax.
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Figure 4: Comparison between the approximations of the expected total capture probabilities (blue line) with the be-
haviors obtained in simulation (red dots) in function of the swept region L. The values considered are N = 50,
E0 = 50, cm = 2 and cs = 0.03, 0.05, 0.07 for (a), (b) and (c) respectively.

For the more complicated case that includes the possibility of crossing without capture, we studied a class of randomized
strategies. For such strategies, the stay action occurs with a fixed probability w, which is the optimization parameter.
In [4] we obtained an expression similar to (1) for this case.

4 Concluding Remarks

In this work, we study strategies for finding a random walker on a line segment subject to constraints on searching time
and energy. We derive analytical solutions for special cases and we propose a POMDP approach that can be used for the
general case i.e. with varying costs and gains along the line.

Our future steps are the generalization to two dimensional environments and the relation of our approximate solutions
to the optimal strategy.
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Abstract

In this work, a Multi-agent Reinforcement Learning framework is used to get plausible simulations of pedestrians
groups. In our framework, each virtual agent learns individually and independently to control its velocity inside a
virtual environment. The case of study consists on the simulation of the crossing of two groups of embodied virtual
agents inside a narrow corridor. This scenario permits us to test if a collective behavior, specifically the lanes formation is
produced in our study as occurred in corridors with real pedestrians. The paper studies the influence of different learning
algorithms, function approximation approaches, and knowledge transfer mechanisms in the performance of the learned
pedestrian behaviors. Specifically, two different RL-based schemas are analyzed. The first one, Iterative Vector Quan-
tization with Q-Learning (ITVQQL) improves iteratively a state-space generalizer based on vector quantization. The
second scheme, named TS, uses Tile coding as the generalization method with the Sarsa(λ) algorithm. Knowledge trans-
fer approach is based on the use of Probabilistic Policy Reuse to incorporate previously acquired knowledge in current
learning processes; additionally, value function transfer is also used in the ITVQQL schema to transfer the value func-
tion between consecutive iterations. The results demonstrate empirically that our RL framework generates individual
behaviors capable of emerging the expected collective behavior as occurred in real pedestrians. This collective behavior
appears independently of the generalization method used, but depends extremely on whether knowledge transfer was
applied or not. In addition, the use of transfer techniques has a notable influence in the final performance (measured in
number of times that the task was solved) of the learned behaviors. A video of the simulation is available at the URL:
http://www.uv.es/agentes/RL/index.htm

Keywords: Pedestrian Simulation, Transfer Learning, Policy Reuse, Vector
Quantization, Tile coding.
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1 Introduction

The use of Reinforcement Learning (RL) techniques in graphics, animation and simulation tools is gathering increasing
attention. Its use has mainly focused on selecting adequate frames from a collection of pre-computed movements or
poses to generate interactive animations (Treuille et al. 2007) or to create video textures (Schödl & Essa 2000). In this
work, we use RL to control directly the characters of a simulation. Thus, the embodied agents learn to navigate inside
a virtual environment to simulate pedestrians groups. Different areas, such as architecture, civil engineering and game
development, can benefit from the simulation of pedestrians groups, in order to check the capacities of the facilities in a
building, to prevent accidents, or to give realism in urban scenarios. In our framework (Martinez-Gil et al. 2012b), each
embodied agent learns autonomously to control its velocity to reach to a goal. It uses an Open Dynamics Engine (ODE)
calibrated with values of real pedestrians (Martinez-Gil et al. 2012a) that simulates the interactions at the physical level.

To design a RL framework with a continuous state space where multiple independent learning processes are carried out
at the same time is a challenging problem. Additionally, the pedestrian simulations are particularly difficult because
collective behaviors emerge in real pedestrian groups in specific situations like the lane formation in crowded streets. In
such situations, it is important to know whether the use of different configurations in the RL framework is critic for the
quality of the learned behaviors. In this work, we present a study about the influence of knowledge transfer techniques
and the use of different state space generalization methods in the performance of a well-known pedestrian simulation
scenario. The narrow-corridor scenario is a problem of pedestrian dynamics where two groups of pedestrians inside
a narrow corridor have to cross in order to reach to the opposite side. This scenario is specially suitable to study the
emergence of collective behaviors, specifically the lane formation (Helbing et al. 2005). There are two main motivations:

1. To demonstrate empirically that collective behaviors emerge in different configurations of the learning processes.

2. To study the influence of the state space generalization method jointly with a learning algorithm and the use of
transfer knowledge techniques in the performance of the learned pedestrian behaviors.

2 The multi-agent RL framework

RL uses optimization techniques to learn from a reward signal a sequential decision-based controller. In RL, the problems
are modeled as Markov Decision Processes (MDP) (Kaelbling et al. 1996). The goal is to find an optimal policy, that is, a
mapping between states and actions, that provides the maximum discounted expected reward V (s) = E{∑∞

t=0 γ
trt} in

each state of the space state, where the γ parameter sets the influence of future rewards and rt is the immediate reward
in time t. Different families of RL algorithms solve the problem. In our framework, we will use two temporal difference
(TD) algorithms: Sarsa(λ) (Sutton & Barto 1998) and Q-learning (Watkins & Dayan 1992), with an ǫ-greedy exploratory
policy. The value of ǫ decays with the number of episodes. One RL process per agent is carried out simultaneously and
independently so that each agent perceives the rest of the agents as a part of the environment.

The virtual 3D environment consists on a narrow corridor of 15 m. long and 2 m. wide (Figure 1 on the right). Inside,
two groups of embodied agents are initially placed at the ends of the corridor. The goal of each agent is to reach to
the opposite end of the corridor. The agents are represented by a cube surrounded by a circle with radius 0.3 m. that
represents the collision bounding area. The ODE module performs collision-detection using spheres with the same
radius. This module models the collision taking in account friction forces between agents and between an agent and the
soil (Martinez-Gil et al. 2012a). The state for each agent is described by the features shown in the table of the Figure 1
(left). The agent’s sensorization is displayed in Figure 1 (center). The chosen features have been used previously in
pedestrian models and they are considered relevant for the kinematic description of the pedestrian (Robin et al. 2009).
The agent’s actions modify its velocity vector. This variations have also been used to control the trajectories in pedestrian
models (Bierlaire & Robin 2009). In an agent’s decision, the actions are taken in pairs, which modify the speed (increasing
or reducing) and the orientation of the velocity vector (clockwise or counterclockwise). There are eight different ratios
plus the ‘no operation’ option for both the speed and the orientation, resulting in 81 possible combined actions. The
maximum number of actions per episode allowed (steps) is 70 but the agents actually use about 30.

In real-valued state spaces, the use of a generalization method is necessary. We compared two methods in our scenario:
Vector Quantization (VQ) (Gray 1984) and Tile coding (Sutton & Barto 1998). VQ is a clustering method that uses a
finite set of vectors (named codewords) as a codebook to describe the state space. A metric maps each real state with
the nearest vector of the codebook (in our case, the euclidean distance is used because of the geometric nature of the
features of the state space). The codewords are calculated using the Generalized Lloyd Algorithm clustering method
(GLA)(Linde et al. 1980). The data for the clustering are gathered from the sensorizations of the agents inside the virtual
environment and each agent builds its own quantizer. The codebook is used as the entry of a tabular value function
where the value of each entry in terms of accumulated reward is calculated through the agent’s interaction with the
environment. The number of codewords has been empirically selected to 8192. Tile coding is a specific case of linear
function approximation with binary, sparse features. The value function for each state-action pair is represented as a
lineal combination of the parameters as Vt(s) =

∑n
i=1 θt(i)φs(i) in which the φs(i) features have binary values. Whatever
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Sag Speed of the agent.
Av Angle of the velocity vector

relative to the reference line.
Dgoal Distance to the goal (exit

door).
Sreli Relative speed of the ith

nearest agent.
Dagi Distance to the ith nearest

agent.
Aagi Angle of the position of the

ith nearest agent relative to
the reference line.

Lagi Label to identify the group
that the neighbor belongs to.

Dobj Distance to the jth nearest
wall.

Aobj Angle of the position of the
jth nearest wall relative to
the reference line.

Figure 1: Left: List of the state space features. Center: Agent’s reference system for the sensorization. The reference line
joins the agent with its goal. Right: Screen shots of four steps of a simulation from the crossing scenario with the ITVQQL
schema. The time follows this sequence: top and left, top and right, bottom and left, bottom and right.

the number of dimensions of the space is, it is divided in partitions named tilings. Each element of a specific tiling is a
tile and there is only one active tile per tiling; therefore the total number of active binary features is always the same as
the number of tilings and was determined empirically to 64 in this domain.

To integrate VQ and Tile coding with a RL Temporal Difference method, the following schemas have been followed:

1. Iterative Vector Quantization with Q-Learning (ITVQQL). The VQ generalization method is combined with the
Q-learning algorithm in a iterative schema that carries out several learning processes over the same task. The
learned value function Vi learned in one learning process li that uses the codebook V Qi is used in a simulation
phase to collect policy-biased sensorization data to calculate a new V Qi+1 that represents the state space more
accurately than V Qi. Then a new learning process li+1 is carried out using V Qi+1 for learning Vi+1. Additionally
two knowledge transfer methods are used in this schema:

(a) First, the learned value function of iteration li is transferred to initialize the new value function of iteration
li+1. The values of the new value function are loaded with the values of the most similar codeword entry
of the old value function. The similarity between codewords of different VQs is given by the euclidean
distance. This transfer can be considered a simple case of transfer of an inter-task value function between
different representations of the state space, named complexification in (Taylor & Stone 2007). This transfer is
not a mere initialization because the VQ codebooks of two consecutive iterations are different.

(b) Second, we have used Probabilistic Policy Reuse (PPR) (Fernández et al. 2010) to incorporate domain knowl-
edge. In PPR, a policy (π0) is used as a bias in the exploration-exploitation trade-off. Specifically, the policy
π0 is used with a probability ψ that decays exponentially in the number of episodes while the ǫ-greedy ex-
ploratory policy is used with probability 1 − ψ. In our problem, the policy π0 always suggests the use of
an action that drives the agent towards one side of the corridor 1. It is important to note that PPR is used
as a way of exploring efficiently the space of policies to find a solution. If the agent does not find useful to
follow the policy π0 in a state, it will learn a better policy because the exploratory policy is active along all
the learning process.

2. Tile coding with Sarsa(λ) (TS). In this approach, each agent carries out a single learning process using Tile Coding
and the Sarsa(λ) algorithm. The PPR method described above is also applied in this case.

1Specifically, the policy π0 choose randomly from the set of actions that turns the agent’s velocity vector towards the right side of
the corridor
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Number of agents 8
α From 0.3 to 0.15
γ 0.9
Initial value of ǫ 1.0
Iterations 8
Episodes per iteration 50000
Reward Goal reached 100
Number of codewords 8192

Number of agents 8
α 0.004
γ 0.9
Initial value of ǫ 1.0
λ 0.9
Episodes 50000
Reward Goal reached 100
Number of tilings 64

Figure 2: Left: Averaged performance for the ITVQQL (top) and the TS (down) schemas. It is measured as the number
of times that an agent reach to its goal independently of the rest of agents. In the ITVQQL curves, each point is the
average performance of all the agents at the end of each iteration of the learning process. In the TS schema, each curve
is the average performance of all the agents along a single learning process. Means are over the 8 agents. Right: The
configuration for ITVQQL (top) and TS (down) processes. The parameters have the usual meaning of the RL literature.

3 Experiments and results

Four experiments with the same configuration have been carried out for the ITVQQL approach. The first experiment
(titled as ITVQQL in the graphic) uses both, the transfer of the value function and the PPR methods. The second (titled
VQ-NOPR) uses the transfer of value function only, the third one (VQ-NOVF in the graphic) uses PPR only, the fourth
(titled NO-TRANSFER) does not use any transfer technique. Figure 2 shows the performance (percentage of times that
an agent reach to its goal independently of the rest of agents) obtained at the end of each learning process. The ITVQQL
curve gets the highest average performance. This iterative schema converges in the third iteration. The curve VQ-NOVF
has a similar value than the ITVQQL curve in the first iteration because in that iteration both experiments have the
same configuration (there is not value transfer in the first iteration). The same occurs with the VQ-NOPR and the VQ-
NOTRANSFER curves. The gap between the curve VQ-NOPR and the curves that use PPR at the first iteration, indicates
that the bias provided by the policy π0 through PPR is very useful for the learning process. For curve VQ-NOPR, the
iterative schema is useful from the iteration number 1 to 7. This fact shows that the transfer of the value function needs
more iterations when it is used alone than when it is used in combination with PPR. The difference between the VQ-
NOTRANSFER curve and the rest of curves reveals the benefits of using transfer techniques. In the VQ-NOTRANSFER
experiment, the iterative schema is not useful, likely because the learning process is not long enough to generate better
VQs between consecutive iterations. In the second row of the Figure 2 the results of the TS approach are reported. The
curve labeled as TS represents data of an experiment that uses PPR while the curve named TS-NOPR does not use PPR.
These curves correspond to a single learning process. The initial gap between the two curves is typical in a knowledge
transfer process. The final performance is very different in both curves indicating the beneficial effect of the PPR in the
TS curve during the learning process.

The performance analysis in simulation is represented in the Table 1. The performance in simulation is different to the
average performance shown in Figure 2. The performance in simulation gives the percentage of correct simulations, that
is, the simulations in which all the agents reach to the correspondent goal. The first column shows that the performance is
similar for the two generalization methods when using knowledge transfer. The second column, that corresponds to the
results of the experiments without PPR, shows a decrement of the performance. The percentages are relevant enough to
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WITH TRANSFER NOPR NOTV NOTRANSFER
ITVQQL 81 ± 4 30 ± 4 8 ± 2 0

TS 80 ± 3 68 ± 4 – –

Table 1: Analysis of the performance in simulation. Mean of the percentage of episodes that end successfully from a
series of 100 episodes. In a successful episode, all the agents reach to the correspondent goal. The mean of ten series is
displayed.

indicate that the emergent collective phenomena depends on whether the additional information is provided by the PPR
transfer method. Additionally, the influence of the use of PPR is higher in the ITVQQL schema than in the TS approach.
The value of the third column also indicates that the use of transfer of the value function has a deep influence in the
performance of the ITVQQL schema. The value of the NOTRANSFER column shows that the crossing problem is not
solved correctly, and in simulation, lane formation can not be clearly observed. In terms of learning, the TS algorithm
is more efficient than the ITVQQL. When no transfer techniques are used, the performance of the TS schema is higher
(68%) than when the ITVQQL is used (0%). The Figure 1 shows four moments of a simulation for the ITVQQL schema.
In both approaches (ITVQQL and TS), the lane formation has similar visual appearance. Videos can be seen in the URL
http://www.uv.es/agentes/RL/index.htm.

4 Conclusions

From the results of the experiments described in the previous section we can derive the following conclusions:

• The lane formation is an emergent collective behavior that appears independently of the generalization approach
used. However, it requires a learning bias in the exploration process, which is provided through the PPR method.

• The ITVQQL and TS schemas show similar performance results in simulation when the knowledge transfer
techniques are active. However, the ITVQQL schema is computationally more expensive than TS because it has
to carry out several learning processes.

• The use of knowledge transfer techniques improves the performance of both schemas. Specially, the transfer
of value function technique is important in the TRVQQL schema. However, TS is more efficient than ITVQQL
when knowledge transfer techniques are not used.
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Treuille, A., Lee, Y. & Popović, Z. (2007), ‘Near-optimal character animation with continuous control’, ACM Transactions
on Graphics (SIGGRAPH 2007) 26(3).

Watkins, C. & Dayan, P. (1992), ‘Q-learning’, Machine Learning 8, 279–292.

4

Paper F35 42



Human reinforcement learning processes act on learned
attentionally-filtered representations of the world

Yuan Chang Leong
Department of Psychology

Princeton Neuroscience Institute
Princeton University
Princeton, NJ 08544
yl@princeton.edu

Yael Niv
Department of Psychology

Princeton Neuroscience Institute
Princeton University
Princeton, NJ 08544

yael@princeton.edu

Abstract

Reinforcement learning (RL) models are often applied to study human learning and decision-making. However, sim-
ple RL algorithms do not fare well in explaining learning behavior in real world situations where the environment
is high-dimensional and the relevant states are not known. As a solution, we propose that RL processes act on an
attentionally-filtered representation of the environment. This improves the computational efficiency of RL by constrain-
ing the state-space that the learning agent has to consider. We further propose that the attention filter is learned and
is dynamically modulated according to the outcomes of ongoing decisions. To test our hypotheses, we had partici-
pants perform a decision-making task with multi-dimensional stimuli and probabilistic awards. Model-based analysis
of participants’ choices suggests that participants prefer strategies that favor computational efficiency at the expense of
statistical optimality. To better study the dynamics of attention, we had a group of participants perform a variant of the
task in which they had to select the dimensions they wanted to view before making their choice. We treated the viewed
dimensions as a proxy for participants’ attention filter. Our models fit the data better when learning was restricted to
attended dimensions, suggesting that participants do indeed constrain choice and learning to a subset of dimensions.
Finally, attention dynamics themselves were best explained by a model that preferentially attended to dimensions with
features that have acquired high value over the course of learning. This result provides evidence that the attention filter
is dynamically modulated as participants receive feedback from ongoing decisions.

Keywords: attention, state representation, function approximation, active-
sensing, human decision-making
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1 Introduction

The framework of reinforcement learning (RL) has had a tremendous impact on the fields of psychology and neuro-
science. In particular, the temporal difference (TD) learning model has helped advance our understanding of animal and
human learning by providing a mathematically precise definition of how an agent learns the association between predic-
tive stimuli and rewards [1]. In laboratory controlled experiments, where the state-space is well-defined, TD learning has
indeed provided a good account for both behavioral and neural data [2, 3]. Real-world learning, however, takes place in
a highly complex and multidimensional environment, which poses a challenge to the TD learning framework.

In particular, it is a well-known problem in operations research and machine learning that the number of states of a task
increases exponentially with increasing number of dimensions on which these states are defined. This is known as the
curse of dimensionality [4]. Since TD learning assigns values to states (or state-action pairs), the amount of experience
required to arrive at an approximately correct value for all states increases with the number of states. Yet both animals
and humans can solve complicated learning problems with limited experience.

We propose that efficient learning is possible because people employ selective attention as a learning strategy [see also
5, 6]. The role of selective attention in regulating cognitive processes is well established [7]. Here, we hypothesize that
attention facilitates learning by carving out the state-space that RL operates on. We further postulate that this attention
filter is learned, and as such, is dynamically modulated by the outcomes of ongoing decisions.

To test our hypotheses, we had human participants perform 3-armed bandit tasks with multidimensional stimuli and
probabilistic rewards. We found that participants opt for computationally efficient strategies at the expense of statistical
optimality. In addition, we found that participants’ attentional-selection strategy was best described by a model that
allocates attention according to the learned values of stimuli. As the values are updated with ongoing learning, the
attentional filter is also modulated. The current results support our hypothesis that learning is constrained by attention,
but we also learn what to attend to.

2 Experimental Tasks

2.1 Faces/Houses/Tools (FHT) Task

The FHT task was designed to be a simplified analog of many real world problems, where people have to make decisions
based on multidimensional information under conditions in which most dimensions are uninformative to the decision at
hand. On each trial, participants chose between three bandits, each described by features from three different dimensions:
a face, a house and a tool (Figure 1a). Stimuli on each trial were generated by randomly recombining features from each
dimension. In any one ‘game’ only one dimension (e.g., tools) was relevant to determining reward and only one target
feature in that dimension (e.g., saw) was associated with a high reward probability (p = 0.75). Choosing stimuli that did
not contain this feature yielded a reward with only p = 0.25. Participants were not told which dimension was relevant,
and were tasked with getting as much reward as possible. Eighteen participants performed the FHT task and were paid
$12-$15 according to their performance. Each participant played 56 games of 25 trials each.

2.2 Active Sensing Faces/Houses/Tools (asFHT) Task

To study attention processes in the FHT task, we had a separate group of participants play a variant of the task where
they had to select, via button presses, the dimensions they would like to view before making their choices. On each
trial, they could choose to view as many dimensions as they wish, before selecting a stimulus (Figure 1b). Recent work
suggests that attentional sampling is an active process that shares many similarities with sensorimotor sampling routines
[8]. As such, it is reasonable to assume that the dimensions participants chose to view would also be the dimensions they
would have chosen to attend to. Nineteen participants performed the asFHT task and were paid $12-$15 according to
their performance. The experiment began with 10 games of the FHT task to allow participants to familiarize themselves
with the task structure. Participants then played 25 games (25 trials each) of the asFHT task.
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Figure 1: Stimulus displays for a. FHT Task and b. asFHT task.
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3 Model-Based Analysis

3.1 Models of Choice Behavior

We analyzed participants’ choice behavior in the FHT task using three computational models1. The first model is a
Bayesian model that uses Bayes’ rule to infer the posterior distribution that each feature f in dimension d is the target
feature given all previous data D1:t and rewards r1:t

p(d, f |D1:t, r1:t) ∝ p(rt|d, f)p(d, f |D1:t−1, r1:t−1). (1)

This distribution is then used to compute the probability of reward for each stimulus Si [5, 6]:

Vt(Si) = p(rt = 1|Si, D1:t−1) =
∑

d

p(d, f ∈ Si|D1:t−1, r1:t−1)ρh + (1− p(d, f |D1:t−1, r1:t−1)ρl (2)

where ρh is the probability of reward for the target feature and ρl is the probability of reward for a non-target feature.
This model incorporates all available information across all dimensions and features in an statistically accurate manner.
As such, it assumes statistically optimal learning about all features at once, akin to a diffused focus of attention.

The second model is a function approximation (FA) model that learns a weight w for each of the nine features. It then
computes the value of stimulus Si as the average of feature weights of this stimulus:

Vt(Si) =
1

n

n∑

d=1

wt(d, f ∈ Si) (3)

The feature weights for the chosen stimulus ct are updated according to TD learning [1]:
δt = rt − Vt(ct) (4)

wt+1(d, f ∈ ct) = wt(d, f ∈ ct) +
1

n
ηδt ∀d = 1, 2, 3 (5)

where δt is the prediction error for trial t, n is the number of dimensions and η is the learning rate. The FA model is less
statistically optimal than the Bayesian model as it learns point estimates of feature weights and does not maintain the
full posterior distribution over all features. It also learns only about chosen features, and thus assumes a stronger focus
of attention than the Bayesian model.

Finally, the Decay model, is identical to the FA model, but in addition, in this model weights of unchosen features decay
to zero:

wt+1(d, f /∈ ct) = (1− ηk)wt(d, f /∈ ct) ∀d = 1, 2, 3 (6)
where ηk is the decay rate. The Decay model is the least statistically optimal model of the three as it loses information
about unchosen features on each trial. However, it assumes the strongest attention focus since only features that have
been consistently attended to and chosen can acquire weights significant enough to influence choice.

3.2 Models of Attention

In general, there are seven possible combinations of viewed dimensions on each trial: one dimension only (three possible
options), a combination of any two dimensions (three possible combinations) or all three dimensions.

To model the dimensions participants chose to view on each trial, in the Dimension Value model we assumed that attention
is costly. As such, participants must balance the benefits of attending to a dimension with the associated cost. The model
thus computes the value of each attention combination at as the utility of attending to the dimensions in that combination
minus a cost that scales with the number of attended dimensions:

Vt(at) =
∑

d∈at
Ut(d)− nJ (7)

where U(d), the utility of attending to dimension d, was determined by summing the weights of features along d, such
that the utility of viewing a dimension would be higher when the model has learned high weights for features in that
dimension. In equation (7), n is the number of dimensions attended to and J is a cost penalty per dimension attended.

As a baseline for comparison with this model, we tested a model in which participants narrow their focus of attention
over time regardless of the specific utility of each dimension. In this Game Horizon model, the utility of attending to each
dimension is fixed (i.e., Ut(d) = K), but the cost of attending to dimensions increases over the course of the game:

Vt(at) = nK − nJT (8)
where n is the number of dimensions viewed in option at, and T is the trial number in the current game.

1Choice behavior in the asFHT task was analyzed using the same three models. However, the models were modified such that both
value computation and update depended only on viewed dimensions.
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Figure 2: Participants’ choice behavior: a. Learning curves for the FHT task (black) and asFHT task (orange). b. Model
performance on data from FHT Task (dark shading) and asFHT Task (light shading). Models were evaluated using
corrected average likelihood per trial. Error bars denote SEM; dashed lines denote chance level (33%); * denotes p < 0.05.

3.3 Model Comparison and Parameter Estimation

For all models, a ”softmax” policy was used to compute the probability of making a particular choice2, π(c), or allocation
of attention, π(a), on each trial:

πt(x) =
eβVt(x)

∑
i

eβVt(i)
(9)

where x = c or a, i enumerates all actions available to the model on that trial, and β is an inverse temperature parameter
that determines the balance between exploration and exploitation.

Model parameters were optimized by finding participant-specific parameters that maximized the log likelihood of the
participant’s data given the model. These parameters were then used to compute the Bayesian Information Criterion
(BIC) approximation of model evidence [9], EM :

EM ≈ log(p(D|M, θ̂M ))− ||θ̂||
2
log N (10)

where p(D|M, θ̂M ) is the likelihood of dataD given modelM and parameters θ̂M , ||θ̂|| is the number of free parameters in
the model andN is the number of data points (trials). To provide a more intuitive measure of model evidence, we divided
the total score for each model by the number of trials for which a participant provided a response, and exponentiated it,
to yield a complexity-corrected average likelihood per trial that varies between 0 and 1.

4 Results

4.1 Choice Behavior

We first evaluated participants’ performance by calculating the percentage of trials on which participants chose the
stimulus containing the target feature. Figure 2a shows performance as a function of trial within a game. A between-
subjects repeated measures ANOVA did not find a main effect of task type (F (24, 1) = 0.32, p = 0.57), indicating that
there was no significant difference between participants’ learning of the two tasks.

As is clear from Figure 2b, all models of choice behavior performed considerably better than chance (one-tailed t-tests,
p < 0.001). For both tasks, the Decay model was best supported by the data (two-tailed t-tests, p < 0.001). The Bayesian
and FA models fit data from the asFHT task better than that from the FHT task (two-tailed t-tests, p < 0.05). There was
no significant difference between the fits of the Decay model for the two tasks (t(35) = 0.72, p = 0.24).

4.2 Attention

In the asFHT Task, the number of viewed dimensions decreased over the course of each game (trial 1: Mean = 2.34, SE
= 0.17; trial 25: Mean = 1.67 , SE = 0.11; Figure 3a). Both the Game Horizon model and the Dimension Value model
predicted participants’ focus of attention better than chance (one-tailed t-tests, p < 0.001). However, the Dimension
Value model performed significantly better than the Game Horizon model (t(18) = 9.1, p < 0.001, Figure 3b).

2For the attention models, feature weights were first generated using the best-fitting model of choice behavior.
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Figure 3: Dynamics of attention processes in the asFHT Task. a.. Average number of attended dimensions over the course
of a game. b. Model performance on predicting participants’ focus of attention. Error bars indicate SEM; dashed line
indicates chance level (0.14%); ** indicates p < 0.001.

5 Discussion

Our experimental tasks were designed to mimic some aspects of the cluttered multidimensional state in which real-world
learning and decision making are embedded in. While participants could learn to solve these tasks, an analysis of their
choice behavior revealed that they were not doing so in a statistically optimal manner. Consistent with previous work
[5, 6], we found that participants’ choice behavior was best explained by strategies that were computationally efficient,
but statistically suboptimal. In particular, the best-fit “Decay model” was an RL model with a function approximation
architecture that also decays weights of unchosen features. This model learns only about chosen features, and loses
useful information on each trial. However, it places low demands on computational resources by relying on algorithms
that are less computationally costly and thus can easily scale up to many dimensions. Such a strategy may reflect a
necessary compromise between optimal learning and computational demands given limited resources.

In some senses, the Decay model also assumes the narrowest focus of attention. We had hypothesized that attention
might serve to further reduce computational demands by carving out a suitable state-space for efficient learning. The
asFHT task was designed to directly test this hypothesis. Interestingly, despite the fact that participants limited their
viewing to only a subset of dimensions, comparison of learning curves indicated no difference in learning between this
and the FHT task in which all dimensions were always available. Moreover, incorporating information about participants
focus of attention significantly improved the model fits for both that Bayesian model and the FA model. That is, even
though participants in the FHT task were presented with all dimensions, they might have been learning and making
choices based only on the subset of dimensions that they were attending to. Finally, it is noteworthy that performance of
the Decay model was not significantly different between the two tasks. We suggest that this is because the Decay model
implicitly implements a selective attention component for both tasks: due to the weight decay, weights of features that
are not consistently chosen (presumably because they are not being attended to) decay to zero and thus choice in this
model comes to be driven by features that have been consistently attended to. This interpretation is compatible with a
role for explicit attentional mechanisms in learning and decision-making, though further work needs to be conducted to
formally explore the relationship between the Decay model and attention.

Lastly, we were interested in understanding how the focus of attention changes with learning. Here we found that partic-
ipants’ focus of attention depended on the value of attending to the different dimensions. In the beginning of each game,
when participants had no information about any of the dimensions, it was worthwhile to attend to multiple dimensions.
However, as they learned more about each dimension, it was more efficient to attend only to dimensions with high-value
features. Taken together, these results demonstrate an intricate relationship between learning and attention—attention
constrains what we learn about, but we also learn what to attend to.
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Abstract

Adaptive management of renewable natural resources seek to include the knowledge and experience of resource users
by incorporating learning by doing (LBD) in the management process to ensure sustainable resource use, in presence
of uncertainty and environmental change. By contrast, an optimal management approach identifies the most efficient
exploitation strategy by postulating an a priori understanding of the resource dynamics, and assumes an analytical
solution can be formulated. A particular wicked problem in resource management is threshold dynamics, where the
effect of passing a threshold switches the feedbacks within the system and changes the provisioning rate. Recovery
is then constrained by the degree of lock-in (s.c. hysteresis). Here we study the limitations and possibilities of LBD in
achieving optimal management by using the analytical solution of a generic resource growth function as a benchmark for
evaluating the performance of an agent equipped with state of the art learning features. The agent uses Reinforcement
learning (SARSA), a radial basis function network, and Softmax decision-making. We study four learning parameters;
learning rate of mental model, eligibility trace decay rate, discount rate, and the level of exploration. We let the agent
solve a logistic growth function (e.g. a fish stock) and compare the results of LBD when managing this resource with or
without a threshold effect. We show that for a logistic growth function a LDB agent can sustainably manage the resource
with 90% efficiency compared to optimal control, whereas when we add a threshold behavior to the resource function
this efficiency drops to 65%. To achieve the highest possible outcome the following features are of outmost importance;
an adequate degree of experimentation, high valuation of future stocks (discounting), and a modest learning rate. We
finally conclude that for these problems learning through hindsight (eligibility trace) has limitations.

Keywords: Natural Resource Management; Renewable resources; Non-
Linear Systems; Hysteresis; Adaptive Management; Learning by
Doing; Radial Basis Function Networks
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1 Introduction

Global environmental drivers are changing as a consequence of human activities [4]. The direction and magnitude of
these changes varies locally, and our capacity to understand and predict the implications of these changes is limited.
This limitation is particularly manifested when local impacts of global change are transferred down through complex
ecosystems. Thus, local knowledge is not only crucial but needs to continuously adapt to both anticipated change and
sudden fluctuations. Within sustainability sciences and natural resource management, adaptive management has been
championed as an advantageous approach for dealing with these unexpected dynamics, by incorporating local knowl-
edge and learning-by-doing (LBD) into the management process[1]. By contrast, optimal management identifies the
most efficient exploitation strategy by postulating an a priori understanding of the resource’s dynamics, and assumes
an analytical solution can be formulated. Further, a particular wicked problem in renewable resource management is
threshold dynamics, where the effect of passing a threshold switches the feedbacks within the system and changes the
provisioning rate. Recovery is then constrained by the degree of lock-in (s.c. hysteresis). To ensure future sustainable
use of natural resources, increased understanding of the implications of adaptive management, and its corresponding
learning process in relation to the resources’s feedbacks, is crucial.

In this paper we compare the two management processes through a stylized resource management problem, using a fish
population with logistic growth that may or may not exhibit hysteresis, and let Reinforcement learning (SARSA) repre-
sent the LBD process, and a radial basis function network [8] represent the local knowledge of an agent. The agent, here
representing a fisherman or a cooperating unit of fishermen, have no a priori understanding of the resource’s dynamics
and learn solely by resource interaction. Our interests are 1) How does the LBD process respond to different levels of
resource complexity? 2) How are classic natural resource management dilemmas affected by the trade-offs between ex-
ploration and exploitation (Softmax), the level of discounting, learning from past experiences (eligibility trace), and fast
vs. slow mental model learning rate, depending on resource’s complexity?

Similar work within resource management is conspicuously lacking and we aim to provide useful insights to the dis-
course on the role of learning in natural resource management, and to highlight trade-offs in classic natural resource
management dilemmas through this novel approach.

2 The Model

We created a setting with a model of a resource system and a computer agent, where the agent has the ability to interact
with the resource, to process and store experiences, and to make decisions based on these experiences. Each time step
(fishing event), the agent could set its harvest effort (action) and observe the yield. We let the agent interact with two
resources, both of which were represented by hypothetical single species regenerative populations, but had different
internal dynamics [3]. The internal dynamics included logistic growth rate but with or without a threshold effect, and
will further on be referred to as the logistic function and the threshold function, to state which dynamics are in focus.

2.1 Resource Dynamics and Agent’s Maximization Problem

The goal of the agent was to find the effort resulting in the maximum economic yield (MEY) over time. The economic
yield was calculated as the value of harvest, minus the cost of harvesting;

rt = patst − cat (1)

where r is the reward, p the price of fish, a the effort, s the biomass, and c the cost of fishing. In our simulations we let
p = 1.0, and c = 0.1 thus a higher effort generated linearly a higher cost of fishing. The resource system was represented
by two functions (i.e. the two levels of complexity);

Logistic Function:
ds

dt
= gs

(
1− s

K

)
− as− εs (2)

Threshold Function:
ds

dt
= gs

(
1− s

K

)
− q s2

h2 + s2
− as− εs (3)

where g is the growth rate, K the carrying capacity, s the biomass, a the effort, q the maximum predation rate, and h sets
the level where predation is 50% of the maximum predation, see [3]. Parameter ε corresponds stochastic stock removal,
mimicking exogenous events (there was a 5% chance that 5% to 95% of the stock was removed). The change in growth
over time is shown in fig. 1 A. MEY is found by using the following optimal control function max(0, 1 + g(1 − s/K) −
(K + c)/2s)− q ∗ s/(h2 + s2). Note that q = 0 for the logistic function.
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Figure 1: (A) Shows the regrowth depending on the current state. (B) When applying an action a (a particular value on
the x-axis) until a steady state equilibrium is reached (y-axis), the threshold effect takes place for action > ε1 (threshold
function). If the tipping point ε1 has been trespassed, repeated actions below ε2 are needed to be able to reach MEY
again. (C) Shows the optimal control path of the two resource functions, i.e. when the state is below β the optimal action
is to stop fishing until the stock is above β. (D) effect on state regrowth when enforced mortality has occurred and the
action is choosen according to the optimal control.

In fig. 1 B we show the steady state solution in yield (reward, r) for any given effort. While the logistic function has
one unique solution for the span of effort [0, 1] the threshold function displays two attractors. Should one increase effort
above the threshold ε1, hysteresis is defined as the amount of effort one has to reduce from ε1 to ε2 in order to return to
the upper and higher yield attractor. To achieve MEY the state must be kept at (K + c)/2. Since the reward is a simple
linear function (eq. 1), a most rapid approach solution is valid for both resource functions [3]. This means that the action
leading to MEY has to be chosen in order to most rapidly bring the stock towards (K + c)/2, as depicted in fig. 1 C. Note
that despite the additional threshold term in eq. 3 (generating the hysteresis in fig. 1 B) the the optimal paths of actions
are very similar, fig. 1 C.

2.2 The Agent

AGENT

R
E
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O
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R
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E

LEARNING METHOD

MENTAL MODEL

 Reinforcement Learning 

Radial Basis Function Network

Softmax 

Action

Catch

DECISION MODEL

γ, λ

τ

α

G
O

A
L

Figure 2: Conceptual model of the agent-resource system. The learning method updated the mental model, and the
mental model effected the decision on what action was chosen. Each part used the parameters update rate (α), discount
factor (γ), level of hindsight (λ), exploration level (τ ), to influence the learning process. The goal is to achieve MEY.
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The agent consists of RL (a version of SARSA) for learning, a RBF network for its mental model, and Softmax for decision-
making, see fig. 2 . Since the aim is for the setting to represent a real world problem, the concept of epochs (”starting
over”) is left out of SARSA. The action taken by the agent is discretisized in the Softmax model, to allow for finding the
agents perceived best action in relation to a current state. The mental model consists of a number of evenly spread RBFs.
Too few RBFs gives a narrow mind lacking the ability to differentiate between different actions and states, while too
many RBFs hinders generalization. In our model we used 92 RBFs to enable the agent to have the ability to approximate
the discontinuity (β in fig. 1 C).

Prediction of Future States: In order to calculate the next prediction (Qt(st+1, at+1)), an estimate of the future resource
state is required. In our model the agent (fisherman) can obviously not predict the future fish stock, instead we chose a
simple regression model based on past the fishers past experiences. Letting a represent the action and s the state and µ a
regression constant, then the prediction of the next state was calculated as st+1 = µ1st + µ2atst. This allowed the agent
to understand 1) that the resource system was self generating and 2) that the resource was affected by harvesting.

2.3 Computer Experiments

In our simulations each time step corresponded to a specific discrete time frame, for example a week. During one time
step 1) the agent made a decision 2) performed an action 3) received a response and 4) updated its mental model of the
resource dynamics (i.e. function approximation). Simulations and analysis were performed using MATLAB 2012. The
evaluation criteria for analyzing the performance of the agents was calculated by a performance index, as;

PI =

∑T
t=1 rt∑T
t=1 r

?
t

(4)

Where t is the time step, r is the agent’s reward, and r? is the reward given by the analytical solution, T = 300. The
optimal parameter values were found by first running 3000 random combinations of update rate (the learning rate of RBF-
network α), discount factor (λ), level of hindsight (eligibility trace’s γ), and exploration level (temperature of Softmax τ ).
Then optimising the best parameter value combinations using a gradient ascent method.
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Figure 3: The figure shows the effect on performance (net income) when varying each parameter, while other parameters
are held fixed. Negative values are left out from the plot. The fixed values for the logistic function were α = 0.15,
λ = 0.95, γ = 0.5, τ = 0.6, and for the threshold function α = 0.25, λ = 0.65, γ = 0.63, τ = 0.05. Each dot represents an
average of 150 runs while the dash-dot line is a smooth function on the data.

3

Paper F45 51



3 Results

Although the learning process is costly, a behavior resulting in 90% (logistic function) or 65% (threshold function) ef-
ficiency of the theoretical optimum can be learned (fig. 3 ). In relation to the four learning parameters we studied,
the agent’s behavior in solving the logistic function can be described as highly explorative with less increase in reward
through the learning process. On the other hand, the agent’s behavior when using a resource with a threshold present
showed that careful exploration in combination with the learning process is crucial. The importance of the learning
parameters for the threshold function was emphasized through the sensitivity to deviations from its optimal parameter
values, showing a more rapid drop in performance as one moved away from each fixed optimal parameter value (3 A-D).

4 Conclusion

Considering the complexity of natural resource dynamics, optimal strategies are often impossible to identify [11, 2067],
and thus local ecological knowledge can clearly contribute to more sustainable management, if it is part of an adaptive
management program as [10] concludes. On the other hand, if these localized experiments in LBD are performed without
a broader context and possibly at larger scales, the social-ecological consequences could be devastating given that the
system dynamics often are uncertain, unknown or unknowable [5].

Further, a higher negative impact on the performance of resources with threshold dynamics were found when devi-
ating from the fixed optimal parameter values vis-à-vis resources lacking thresholds. This implies that resources with
threshold effects require careful attention to management decisions and entail a substantial body of knowledge to avoid
mismanagement. This study confirms, in accordance with the results of [2], the inherent problems with applying trial
and error methods in a resource management situation where thresholds are present, due to the cost of trespassing a
threshold and the difficulty to learn and adapt to the rapid changes in feedbacks. Finally, we conclude that—inadequate
consideration of future stocks (discounting), the speed of adapting ones mental model, and that the timeline for hindsight
must not be excessive—are particularly important for reaching sustainable outcomes.

This paper [7] introduces a model for studying renewable resource management problems. In Lindkvist and Norberg [6,
In prep.] we explore the effects of climate change by continuous and abrupt changes in the growth rate of a fish stock,
as these changes are shown to have alarming consequences for our future earth. Hence, by using RL within resource
management problems we highlight trade-offs between important learning parameters and their impacts on different
levels of resource complexity as well as dynamically changing feed backs, while contributing to the discourse within
sustainability sciences, natural resource management and ecological economics on adaptive management and learning.
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Abstract

Humans and other animals are able to flexibly select among internally generated goals and form plans to achieve them.
Still, the neuronal and computational principles governing these abilities are incompletely known. In computational
neuroscience, goal-directed decision-making has been linked to model-based methods of reinforcement learning, which
use a model of the task to predict the outcome of possible courses of actions, and can select flexibly among them. In
principle, this method permits planning optimal action sequences. However, model-based computations are prohibitive
for large state spaces and several methods to simplify them have been proposed. In hierarchical reinforcement learning,
temporal abstractions methods such as the Options framework permit splitting the search space by learning reusable
macro-actions that achieve subgoals. In this article we offer a normative perspective on the role of subgoals and temporal
abstractions in model-based computations. We hypothesize that the main role of subgoals is reducing the complexity of
learning, inference, and control tasks by guiding the selection of more compact control programs. To explore this idea,
we adopt a Bayesian formulation of model-based search: planning-as-inference. In the proposed method, subgoals
and associated policies are selected via probabilistic inference using principles of descriptive complexity. We present
preliminary results that show the suitability of the proposed method and discuss the links with brain circuits for goal
and subgoal processing in prefrontal cortex.

Keywords: goal-directed decision-making; goal; subgoal; temporal abstrac-
tion; Bayesian inference; planning-as-inference; descriptive com-
plexity; information compression
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SGt subgoal [0, ..., n]
Π policy [0, ...,m]
At action {u, d, l, r, ε}
Ft termination condition {0, 1, 2}
St state [0, ..., n]

Table 1: Left: Graphical model (Dynamic Bayesian Network [13]). Right: Stochastic variables

1 Introduction

A widespread idea in neuroscience is that goals and subgoals maintained in prefrontal hierarchies have a key role in
exerting cognitive control over behavior [1, 2]. Goals and subgoals are usually assigned several roles: serving as reference
states for action selection and monitoring, stabilizing behavior by preventing oscillations between incompatible action
patterns, facilitating planning, influencing perception, attention, memory retrieval, and behavior in a top-down way.
However, the neuronal and computational mechanisms supporting goal and subgoal processing remain elusive.

In particular, it is only recently that model-based computations and planning have been studied experimentally. A series
of monkey studies revealed that representations of goal and subgoal locations are elicited during path planning in lateral
prefrontal cortex [3] and that this area guides multistep planning at the level of action goals and not motor actions [4]. A
human study revealed the importance of striatum, medial temporal lobe and frontal cortex for navigation planning [5].
In rodents, model-based computations have been linked to a neuronal circuit involving the hippocampus and the ventral
striatum [6]. Still, we have incomplete knowledge on (if and) how the brain implements model-based computations.

From a computational perspective, the benefits of goals and subgoals have been studied at three different timescales:
learning, inference, and control. During learning, subgoals permit learning more efficiently by reducing the search space.
This is well exemplified by temporal abstraction methods in hierarchical reinforcement learning (HRL) such as the Options
framework [7]. Options can be conceptualized as sort of macro-actions whose termination conditions are subgoals.
During planning, subgoals reduce the search space by permitting planning at a higher level of temporal abstraction (i.e.,
at the level of macro-actions), see also [8]. During control, subgoals permit maintaining the smallest possible information
in working memory that is sufficient for task achievement [9] and supports efficient monitoring processes. Despite these
progresses, we still lack an integrative theory of the computational role of subgoals in learning, inference, and control.

We argue that the main role of subgoals is reducing the complexity of learning, inference, and control tasks, by guiding
the realization and selection of more compact control programs. A program can be defined as the sequence of actions
necessary for the transition from an initial state s to a subgoal state sg. We assume that a program can be determined
from a policy π if s and sg are known. Key to our formulation is the conversion of the length of a program (i.e., the number
of actions necessary to reach sg from s) into a probability by following principles of descriptive complexity [10]. This
approach formalizes the “Occam’s razor” principle: a priori, among the strings that represent the procedures returning
an output, “simpler” strings (i.e., strings with low descriptive complexity) are more probable. Our formalization uses
information-theoretic measures based on Solomonoff’s Algorithmic Probability and Kolmogorov Complexity [11, 12].

2 Methods and results

To test the hypothesis, we realized a Dynamic Bayesian Network (DBN) [13] that infers subgoals and policies by consid-
ering the descriptive complexity of the resulting programs. The inference uses the graphical model described in Fig. 1.
In the model, the transition P (π|SG, S) captures the concept of an Option but is expressed in a probabilistic way. Note
that we focus on inference, not learning; for this reason the DBN structure and parameters are assumed to be known.

We cast planning and policies selection as probabilistic inference problems, see [14, 15, 16, 17, 18, 19, 20]. The inference
follows the pseudocode of Algorithm 1. Intuitively, the goal of the inference is finding a policy running from the initial
state st to a final goal state sgoal, which are assumed to be known. Although a policy can be found that covers the whole
trajectory from st to sgoal, the resulting inference would be very costly and often infeasible for even moderately large
state spaces. A useful solution in HRL is splitting the search into more manageable subgoals and corresponding Options.
In our formulation, the choice of subgoals and policies is driven by considerations of minimum description length.
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Algorithm 1 Pseudo-code of the inference procedure
t = 0
set S0 to the starting state s0
sample a subgoal state sg0 from the prior probability distribution p(SG0)
sample a policy π from the conditioned probability distribution p(Π|sg0, s0)
determine the action a0 depending on π and s0
set the termination condition state f0 according to p(F0|sg0, s0)
while (Ft 6= 2) do
t = t+ 1
determine the state st by means of p(St|a(t−1), s(t−1))
sample the state sgt from the conditioned probability distribution p(SGt|f(t−1), sg(t−1))
sample a policy π from the conditioned probability distribution p(Π|sgt, st)
set the action at depending on π and st
evaluate the termination condition variable Ft according to p(Ft|sgt, st)

end while

The inference uses the initial state st as a clamped (i.e., observed) state, and the goal state sgoal as a prior on the subgoal
node SG (this value P (sgoal) is the only parameter of the model). Setting goals as priors distinguishes our approach from
planning-as-inference methods and is similar to the active inference scheme of [21].

The inference also uses additional priors on SG that essentially indicate the more likely subgoals in the environment. In
HRL the problem of finding useful subgoals for Options is widely debated; most studies have assessed that bottlenecks
(e.g., a door in a house-like navigation domain) are often useful subgoals [22, 23]. To extract subgoals we used a method
inspired by [9] that consides for each state “the amount of Shannon information that the agent needs to maintain about
the current goal at a given state to select the appropriate action”. We inflect this measure in a probabilistic way by
computing the probability that a subgoal sg is the output of some program given each of state s and each of the policy
π. Thus, the a priori probability of a generic state to be a subgoal depends on how many programs halt in that state and
how long they are (see [11] for a similar method).

Because the number of policies to be searched in all except the most trivial environments is huge, we adopt a sampling
method: importance sampling [11]. During the sampling, the probability of selecting a specific policy π depends on the
length of the program that can be generated from π and that permits a transition from the currently examined state s and
the currently examined subgoal sg. (Remember that a program is the sequence of actions necessary for a transition from
s to sg; this length can be exploited to estimate the related a priori probability using the methods devised by Solomonoff
and Kolmogorov.) This method returns pairs of subgoals and policies (or in other words, Options) that would (ideally)
specify the shortest possible programs from the initial to the goal state. As we noted before, at least in principle this has
benefits for both inference and control. During inference, this method permits searching through a smaller search space.
During control, it permits achieving goals using the shortest path while at the same time having the smallest cognitive
load (e.g., as shorter programs require fewer bits of information to be described, working memory load is alleviated).

The role of the node F is monitoring (sub)goal achievement and guiding the transitions between subgoals (see [20]).
When the current state s is the same as the currently selected subgoal sg, a rest policy πε (i.e., a specific policy associating
to every state a “rest” action ε) is selected. The node F thus determines the transition to a new subgoal (selected during
inference and incorporated in the transition SGt → SGt+1). When the final goal sgoal is reached, the transitions end.

We present simulated experiments in a “four-rooms” scenario (similar to [7]) aiming at comparing the performance of
our method (which uses subgoals) with an equivalent one that does not use subgoals. In the comparison we consider
the number of successfully reached goals, the optimality of behavior (expressed here as the length of the path to achieve
a goal), the complexity of the inference (i.e., the number of inferential cycles necessary to infer a control policy) and the
complexity of the control (i.e. the cumulative number of bits in working memory necessary to achieve the task, see [9]).

Fig. 1 shows the synthetic discrete world we used. It has 18 states S = {s1 . . . , s18} and is composed of four “rooms” with
a single connection among them (S7 and S12). Even in this simple scenario, the number of potential policies is in around
seven millions, making exact inference impracticable. We made 10 simulation runs per number of particles (50, 100 and
1000 particles) with two different modalities. In the first (without-subgoals) modality the probability of choosing a subgoal
different from the goal state is zero (P (SG 6= sgoal) = 0). In the second (with-subgoals) modality a discrete probability
distribution on the subgoals is used (P (SG 6= sgoal) > 0). In the experiments we assumed s1 as starting state and s18 as
goal (notice that the probability of choosing the goal state s18 is raised to make it the most probable state). The priors on
subgoals (calculated using the aforementioned method inspired to [9]) are shown in gray scale in Fig. 1.

Fig. 2 shows the distribution of subgoals found by our inference procedure averaged on the different runs. Results
show that in the tested environment, strategies including two subgoals before the actual goal (with a total of three sub-
plans) are more successful than others. Successful examples include for example [S2, S3, S18] and [S16, S17, S18]. Tab. 2
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Figure 1: Environment representation with 18 states and
subgoal priors depicted in gray scales (S18 is the goal state).
Green and red bars represent doors and walls, respectively.
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Figure 2: Mean subgoal distribution of the successful strate-
gies. Note that the goal is included so a subgoal of 1 indicates
that no additional subgoals were selected.

# of particles
% of success

P (SG 6= sgoal) = 0
% of success

P (SG 6= sgoal) > 0

50 29 45
100 33 47
1000 36 50

Table 2: Percentage of particles that correctly find a plan to the goal, for different number of particles (50, 100 and 1000).
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Figure 3: Average Program Length of policies per step for
the two modalities of execution (standard deviation shown).
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Figure 4: Average Failures Percentage of particles that do not
represent a successful strategy (standard deviation shown).

shows the differences between the percentage of successful strategies carried out in the without-subgoals and with-subgoals
modalities. The latter strategy achieves a better performance by using subgoals to split the search space.

Fig. 3 shows the average program length of the policies per step in the two modalities of execution (with-subgoals is
pink, without-subgoals is yellow) for N = 100 particles and averaged on 10 runs (we obtained similar results with 50
and 1000 particles). This measure is related to the working memory necessary for inference and control, suggesting that
the method using subgoals requires less memory resources. Fig. 4 shows the average percentage of particles that fail to
find a suitable strategy (with N = 100). The results show that the inference method using subgoals is more efficacious,
especially in the first steps. The percentage of failures is stable in all the steps, suggesting robustness of the method.

3 Conclusions

We proposed that goals and subgoals help lowering the description complexity of task-relevant information during
learning, inference, and control. We presented preliminary evidence suggesting that model-based decision-making can
use subgoals to lower the descriptive complexity of the planned policies and programs.

From the computational perspective, our proposal links to planning-as-inference [14, 15], which uses probabilistic inference
to reach desired rewards [18] or goals [19, 20] and to active inference where goals are used as Bayesian priors in a variational
probabilistic scheme that minimizes free energy [21]. Similarly, we use goal states as priors but we also consider subgoals
and use descriptive complexity to evaluate candidate policies. Still, in large environments searching through all the
possible policies is inefficient. This problem can be alleviated by assigning priors to policies (depending e.g., on past
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searches or the average length of their associated programs) or “caching” them. This could permit at least in principle
to form libraries of Options or skills that can be reused across families of problems, as in transfer learning [24]. A further
implication of this method is that goals and subgoals guide information compression in the cortical hierarchies by biasing
which control programs are stored. The idea that information compression is a key organizing principle brain hierarchies
has received some attention in neuroscience [25] but its empirical validity remains to be tested.

Besides, our study can offer a normative perspective on planning and subgoal processing in living organisms. The
monkey PFC encodes a sequence of activation of goals and subgoals during a delay period prior to action [4, 3] and
monitors goals at feedback time [26]. The proposed model suggests a possible computational principle for the encoding
and monitoring of subgoal sequences. Further evidence is necessary to assess the biological plausibility of the model.
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Abstract

This paper provides a comparative study between Inverse Reinforcement Learning (IRL) and Apprenticeship Learning
(AL) reduced to classification. IRL and AL are two frameworks for the imitation learning problem where an agent tries
to learn from demonstrations of an expert. In AL, the agent tries to learn the expert policy whereas in IRL, the agent
tries to learn a reward which can explain the behavior of the expert. Then, the optimal policy regarding this reward is
used to imitate the expert. One can wonder if it is worth estimating such a reward, or if estimating a policy is sufficient.
This quite natural question has not really been addressed in the literature so far. We provide partial answers, both from
a theoretical and empirical points of view.
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Apprenticeship Learning.
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1 Introduction

This paper provides a comparative study between two methods that attempt to solve the imitation learning problem
where an apprentice tries to learn from demonstrations of an expert. These two methods are Apprenticeship Learning
(AL) [1] and Inverse Reinforcement Learning (IRL) [7]. In AL, the agent tries to learn the expert policy or at least a policy
which is as good as the expert policy (according to an unknown reward function). In IRL, the agent tries to learn a reward
which can explain the behavior of the expert. Then, the optimal policy regarding this reward is used to imitate the expert.
AL can be reduced to classification [5, 6, 9] where the agent tries to mimic the expert policy via a Supervised Learning
(SL) algorithm. There exist also several AL algorithms inspired by IRL such as [1, 8] but they need to solve recursively
MDPs which is a difficult problem (not considered in this paper) when the state space is large and the dynamics of the
MDP is unknown.

First, we analyse the difference of value functions between the apprentice and the expert policies when a classifier is
used as AL method (in the infinite horizon case). When compared to the sole (as far as we know) related result in IRL,
quantifying the quality of an apprentice trained with the recently introduced Structured Classification based IRL (SCIRL)
algorithm [4], this analysis tells us that estimating a reward only adds errors. Then, we perform an empirical study on
the generic Garnet framework [2] to see if this first partial answer is confirmed. It turns out that it actually strongly
depends on the (unknown) reward: roughly, the less informative the reward is, the more IRL provides gains compared
to classification. Finally, we push this empirical study even further by perturbing the dynamics of the MDP, which goes
beyond the studied theory. In this case, the advantage of IRL is even clearer.

2 Background and Notations

2.1 General notations and Markov Decision Process

Let X = (xi){1≤i≤NX } be a finite set and f ∈ RX , f is identified to a column vector and fT is the transposition of f . The
set of probability distributions over X is noted ∆X . Let Y be a finite set, ∆YX is the set of functions from Y to ∆X . Let
ζ ∈ ∆YX and y ∈ Y , ζ(y) ∈ ∆X , which can be seen as the conditional distribution probability knowing y, is also noted
ζ(.|y) and ∀x ∈ X , ζ(x|y) = [ζ(y)](x). Besides, let A ⊂ X , then χA ∈ RX is the indicator function on A. Moreover, let
µ ∈ ∆X , Eµ[f ] is the expectation of f with respect to µ. Let x ∈ X , x ∼ µ means that x is sampled according to µ. Finally,
we define ‖f‖∞ = maxx∈X f(x).

A finite Markov Decision Process (MDP) is a tuple M = {S,A,P,R, γ} where S = (si){1≤i≤NS} is the state space,
A = (ai){1≤i≤NA} is the action space,P ∈ ∆S×AS is the Markovian dynamics of the MDP,R ∈ RS×A is the reward function
and γ is the discount factor. A stationary and Markovian policy π ∈ ∆SA represents the behavior of an agent acting in the
MDPM. The quality of π in the infinite horizon framework is quantified by the value function vπR ∈ RS which maps to
each state the expected and discounted cumulative reward for starting in this state and following the policy π afterwards:
vπR(s) = E[

∑
t≥0 γ

tR(st, at)|s0 = s, π]. A policy π∗R is said optimal (according to R) if its value function v∗R satisfies
v∗R ≥ vπR for any policy π and componentwise. Let Pπ be the stochastic matrix Pπ = (

∑
a∈A π(a|s)P(s′|s, a)){(s,s′)∈S2},

we write, when it exists, ρπ ∈ RS the stationary distribution of the policy π (satisfying ρTπPπ = ρTπ ).

2.2 AL and IRL

In the AL framework, the apprentice, given some observations of the expert policy πE , tries to learn a policy πC which
is as good as the expert policy according to the unknown reward R. Thus, the apprentice tries to find πC such that the
quantity: Eν [vπER − vπCR ] is the lowest possible, where ν ∈ ∆S . In general ν = ρ where ρ is the uniform distribution or
ν = ρπE (also noted ρE). In the IRL framework, the apprentice tries to learn a reward R̂ which could explain the expert
behavior. More precisely, given some observations of the expert policy πE , the apprentice learns a reward R̂ such that

the quantities Eν [v
π∗R̂
R̂ − v

πE
R̂ ] or Eν [vπER − v

π∗R̂
R ] are the lowest possible.

3 Theoretical study

3.1 AL reduced to classification for the infinite horizon case

A way to realize an AL method is by mimicry via classification. More precisely, we assume that some demonstrations
examples DE = (si, ai){1≤i≤N} where ai ∼ πE(.|si) are available. Without loss of generality, we assume that the states
si are sampled according to some probability distribution ν ∈ ∆S . The data (si, ai) are sampled according to the distri-
bution µE such that: µE(s, a) = ν(s)πE(a|s). Then, a classifier is learnt based on these examples. This outputs a policy
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πC ∈ AS , which associates to each state an action. The quality of the classifier is quantified by the classification error:
εC = EµE [χ{(s,a)∈S×A,πC(s)6=a}]. The quality of the expert may be quantified with vπER . Usually, it is assumed that the
expert is optimal, but it is not necessary for the following analysis (the expert may be sub-optimal respectively to R).
The quality of the policy πC can also be quantified by its value function vπCR . In the following, we bound Eν [vπER − vπCR ]
which represents the difference between the quality of the expert and the classifier policy. If this quantity is negative,
that is fine, because (in mean), πC is better than πE . So, only an upper bound is provided. This upper-bound shows the
soundness of classification.

Let define the following concentration coefficient: Cν = (1 − γ)
∑
t≥0 γ

tcν(t) where ∀t ∈ N, cν(t) = maxs∈S
(νTP tπE

)(s)

ν(s) .
Notice that if ν = ρE , which is a reasonable assumption, then Cν = CρE = 1.

Theorem 1 Let πC be the classifier policy (trained on the data setDE to imitate the expert policy πE). Let also εC be the classification
error and Cν the above defined concentration coefficient. Then ∀R ∈ RS×A: Eν [vπER − vπCR ] ≤ 2Cν‖R‖∞

(1−γ)2 εC .

The proof of Th. 1 is given on the supplementary material 1 and is based on the propagation of the classification error.

3.2 A bound on the finite-horizon case

In [9], the authors provide a bound for classification in the finite horizon case. They propose to learn, for each time
1 ≤ t ≤ H (H is the horizon), a classifier in order to build a non-stationary policy πC imitating the expert. Doing so, they
obtain the following theorem:

Theorem 2 (Syed 2010) Let πE be the expert non-stationary and Markovian expert policy and πC the policy learnt by the H
classifiers, then: Eν [vπER − vπCR ] ≤ min(2

√
εCH

2, 4εCH
3 + δπE )‖R‖∞, where δπE =

Eν [v∗R−v
πE
R ]

‖R‖∞ represents the sub-optimality of
the expert and εC the classification error.

It is possible to compare these results with our bound, by informally noticing that the discount factor γ in the infinite
horizon corresponds to an horizon of length 1

1−γ :
∑
t≥0 γ

t = 1
1−γ . By replacing H by 1

1−γ in the the precedent bound,

we obtain: Eν [vπER − vπCR ] ≤ min(
2
√
εC

(1−γ)2 ,
4εC

(1−γ)3 + δπE )‖R‖∞. So, if we informally identify the classification errors and the
horizon H to 1

1−γ , our bound is slightly better either by
√
εC or by 2

1−γ . Moreover, as our bound is specific to the infinite
horizon, it is more adapted to AL and IRL algorithms as most of them consider the infinite horizon case.

3.3 SCIRL and its performance bound

SCIRL uses the estimation of the expert feature expectation [4] as the basis function of a linearly parameterized score-
based classifier. The classification error is noted εC and the reward outputted by the SCIRL algorithm is RC . Then, the
performance bound for this algorithm is: 0 ≤ EρE [v∗RC − v

πE
RC ] ≤ Cf

(1−γ)

(
2‖RC‖∞εC

1−γ + εQ

)
, with Cf = (1− γ)

∑
t≥0 γ

tcf (t)

where ∀t ∈ N, cf (t) = maxs∈S
(ρTEP

t
π∗RC

)(s)

ρE(s) . The term εQ is a measure of the error estimation of the feature expectation.
This bound is specific to the reward RC and the constant Cf is not equal to 1 when ν = ρE , which makes this bound
possibly quite worst than the classification bound, even when the expert feature expectation is perfectly estimated (εQ =
0) which is a strong assumption. This seems to indicate that this IRL algorithm is less interesting than a classification
algorithm in theory. However, we will see, in Sec. 4, that for specific unknown rewards SCIRL can have much better
performance than classification.

4 Empirical study

Here, experiments are conducted and show the interest of estimating a reward thanks to a general framework called
the Garnet framework [2]. We choose it because the Garnets are finite MDPs with a tabular representation which allow
comparing fairly the different approaches without the problem of bias induced by the choice of representation. The
comparison is done between a classification algorithm and two recently published IRL algorithms: SCIRL and Relative
Entropy IRL (RE) [3]. SCIRL and RE were chosen as benchmarks because they do not need to resolve iteratively MDPs
which reduces the impact of Approximate Dynamic Programming (ADP). As they output a reward, the policy iteration
algorithm is used to obtain a policy. These experiments show that the shape of the unknown reward, used to compute
the expert policy, is crucial. Besides, we push this empirical study even further by perturbing the dynamics of the MDP
and by showing that IRL provides a level of stability that no AL algorithms can reach for non-informative rewards.

1http://www.metz.supelec.fr/metz/personnel/piot_bil/RLDM.pdf
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4.1 Classification and IRL algorithms

The classification algorithm is an algorithm using a structured large-margin approach [6]. The second algorithm is SCIRL
which is instantiated as described in [4]. The last algorithm is Relative Entropy (RE). It consists in minimizing the relative
entropy between the empirical distribution of the state-action trajectories under a random policy and the distribution of
the trajectories under a policy that matches the expert feature expectation [3].

4.2 The Garnet framework

The Garnet problems are a class of randomly constructed finite MDPs representative of the kind of finite MDPs that
might be encountered in practice [2]. A stationary Garnet problem is characterized by 3 parameters and written as
Garnet(NS , NA, NB). The parameters NS and NA are the number of states and actions respectively, and NB is a branch-
ing factor specifying the number of next states for each state-action pair. The next states are chosen at random from the
state set without replacement. The probability of going to each next state is generated by partitioning the unit interval at
NB−1 cut points selected randomly. The rewardRwill be chosen depending on the experiments. Here, we compare the
performances of the classification and the IRL algorithms. To obtain a generic result, we run the same experiment on 100
Garnets chosen randomly. In the first experiment, we choose a normally distributed reward, for each state-action couple,
R(s, a) is sampled according to a normal distribution of mean 0 and variance 1. This reward is very informative. For
each Garnet and each length of trajectory (Hk){1≤k≤10} = (50, 100, ..., 500), we generate 100 expert trajectories. For each

expert trajectory of length Hk, we run the three algorithms. The criterion of performance is T k =
Eρ[v

π
p
E
R −v

πkC
R ]

Eρ[v
π
p
E
R ]

, where

πpE is the expert policy, πkC is the policy induced by the algorithm and ρ is the uniform distribution over the state space
S. For each algorithm, we plot (Hk

E , T
k){1≤k≤10} where the performance has been averaged over expert trajectories of

length Hk and all Garnets. Results are reported on Fig. 1(a). The second experiment is similar to the first one except
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(b) Non-informative reward

Figure 1: Garnets experiment

that the reward is non-informative. Indeed, we choose a sparse and state only dependent reward. Results are reported
on Fig. 1(b). In Fig. 1(a), the classification algorithm has a better performance over the IRL algorithms. Indeed, as the
reward is very informative, the choice of the action does not depend too much on the future states and the impact of the
optimization horizon is strongly reduced. In Fig. 1(b), we see that the IRL algorithms work better than previously and the
classification algorithm has its performance deteriorated. As the unknown reward is non-informative, the optimization
horizon may be important and the classification is not able to take this temporal structure into account.

4.3 Dynamics perturbations

Here, we want to show that it can be interesting to retrieve the reward to be stable to dynamics perturbations. As
the reward is seen as the most succinct hypothesis explaining the expert policy, we can expect that an optimal policy
according to a reward outputted by IRL algorithms will be near-optimal even if there is a dynamics perturbation. The
dynamics perturbations considered are the ones which keep identical the structure of the MDP. The structure of the MDP
is, for a given state-action couple (s, a), the different states that could be reached by choosing the action a in state s, that is
Supp(Ps,a) where Supp(ν) is the support of the distribution ν. The structure of the MDP is the set (Supp(Ps,a)){(s,a)∈S×A}
and a dynamic perturbation is the choice of a dynamics P̃ different from P with the same structure. To obtain a generic
result, we generate 100 Garnets as we have done previously. In the first experiment, we use the informative reward.
For each Garnet, we compute the expert policy via the policy iteration algorithm. For each Garnet and each length of
trajectory (Hk){1≤k≤10} = (50, 100, ..., 500), we generate 100 expert trajectories of length Hk. For each expert trajectory,
we run the three algorithms. Then, for each Garnet, we generate 100 perturbed dynamics and we calculate, for each
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trajectory of length Hk, the criterion of performance T k =
Eρ[vπ

∗
R −v

πkC
R ]

Eρ[v
π
p
E
R ]

, where π∗ is the optimal policy after perturbation,

πkC is the policy induced by the algorithm and ρ is the uniform distribution over the state space S. For each algorithm,
we plot (Hk

E , T
k){1≤k≤10} where the performance has been averaged over all expert trajectories of length Hk, perturbed

dynamics and Garnets. Results are reported on Fig. 2(a). The second experiment is similar to the first one except that
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Figure 2: Garnets experiment with dynamics perturbations

the reward is non-informative. Results are reported on Fig. 2(b). In Fig. 2, the curve named AL corresponds to the
performance of the expert policy and the curve named Rand corresponds to a random policy. The curve named AL
corresponds to the best achievable result of an AL algorithm as it is the performance of the expert policy in the original
dynamics. In Fig. 2(a), the reward is informative, so a dynamic perturbation may not deteriorate too much the expert
policy. Indeed, the impact of the optimization horizon must be small and the perturbation of dynamics will not change
too much the optimal policy. We can observe this on Fig. 2(a), where the yellow curve noted AL is not so far away from
0. With this shape of reward, it is better to use a classification algorithm to have this stability property. However, in
Fig. 2(b), as the reward is sparse, a dynamic perturbation leads to a deterioration of the performance of the expert policy.
We see that IRL curves are under the yellow curve, which means that no AL algorithms will be able to reach that level of
stability. Thus, estimating a reward function in that case is useful because it allows a stability that no AL algorithms is
able to provide.

5 Conclusion and Perspectives

In this paper, we give some theoretical and empirical insights into the following question: is it worth estimating a reward
function? In theory, we showed that there are no specific reasons to use IRL. However, the experiments conducted in this
paper on a generic task show that for specific shapes of the unknown reward, IRL algorithms have better performances
than classification. We think that the less informative the reward is, the bigger the impact of the optimization horizon
is. This is a disadvantage for the classification method which does not take into account this horizon. Besides, when
the dynamics is perturbed, the advantage is even clearer for IRL algorithms. However, there is no theoretical proof
explaining why IRL work better with specific forms of rewards. This can be an interesting perspective to give more
soundness to our experiments.

References

[1] P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proc. of ICML, 2004.
[2] TW. Archibald, KIM. McKinnon, and LC. Thomas. On the generation of markov decision processes. Journal of the

Operational Research Society, 1995.
[3] A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In Proc. of AISTATS, 2011.
[4] E. Klein, M. Geist, B. Piot, and O. Pietquin. Inverse reinforcement learning through structured classification. In Proc.

of NIPS, 2012.
[5] D.A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Technical report, DTIC Document, 1989.
[6] N. Ratliff, J.A. Bagnell, and S.S Srinivasa. Imitation learning for locomotion and manipulation. In Proc. of IEEE-RAS

International Conference on Humanoid Robots, 2007.
[7] S. Russell. Learning agents for uncertain environments. In Proc. of COLT, 1998.
[8] U. Syed and R.E. Schapire. A game-theoretic approach to apprenticeship learning. In Proc. of NIPS, 2008.
[9] U. Syed and R.E. Schapire. A reduction from apprenticeship learning to classification. In Proc. of NIPS, 2010.

4

Paper F48 62



Introspective Classification for Mission-Critical Decision Making
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Abstract
Classification precision and recall have been widely adopted by roboticists as canonical metrics to quantify the performance of
learning algorithms. However, this paper advocates that for application domains which routinely require mission-critical decision
making, such as robotics, good performance according to these standard metrics is desirable but insu�cient to appropriately charac-
terise system performance. We introduce and motivate the importance of a classifier’s introspective capacity: the ability to mitigate
potentially overconfident classifications by an appropriate assessment of how qualified the system is to make a judgement on the
current test datum. We provide an intuition as to how this introspective capacity can be achieved and systematically investigate it in
a selection of classification frameworks commonly used in robotics: support vector machines, LogitBoost classifiers and Gaussian
Process classifiers (GPCs). Our experiments demonstrate that a framework such as a GPC exhibits a superior introspective capacity
while maintaining commensurate classification performance to more popular, alternative approaches. We explore the benefits of an
introspective classifier in the context of common robotics tasks such as classification, detection, and active learning for semantic
mapping.

Keywords: life-long learning, classification uncertainty, semantic mapping
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Figure 1: (a) Classification uncertainty measured using normalised entropy for tra�c light detectors based on five di↵erent classification frameworks
applied to the window shown in green. All classifiers incorrectly label this window as background. However, the GPC variants do so with a
significant amount of uncertainty while the others are inappropriately overconfident. Mission-critical decisions based on overconfident output will
lead to catastrophic failure while an appropriately high amount of uncertainty when committing a mistake allows for remedial action to be taken.
(b-c) An illustration of the two types of classification frameworks considered: (b) during training a single model is selected to classify an unknown
datum x⇤; (c) training leads to a distribution over models which is considered entirely to arrive at the final prediction. This illustration is for the
family of linear models, each annotated with its individual prediction and the overall predictive distribution (bottom right). The darker regions
indicate higher probability weights associated with individual models. The overall predictive distribution in (b) stems from the single model used
and is, in this case, inappropriately confident. In (c), the overall predictive distribution is moderated by computing the expectation over all models,
resulting in a more appropriate uncertainty estimate — this is the introspective quality we seek.

1 Introduction

Classification based on a wide variety of sensor modalities has become an integral part of mobile robotics applications (see, for
example, [1, 2, 3]). Often this is done with an implicit understanding that the application is agnostic to the classification method used.
After all, for a number of classification frameworks the resulting precision and recall, quantities commonly used to characterise
performance, are often commensurate across a wide variety of applications. We advocate that high precision and recall are desirable
but do not su�ce to fully characterise classification performance in robotics, where decisions taken are often mission or even safety
critical. Crucially, this requires the classifier output to reflect an amount of uncertainty appropriate to a given situation. Even when
hard class assignments are avoided by optimising an expected cost or reward, as is often the case in decision making, a realistic
estimate of uncertainty when modelling the state of the world is pivotal; an autonomous car that misses a single tra�c light with high
confidence can su↵er disastrous consequences (Fig. 1a).

We argue, therefore, that a classifier which is uncertain when it makes mistakes but certain when classification is correct, is more
desirable than a classifier which makes correct and incorrect decisions with similarly high confidence. We investigate this introspec-
tive capacity in a number of classification frameworks commonly used in robotics: support vector machines (SVMs), LogitBoosting
and Gaussian Process classifiers (GPCs). While we investigate specifically class-action, detection, and active learning scenarios, our
treatment and findings apply to any aspect of robotics (and beyond) where action is required based on inference driven by raw sensor
data. In this work, we present an overview of our two recent papers [4, 5], discussing key theoretical ideas and experimental results.

2 Introspection and Uncertainty

The introspective capacity of a classifier characterises its ability to realistically estimate the uncertainty in its predictions. The concept
is motivated by the desire to take appropriate action when a classifier indicates high uncertainty. Our approach to introspection is
grounded in the fact that the often cited assumption of independent and identically distributed (i.i.d.) training and test data is routinely
violated in robotics: in the limit of continuous operation in the real world, one-shot classifier training is unlikely to be performed on
a complete (or even fully representative) set of data.

Formally, let a classifier map an input x 2 íd to one of a set of classes C = {C1, . . . ,C|C|} via an associated label y 2 C. Prior to
training, domain specific knowledge is often used to constrain the family of classification models employed (e.g., in the form of a
kernel, a covariance function or a type of base classifier). Classifier training then involves learning a set of (hyper-) parameters given
a training dataset {X,Y}, where X = {x1, . . . , x|X|} denotes the set of feature vectors and Y denotes the corresponding class labels.
The training data implicitly give rise to a distribution over the set of all possible models within the chosen family,M, such that

{X,Y} ! p(m | X,Y) , m 2 M. (1)
With a slight abuse of notation, m here denotes any member of the family of possible models, M. In reality it is a function of the
datum evaluated. In the following we make this relationship explicit by conditioning on both a model (or family of models) as well as
on a test datum x⇤. Typically, training leads to the selection of a single model, m̃ fromM such that a prediction y⇤ for a new, unseen
feature vector x⇤ is obtained by approximating

p(y⇤ | X,Y, x⇤) ⇡ p(y⇤ | m̃, x⇤) , m̃ 2 M. (2)
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This is illustrated in Fig. 1b. Common examples of this type of classification framework include SVMs and Boosting classifiers,
where an optimisation is performed to select the best model given the training data. The i.i.d. assumption here is inherent since it
is assumed that m̃ remains the best model for all predictions of unseen data. Breaking this assumption therefore often renders the
chosen model suboptimal. An alternative to the single model approach are classification frameworks which take into account the
entire set of possible models in the specified family, such that

p(y⇤ | X,Y, x⇤) ⇡ p(y⇤ | M, x⇤). (3)
This case is illustrated in Fig. 1c. Here the shading indicates the distribution p(m | X,Y) with darker shades indicating increased
probability. To aid intuition, predictions of four randomly selected members ofM are also illustrated. Final predictions are made by
taking into account opinions from all members ofM, often via the computation of an expectation such as for a GPC (or its sparse
variants) [6, 7]. Crucially, when considering an expectation over all ofM, the increased variance in feasible (and therefore likely)
models at a distance from the training data leads to a moderation of the class predictions. This is the introspective quality we seek.
In order to characterise the introspective capacity of a classification framework a transferable measure of the inherent uncertainty in
the classification output is required. Here, we use an information-theoretic quantity known as normalised entropy, HN , defined as

HN = �
X

Ci2C
p(y = Ci | x) log|C|

⇥
p(y = Ci | x)

⇤
. (4)

This is equivalent to the Shannon entropy measure normalised by its maximum, which is the entropy of the |C|-dimensional uniform
distribution, log(|C|). The result is an empirical measure ranging between 0 and 1 where a higher value indicates greater uncertainty
in the classifier’s belief.

3 Experimental Results

Our experiments investigate the introspective capacity of common classification frameworks (SVMs [8], LogitBoosting [9] and GPCs
[6, 13] with linear and squared exponential (SE) kernel types where appropriate) in an autonomous driving and mapping setting. We
focus on the classification of road signs and the detection of tra�c lights. The classification scenario addresses the case where
a decision is made between two, well-defined classes (e.g. two types of tra�c signs) and investigates classifier performance as a
third, previously unseen class is presented. The detection case involves separating a single class from a broad (in terms of intra-
class variation) background class. Here, it is inherently assumed that the data representing the background class are su�ciently
representative to capture any non-class object likely to be encountered, an assumption that may not hold true in practice, leading to
mis-classifications. Further, we investigate the performance of a GP-based sparse introspective classifier in an active learning setting.
We evaluate the performance in terms of the learning rate, data selection strategy and classification performance applied to the tra�c
light detection task and contrast against the commonly used SVM classifier (calibrated to provide probabilistic output).

For the experiments we leverage two publicly available data sets: (i) German Tra�c Sign Recognition Benchmark (GTSRB)
dataset [10], which comprises over 50, 000 loosely-cropped images of 42 classes of road signs, with associated bounding boxes
and class labels and (ii) Tra�c Lights Recognition (TLR) data set [11], which comprises 11,179 colour images taken at 25 Hz from a
car driven through central Paris at speeds under 31 mph with ground-truth labels for associated tra�c light positions. We compute a
template-based feature set inspired by Torralba et al. [12] in which a dictionary of partial templates is constructed, against which test
instances are matched. For any given test instance, the normalised cross-correlation is computed for each dictionary feature.

3.1 Introspection in Classification and Detection

This section investigates classification output when a third, previously unseen class is presented to the classifier. We used the GTSRB
road signs data set and arbitrarily selected two classes for training: stop and lorries prohibited. The classifiers were trained separating
these two classes using a balanced training set of 400 data (200 per class) and applying a canonical training procedure for each
classifier type, including five-fold cross-validation where appropriate. Classifier performance was evaluated using standard metrics
on a hold-out set of another 400 class instances (200 of each class) of the same two classes. The f1-performance was obtained as: SE
GPC (0.995), SESE SVM (0.997), Linear GPC (0.995), Linear SVM (0.995) and LogitBoost (0.982). Classification performance is
commensurate across all classifiers.

The classifiers are next retrained using the full 800 training data (400 per class) and the same canonical training procedures. They
are then applied to 500 instances of the previously unseen class roadworks ahead. The resulting normalised entropy histograms
are shown in Fig. 2. The mean normalised entropies for the GPC-based classifiers are significantly higher than those of the other
classification frameworks, indicating that the the GPC-based classifiers exhibit greater uncertainty in their judgement. Conversely,
the SE SVM and the LogitBoost classifier are extremely confident in their classifications with a very narrow distribution around a
relatively low value of normalised entropy. This was an e↵ect consistently observed throughout our experiments (see [4] for more
detail), which we attribute to the relatively gradual decay of the estimated class posterior probabilities through feature space often
encountered far away from the decision boundary. Features from an unseen class which are located in feature space at a distance
from the decision boundary therefore only span a very narrow range of estimated class posterior probabilities.

Next, we investigate the same classification frameworks as before on the task of tra�c light detection using the TLR data set. We
split the dataset into two parts (at frame 7, 200 of 11, 178), with an approximately equal number of remaining labels in each part and

2

Paper F49 65



0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

Normalised Entropy

Fr
eq

ue
nc

y

(a) SE GPC

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

Normalised Entropy

Fr
eq

ue
nc

y

(b) SE SVM

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

Normalised Entropy

Fr
eq

ue
nc

y

(c) Linear GPC
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(d) Linear SVM
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Figure 2: Normalised entropy histograms of the marginal probabilities for five classifiers trained on the road sign classes stop and lorries prohibited
and tested on 500 instances of the unseen class roadworks ahead. Higher normalised entropy implies more uncertainty in classifier output. Note
that the mean normalised entropy for the SE GPC is higher than that of the others.
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Figure 3: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives) against nor-
malised entropy. The classifiers have been trained on 500 tra�c lights against 500 background patches, and tested on 1,000 instances of each. Note
that lower normalised entropy implies more certainty in classification. A more introspective classifier is one that exhibits higher uncertainty (larger
normalised entropy in its output) when processing di�cult instances. Consequently, class decisions on output above a given normalised entropy
threshold are deferred since the output is deemed ambiguous. This is desirable since a single bad decision can have disastrous consequences.

with no physical tra�c lights in common. Positive data are extracted as labeled. Negative background data are extracted by sampling
patches of random size and position from scenes in the dataset while ensuring that the patches do not overlap with positive instances.
The data are then split into training (1, 000) and hold-out test set (2, 000). The f1-performance was obtained as: SE GPC (0.941), SE
SVM (0.956), Linear GPC (0.940), Linear SVM (0.953) and LogitBoost (0.945). As before, classification performance according to
conventional metrics is commensurate across all frameworks.

Figure 3 illustrates how the lack of introspection can impact classification performance when accept/reject decisions are guided by
classification confidence. Specifically, we show the cumulative e↵ect of accepting classifications below a given uncertainty threshold.
First we note that when classifications are accepted at any level of uncertainty (i.e. up to and including unity normalised entropy)
all classification frameworks are commensurate in terms of true positives and true negatives (Fig. 3a-b). However, true positive
and negative classifications occur generally at higher certainty (i.e. as normalised entropy tends to zero) for SVMs and LogitBoost
classifiers than for the GPC variants. The latter are overall less certain about a significant number of correct classifications. Figure 3c-
d, indicate that SVMs and LogitBoost classifiers are also significantly more confident when misclassifying data (an example of this is
also shown in Fig. 1a). Significant numbers of mistakes are made at relatively low normalised entropy thresholds. The GPC variants,
in contrast, accumulate comparable numbers of classification errors only at higher normalised entropy thresholds. The trade-o↵ for
this more realistic classification uncertainty assessment is a reduction in immediately correct classifications above the normalised
entropy threshold. Note that this does not mean that these samples are misclassified. It only implies that some other remedial action
might be taken — for example obtaining label confirmation from a human operator.

3.2 Active learning and the Benefit of Introspection

When confronted with uncertainty in classification output, a common remedial action consists of seeking human assistance to dis-
ambiguate the true class label. The new class information for uncertain data can be used to re-train or evolve the classifier leading
to an active learning approach. Next, we apply a GP-based introspective classifier to active learning in the context of tra�c light
detection from a mobile platform. For e�ciency and scalability to large data sets, we use a sparse GPC-based model, the Informative
Vector Machine (IVM) [13]. The IVM uses information theoretic sparsification yielding scalability to large data sets while retaining
its introspective nature via a marginalization over models induced by its non-parametric formulation.

We evaluate and compare the classification accuracy, learning rate and the selection of uncertain points for disambiguation for the
IVM and the more commonly used SVM classifiers. For details please see [5]. The TLR data set is split into 10 epochs, each
consisting of a training phase, a classification phase, and a feedback phase. During each classification phase, the classifiers are then
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Figure 4: The benefit of introspection. (a) Data selected by an introspective classifier lead to an improved learning rate in terms of precision-recall
for both IVM and SVM over that selected by a non-introspective classifier. (b) Classification performance and (learning rates) for both IVM and
SVM variants as indicated by the f1-measure after each epoch (avg. over 100 experimental runs). The IVM using a normalised entropy-based data
selection strategy (IVM+NE) consistently outperforms all other active learning variants in terms of overall performance and learning rate.

tested on a batch of 1,000 points randomly drawn from the test set. Then the 10 points with the highest normalised entropy (providing
they are over a threshold empirically set to be 0.97) are greedily added to the training set, ready for retraining at the start of the next
epoch. Note that each classifier (IVM and SVM) makes its own choices regarding which points to add for the next epoch.

We evaluate whether the use of an introspective classifier leads to more informative questions being asked when selecting data for
human labelling and inclusion into the training set. Both an IVM and an SVM are initially trained on the same data. Then, 1,000 new
data are shown to both classifiers for testing. Each chooses 10 data to add to the training set for the next round, resulting in two new
and di↵erent training sets: the ‘IVM set’ and the ‘SVM set’. A new IVM and SVM are now trained on each of the two new sets and
evaluated on a further 1,000 held out data points. This process thus gives rise to four classifiers: two IVMs trained on data selected
by an IVM and a SVM respectively, and two equivalent SVMs. We compute precision and recall for all four classifiers. The results
after 100 repetitions of this experiment are shown in Fig. 4a. As expected, both the IVM and the SVM perform better when trained
on the dataset chosen, introspectively, by the initial IVM, suggesting that the questions asked by the IVM tend to be significantly
more informative. The overall e↵ect of introspection in an active learning setting is therefore an increased learning rate, as shown in
Fig. 4b, where the IVM learner based on a normalised entropy selection policy outperforms the equivalent SVM based method both
in absolute terms per epoch as well as in terms of relative increase (information gained) per epoch.
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Abstract

The success of reinforcement learning in real-world problems depends on careful selection of features to represent the
state. Proper feature selection results in the increased ability to approximate the value function and in quicker learning, as
only relevant information is emphasized. It is desirable to generate such features automatically, as this would otherwise
be a trial and error process requiring a human expert. We propose a method to automatically map states to feature
vectors, which are not only sufficiently descriptive of the environment, but are invariant to information not relevant to the
agent’s goal. The mapping is based on the principle that if the Q-values for two states under the same action are similar,
then the states themselves should be similar. This similarity is realized in a space defined by a metric computed using
an information-theoretic approach to metric learning. Our method works in conjunction with a Q-learning algorithm of
choice and is suitable for large and continuous state spaces. We test our algorithm on a non-sequential decision task in
which the state is an image. While the problem is in fact linear, our method greatly outperforms linear Q-learning.

Keywords: Reinforcement learning, automatic feature generation, metric
learning
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1 Introduction

For many practical problems, the number of states in the environment is too large for a reinforcement learning agent
to visit all of them. This is not only true in the case of a continuous state space, where there are a continuum of states,
but even in discrete spaces where the number of states grows exponentially with the size of our state vector. This is the
well-known “curse of dimensionality” [1]. In such cases, function approximation techniques are necessary to predict the
value function for states that have not yet been visited. In this approach, a mapping from a feature vector representing
the state to the value function is learned, as the agent interacts with the environment. The choice of the features is
therefore a crucial factor in the success or failure of reinforcement learning. In RL problems each state is associated with
raw measured data about the environment. This data might be the pixels of an image for instance. The feature vector
is mapped from this raw data and should effectively represent the state in such a way that is invariant to distracting
elements. For instance, when a baseball is approaching, the action of catching it is the same whether it occurs in a
baseball stadium or in a backyard. Successful feature selection enables us to recognize the similarity between the two
situations, despite the fact that the background in each case is completely different. While recognizing such invariants
drastically reduces the size of the state space, the feature vector must be sufficiently descriptive such that the agent is
able to learn complicated behaviors. In the first implementation of TD-gammon [2], the state of a game of backgammon
was represented by a vector consisting of 198 elements. Even if the features intuitively capture the relevant information
of the problem, it may not be the best way to represent the state to the function approximator that is learning the value
function. Trial and error may be required to find a representation that leads to success.

Choosing the state representation is left to the ‘designer’, but in real-world problems this is unsatisfactory. Generating
the feature mapping automatically, is a necessary step in extending RL to more complicated problems and to domains
where experts cannot hand pick features. The literature on automatic feature generation is relatively sparse, owing
partially to the difficulty of the problem. Many of the existing methods base the learning of features on the Bellman error
of the value function estimates. These methods are known as Bellman Error Basis Function (BEBF) [3]. Other methods
require estimates of information about the Markov Decision Process, such as the transition or adjacency matrix [4], which
are difficult to acquire in many large problems. Additionally, most automatic feature generation methods are set in the
domain of policy evaluation. Feature generation for control methods, such as Q-learning, is an even less studied problem.
One such method [5] learns a metric for comparing states, such that states with similar transitions under the same action
are close with respect to this metric. In this approach, two states xi and xj , at times i and j, respectively, are similar if
their single step increments are similar, i.e. if xi+1 − xi and xj+1 − xj are similar. A potential problem with this method
is that the differences between consecutive states may not reliably indicate similarity of states with respect to the goal of
the agent. If distracting features are dominant, such as in visual systems, then the features of interest are not properly
accounted for in the state transitions.

In this paper, we present an automatic feature generator for RL that is also based on metric learning. However, in
our approach, the similarity between states is established with respect to the goal of our learning system, rather than
temporal differences in the state vectors. We first present our method and the information-theoretic metric learning
algorithm it utilizes. We then demonstrate the ability of our method to generate invariant features in a non-sequential
decision problem, where the state is a black and white image.

2 Metric Learning for Reinforcement Learning

To create a feature representation that is invariant to information not relevant to the current decision problem, we use
the following principle:

Two states are similar if the value of these states are similar under the same action.

Intuitively, the value function (specifically the Q-value) reflects the performance goals for the given problem indepen-
dently of the state. If Q(x, a) = Q(y, a) for states x and y and action a, then these states are similar, in the same way that
a stadium and a backyard are similar when moving your arm to catch a baseball.

Given this principle, the features we choose to represent the state should exist in neighborhoods defined by their Q-
values, not based on the Euclidean distances between the raw vectors that are associated with each state. The prospect of
learning an approximation of Q-values supports the principle we are using. If we choose a representation where states
with similar Q-values are clustered, the mapping from state/action pairs to Q-values can be smooth. In a representation
where neighboring states may have wildly different Q-values, it may be difficult or even impossible to learn such a
mapping. Imagine our baseball player is attempting first to catch a fly ball and then to field a ground ball. While the field
looks identical in both cases, save for the small speck that is the ball, to hold his glove high in the air would be successful
in the first case, and a failure in the second.

Consider a reinforcement learning agent that has interacted with the environment for N time steps to acquire tuples,
(xi, ai, Q(xi, ai)), consisting of the state, action, and Q-value at each time i. We wish to group states based on the action
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that was performed in that state, as these are the states for which we can compare the Q-values. Let Xa := {xi|ai = a},
be the set of states for action a. Each pair of states in Xa, for each a, provides a constraint on a metric m, such that if

|Q(xi, a) − Q(xj , a)| < |Q(xi, a) − Q(xk, a)| for xi, xj , xk ∈ Xa,

then m(xi, xj) < m(xi, xk). This is equivalent to considering a constraint on the mapping, φ, from states to feature
vectors. In the latter case, m(φ(xi), φ(xj)) < m(φ(xi), φ(xk)), where m is simply the Euclidean distance. Learning the
metric m or the mapping φ, that satisfies (or best satisfies) these constraints, provides the desired feature representation
for our states.

Luckily, learning a metric is a well-investigated problem, as finding a ‘good’ similarity measure is common in pattern
recognition and machine learning. The approach we consider is similar to metric-learning for classification [6, 7]. The
concept of metric-learning is to parametrize a distance function such that states with similar Q-values are deemed close
and states with very different Q-values are considered far apart. Most metric learning algorithms require hard infor-
mation representing class membership. In our problem, the information in the form of the Q-values is soft, and we
must find a metric on states which parallels the distances between Q-values. For this reason, we learn the metric via
an information-theoretic optimization problem that optimizes the information between the state representation and the
Q-values [8].

2.1 Distances and Similarity

The similarity between samples x and x′ on the ith dimensions is κ(x(i), x(i)′) = exp(−θd(x(i), x(i)′)2), where d(·, ·) is the
Euclidean distance and θ is a kernel size parameter. Changing the kernel size adjusts how close the samples must be in
order to be considered similar.

In terms of a group of samples, the pairwise distance matrix for the ith dimension is denoted Di where (Di)j,k =

d(x
(i)
j , x

(i)
k ) for j, k ∈ {1, . . . , n}. Likewise, the corresponding kernel matrix with kernel size parameter θ is Ki =

exp(−θD2
i ).

A similar quantity can be defined for the similarity between Q-values and the corresponding kernel-matrix is denoted L.

2.2 Entropy

Rényi’s α-order entropy is an information measure for probability distributions. Recent work [8], has shown how a
similar quantity can be defined in terms of the eigenvalues of a positive definite kernel matrix. Using the formulation of
Rényi’s entropy on the eigenvalues yields a matrix-based analog to entropy [8]:

Sα(B) =
1

1 − α
log [tr(Bα)]. (1)

where tr(B) = 1

Unlike standard approaches that require knowing the distributions of the data or estimating its density using methods
such as Parzen windows, this approach directly estimates an entropy quantity without ever requiring an explicit density
function. Another key benefit is optimization can be done in terms of the kernel and distance matrix using matrix
calculus.

From this a measure of conditional entropy Sα(B|C) = Sα(B, C) − Sα(C) can be applied, and this form of conditional
entropy was used in previous work for learning a Mahalanobis distance [8].

2.3 Tensor Product Kernel

The tensor product between kernel functions is a joint measure for multivariate data formed as the product of kernels for
each dimension of the input.

Considering the Gaussian kernel, the tensor product kernel corresponds to using a non-negative combination of the

different Euclidean metrics as the argument to the kernel function. (A series of Hadamard products is denoted
∏N

i=1 Ai =
A1 ◦ · · · ◦ AN , and entry-wise power as A◦r

i )

Kθ =
∏

i

K◦θi

i =
∏

i

exp(−θiD
2
i ) = exp(−

∑

i

θiD
2
i )

Adjusting the parameters of θ ≥ 0 changes the kernel size of each component kernel, and this is equivalent to scaling

each dimension of the input so as to form a new metric d2
θ(x, x′) =

∑
i θid

2(x(i), x(i)′).
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Figure 1: Example images for two consecutive
time steps of the game.
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Figure 2: Success rate for least squares and metric learning methods. The
error bars represent the interquartile range.

In order to learn this metric we consider the following information-theoretic optimization problem:

minimize
θ≥0

Sα(L, Kθ)

subject to Sα(Kθ) = η
(2)

This problem attempts to maximize the joint entropy of the state representation and the Q-values while constraining
the marginal entropy. Allowing a large value of η allows the entropy of the data sample to increase, which is usually
important for regularizing statistical estimates. However, if η is too high, a trivial solution is found where every sample
is deemed different. A good choice of η is Rényi’s entropy of the Q-values.

The relationship with the conditional entropy (Sα(L|K) = Sα(L, K)−Sα(K)) can be seen by transforming the constraint
into the Lagrangian formulation

minimize
θ≥0

Sα(L, Kθ) − λ (Sα(K) − η) (3)

with the Lagrange multiplier λ. However, the constraint on the non-negativity of the coefficients remains. As a simple
approach, an unconstrained optimization is formed by re-parametrizing the function in terms of w where θi = 10wi . By
solving this optimization problem, a new metric can be learned as a linear combination of metrics.

3 Experiment

To test the ability of our generated features to represent the state, we consider a non-sequential decision task, in which
the the state is a black and white image. By choosing a non-sequential task, the value of each action is known perfectly.
This was done to isolate the problem of feature generation from value estimation. This problem consists of a image that
is 5 pixels in height and N pixels wide. At most one pixel of each column is black, while the rest are white. At each time
step, the black pixels shift one to the right, and with probability 0.5, a randomly selected row of the first column is set
to black. When a pixel in the rightmost column is black, our RL agent must select the row in which it exists; thus there
are 5 actions. If the agent selects the black pixel, a reward of +1 is received. If it misses the black pixel, a reward of -1
is received. If all pixels in the rightmost column are white, the reward is 0 for all actions. The reward in this case is the
Q-value, as this is a non-sequential problem. See Figure 1 for an illustration of the game.

The state in this game is the image itself, which takes the form of a vector with 5 · N binary elements, representing the
values of each pixel. This is actually a problem for which a linear function of the raw state can perfectly approximate the
value function. Consider the case where N = 1. Then as an example, Q(x, a = 2) = θ′

2x, if θ2 = [−1, 1, −1, −1, −1]′. If
N > 1, then all elements of θa not corresponding to the rightmost column are 0.
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The standard procedure in RL would be to learn θa for each a ∈ {1, ..., 5}, which provides an estimate of the Q-values.
While the Q-values are in fact a linear function of the state, there are many distracting elements in the image, namely
every black pixel not in the rightmost column, which impede the learning of θ. We compare our method to this linear
function approximation method, where the coefficients are with least squares.

The first 200 time steps serve as a training period, in which random actions are selected and stored with the associated
states and Q-values (rewards). At that point, we learn the feature mapping based on the Q-values. For the next 300 time
steps, the raw image vector is mapped to the feature vector, and compared to all previous feature vectors. We compare
the current image to the sets of previous images grouped by action, and select the action for which the Q-value of the
nearest neighbor image is greatest. For the product kernel, the goal is to learn a weighted combination of Euclidean
distances, resulting in a projection that only weights the pixels of interest in the right column. The dimensionality is
effectively reduced to 5.

For the linear function approximation, at every time step after 200, the coefficients are learned by finding the least squares
solution to Xaθa = Qa, for each action, where Xa is the matrix of the past states in which action a was used and Qa is the
vector of associated rewards. For each of the 300 testing images, the Q-value is estimated for each action, and the action
with highest Q is selected.

We evaluate both methods based on the rate of correct choices, relative to all instances in which a black pixel is in the
right column, out of the 300 testing images. The results are averaged over 20 Monte Carlo trials. We run the test for 7
values of N , and the results are seen in Figure 2. Our metric learning approach remains nearly perfect until N = 100,
while the least squares approach declines with increasing state space size. By N = 200, which corresponds to a 1000
element state vector, with 6200 possible states, the performance of both methods has declined to only slightly better than
random chance. The linear Q-learning approach fails for large state spaces because not enough data is available for it
to capture the elements of the image which correlate with successful runs. This occurs because the method attempts to
linearly combine all pixels in the image into the observed Q-values, which becomes an increasingly more difficult task
as the image grows. Our method simply observes Q-values, and figures out a way to compare the images that produced
similar ones.

4 Conclusion

The Q-values serve as a valuable indicator of the inherent similarity between states. Using a metric learning approach
we can capture this similarity in a feature mapping. The resultant features are invariant to the distracting elements of
the raw state, and learning proceeds much faster, as RL agents are able to generalize to previously unseen states when
the essential task is the same. Our method is shown to perform extremely well in a problem where Q-values are given
following each decision. Even for a space with 6100 states, only 200 time steps of interaction are required to achieve a 95%
success rate, while linear Q-learning operating on the raw image is only 30% successful, despite the fact that the optimal
solution is linear. Future work will apply our automatic feature generator alongside Q-value approximation techniques.
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Nexting and State Discovery in Robot Microworlds

Joseph Modayil, Adam White, A. Rupam Mahmood, Brendan Bennett, Darlinton C. P. Prauchner, Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computer Science
University of Alberta, Canada

Abstract

We describe our recent work in reinforcement learning robots and its relationship to psychological ideas. We have
recently shown how a robot can learn and make thousands of short-term predictions about its future stimuli, based on
thousands of features, on-line and in real time. This is similar to the psychological phenomena of “nexting,” in which
animals learn to predict what sensory events will happen next, and sensory preconditioning. Our methodology is to
study computational nexting in simple animal-like robots living in tightly controlled, small environments. This parallels
a long tradition in artificial intelligence of studying “microworlds”—small simulated worlds, such as games and blocks
worlds, that include important issues in a simplified form. Our use of robot microworlds is also analogous to the tightly
controlled environments used when studying learning and brain function in the natural sciences. In ongoing and future
work, we are exploring how nexting can provide a criteria for the discovery of state representations—memories or traces
of past stimuli and actions that are helpful for making accurate predictions.

Keywords: Reinforcement Learning, Robotics, Temporal-difference Learning,
Prediction, State Discovery
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1 Nexting in Animals and Robots

Psychologists have noted that people and other animals seem to continually make large numbers of short-term predic-
tions about their sensory input (Brogden 1939, Pezzulo 2008, Carlsson et al. 2000, Levitin 2006). People predict the sound
made by their footsteps, the next note in a melody, or when an object will hit their eye. Making predictions of this sim-
ple, personal, short-term kind has been called nexting (Gilbert 2006). Nexting could be considered the core phenomenon
studied in classical conditioning, which was described by Rescorla (1988) as

“... the learning that results from exposure to relations among events in the environment. Such learning
is a primary means by which the organism represents the structure of its world.”

We have demonstrated a computational version of nexting on a small mobile robot, the Critterbot (Modayil, White &
Sutton 2012). The Critterbot has a rich set of several dozen sensors. These were processed into a vector of six thousand
cues, or features, which were then used to learn and make thousands of predictions ten times per second, in real time.
These predictions provide the robot with a basic awareness of its environment, a substantially novel capability for robots.

Figure 1: (left) The Critterbot is a sensor rich custom-designed mobile robot. (right) This robot moves around its pen by
following the walls, and regularly passes a bright light on the lower left side.

In our experiment, the custom-built Critterbot robot circled in its pen, as shown in the right side of Figure 1. The
robot learned in real time, making thousands of predictions about its sensory input signals at timescales from 0.1 to 8
seconds. The predictions were a generalization of the value functions commonly used in reinforcement learning, where
an arbitrary function of the sensory input signals was used as a pseudo reward, and the discount rate determined the
timescale. The learning was done by multiple copies of the TD(λ) temporal-difference learning algorithm, one for each
prediction, operating in parallel.

As shown on the left of Figure 2, the robot anticipated when it would pass the light (shown on the lower left of the right
panel of Figure 1). The same process was repeated for all the robot’s sensors at several timescales, and the graph on the
right of Figure 2 shows that the learning algorithm achieved substantial accuracy for most of the predictions within three
hours.

2 A Create Microworld

The success of the nexting experiment shown above is surprising, because the predictions were learned as a function of
the robot’s current observation and previous action. The experiment shows that the Critterbot’s sensory observations are
rich enough to make accurate predictions using only the information available from a single timestep. However, robots
need the ability to learn in environments with perceptual aliasing, and the Critterbot in its pen has too much sensory
information to easily study this issue.

We have developed a Create microworld to study how an agent’s state-representation, learning, and behaviour can interact
when sensory information is constrained. For this microworld, we have chosen the Create robot, which is commercially
available from iRobot. This is a robust yet inexpensive mobile robot adapted from an autonomous robot vacuum cleaner.
The robot, shown in Figure 3, has two wheels and several sensors including four downward facing infrared sensors on
its front that measure reflected infrared light from the ground. The robot operates on top of a dark disk set on a bright
background, and low-level software routines use the infrared sensors to prevent the robot from leaving the disk. The
boundary between the light and dark regions serves as a virtual wall, and the downward facing sensors serve as binary
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Figure 2: Nexting predictions. On the upper left, we show the signal from a light sensor on the robot, which rises
sharply as the robot passes the bright light in the corner, along with the theoretically ideal prediction computed after the
experiment, that anticipates the rise and fall of the sensor reading. In the lower left, we show the prediction learned and
made in real-time by the TD(λ) algorithm, and the best prediction possible with the state-features used by the learning
algorithm (computed offline). On the right we show learning curves for a selection of the sensory predictions.

Sensor Observation Wheel Action
Time Left Front-Left Front-Right Right Left Right

1 0 0 0 0 + +
2 0 0 0 0 + +
3 0 0 0 1 - +
4 0 0 1 1 + -
5 0 1 1 1 + -
6 0 0 0 1 + -
7 0 0 0 1 + -
9 0 0 0 1 + -

10 0 0 0 1 + -
11 0 0 0 1 + -
12 0 0 0 1

Figure 3: The Create microworld consists of a mobile robot constrained by its behaviour to explore a small space. Four
downward facing sensors on the front of the robot detect the color difference on the paper sheets. This boundary serves
as a virtual wall, and the sensors serve as whiskers. At each timestep, an observation vector indicates contact (1) or
non-contact (0) with the “wall” and the action selects a direction of rotation for each wheel.

whiskers that sense this wall. The robot is thus operating in a setting analogous to an animal in a dark open room, as a
single observation when the robot is not touching the wall provides no information to indicate whether the robot is near
the wall or far away.

This environment is simplified from the previous example, but here we also find precedents in animal learning ex-
periments, both in conceptualization and in experimental constraints. Our domain with one enclosed circular room is
analogous to the Morris water maze, which is a circular testing environment for rats and mice that deliberately removes
sensory information from the environment to study navigation. Constraints for wired and wireless communication are
analogous for animals and robots. A wired interface to a desktop computer constrains free motion of the robot and the
wires can get tangled, but wireless communication via Bluetooth can suffer from intermittent communication problems.
The robot has enough power to operate for 3 hours without interruption, but human intervention is required after that
point.

2

Paper F65 75



3 State Discovery

Psychologists have studied how animals with access to limited sensory information can use a state-representation make
accurate predictions. Studies with trace conditioning have shown that animals can use a short-term memory of a past
stimulus to anticipate when a future event will occur. It has also been noted that animals take longer to learn in such
conditions than when relevant information is immediately available on the animals’ sensors.

We are starting to study how a learning agent can incrementally discover a state-representation to perform well on a fixed
set of prediction tasks. Our approach is to provide a fixed set of predictive nexting questions that serves as a measurable
objective for evaluating the utility of state-features. Within the Create microworld, predictions about when the robot
will sense a virtual wall will be inaccurate if the agent’s state-representation is a function only of its current observation.
We believe the learning agent can discover a better state-representation incrementally, by proposing new features and
evaluating their utility for the fixed set of predictions (Mahmood and Sutton 2013).
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Abstract

We have developed a new behavioural task which requires the agent to identify a target movement via exploratory
movements. This conceptually simple, but versatile, paradigm allows the full history of movements made to be linked
to learning of actions. Here we review recent results which show how the task can elucidate different aspects of the
functional and anatomical basis of reinforcement learning in the human motor system. We also present a novel analysis
which captures the relative influence of previous movements on learnt actions, over each point in the path of that learnt
action. From a reinforcement learning perspective, this analysis can be thought of as revealing the shape of the eligibility
trace: the relative strength of credit assignment to the motor efference copy across time.

Keywords: action-outcome learning, efference copy, eligibility trace
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1 Introduction

1.1 Action acquisition rather than response frequency moderation

Historically, the main focus of behavioural research on learning has been on the moderation of response frequency. The
initial acquisition of actions is a distinct topic (Redgrave & Gurney, 2006). In a review of the literature on operant
conditioning Staddon & Niv (2008) note that it is a ‘historical curiosity that almost all operant-conditioning research
has been focused on the strengthening effect of reinforcement and almost none on the question of origins, where the
behaviour comes from in the first place.’

Consideration of the computational framework for understanding operant conditioning, Reinforcement Learning, makes
this point clear (Sutton & Barto, 1998; Woergoetter & Porr, 2007). Although reinforcement learning focussed on the
optimal algorithm for updating the value of different actions according to sampling of their consequences, it requires
that all possible actions be defined in advance (i.e. that the representation of the ‘action space’ is known).

A seminal example of the alternative focus on action acquisition is Thorndike’s work (Thorndike, 1911), and his famous
experiments looking at cats learning to escape from a box. Thorndike recorded only escape time, but through this
variable, showed how initial exploration by the animal was refined over repeated attempts until the key components,
and only those, could be rapidly selected by the animal to generate a predicted change on the world, which made possible
the goal of escape. Thorndike’s paradigm captured the outcome of the process of searching motor space and refining
exploratory movements into learnt actions.

1.2 The short-latency dopamine signal in action acquisition

It is widely agreed that the subcortical basal ganglia play a key role in habit learning, reinforcement learning and action
valuation. One focus has been the role of the short-latency dopamine signal. This has famously been associated with
the reward prediction error, a key variable in reinforcement learning schultz:1997. Our position has been somewhat
different. Due to timing constraints (Redgrave, Prescott, & Gurney, 1999), it has been proposed (Redgrave & Gurney,
2006) that the short-latency dopamine signal conveys a ‘sensory prediction error’, rather than reward prediction error.
The difference being that rather than support action valuation, the main functional role of the short-latency dopamine
signal, and the anatomical network within which it operates, is to allow the animal to identify from the recent history of
movements those behaviours which trigger unexpected outcomes, to refine those behaviours and allow their storage in
the repertoire of actions. The work presented here was inspired by this position. We have attempted to develop a new
behavioural task which will provide insights into action-outcome learning, and specifically into the processes by which
new actions are first identified and refined.

2 A novel task for investigating action acquisition

The essence of our task is to allow the agent free movement of a manipulandum. A subset of possible movements triggers
a signal, which the agent seeks to learn to repeat. Previously we have used a joystick as the manipulandum, although it
is conceivable to use a stylus (Shah, Thirkettle, Tidman, & Gurney, n.d.), touchscreen, or even, using motion tracking,
free movements without a manipulandum (as do Wang et al., 2012, in a related task).

The target motion can be defined with respect to any movement parameters, but it is easiest to consider the cases of
target locations or trajectories. The work we present here has used target defined by location, which we colloquially call
‘the hotspot’. Typical single trial interaction with the task is shown in Figure 1. A full description of the task, including
variants, and results showing basic learning phenomena has been published (Stafford et al., 2012).

3 Recent results

3.1 Evidence for subcortical dopaminergic involvement in action acquisition

Recently we have used precise stimulus control to affect the neural pathways down which reinforcing signals first travel
(Thirkettle et al., 2013). Participants carried out the action acquisition task, as described above, with correct movements
signalled by a stimulus which either changed in luminance or colour-shifted in a way that only the retinal S-cones
are sensitive to. This allowed us to contrast action acquisition in which feedback has priority access to the retinotectal
pathway (and so to the subcortical sites of the release of dopamine) with action acquisition in which feedback is restricted
to a retinocortical route (and hence must trigger subcortical dopamine via one or more intermediate synapses). The
results demonstrate that action acquisition is impaired when visual reinforcement signals must first access cortex, rather
than having priority access to the subcortical visual system. This validates the claim that the superior colliculus is the
primary trigger of short-latency dopamine in the basal ganglia. Previously we had formed this hypothesis, based on the
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Figure 1: Schematic representation of a typical single trial.
The agent’s movement begins at the filled circle and from
there they explore (movement shown by black line) until
they encounter the target (in this case the location marked
by a larger grey circle). Depending on their movement
speed, alertness and the delay of the reinforcement signal,
their movement will then proceed for some variable distance
(dotted line). N.B. The task is typically carried out with no
visual feedback, bar a signal when the agent’s movement
matches the target.

argument that the neural architecture of the basal ganglia is better suited to supporting action acquisition than action
valuation via reward prediction errors (Redgrave & Gurney, 2006).

3.2 Our task is minutely sensitive to feedback delays

We have also shown that action acquisition in this task is minutely sensitive to signal delays, whether created experi-
mentally or endogenously by sensory transmission times (Walton, Thirkettle, Gurney, Redgrave, & Stafford, 2013). This
is consonant with our view that it is the short-latency dopaminergic signal which is instrumental in action acquisition.
A key claim of Redgrave and Gurney (2006) is that the very short latency of the dopamine signal with respect to sen-
sory feedback is due to a need to minimise contamination of the motor efference copy by irrelevant (i.e. post action)
movements. The sensitivity of our task to delays is of the same range as the latency of the dopamine response.

3.3 Using the task to reveal priors for action acquisition

Comparing versions of the task with fixed and random starting points (Thirkettle et al., 2013) has allowed us to con-
clude that human action learning, in this task, is biased to assume trajectories rather than locations as the key unit of
reinforcement. The fixed start point conditions allowed successful target learning, whereas the random starting position
conditions did not (which we presume is because the fixed start position conditions allowed a location-defined target
to be achieved by a simple trajectory, which the random starting position conditions did not). This result matches an-
other recent result by Dam and colleagues (Dam, Kording, & Wei, 2013), who independently from us used a similar
task in the context of reinforcement learning and movement control. Like us, they showed that human participants,
using exploration-guided movements, were able to reduce error in an action-space defined by both direction and shape
of movement (but that shape of movement, analogous to our trajectory-defined targets, dominated learning).

3.4 Demonstrating the value of exploration in action acquisition

The exploration-exploitation trade-off is a well known feature of reinforcement learning systems (Sutton & Barto, 1998).
Analysis of performance on our task, across trials, shows that high early variability is associated with improved subse-
quent performance (Stafford et al., 2012) — exactly what would be expected if the motor system of participants was able
to use, or induce, variability in movement in order to better explore the space of movements which best meet the target
criterion. This results holds for humans and rats on our task, and has recently been confirmed in analysis of motor skill
learning in a completely different task (Stafford & Dewar, 2013).
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Figure 2: The difference between successive movement
paths and the straight-line path (A) The difference between
successive movement paths and the preceding path (B) for
attempts 2 - 10 at learning a target, averaged over 15 partici-
pants and 3 targets.

4 Revealing the temporal window of credit assignment in motor control

A great advantage of this task is it allows the total record of movements made to be linked to the actions that are learnt.
Over multiple attempts participants refine their movements, under feedback indicating when they successfully match
the target location. For each of these attempts we can trace the recent movement history — defined as the positions of
the manipulandum in 1000 ms before achieving the target (1000 data points, since we poll at 1000 Hz).

Analysis of data collected from the task shows that successive attempts at locating the target movement produce paths
which are closer to a direct line between the origin and the target - i.e. the path that minimises movement length (Figure
2A). This effect is most pronounced in the middle of the range of point analysed. At the start and end of the movement
paths the movements are highly constrained and so differ little from the direct line path. This suggests that successive
movements become increasingly optimal, is so much as a minimal distance can define optimal. A second analysis is to
compare successive paths against each other, rather than against the direct line path. This analysis, Figure 2B, shows that
the difference between successive movements diminished. This effect is most pronounced in in the middle range of point
analyses, again the definition of the end of the movement as reaching the target constrains how different points near the
end of the movement can be. This suggests that successive movements become increasingly stereotyped.

Together these analyses suggest that while the history of movements made in preceding trials exerts some influence on
the learnt action, that the learn action is also progressively refined to become more efficient (as benchmarked by a a
straight-line towards the target).

Considering these two forces, ‘optimisation’ and ’habit’, we can compare their relative influence at each point along the
movement path by calculating a ratio of the values for these two plots (i.e. the ratio of distance from the preceding path
to the distance from the optimal path). This indicates, at each point along the path towards the target, the extent to which
the movement is based on previous movements rather than on the ‘optimal’ (straight line) movement. The results of this
analysis are shown in Figure 3.

One interpretation of the pattern revealed is as reflecting the eligibility trace. One solution to the credit assignment
problem in motor control is to use a continuous function which describes the diminishing weight that actions in the
motor history are accorded in associating actions with effects (Barto, Sutton, & Brouwer, 1981; Singh & Sutton, 1996).
Typically this function weights recent actions disproportionately more than actions which are more distant in time. In
our case, this would mean that aspects of the movement which are closest in time to reinforcement will be most eligible.
A side-effect is that incidental movements made near the target, even though they are not causal, are most likely to be
incorporated into the learn action (and conversely least likely to be removed in the process of refining the action). This is
what we see in Figure 3.

Future analysis will look at how the shape of this ratio measure matches proposals for the eligibility trace in machine
learning, at how the measure is affected by artificially induced reinforcement delays and whether there are reliable
individual differences on the measure and if these can be related to the efficiency of action learning.
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Figure 3: The shape of the eligibility trace in motor learn-
ing? The ratio of the difference between each attempt path
and the preceding path to the difference between that at-
tempt path and the straight-line path. For attempts 2 - 10
at learning a target, averaged over 15 participants and 3 tar-
gets. (same data as Figure 2)
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Abstract 
   
 
There is a question as to whether cue competition effects can be observed in incidental learning paradigms 
in humans. Some authors have reported that cue competition is not observed, suggesting that previous 
demonstrations of cue competition have relied on explicit awareness of the task in hand. This would in turn 
imply that these effects are more likely to be the product of cognitive inference than associative learning. We 
addressed this question by using two paradigms previously shown to produce associative learning under 
incidental conditions. One was a standard SRT task in which the preceding two trials of a run of three 
predicted the third 2/3 of the time, and the other was based on another predictive cue, a colored square, 
which could also stochastically predict the next response required. Both tasks were run under incidental 
conditions, and we have demonstrated in other studies that both cues would support learning in these 
circumstances in the absence of any verbalisable knowledge of the rules involved. The question was to what 
extent would these two cues compete if run concurrently, as assayed by their ability to make the next 
response faster and more accurate than controls? We assessed this by comparing a dual cue group to a color 
only control and a sequence only control. Our results showed that all three groups learned, but that during 
a test phase where each cue could be assessed independently, the dual group showed a marked decline in 
performance relative to the color control, and very similar performance to the sequence control. We 
interpret this as evidence for overshadowing occurring between the two predictive cues in the dual group, 
such that when combined their performance would be equivalent or superior to either control, but when 
assessed independently, the color cue actually has a weaker association to the outcome than the equivalent 
cue in the control group. We conclude that the sequence cues overshadowed the color cues in this task, and 
discuss possible theoretical accounts of this phenomenon. 
 
Keywords:  Cue competition, Overshadowing, Associative, Incidental 
Acknowledgements 
This research was supported by an ESRC grant to IPL McLaren and FW Jones. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  http://psychology.exeter.ac.uk/staff/index.php?web_id=Ian_McLaren	
  

Paper F68 82



	
   1	
  

Cue Competition in Human Incidental Learning 

We start by considering the phenomenon of overshadowing, as this is a paradigmatic example of cue 
competition, a domain that also encompasses blocking (Kamin, 1968). The result here is that, if two quite 
distinct, equally salient cues, A and B, are trained in compound to predict a US, then responding to either A 
or B is less than would be seen if that cue had been trained in isolation. If one cue, say A, is more salient 
than B, then it tends to dominate learning, and relatively little accrues to B (see Mackintosh, 1976, for just 
such an experiment). This result is easily explained by associative theories. According to the Rescorla-
Wagner model, the two cues, A and B, share the associative strength to the outcome between them in 
proportion to their relative salience. Pearce's (1987) configural theory arrives at the same result by a 
different route, arguing that learning about AB generalises only imperfectly to A or B, again to an extent 
determined by the relative salience of the cues involved. Associative theories, then, provide good 
explanations of cue competition phenomena. 
Equally, however, there is no doubt that an approach based on cognitive inference can explain 
overshadowing, by taking the view that the subjects in the experiment are using a heuristic of the type "if 
there are two cues predicting the outcome, then credit for this prediction must be shared between them 
according to their salience". For example, this heuristic can be used to explain the results of allergy 
prediction paradigms such as in Le Pelley and McLaren (2001), where a combination of two foods, A and B, 
predict an allergic reaction in a hypothetical patient, "Mr. X". The result is that the ratings for A and B are 
less than that for control cues trained on their own to predict the same outcome. 
If the results of such experiments are equally well explained by either associative or inferential accounts, 
how will it be possible to decide between them? In humans, one way may be to use procedures that make it 
unlikely that participants will be able to employ cognitive inference – which we assume relies on working 
memory which has a limited capacity. Le Pelley, Oakeshott and McLaren (2005) argued that using many 
different trials, presented in a random order, each employing some of a large number of stimuli with 
different relationships to the available outcomes should make it hard for participants to keep explicit track 
of the contingent relationships in the experiment. Le Pelley and McLaren (2001) were also at pains to use 
these conditions (high memory load due to using many cues and trial by trial presentation) for similar 
reasons, so it seems plausible to argue that the cue competition effects they observed were probably 
associative in origin, but we cannot be certain that this was the case. In many other cases, where few cues 
are used and memory load is low, the rating given may well owe more to cognitive inference than 
associative learning.  
One particular version of this inferential heuristic for overshadowing requires that the subject, whether 
animal or human, knows which cues predict which outcomes, and then uses this information to generate 
behaviour. We can characterise this account of overshadowing as reliant on explicit memory as well as 
learning. This explanation of overshadowing takes on particular relevance when we consider the claim that 
humans do not show cue competition effects (Jimenez and Vazquez, 2011) under incidental conditions. If 
this is because people do not have access to the necessary explicit cue-outcome information required for 
cognitive inference to be brought to bear and hence produce overshadowing, then this would be good 
evidence that humans learn propositionally, and when the relevant information is unavailable, cue 
competition effects do not occur.  It would also suggest that reinforcement learning in humans is driven by 
different mechanisms to those in other animals. If, on the other hand, cue competition effects could be 
demonstrated under incidental conditions in humans in the absence of explicit cognitive inference, then this 
would be entirely consistent with an associative account of learning under these conditions, and would 
suggest strong parallels between human and infra-human learning in these circumstances. 
Design issues 
We have already indicated that demonstrations of overshadowing using the allergy prediction paradigm, 
whilst robust, are susceptible to the complaint that they may be propositionally driven rather than 
associatively mediated. A second issue is that the stimuli that serve as the CSs in these experiments may be 
too similar in kind, in that they are both foods. The analogy would be to an animal experiment in which the 
overshadowing was demonstrated to two tones of different pitch, rather than a tone and a light. The former 
might give rise to concerns that the two tones when played together interacted in some way so as to change 
their stimulus quality, and that this interaction was lost when presented individually, so that the reduction 
in rating that occurred on test could be explained by some change in the perceived stimulus. No such 

Paper F68 83



	
   2	
  

process would apply when the stimuli were trained alone. It would clearly be better if the two CSs were 
different in kind so that this type of potential confound could be avoided.  Our two classes of cue were 
chosen to have quite distinct characteristics to avoid this problem. We employed a basic SRT paradigm 
similar to that of Willingham, Nissen and Bullemer (1989), in which there were two circles that defined two 
stimulus locations, left and right. At the start of a trial, the circles are outlines, then one of them fills, and the 
corresponding key has to be pressed. Unknown to the participants, in those groups that were given 
sequential information, there was a 2/3 chance of a trial being predicted by the two preceding trials. The 
rule was that if the two preceding trials were both the same, then that trial was likely to be an X, whereas if 
they were different, it was likely to be a Y, with the response assignments for X and Y counterbalanced 
across participants. Thus, the first type of cue was provided by the sequence of locations that occurred / 
responses required. The second cue type was provided by a colored square that flashed up before the circle 
filled in, presented at fixation between the two circles. Participants for whom color information was relevant 
had a 3/4 chance that the color would predict the response location on half the trials. On the other half of 
trials different colors were used that were not predictive, and these could be used as color control trials. We 
settled on these parameters for the tasks on the basis of extensive piloting and prior work, to ensure that 
both the sequential information and the color information were capable of supporting learning under 
incidental conditions, but without participants inducing the rule relating either type of cue to the required 
response (see Jones and McLaren, 2009 for more on the sequences, and Yeates, Jones, Wills, Aitken and 
McLaren, 2012, 2013 for details on the colour task). Table 1 gives the stimulus construction for each group. 

Table 1: This shows the construction of the stimulus sequences and contingencies for the three groups 
(N=30 for each group) in an idealised form to convey the relationship between the groups. Sequences and 
mappings were randomised / counterbalanced where appropriate. The letters (X, Y) stand for left/right 
responses, and the numbers (1, 2, 3, 4) for colors. Stimuli shown in red are those changed with respect to 
Group Color. In Group Color colors 1 and 2 are predictive, and 3 and 4 act as controls. All 8 sequence 
triplets are shown that were used to construct the pseudorandom trial order. In Group Sequence no color is 
predictive, but only 4 sequence triplets are used so that e.g., XX is typically followed by X. In Group Dual 
colors 1 and 2 are once again predictive, and so are the sequences. There were 16 blocks of training and 2 
blocks of test, with each block containing 96 trials. 
Another point worth raising is that in all the experiments (that we are aware of) that have studied 
overshadowing in humans that come close to meeting our first two conditions, i.e. incidental learning with 
dissimilar cue types, the comparison has been between CSs trained in compound and tested individually, 
and a group or groups trained with the individual CSs and then tested. The problem with this procedure is 
that one group experiences a major change from training to test (the compound group) whereas the other 
does not. This, on its own, may be enough to depress responding in the compound group if they come to 
believe that circumstances have changed and deliberately and strategically alter their responses as a 
consequence (something that seems intuitively less likely to be the case in a rat or a pigeon). Note that this is 
not the same as a generalization decrement account of overshadowing that would, for example, follow from 
Pearce's (1987) configural model. It is rather an appeal to a strategic decision based on changing 
circumstances during the course of the experiment, and we avoided this in our design by making sure that 
the transition from training to test was unsignalled and unlikely to be noticeable. Table 1 shows how Group 
Dual had both sequence and color information programmed in, Group Color had the same type of color 
information as Group Dual, and Group Sequence had the same type of sequence information as Group 
Dual. Group Sequence were still shown a colored square just before the response location was indicated, but 
the color bore no relation to that location; equally Group Color experienced sequences of trials in just the 

GROUP S1 S2 S3 S4 S5 S6 S7 S8 

COLOR XXX	
431	

XXY	
242	

XYX	
321	

XYY	
332	

YXX	
141	

YXY	
412	

YYX	
431	

YYY	
342	

SEQUENCE XXX	
431	

XXX	
242	

XYY	
321	

XYY	
332	

YXY	
141	

YXY	
412	

YYX	
431	

YYX	
342	

DUAL XXX	
431	

XXX	
241	

XYY	
322	

XYY	
332	

YXY	
142	

YXY	
412	

YYX	
431	

YYX	
341	
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same way as Group Dual, but these were not predictive. The point is that all groups experienced a fast-
paced sequence of trials (mean RT = 300 msec, and mean errors per block = 4) cued by a colored square 
during both training and test, so there should be no obvious difference in their subjective experience, and no 
obvious difference between training (when the contingencies were as shown in Table 1) and test (when all 
contingencies were 50:50, and sequence and color information were uncorrelated).  
Results 

 
Figure 1: The top panels display the mean differences in RT (msec) and their standard error analysed by 
sequence (left panel: untrained sequences–trained sequences), and by color (right panel: untrained colors–
trained colors). The corresponding mean error differences and their standard errors are shown underneath. 
Figure 1 shows the test results for sequence and color learning. The data shown in Figure 1 are the mean 
difference between trained and untrained sequences (left panels) or colors (right panels) in RTs (top panels) 
and errors (bottom panels) for each of the three groups. Higher scores indicate more learning (chance is 
zero), and it is clear that both the Sequence and Dual groups showed good evidence of sequence learning 
(left panels) as measured by RTs and errors, whereas there was little evidence of learning in the Color group 
on this measure. Given that the test phase was, in effect, an extinction treatment, the evidence for sustained 
performance on the basis of what had been learned during training in Group Sequence and Group Dual is 
noteworthy and implies strong learning of the sequence information available during training.  
The right hand panels show the difference scores obtained by comparing performance for the predictive 
colors with the control colors for RTs and errors on test. Group Dual showed no evidence of learning about 
the colors on either the RT or the error measure (unsurprisingly, the same was true for Group Sequence). 
Although Group Color also showed little or no evidence of learning on the error measure, their RT 
performance showed a significant effect, and was significantly better than that of the other two groups. 
Conclusions 
It would appear, then, that the Dual group learned about the sequences, but did not learn the color 
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information available to them, even though Group Color shows that this was eminently possible. This is 
what would be expected if the sequence cues had overshadowed the color cues in the Dual group (but not 
vice-versa). Thus, it is possible to demonstrate cue competition effects in humans trained under incidental 
conditions, and we believe this to be the first such demonstration. Were the participants in this experiment 
aware of the sequence or color rules? Previous experiments and pilot work suggest that this should not be 
the case, and post-experiment interviews established that participants were unable to give any accurate 
information about the sequences, or say which colors were predictive. Crucially, there was no difference 
between Dual and Color groups in terms of their ability to guess which colors were predictive (44% and 
45% respectively), and both values are numerically below chance (50%).   Equally, there was no reliable 
difference in the proportion asserting that the sequences were random (using a conservative criterion in 
scoring this) in any of the Color, Dual or Sequence groups (50%, 57% and 70%), and the trend favoured the 
Sequence group as thinking that their sequences were random. Given these results, we can now reject the 
argument that cue competition in humans is only observed under intentional learning conditions, and its 
corollary that this is because it relies on explicit cognitive inference to manifest. 
How might we explain this effect? As mentioned earlier, there are two standard accounts of overshadowing 
available, one based on competition for associative strength and exemplified by the Rescorla-Wagner (1972) 
model, the other based on the idea of generalization decrement with Pearce's (1987) configural model as its 
flag bearer. Neither are capable of learning the sequential information presented in this experiment, but 
error-correcting recursive networks such as the SRN (Elman, 1990) and its variants the RASRN (Yeates, 
Jones, Wills, McLaren and McLaren, 2013) and the APECS SRN (Jones, Le Pelley and McLaren, 2002; and see 
McLaren, Forrest and McLaren, 2012)) can, and contain one or both mechanisms for overshadowing. Thus, 
they are able to predict the results obtained here. We are also in a position to say that cue competition 
experiments in humans under incidental conditions produce the same type of result as that observed in 
other animals, which is consistent with there being some common basic mechanism for associative learning. 
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Abstract
Navigation requires planning to previously remembered goal locations. In this paper, we propose KL learning which is an on-line
version of KL control theory as a possible abstract mechanism to account for recent findings that show that sequences of place
cell activity in rats strongly correlate with the animals future trajectory to remembered targets [1]. We show the convergence of
KL learning for a restricted setting. We argue that KL learning is simpler than reinforcement learning and discuss possible neural
implementation of KL learning.

1 Introduction

Effective navigation requires planning to goal locations that have been previously visited. The hippocampus has long been associated
with navigation [2]. Hippocampal place cells fire selectively when an animal occupies a restricted location in an environment and are
considered the neural substrate of an internal cognitive map of the environment that is necessary for flexible navigation, map-based
spatial learning, and episodic memory.

Recently, [3, 1] have shown that before goal directed behavior, the rat hippocampus generates brief sequences encoding spatial
trajectories from the current location of the animal to a goal location. These trajectories predict immediate future navigational
behaviour to remembered targets [1].

It has been a challenge to obtain a computational mechanism to understand how individual place responses tied to the current location
might be informative about other locations that the animal cares about, such as the remembered goal location. [4] propose that place
cells can be modelled as the input to an actor-critic model of navigational learning, using the temporal difference learning rule.

Here, we propose an alternative explanation for learning goal-directed behavior based on KL (Kullback-Leibler) control theory as
developed by [5, 6]. We assume the ergodic setting, also referred to as the average cost infinite horizon problem, where actions
and rewards do not explicitly depend on time. We assume discrete states and discrete time. In this case the optimal control can be
expressed in terms of an extreme eigenvector and eigenvalue [5]. We show that the optimal controls can be computed by sampling
and we refer to this method as KL learning. This allows for an adaptive solution while the animal explores the environment that
automatically updates its representation to changing rewards.

2 KL control theory

Goal directed behavior is naturally formulated as an optimal control problem, where negative cost is associated with the goal state
and positive cost with an individual action. The solution to the optimal control problem is a sequence of actions that reaches the goal
with minimal cost.

[5, 6] introduced the class of so-called KL control problems. We first discuss the finite horizon formulation. Let x label the states and
q(x′|x) denote a first order Markov process on this state space. We refer to q(x′|x) as the uncontrolled dynamics. Consider a control
problem to find a first order Markov process p(x′|x) that minimizes

C = KL(p||q) + 〈V 〉p , (1)

with KL(p||q) =
∑
τ p(τ |x0) log p(τ |x0)

q(τ |x0)
the Kullback-Leibler divergence between distributions p(τ |x0) and q(τ |x0) over trajecto-

ries τ = x1:T according to the Markov processes p(x′|x) and q(x′|x), respectively and τ = x0:T a trajectory of length T starting at a
∗www.snn.ru.nl/˜bertk
†jbierkens.nl
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given initial state x0. 〈V 〉p =
∑
τ p(τ |x0)V (τ) is the expected cost under the optimal control distribution p and V (τ) =

∑T
t=1 V (xt)

is the cost of trajectory τ with V (xt) the immediate cost. It can be easily shown that the optimal control distribution that minimizes
Eq. 1 and the optimal cost are given by

p(τ |x0) =
1

ψ(x0)
q(τ |x0) exp(−V (τ)) ψ(x0) =

∑

τ

q(τ |x0) exp(−V (τ))

and the optimal cost is C(x0) = − logψ(x0). Since q(τ |x0) is a first order Markov process, this shows that the optimal control
solution p(τ |x0) is also a first order Markov process. The state transition matrix of the optimal control solution is given by

pt(xt|xt−1) = q(xt|xt−1) exp(−V (xt))
βt(xt)

βt−1(xt−1)
(2)

where the functions βt(x) are found by message passing

βt−1(xt−1) =
∑

xt

q(xt|xt−1) exp(−V (xt))βt(xt) (3)

with βT (xT ) = 1. Eq. 2 provides the optimal control solution in terms of a distribution over the states xt given state xt−1. Actions
are generated by sampling from p(xt|xt−1).

2.1 Ergodic KL control

In the limit T → ∞ the control solution becomes independent of time, as we show now. First, note that Eq. 3 is an instance of the
power method βk = Hβk−1 with H(x, y) = q(y|x) exp(−V (y)) (with iteration number k = −t). When t→ −∞ and when q(y|x)
is ergodic the solution converges to the unique extreme eigenvector of H , up to a (possibly infinite) multiplicative factor:

Hβ = λβ(x) H(x, y) = q(y|x) exp(−V (y)) (4)

with β, λ the Perron-Frobenius right eigenvector and eigenvalue of H [5]. Thus, the optimal control solution Eq. 2 becomes
time-independent The ergodic process q(y|x) has a unique stationary distribution (invariant measure) q(x) that satisfies q(y) =∑
x q(y|x)q(x). When q(y|x) satisfies detailed balance , so does p(y|x) and its equilibrium distribution is

p(x) =
1

Z
q(x) exp(−V (x))β2(x) (5)

In the language of reinforcement learning, log β(x) can be viewed as to represent the optimal value of state x.

2.2 KL Learning

Instead of computing the extreme eigenvector of H using a linear algebra package, we can compute the solution incrementally by
sampling the state space using the uncontrolled dynamics q(y|x). Let Rn+ denote the set of x ∈ Rn such that x(i) > 0 for all
i = 1, . . . , n. Let β0 ∈ Rn+ and λ0 = ||β0||1 = 1

Tβ0, where 1 = [1, 1, . . . , 1]
T of length n. Consider the following update rules for

x, β and λ.

xt ← random sample from q(·|xt−1)

∆← exp(−V (xt))β(xt)

λ
− β(xt−1)

βt ← βt−1
βt(xt−1)← βt−1(xt−1) + η∆ (6)

λt ← λt−1 + η∆

It is straightforward to check that for all t, λt = ||βt||1. When q(·|·) is ergodic and its stationary distribution is state independent, it
can be shown that the stochastic trajectories of (6) converge in probability to (β?, λ?).

3 Hippocampal model

We apply the KL control method to model the experimental setup of [1]. In their experiment, 4 well-trained rats were implanted
with 40 tetrode electrode while performing a spatial memory task in a 2× 2 meter open area. In each animal, they record up to 250
hippocampal neurons with well-defined place fields. Each trial consisted of two phases: in phase one, the rat was required to forage to
obtain reward in an unknown location (Random). Directly afterwards, (phase two) the rat would obtain reward in a predictable reward
location (Home). Latencies of trajectories to Random locations were significantly longer than to the Home location, indicating that
the animal could remember the Home location but not the Random location.

2
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Figure 1: Model of 15×15 hippocampal place cells in a 15×15 grid world. Uncontrolled dynamics q(x′|x) = 0.2 when x, x′ are the
same or nearest neighbouring states (north east south west). Rat moves randomly according to q for T = 8000 iterations, η = 0.5.
Top row: Left: Grid world with 4 food locations present. Middle: Exact solution − log βex(x) as the solution of the eigenvector
equation Hβex = λβex. Second-fourth row: results after t = 800, 4000, 8000 iterations. Left: Histogram of states explored by the
rat. Middle: − log β(x). Right: An exploration trial by the rat starting at the home location (8,8) for 12 steps using the controlled
solution p. End location of the trial is marked by a ∗. Food locations are marked by green dots.

Candidate neural events were identified as brief increases in population spiking activity during periods of immobility while the rat
performed the task. During many candidate events, decoded position revealed temporally compressed, two-dimensional trajectories
across the environment with path length ranging from 40.0 cm to 199.1 cm (see [1] fig.2).

We modelled a two dimensional grid of hippocampus place cells as a finite state model, where each state x corresponds to a neural
activity pattern with one place cell firing and all other place cells silent. For simplicity, we assume that the model rat moves in a grid
world and that there is a one-to-one correspondence between the place cells and the grid locations. We also assume that the place
cell receptive fields have been learned previously. Each place cell is activated only when the rat visits the corresponding location. In
addition we assume that there is a positive continuous variable β(x) for each grid location x, as well as one additional global variable
λ =

∑
x β(x).

The exploratory movement of the rat in the grid world induces state transitions in the hippocampus between neighboring subsequent
states xt−1 and xt, which implicitly defines the uncontrolled dynamics q(xt|xt−1) (north east south west). When the rat visits
location xt−1 followed by location xt, β(xt−1) changes according to Eq. 6. The result is shown in Fig. 1 for a 15 × 15 grid with
4 food locations. In the simulation the rat moves 8000 steps randomly according to the uncontrolled dynamics and executing the
learning rule Eq. 6 at each iteration. After 800, 4000 and 8000 steps, the quality of the estimated controlled dynamics Eq. 2 is tested
by simulating a single trajectory starting at the central location with coordinates (8, 8). The simulation shows that after about 4000
steps the rat has built an attractor dynamics that converges to one of the food targets.

4 Generalization and neural implementation

In this paper, we have employed a very simple finite state Markov model for the hippocampus place cell activity. Extension to a
more realistic model can be easily achieved. One can view the finite state representation of the place cell activity as an abstraction
of a cognitive map [2], ie. a topologically organised neural network model (or ’continuous attractor’ [7]) with short range excitatory
interaction and long range inhibitory interaction. It is well known that in such models with proper parameter settings the neural
activity is given by a single localised ‘blob’ of active neurons and all remaining neurons are silent. The location of the blob is
determined in competition by the external sensory input on all neurons. Such an internal map can be used as an abstract preconfigured
model of space and place field locations would be associated to sensory landmarks in new environments through learning [8].
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There are several possible ways to represent the β(x). Since the role of β is similar to the value function in the actor-critic architecture,
a possible candidate structure is the ventral striatum [9]. It is an open issue how the optimal control computation Eq. 2 is implemented
neurally.

KL learning as presented in this paper only updates at each iteration the value β(x) for the state x that is visited at that iteration.
It does not require a neural implementation of the uncontrolled dynamics q(y|x) and the state transitions in the hippocampus are
induced by the actual behaviour of the animal. The exploratory behaviour according to q(y|x) could be generated in another part
of the brain. As a result, the learning is somewhat slow. One can however easily conceive extensions of KL learning that would be
significantly faster. When a neural representation of q(y|x) and the immediate reward V (x) exists in the hippocampus, it is possible to
’parallelise’ the basic learning algorithm. The parallel computation of the extreme eigenpair becomes essentially the power method:
βt+1 = Hβt, t = 1, . . . , with a normalisation of βt at each iteration. The power method has exponential convergence independent

of problem size with error decreasing as
(
|λ2|
λ1

)t
. A realistic neural implementation may not take full advantage of parallel updating,

but even a partially parallel implementation should give a significant acceleration.

5 Discussion

In this paper we have presented KL learning, a novel stochastic method to find the optimal control solution for an average cost KL
control problem, and illustrate its applicability to learn goal directed behavior to remembered targets in hippocampus. The result of
learning is that the animal can ’think ahead’ using the controlled stochastic dynamics p(y|x) that implements an attractor dynamics
to one or several of the previously visited goal locations. The results are qualitatively in agreement with the recent findings of [1].

KL learning is a novel stochastic method to find the optimal control solution for an average cost KL control problem. We have
discussed how KL learning converges to the extreme eigenvector for the case where the uncontrolled dynamics has a state-independent
stationary distribution. Proof of convergence and the treatment of the general case is subject of a future publication.

Alternatively, one could employ one of the mentioned reinforcement learning approach to model these findings. However, KL learn-
ing is simpler than reinforcement learning both in terms of required storage and computation: it is simpler than policy improvement-
based methods because its computational complexity is essentially equal to a single policy evaluation. It is also simpler than action-
value based methods such as Q learning or variants thereof, because it requires computation and storage of a state dependent value
function rather than a state-action dependent value function.

One aspect that may lead to a testable difference between RL and KL control is that the optimal KL control policy is probabilistic as
can be seen from Eq. 2 whereas for RL the optimal policy is always deterministic 1. Thus, when an animal is faced with two alter-
natives with different expected reward, the KL control solution will in general display a ‘matching’ behaviour where the probability
of both action choices is non-zero. The deterministic behaviour is obtained as a special case in the KL control formulation when (a
parameter multipying) the reward becomes infinite (or, equivalently, the KL term is zero).

KL learning is a generalization of Z learning, which requires that the extreme eigenvalue is one [5]. This condition is true when
the environment has one or more absorbing states located at the goal location(s). This implies that the uncontrolled dynamics (as
introduced below) must implement such absorbing states and thus must explicitly depend on the goal location. Instead, KL learning
may assume an uncontrolled dynamics that implements a generic exploration of space independently of reward locations.
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Abstract

Efficient methods for tackling large reinforcement learning problems usually exploit regularities, or intrinsic structures,
of the problem in hand. Most current methods benefit from the regularities of either value function or policy, but not
both. In this paper, we introduce a general classification-based approximate policy iteration (CAPI) framework, which
can benefit from both types of regularities. This framework has two main components: a generic user-specified value
function estimator and a weighted classifier that learns a policy based on the estimated value function. The result is a
flexible and sample-efficient class of algorithms.

We also use a particular instantiation of CAPI to design an adaptive treatment strategy for HIV-infected patients. Com-
parison with a state-of-the-art purely value-based reinforcement learning algorithm, Tree-based Fitted Q-Iteration, shows
that benefitting from the regularity of both policy and value function can lead to better performance.
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1 Introduction

Efficient methods for tackling large reinforcement learning (RL) problems [1] usually exploit special regularities (or struc-
tures) of the problem. For example, value-based methods may exploit the smoothness properties of the value function.
Many methods have focused on exploiting structure in value function representation and learning, e.g., Farahmand et al.
[2], Taylor and Parr [3], Ghavamzadeh et al. [4]. Nonetheless, useful structure can also arise in the policy space. For
instance, in many control problems simple policies such as a bang-bang or PID controller can perform quite well if tuned
properly. The same is true for many other decision-making problems. In addition to the direct policy search algorithms
(e.g., various policy gradient algorithms [5, 6]), one class of methods that try to benefit from the regularities of the policy
is the conventional classification-based RL algorithms, e.g., Lagoudakis and Parr [7], Fern et al. [8], Li et al. [9], Lazaric
et al. [10]. These methods, however, do not benefit from the regularities of the value function. Thus, they might not be as
effective in solving RL problems as one would hope. The goal of this paper is to present a class of algorithms, which we
call Classification-based Approximate Policy Iteration (CAPI), that can potentially benefit from the regularities of both
value function and policy. This class has been introduced by Farahmand et al. [11] and its theoretical properties have
been analyzed there. Here we briefly present the algorithm and describe the application of a particular instantiation of
CAPI on the problem of designing an adaptive treatment strategy for HIV-infected patients [12].

Conventional classification-based approaches can be interpreted as a variant of Approximate Policy Iteration (API) that
uses rollouts to estimate the action-value function at several points (policy evaluation step) and projects the greedy policy
obtained at those points onto the predefined space of policies (policy improvement step). In many problems, this ap-
proach is helpful because of three main reasons. First, good policies are sometimes simpler to represent and learn than
good value functions. Second, even a rough estimate of the value function is often sufficient to separate the best action
from the rest, especially when the gap between the value of the greedy action and the rest is large. And finally, even if
the best action estimates are noisy (perhaps due to value function imprecision), one can take advantage of powerful clas-
sification methods to smooth out the noise. This classification-based approach might particularly be helpful in problems
where the classes of “good” policies (parametric or nonparametric) are known in advance, and one simply wants to find
good parameters within the class.

Nevertheless, the conventional classification-based RL algorithms suffer from a couple of drawbacks. Most previous
work (with the exception of [9, 10, 13, 14] and the related Conservative Policy Iteration approach [15]), uses the 0/1-loss
for training a classifier. This penalizes all mistakes equally and does not consider the relative importance of different
regions of the state space. This may lead to surprisingly bad policies [11]. Moreover, the rollout-based estimate of the
action-value function does not allow generalization over the state-action space and is quite data-inefficient. This is a
big concern in real-world problems where new samples are very expensive or impossible to generate, e.g., adaptive
treatment strategy or user dialogue systems. In addition, one cannot easily use rollouts when we only have access to a
batch of data, and a generative model or simulator of the environment is not available.

The flexible CAPI framework addresses both issues. The error function used for the classification step in CAPI is
weighted according to the difference between the value of the greedy action and those of the other actions. This ensures
that the resulting policy closely follows the greedy policy in regions of the state space where the difference between the
best action and the rest is considerable (so choosing the wrong action is costly), but pays less attention to regions where
all actions are almost the same. Moreover, CAPI allows using any policy evaluation method including, but not restricted
to, rollout-based estimates (as in previous work [7, 10]), LSTD [16], policy evaluation version of Fitted Q-Iteration [17, 18],
and their regularized variants [2, 19]. This is a significant generalization of existing classification-based RL algorithms,
which become special cases of CAPI. This simple change allows us to benefit from the regularities of both the policy
and value function, whenever the value and policy spaces are chosen properly. Our theoretical results (reported in [11])
indicate that this extension is indeed sound.

2 Definitions

We consider a continuous-state, finite-action discounted MDP (X ,A, P,R, γ), where X is a measurable state space (e.g., a
subset of Rd), A is a finite set of actions, P is the transition model, R is the reward model, and γ ∈ [0, 1) is a discount
factor. The mapping π : X → A is called a (deterministic) policy. As usual, V π and Qπ denote the value and action-value
function for π, while V ∗ and Q∗ denote the corresponding value functions for the optimal policy π∗. A policy π is greedy
with respect to (w.r.t.) an action-value function Q, denoted by π = π̂(·;Q), if π(x) = argmaxa∈AQ(x, a) holds for all
x ∈ X .

A recently introduced characterization of the complexity of an RL problem is its action-gap regularity [20]. For simplicity,
we discuss the action-gap for MDPs with only two actions, i.e., |A| = 2. For any Q : X ×A → R, the action-gap function
is defined as gQ(x) , |Q(x, 1) − Q(x, 2)| for all x ∈ X , that is, the difference between the best and second-best action
at each state. To understand why the action-gap function is informative, suppose we have an estimate Q̂π of Qπ and
we want to perform policy improvement based on Q̂π . The greedy policy w.r.t. Q̂, i.e., π̂(·; Q̂π), should ideally be close

1

Paper S22 92



Algorithm 1 CAPI(Π, ν,K)

Input: Policy space Π, State distribution ν, Number of iterations K
Initialize: Let π(0) ∈ Π be an arbitrary policy
for k = 0, 1, . . . ,K − 1 do

Construct a dataset D(k)
n = {Xi}ni=1, Xi

i.i.d.∼ ν

Q̂π(k) ← PolicyEval(π(k))

π(k+1) ← argminπ∈Π L̂
π(k)
n (π) (action-gap-weighted classification)

end for

to the greedy policy w.r.t. Qπ , i.e., π̂(·;Qπ). If the action-gap gQπ (x) is large for some state x, the regret of choosing an
action different from π̂(x;Qπ), roughly speaking, is large; however, confusing the best action with the other one is also
less likely. If the action-gap is small, a confusion is more likely to arise, but the regret stemming from the wrong choice
will be small. In the next section, we see that the action-gap function is directly used in the formulation of the algorithm.
One can prove that the behaviour of the action-gap function for an RL problem influences the difficulty of solving it. This
is true for both purely value-based approaches [20] as well as CAPI [11].

3 CAPI Framework

CAPI is an approximate policy iteration framework that takes a policy space Π, a distribution over states ν ∈ M(X ),
and the number of iterations K as inputs, and returns a policy whose performance should be close to the best policy
in Π. Its outline is presented in Algorithm 1. PolicyEval can be any algorithm that computes an estimate Q̂π of Qπ ,
including: rollout-based estimation (in which case CAPI becomes a nonparametric extension of the DPI algorithm [10]),
LSTD-Q [16] and Fitted Q-Iteration [17], or a combination of rollouts and function approximation (in which case CAPI
becomes a nonparametric extension of the DPI-Critic algorithm [13] as well as a nonparametric extension of a variant of
Classification-based Approximate Modified Policy Iteration of Scherrer et al. [14]).

At each iteration k, the approximate policy improvement step of CAPI is performed by minimizing the following empir-
ical loss function in policy space Π:

L̂
π(k)
n (π) ,

∫

X
gQ̂π(k) (x)I{π(x) 6= argmax

a∈A
Q̂π(k)(x, a)} dνn, (1)

where νn is the empirical distribution induced by the samples in D(k)
n = {Xi}ni=1 with Xi ∼ ν. The solution to the opti-

mization problem π(k+1) ← argminπ∈Π L̂
π(k)
n (π) is the projection of the greedy policy π̂(·; Q̂π(k)), defined only at points

D(k)
n , onto policy space Π when the distance measure is weighted according to the estimated action-gap function gQ̂π(k) .

This should be contrasted with the conventional classification-based approaches [7], which use a uniform weight in all
state space, i.e., they minimize

∫
X I{π(x) 6= argmaxa∈A Q̂

π(k)(x, a)}dνn. The statistical properties of CAPI are discussed
by Farahmand et al. [11].

As a practical note, the minimization problem π(k+1) ← argminπ∈Π L̂
π(k)
n (π) might be difficult to solve for a general

policy space Π. The problem is similar (but not identical) to minimizing the 0/1-loss function in binary classification. A
common approach to the non-convex 0/1-loss optimization is to use a convex surrogate loss, such as action-gap-weighted
hinge or exponential loss. This convex relaxation is possible for CAPI too, but we do not formulate it here. Instead, we
propose an easy-to-implement solution for this step based on the decision-tree model of classification in the next section.

4 HIV Drug Scheduling

Most of the anti-HIV drugs currently available fall into one of two categories: reverse transcriptase inhibitors (RTI) and
protease inhibitors (PI). RTI and PI drugs act differently on the organism, and typical HIV treatments use drug cocktails
containing both types of medication. Despite the success of drug cocktails in maintaining low viral loads, there are
several complications associated with their long-term use. This has attracted the interest of the scientific community to
the problem of optimizing drug-scheduling strategies. Among them, a strategy that has been receiving a lot of attention
recently is structured treatment interruption (STI), in which patients undergo alternate cycles with and without the drugs.
The scheduling of STI treatments can be seen as a sequential decision-making problem, in which the actions correspond
to the types of cocktail that should be administered to a patient [12]. To simplify the problem formulation, it is assumed
that RTI and PI drugs are administered at fixed amounts, reducing the available actions to the four possible combinations
of drugs. The goal is to minimize the HIV viral load using as little drug as possible.
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Figure 1: (HIV) Comparing the expected return of Tree-based CAPI vs. Tree-based Fitted Q-Iteration as a function of the
complexity of policy space ηπ . The policies (in this case STI treatments) were evaluated for 5, 000 days starting from an
“unhealthy” state with a high viral load. Error bars and shadowed region show one standard error over 50 runs.

We studied the problem of optimizing STI treatments using a model of the interaction between the immune system and
HIV developed by Adams et al. [21] based on real clinical data. All the parameters of the model were set as suggested
by Ernst et al. [12]. The methodology adopted in the computational experiments, such as the evaluation of the decision
policies and the collection of sample transitions, also followed the protocol proposed by the same authors.

To illustrate the potential benefits of controlling the complexity of the policy space, we compared the pure value-based
algorithm adopted by Ernst et al. [12], Fitted Q-Iteration, with CAPI. Following the original experiments, we approxi-
mated the value function using an ensemble of 30 decision trees generated by Geurts et al.’s 2006 extra-trees algorithm
(we refer to this instantiation of Fitted Q-Iteration as Tree-FQI). Tree-CAPI is similar to Tree-FQI, except that instead of
using the greedy policy induced by the current value function approximation, it uses a second ensemble of 30 trees to
represent the policy that is the minimizer of (1).

To build the trees representing decision policies, the extra-trees algorithm has to be slightly modified to incorporate
the estimated action-gap as its loss function. Such a modification is straightforward, as we now illustrate by showing
how a Tree-CAPI policy based on a single tree would perform the action selection. A decision tree defines a partition
{X1,X2, . . . } of the state space such that

⋃
i Xi = X and Xi∩Xj = ∅ for i 6= j. Define an index function I : X → {1, 2, . . . }

that returns i if x ∈ Xi. Thus, D(k)(x) , D(k)
n ∩ XI(x) is the set of data points that are in the same partition as x. The

Tree-CAPI policy π(k+1)(x) is defined as:

π(k+1)(x) ← argmina∈A
∑
Xi∈D(k)(x) gQ̂πk (Xi)I{a 6= π̂(Xi, Q̂

π(k))} ≡ argmina∈A
∑
XiD(k)(x) Q̂

π(k)(Xi, π̂(Xi, Q̂
π(k))) −

Q̂π(k)(Xi, a) ≡ argmaxa∈A
∑
Xi∈D(k)(x) Q̂

π(k)(Xi, a). In the last equality we used the fact that the term Q̂πk(Xi, π̂(Xi, Q̂
πk))

is not a function of a, so it does not influence the minimizer. This is a very simple rule: Pick the action that maximizes the
action-value among all the data points in the same partition as x. Note that this is different from choosing the majority
over the greedy actions in the partition, which would be the rule if we neglected the action gap. When we have more
than a single tree, which is the case when we use extra-trees, the action to be executed is selected by voting, with ties
broken randomly.

The complexity of the models built by the extra-trees algorithm can be controlled by the minimum number of points
required to split a node during the construction of the trees [22]. In general, the larger this number is, the simpler the
resulting models are. Here we fixed this parameter for the trees representing the value function at ηv = 50, while the cor-
responding parameter for the policy trees, denoted by ηπ , was varied in the set {2, 10, 20, 50, 100, 200, 300, 500, 1000, 2000}.
Figure 1 shows the result of such an experiment.

As shown in Figure 1, restricting the policy space can have a dramatic impact on the performance of the resulting policies.
When 2 ≤ ηπ ≤ 100 the policies computed by Tree-CAPI perform better than those computed by Tree-FQI, leading to
increases on the empirical return as high as 24%. On the other hand, an overly restricted policy space precludes the
representation of the intricacies of an efficient STI treatment, resulting in poor performance. With CAPI, it is possible to
adjust the complexity of the policy space to a specific context.
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5 Conclusion

We proposed CAPI, a general family of classification-based reinforcement learning algorithms, that allows us to design
algorithms that benefit from the regularities of both value function and policy. CAPI uses any policy evaluation method,
defines an action-gap-weighted loss function, and then finds the policy minimizing this loss, from a desired policy space.

We showed how to efficiently solve the optimization problem (1) for policy spaces induced by a local method such as
decision trees. Extending this to other reasonably general classes of policy spaces (e.g., policies that are defined by the
sign of linear combination of basis functions) is an open question. Additionally, an interesting research direction is to
extend and analyze CAPI for continuous action spaces.
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Abstract 
Survival requires efficient regulation of the internal homeostasis and defending it against perturbations. 
This in turn calls for complex behavioral strategies for obtaining physiologically depleted resources. In 
other words, in complex environments, the animal must learn what to do in order to fulfill its needs. To do 
so it is essential that brain systems monitoring homeostatic integrity as well as systems controlling 
motivation and implementing behavioral learning through associative mechanisms work in concert. We 
propose a normative computational theory for homeostatically regulated reinforcement learning, where 
physiological stability and reward acquisition prove to be identical objectives achievable simultaneously. 
Theoretically, the framework resolves the long standing question of how an animal motivation is modulated 
by its internal state and how an animal would learn to predictively act to pre-empt homeostatic challenges. 
It further provides a normative explanation for temporal discounting of reward, by showing that 
discounting future rewards is necessary in order to achieve the fundamental objective of defending 
homeostasis via the reward-seeking mechanism. Moreover, the theory accounts for risk aversive behavior, 
taste-induced overeating, animals’ lack of motivation for intravenous injection of food, and animals’ 
motivation toward foods with no energy content. Neurobiologically, our theory clarifies the formal 
computational relationship between the hypothalamic orexinergic circuitry, and the midbrain dopaminergic 
nuclei, signaling as an interface between the internal states and motivated behaviors. 
 
Keywords:  Reinforcement Learning; Homeostatic Regulation; Reward; Anticipatory Responding; 
Temporal Discounting 
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1 Background 

Survival requires the living organisms to maintain their integrity within the environment. Otherwise said, 
they must preserve homeostasis. In this sense, efficient reward-seeking decisions depend on two brain 
circuits working in concert: (1) a “homeostatic regulation (HR)” system that tracks the internal state of the 
animal, and is concerned with defending it against perturbations around the homeostatic setpoint, and (2) a 
“reinforcement learning (RL)” process capable of exploiting the experienced environmental contingencies 
and reward history, in order to make efficient instrumental reward-seeking responses. Communication 
between these two systems is essential for behavior to be responsive to the mandate of maintaining a stable 
internal milieu and thus survival. However, the computational mechanisms underlying this obvious 
coupling remains poorly understood, as the two systems have been traditionally studied separately. 
The integration of the two systems is behaviorally manifest in the classical behavioral pattern of anticipatory 
responding: upon observing conditioned stimuli that predict homeostatic perturbations (e.g. a cue that 
predicts cold air current), animals take preventive measures (e.g. shivering) to preclude disturbances in 
regulated variables (e.g. body temperature). Here, for the first time to our knowledge, we propose a 
normative explanation for anticipatory responding. 
Neurobiologically, accumulating evidence over the past decade shows intricate intercommunication 
between the hypothalamus and the brain reward-learning system1. The hypothalamic nuclei, constituting 
the HR system, monitor the internal state of the organism and produce appropriate corrective responses, 
thereby playing a central role in the homeostatic regulation of feeding and energy metabolism, body 
temperature, blood osmolality, etc.1. The cortico-basal ganglia circuits and the dopaminergic system, on the 
other hand, are known for their role in Pavlovian, habitual and goal-directed decision making2. The neural 
integration between the RL and HR systems is particularly well-studied for the case of energy regulation, 
where orexin neurons project from the lateral hypothalamus to the ventral tegmental area (VTA), and 
modulate the activity of dopamine neurons as a function of the animal’s energy state1. A key, yet 
unaddressed question here is what computations, at an algorithmic level, are being performed in this 
biological integration of the two systems, and how such computations give rise to behavioral patterns like 
anticipatory responding. 

2 Theory 

The interaction between drive and incentive has been the subject of much debate in the motivation literature 
in psychology. Neo-behaviorists like Hull3, Spence4 and Mowrer5 proposed the “drive-reduction” theory of 
motivation to define the nature of reward. According to this theory, one primary mechanism underlying 
reward is the usefulness of the corresponding stimulus in fulfilling the homeostatic needs of the organism, 
as determined by interoceptive signals6. Building upon this theory, we derive a formal definition of reward 
as the ability of a stimulus in counteracting disruptions in the physiological state, and restoring the internal 
equilibrium. 
We start by defining “homeostatic space” as a multidimensional metric space where each dimension 
represents one regulated physiological variable (the horizontal plane in Fig 1). The physiological state of the 
animal at each time ! can be represented as its position in this space, denoted by !! = (ℎ!,! , ℎ!,! , . . , ℎ!,!), 
where ℎ!,! indicates the state of the !-th physiological variable. For example, ℎ!,! can refer to the animal’s 
glucose level, body temperature, plasma osmolality, etc. The homeostatic setpoint, as the ideal internal state, 
can also be denoted by !∗ = (ℎ!∗ , ℎ!∗ , . . , ℎ!∗ ). As a mapping from physiological state to motivational state, we 
define animal’s “drive” as the distance of the internal state from the setpoint (the three-dimensional surface 
in Fig 1): 

! !! = ℎ!∗ − ℎ!,!
!!

!!!

!
 (1 
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Having defined drive, we can now 
provide a formal definition for 
reward, based on the drive reduction 
theory. Assume that as the result of an 
action, the animal receives an outcome 
!! at time !. The impact of this 
outcome on different dimensions of 
the animal’s internal state can be 
denoted by !! = (!!,! , !!,! , . . , !!,!). For 
example, !!,! can be the quantity of 
glucose received, as the outcome !! 
was consumed. Consumption of such 
outcome will result in a transition of 
the physiological state from !! to 

!!!! = !! + !! (see Fig 1) and 
consequently, a transition of the drive 
state from !(!!) to ! !!!! = !(!! + !!). Accordingly, the rewarding value of this outcome can be defined 
as the consequent reduction in the drive function: 

! !! ,!! = ! !! − ! !!!! = ! !! − ! !! + !!  (2 
Intuitively, the rewarding value of an outcome depends on the ability of its constituting elements in 
reducing the homeostatic distance from the setpoint. This internal state-dependent reward can then be used 
by any variant of the RL algorithm, namely model-free RL (as in Fig 1), model-based RL7, hierarchical RL8, 
etc. 

3 Analytical Results 

Theoretically, this definition of reward reconciles the RL and HR theories in terms of their normative 
assumptions: It can be shown that reward acquisition and physiological stability are mathematically 
equivalent objective functions (see 9 for the proof). More precisely, given the proposed definition of reward, 
any behavioral policy, !, that maximizes the sum of discounted rewards (!"#) is at the same time 
minimizing the sum of discounted deviations (!"") from the setpoint, and vice versa: 

!"!!! < 1 ∶ !!!!!!!argmin
!

!""(!) = argmax
!

!"#(!) (3 

In this respect, reward acquisition learned by the RL system can be seen as means that guide animal’s 
behavior toward satisfying the more basic objective of defending homeostasis. 
The equivalency of reward maximization and deviation minimization objectives in our model depends on a 
critical requirement: ! < 1, i.e. future expected rewards and future predicted homeostatic deviations should 
be discounted (see 9). In fact, if there is no discounting (! = 1), then the rewarding value of behavioral 
policies that change the position of the internal state only depends on the initial and final internal states, 
regardless of its trajectory in the homeostatic space. In the absence of discounting, the values of two 
behavioral policies with equal net shifts of the internal state are equal, even if one policy moves the internal 
state along the shortest path, whereas the other policy results in large deviations of the internal state from 
the setpoint and thus, threatens survival. These results hold not only for exponential discounting, but also 
under hyperbolic discounting. In this respect, our theory gives a normative explanation for the necessity of 
temporal discounting of reward: to fulfill the basic objective of internal stability, it is necessary to discount 
future rewards.  

4 Behavioral Results 

A wide range of evidence shows that animals make anticipatory responses to preclude perturbations in 
regulated variables, even before any physiological depletion (negative feedback) is detectable. As one clear 
example, progressive tolerance to alcohol-induced hypothermia in rats is shown to be mediated by 
associative learning processes (Fig. 2). In fact, the animal gradually learns to initiate a tolerance response 
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upon observing a stimulus that predicts infusion of ethanol, in order to minimize the ethanol-induced 
decrease of body temperature (Fig. 2). 

 Figure 2. Experimental (Adapted from10) and 
simulation results of acquisition and extinction of 
conditioned tolerance response to ethanol. (a) In 
each block (day) of the experiment, the animal 
receives ethanol injection after the presentation of 
the stimulus. (c) In every block, the change in the 
body temperature is measured 30, 60, 90, and 120 
minutes after ethanol administration. (b) The 
model is simulated in an artificial task where the 
agent has the choice between doing nothing and 
triggering the tolerance response, upon observing 
the stimulus. (d) Simulation results replicate 
experimental data. Plots (e) and (f) show the 
assumed dynamics of body temperature upon 
initiation of tolerance response and ethanol 
administration, respectively. Plot (g) shows the 
combined effect, which results in less deviation 
from the setpoint, compared to the two other 
cases. Plot (h), which is averaged over 500 
simulated agents, shows that the model learns 
gradually that the optimal strategy is to trigger 
the tolerance response upon observing the 
stimulus. E1: the first block of extinction; R1: the 
first block of re-acquisition. 
 

Although the utility of anticipatory 
responding is intuitively obvious, to the best 
of our knowledge, no “formal” normative 
explanation had been proposed for it so far. 
The explanation we proposed above is 

normative, as selecting the tolerance response over the alternative option (null) maximizes reward, and also 
minimizes homeostatic deviation (compare Fig. 2g and Fig. 2f). 

5 Neural Substrates 

Orexin neurons, originating predominantly in the lateral hypothalamus area, project to several brain 
regions including the VTA11. Orexin neurons are responsive to peripheral metabolic signals, as well as the 
animal’s deprivation level12, as they are innervated by orexigenic and anorexigenic neural populations in the 
arcuate nucleus of hypothalamus where circulating peptides are sensed. Data shows that orexin agonists 
induce feeding behavior, and orexin antagonist reduces appetite for food13,14, thereby defining the active role 
for these neurons in food-seeking behavior. Interestingly, orexin projections to the VTA are shown to have 
an excitatory effect on the firing activity of dopaminergic neurons15,16, placing these at the interface between 
internal states and the reward learning circuit1,17. As in our model the internal deprivation signal modulates 
the rewarding value of food and thus the prediction error signal, it provides a normative explanation for the 
role of orexin neurons in modulating the phasic activity of dopamine neurons. 

6 Discussion 

Critically, our model is built upon the drive-reduction theory of motivation, initially proposed by Clark 
Hull3, and became the dominant theory of motivation in psychology during 1940s and 1950s.  This theory, 
however, is largely abandoned today, due to a number of criticisms that had questioned its validity.  The 
most important problem is that it does not explain how secondary reinforcers (e.g. money, or a light that 
predicts food) would gain motivational value, since they don’t reduce any drive, per se. Our model resolves 
this problem as the RL algorithms considered in our framework propagate the drive reduction-induced 
reward of primary reinforcers to secondary reinforcers that predict them, as well as to behavioral policies 
that lead to them. The second major criticism is that the classical drive-reduction theory has trouble 
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accounting for why in some cases animals voluntarily increase their drive, even in the absence of any 
physiological deficit (e.g. shivering under normal body temperature). Our model alleviates this criticism by 
accounting for anticipatory responding. Thirdly, the drive-reduction theory seems in contradiction with the 
evidence showing that intravenous injection (and even intragastric intubation, in some cases) of food is not 
rewarding, despite the fact that its drive-reduction effect is equal to when that food is ingested orally18. 
Finally, the classical drive-reduction theory does not explain why animals show strong motivation toward 
some foods that have no nutritional content (e.g. saccharine) and thus, no drive-reduction effect. These two 
criticisms can be resolved in our framework by simply assuming that orosensory properties of food provide 
the animals with an estimate, !!,! , of its true nutritional content, !!,!. Based o this assumption, experiencing 
the orosensory properties of food is necessary for computing its reinforcing effect. Also, erroneous 
approximation of the drive-reduction ability of hyperpalatable food produces motivation toward them that 
is decoupled from their caloric content. 
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Abstract

Dynamic programming is a well-known approach for solving MDPs. In large state spaces, asynchronous versions like
Real-Time Dynamic Programming (RTDP) have been applied successfully. If unfolded into equivalent trees, Monte-Carlo
Tree Search algorithms are a valid alternative. UCT, the most popular representative, obtains good anytime behavior by
guiding the search towards promising areas of the search tree and supporting non-admissible heuristics. The global
Heuristic Search algorithm AO∗ finds optimal solutions for MDPs that can be represented as acyclic AND/OR graphs.

Despite the differences, these approaches actually have much in common. We present the Trial-based Heuristic Tree
Search (THTS) framework that subsumes these approaches and distinguishes them based on only five ingredients:
heuristic function, backup function, action selection, outcome selection, and trial length. We describe the ingredients
that model RTDP, AO∗ and UCT within this framework, and use THTS to combine attributes of these algorithms step by
step in order to derive novel algorithms with superior theoretical properties. We merge Full Bellman and Monte-Carlo
backup functions to Partial Bellman backups, and gain a function that both allows partial updates and a procedure that
labels states when they are solved. DP-UCT combines attributes and theoretical properties from RTDP and UCT even
though it differs from the latter only in the used Partial Bellman backups. Our main algorithm, UCT∗ adds a limited trial
length to DP-UCT to inherit the global search behavior of AO∗ , which ensures that parts of the state space that are closer
to the root are investigated more thoroughly. The experimental evaluation shows that both DP-UCT and UCT∗ are not
only superior to UCT, but also outperform PROST, the winner of the International Probabilistic Planning Competition
(IPPC) 2011 on the benchmarks of IPPC 2011.
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1 Introduction

Markov decision processes (MDPs) offer a general and widely used framework for decision making under uncertainty.
Among the algorithms that have been applied successfully to MDPs with large state spaces are the asynchronous Dy-
namic Programming algorithm RTDP (Barto et al., 1995), the Heuristic Search approach AO∗ and UCT (Kocsis and
Szepesvári, 2006), the most a popular representative of Monte-Carlo Tree Search (MCTS) (Browne et al., 2012).

The wide variety of possible choices when it comes to solving MDPs gives rise to the question which differences and
commonalities exist among them. We answer this question by introducing Trial-based Heuristic Tree Search (THTS), a
framework that subsumes all of these algorithms (Keller and Helmert, 2013). Specific instances of THTS can be described
with only five ingredients: heuristic function, backup function, action selection, outcome selection, and trial length. We
furthermore use THTS to combine ingredients of UCT, RTDP and AO∗ to derive algorithms that are stronger than the
individual methods and even outperform PROST (Keller and Eyerich, 2012), the winner of the International Probabilistic
Planning Competition (IPPC) 2011 on the benchmarks of IPPC 2011.

2 Background

In this paper, we are interested in algorithms for finite horizon MDPs S〈S,A, P,R,H, s0〉 with the usual semantics (Put-
erman, 1994) that have access to a declarative model of transition probabilities and rewards. Usually, a solution for such
an MDP is a policy, i.e. a mapping from states to actions. As a policy is already expensive to describe (let alone compute)
in MDPs with large state spaces, we consider algorithms that do not generate the policy offline but interleave planning
of a single action and its execution, a process that is repeated H times. In the first step of a run, s0 is set to a given initial
state. In each other step, it is set to the outcome of the last action execution. We estimate the quality of an algorithm
by sampling a fixed number of such runs. This approximates the expected reward of a policy π in MDP M , as the exact
calculation is also intractable in large MDPs. As it is important for our notion of anytime optimal backup functions, we
define the expected reward in terms of the state-value function V π as V π(M) := V π(s0) with

V π(s) :=

{
0 if s is terminal
Qπ(π(s), s) otherwise,

where the action-value function Qπ(a, s) is defined as

Qπ(a, s) := R(a, s) +
∑

s′∈S
P (s′|a, s) · V π(s′).

The optimal policy π∗ inM can be derived from the related Bellman optimality equation (Bellman, 1957), which describes
the reward for selecting the actions that yield the highest expected reward.

We define states such that the number of remaining steps is part of a state, and denote it with s[h] for a state s ∈ S. A
state with s[h] = 0 is called terminal. As the number of remaining steps must decrease by one in each state transition,
i.e. P (s′|a, s) = 0 if s′[h] 6= s[h]−1, each finite-horizon MDP induces a directed acyclic graph. Moreover, we require that
all policies are proper in M , a constraint that is satisfied in all benchmark domains of IPPC 2011.

3 Trial-based Heuristic Tree Search

In this section, we give a brief overview on the Trial-based Heuristic Tree Search framework. For a detailed description,
we refer the reader to the full version of this paper (Keller and Helmert, 2013). The THTS framework bridges the gap
between Dynamic Programming, MCTS, and Heuristic Search algorithms and can be used to model most members
of these families of algorithms. THTS algorithms maintain an explicit tree of alternating decision and chance nodes.
Decision nodes are tuples nd = 〈s, V k〉, where s ∈ S is a state and V k ∈ R is the state-value estimate based on the k first
trials. Chance nodes are tuples nc = 〈s, a,Qk〉, where s ∈ S is a state, a ∈ A is an action, and Qk ∈ R is the action-value
estimate based on the k first trials. In the following, we denote decision nodes with nd, chance nodes with nc, and the set
of successor nodes of n in the explicit tree with S(n). We abbreviate R(s(nc), a(nc)) with R(nc) and P (s(nd)|a(nc), s(nc))
with P (nd|nc).
Initially, the explicit tree contains only the root node n0, a decision node with s(n0) = s0. Each trial, which can be sep-
arated in three phases, adds nodes to the tree (it explicates them). In the selection phase, the explicit tree is traversed
by alternatingly choosing one or more successor nodes according to action and outcome selection. When a previously
unvisited decision node is encountered, the expansion phase starts. A child is added to the explicit tree for each appli-
cable action (or for each outcome of each applicable action) and all estimates are initialized with a heuristic. That way,
all successor nodes of the currently visited node contain action-value estimates, so THTS algorithms may switch back
to the selection phase, a process that continues until the desired trial length is reached (which is given when an empty

1
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set of successors is selected). All visited nodes are updated in reverse order in the subsequent backup phase, possible
interrupted by additional selection and expansion phases if multiple actions or outcomes have been selected earlier. The
trial finishes when the backup function is called on the root node. Another trial is started unless the root node is solved
or a time constraint is met..

Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T ):
2 n0 ← getRootNode(M)
3 while not solved(n0) and time() < T do
4 visitDecisionNode(n0)
5 return greedyAction(n0)

6 visitDecisionNode(Node nd):
7 if nd was never visited then initializeNode(nd)
8 N ← selectAction(nd)
9 for nc ∈ N do

10 visitChanceNode(nc)
11 backupDecisionNode(nd)

12 visitChanceNode(Node nc):
13 N ← selectOutcome(nc)
14 for nd ∈ N do
15 visitDecisionNode(nd)
16 backupChanceNode(nc)

An THTS algorithm is specified in terms of
five ingredients: heuristic function, backup
function, action selection, outcome selection,
and trial length. We focus on different backup
functions in the following due to space con-
straints, and refer to the full version of this
work for a detailed overview on possible
choices for the other ingredients. To get an
intuition, we introduce popular choices in a
nutshell. Action selection is a popular re-
search area which can mostly be divided in
two camps. On the one hand are algorithms
like AO∗ or RTDP that always select the suc-
cessor node with the highest action-value esti-
mate. Combined with an admissible heuristic
this can enable considerable pruning effects.
On the other hand are action selection strate-
gies that balance exploration and exploitation.

One such example is UCT, where the UCB1 formula (Auer et al., 2002) is used to select actions that have been rarely tried
or yielded promising results in the past. This allows the usage of non-admissible heuristic functions which are usually
cheaper to compute yet similarly informative. Outcome selection is the ingredient with the least variance in well-studied
algorithms – almost all algorithms select a chance node according to its probability (possibly biased by solved siblings).

The backup function defines how the information that is gathered in trials is propagated through the tree. In the THTS
framework, nodes are updated only based on values of some or all of their successor nodes. In this work, we focus
on algorithms that are anytime optimal, i.e. yield reasonable results quickly, improve when more trials are available
and eventually converge towards the optimal decision (w.r.t. the expected reward). One way to guarantee optimality
in the limit is to demand that the backup function is such that estimates converge towards the optimal value functions,
i.e. Qk(nc) → Q∗(a(nc), s(nc)) and V k(nd) → V ∗(s(nd)) for all nd, nc and k → ∞. We distinguish between full and
partial backup functions. Full backup functions can only be computed for a node if each of its children in the MDP is also
represented in the explicit tree, i.e. S(nd) = {〈s(nd), a,Qk〉|a ∈ A} and

∑
nd∈S(nc)

P (nd|nc) = 1. Partial backup functions
require only one explicated child, so action-value estimates can be calculated even if only one outcome is in the explicit
tree (and the one that was selected in the current trial always is). We focus on the development of such a backup function
as we consider MDPs with a potentially huge number of outcomes (up to 250 in our experiments).
Monte-Carlo backup MCTS algorithms like UCT are based on Monte-Carlo backups, a partial backup function which
extends the current average with the latest sampled value (Sutton and Barto, 1998). As probabilities of outcomes are not
used to calculate Monte-Carlo backups, they are the predominant backup function in learning scenarios where only a
generative model of the MDP is available. Let Ck(n) be the number of times node n has been visited among the first k
trials. State-value estimate and action-value estimate are calculated with Monte-Carlo backups as

V k(nd) =

{
0 if s(nd) is terminal∑

nc∈S(nd) C
k(nc)·Qk(nc)

Ck(nd)
otherwise,

Qk(nc) = R(nc) +

∑
nd∈S(nc)

Ck(nd) · V k(nd)
Ck(nc)

.

For Monte-Carlo backups to converge towards the optimal value function, the outcome selection strategy must be s.t.
Ck(nd)
Ck(nc)

→ P (nd|, nc) for k →∞, and the action selection strategy s.t. C
k(n∗c)

Ck(nd)
→ 1 for k →∞, where n∗c = 〈s, π∗(s), Qk〉 is

the successor of nd in the optimal policy π∗. It is often not trivial to prove that Monte-Carlo backups converge, but it was
shown by Kocsis and Szepesvári (2006) for the UCT algorithm.
Full Bellman backup Another prominent method to propagate information in the tree are Full Bellman backups:

V k(nd) =

{
0 if s(nd) is terminal
maxnc∈S(nd)Q

k(nc) otherwise,

Qk(nc) = R(nc) +
∑

nd∈S(nc)

P (nd|nc) · V k(nd).

2
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As the name implies, they are the full backup function derived from the Bellman optimality function. Unlike Monte-
Carlo backups, Full Bellman backups allow a procedure that labels nodes as solved. Obviously, each algorithm that is
based on Full Bellman backups and selects actions and outcomes among unsolved nodes is anytime optimal, as all states
will eventually be visited with k → |S|.

Max Monte-Carlo backup Both presented backup functions have their advantages and disadvantages. On our way
to combine the desirable parts of both, Max-Monte-Carlo backups are a first step. They use the action-value backup
function of Monte-Carlo and the state-value backup function of Full Bellman backups. In other words, a decision node
is updated based on the value of its best child rather than aggregating over all children.

Like Monte-Carlo backups, Max-Monte-Carlo backups are both partial and do not rely on a generative model of the MDP.
But they are also much more resilient for scenarios where different actions yield vastly different expected rewards than
their counterpart where decision nodes are updated by aggregating over all successors. Our first algorithm, MaxUCT,
uses the same ingredients as UCT, but updates nodes with the Max-Monte-Carlo backup function.

Partial Bellman backup In a second step, we aim to derive a backup function that additionally supports a solve labeling
procedure. Therefore, it is necessary to exploit the declarative model by considering probabilities in the backups of
action-value estimates. Or, from a different point of view, we are looking for a partial version of Full Bellman backups
that does not require all successor nodes to be explicated. To calculate an estimate, we weight the outcomes that are part
of the tree proportionally to their probability and to the missing outcomes:

V k(nd) =

{
0 if s(nd) is terminal
maxnc∈S(nd)Q

k(nc) otherwise,

Qk(nc) = R(nc) +

∑
nd∈S(nc)

P (nd|nc) · V k(nd)
P k(nc)

,

where P k(nc) =
∑
nd∈S(nc)

P (nd|nc) is the sum of the probabilities of all outcomes that are explicated. Intuitively, we
expect estimates of outcomes that are not part of the explicit tree to be comparable to the probability weighted outcomes
that are explicated. Partial Bellman backups converge towards the Bellman optimality equation under selection strategies
that explore the whole tree, as P k(nc)→ 1 and Qk(nc)→ Q∗(a(nc), s(nc)) for k → |S|.
Our second algorithm, DP-UCT, is also identical to UCT except for the backup function. It combines properties of
Dynamic Programming and UCT. It resembles MCTS as it incorporates the advantages of partial backup functions,
balanced action selection and the usage of non-admissible heuristic functions. The fact that the backup function takes
probabilities into account and allows solve labeling and termination when the root node is solved is just like in Dynamic
Programming approaches. To our knowledge, this theoretical property was never incorporated into an algorithm that
selects actions based on the UCB1 formula.

DP-UCT benefits a lot from the balanced action selection strategy at the beginning of each trial. As the uncertainty grows
with the number of simulated steps, states that are far from the root often have only little influence on that decision, even
if they are part of the optimal solution or crucial for some future decision. Therefore, investigating the state space close
to the root more thoroughly might improve action selection with short time windows. This idea is incorporated in our
main algorithm, UCT∗, which is identical to DP-UCT except that is uses a property inherent to Heuristic Search. These
global search algorithms finish a trial whenever a tip node is expanded – a natural way to focus the search on states close
to the root that maintains optimality in the limit. UCT∗ still produces the asymmetric search trees that spend more time
in promising parts of the tree, but it also makes sure that it takes the time to investigate parts that turn out to be different
than what they looked like at first glance.

4 Experimental Evaluation

We evaluate the algorithms MaxUCT, DP-UCT and UCT by performing experiments on 2.66 GHz Intel Quad-Core Xeon
computers, with one task per core simultaneously and a memory limit of 2.5 GB. We use the IPPC 2011 benchmarks, a set
of eight domains with ten problems each. Each instance is a finite-horizon MDP with a horizon of 40. Each algorithm is
evaluated based on 100 runs on each problem rather than the 30 of IPPC 2011 to obtain statistically significant results. The
results in Table 1 are achieved with a timeout of 2 seconds per decision. They are obtained by converting the averaged
accumulated rewards of the 100 runs to relative scores on a scale from 0 to 1 for each problem, and then calculating the
average over these values from all instances for each domain. A relative score of 0 is assigned to an artificial minimum
policy taken from IPPC 2011, and the score of 1 is given to the planner that achieved the highest reward. The total result
is calculated as the average over all domains. Additional experiments are analyzed in the full version of this work (Keller
and Helmert, 2013),
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ELEVATORS SYSADMIN RECON GAME TRAFFIC CROSSING SKILL NAVIGATION Total
UCT 0.93 0.66 0.99 0.88 0.84 0.85 0.93 0.81 0.86
MaxUCT 0.97 0.71 0.88 0.9 0.86 0.96 0.95 0.66 0.86
DP-UCT 0.97 0.65 0.89 0.89 0.87 0.96 0.98 0.98 0.9
UCT* 0.97 1.0 0.88 0.98 0.99 0.98 0.97 0.96 0.97
PROST 0.93 0.82 0.99 0.93 0.93 0.82 0.97 0.55 0.87

Table 1: Score per domain and total scores for the IPPC 2011 benchmarks. Best results (±0.02) are highlighted in bold.

All algorithms are implemented in the framework of the PROST planner, so they also use the sound reasonable action
pruning and reward lock detection methods that are described by Keller and Eyerich (2012). The PROST planner that
was used in IPPC 2011 is equivalent to our UCT base implementation, except that it uses a fixed search depth limitation
of 15. Both an unlimited UCT version and PROST are included in our evaluation, the latter being the only algorithm
in our comparison that is not anytime optimal. The results impressively reflect the theoretical results: DP-UCT is a
clear improvement over the algorithms based on Monte-Carlo backups, clearly indicating that it pays off to directly take
probabilities into account. Our main algorithm UCT∗ outperforms all other algorithms, including PROST, on almost all
domains. Its advantages become especially apparent in the domains where DP-UCT does not have an edge over the other
algorithms. The improvement in the domains with dense transition matrices, SYSADMIN, GAME OF LIFE, and TRAFFIC,
shows that it pays off to search the state space close to the root more thoroughly. Moreover, the result in CROSSING
TRAFFIC, where the lookahead that is needed for good policies is among the highest of the IPPC 2011 problems, shows
that it also performs well if a higher horizon must be considered. This is a clear sign that the asymmetric form of the
search tree with the majority of visits in the promising parts of the search space is preserved.

5 Conclusion

We have presented a novel algorithmic framework, Trial-based Heuristic Tree Search, which subsumes MCTS, Dynamic
Programming, and Heuristic Search. We have identified five ingredients that distinguish different algorithms within
THTS: heuristic function, backup function, action selection, outcome selection, and trial length. By step-wise combining
Monte-Carlo and Full Bellman backups to Partial Bellman backups, we were able to derive the MaxUCT and DP-UCT
algorithms. The latter inherits the ability to solve states by considering probabilities from Dynamic Programming, and
the use of non-admissible heuristics, the good anytime behavior and the guidance to promising parts of the search space
from UCT. Adding the trial length from Heuristic Search led to UCT∗, an algorithm that distributes its resources even
better in the search space. Our empirical evaluation shows that both DP-UCT and UCT∗ perform significantly better on
the benchmarks of IPPC 2011 than any other considered algorithm, including the winner of IPPC 2011, PROST.
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Abstract

In our recent work we have defined reinforcement learning (RL) problems in which the goal is to discover strategies that
are computationally rational given a theory of the constraints on human cognition. These strategies are used to predict
human behaviours. In this extended abstract we illustrate this use of RL with an example in which distractor ratio
phenomena are explained by deriving strategies for eye movements and target detection given constraints on visual
acuity. The distractor ratio effect is shown to be a consequence of computationally rational adaptation to the goal of
making presence/absence decisions given location noise in the human visual system.
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1 Introduction

In our recent work we have modeled human visual search by inferring strategies that are computationally rational given
a theory of the constraints on human cognition. These strategies are used to predict human behaviour. In this abstract we
illustrate these problems with an example in which visual search is explained by deriving strategies for eye movements
given constraints on visual acuity.

The starting point for the model is to define a reinforcement learning (RL) problem in which the goal is to discover
strategies that are computationally rational given a theory of the constraints on human cognition. In this abstract we
illustrate these RL problems with an example in which distractor ratio (DR) phenomena (Bacon & Egeth, 1997; Shen,
Reingold & Pomplum, 2000) are explained by deriving strategies for eye movements given constraints on visual acuity
(Najemnik & Geisler, 2005). We discuss the role of the computational rationality assumption in guiding the construction
of theories of the mechanisms of the mind. In the distractor ratio task the goal is to find a target symbol, for example, a
red letter O. The task is more difficult for people, requiring more fixations, when the ratio of the number of distractors
with the same color to the number of distractors with the same shape is nearer to 1. For example, in Figure 1 it can be seen
that the red letter O can be found quickly in Figure 1A (left panel) and Figure 1C (right panel) but is relatively difficult
to find in Figure 1B (middle panel).

Figure 1: The Distractor-Ratio Task.

One explanation for the DR phenomena is that people move their eyes to salient information (Itti & Kock, 2000). A differ-
ent explanation, proposed by Myers et al. (2013), is that people find optimal eye movement strategies given constraints
on visual acuity. The optimal eye movement strategy for this task makes use of the minority set of distractors to come
to a decision about the presence or absence of the target in as few fixations as possible. The minority set, containing
the target, is red in Figure 1A and is shape O in Figure 1C. People exhibit a saccadic bias in which a higher proportion
of saccades are to the minority set than to the majority set. They also exhibit an effect of distractor ratio on number of
fixations (Figure 2).

Figure 2: Distractor ratio stimuli when searching for a red O, and results from Shen et al. (2000).

Myers et al. (2013) report a model of a reduced version of the task in which there are only 7 symbols arranged in a
single dimensional vector that given the assumption that there is either 1 or 0 targets derives a Bayesian estimate of the
probability of each possible display given the available perceptual evidence. Building on Myers et al. model, the model
reported in this extended abstract is based on many of the same assumptions but changes are made in an effort to scale
to the larger 2 dimensional arrays of symbols that are used in the human experimental task and that are shown in Figure
1.
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2 Model

The model selects fixation locations as it searches a 3x3 grid of symbols looking for a target and responds with a target
present or target absent decision. The process by which it determines each action is as follows (3 stages):

(1)Percept (foveated vision corrupted by noise with eccentricity from the fovea): Given the current fixation on one of the
cells, perception of the content of each cell in the grid generates a noisy representation of the display. This representation
is subject to both feature noise and location noise. A consequence of feature noise is uncertainty in whether the content
of the cell is red or green, or whether it is a letter O or a letter X. A consequence of location noise is, for example, that a
green O that is next to a red O will be more likely to be perceived as red itself than a green O that is on its own. Both
feature noise and location noise increase with eccentricity from the fovea. The standard deviation of Gaussian noise at
cell i is a function of the eccentricity of i from the foveated cell and a constant such that �i = n⇥Ei where n is the location
noise constant. �i determines how much the feature at i is affected by neighbouring cells.

(2) State Estimation: Information from the current fixation is integrated with information from previous fixations. The
state obtained at each fixation is a 9 element vector each of which is an estimate of the “relevance” of the content of the
cell and each of which is updated independently fixation by fixation.

The model adopts a simple feature-vector coding of the display in which each of the 9 locations is represented by 2 real
valued features (one for colour and one for shape), where the value 1 is chosen as the target value for each feature, and 0
is the nontarget value. Therefore, the display is represented as two 3⇥ 3 matricies, one for color and one for shape. After
adding the location and feature noise, there are two 3⇥ 3 matrixes that are a hypothesised internal representation of the
display. In order to obtain a relevance score for each location the following equation is used to integrate these matricies.
For each pair of values at corresponding locations, i.e. Vcolor and Vshape we obtain a V for this location of the display.

V =
�2

shape

(�2
color + �2

shape)
Vcolor +

�2
color

(�2
color + �2

shape)
Vshape

where �color, �shape are weights for color and shape respectively. In this preliminary model, the color and shape signal
are equally weighted to give an overall relevance score for each location. Thus there is a 3 ⇥ 3 matrix containing the
relevance score of each cell. Based on the assumption that image data is captured in parallel from every possible location
at each fixation. There is a new noisy observation from each location at each fixation. A Kalman filter is then applied to
update each cell given the new observation.

For example, for location i, the state is xi(k) = xi(k� 1) + wi(k� 1), where k is the time step, the variable wi(k� 1) is the
process noise, which is set to 0 as in this version of the task the true state of the display is not dynamic (though in future
versions we will explore dynamic displays). For each fixation, there is a new noisy observation at location i. Using the
Kalman filter term, the measurement is zi(k) = xi(k) + vi(k), where, p(vi) = N(0, R) and R is the measurement noise,
which is a function of eccentricity of location

Figure 3: Utility plotted against trial number, demonstrating the extent to which Q-learning generates the computation-
ally rational strategy for the distractor ratio task.

Finally, the model updates the state estimate for each location independently across fixations. At each fixation, after the
update of the value of each cell, the fractional part of the scores are rounded to 5 levels, [0 0.2, 0.4 0.6 0.8], to generate a
target relevance score vector that then becomes a state. Each state is an entry into a Q-table. The Q-table is a matrix with
a row for each state encountered; and a column for each of the actions. This matrix is used to store the state action value
function learnt with Q-learning (see below).
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(3) Control (Q-learning): At the beginning of the learning, an arbitrary state-action value function was selected. Given
the known task, we were able to generate as much experience for the task as the model required. The state-action value
function is learned using Q-learning based on the experience generated. The computationally rational strategy is then
defined as the strategy that requires the selection of the best action in each state. Specifically, (1) The action space contains
the 9 possible next fixation locations, target_present and target_absent. The updated state-action value function is used
to select an action using an Epsilon-greedy policy; (2) Given the action selected, the state update process is as described
in stage 2 of the model; (3) The reward r, which corresponds to an assumption about the participants’ subjective utility
function is defined by r = 10⇤C�N , where C = 1 if correct and C = �1 if incorrect; N is the number of fixations. Given
the experience generated, the model learns the values of the 11 actions for each state that it reaches. These values define
the computationally rational strategy. The model was run for 100,000 trials for each noise level n, which was sufficient to
obtain asymptotic performance, as shown in Figure 3.

Figure 4: Number of fixations required by the computationally ration strategy for each level of distractor ratio (DR) and
each level of location noise.

Figure 5: Saccadic bias against level of location noise in visual perception

3 Results

The search efficiency for the computationally rational strategy at each level of location noise is shown in Figure 4. This
shows that the model generates the same shape distractor ratio effect as in humans (Figure 2), where more fixations are
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required for ratios close to 1. The effect of location noise on saccadic bias is illustrated in Figure 5. The highest saccadic
bias occurs with middle levels of noise. In contrast, if there is no, or little noise, then there is reduced saccadic bias in the
rational strategy. This is because in the absence of location noise the target can be fixated immediately. Similarly at high
noise levels there is reduced saccadic bias but here it is because so little information is perceived that the fixation pattern
is at chance. This pattern is accentuated at more extreme distractor ratios. These two results extend the findings of Myers
et al. (2013) to show that the distractor ratio effect can be explained as a side-effect of computationally rational strategies
adapted to location noise that increases with eccentricity from the fixation. The new model also extends the Myers et al.
model by generating centre of gravity effects (Najemnik & Geisler, 2005) and speed/accuracy trade-offs (not illustrated
here).

4 Discussion

The model reported here is an extension of a computationally rational account of the distractor ratio effect in visual search
that was first reported by Myers, Lewis and Howes (2013). Rather than explaining the effect as a consequence of salience
(Itti and Kock, 2000), the rational model explains it as an adaptation to information processing constraints, specifically
location noise, which is inherent to the human visual system. The extensions reported in the current abstract define the
eye movement problem given noisy perception and learn the computationally rational strategy for eye movements and
present/absent decision. The strategy is optimal given the reward function and the limitations imposed by the model of
visual perception, which is subject to both feature and location noise.

In this work Q-learning was used as an analytic tool for determining the optimal policy given a theory of a limited
perceptual capacity. This role for an RL algorithm has previously been suggested by Chater (2009) who contrasted
rational uses of definitions of the RL problem to the statement of RL mechanisms as theories of human and animal
learning. In the rational approach it is the theory of resource limits, here limits on visual information processing, that
is under test, not a theory of learning. The discovery of a computationally rational strategies is critical to explaining
human information processing for two reasons, (1) the distractor ratio phenomena are shown to be a consequence of
these strategies and not others (Myers et al., 2013), (2) the problem of fitting overly flexible models to the data is avoided
as the analysis maximizes utility rather than maximizing fit (Howes, Lewis & Vera, 2009) thereby supporting the reverse
engineering of the mind (Lewis, Howes & Singh, in press; Dayan, in press; Howes, Lewis & Vera, 2009).

There is a substantial amount of work to be done to test and develop the reported model. For a start it needs to be
scaled to the 48 element displays that were used in the original experiments reported by Shen, Reingold and Pomplum
(2000). Target present data and interactions also needs to be modelled. We anticipate that this scaling is tractable using
the display sampling, noisy perception, gridding, and Q-learning algorithm described in this abstract. In addition, we
need to make a fuller comparison to the Bayesian model reported by Myers et al. (2013). Comparison to the performance
of the Bayesian model will help expose the relevant properties of both. In addition, we wish to address how, or whether,
people adapt to the distractor ratio task with little experience of the local task.
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Abstract

Our goal is to develop broadly competent agents that can dynamically construct an appropriate value function for tasks
with large state spaces so that they can effectively and efficiently learn using reinforcement learning. We study the case
where an agent’s state is determined by a small number of continuous dimensions, so that the problem of determining
the relevant features corresponds roughly to that of determining the appropriate level of discretization of the continuous
values. We adopt hierarchical tile coding, which applies state aggregation at multiple levels of state abstraction simulta-
neously. Using our formulation, it is possible to capture the advantages of learning with state abstractions ranging from
general to specific using linear function approximation. We then develop a novel algorithm for incrementally refining
the degree of state abstraction, based on cumulative absolute temporal difference error, which produces a sparse non-
uniform tile coding. We empirically evaluate our approach in the Puddle World and Mountain Car environments. The
results demonstrate that the static and incremental hierarchical tile codings significantly outperform individual tilings
and multilevel tile codings (CMACs) for initial learning. Our results also indicate that the incrementally constructed
tilings perform nearly as well as the full hierarchical tile coding while requiring an order of magnitude fewer weights.

Keywords: Reinforcement Learning, Online Learning, Incremental Learning,
Value Function, Tile Coding
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1 Introduction

At a broad level, our goal is to build agents which can perform difficult tasks in environments with large state-spaces
that are described by a large number of features, some of which may be continuous. In this work, we focus on contin-
uous features and explore a novel strategy for determining when to refine a tile coding1 in order to allow an agent to
improve its policy. We then demonstrate that a tile coding consisting of multiple fixed tilings of variable resolution can
do significantly better than any single tiling. We develop incremental hierarchical tile codings that can do nearly as well
as static hierarchical tile codings, while using significantly less memory.

2 Environments

We experiment with Puddle World and Mountain Car—two environments with infinitely large state-spaces due to their
continuous features. These problems present the difficulty that different parts of their state-spaces warrant reasoning at
different levels of precision.

Figure 1(a) shows an example of Puddle World, where an agent can move North, South, East, or West, and where the
goal is for an agent to move from an initial location to a goal region. [Sutton, 1996] The world contains “puddles” that
are capsule shaped regions whose depth increases from their edges to their centers. The environment is fully observable,
but the agent’s steps are stochastic, resulting in step sizes between 0.04 and 0.06 units. As the x and y positions are
real-valued, the state-space is infinitely divisible, and therefore not perfectly discretizable. The agent receives a penalty
of −1 for each step and an additional penalty proportional to the depth of each puddle at its current location.

(a) Puddle World.

Goal Position

Inelastic Wall

-1.2

0.5

-0.5

(b) Mountain Car.

Figure 1: Depictions of our environments.

Figure 1(b) shows the canonical Mountain Car [Singh et al., 1996], where an agent can control the car’s motor (left, idle,
right), and where the goal is for the agent to move the car from the basin, at rest, to the top of the mountain on the right.
Given gravity −0.0025 cos(3x), and a car with power 0.001, the car is incapable of climbing the mountain starting from
rest. It is essential to build up potential energy by backing up the hill on the left before moving to the right. The agent
receives a penalty of −1 for each step.

3 Static Hierarchical Tile Coding

We examine hierarchical tile codings where there can be multiple non-overlapping tilings at different resolutions, such
as 2x2, 4x4, 8x8, . . . , the goal being to support learning at different levels of abstraction. In strict hierarchical tile coding,
there are n levels of tilings, with separate tile codings for each action. This introduces a credit assignment problem
for hierarchical tile codings, which we solve with an even credit assignment strategy, as is typical for linear function

1A tile coding or CMAC (Cerebellar Model Articulation Controller) consists of one or more tilings that partitions a continuous
space into a fixed number of a regions, each corresponding to a binary feature. For a detailed explanation, see section 8.3.2 of Sutton
and Barto [1998].
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(a) Puddle World.
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(b) Mountain Car.

Figure 2: Performance for several agents using single tilings, traditional CMACs, and a static hierarchical tile coding.

approximation. General tilings (such as 2x2) receive updates frequently, allowing them to converge quickly. They act as
a baseline to speed learning in the more specific tilings (such as 64x64).

We explored hierarchical tile codings with varying subsets of the tilings, 1x1-64x64, such as omitting the most specific or
the most general tilings, and none achieved better performance than using the complete hierarchy. Zheng et al. [2006],
Grzes and Kudenko [2008], and Grzes [2010] previously explored using only two tilings with varying state abstraction.

In our experiments we use an epsilon-greedy exploration strategy (ε = 0.1 for Puddle World and ε = 0.01 for Mountain
Car) with a random tiebreak, Q-learning with a learning rate of 0.1 in Puddle World and 1.0 in Mountain Car, and a
discount rate of 0.999, and we initialize weights to 0. Figure 2(a) shows the results of using specific tilings for Puddle
World, together with traditional CMACs (consisting of multiple identical tilings with different offsets), and hierarchical
tile codings. We compare against not only the best CMACs, but also the CMACs corresponding to our single tilings, in
order to demonstrate the performance degradation that still occurs as the tile sizes decrease. The y-axis shows cumulative
reward per episode, with the x-axis showing total steps. Each data point is an average of 20 runs. We ran experiments
with agents using 32x32 and 64x64 tilings; however, they did not start to converge until > 50, 000 steps and so are not
included in the figure. Figure 2(b) shows corresponding results for Mountain Car.

The most dramatic feature of the figure is that the hierarchical tile coding does significantly better than any individual
tiling. One hypothesis that these results dispel is that the advantage of the hierarchy is just in hedging the bet as to which
tiling is best. Instead, it does much better than even the best single tiling (8x8). The hypothesis it supports is that it can
take advantage of the fast learning possible with the more general tilings because of their more frequent updates, while
taking advantage of the accuracy provided by the more specific tilings. Moreover, the more specific tilings (such as 32x32
and 64x64) do not drag down the rate of learning.

Additionally, hierarchical tile coding performs better than CMACs for the vast majority of CMAC parameter settings
we tried. The hierarchical tile codings dominate all of the CMACs significantly in Puddle World, and most CMACs
significantly in Mountain Car. The 8x8 CMAC with 16 tilings does nearly as well in Mountain Car, but only achieves
performance comparable to a 1-64 hierarchical tile coding, and a parameter sweep was required to discover it.

So why does hierarchical tile coding work so well? One important feature of both of these environments is that there is
continuity in the mapping from the feature space to the weights or Q-values—entries in the value function that are near
each other spatially tend to have similar values.

4 Dynamically Refining the Value Function

Although hierarchical tile coding is very effective for these domains, there are two significant problems. First, it requires
committing to a set of tilings from the beginning of the task. This is not always be possible for arbitrary tasks. The
second problem is that it requires large memories to hold weights for every tiling of the hierarchy, growing exponentially
with each additional tiling of the hierarchy. In the future, we plan to study domains with more features where it will
be impossible to store weights for every tiling. Thus, we want to develop approaches where the agent does not need to
commit to a specific level of tiling, and where the number of weights that must be maintained is minimized.

Incremental approaches to expanding the hierarchy have the potential of satisfying both of these criteria. In incremental
approaches, the agent starts with only the most general tilings, which in this case include both a 1x1 and a 2x2 discretiza-
tion of the task features. Based on experience, the agent determines when it might be useful to have a more specific state
abstraction (or more refined discretization) of one of the tiles. An additional level of tiling is created that covers just the
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chosen tile. Those new tiles are initialized to 0, and with experience, they are updated to match the differences at their
level of detail. Additional tiles are expanded, leading to a non-uniform tiling of the space.

The approach explored by Geramifard et al. [2011] tracks a fringe of feature conjunctions and expands the set of weights
over time. It makes decisions about whether to refine the value function using a static criterion based on TD (temporal
difference) error in the fringe, rather than a globally relative criterion like that employed by Munos and Moore [1999]
and ours. Additionally it is uses much more memory than our approach given the use of a fringe, and because it may
track weights for the full power set of features, rather than using an approach based on a decision tree. For that reason,
our approach better satisfies our efficiency criteria.

Inspired by Stdev Inf [Munos and Moore, 1999], the metric we choose to encompass these properties is cumulative ab-
solute temporal difference error (CATDE). TD error—the delta essential to temporal difference methods—is highest in
regions of high variance. Tracking the CATDE for a tile in parallel with each weight provides a metric which increases
more quickly when the variance associated with taking an action is high, and when that action is taken frequently.2 En-
vironmental stochasticity artificially inflates the CATDE values but, because the variance is estimated locally, the impact
on our metric is less than the impact on Stdev Inf. Additionally, CATDE can be tracked incrementally, requiring low
computational costs.

Given the CATDE metric, we choose to select the tiles with the greatest CATDE for refinement. In order to make this
decision procedure incremental, it is essential to have an efficient algorithm for tracking the mean and variance for
CATDE throughout our value functions. Incrementally tracking a mean for a set of values is fairly trivial, but incremen-
tally calculating the variance requires a modified version of an algorithm provided by Knuth and Welford [Knuth, 1997;
Welford, 1962]. We implemented additional methods to allow updating values and removing values from the set.

Whenever a tile is refined, the CATDE for its region is reset to 0. Initially, the CATDE metric will result in significantly
faster refinement to some regions than others. But as time goes to infinity, tiles will tend to split at the same rate, as
regions which receive greater refinement will accumulate TD error over smaller subsets of the state-space over time.

Given a tile with CATDE = c, our mean estimate, µ, and our variance estimate, σ2, we refine a tile if

c > µ+ zσ2|z = 0.5 (1)

and the tile has not been visited in the past 20 steps. z is chosen to determine how selective the agent should be in
choosing which tiles to refine. The 20 step threshold prevents overzealous refinement.

Given the limited number of features in both Puddle World and Mountain Car, our agents simply alternate back and
forth between the dimensions when making these refinements.

Figure 3(a) shows data for the Puddle World domain. Data for static hierarchies, with tilings of resolutions 1x1 through
64x64, and for incremental hierarchies, with tilings of resolutions initially between 1x1 through 2x2 are presented to-
gether. The number of weights is overlaid over the performance data so that one may compare their performance to their
memory efficiency as time passes. The cumulative performance of the incremental hierarchies is within 13% of the static
hierarchies by 20,000 steps, however the number of weights is reduced by 90%. Figure 3(b) shows corresponding data
for the Mountain Car domain. Data for static hierarchies, with tilings of resolutions 1x1 through 256x256, and for incre-
mental hierarchies, with tilings of resolutions initially between 1x1 through 2x2 are presented together. The cumulative
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Figure 3: Performance and memory usage of an agent using a static hierarchical tile coding and another agent using an
incremental hierarchical tile coding.

2It is critical that CATDE is cumulative. If it were non-cumulative, it would essentially eliminate the idea of influence from
Stdev Inf, and turn it into a kind of variance metric. This has been confirmed empirically (not shown).
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Figure 4: Performance of agents using incremental hierarchical tile codings with different credit assignment strategies.

performance of the incremental hierarchies is within 14% of the static hierarchies by 200,000 steps, however the number
of weights is reduced by 89%.

Figure 4 contrasts our incremental hierarchical tile coding against a tile coding which gives all credit to the most specific
tiles. This is equivalent to comparing against an adaptive tile coding which splits tiles, keeping only one tile per region, as
described by Munos and Moore [1999] and Whiteson et al. [2007]. The performance of the even credit assignment strategy
dominates the performance of the specific credit assignment strategy. The results of these experiments are presented in
figure 4 with a significant change in scale for both the x and y-axes.

5 Conclusion

In summary: we demonstrated that static hierarchical tile codings dominate individual tile codings and CMACs in two
domains; we developed an incremental hierarchical tile coding which performs well while saving memory; and we
demonstrate that incremental hierarchical tile codings dominate incrementally split, non-hierarchical tile codings.
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Abstract

We present a framework to solve for best responses in extensive-form games (EFGs) with imperfect information by
transforming the games into Information-Set MDPs (ISMDPs), and then applying simulation-based reinforcement learn-
ing methods to the ISMDPs. We first show that, from the point of view of a single player, an EFG can be represented as an
Information-Set POMDP (ISPOMDP) whose states correspond to the nodes in the EFG. This ISPOMDP can then be fur-
ther represented as an ISMDP, whose states correspond to the information sets in the EFG. Because the transformations
are lossless, every optimal policy in the ISMDP is a best response in the original EFG.

Our approach to finding a best response in an EFG, therefore, is to first apply the aforementioned transformations, and
to then use simulation to learn the ensuing ISMDP and standard techniques (e.g., dynamic programming) to solve it.
There are two challenges to effectively learning the ISMDP through simulation: the ISMDP state space is exponential
in the horizon, and we cannot resample actions during simulation. We prove that simulation can still be guaranteed to
learn near-optimal best responses with high probability, although the sample complexity depends explicitly on the size
of the state space. Using our best-response finding algorithm as a subroutine, we further develop two algorithms, one
that implements approximate best-reply learning dynamics, and another that approximates ε-factors of strategy profiles
in EFGs. We evaluated these algorithms by applying them to several sequential auction domains.

Keywords: Game Theory, Model-Based Reinforcement Learning, Partially
Observable Markov Decision Process
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1 Introduction

Real-world interactions between individuals and organizations are commonly modeled as extensive-form games (EFGs),
in which players act in sequence, and payoffs to one player depend on the actions of all players. Each player in an EFG
is predicted to play her best response, which is a strategy that maximizes her expected payoff against opponent strategies.
This notion of best response is central to game theory. It forms the basis of Nash Equilibrium (NE), the canonical game-
theoretic solution concept: at NE, all players simultaneously play best responses to one another [12]. Best responses also
underpin classic game-theoretic learning schemes, such as best-reply dynamics and fictitious play [1].

In this paper, we develop an RL-based algorithm that approximates best responses in EFGs of imperfect information.
Given opponent strategies, an EFG from one player’s perspective can be represented as an Information-Set POMDP
(ISPOMDP), which can be further represented as an Information-Set MDP (ISMDP). The ISMDP can be learned via
simulation, after which an optimal policy can be approximated using standard techniques (e.g., dynamic programming).
Because the transformation from EFG to ISMDP preserves all strategically relevant components, this optimal ISMDP
policy is a best response in the original EFG. Although the seemingly similar approach of POMCP (Partially Observable
Monte Carlo Planning) also applies [16], it is not as efficient in the specific domain we address. In extensive form games
with incomplete information, each player receives a private valuation drawn from a distribution before each play of the
game. As long as valuations are independent across players1, this private information only affects that player’s payoff
but not the dynamics of the opponents she face. Our approach exploits this independence and efficiently learn opponent
dynamics (encapsulated in an ISMDP) separately, while UCT-based methods such as POMCP learn a best policy for each
possible valuation so is more computationally intensive.

2 Transforming EFGs into ISMDPs

In this section we show how to transform EFGs to ISMDPs and illustrate the procedure with an example in Figure 1.

EFG An EFG is specified by a rooted game tree with labeled nodes and action branches [5], as illustrated in Figure 1(a).
Each play of the game is a trajectory from the root to some leaf, and the payoffs of each player depend on which terminal
node the game ended on. Each non-terminal node is a decision node controlled by one player who chooses from the
available action branches. Therefore, the game trajectory is jointly determined by all players. To model uncertainty from
the environment, there is a special player nature who chooses actions at chance nodes with probabilities commonly known
to all players. In Figure 1(a), each decision node is labeled with the identity of its controlling player, while chance nodes
are labeled 0.

Real-world situations are often modeled as EFGs with imperfect information in which each player’s decision nodes are
partitioned into information sets, and the player only observes which information set she is in when choosing actions. She
does not know the exact node and therefore has to make decisions under uncertainty. In Figure 1(a), nodes in the same
information set are circled together with dashed lines, and a node that isn’t circled belongs to a singleton information
set. For example, player 1 does not observe nature’s move before her first decision, but player 2 does. Moreover, player
2 knows which action player 1 has taken if nature chose the right action but not otherwise.

Each player’s strategy is a mapping from her information sets to actions, possibly with randomizations over actions.
Modeled as expected payoff maximizers, each player wants to play her best response, which is a strategy that maximizes
her expected payoff given opponent strategies. When knowing opponent strategies, the problem of finding a best re-
sponse reduces to a single-agent optimization problem under uncertainty [13]. Therefore from one player’s perspective,
EFGs can be transformed into POMDPs , which we call Information-Set POMDPs (ISPOMDPs).

EFG to ISPOMDP The hidden states in the ISPOMDP correspond to the controlling player’s decision nodes and termi-
nal nodes in the EFG. The uncertainty due to opponent and nature actions in EFGs are incorporated in the probabilistic
transitions between hidden states in the ISPOMDP. The terminal hidden states are associated with rewards which corre-
spond to the EFG rewards in terminal game nodes. At any non-terminal hidden state, the player receives an observation
of which information set—a set of hidden states—she is in. Figure 1(b) shows an example ISPOMDP for player 1.

ISPOMDPs are special cases of POMDPs with particular structure inherited from the EFGs. For example, while general
POMDPs can be connected graphs, ISPOMDPs are always trees because EFGs are trees. The most crucial feature is that
each observation in the ISPOMDP tells the player which set of hidden states she can be in. The belief state associated with
an observation has positive probabilities over hidden states in that information set and zeros probabilities elsewhere.

1This is a common assumption in games, .e.g, the independent private values assumption in auction games. Our algorithm requires
this assumption to apply.
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ISPOMDP to ISMDP We can further transform the ISPOMDP into an Information-Set MDP (ISMDP). An example
appears in Figure 1(d), with Figure 1(c) representing an intermediate step. The non-terminal decision states in the ISMDP
correspond directly to information sets in the EFG. The terminal states are groups of hidden terminal states. For example,
we can group together the three leftmost hidden terminal states in Figure 1(c), where the reward of the resulting state
is a probabilistic mixture of the rewards from the hidden states. This reduces the ISMDP state space. The transition
probabilities between ISMDP states are defined as transition probabilities between corresponding belief states, which
can be derived with Bayesian updating. The ISMDP policies are mappings from states to actions.
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(d) (Player 1’s) ISMDP

Figure 1: An example of transforming an (a) EFG first to (b) ISPOMDP and then to (d) ISMDP from one player’s perspec-
tive.

We argue the transformation from EFG to ISMDP is lossless from the perspective of best response computation, because
all strategically relevant components have been preserved. For example, the player knows which ISMDP state she is in
when making decisions, just like she knows which information set she is in when playing in the EFG. The knowledge
about opponent strategies in the EFG is incorporated into the transition probabilities between states in the ISMDP. The
expected payoff in terminal states of the ISMDP is derived directly from the payoffs in the EFG. Therefore the following
result follows.
Theorem 1. Consider an EFG that is transformed into an ISMDP from one player’s perspective using the procedure described
above. Then a policy / strategy is optimal in the ISMDP if and only if it is a best response in the EFG.

3 Learning and Solving ISMDPs by Simulation

Once an EFG is transformed into an ISMDP, we can leverage existing reinforcement learning algorithms for learning
and planning. Our algorithm learns an approximate ISMDP by simulation, and then uses dynamic programming to
solve for an optimal policy, which is an approximate solution to the true ISMDP. The simulation of player i’s ISMDP is
best understood as repeatedly replaying the EFG. We sample nature’s moves and simulate opponents choosing actions
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according to their respective strategies, while player i explores all actions probabilistically. Recall that each information
set in the EFG uniquely corresponds to a state in the ISMDP. After collecting histories of many game trajectories, the
transition probabilities P (s′|s, a) are approximated by the empirical probability of s′ when i chooses a at s. Similarly, the
rewards R(s, a) are approximated using sample averages of rewards experienced.

Properties inherited from the original EFG structure, however, pose important challenges to learning the ISMDP effec-
tively. First, the number of states is exponential in the horizon. Since the player remembers her own past moves, even
without observation of opponent and nature actions, the number of information sets after H actions is at least AH in the
EFG, where A is the number of actions to choose from. This means there are at least AH states in the ISMDP because
they correspond directly to information sets. As we show in Theorem 3, the number of samples required for learning a
near-optimal response has a lower bound that depends on AH .

Secondly, each simulation generates a single uninterrupted trajectory from root to some leaf in the ISMDP, so the sample
points get divided up sparsely deeper into the ISMDP. Moreover the sample points can be distributed unevenly among
states in the same level, as the number of times an ISMDP state is reached depends on probabilistic moves by nature
and other-player strategies. Therefore even after numerous simulations, some states can still be rarely visited and their
dynamics poorly learned, as illustrated in Figure 2(c).

Kearns et al. [8] designed a Sparse Sampling algorithm (SS) to efficiently plan in large MDPs with exponential state
space, but it requires the ability to resample actions any point along a trajectory, a setting in which the simulator is able
to make the distribution of sample points look like that in Figure 2(a). This is not possible in our setting: part of the
uncertainty in s′ ∼ P (·|s, a) depends on the earlier actions of nature and opponents in the game trajectory, so resampling
s′ independently requires resampling all those actions. But then the game could have taken a different route without
passing s.
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Figure 2: The numbers represent the number of times each state is reached in simulation. (a): The case assumed achiev-
able in Sparse Sampling of [8]. (b): The best case in our setting. (c): A case that can occur in our setting. The state is
sampled only once is learned poorly even if the total number of simulations is large.

These two challenges - exponential state space and the fact that some states will always be poorly learned - make it
extremely difficult to derive optimality-guarantees of the learned policy. Despite the difficulties, we prove a baseline
upper bound on the samples required for learning a near-optimal policy. The proof depends on the realization, as
pointed out by Kearns and Singh [7], that states rarely reached in the simulation contribute less to the overall payoff
precisely because they are so unlikely to be reached. The full proof is available in a technical report.
Theorem 2. Suppose the simulator explores the ISMDP with balanced wandering: at each state, choose the least chosen action
and break ties uniformly randomly. Consider any A-action ISMDP tree with horizon H , rewards bounded in [0, 1], and branching
factor S (therefore the number of states in level h is Sh). For any ε, δ > 0, to ensure the learned policy is ε-optimal with probability
at least 1− δ, it suffices to have the following sample size:

N = O
((

2ASH

ε

)2H (
log

1

δ
+H logS

))
(1)

This bound can perhaps be improved upon by considering selective sampling schemes, such as UCT [9]. We also prove
a lower bound which says it is impossible to get rid of an exponential dependence on the horizon H :
Theorem 3. For any simulation scheme, possibly adaptive, there exists an ISMDP such that the algorithm must generate at least
Ω
(
AH

ε log 1
δ

)
samples to guarantee the learned policy be ε-optimal with probability 1− δ.

Implementation To evaluate the performance of our ISMDP-based approach, we ran sequential auction experiments
represented as EFGs with imperfect information. A complete description of these experiments can be found in Green-
wald et al. [3]. Starting from three sequential auction models with known (analytically-derived) equilibria, we trans-
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formed them into ISMDPs and computed best responses to equilibrium strategies. Our algorithm not only found close
approximation of the known best responses, but also discovered new heretofore unknown ones.

We further implemented two algorithms that call our best-response algorithm as a subroutine. The first approximates
best-reply dynamics [1]. We used this algorithm to find near-equilibria in sequential auctions with state spaces larger
than those previous solved in the literature. The second algorithm approximates the ε-factor, a measure of stability of
near-equilibrium strategy profiles in games. We used this ε-factor approximation algorithm to conclude that our best-
reply dynamics converged to stable near-equilibria.

4 Related Literature and Future Work

In terms of applying reinforcement learning methods to games, many variants of Q-learning [11][6][4] have been applied
to approximate game theoretic equilibrium. While we consider EFGs, they applied their methods to stochastic games.
In the auction domain, the iterative method self-confirming price prediction employed in [14] is very similar to the best
response dynamics we implemented. Our method of epsilon-factor approximation is similar to the Ex-post check in [2].
Sampling complexity bounds for reinforcement learning have been studied by many; a summary appears in [17].

This paper focuses on the theoretical framework of converting EFGs to ISMDPs, and the next step is to leverage rein-
forcement learning methods to scale up the algorithm to large games. The exponential state space in ISMDP and the
inability to resample actions in simulation will remain the main challenges. Our current algorithm is a model-based rein-
forcement learning method, but model-free ones should also be considered. Selective sampling schemes like UCT [9], as
well as dimensionality reduction methods like state-space aggregation [10] and value function approximation [15] will
be explored in future work.
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Abstract

Reinforcement learning (RL) algorithms are typically evaluated online—a value function or policy is used to control the
target system and its return is measured. When a target system makes online evaluation expensive (such as driving
a robot car), unethical (such as treating a disease), or simply impractical (such as challenging a human chess master),
effective offline evaluation metrics can play a critical role. In this paper, we compare several offline evaluation metrics,
pointing out significant shortcomings that limit their utility. We propose a new metric we call “relative Bellman update
error” (RBUE) that scores pairs of value functions using offline data. We provide analysis and empirical results that
suggest the RBUE metric is a viable way of comparing value functions offline.

Keywords: Reinforcement Learning

Paper S34 121



1 Introduction

To assess the effectiveness of reinforcement-learning (RL) algorithms, it is important to have a way to compare pairs of
algorithms head to head. The gold standard evaluation is to measure the return of each algorithm online (Kaelbling et al.,
1996), declaring the algorithm that produced the highest return the winner.

While online evaluation is, in some sense, the only true measure of an algorithm’s performance, there are many reasons
to desire an offline evaluation metric using a fixed set of pre-collected data:

• If it is not possible to interact with the target system and no veridical simulator is available, offline evaluation is
the only option.

• Even if a good simulator is available, if it is complex, time consuming, or expensive to use, offline evaluation
might be preferred.

• Even if a simulator is available and easy to share, offline evaluation can be important for making the results more
comparable. (Many research groups have rewritten incompatible versions of classic RL systems like “mountain
car” due to language incompatibilities or other constraints.)

• When a target system is a human being (a patient with epilepsy or a grandmaster chess opponent, say) there are
practical, and sometimes even ethical, concerns about testing learning results online. Offline evaluation can make
it possible to collect the data once under controlled conditions and then share it with researchers throughout the
community.

Evaluating learned classifiers offline using labeled batch data is standard practice in the supervised-learning community.
The introduction of the UCI Machine Learning data repository (Newman et al., 1998) transformed the way machine-
learning (ML) research is conducted and led to the development of multiple evaluation metrics as well as inspired other
ML sub-communities to develop standards to collect data and evaluate performance (Bay et al., 2000).

Existing approaches for offline evaluation for RL have taken a number of forms. In the following section, we survey some
of these approaches. We next present the properties of our proposed metric and then demonstrate its use to compare the
performance of value functions learned in several benchmark systems.

2 Reinforcement-Learning Evaluation Metrics

We seek an evaluation metric that (1) is easy to calculate given batch data and (2) enables us to compare the performance
of one state-action value function to another. That is, given a set of experience tuples of the form 〈s, a, r, s′〉 and a pair of
state-action value functions Q1 and Q2, we want an evaluation of which value function is superior.

In this section, we survey some ways of assessing state-action value functions. The last metric is discussed in greater
depth as we formulate our proposed metric. For consistency, we define each metric M(Q1, Q2) so that it returns a
positive value if Q1 is believed to be superior, a negative value if Q2 is believed to be superior, and zero if they are
judged as being equally good. Given an experience tuple 〈s, a, r, s′〉, we define the sample Bellman backup operator Bs,ar,s′ as
a mapping from state-action value function Q to a new state-action value function that is identical to Q except

(Bs,ar,s′Q)(s, a) = r + γmax
a′

Q(s′, a′). (1)

Using this notation, the standard Bellman backup operator B can be written as (BQ)(s, a) = ⁅(Bs,ar,s′Q)(s, a)⁆s
′,r
T,R. The

notation ⁅ · ⁆s
′,r
T,R denotes that we are taking an expected value of the expression ·with s′ ∼ T (s, a, s′) and r = R(s, a).

2.1 Short Survey of Studied Metrics

An ideal offline evaluation metric evaluates policies, but such metrics appear to require strong assumptions. We list a
number of metrics and their properties:

• Expected Return (Online): Even though it is an online metric, we use it as the gold standard. The most direct score
for comparing state-action value functions is the expected return, return(Q), the discounted sum of rewards
along an episode following the greedy policy πQ(s) = argmaxaQ(s, a). This policy is applied on the real system
or simulator and the collected rewards are summed. Define M return(Q1, Q2) = return(Q1)− return(Q2).

• Fonteneau et al. (2010) developed Model Free Monte Carlo-like policy evaluation (MFMC). It is designed to evaluate
a policy given a set of experience tuples, but we can use it to evaluate a value function Q by considering its
greedy policy πQ(s) = argmaxaQ(s, a). The output, mfmc(Q), is the return based on trajectories sampled using
the policy and an approximate model of the transition dynamics. In particular, next states are chosen by finding

1

Paper S34 122



the closest one-step transitions in the set of experience tuples. Our approach differs from MFMC in that we
develop an evaluation metric that uses the collected batch data directly, and not as a proxy to reconstruct the
likely trajectories that would have been produced by the resultant policy. Define MMFMC(Q1, Q2) = mfmc(Q1)−
mfmc(Q2).

• Distance from Optimal Value Function: The state-action value functionQ∗ is the solution to the equationQ∗ = BQ∗.
The greedy policy with respect to Q∗ maximizes expected return. As such, it is natural to assess a state-action
value function Q by its distance from Q∗. Using ||Q|| = maxs,a |Q(s, a)| as the max norm of Q, we can evaluate Q
via ||Q∗−Q||. Singh and Yee (1994) relate the quantity ||Q∗−Q|| to the difference in return between followingQ’s
greedy policy and following Q∗’s. A positive property of this metric is that Mdist(Q

∗, Q) is non-negative for all
Q. That is, no state-action value function is judged superior to Q∗. Its largest drawback is that it cannot be used
unless Q∗ is known, which will only be true for the most basic benchmark problems. Define Mdist(Q1, Q2) =
||Q∗ −Q2|| − ||Q∗ −Q1||.

• Bellman Residual: The Bellman backup of Q is Q′ = BQ. As mentioned above, the optimal value function is
obtained when Q = Q′, suggesting that the distance between these quantities, ||Q′ − Q||, sometimes called the
Bellman residual, is another useful way of evaluating Q. Porteus (1982) provides an analysis that can be used to
relate ||Q′ − Q|| to ||Q∗ − Q|| and therefore to the difference in expected return between following Q’s greedy
policy and following Q∗’s. A high value of the Bellman residual does not imply a poor value function. However,
a value function with a lower Bellman residual has a tighter bound on its suboptimality. Its largest drawback is
that it cannot be used unless the transition function is known (or is very densely sampled), because the transition
function is needed for computing the Bellman backup. Define M residual(Q1, Q2) = ‖BQ2 −Q2‖ − ‖BQ1 −Q1‖.

2.2 Bellman Update Error

Consider again the Bellman residual and why it cannot be used without a model. For a value function Q, we would
like to evaluate ||Q − BQ|| where BQ is the Bellman backup applied to Q. That is, we want Q(s, a) to be as close as
possible to the average (over next states) value of (Bs,ar,s′Q)(s, a). By analogy to using samples to estimate an average,

we define the following error measure we call Bellman update error (BUE) BUE(Q) = ⁅⁅(Q(s, a) − (Bs,ar,s′Q)(s, a))2⁆s
′,r
T,R⁆s,aΠ .

Here, state-action pairs are sampled from some probability distribution Π and next states are sampled from the transition
function. The idea of Bellman update error is natural—it can be thought of as the Q-learning rule reconceptualized as an
error measure—and has been used (explicitly or implicitly) repeatedly in the RL literature. We define the metric based
on BUE as MBUE(Q1, Q2) = BUE(Q2)− BUE(Q1).

The BUE metric has the positive attribute that it can be estimated without knowing Q∗ or T . Further, it can be esti-
mated from sampled data as values are combined across state-action pairs sampled from a distribution Π. If test data
is drawn from this distribution, approximating this average is straightforward. However, the Bellman update error is
known to have some serious problems (Baird, 1995; Sutton and Barto, 1998). Its negative attribute is that, in stochastic
systems, poor value functions can be rated as superior to the optimal value function because of an errant variance term
in its formulation. In particular, given a distribution Π, we later show a stochastic system for which the value function
QAV(s, a) = r̃Π

1−γ has the property that BUE(QAV) < BUE(Q∗).

3 Relative Bellman Update Error

We propose the following novel metric for comparing two state-action value functions Q1 and Q2. Like BUE, it can be
estimated from a sample of experience tuples. But, it has some important properties that set it apart from BUE. For
example, it can produce a bound on the suboptimality of return, and it correctly selects Q∗ as the optimal value function
given the right sampling distribution Π.

The basic idea is to consider a Bellman update on the average of Q1 and Q2 instead of one or the other. For state-action
value function Qi (i is 1 or 2), we have RBUEs,ai (Q1, Q2) = ⁅(Qi(s, a) − (Bs,ar,s′(Q1 + Q2))(s, a)/2)2⁆s

′,r
T,R. These quantities

are then combined into a metric via MRBUE(Q1, Q2) = ⁅RBUEs,a2 (Q1, Q2)− RBUEs,a1 (Q1, Q2)⁆s,aΠ .

The definition of MRBUE removes the impact of the variance term that made MBUE unreliable. A significant problem with
the more direct metric MBUE is that it can judge the optimal value function Q∗ as being inferior to a very poor value
function. We can show that a variant of MRBUE that uses the max-norm instead of ⁅ · ⁆s,aΠ does not have this problem. The
same result does not hold for ⁅ · ⁆s,aΠ with general distributions Π, but we conjecture that it holds when Π is the stationary
distribution of the optimal policy.
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Figure 1: Comparison of Evaluation Metrics for Mountain Car and Marble Maze Systems

4 Empirical Evaluation of Offline Evaluation Metrics

To assess the value of the different offline evaluation metrics, we carried out comparison experiments using a number of
different reinforcement-learning systems. The metrics we used use for our evaluations were M return, Mdist, MBUE, MRBUE
and MMFMC. The evaluations we report are on the systems Mountain Car (Sutton and Barto, 1998) and Marble Maze
(Leffler et al., 2007).

4.1 Mountain Car

In Mountain Car, the goal is to get an underpowered car to reach the top of a hill. The system’s state space has two
dimensions (position and velocity) and three actions (forward throttle, backward throttle and no throttle). The system
has a reward of 0.0 when the car reaches the top of the hill and a reward of −1.0 for every time point when the car is not
at the top of the hill. In our configuration, the system is deterministic and the car always starts at the bottom of the hill.

The setup of the experiment was as follows. To calculate MBUE, MRBUE and MMFMC, the batch data consisted of 5 sets of
30,000 transitions sampled from data collected from a suboptimal policy. The suboptimal, non-stationary policy took an
average of 677 steps to reach the goal. For MMFMC and M return, we allowed a maximum of 1000 steps per episode. We
evaluated 16 learned state-action value functions (8 from Q-learning, 8 from LSPI using Fourier basis), the optimal state-
action value function Q∗ and the constant function QAV, defined earlier. The metrics for a selected subset of state-action
value functions are shown in Figure 1a. For this system, we also include M residual to aid in better understanding of the
results of the other metrics.

The optimal Q∗ has the best performance in terms of return and the other value functions are all roughly equally sub-
optimal. Interestingly, MMFMC does a poor job of evaluating the value functions for this problem. Although it correctly
identifies QAV as suboptimal, it estimates Q1 through Q4 as superior to Q∗. The metrics Mdist, MBUE and MRBUE are the
“winners”, as they all scoreQ∗ as better than the other value functions. Note, however, thatMBUE andMRBUE only barely
preferQ∗ toQ2. On the other hand, Mdist identifiesQ2 as quite a bit worse than the others, suggesting that the learnerQ2

fits the sampled test data well but that there are certain state-action values in the state-action space that it approximates
poorly. Examining M residual gives us insight into this issue. As M residual covers the whole state-action space, it highlights
which of the state-action value functions has the highest Bellman residual error over the whole state-action space. The
M residual metric prefers Q2 least when compared to Q∗. This observation confirms that among the state-action pairs that
were not in the sampled data, Q2 has a poor approximation. The rest of the learners have relatively lower M residual.

4.2 Marble Maze

The Marble Maze (Leffler et al., 2007) is a 2-dimensional discrete grid world with 81 states that includes a start state, pits,
walls, and a goal. Its actions are up, down, left and right. Action effects are stochastic. A reward of −0.0001 is given for
every timestep until the goal or a pit is reached. A reward of −1.0 was given for falling into a pit and a reward of 1.0 was
given for reaching the goal.
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The setup of the data collection and use for all of the metrics was similar to that of the Mountain Car system. The major
difference was that a random policy with random starts states was used. The average collected trajectory length was 13.5
steps. The return was calculated from a single start state (Leffler et al., 2007). We create the same number and types of
state-action value functions as described for Mountain Car. Comparisons for a subset of the state-action value functions
is shown in Figure 1b.

In this system, all the value functions performed nearly optimally, with the exception of QAV, which was quite poor. The
metric MMFMC does not track M return well, rating QAV as good compared to Q∗ and Q2 as better than Q∗. Here, MRBUE
and Mdist correctly assess the learned value functions as being near optimal and QAV as being poor. Again, as suggested
by our analysis, the stochastic nature of this system causes trouble for MBUE, which rates QAV as superior to Q∗ due to
its lower variance.

5 Summary and Conclusion

We conclude by summarizing our findings across all metrics. M return is the gold standard online metric. Its major
drawback is that it cannot be used offline—access to the real system or an accurate simulator is required. Mdist correlates
reasonably well with M return and can be applied offline. Its use, however, requires knowledge of Q∗, which can be
extremely difficult to obtain. MMFMC is an offline metric. It is easy to calculate and, in many cases, it can produces very
accurate estimates of M return. In general, it requires a good similarity function and sufficient testing data to adequately
represent the state-action space. It also seems to have difficulties accurately simulating long trajectories, limiting its
utility. MBUE is an offline metric and is also very easy to compute. Its drawback is that it produces inaccurate evaluations
in non-deterministic systems because of a sensitivity to variance. Our proposed metric, MRBUE, is also easily computable
offline. It is robust to non-deterministic settings and has the potential to be developed further. A shortcoming is that it can
only make relative judgments between pairs of state-action value functions, making it impossible to produce a ranking
of a collection of functions directly. Like all offline methods, it has a dependency on how testing data is collected—a
biased sample can produce misleading evaluations.

The relative Bellman update error metric (MRBUE) introduced in this paper could be used to build an online
reinforcement-learning evaluation repository. We believe that, if sampled data sufficiently explores the state and ac-
tion space, MRBUE provides a foundation on which batch sampled data can be made available to researchers via the
Internet and algorithms can be evaluated on common datasets without the complexity of creating and sharing simu-
lators. The metric can be used completely offline by researchers to evaluate the algorithms they have or it can allow
for a centralized service that could evaluate algorithms by comparing the state-action value functions they produce to
other collected state-action value functions. Note that mechanisms for producing rankings from pairwise comparisons
are well studied in the board game and sports communities; future work will examine adapting these schemes to the
algorithm-evaluation setting.
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Abstract 

  

We investigated how well people make sequential decisions to achieve the long-term goal. In video-game-
like settings, a spaceship flew across a row of three mountains of increasing heights. Before each mountain, 
subjects could elevate the spaceship by either a constant and small height (CS) or a variant but on average 
larger height (VL) to avoid crashing. The goal was to survive beyond the last mountain. The optimal choice 
before a specific mountain depended on the heights of all future mountains. We tested whether subjects 
could learn the optimal policy or base their choices only on a short horizon, i.e. on the immediate mountain. 

Methods: We constructed two combinations of mountain heights, A & B, which differed in how early a 
short horizon would be penalized. For A, a short horizon would yield the optimal choice before the first 
mountain and not increase crash rate until the last mountain. In contrast, for B, a short horizon would 
increase crash rate as early as the second mountain. Each subject completed 4 blocks of 60 trials, in the block 
order of ABAB or BABA. Sixteen naïve subjects were evenly assigned to the two groups. 

Results: The two groups differed in their learning trajectories. (1) The ABAB group achieved a higher 
probability of survival in the last (.63) than in the first two blocks (.50), but the BABA did not (both .54). (2) 
The ABAB had a shorter horizon than the BABA: When VL was the optimal choice and involved long-term 
considerations, ABAB chose VL less than BABA did (53% vs. 67%). (3) The BABA appeared to be far-
sighted: When CS was the optimal choice and reduced crash at the immediate mountain, BABA chose CS 
less than ABAB did (60% vs. 81%).       

Conclusion: Human individuals’ temporal horizon in a sequential-decision task depends on their initial 
experience with the task. People may learn to be myopic or far-sighted.   

Keywords:  sequential decisions; temporal horizon; decision under risk; order effect 
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We investigated how well people make sequential decisions to achieve the long-term goal. In video-game-
like settings (Fig. 1), a spaceship moved from left to right to approach a row of three mountains of 
increasing heights. It would crash into a mountain if it was still lower than the mountain upon arrival. 
Before each mountain, subjects could elevate the spaceship by either a constant and small height (CS) or a 
variant but on average larger height (VL). The goal of each trial was to survive beyond the last mountain. 
Subjects received monetary rewards for each survival.  The optimal choice before a specific mountain 
depended on the heights of all future mountains. We tested whether subjects could learn the optimal policy 
or base their choices only on a short horizon, i.e. on the immediate mountain. 

 

      

Figure 1. Screenshots of a trial.  

 

Methods: Before each mountain, subjects had up to 2.5 seconds to choose CS or VL by key press. CS was 2 
units. VL was equally likely to be 1 or 5 units. The experiment consisted of three stages. Subjects first 
sampled each option for 24 times and observe their outcomes. Then they chose between CS and VL to 
survive one mountain of 1.5, 2.5, 3.5, or 4.5 units high, for 80 trials.  

In the following main task, subjects aimed to survive three mountains, whose heights were [1.5, 2.5, 7.5] 
(Combination A) or [0.5, 5.5, 7.5] (Combination B). Combinations A & B differed in how early a short 
horizon would be penalized. For A, a short horizon would yield the optimal choice before the first 
mountain and not increase crash rate until the last mountain. In contrast, for B, a short horizon would 
increase crash rate as early as the second mountain. Each subject completed 4 blocks of 60 trials, in the block 
order of ABAB or BABA. Sixteen naïve subjects were evenly assigned to the two groups.  

Results: The two groups differed in their learning trajectories. (1) The ABAB group achieved a higher 
probability of survival in the last (.63) than in the first two blocks (.50), F(1,21)=13.05, p=.002, but the BABA 
did not (both .54). See Fig. 2a. (2) The ABAB had a shorter horizon than the BABA: When VL was the 
optimal choice and involved long-term considerations, ABAB chose VL less than BABA did (51% vs. 60% 
before B’s first mountain, 55% vs. 73% before A’s second mountain, F(1,57)=2.99, p=.089). See Fig. 2b, middle 
and right. (3) The BABA appeared to be far-sighted: When CS was the optimal choice and reduced crash at 
the immediate mountain, BABA chose CS less than ABAB did (60% vs. 81% before A’s first mountain, 
F(1,28)=8.51, p=.007). See Fig. 2b, left. We verified that the two groups did not differ in their performances in 
the one-mountain task.  
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Figure 2. ABAB group vs. BABA group in the three-mountain task. (a) Probability of survival for the two groups and 
for the 1st and 2nd half of trials. Dash line denotes the maximum expected probability of survival. (b) Percentage of 
trials of choosing CS when CS was the optimal choice and reduced immediate crash (left panel) and of choosing VL 
when VL was the optimal choice and facilitated surpassing future mountains (middle and right panels). Error bars 
denote 1 SE. 

 

Conclusion: Human individuals’ temporal horizon in a sequential-decision task depends on their initial 
experience with the task. People may learn to be myopic or far-sighted.  
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Abstract 

Human choice behavior often reflects a competition between inflexible but computationally efficient control 

on the one hand and slower but more flexible systems of control on the other. This d istinction is well 

captured  by model-free and model-based  reinforcement learning algorithms, which share many similarities 

with habitual and  goal-directed  behaviors, respectively. These two systems often compete for control over 

choice, and  it has been suggested  that an imbalance between controllers might underlie a wide range of 

d isorders, including addiction and Parkinson’s d isease. Causally manipulating this balance in humans will 

provide insight into the neural structures underlying value-based  choice, and  serve as a potential avenue for 

intervention in d isorders of these systems. Here we studied  human subjects performing a task that allows 

the quantification of model-based  and model-free control (Daw et al., 2011, Neuron), following theta-burst 

transcranial magnetic stimulation (TMS) to the right or left dorsolateral prefrontal cortex, or the vertex. We 

show it is possible to shift the balance of control between these systems by d isruption of dorsolateral 

prefrontal cortex, such that participants manifest a dominance of simpler but less optimal model-free 

control, compared  to vertex. We will also present data on the same task from an enhancement, rather than 

impairment, of dorsolateral prefrontal cortex processing through transcranial d irect current stimulation.  

Keywords:  model-based  control, prefrontal cortex, transcranial magnetic stimulation  
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1 Introduction 

An elegant computational framework that captures the presence of (often competing) habit -like and goal-

d irected  behaviors is provided by model-free and model-based  control
1,2

. A model-free system learns a 

single value for each action based  on reward  prediction errors and guides behavior based  on these alone, 

requiring a minimum of computational effort at a cost of a lack of flexibility in adjusting to current goals. 

Model-based  control, by contrast, dynamically computes optimal actions, a process that is computationally 

demanding but allows for flexible, outcome-specific behavioral repertoires. In this study we focused on the 

involvement of the d lPFC in model-based  control. We focused  on this region based  on previous evidence 

for its role in the construction and use of associative models
3-5

 and  the coding of hypothetical outcomes
6
. 

Work on non-human primates also implicates the d lPFC as a site for convergence of reward  and contextual 

information
7
. However, the key human evidence for d lPFC involvement in model-based  control has been 

based  on correlational evidence using functional imaging (fMRI) or single-unit recordings. Here we describe 

two stud ies in which we attempted  to shift the balance between these tw o systems in human participants by 

neurostimulation of the d lPFC. We predicted  that a d isruption of d lPFC through theta burst transcranial 

magnetic stimulation (TBS
8
) should  selectively impair model-based  control and  thus lead  to a relative shift 

towards model-free control; conversely, an enhancement of d lPFC through anodal transcranial d irect 

current stimulation (tDCS
9
) should  lead  to an enhancement of model-based  relative to model-free control. 

2 Methods 

2.1  Participants and stimulation protocol 

For the TBS study, w e recruited  25 human participants (mean age (SD): 24.2 (4.0) years). These participants 

were tested  on 3 separate sessions (3 to 16 days apart) after off-line MRI-guided TBS to the right dlPFC, left 

d lPFC, or vertex (control site; intersect between nasion-inion line running front-to-back over the skull, and  

line running between ears over the top of the head). The TBS protocol leads to reduced excitability of the 

underlying neural tissue for a period  of at least 20 minutes
8
, which is thought to interfere with normal 

function. For the tDCS study we recruited  a d ifferent group of 23 human participants (mean age (SD): 22.5 

(5.3) years). All participants were tested  in a double-blind design on 2 sessions 3-6 days apart with on-line 

sham or active anodal stimulation to right d lPFC, and cathodal stimulation over the inion. A d irect current 

of 2 mA leads to increases in excitability of the tissue underneath the anode
9
. One participant was excluded 

from the tDCS study because stimulation was interrupted  during the task du e to a decrease in conductance 

over time. 

2.2  Task 

We used a task that enables quantification of model-based  and model-free control over choices
10
. 

Participants were required  to make two choices on every trial to arrive at a rewarded or a non -rewarded 

outcome (Figure 1A). Choices at the first stage of the task probabilistically determine which pair of options 

becomes available at the second stage. For each first stage action, one pair of second -stage options is more 

likely to occur (a ‘common transition’). Because a model-based  controller is able to incorporate the 

probability of state-state transitions into its decision making, whilst the model-free controller is not, the 

predictions made by these controllers d iverge after uncommon transitions (Figure 1B). For example, a 

reward  obtained  after an uncommon transition prompts a model-free agent to (erroneously) choose the 

same first-stage stimulus on the next trial, since action values are updated  based  solely on the rewards that 

follow the action. In contrast, a model-based  agent would  be more likely to switch to the previously 

unchosen first-stage stimulus, as such a switch will make it more likely that the agent arrives at the 

rewarded second state again . Using these divergent predictions about first-stage choice behavior, we can 

quantify the influence of the controllers in terms of the main effect of reward  (model-free) and  the 

interaction between reward  and transition likelihood (model-based) on the probability of staying with the 

same first-stage stimulus (Figure 1B). Following instruction and  50 practice trials using a different set of 

stimuli, participants completed  201 trials for the TBS study, or 350 trials in the tDCS study.  
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Figure 1: Task design (a) On each trial a choice between two stimuli led probabilistically to one of two further pairs of stimuli, 
which then demanded another choice followed by reward or no-reward according to the p(reward) of the chosen second-stage 
stimulus that fluctuated over time. (b) Model-based and model-free strategies for reinforcement learning predict differences in 
feedback processing particularly after uncommon transitions. We can thus quantify model-free control by estimating the main 
effect of reward, and model-based control by estimating the reward-by-transition interaction. 

2.3  Analysis 

We estimated  the main effect of reward  (model-free control) and  the reward -by-transition interaction  

(model-based  control) for each experimental condition  using hierarchical logistic regression, with all 

coefficients taken as random effects across participants. In the TBS study this regression only included 

events on the previous trial, whereas in the tDCS study we added regressors examining effects of reward  

and reward-by-transition up to 5 trials in the past. Planned contrasts were performed on these regression 

coefficients to examine within-subject effects of stimulation for the TBS and tDCS studies separately. The 

analyses were performed in Matlab and using the LME4 toolbox for R.  

3  Results 

3.1  TBS to right dlPFC disrupts model-based control 

We observed positive coefficients for the reward  and reward -by-transition regressors for all three TBS sites 

(all p  < .006), confirming that behavior comprised  a hybrid  of model-free and model-based  control. Levels of 

model-based  and model-free control after left and right d lPFC TBS were then contrasted  with vertex (Figure 

2A). We observed that TBS to neither left (p = .52) nor right (p = .20) d lPFC significantly changed model-free 

control compared  to vertex. By contrast, model-based  control was disrupted  following TBS to right (p = .01) 

but not left (p = .89) d lPFC compared  to vertex. We observed no difference in model-based  control between  

left and  right d lPFC (p = .13). We also computed  a measure of the relative balance between these two 

systems as β
model-based

 – β
model-free

 (Figure 2B). This showed a significant shift towards model-free control caused  

by TBS to right (p = .01) but not left (p = .63) d lPFC compared  to vertex. We observed no difference between 

left and  right d lPFC (p = .11). 
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Figure 2: Results (a) Disruption of right dlPFC reduced model-based control compared to vertex. TBS did not significantly affect 
model-free control. (b) The balance between the controllers was calculated as βmodel-based – βmodel-free. The balance significantly 
shifted towards model-free control after disruption of right, but not left, dlPFC compared to vertex. Error bars indicate SEM. 

3.2  Effect of TBS to left dlPFC interacts with working memory capacity 

Model-based  control is thought to depend on prefrontal working memory (WM). Given that studies of WM 

observe lateralized  functionality (e.g.
11
) we asked whether the magnitude of the TBS effect might be related  

to WM capacity. To examine such inter-individual d ifferences we could  not use the population parameter 

estimates obtained  through the regression. Instead , we extracted  the numerical magnitude of the main effect 

of reward , the reward -by-transition interaction and the d ifference between the two from each subject’s 

average stay probability in each of the four reward/ transition conditions in each stimulation condition. We 

correlated  the balance between the two systems in all stimulation conditions with WM. Strikingly, only 

behavior after disruption of left d lPFC was WM-dependent (Figure 3; vertex, r = .09, p = .68; left d lPFC r = 

.53, p = .006; right d lPFC, r = -.05, p = .80). Pairwise permutation tests revealed  the correlation was 

significantly more positive in left compared  to right d lPFC (10^ 5 permutations, p  = .009), marginally more 

positive in left dlPFC compared  to vertex (p = .06), and not significantly different between right d lPFC and 

vertex (p = .52). Taken together, these data show that the effect of left d lPFC disruption on the balance 

between model-based  and model-free control depends on WM capacity, with high WM participants 

retaining more model-based  control compared  to those with low WM. 

 
Figure 3: Working memory (WM) capacity did not predict the balance between model-based and model-free control after 
disruption of vertex (left) or right dlPFC (right). In contrast, higher WM was associated with relatively stronger model-based 
control after disruption of left dlPFC (middle). 

3.1  Preliminary analysis of anodal tDCS to right dlPFC 

The tDCS data are in a preliminary stage of analysis. We performed a regression as in the TBS study , but 

now attempting to predict the current choice based  on events up to 5 trials in the past. Firstly, we observe 

that significant model-free and model-based  influences on choice occur as far back as 5 trials in the past, in 

both sham and active stimulation (each coefficient > 0, each p < .05; Figure 4). Where we predicted  the 
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Active condition to reveal stronger model-based  influences on behavior, this was not significant when taken 

over the 5 trials together (p = .80), on any of the individual time points (all p  > .34), or when examined as an 

interaction with Lag (p = .85). Rather, it seemed that model-free control was somewhat stronger in the Sham 

compared  to Active condition, though the statistical evidence in this preliminary analysis is weak (Lag-1 

model-free coefficient Sham > Active, p = .07; Lag-3 model-free coefficient Sham > Active, p = .10) 

 
Figure 4: Behavior on trial n explained by events on trial n-1 to n-5. All 5 Lag trials significantly contribute to choice behavior, 
suggesting extended integration of information in both the model-free and model-based system. No significant effects of 
stimulation condition (Active versus Sham) were found. MF = model-free, MB = model-based, error bars indicate ± SEM. 

4  Discussion 

These data show that a disruption of the right dlPFC leads to a selective impairment of model-based control, 

suggesting a necessary role for this region in complex, goal-d irected  action. Disruption of the left d lPFC 

only impaired  model-based  control in individuals with low working memory capacity, suggesting a 

protective effect of high working memory on transient d isruption of left d lPFC function. It is not yet clear 

why an enhancement of right d lPFC using tDCS does not elicit improved model-based  control, though 

further analyses on these data are needed to explore this manipulation fully.  
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Abstract 
We investigated how reward learning and its interaction with novelty-seeking could be affected across the 
lifespan. Stimulus novelty enhances exploratory choices through engagment of neural reward systems. As 
these reward systems depend on dopamine, which in turn has been proposed to decrease with increasing 
age, we hypothesized that aging may be associated with changes in reward learning processes. We applied 
a reward-dependent learning task to younger and older groups. Computational models were used to 
quantify differences in behavioral performance and brain activation (fMRI). We showed that novel stimuli 
presented from a pre-familiarized category could accelerate or decelerate learning of the most rewarding 
category, depending on whether novel stimuli were presented in the best or worst rewarding category. The 
extent of this influence depended on the individual trait of novelty seeking. For novelty seekers, learning 
was accelerated in the best category and decelerated in the worst category, when novelty was presented. 
The opposite effect could be observed for novelty avoiders. Subjects’ choices were quantified in 
reinforcement learning models, including a parameter to characterize individual variation in novelty 
response. The theoretical framework further allowed us to test different assumptions, concerning the 
motivational value of novelty. fMRI analysis showed the strongest signal change in the condition where 
reward and novelty were presented together, but only in low probability of correct action trials. This effect 
was observed in the striatum, midbrain and cingulate cortex. The model also showed that older subjects had 
lower novelty seeking behavior, but overall explorative behavior was increased.  

 

 
Keywords:  hidden markov model; novelty seeking; aging 
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1 Extended Abstract 

Human adaptive behavior changes across the lifespan and is strongly linked to the functioning of the 
dopaminergic system [2-4]. Here we investigate how the hypothetical alteration of dopaminergic 
functioning could affect novelty-seeking behavior and its interaction with reward-learning across the 
lifespan. Dopamine synthesis in striatum and midbrain has a tendency to decrease with increasing age [18]. 
Novel stimuli tend to be associated with a stronger explorative behavior in the context of a reward-based 
learning paradigm in humans [7]. Stimulus novelty enhances these exploratory choices through engagment 
of neural reward systems, that have been shown to depend on dopamine. Thus we hypothesize that 
modifications of the dopaminergic system across the lifespan may be associated with changes in learning 
processes, changes that have already been observed both on behavioral [19] and neurobiological [20] levels. 
We apply a reward-related learning tasks with novelty interaction to younger and older subject groups, 
which are expected to have different learning profiles a consequence of aging. Data interpretation crucially 
depends on computational models. These are used to quantify differences in behavioral performance and 
brain activation (fMRI). 

 

1.1  Novelty-seeking across the lifespan 

Recent research suggests that novelty has an influence on reward-related decision-making [7-13]. Novel 
stimuli tend to be associated with a stronger explorative behavior in the context of a reward-based learning 
paradigm in humans [7]. Stimulus novelty enhances these exploratory choices through engagment of neural 
reward systems, such as the ventral striatum (VS) and the ventral tegmental area (VTA) which are 
mesolimbic dopaminergic structures [7-11]. Thus we hypothesized that reward learning would be affected 
by novelty and that this interaction would be modified with increasing age. 

In this study, 22 healthy young human subjects (mean age 25) were presented with a probabilistic 
reinforcement learning task (see Figure D). Novel stimuli were presented in 30% of the trials, within the 
high reward category or the low reward category, depending on the condition. Conditions  were clearly 
delimited. Here, we showed that novel stimuli presented from a pre-familiarized category could accelerate 
or decelerate learning of the most rewarding category, depending on whether novel stimuli were presented 
in the best or worst rewarding category (see Figure B). The extent of this influence depended on the 
individual psychological trait of “novelty seeking” (see Figure C). Subjects’ choices were quantified in 
reinforcement learning models. We introduced a bias parameter to model exploration toward novel stimuli 
and characterize individual variation in novelty response. The theoretical framework further allowed us to 
test different assumptions, concerning the motivational value of novelty [1]. One the one hand SN/VTA 
activation by novelty in a rewarding context has raised the possibility that novelty per se might have 
intrinsic rewarding properties. On the other hand specific SN/VTA activations to novelty alone suggest a 
second, reward-independent mechanism, that favors exploration toward the novel cue [9-11]. Based on 
these findings, we proposed that novelty per se can act as an explorative bias, but can also act as a bonus for 
rewards when these are explicitly attended [12] (see Figure A). Individual variation in novelty response 
were characterized by finding the best-fitting values of parameters for each subject. The best-fitting model 
was a hidden markov model that combined both novelty components. Here again, the model’s bias 
parameter also showed a significant correlation with the independent novelty-seeking trait.  
 
Additional fRMI analysis was performed in a model-based fashion, by including the time series for the 
probability of correct action predicted by the bestfitting reinforcement learning model. A three-way 
ANOVA with factors condition, novelty and action probability was conducted. The computed probability  
of correct action was used to identify trials with a high probability of correct action and a low probability of 
correct action. Results showed the strongest signal change in the condition where reward and novelty were 
presented together, but only in low probability of correct action trials. These results are in line with previous 
research [13], which showed that striatal reward processing could be boosted by novelty, but only in 
uncertain states during explorative behavior and acquisition phase. This effect was furthermore observed in 
the midbrain (origin of dopamine), cingulate cortex and PFC (both projection areas of dopamine pathways). 
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It is to be noted that the cingulate cortex is a major projection site of the locus corelueus, the main site of the 
noradrenaline system. Noradrenaline is believed to be associated with explorative behaviors [14-17].  
 
The magnitude of the personality trait "novelty-seeking" decreases across the lifespan [21-22]. We therefore 
expect that the novelty-seeking bias in particular should be lowered in the older group, however general 
explorative behavior should increase as a consequence of age-induced diminution of dopamine behaviors 
[17]. In order to test these assumptions, a slightly modified version of the novelty paradigm was conducted 
with 25 healthy young subjects (Mean Age=26) and 24 healthy older subjects (Mean Age=66), with the 
additional differences being that now single trials from different conditions were presented in a randomized 
order. Older subjects tend to have lowered levels of dopamine and glutamate and lower novelty-seeking 
scores, leading to our hypothesis that novelty seeking behavior should be lowered, but overall explorative 
behavior increased  [cf. 17]. The model parameters of the bestfitting model (here again the hidden markov 
model with both novelty effects) behaved according to hypothesis: the computational parameters of novelty 
seeking were significantly lower, whereas the exploration parameters were significantly higher in the older 
as compared to the younger subject group. The fMRI analysis remains to be conducted, in order to test 
whether neural activations are in accordance with the behavioral results. 
 
1.4  Figures 

 

 

 ((A) Hypothetical effects of novelty and their 
computational implementation in different 
reinforcement learning models (B) Correlation 
between personality trait “novelty seeking” and 
experimental novelty bias from the paradigm 
(CR”reward+novelty” condition – CR”reward-novelty” condition  , from 
novelty trials only). In addition, we found a 
significant correlation between the novelty bias 
parameters from the best-fitting model and both 
the experimental novelty bias and novelty seeking 
trait (not shown here). (C) Experimental and 
simulated learning curves for individual subjects. 
(Dotted lines: normalized cumulative correct 

responses (CR) over trial time. Solid line: simulated 
normalized cumulative probability of choosing the 
correct category. For novelty seekers (positive novelty 

(A)	
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bias), the correct category seems to be learned faster in the “reward+novelty” (additive), and slower in the 
“reward-novelty”(subtractive),  - at least in the initial learning phase- as compared to the control condition. 
The opposite is true for novelty avoiders (negative bias). (D) Experimental paradigm 
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Abstract

Social interactions underpin collective decision making in all animal societies. However, the actual mechanisms that ani-
mals use to achieve a collective decision differ among species. For example, ants use pheromones to bias the decisions of
other ants; birds observe and match the velocity of their neighbors; humans match the speed of other people while driv-
ing (even above speed limits). Despite the differences among these (and other) collective decision-making mechanisms,
some basic principles underlying them exist, like the tendency to conform to the actions or opinions of others. In our
examples, by following pheromone trails ants effectively follow on their nestmates’ steps, birds in a flock are more likely
to fly in the same direction, and we humans, while we do not always agree, we do not like to be in permanent conflict
with others and eventually seek ways to compromise. Therefore, this principle’s basic operating mechanism is that an
individual who is exposed to the actions or opinions of others tends to perform the actions, or have the same opinions of
the observed individuals.

In this communication, I describe two basic collective decision-making mechanisms based on the principle outlined
above. These mechanisms are tested in a setting that simulates a robotics scenario in which a group of robots must
collectively find the shorter of two alternative paths between two areas without measuring travel times or distances.
First, I describe a mechanism that consists of robots forming teams of three robots (or a greater odd-number of robots)
that decide which path to use by locally using the majority rule. Then, I describe a mechanism that consists in individual
robots increasing the tendency to choose either path based on the path recently taken by another robot. In both cases,
the group collectively chooses the shorter path with high probability. These mechanisms have been proposed as swarm
intelligence mechanisms for optimal collective decision-making.

Keywords: Social Reinforcement, Collective Decision Making, Swarm Intelli-
gence

∗Homepage: http://www.math.udel.edu/˜mmontes/
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1 Introduction

There are many animal species whose members gather in large numbers and make important decisions as a group,
that is, they make collective decisions [1]. We distinguish between two kinds of collective decisions: those that are
characterized by the decentralization of the process through which individuals reach a decision, and those that involve
a step of information centralization, like voting. In this abstract, we focus only on the first kind.

Examples of collective decisions exist across species of very different complexity levels, from insects to humans. A
well-known example of a collective decision in insects is the selection of the shorter of two paths between two areas by
ants [3]. In humans, an example of a decentralized collective decision is the agreement on the cruise speed on a highway
(sometimes different than the established speed limit).

The mechanisms that make collective decision-making possible are very different, for instance, ants use pheromones,
bees use waggle dances, humans may use language. Yet, despite the differences, there are some basic principles that
underlie these mechanisms, such as the apparent tendency to do or to agree with what others do or think. There is even
an adage suggesting that doing what others do is preferable to try and err: “When in Rome, do as the Romans do.” In
fact, it has been shown that copying others is beneficial in a wide range of environmental conditions [8]. Thus, we believe
that it is worthwhile to explore the idea of exploiting the information contained in the actions and communications of
others for collective decision-making.

Accordingly, we proposed two models of collective decision-making and tested them in a robotics application [6, 7].
Here, we describe these two models and discuss some of their features from a reinforcement learning point of view. In
particular, we highlight the role that the group plays in reinforcing a particular behavior on individuals, what we refer
to as social reinforcement, that gives the group the ability to make an optimal decision.

2 Models

Our first model is based on an opinion dynamics model that uses the majority rule to integrate the information that
different individuals possess [5]. In this model, a population of agents each of which can assume one of two states (also
called opinions) evolves as follows: First, a group of three randomly chosen agents is formed. Then, the state of the
majority within the group is determined. Finally, all the members of the group adopt the state of he majority (thus, each
time a group is formed, a maximum of one agent changes state) and the process is repeated. Regardless of the initial
conditions, all the participating agents end up having the same state, that is, this model produces consensus on one of
the two available states. The final state depends on the initial density of states: if more than 50% of the agents have one
of the two states (say A, for example), then all the agents end up with state A. If exactly 50% of the agents are in state A,
then the final state is either A or B with 0.5 probability.

We saw the potential of the dynamics of Krapivsky and Redner’s model [5] as a collective decision-making mechanism
and tried it in a robotics scenario [6]. However, a robotics application imposes a few constraints that have a big impact
on the system’s dynamics (as shown in Section 3). First, we interpret agents as robots, which gives them embodiment
and situatedness, causing the environment to affect the system’s dynamics. Second, states are interpreted as actions that
the robots have to repeatedly execute while solving a task. Finally, we explicitly include the passage of time associated
with action execution. In our model, the duration of an action is finite but stochastic, that is, two executions of the same
action take different completion times as is usually the case in real life.

As a test scenario of the system, we used a setting similar to the one used by Goss et al. [3] to show that ants can find
shortest paths (see Figure 1). The robots’ task is to transport heavy objects from one room (starting location) to another
(goal location) by forming teams, and going back and forth between these locations. Each time the robots are at the
starting location, new teams are formed at random, which allows the mixing of the robots’ states.

In our second model, no groups of agents are formed. Instead, individual agents observe the actions performed by other
agents. After observation, each agent increases the tendency of performing the observed action. Let the binary variable
Xi ∈ {0, 1} to represent an agent i’s state. This variable is in turn governed by an internal real-valued variable Si and a
threshold θ. The variable Si can be thought of as the tendency of agent i to be in one of the two possible states (hereafter,
we refer to Si simply as agent i’s tendency). The threshold θ is constant and common to all agents, while Si is variable
and private to each agent.

At each time step t of the system’s evolution, an agent i might be able to observe the state of another random agent j 6= i.
When an agent observes the state of another agent, the observing agent updates its tendency as follows:

S t+1
i = (1− α)Sti + αXt

j , (1)

where α ∈ [0, 1] determines how much importance is given to the agent’s latest observation (Xt
j) as opposed to the agent’s

accumulated experience (Sti ). If α is equal to zero, an agent does not change its tendency to imitate other agents; if α is

1
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Starting Location

Target Location

(a) Environment (b) Robot Group

Figure 1: Test Scenario. The arena, shown in (a), is a double bridge whose branches differ in length. A group of robots
attached to an object is shown in (b). The robots’ mission is to transport objects (too heavy for individual robots to move)
from the starting to the target location of the arena. The choice robots must make is to take either the longer or the shorter
path.

equal to one, an agent copies whatever action another agent performs. After updating its tendency, an agent updates its
state as follows:

Xt+1
i =





1, if S t+1
i > θ

0, if S t+1
i < 1− θ

Xt
i , if 1− θ ≤ S t+1

i ≤ θ ,
(2)

where θ ≥ 1
2 due to the symmetry of the actual threshold value that triggers the adoption of one or another state. Thus,

an agent’s state is a function of its tendency and the threshold θ.

Note how the rule that each individual uses to determine whether to perform a commonly observed action is similar to
the basic exponential smoothing equation used for data filtering and time series forecasting [2, 4]. For this reason, we
refer to this model as the exponential smoothing model.

3 Simulations

We performed a number of simulations in order to observe the models’ dynamics. A summary of the setups and results
is presented next.

Majority Rule Model. The duration of actions associated with states A and B are modeled as two normally distributed
random variables with means µA and µB , and standard deviations σA and σB , respectively. Their ratio r = µB/µA gives a
measure of the difference between action execution times and is referred to as latency ratio. Figure 2 shows the dynamics
of the majority rule model with a population of 900 agents and 200 teams. When r 6= 1, the system achieves consensus
on the action of shorter duration even if initially only a minority has a state associated with it. This is seen by the lower
critical initial fraction at which the probability of consensus on state A increases from practically zero to almost one.

Exponential Smoothing Model. As in the previous experiments, action durations are normally distributed. In Figure 3,
we show the evolution of the average tendency in a population of 100 agents with r = 2. When the average duration of
the actions associated with each of the two states is equal (r = 1) and S0

i = 0.5, that is, the population of agents will reach
a consensus on any of the two states with equal probability (case not shown).

When r = 2, the duration of the actions is sufficiently different to induce a strong bias toward the state associated with
the action with shorter average execution time even for α = 0.5. However, a large value of α means that agents copy any
observed state, which produces agents to switch too fast which leads the system to consensus on any of the two states
with equal probability.

2

Paper S43 140



Consensus probability

Initial fraction of the population with opinion A

P
ro

b
a
b
ili

ty
 o

f 
c
o
n
s
e
n
s
u
s
 o

n
 o

p
in

io
n
 A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Latency ratio

r = 1

r = 2

r = 3

r = 4

Figure 2: Dynamics of the majority-rule opinion formation model with normally distributed action durations with a population of
900 agents. Results obtained through 1,000 independent runs of a Monte Carlo simulation.
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steps. The acceptance threshold θ is equal to 0.6 in all cases. Averages obtained through 500 independent runs of a Monte
Carlo Simulation.

4 Social Reinforcement

The rules that govern the behavior of the agents in the models presented in the previous section encode the idea of social
reinforcement which we understand as the indirect transfer of environmental feedback to a focal individual through the
behavior of others. In the following, we discuss how social reinforcement occurs in each of the presented models and its
role in the collective decision process.

4.1 Many-to-One Reinforcement

In our first model, robots form groups of three members before executing an action. The action chosen by the group
corresponds to the one advocated by the local majority. A robot with a state different from that of the majority is forced
to discard it and adopt the state of its peers. For this agent, the state of the majority represents the social reinforcement
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because the fact that two other agents share the same state represents information beyond the actual state value. In
our setting, since the agents that choose the shorter path return to the starting location more often than the agents that
choose the longer path, it is more likely to form groups whose majority is associated with the shorter path. Therefore,
the length of the path is encoded in the probability of forming groups of robots with two or more robots advocating for
the shorter path. In other words, the state of the environment is contained in the group and therefore, environmental
feedback occurs only socially because agents do not measure time or lengths.

4.2 One-to-One Reinforcement

In this model, the signal used to update an agent’s tendency is the observed behavior of another agent. If the frequency
with which a certain behavior is increased, the the observing agent will increase its tendency to perform that behavior.
This is in line with traditional Hebbian learning where repeated stimulation increases the strength of the association
between action and stimulus. As with the majority model, if the frequency of observation is linked with environmental
interactions, then social reinforcement becomes an indirect feedback channel between an agent and the environment.

5 Conclusions

Animals that form groups to address problems that are too difficult, or even impossible, for individuals to solve have to
agree with their peers which actions to take. Upon agreement, we can say that a collective decision has been made. These
decisions range from travel directions, to task allocation, to shelter selection. It is important to note that when collective
decisions are made, the group is the problem solver, not the isolated individuals. Some researchers call this phenomenon
swarm intelligence. The models presented in this communication are loosely inspired by natural phenomena, but do not
model any real collective decision making mechanism used by animals (at least to best of our knowledge). This not to
say that these models do not provide any insights into the dynamics of collective decision making. On the contrary, by
reproducing the collective decision making ability of ants without simulating pheromones, our results show that there
is a clear distinction between mechanisms and principles and that different mechanisms using the same principles can
lead to the same collective-level behavior.

The models presented here illustrate the idea of social reinforcement, that is, the indirect transfer of environmental
feedback to a focal individual through the behavior of others. In the majority rule model, social reinforcement occurs
through the adoption of the state held by the local majority of the groups formed by robots. In the exponential smoothing
model, social reinforcement occurs when a focal agent observes the action of another agent and updates its tendency
accordingly. In both cases, when the agents’ states are associated with actions with similar outcomes but that take time
to perform, the population reaches a consensus on the action that takes less time to perform. In the test scenario used in
our experiments, this result is translated into a group selecting the shorter of two paths between two locations without
directly measuring time or distance. In these experiments, social reinforcement filters out suboptimal actions.
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Abstract

The challenges posed by robots operating in human environments on a daily basis and on the long-term point out the
importance of adaptivity to changes which can be unforeseen at design time. Therefore, the robot must learn contin-
uously in an open-ended, non-stationary and high dimensional space. It can not possibly explore all its environment
to learn about everything within a life-time. We propose to investigate the relationship between two classical learning
modes: imitation learning and intrinsically-motivated autonomous exploration. We buildan algorithmic architecture
where relationships between the two sampling modes intertwine into a hierarchical structure, called Socially Guided
Intrinsic Motivation with Active Choice of Teachers and Strategies (SGIM-ACTS).

Indeed, we have built an intrinsically motivated active learner which learns how its actions can produce varied
consequences or outcomes. For instance, the robot learns to throw a ball at different distances, by associating a distance
(outcome) to a specific movement (action). It actively learns online by sampling data which it chooses by using several
sampling modes. On the meta-level, it actively learns which data collection strategy is most efficient for improving
its competence and generalising from its experience to a wide variety of outcomes. The interactive learner thus learns
multiple tasks in a structured manner, discovering by itself developmental sequences.

We contribute to different fields of machine learning:

• imitation learning : we propose a unified structure to address simulateneously the fundamental questions
of imitation learning: what, how, when and who to imitate. In particular in interactive learning,we identify
advantages of combining autonomous exploration and socially guided exploration, and build an agent which
decides by itself when to interact with teachers.

• multi-task learning : SGIM-ACTS can discover the structure of its environment by a goal-oriented exploration.
We propose a unified architecture to approach goal-oriented imitation learning (to reproduce a demonstrated
goal) and goal-directed autonomous exploration (goals guiding policy exploration).

• active learning : we investigate different levels of active learning : the learner can decide which action to take, or
which goal to aim, or which sampling mode to use. Its decisions are made online, driven by artificial curiosity
based on its monitoring of learning progress.

• hierarchical learning : we propose a hierarchical learning architecture to learn on several levels: policy, outcome,
and mode spaces. The learner relies on hierarchical active decisions of what and how to learn driven by
empirical evaluation of learning progress for each sampling mode on a meta-level.

Keywords: active learning, interactive learning, imitation learning, goal-
oriented exploration, data-collection, exploration, programming
by demonstration
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1 Strategic Active Learning for Life-Long Acquisition of Multiple Skills

Life-long learning by robots to acquire multiple skills in unstructured environments poses challenges of learning in large
and high-dimensional sensorimotor spaces, while their life-time allows only limited number of collected data.

1.1 Active Learning for Producing Varied Outcomes with Multiple sampling modes

The choice of a sampling mode can be formalised under the notion of strategic learning [11]. One perspective is learning
to achieve varied outcomes and aims at selecting which outcome to spend time on. Another perspective is learning
how to learn, by making explicit the choice and dependence of the learning performance on the method. However
most studies have not addressed the learning of both how to learn and what to learn, to select at the same time which
outcome to spend time on, and which learning method to use. Only [11] studies the framework of these questions. In
initial work to address learning for varied outcomes with multiple methods, we proposed in [15] the Socially Guided
Intrinsic Motivation by Demonstration (SGIM-D) algorithm which uses both 1) socially guided exploration, especially
programming by demonstration [3] and 2) intrinsically motivated exploration, which are active learning algorithms
based on measures of the evolution of the learning performance [16] to reach goals in a continuous outcome space.

In this paper, we extend this work and study how a learning agent can achieve varied outcomes in structured continuous
outcome spaces, and how he can learn which sampling mode to choose among 1) active self-exploration, 2) reproduction
of the demonstrated outcome or emulation of a teacher actively selected among available teachers, 3) reproduction of the
demonstrated policy or mimicry of an actively selected teacher.

1.2 Actively Learning When, Who and What to Imitate

In this paper, we develop our social guidance into interactive learning. The learner actively requests for the information
it needs and when it needs help [6]. For the model and experiments presented below, our agent learns to answer the
four main questions of imitation learning: ”what, how, when and who to imitate” [9, 4] at the same time. We address
active learning for varied outcomes with multiple sampling mode, multiple teachers, with a structured continuous
outcome space (embedding sub-spaces with different properties). The sampling modes we consider are autonomous
self-exploration, emulation and mimicking, by interactive learning with several teachers.

1.3 Our Approach

Let us consider an agent learning motor skills, i.e. how to induce any outcome A ∈ A with motor programs π ∈ P. We
parameterise the outcome space with parameters a ∈ A. A policy πb is described by motor primitives parameterised
by b ∈ B.The probability of that the policy parameter b produces the outcome of parameter a is p̃(a|b, c), where the
probability density p̃ represents the physics of the environment which the agent estimates. The association (b, a)
corresponds to a learning exemplar that will be memorised.

To solve the problem formalised above, we propose a system, called Socially Guided Intrinsic Motivation with Active
Choice of Teacher and Strategy (SGIM-ACTS) that allows an online interactive learning of inverse models in continuous
high-dimensional robotic sensorimotor spaces with multiple teachers, and sampling mode. SGIM-ACTS learns various
outcomes with different types of outcomes, and generalises from sampled data to continuous sets of outcomes.

Technically, we adopt a method of generalisation of policies for new outcomes similar to [10, 8], except that instead of
using a pool of examples given by the teacher preset from the beginning of the experiment to learn outcomes specified
by the engineer of the robot, the SGIM-ACTS algorithm decides by itself which outcomes it needs to learn more to better
generalise for the whole outcome space, like in [2]. Moreover, SGIM-ACTS actively requests the teacher’s demonstra-
tions online, by choosing online a good sampling mode, similarly to [1], except that we instead of a discrete, we use a
continuous outcome space. SGIM-ACTS also interacts with several teachers and uses several social learning methods.

Our active learning approach is inspired by 1) psychological theories for socially guided learning [5], 2) teleological
learning [7] which considers actions as goal-oriented, and 3) intrinsic motivation in psychology [17] which triggers
spontaneous exploration and curiosity in humans, which recently led to novel robotic and machine active learning
methods which outperform traditional active learning methods [2].

After this definition of the problem addressed in this paper, we describe the design of our SGIM-ACTS (Socially Guided
Intrinsic Motivation with Active Choice of Teacher and Strategy) algorithm. Then we show through an illustration
experiment that SGIM-ACTS efficiently learns to realise different types of outcomes in continuous outcome spaces, and
it coherently selects the right teacher to learn from.

1

Paper S44 144



Algorithm 2.1 SGIM-ACTS
Input: the different modes χα, ...χκ.
Initialization: partition of outcome spaceR ← singletonA
Initialization: episodic memory (collection of produced outcomes)H ← empty memory
Initialization: e← 1
loop

ai, χ← Select Goal Outcome and Strategy(R)
if χ = Mimic teacher imode then

(ζd, ad)← ask and observe demonstration to teacher i.
γ1 ← Competence for ag
De ← Mimic Action(ζd)
pe+1 ← L(pe,De)

else if χ = Emulate teacher imode then
(ζd, ad)← ask and observe demonstration to teacher i.
Emulation: ag ← ad
γ1 ← Competence for ag
De ← Goal-Directed Policy Optimisation(ag)
pe+1 ← L(pe,De)

else
χ = Intrinsic Motivation mode
ag ← ai
γ1 ← Competence for ag
De ← Goal-Directed Policy Optimisation(ag)
pe+1 ← L(pe,De)

end if
γ2 ← Competence for ag
nbA← number of episodes in De
prog ← 2(sig(αp ∗ γ2−γ1

|Ti|·nbA
)− 1)

AppendDe toH
R ← Update Outcome and Strategy Interest Mapping(R,H, ag, prog, χ)
e← e+ 1

end loop
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Figure 1: SGIM-ACTS algorithm.

2 Algorithm Description

In this section, we describe the SGIM-ACTS architecture by giving a behavioural outline (Algorithm 2.1 and fig. 1a).

SGIM-ACTS is an architecture that merges intrinsically motivated self-exploration with interactive learning as socially
guided exploration. In the latter case, a teacher performs an observed trajectory ζ which achieves an observed outcome
bd (intentional or unintentional). SGIM-ACTS learns by episodes during which it actively chooses simultaneously an out-
come bg ∈ T to reach and a sampling mode with a specific teacher. Its choice χ is selected among : intrinsically motivated
exploration, mimicry from teacher 1, emulation of teacher 1, mimicry from teacher 2, emulation of teacher 2 .... (fig. 1a).

In an episode under a mimicking mode, our SGIM-ACTS learner actively self-generates a goal bg where its competence
improvement is maximal. The SGIM-ACTS learner explores preferentially goal outcomes easy to reach and where it
makes progress the fastest. The selected teacher answers its request with a demonstration [ζd, bd] to produce an outcome
bd that is closest to bg . The robot mimics the teacher to reproduce ζd, for a fixed duration, by performing policies aθ
which are small variations of an approximation of ζd. In an episode under an emulation mode, our SGIM-ACTS learner
observes from the selected teacher a demonstration [ζd, bd]. It tries different policies using goal-directed optimisation
algorithms to approach the observed outcome bd, without taking into account the demonstrated policy ζd. It re-uses
and optimises its policy repertoire built through its past autonomous and socially guided explorations. The episode
ends after a fixed duration. In an episode under the intrinsic motivation mode, it explores autonomously following
the SAGG-RIAC algorithm [2]. It actively self-generates a goal bg where its competence improvement is maximal, as
in the mimicking mode. Then, it explores which policy aθ can achieve bg best. It tries different policies to approach the
self-determined outcome bg , as in the emulation mode. The episode ends after a fixed duration. The intrinsic motivation
and emulation mode differ mainly by the way the goal outcome is chosen. The details of this 3-layered (policy, outcome
and mode space explorations) hierarchical architecture and the different functions and levels can be read in [12, 13].

3 Experiment

3.1 Experimental setup

Figure 2: An arm, described by its angle φ, is controlled by a motor primitive with 14 continuous parameters

(taking bounded values) that determine the evolution of its acceleration φ̈ . A ball is held by the arm and then

released at the end of the motion. The objective of the robot is to learn the mapping between the parameters of

the motor primitive and two types of outcomes he can produce: a ball thrown at distance x and height h, or a ball

placed at the arm tip at angle φwith velocity smaller than |vmax|.
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(a) Mean error for the different learning algorithms averaged over
the two sub outcome spaces (final variance value ∆ is indicated in
the legend) .
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(b) Mean error for the different learning algorithms for each of the
throwing outcomes and placing outcomes separately. The legend is
the same as in fig. 3a.

Figure 3: Error plots.

(a) Strategy chosen by SGIM-ACTS through time:
percentage of times each sampling mode is chosen
for several runs of the experiment.
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(b) Outcome chosen by SGIM-ACTS through time:
percentage of times each kind of outcome is chosen
for several runs of the experiment.

(c) Consistency in the choice of outcome, teacher
and mode: percentage of times each sampling
mode, teacher and outcome are chosen over all the
history of the robot.

Figure 4: sampling modes chosen.

We illustrate in the following section this hierarchical algorithm through a simulation where a robot learns to throw a
ball or to place it at different angles (fig. 2) with 7 sampling modes: intrinsically motivated exploration, mimicry from
3 teachers and emulation from 3 teachers. The 3 teachers considered are respectively an expert in throwing balls, an
expert in placing balls, and an expert in placing balls with correspondence problems. We prepared demonstration sets
for each teacher, so that the demonstrated outcomes are equally distributed in the reachable space. A demonstration is
stored as a pair or policy and outcome parameters. When a teacher is requested a demonstration for emulation, he gives
a random demonstration among its demonstration set. The details of the experimental setup can be read in [13]. In the
next section, we present the results of the experiment.

3.2 Results

We compared SGIM-ACTS with 4 other learning algorithms: random exploration of the policy space, SAGG-RIAC [2],
mimicry and emulation. Fig. 3a shows that SGIM-ACTS decreases its cumulative error for both placing and throwing.
It performs better than autonomous exploration by random search or intrinsic motivation, and better than mimicry
or emulation with any teacher. Fig. 3b shows that SGIM-ACTS error rate for both placing and throwing is low. For
throwing, SGIM-ACTS performs the best in terms of error rate and speed because it could find the right mode. While
mimicking and emulating teacher 1 decreases the error as expected, mimicking and emulating a teacher who is expert in
another kind of outcomes and is bad in that outcome leaves a high error rate. For placing, SGIM-ACTS makes less error
than all other algorithms. Indeed, as we expected, mimicking the teacher 2, and emulating teachers 2 and 3 enhances
low error rates, while mimicking a teacher with correspondence problem (teacher 3) or an expert on another outcome
(teacher 1) gives poor result. We also note that for both outcomes, mimicry does not lead to important learning progress,
and the error curve is almost flat. This is due to the lack of exploration which leads the learner to ask demonstrations for
outcomes only in a small subspace.

Indeed, we see in fig. 4a which illustrates the percentage times each sampling mode is chosen by SGIM-ACTS with
respect to time, that mimicry of teacher 3, which lacks efficiency because of the correspondence problem, is seldom
chosen by SGIM-ACTS. Mimicry and emulation of teacher 1 is also little used because autonomous learning learns
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quickly throwing outcomes. Teachers 2 and 3 are exactly the same with respect to the outcomes they demonstrate, and
are emulated in the same proportion. This figure also shows that the more the learner cumulates knowledge, the more
autonomous he grows : his percentage of autonomous learning increases steadily.

Not only does he choose the right sampling mode, but also the right outcome to concentrate on. Fig. 4b shows that he
concentrates in the end more on placing, which are more difficult.

Finally, fig. 4c shows the percentage of times over all the experiments where he chooses at the same time each outcome
type, a sampling mode and a teacher. We can see that for the placing outcomes, he seldom requests help from the teacher
1, as he learns that teacher 1 does not know how to place the ball. Likewise, because of the correspondence problems,
he does not mimic teacher 3. But he learns that mimicking teacher 2 and emulating teachers 2 and 3 are useful for
placing outcomes. For the throwing outcomes, he uses slightly more the autonomous exploration sampling modes, as
he can learn efficiently by himself. The high percentage for the other sampling mode is due to the fact that the throwing
outcomes are easy to learn, therefore are learned in the beginning when a lot of sampling of all possible sampling modes
is carried out. SGIM-ACTS is therefore consistent in its choice of outcomes , sampling modes and teachers.

4 Conclusion and Discussion

We presented the SGIM-ACTS (Socially Guided Intrinsic Motivation with Active Choice of Teacher and Strategy)
algorithm that efficiently and actively combines autonomous self-exploration and interactive learning, to address the
learning of multiple outcomes, with outcomes of different types, and with different sampling modes. In particular, it
learns actively to decide on the fundamental questions of programming by demonstration: what and how to learn; but
also what, how, when and who to imitate. This interactive learner decides efficiently and coherently whether to use social
guidance. It learns when to ask for demonstration, what kind of demonstrations (action to mimic or outcome to emulate)
and who to ask for demonstrations, among the available teachers. Its hierarchical architecture bears three levels. The
lower level explores the policy parameters space to build skills for determined goal outcomes. The upper level explores
the outcome space to evaluate for which outcomes he makes the best progress. A meta-level actively chooses the outcome
and sampling mode that leads to the best competence progress. We showed that SGIM-ACTS can focus on the outcome
where it learns the most, while choosing the most appropriate associated sampling mode. The active learner can explore
efficiently a composite and continuous outcome space to be able to generalise for new outcomes of the outcome spaces.

Even in the case of correspondence problems, the system still takes advantage of the demonstrations to bias its explo-
ration of the outcome space, as argued in [14]. Future work should test SGIM-ACTS on more complex environments,
and with real physical robots and everyday human users. It would also be interesting to compare the outcomes selected
by our system to developmental behavioural studies, and highlight developmental trajectories.
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Abstract

In the field of developmental robotics, we are particularly interested in the exploration strategies which can drive an agent
to learn how to reach a wide variety of goals. In this paper, we unify and compare such strategies, recently shown to be
efficient to learn complex non-linear redundant sensorimotor mappings. They combine two main principles. The first one
concerns the space in which the learning agent chooses points to explore (motor space vs. goal space). Previous works
(Rolf et al., 2010; Baranes and Oudeyer, 2012) have shown that learning redundant inverse models could be achieved
more efficiently if exploration was driven by goal babbling, triggering reaching, rather than direct motor babbling. Goal
babbling is especially efficient to learn highly redundant mappings (e.g the inverse kinematics of a arm). At each time
step, the agent chooses a goal in a goal space (e.g uniformly), uses the current knowledge of an inverse model to infer
a motor command to reach that goal, observes the corresponding consequence and updates its inverse model according
to this new experience. This exploration strategy allows the agent to cover the goal space more efficiently, avoiding to
waste time in redundant parts of the sensorimotor space (e.g executing many motor commands that actually reach the
same goal). The second principle comes from the field of active learning, where exploration strategies are conceived as
an optimization process. Samples in the input space (i.e motor space) are collected in order to minimize a given property
of the learning process, e.g the uncertainty (Cohn et al., 1996) or the prediction error (Thrun, 1995) of the model. This
allows the agent to focus on parts of the sensorimotor space in which exploration is supposed to improve the quality of
the model.

This paper shows how an integrating probabilistic framework allows to model several recent algorithmic architectures
for exploration based on these two principles, and compare the efficiency of various exploration strategies to learn how
to uniformly cover a goal space.

Keywords: Exploration strategies, goal babbling, active learning, develop-
mental robotics.
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1 Introduction

The learning of sensorimotor tasks, for example reaching objects with the hand or controlling the shape of a vocal tract
to produce particular sounds, involves the learning of complex sensorimotor mappings. This latter generally requires to
build a model of the relationships between parts of the sensorimotor space. For example, one might need to predict the
positions of the hand knowing the joint configurations, or to control the shape the vocal tract to produce the sound of
particular words.

Let us introduce the problem more formally. A learning agent interacts with a surrounding environment through motor
commands M and sensory perceptions S. We call f : M → S the unknown function defining the physical properties
of the environment, such that when the agent produces a motor command m ∈ M , it then perceives s ∈ S. Classical
robotic problems are e.g. the prediction of the sensory effect of an intended motor command through a forward model
f̃ :M → S, or the control of the motor system to reach sensory goals through an inverse model ˜f−1 : S →M . The agent
has to learn such models by collecting (m, s) pairs through its interaction with the environment, i.e. by producingm ∈M
and observing s = f(m). These learning processes are often difficult for several reasons: 1) the agent has to deal with
uncertainties both in the environment and in its own sensorimotor loop, 2) M and S can be highly dimensional, such
that random sampling in M to collect (m, s) pairs can be a long and fastidious process, 3) f can be strongly non-linear,
such that the learning of f̃ from experience is not trivial, 4) f can be redundant (many M to one S), such that the learning
of ˜f−1 is an ill-posed problem (f−1 does not exist, or cannot be directly recovered from f ).

When a learning process faces these issues, random motor exploration (or motor babbling) in M is not a realist explo-
ration strategy to collect (m, s) pairs. Due to high dimensionality, data are precious whereas, due to non-linearity and/or
redundancy, data are not equally useful to learn an adequate forward or inverse model.

2 Exploration strategies

Computational studies have shown the importance of developmental mechanisms guiding exploration and learning
in high-dimensional M and S spaces and with highly redundant and non-linear f (Oudeyer et al., 2007; Baranes and
Oudeyer, 2012). Among these guiding mechanisms, intrinsic motivations, generating spontaneous exploration in hu-
mans (Berlyne, 1954; Deci and Ryan, 1985), have been transposed in curiosity-driven learning machines (Schmidhuber,
1991; Barto et al., 2004; Schmidhuber, 2010) and robots (Oudeyer et al., 2007; Baranes and Oudeyer, 2012) and shown
to yield highly efficient learning of inverse models in high-dimensional redundant sensorimotor spaces (Baranes and
Oudeyer, 2012). Efficient versions of such mechanisms are based on the active choice of learning experiments that
maximize learning progress, for e.g. improvement of predictions or of competences to reach goals (Schmidhuber, 1991;
Oudeyer et al., 2007). This automatically drives the system to explore and learn first easy skills, and then explore skills
of progressively increasing complexity.

This led to the implementation of various exploration strategies (Baranes and Oudeyer, 2012), which differ in the way the
agent iteratively collects (m, s) pairs to learn forward and/or inverse models (comparing random vs. learning progress
based exploration, in either the motor M or the sensory S spaces). These strategies are summarized below (the original
name of the corresponding algorithm appears in parenthesis).

• Random motor exploration (ACTUATOR-RANDOM): at each time step, the agent randomly chooses an artic-
ulatory command m ∈M , produces it, observes s = f(m) and updates its sensorimotor model according to this
new experience (m, s).

• Random goal exploration (SAGG-RANDOM): at each time step, the agent randomly chooses a goal sg ∈ S and
tries to reach it by producing m ∈ M using an inverse model ˜f−1 learned from previous experience. It observes
the corresponding sensory consequence s = f(m) and updates its sensorimotor model according to this new
experience (m, s).

• Active motor exploration (ACTUATOR-RIAC): at each time step, the agent chooses a motor command m by
maximizing an interest value in M based on an empirical measure of the learning progress in prediction in its
recent experience. The agent uses a forward model f̃ learned from its past experience to make a prediction
sp ∈ S for the motor command m. It produces m and observe s = f(m). The agent updates its sensorimotor
model according to the new experience (m, s). A measure of learning accuracy is computed from the distance
between sp and s, which is used to update the interest model in the neighborhood of m.

• Active goal exploration (SAGG-RIAC): at each time step, the agent chooses a goal sg by maximizing an interest
value in S based on an empirical measure of the learning progress in competence to reach goals in its recent
experience. It tries to reach sg by producing m ∈ M using a learned inverse model ˜f−1. It observes the cor-
responding sensory consequence s ∈ S and updates its sensorimotor model according to this new experience
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(m, s). A measure of learning accuracy is computed from the distance between sg and s, which is used to update
the interest model in the neighborhood of sg .

In the two active strategies, the measure of interest was obtained by recursively splitting the space (M in ACTUATOR-
RIAC, S in SAGG-RIAC) into sub-regions during the agent life. Each region maintains its own empirical measure of
learning progress from its learning accuracy history in a relative time window. This accuracy is defined as the opposite
of the distance between sp and s in the active motor strategy, between sg and s in the active goal one. These active
strategies are very related to the field of active learning, although this latter often constrains the interest measure to be
defined in the input space (M in our formalism).

We have recently suggested to classify these four strategies along two dimensions (Moulin-Frier and Oudeyer, 2013a,b).
The first one corresponds to the space X in which the agent drives its exploration, which is here either M (motor strate-
gies) or S (goal strategies). We call it the choice space. The second dimension is the kind of interest measure used by this
agent at each time step to choose a point in its choice space, either uniform leading to a random sampling in X (random
strategies), or based on empirical measurements, here the learning progress in prediction or control (active strategies).

3 Probabilistic modeling

We use a probabilistic framework where the notations are inspired by Jaynes (2003) and Lebeltel et al. (2004). Upper case
A denotes a probabilistic variable, defined by its continuous, possibly multidimensional and bounded domain D(A).
The conjunction of two variables A ∧ B can be defined as a new variable C with domain D(A) × D(B). Lower case
a will denote a particular value of the domain D(A). p(A | ω) is the probability distribution over A knowing some
preliminary knowledge ω (e.g. the parametric form of the distribution, a learning set . . . ). Practically, ω will serve as
a model identifier, allowing to define different distributions of the same variable, and we will often omit it in the text
although it will be useful in the equations. p(A B | ω) is the probability distribution over A ∧ B. p(A | [B = b] ω) is the
conditional distribution over A knowing a particular value b of another variable B (also noted p(A | b ω) when there is
no ambiguity on the variable B). For simplicity, we will often confound a variable and its domain, saying for example
“the probability distribution over the space A”.

Considering that we know the joint probability distribution over the whole sensorimotor space, p(M S | ωSM ), Bayesian
inference provides the way to compute every conditional distribution over M ∧ S. In particular, we can compute the
conditional distribution over Y knowing a particular value x ofX , as long asX and Y correspond to two complementary
sub-domains ofM ∧S (i.e. they are disjoint andX ∧Y =M ∧S). Thus, the prediction of sp ∈ S fromm ∈M in the active
motor exploration strategy, or the control of m ∈ M to reach sg ∈ S in the active or random goal exploration strategies,
correspond to the probability distributions p(S |M ωSM ) and P (M | S ωSM ), respectively. More generally, whatever the
choice and inference spaces X and Y , as long as they are subspaces of M ∧ S and they are disjoint, Bayesian inference
allows to compute p(Y | X ωSM ).

Such a probabilistic modeling is also able to express the interest model, that we will call ωI , such that the agent draws
points in the choice spaceX according to the distribution p(X | ωI). In the random motor and goal exploration strategies,
this distribution is uniform, whereas it is a monotonically increasing function of the empirical interest measure in the case
of the active exploration strategies.

Given this probabilistic framework, Algorithm 1 describes our generic exploration algorithm.

Algorithm 1 Generic exploration algorithm
1: set choice space X
2: while true do
3: x ∼ p(X | ωI)
4: y ∼ p(Y | x ωSM )
5: m =M ((x, y))
6: s = exec(m)
7: e = distance(S(x, y), s)
8: update(ωSM , (m, s))
9: update(ωI , (x, e))

10: end while

Line 1 defines the choice space of the exploration strategy. For example X is set to M for the motor strategies and to S
for the goal strategies described in Section 2, but the formalism can also deal with any part of M ∧ S as the choice space.
Line 3, the agent draws a point x in the choice space X according to the current state of its interest model ωI , through
the probability distribution p(X | ωI) encoding the current interest over X . This distribution is uniform in the case of

2

Paper S45 150



the random strategies and related to the learning progress in prediction or control in the active strategies of Section 2.
Line 4, the agent draws a point y in the inference space Y (remember that Y is such that X ∧ Y = M ∧ S) according to
the distribution p(Y | x ωSM ), using Bayesian inference on the joint distribution p(M S | ωMS). If X = M , and therefore
Y = S, this corresponds to a prediction tasks p(S | [M = x]); if X = S, and therefore Y = M , this corresponds to a
control task p(M | [S = x]). Line 5, the agent extracts the motor part m of (x, y), noted M ((x, y)), i.e. x if X = M , y if
X = S. Line 6, the agent produces m and observe s = exec(m), i.e. s = f(m) with possible sensorimotor constraints and
noises. Line 7 the agent computes a learning error as a distance betwween the sensory part of (x, y), noted S(x, y), i.e. y
if X = M , x if X = S, and the actual sensory consequence s. Line 8 the agent updates its sensorimotor model according
to its new experience (m, s). Line 9 the agent updates its interest model according to the choice x ∈ X it made and the
associated learning error e.

In this framework, we are able to more formally express each algorithm presented in Section 2. The random motor
strategy (ACTUATOR-RANDOM) is the simpler case where the choice space is X = M and the interest model of line 3
is set to a uniform distribution over X . Inference in line 4 is here useless because motor extraction (line 5) will return the
actual choice x and that there is no need to update the interest model in line 9. The active motor strategy (ACTUATOR-
RIAC) differs from the previous one by the interest model of line 3 which favors regions of X (= M ) maximizing the
learning progress in prediction. This latter is computed at the update step of line 9 using the history of previous learning
errors computed at line 7, which are here distances between the prediction y ∈ Y computed on line 4 (with Y = S)
and the actual realization s ∈ S of line 6. The random goal strategy (SAGG-RANDOM) is the case where the interest
model is uniform and the choice space is S, implying that the inference corresponds to a control task to reach x ∈ X by
producing y ∈ Y (with X = S and therefore Y = M ). Finally, the active goal strategy (SAGG-RIAC) differs from the
previous one by the interest model which favors regions of X (= S) maximizing the learning progress in control. This
latter is computed in the same way that for ACTUATOR-RANDOM, except that the distance is here between the chosen
goal x ∈ X and the actual realization s ∈ S (with X = S).

We do not develop in this abstract how the sensorimotor and the interest distributions can be practically implemented
(see e.g. Moulin-Frier and Oudeyer (2013a,b) and further papers of the authors). We therefore directly provide com-
parative results in the next section, asking the reader to assume that these distributions can be computed in a way or
another.

4 Results

In this section, we perform computer simulations with a simulated sensorimotor agent. The motor spaceM is articulatory
(7-dimensional), and the sensory one is auditory (2-dimensional). The unknown function f : M → S is provided by the
articulatory synthesizer of the DIVA model described in Guenther et al. (2006), a computational model of the human
vocal tract. We do not present it here, the only important point being that the articulatory-to-auditory transformation
is known to be redundant and non-linear. The agent implements Algorithm 1 with different choice spaces and interest
distributions corresponding to the four strategies ACTUATOR-RANDOM, ACTUATOR-RIAC, SAGG-RANDOM and
SAGG-RIAC described in Section 2. We evaluate the efficiency of the obtained sensorimotor models to achieve a control
task, i.e. to reach a test set of goals uniformly distributed in the reachable auditory space.

Figure 1 shows the performance results of the four exploration strategies on a control task during the life time of learning
agents. We observe that the strategies with S as the choice space (random and active goal strategies) are significantly
more efficient that those with M (random and active motor strategies), i.e. both convergence speed (say around 100
updates) and generalization at the end of the simulation (500 updates) are better. Moreover, both convergence speed
and generalization are better for the active than for the random goal strategy. These results are similar (though less
significant) to those obtained in previous experiments (Baranes and Oudeyer, 2012) in other sensorimotor spaces (e.g. a
arm reaching points on a plan), and we refer to the corresponding paper for a thorough analysis of these results.

5 Conclusion

We have integrated in this paper two important exploration principles of developmental robotics (exploration in the sen-
sory space and active learning based on an empirical measure of the competence progress) into an integrated probabilistic
framework able to express various exploration strategies in a compact and unified manner. This allowed quantitative
comparisons of these strategies, showing that an active goal exploration is the most efficient to reach a set of goals uni-
formly sampled in the reachable part of the sensory space –as already shown in previous works of our team.

Further works should rely the approach to other tentatives of exploration strategy unification (e.g. Lopes and Oudeyer
(2012); Oudeyer and Kaplan (2007)). We also want to study the effect of an online adaptation of the choice space, taking
advantage of the fact that our formalism does not restrict it to be either M or S. For example, we could study how
the agent iteratively adapts which part of the sensorimotor space it is interested in at a given time of its development,
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Figure 1: Performance comparison of the four exploration strategies. X-axis: number of update of the sensorimotor
model. Y-axis: Mean error on a control task where an agent has to reach 30 test points uniformly distributed in the
reachable area of S. For each evaluation point sg ∈ S, the agent infers 10 motor commands in M from the distribution
p(M | sg ωSM ), where ωSM is the state of the sensorimotor model at the corresponding time step (number of update on
the X axis). The error of an agent at a time step is the mean distance between the sensory points actually reached by
the 10 motor commands and the evaluation point sg . Each curve plots the mean and standard deviation of the error
for 10 independent simulations with different random seeds, for each of the four exploration strategies described in the
previous sections.

favoring exploration in sensorimotor dimensions which display higher measures of learning progress. Finally, we are
currently extending the implementation to learn how to control sequences of motor commands.
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Abstract

Inverse reinforcement learning (IRL) aims at estimating an unknown reward function optimized by some expert agent
from interactions between this expert and the system to be controlled. One of its major application fields is imitation
learning, where the goal is to imitate the expert, possibly in situations not encountered before. A classic and simple way
to handle this problem is to see it as a classification problem, mapping states to actions. The potential issue with this
approach is that classification does not take naturally into account the temporal structure of sequential decision making.
Yet, many classification algorithms consist in learning a score function, mapping state-action couples to values, such that
the value of the action chosen by the expert is higher than the others. The decision rule of the classifier maximizes the score
over actions for a given state. This is curiously reminiscent of the state-action value function in reinforcement learning, and
of the associated greedy policy.

Based on this simple statement, we propose two IRL algorithms that incorporate the structure of the sequential decision
making problem into some classifier in different ways. The first one, SCIRL (Structured Classification for IRL), starts
from the observation that linearly parameterizing a reward function by some features imposes a linear parametrization
of the Q-function by a so-called feature expectation. SCIRL simply uses (an estimate of) the expert feature expectation
as the basis function of the score function. The second algorithm, CSI (Cascaded Supervised IRL), applies a reversed
Bellman equation (expressing the reward as a function of the Q-function) to the score function outputted by any score-
based classifier, which reduces to a simple (and generic) regression step. These two algorithms come with theoretical
guarantees and perform competitively on toy problems.
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1 Introduction

Inverse reinforcement learning (IRL) aims at estimating an unknown reward function optimized by some expert agent
from interactions between this expert and the system to be controlled. One of its major application fields is imitation
learning, where the goal is to imitate the expert, possibly in situations not encountered before. A classic and simple way
to handle this problem is to see it as a classification problem, mapping states to actions. The potential issue with this
approach is that classification does not take naturally into account the temporal structure of sequential decision making.
Yet, many classification algorithms consist in learning a score function, mapping state-action couples to values, such that
the value of the action chosen by the expert is higher than the others. The decision rule of the classifier maximizes the score
over actions for a given state. This is curiously reminiscent of the state-action value function in reinforcement learning, and
of the associated greedy policy.

Based on this simple statement, we propose two IRL algorithms that incorporate the structure of the sequential decision
making problem into some classifier in different ways. The first one, SCIRL (Structured Classification for IRL), starts
from the observation that linearly parameterizing a reward function by some features imposes a linear parametrization
of the Q-function by a so-called feature expectation. SCIRL simply uses (an estimate of) the expert feature expectation
as the basis function of the score function. The second algorithm, CSI (Cascaded Supervised IRL), applies a reversed
Bellman equation (expressing the reward as a function of the Q-function) to the score function outputted by any score-
based classifier, which reduces to a simple (and generic) regression step. These two algorithms come with theoretical
guarantees and perform competitively on toy problems.

2 From Markov Decision Processes...

A Markov Decision process (MDP) [11] is a tuple {S,A,P,R, γ} where S is the finite state space1, A the finite actions
space, P = {Pa = (p(s′|s, a))1≤s,s′≤|S|, a ∈ A} the set of Markovian transition probabilities, R ∈ RS×A the state-action
reward function and γ the discount factor. A deterministic policy π ∈ SA defines the behavior of an agent. The quality of
this control is quantified by the value function vπR ∈ RS , associating to each state the cumulative discounted reward for
starting in this state and following the policy π afterwards: vπR(s) = E[

∑
t≥0 γ

tR(St, At)|S0 = s, π]. An optimal policy
π∗R (according to the reward function R) is a policy of associated value function v∗R satisfying v∗R ≥ vπR, for any policy π
and componentwise.

Let Pπ be the stochastic matrix Pπ = (p(s′|s, π(s)))1≤s,s′≤|S| and Rπ the reward function defined as Rπ(s) = R(s, π(s)).
With a slight abuse of notation, we may write a the policy which associates the action a to each state s. The Bellman
evaluation (resp. optimality) operator TπR (resp. T ∗R) : RS → RS is defined as TπRv = Rπ+γPπv (resp. T ∗Rv = maxπ T

π
Rv).

These operators are contractions and vπR and v∗R are their respective fixed-points: vπR = TπRv
π
R and v∗R = T ∗Rv

∗
R. The

action-value function Qπ ∈ RS×A adds a degree of freedom on the choice of the first action, it is formally defined as
QπR(s, a) = [T aRv

π
R](s). Let Q∗R be the optimal state-action value function, an important property is that any optimal

policy π∗R is greedy respectively to it:
π∗R(s) ∈ argmax

a∈A
Q∗R(s, a). (1)

Reinforcement learning and approximate dynamic programming aim at estimating the optimal control policy π∗R when
the model (transition probabilities and the reward function) is unknown (but observed through interactions with the
system to be controlled) and when the state space is too large to allow exact representations of the objects of interest (as
value functions or policies) [2, 12, 14]. We refer to this as the direct problem. On the contrary, (approximate) inverse
reinforcement learning [10] aims at estimating a reward function for which an observed policy is (nearly) optimal. Let us
call this policy the expert policy, denoted πE . We may assume that it optimizes some unknown reward functionRE . The
aim of IRL is to compute some reward R̂ such that the expert policy is (close to be) optimal, that is such that v∗R̂ ≈ v

πE
R̂ . We

refer to this as the inverse problem. This is an ill-posed problem, for which many approaches have been proposed (many
of them try to learn a reward function such that the related optimal policy matches some measure of the distribution
induced by the expert policy, see for example [9] for a brief overview).

3 ... to Classification

A major application of IRL is imitation learning, which aims at generalizing the observed behavior of the expert
controller πE . Using IRL, this could be done by searching for an optimal policy according to the estimated re-
ward R̂. A more classic approach is to cast imitation as a supervised learning problem. Assume that a trajectory
{(si, ai = πE(si), si+1)1≤i≤N} drawn by the expert is available. As the action set is finite (and usually small), one can

1This work can be extended to compact state spaces, up to some technical aspects.
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train a classifier on the dataset {(si, ai)1≤i≤N}. A classifier learns a decision rule πc which aims at minimizing the clas-
sification error εc = Es∼ρE [χπc(s)6=πE(s)], with χ being the indicator function and ρE the stationary distribution of the
policy πE . To do so, many approaches (e.g., multi-class support vector machines [5], structured classification [15], etc.)
actually learn a score function q ∈ RS×A from the dataset, ideally satisfying q(s, π(s)) > q(s, a), for any state s and any
non-optimal action a 6= πE(s). The decision rule is deduced from the learnt score function as

πc(s) ∈ argmax
a∈A

q(s, a). (2)

One can notice the similarity between Equations 1 and 2. If seeing the Q-function as a score function (ranking actions
according to the expected discounted cumulative rewards) is not new, seing the classifier’s score function as a state-
action value function (for some unknown reward) is less usual. This can bring some ideas for new IRL algorithms, as
exemplified in the next sections.

4 SCIRL (Structured Classification for IRL)

Recall that IRL aims at estimating a reward function. Assume that this reward is linearly parameterized by a set of
features φ, Rθ(s, a) = θ>φ(s, a). This naturally leads to a parametrization of the state-action value function, for any
policy π:

QπRθ (s, a) = E[
∑

t≥0
γtRθ(St, At)|S0 = s,A0 = a, π] = θ>E[

∑

t≥0
γtφ(St, At)|S0 = s,A0 = a, π]

= θ>µπ(s, a)

with µπ(s, a) = E[
∑

t≥0
γtφ(St, At)|S0 = s,A0 = a, π] (3)

being called the feature expectation. To sum up, choosing a parametrization for the reward imposes a parametrization for
the state-action value function of any policy, and notably for the one of the expert policy, QπERθ (s, a) = θ>µE(s, a) (using
µE as a shorthand for µπE ). For the unknown reward function RE , the expert (assumed optimal) policy πE is greedy
respectively to QπERE . Recalling Eq. 2, it is therefore quite natural to parameterize the score function of the classifier with
µE as linear features. This is the basic principle of the SCIRL algorithm [7], which can be summarized as follows:

1. parameterize the score function with the expert feature expectation: qθ(s, a) = θ>µE(s, a);
2. learn the parameter vector θ from the dataset {(si, ai = πE(si))1≤i≤N}, such as minimizing the classification

error εc;
3. output the rewardRθ (θ being the learnt parameters).

Obviously, the knowledge of µE is not a reasonable assumption. However, one can notice the similarity between the
feature expectation (Eq. 3) and a value function. Estimating µE essentially reduces to an (on-policy) policy evaluation
problem [6], which can be done using standard approaches such as the Least-Squares Temporal Differences (LSTD)
algorithm [4].

If the idea underlying SCIRL is quite intuitive, one can wonder if it comes with some sort of guarantees. The answer is
positive. One can show that, if the classification error is small and if the feature expectation is well estimated, then the
expert policy πE will be near optimal for the learnt rewardRθ. More formally, we have

0 ≤ Es∼ρE [v∗Rθc (s)− v
πE
Rθc (s)] ≤

Cf
1− γ

(
εQ + εc

2γ‖Rθc‖∞
1− γ

)
,

with Cf being a standard concentration coefficient, εc being the already defined classification error and εQ quantifying
how well the expert feature expectation is estimated. See [7] for details. This algorithm also performs well empirically,
see Sec. 6 and [7].

5 CSI (Cascaded Supervised IRL)

The CSI algorithm [8] explores another way to combine classification with the temporal structure of sequential decision
making. Assuming that the optimal state-action value function is known (for some unknown rewardR), the reward can
easily be estimated by reversing the Bellman optimality equation:

R(s, a) = Q∗R(s, a)− γ
∑

s′∈S
p(s′|s, a)max

a′∈A
Q∗R(s

′, a′).
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Assume that using some classifier, a score function q has been learnt (with associated –greedy– decision rule πc). Then,
one can compute a reward functionRc associated to this score function as follows:

Rc(s, a) = q(s, a)− γ
∑

s′∈S
p(s′|s, a)max

a′∈A
q(s′, a′)

= q(s, a)− γ
∑

s′∈S
p(s′|s, a)q(s′, πc(s′)).

However, it is usually not reasonable to assume that the dynamics is known. The rewardRc can still be estimated using
any regression algorithm. Assume that a transition set {(sj , aj , s′j)1≤j≤M} is available (ideally such that the distribution
over (sj , aj) is as uniform as possible), then rj = q(sj , aj) − γq(s′j , πc(s′j)) is an unbiased estimate of Rc(sj , aj) and an
estimate R̂c can be computed using any regressor from the following training set

{(
(sj , aj), rj = q(sj , aj)− γq(s′j , πc(s′j))

)
1≤j≤M

}
.

The CSI approach can be summarized as follows:

1. estimate a score function q using any score-based classifier trained on the dataset {(si, ai = πE(si))1≤i≤N};
2. estimate the reward R̂c using any regressor trained on {((sj , aj), rj = q(sj , aj)− q(s′j , πc(s′j)))1≤j≤M}.

CSI is derived from a simple idea, based again on the resemblance between a score function and a state-action value
function. Compared to SCIRL, it is more flexible, as any classifier (not necessarily based on a linear parametrization)
and any regressor can be used. One can again wonder if this comes with some sort of guarantee, the answer is here also
positive. If the classification and the regression error are small enough, then the expert policy πE is near optimal for the
estimated reward R̂c. More formally, we have

0 ≤ Es∼ρE [v∗R̂c(s)− v
πE
R̂c

(s)] ≤ 1

1− γ

(
εR(1 + Cg) + εc

2‖R̂c‖∞
1− γ

)
,

where Cg is another concentration coefficient (satisfying Cg ≤ Cf ) and where εR quantifies the regression error (notice
that it may be easier to control the term εR than the term εQ involved in the SCIRL bound). See [8] for more details. This
algorithm also performs well empirically, see Sec. 6 and [8].

6 Experiments

We illustrate the proposed approach on a car driving simulator, similar to [13]. The goal is to drive a car on a busy three-
lane highway with randomly generated traffic (driving off-road is allowed on both sides). The car can move left and
right, accelerate, decelerate and keep a constant speed. The expert optimizes a handcrafted reward RE which favours
speed, punish off-road, punishes collisions even more and is neutral otherwise.

We compare SCIRL and CSI to the “relative entropy” algorithm of [3] (which shares with SCIRL and CSI the desired
property of not requiring to solve repetitively MDPs, contrary to a large part of the state of the art) and to the unstructured
classifier (the one which serves as a basis for both CSI and SCIRL). Algorithms are compared according to an oracle
criterion, the mean value function (averaged over a uniform distribution U) of the learnt policy relatively to the unknown
rewardRE : Es∼U [vπRE (s)], with π the policy outputted by one of the considered algorithms (π optimizes the learnt reward
for IRL algorithms).

Results are reported on Fig. 6. IRL approaches work much better than the standard classification. We advocate that
this is due to the fact that they take into account the temporal structure of the problem. CSI and SCIRL have similar
performances (CSI being slightly –but statistically significantly– better than SCIRL), both are better than the state-of-the-
art algorithm of [3].

7 Perspectives

Thanks to the similarity between score functions in classification and state-action value functions in reinforcement learn-
ing, SCIRL and CSI have been introduced. Compared to the state of the art, they are quite generic (in the sense that
instantiations of these approaches can be derived by “plugging” a large class of well-studied supervised learning meth-
ods) and they do not require solving repetitively the direct RL problem (which is a common drawback of most of other
algorithms). Both approaches come with theoretical guarantees and perform competitively on toy problems.
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Figure 1: Results on the Highway experiment (the right panel being a zoom of the left one)
.

We plan to apply SCIRL and CSI to more challenging problems, notably to robotics and to ALE (the Arcade Learning
Environment [1]). We also plan to study more deeply the theoretical aspects of these algorithms, notably if the bounds
we have are tight and how these error propagations can be used to get a more practical finite sample analysis. An-
other perspective is to propose new algorithms based on the resemblance between score functions and state-action value
functions. For example, CSI can be designed with a support vector machine (SVM) for the classification and a support
vector regressor (SVR) for the regression. The two related mathematical programs can be “merged”, and we are currently
studying this alternative IRL algorithm.
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Abstract

In this work we explore the use of reinforcement learning (RL) to help with human decision making, combining state-
of-the-art RL algorithms with an application to prosthetics. Managing human-machine interaction is a problem of con-
siderable scope, and the simplification of human-robot interfaces is especially important in the domains of biomedical
technology and rehabilitation medicine. For example, amputees who control artificial limbs are often required to quickly
switch between a number of control actions or modes of operation in order to operate their devices. We suggest that
by learning to anticipate (predict) a user’s behaviour, artificial limbs could take on an active role in a human’s control
decisions so as to reduce the burden on their users. Recently, we showed that RL in the form of general value functions
(GVFs) could be used to accurately detect a user’s control intent prior to their explicit control choices. In the present
work, we explore the use of temporal-difference learning and GVFs to predict when users will switch their control in-
fluence between the different motor functions of a robot arm. Experiments were performed using a multi-function robot
arm that was controlled by muscle signals from a user’s body (similar to conventional artificial limb control). Our ap-
proach was able to acquire and maintain forecasts about a user’s switching decisions in real time. It also provides an
intuitive and reward-free way for users to correct or reinforce the decisions made by the machine learning system. We
expect that when a system is certain enough about its predictions, it can begin to take over switching decisions from the
user to streamline control and potentially decrease the time and effort needed to complete tasks. This preliminary study
therefore suggests a way to naturally integrate human- and machine-based decision making systems.

Keywords: Temporal-Difference Learning, Human-Machine Interaction,
Prediction-based Decision Making, Decision Support, Control
Systems, Assistive Rehabilitation Robotics, Nexting
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1 Introduction

In this article we explore the use of reinforcement learning (RL) methods to assist in human decision making during the
control of a human-robot interface. We suggest that by acquiring and utilizing knowledge about a user’s control-related
decisions, control systems and human-machine interfaces could begin to take on an active role in a human decision-
making so as to reduce the burden on their users. Knowledge about a user and their robotic system can take the form of
learned predictions about the interactions between the human and their device.

Learning and maintaining a wide range of predictive sensorimotor knowledge has been demonstrated in recent work
on Nexting (Modayil, White, and Sutton 2012) using learned General Value Functions (GVFs; Sutton et al. 2011). An
extension of conventional RL value functions, GVFs represent temporally extended predictions about arbitrary signals
of interest. GVFs can be learned in real time using standard RL methods, and have been successfully applied to gather
anticipatory knowledge during ongoing human-robot interactions (Pilarski et al. 2012, 2013). As shown in our recent
work, combining conventional control methods with GVF-derived predictions can potentially reduce the time and effort
needed for users to control a switching-based human-machine interface (Pilarski et al. 2012; Pilarski and Sutton 2012).

Observations from motor control in the human brain also suggest that the ongoing prediction of motor control choices
could potentially impact the intuitiveness and functionality of hybrid human-machine decision-making systems. There is
a strong relationship between sensorimotor prediction and control in the human brain, and anticipated motor outcomes
have been suggested as an important factor in generating and improving control (Flanagan et al. 2003). As described by
Flanagan et al. (2003) and Wolpert et al. (2001), predictions are thought to be learned by human subjects before they gain
control competency. It is possible that similar mechanisms will prove beneficial for human-robot interaction (Fagg et al.
2004). In particular, leveraging learned knowledge stored in GVFs may be a viable way to support the control-related
decisions made by a user with regard to their associated device.

As a motivating example, amputees who control artificial limbs are often required to quickly switch between a number
of control actions or modes of operation in order to operate their devices. The increasing complexity of their component
human-robot interfaces is in fact one of the major barriers to the use of modern artificial limbs. Artificial limbs commonly
use recorded muscle signals (electromyographic recordings, or EMG) to actuate the different joints and motors of a
robot system. This approach is termed myoelectric control. In more advanced myoelectric systems there are fewer EMG
recording sites available on an amputee’s body than there are degrees of freedom (DOF) in the prosthesis that the user
must control (Williams 2011). One solution to this problem has been the use of EMG signals or mechanical toggles to
enable a user to manually switch their control influence between the available joints, movements, grasping patterns, or
functions available via the robot arm (Figure 1). While this approach has proved viable for functional use, it is often
viewed by users as non-intuitive and unnatural, thereby increasing a user’s cognitive effort and the time needed to
complete a task. One notable example is the myoelectric interface for some commercial hand and forearm prostheses,
which often require a sequence of muscle contractions and manual changes by the user to select a desired gripping or
pinching pattern. As such, and despite the potential for restoring lost functions, many patients still reject the use of
electromechanical artificial limbs (Williams 2011; Micera et al. 2010).

Figure 1: Example of function switching as used to control an assistive device. One problem for human-machine interaction
occurs when a machine’s controllable dimensions outnumber the control channels available to its human user.
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Figure 2: The experimental platform used in this work: a wearable robot limb that is controlled using muscle signals from
the human body, where the user sequentially controls and switches between the available joints using voluntary muscle
contractions (similar to the control interface for a commercial forearm prosthesis).

In the present work, we therefore explore the unification of RL with conventional switching-based control interfaces. In
particular, we demonstrate the use of online temporal-difference (TD) learning to predict when a user will switch their
control influence between the different control functions of an articulated robot arm. We expect that when a system
is certain enough about its predictions regarding a user’s switching target and switching timing, it can begin to take
over some function switching decisions from the user to streamline control and potentially decrease the time and effort
needed to complete tasks. Our over-arching goal is to develop predictive approaches that ultimately enable the more
natural control of complex assistive devices.

2 Methods

A wearable, myoelectrically controlled robot arm was used as the experimental platform for this work (Figure 2). This
system had four controllable actuators. Two joints of the robot arm could be controlled to move the limb left, right, up,
and down, approximating the motions provided by biological shoulder and elbow joints. The lower portion of the arm
could also flex inward and outward as in wrist joint movement, and the arm terminated in a simple gripping actuator.
Electrodes were affixed to the skin of non-amputee subjects and used to measure EMG signals from four different muscles
on the user’s body (DE-3.1 double differential electrodes and a Bangoli-8 acquisition system from Delsys, USA). These
EMG signals were mapped to two control channels: one to actuate a robotic joint, and one to switch between the different
joints in a fixed, sequential fashion.

We examined the ability of GVF-based TD learning to predict joint switching from human interaction with the robot
system during simple movement tasks. An able-bodied (non-amputee) subject actuated the myoelectric arm, using elec-
trodes affixed over the wrist flexor and wrist extensor muscles of each arm. Using this wearable system, each subject
performed a semi-repetitive motion, moving the robot’s shoulder to the right, moving the elbow up and down an arbi-
trary number of times, moving the shoulder joint back to the left, and then moving the wrist up and down an arbitrary
number of times. This H-shaped movement pattern was repeated for 10–30 minutes. As shown in Figure 3, this resulted
in a rich stream of data for use by the RL system, and provided a challenging setting for learning due to the temporal
variability and non-stationary nature of the user’s myoelectric control signals and switching behaviour.

The knowledge learned by our system regarding a user’s switching actions took the form of temporally extended pre-
dictions about a user’s switching prompts; these predictions were similar to the predictions made in our previous work
on anticipating the activity of user-controlled actuators (Pilarski et al. 2012; Pilarski and Sutton 2012). Predictions were
acquired and updated through multiple offline iterations using an implementation of GVFs (Sutton et al. 2011) and Nex-
ting (Modayil, White, and Sutton 2012). Following the approach of Pilarski et al. (2012), GVFs were updated on each time
step using TD learning with eligibility traces and tile-coding function approximation. Each GVF learner was initialized
with parameters specifying the prediction of interest, including the timescale of the temporally extended prediction and
the target signal of interest—here an on/off signal that was active when the user prompted the system to switch motor
functions. Signal sampling and learning updates occurred at 15 Hz (many times per second). The state representation
used by the machine learner was comprised of motor feedback (e.g., position, speed) from the robot arm and signals
relating to the human’s recorded muscle activity (e.g., processed EMG signals and switching cues), as well historical
information in the form of decayed traces of these signals. As in previous work, our system also learned a series of
temporally extended predictions regarding the motion of each user-driven joint and the user’s myoelectric signals (with
prediction done in the same way as for switching signal prediction, described above).
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Figure 3: Example of the sensorimotor data stream from the human-machine interface, including recorded muscle activity (EMG)
for control and switching channels (black and purple traces, left), human switching actions (purple trace, right), and the
angle and speed for three of the robot’s joints (red, blue, and green traces, right).

3 Results & Discussion

As shown in Figure 4, left, following a period of learning our approach demonstrated the ability to forecast an upcoming
switching cue from the human user. Advance knowledge of switching (a rise in the dark purple trace) was observed to
arrive a fraction of a second before the actual human-initiated event (grey pulse). Predictions on both training and test-
ing data (dark purple traces) were also observed to begin to approach the true, computed return (light purple trace) as
learned progressed. Additional learning is expected to improve the agreement between the true and learned predictions,
and testing is ongoing to determine the best state representation for this learning scenario. As expected from previous
work, our approach was also able to consistently anticipate which joint a human user would actuate next while perform-
ing their task (Figure 4, right). The timescale for all predictions shown in Figure 4 was 10 time steps. Testing and training
data were sampled from the same human user, with the training and testing sessions being conducted on different days.
The testing data were not seen by the learning system prior to evaluation.

By ranking the magnitude of joint activity predictions prior to manual switching by the user, a learning system is able
to determine the most appropriate joint to select at the time of switching (Pilarski et al. 2012). In other words, simple
relationships between the predictions can be used to formulate the system’s switching suggestions, i.e., which joint to
actuate next. These suggestions depend on both context and learned knowledge about a user’s preferences. The present
work contributes a way to determine the desired timing of switching actions. Taken together, these straightforward ap-
plications of learned predictive knowledge provide a way to allow a learning-based control system to gradually assume
more autonomy and decision-making responsibility during ongoing human-robot interactions. One useful feature of
this approach is that no explicit or time consuming reinforcement is needed from the human user to correct or affirm the
learning system’s suggested decisions; the use of a mode or function by the user verifies the system’s choices, while use
of an alternate function decreases the learning system’s predictions about the suitability of a given control option (Pi-
larski and Sutton 2012). Our approach therefore differs from predominant approaches to human-directed RL like human
reward (e.g., Thomaz and Breazeal 2008) and demonstration learning (e.g., Lin 1992).

The ability shown in the present work to anticipate a switching event promises to greatly reduce the need to manually
initiate switching. The time needed for switching could potentially even be eliminated in certain situations. As suggested
in Pilarski and Sutton (2012), removing the need to explicitly switch functions during commonly performed tasks could
result in almost as great a time savings as selecting the optimal switching target or function. These expectations remain
to be demonstrated in future work with non-amputee and amputee subjects.

4 Conclusions

In this work we demonstrated the use of reinforcement learning (RL) to help with human decision making, and specif-
ically provided a first step towards intuitive human interaction with a switching-based biomedical robot. Function
switching is a common way to deal with increasing device complexity, but it poses additional challenges to the natural
and efficient control devices by a user. To help address the barriers to streamlined human-robot interactions, we deployed
state-of-the-art RL techniques to acquire and maintain knowledge about a user and their robotic system. Our approach
was able to build up and maintain forecasts about a user’s switching behaviour in real time. We also confirmed previous
observations that our approach can detect a user’s control intent prior to their explicit control actions. Bringing together
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Figure 4: Example of switching event and joint activity predictions on previously unseen testing data after five iterations of TD
learning through 28k steps of training data. Left: switching event predictions begin to rise in advance of actual switching
events initiated by the user, as shown on both training and testing data. Right: predictions about joint activity rise in
advance of expected joint actuation. Modulating a control interface based on these predictions promises to reduce the
time needed for a user to complete a task with a multi-joint robot arm (Pilarski et al., 2012, Pilarski and Sutton 2012).

these two ideas, a system could potentially determine what function a user intends to deploy, and when they wish to
begin using the new function. Our approach allows a user to remain in direct control of a system while still allowing
the device to suggest or initiate increasingly appropriate control options. Furthermore, the opportunity for ongoing yet
optional human interaction in the decision-making process provides an intuitive and reward-free way for users to correct
or reinforce the decisions made by a semi-autonomous machine learning system. This preliminary study therefore opens
the way for naturally blending the control decisions made a human and their assistive robot or other human-machine
interface. Future work will continue to pursue the integration of biological and synthetic reinforcement learning and
decision-making systems.
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Abstract

A key to successful reinforcement learning and planning in partially observable domains is a well built representation
with a succinct state information. Recently some progress has been made on learning such representations within the
framework of PSRs [6], specifically applying the spectral learning approach [3]. These algorithms guarantee to learn a
nearly exact model given enough data, while at the same time keeping the state representation size within some well
defined bounds. Nevertheless, in many realistic domains these bounds could be prohibitive from the point of view of
RL algorithms, requiring domain specific knowledge and problem structure to make further reduction in the size of the
state space.
In this work we consider a specific problem structure, termed mixed observability [7]. As opposed to partial observabil-
ity [5], some of the observed variables are assumed to be Markovian, resulting in a more compact state representation.
Mixed observability setting was found useful in domains as diverse as robotics [7], computational sustainability [4] and
operations research [8]. Motivated by its broad applicability, in this work we develop a PSR–based spectral learning
algorithm that leverages this structural assumption. Beyond providing a more compact state representation, the pro-
posed algorithm is faster and more data efficient as compared to the existing spectral learning methods for PSRs. These
advantages are supported by theoretical as well as experimental results.

Keywords: Predictive Representations, Spectral Learning, Reinforcement
Learning
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1 Partially Observable Domains

Much of the reinforcement learning (RL) literature are devoted to so called fully–observable environments. These environ-
ments are typically modeled by Markov decision processes (MDP) [9], a formalism that rests on an assumption that the
observation received by an agent at the current time step is sufficient to predict its future dynamics. In other words, the
agent does not need to keep any information about its past observations.
Despite the ubiquity of domains where the MDP formalism is applicable, in practice, many problems are only partially
observable. This can be due to insufficient sensing (e.g. noisy sensors in robotics), or the nature of the domain itself
(e.g. weather prediction). As such, much of the effort in solving RL problems goes into building a proper model of the
environment that provides some notion of state.
A common framework for partially observable domains with discrete actions and observations is the partially observable
Markov decision process (POMDP) [5]. In this framework the environment dynamics are still modelled by an MDP, but the
actual state is hidden and instead the agent observes only some, possibly stochastic, information about the state of the
system. As a result, the state representation in POMDPs at any point of time is a distribution over hidden states, also
called belief state. While the problem of planning in POMDPs has been addressed throughout the years (e.g. [5], [10]),
learning POMDP representations directly from data has always been a difficult task. The classical approach was based
on the expectation maximization method [2], which is a locally optimal method and as such initialization–dependent.

1.1 Predictive State Representations

Predictive state representations (PSR) were introduced as a means to represent a partially observable environment without
explicit notion of latent states, with the goal of developing efficient learning algorithms [6, 11]. Essentially, a predictive
representation is only required to keep some form of sufficient statistic from the past to be able to predict the future
sequences of observations given sequences of actions. In this paper we consider what is called linear PSRs as they can
represent environments modelled by POMDPs on one hand, and on the other hand there are efficient algorithms for
learning these representations.
Let A and O be discrete action and observation spaces correspondingly. Given a sequence of actions a1, ..., ak ∈ A,
the environment outputs a sequence of observations o1, ..., ok ∈ O, with probability P(o1, ..., ok|a1, ..., ak). The set of
parameters

{m∗ ∈ Rn, {Mao ∈ Rn×n}a∈A,o∈O,p0 ∈ Rn}
defines a n-dimensional linear PSR that represents this environment if the following holds:

∀k ∈ N, oi ∈ O, aj ∈ A : P(o1, ..., ok|a1, ..., ak) = m>∗Makok · · ·Ma1o1p0,

where p0 gives the initial state of the PSR [12].
Let p(h) be the PSR state corresponding to a history of action–observation pairs h. Then, for any ao ∈ A×O, the following
recursive state update equation can be derived from the above :

p(hao) , Maop(h)

m>∗Maop(h)
.

In this sense, the vector p(h) represents the state of the system since there is no need to keep the history in memory,
specifically:

∀k ∈ N, oi ∈ O, aj ∈ A : P(o1, ..., ok|h, a1, ..., ak) = m>∗Makok · · ·Ma1o1p(h).

Finally, it was shown that the dimension of the linear PSR is at most the same as the number of hidden states in a POMDP
representing the same environment [11]. From this point of view, a linear PSR representation can be more compact than
a POMDP representation.

1.2 Spectral Learning for Linear PSRs

Most of the learning algorithms for linear PSRs are based on estimating a portion of the system dynamics matrix (SDM)
[11], a matrix that contains all the information about the observable behavior of the environment. In this matrix the
columns correspond to histories and rows correspond to future action–observation sequences (tests), so that the entries
are probabilities of observations given the history and a corresponding sequence of actions. Then, the spectral algorithm
proceeds with performing a singular value decomposition (SVD) to the corresponding portion of the matrix and computes
the PSR parameters based on the results of SVD [3]. Let PT ,H = USV> be an estimated submatrix of SDM for the
corresponding set of tests T and set of historiesH provided with its SVD decomposition; similarly, PT ,ao,H be a collection
of estimated SDM submatrices with tests from aoT for all ao ∈ A × O; and pH be a vector of probabilities of histories
fromH. Then, the algorithm computes a PSR representation from the following:

- p0 = SV>1,
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- m>∗ = p>H(SV
>)†,

- ∀ao ∈ A×O : Mao = U>PT ,ao,H(SV>)†,

where † represents a Moore–Penrose pseudoinverse of a matrix.
As long as T and H are sufficiently large sets and PT ,H,PT ,ao,H,pH are well estimated from data, the algorithm is
guaranteed to produce an exact (up to numerical errors) linear PSR representation of the environment [3].

2 Mixed Observable Predictive State Representations

Despite linear PSRs being potentially more compact than POMDPs, in more realistic problems the state dimension is
often still too large to apply planning algorithms. In many problems, one can notice that the partial observability setting
may be too general. One promising direction with this respect is the appearance of a mixed observability setting, which
was proposed as a structural assumption that simplifies planning by reducing the state space of the problem [7, 1]. Mixed
observability can be seen as a middle ground between full observability (MDP) and partial observability, by assuming
that only some of the components of an observation satisfy the Markov assumption. Specifically, let the observation
spaceO , X ×Z be a product of a fully observable component X and a partially observable component Z , such that for
any history h:

∀a ∈ A, xz ∈ X × Z : P(xz|h, a) = P (x|pz(h), x(h)) · P (z|pz(h), x(h), x), (1)

where pz(h) is the sufficient statistic for the component Z after observing h (z-th state), and x(h) is the last fully observ-
able component in h. This structure occurs in POMDPs whose state space can be factored in two sets X and Y , such that
the states in Y produce partial observations Z while those in X are fully observable [7]. In this case, pz(h) is simply a
belief vector over states in Y .
In the above formulation, the sufficient statistic for Z together with the last fully observable X represent the state of the
environment, as opposed to keeping a sufficient statistic for X × Z together in the general partially observable setting.
From Eq. (1) it is clear that the z-th state dynamics depend on the current x, so in what follows the equations updating
z-th state will be different for each x ∈ X , as expected . The mixed observable PSR (MOPSR) is therefore defined by

{
x0 ∈ R|X |,

{
mq
∗ ∈ Rkq , {Mq

axz ∈ Rkx×kq}a∈A,xz∈X×Z ,pq0 ∈ Rkq
}
∀q∈X

}
,

if the following holds:

1. ∀x ∈ X :
∑
z∈Z P (xz) = x0[x], (i.e., distribution over the initial state in X )

2. ∀k ∈ N, xizi ∈ X × Z, aj ∈ A :

P(x1z1, ..., xkzk|a1, ..., ak) =
∑

q∈X
x0[q] ·

(
mxk
∗
>Mxk−1

akxkzk
· · ·Mx1

a2x2z2 ·Mq
a1x1z1p

q
0

)
.

Since the initial x is unknown, the starting state of the MOPSR is a weighted collection of vectors (note that these can
be of different sizes) with coefficients defined by x0. Hence, for the first action–observation pair axz the state update
equation would be

p(axz) =

∑
q∈X x0[q] ·Mq

axzp
q
0

mx∗
>
(∑

q∈X x0[q] ·Mq
axzp

q
0

) ,

and for the remaining, one gets the recursive state update equation similar to the usual linear PSR setting:

p(haxz) , M
x(h)
axz p(h)

mx∗
>Mx(h)

axz p(h)
.

The following theorem summarizes the upper bound on the MOPSR representation dimensions.
Theorem 1. Assume that a POMDP with |X | × |Y| states satisfies the mixed observability assumption (1). Then in general, the
dimension of a linear PSR representing this POMDP can be equal to the number of states, while the dimension of each pq∈X in a
MOPSR representation is upper bounded by |Y|.

2.1 Spectral Learning for MOPSRs

As we previously mentioned, the last fully observable component influences the future dynamics of the environment
in its own way. Not surprisingly, one reasonable and provably correct way to learn MOPSR representations is to first
split the estimated submatrices of SDM column–wise into |X | submatrices, where each of them contains only histories
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(columns) that end with a particular fully observable component. Then, SVD is applied to each of these submatrices and
the results are used to estimate the parameters of the MOPSR.
For all q ∈ X , let PT ,Hq = UqSqVq

> be a SVD decomposition of estimated submatrices of SDM for the set of tests T
and set of historiesHq that terminate with q; similarly, PT ,axz,Hq be a collection of estimated SDM submatrices with tests
from axzT for all axz ∈ A×X ×Z; pHq

be an estimated vector of probabilities of histories fromHq ; and x0 an estimated
distribution over X . Then, the parameters of an MOPSR are obtained using the following (∀q ∈ X ):

pq0 =
1

x0[q]
SqVq

>1

mq
∗
> = p>Hq

(SqVq
>)†

∀axz ∈ A× X ×Z : Mq
axz = U>xPT ,axz,Hq

(SqVq
>)†.

As with the general spectral learning algorithm, with enough data and diverse enough sets T and H, one recovers an
exact (up to numerical errors) MOPSR representation of the environment. Then, the planning problem can likely be
solved using an algorithm similar to one developed for mixed observable setting in POMDPs [7].
From a computational point of view, performing |X | SVD-s of small matrices is faster than doing SVD on one concate-
nated matrix due to the nearly cubic complexity of the SVD operation. As a result, using the MOPSR learning outlined
above one gets a reduction in complexity by a factor of |X |, if small matrices are roughly equal in size.
Despite a seemingly larger number of parameters to estimate at first glance, the dimensions of matrices and vectors are
significantly smaller compared to the linear PSR representation of the same environment, for the same reasons as men-
tioned above. Overall, a reduction by a factor of |X | is generally expected here as well. Hence, the proposed algorithm is
also expected to be more data efficient, which is evident from the experimental results.

3 Experimental Results

We consider an elevator control problem, which originally appeared at International Probabilistic Planning Competition
(IPCC) 2010. It consists of one (or more) elevator(s) operating in a building with people possibly waiting at any floor.
All information except for the direction in which people desire to go is fully observable (until the elevator’s arrival). We
applied both a general spectral learning algorithm (TPSR) and the MOPSR learning algorithm on the problem formula-
tion with one elevator and four floors. Note that although this instance of the problem might be easy for planning, it is
nontrivial for learning, since the number of observations is 256 (|X | = 64, |Y| = 4), 5 actions and total number of states is
642, requiring a lot of data to estimate SDM submatrices with longer histories/tests.
While the upper bound on the rank of each PT ,Hz is 64, with 10,000 training trajectories there were only 48 non-zero

Figure 1: (a) Prediction errors of the MOPSR and TPSR models. (b) Run times for SVD operation for the MOPSR and
TPSR models.

singular values from the SVD on some matrices, so we learned MOPSR models of dimension 48 throughout. The choices
for sets T and H were essentially driven by observed trajectories with predefined maximum length. We considered all
tests and histories of length 1 (h1t1), as well as tests of length 3 and histories of length 4 (h3t4). However, with TPSR
learning we could only consider the first option with the cap on the dimension being 128 without running out of memory
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(7GB) during SVD operation, while the upper bound on the rank of PT ,H was 642.
As shown in Figure 1 (a), the MOPSR model learned from the same amount of data and length 1 histories and tests
outperformed the TPSR model in terms of the prediction errors. The MOPSR model based on longer histories and test
performed even better as expected. Furthermore, the MOPSR learning was much faster compared to TPSR learning, as
can be seen from Figure 1 (b), due to performing SVD on large matrices in the TPSR algorithm.

See [8] for a detailed version of this paper including the proofs and more experimental results.
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Abstract

We propose an algorithm to solve uncertain sequential decision-making problems that utilizes two different types of
data sources. The first is the data available in the conventional reinforcement learning setup: an agent interacts with the
environment and receives a sequence of state transition samples alongside the corresponding reward signal. The second
data source, which differentiates the setup of this work from the usual reinforcement learning framework, is in the form
of expert’s demonstrations, that is, a set of states with the expert’s suggested actions.

Benefitting from both sources of data, which are available in many real-world application domains, allows the agent to
perform well even with few data points. The algorithm is couched in the framework of Approximate Policy Iteration. Its
approximate policy evaluation step is formulated as a convex optimization problem in which the expert demonstration
data act as a set of linear constraints. In a real robotic navigation task, we show that the algorithm outperforms both pure
approximate policy iteration and supervised learning.
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1 Introduction

Solving uncertain sequential decision-making and reinforcement learning (RL) [1] problems with large state spaces can
be quite difficult. These are, however, the problems that appear most often in real-world applications, e.g., in robotics,
designing treatment strategy for chronic patients, etc. There are two key insights that help us solve these problems.
The first is that the algorithm has to benefit from the intrinsic regularities of the problem in hand, and preferably does
this adaptively. Even though this idea has been known for a long time in statistics and supervised machine learning,
researchers have only recently started to develop such algorithms for RL problems, e.g., Farahmand et al. [2], Taylor and
Parr [3], Kolter and Ng [4], Ghavamzadeh et al. [5], Farahmand and Szepesvári [6]. This paper introduces another idea:
For some problems, we might occasionally be able to provide the agent with some extra information to guide its learning.
In particular, we might provide the agent with the information about what actions are good or close to optimal in a few
states.

This extra information, which we call “expert data”, is common in many application domains and not using it limits
the range of sequential decision-making problems that can be solved. As an example in robot learning, it is a common
practice to solicit suggestions from an expert to learn complex behaviour, as done in the Learning from Demonstration
(LfD) framework. In robotics and other complex control problems it is important to achieve good performance from
relatively little data. It is also particularly crucial to limit the risk involved in learning by trial-and-error (as is done in
RL), which could lead to catastrophic failures. A combination of trial-and-error RL data and expert data (i.e., mixing RL
and LfD) offers a tantalizing way to effectively address challenging real-world policy learning problems.

Our primary contribution is a new large-margin algorithm that allows us to benefit from the demonstration data in an
Approximate Policy Iteration (API) framework. The method is formulated as a coupled convex optimization. The key
insight is that one can incorporate the expert demonstration data as a set of linear constraints. The optimization is for-
mulated in a way that permits mistakes in the data provided by the expert, and also accommodates variable availability
of expert data (i.e., just an initial batch or continued demonstrations). The algorithm has a theoretical guarantee in the
form of an upper bound on the Bellman error, but we do not report that result in this extended abstract (cf. Kim et al. [7]).

We evaluate the algorithm’s practicality in a real robot path finding task, where there are a few demonstrations, and
trial-and-error data is expensive due to limited time. In all of the experiments, our method performed better than Least-
Square Policy Iteration (LSPI) [8], using fewer trial-and-error data points and exhibiting significantly less variance. More
empirical studies are reported in [7].

2 APID Algorithm

We consider a continuous-state, finite-action discounted MDP (X ,A, P,R, γ), where X is a measurable state space (e.g., a
subset of Rd), A is a finite set of actions, P : X × A → M(X ) is the transition model, R : X × A → M(R) is the reward
model, and γ ∈ [0, 1) is a discount factor.1 Let r(x, a) = E [R(·|x, a)], and assume that r is uniformly bounded by Rmax. A
measurable mapping π : X → A is called a (deterministic) policy. As usual, V π andQπ denote the value and action-value
function for π, while V ∗ and Q∗ denote the corresponding value functions for the optimal policy π∗.

Our algorithm is couched in the framework of Approximate Policy Iteration (API) [9]. A standard API algorithm starts
with an initial policy π0. At the (k+1)th iteration, given a policy πk, the algorithm approximately evaluates πk to find Q̂k,
usually as an approximate fixed point of the Bellman operator Tπk : Q̂k ≈ TπkQ̂k.2 This is called the approximate policy
evaluation step. Then, a new policy πk+1 is computed, which is greedy with respect to Q̂k. There are several variants of
API that mostly differ on how the approximate policy evaluation is performed, a challenging problem for continuous
state spaces. Most methods attempt to exploit structure in the value function [2, 3, 5], but in some problems one might
have extra information about the structure of good or optimal policies as well, which would ideally be incorporated in
the algorithm. This is precisely our case, since we have expert demonstrations.

To develop the algorithm, we start with regularized Bellman error minimization, which is a common flavour of policy
evaluation used in API. Suppose that we want to evaluate policy π and we are given a batch DRL = {(Xi, Ai)}ni=1

containing n examples, and that we know the exact Bellman operator Tπ . Then, the new value function Q̂ is computed
as:

Q̂← argmin
Q∈F |A|

‖Q− TπQ‖2n + λQJ
2(Q) (1)

where F |A| is a set of possible action-value functions, the first term is the squared Bellman error evaluated on data,3

J2(Q) is a regularization penalty, which can prevent overfitting when F |A| is complex, and λQ > 0 is the regularization
1For a space Ω with σ-algebra σΩ,M(Ω) denotes the set of all probability measures over σΩ.
2For discrete state spaces, (TπkQ)(x, a) = r(x, a) + γ

∑
x′ P (x′|x, a)Q(x′, πk(x′)).

3‖Q− TπQ‖2n , 1
n

∑n
i=1 |Q(Xi, Ai)− (TπQ)(Xi, Ai)|2 with (Xi, Ai) from DRL.
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coefficient. The regularizer J(Q) measures the complexity of function Q in the function space F |A|. Different choices of
F |A| and J lead to different notions of complexity, e.g., various definitions of smoothness, sparsity in a dictionary, etc.
As a large class of examples, F |A| could be a reproducing kernel Hilbert space (RKHS) and J2 its corresponding norm,
i.e., J2(Q) = ‖Q‖2H.

Now suppose that, in addition to DRL, we have a set of expert examples DE = {(Xi, πE(Xi))}mi=1, which we would like
to take into account in the optimization process. The intuition behind our algorithm is that we want to use the expert
examples to “shape” the value function where they are available, while using the trial-and-error data to improve the
policy everywhere else. Hence, even if we have few demonstration examples, we can still obtain good generalization
everywhere due to the trial-and-error data.

To incorporate the expert examples in the algorithm one might require that at the states Xi belonging to DE, the
demonstrated action πE(Xi) be optimal, which can be expressed as a large-margin constraint: Q(Xi, πE(Xi)) −
maxa∈A\πE(Xi)Q(Xi, a) ≥ 1. Nevertheless, this might not always be feasible, or desirable (if the expert itself is not
optimal), so we add slack variables ξi ≥ 0 to allow occasional violations of the constraints (similar to soft vs. hard
margin in the large margin literature). The policy evaluation step can then be written as the following soft-constrained
optimization problem:

Q̂← argmin
Q∈F |A|,ξ∈Rm

+

‖Q− TπQ‖2n + λQJ
2(Q) +

α

m

m∑

i=1

ξi (2)

s.t. Q(Xi, πE(Xi))− max
a∈A\πE(Xi)

Q(Xi, a) ≥ 1− ξi. for all (Xi, πE(Xi)) ∈ DE

The parameter α balances the influence of the data obtained by the RL algorithm (generally by trial-and-error) vs. the
expert data. When α = 0, we obtain (1), while when α → ∞, we essentially solve a structured classification problem
based on the expert’s data [10]. In the latter case, the action-value function Q̂ would be such that it imitates the expert
demonstration data as much as possible.

Note that the above constrained optimization problem is equivalent to the following unconstrained optimization:

Q̂← argmin
Q∈F|A|

‖Q− TπQ‖2n + λQJ
2(Q) +

α

m

m∑

i=1

(
1−

(
Q(Xi, πE(Xi))− max

a∈A\πE(Xi)
Q(Xi, a)

))

+

, (3)

where (1− z)+ = max{0, 1− z} denotes the hinge loss.

In many problems, we do not have access to the exact Bellman operator Tπ , but only to samples DRL =
{(Xi, Ai, Ri, X

′
i)}ni=1 with Ri ∼ R(·|Xi, Ai) and X ′i ∼ P (·|Xi, Ai). In this case, one might want to use the empirical

Bellman error ‖Q− T̂πQ‖2n (with (T̂πQ)(Xi, Ai) , Ri+γQ(X ′i, π(X
′
i)) for 1 ≤ i ≤ n) instead of ‖Q−TπQ‖2n. It is known,

however, that this is a biased estimate of the Bellman error, and does not lead to proper solutions [11]. One approach to
address this issue is to use the modified Bellman error [11]. Another approach is to use Projected Bellman error, which
leads to an LSTD-like algorithm [2]. Using the latter idea, we formulate our optimization as:

Q̂← argmin
Q∈F |A|,ξ∈Rm

+

∥∥∥Q− ĥQ
∥∥∥
2

n
+ λQJ

2(Q) +
α

m

m∑

i=1

ξi (4)

s.t. ĥQ = argmin
h∈F |A|

[∥∥∥h− T̂πQ
∥∥∥
2

n
+ λhJ

2(h)

]

Q(Xi, πE(Xi))− max
a∈A\πE(Xi)

Q(Xi, a) ≥ 1− ξi. for all (Xi, πE(Xi)) ∈ DE

Here λh > 0 is the regularization coefficient for ĥQ, which might be different from λQ. For some choices of the function
space F |A| and the regularizer J , the estimate ĥQ can be found in closed-form. For example, one can use linear function
approximators h(·) = φ(·)>u and Q(·) = φ(·)>w where u,w ∈ Rp are parameter vectors and φ(·) ∈ Rp is a vector
of p linearly independent basis functions defined over the space of state-action pairs. Using simple l2-regularization,
J2(h) = u>u and J2(Q) = w>w, the best parameter vector u∗ can be obtained as a function of w by solving a ridge
regression problem:

u∗(w) =
(
Φ>Φ + nλhI

)−1
Φ>(r + γΦ′w),

where Φ, Φ′ and r are feature and reward matrices for the trial-and-error dataset: Φ = (φ(Z1), . . . ,φ(Zn))
>, Φ′ =

(φ(Z ′1), . . . ,φ(Z
′
n))
>, r = (R1, . . . , Rn)

>, with Zi = (Xi, Ai) and Z ′i = (X ′i, π(X
′
i)) (for data belonging to DRL). More

generally, as discussed above, we might choose the function space F |A| to be a reproducing kernel Hilbert space (RKHS)
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Figure 1: (a) Picture of the robot. (b) Hand-drawn top-down view of the environment. The star represents the goal, circle
represents the initial position, black lines indicate walls, and three grid cells represents the vicinity of Kinect. (c) Distance
to the goal for LSPI, APID and Supervised learning with a random forest.

and J to be its corresponding norm, which provides the flexibility of working with a nonparametric representation while
still having a closed-form solution for ĥQ.

The approach presented so far tackles the policy evaluation step of the API algorithm. We call our approach Approximate
Policy Iteration with Demonstration (APID). This step would be alternated with greedification, as in usual API. So far we
have left open the problem of how the datasets DRL and DE are generated. These datasets might be regenerated at each
iteration, or they might be reused, depending on the availability of the expert and the environment. In practice when the
expert data is rare, DE will be a single fixed batch, but DRL could be increased by e.g., running the most current policy
(possibly with some exploration) to collect more data. The generation of these datasets is application-dependent.

Note that the values of the regularization coefficients as well as α should ideally change from iteration to iteration as a
function of the number of samples as well as the value function Qπk .

3 Robot Path Finding

We evaluate APID on a real robot navigation task, whenDRL andDE are both expensive to obtain. We have also conducted
some experiments on a simulated domain, but we do not report those results here (cf. [7]). We compare APID with LSPI
and supervised LfD (Random Forest), with small |DE | and only one demonstrated trajectory. We do not assume that the
expert is optimal (and/or abundant).

In this task, the robot needs to get to the goal in an unmapped environment (i.e., the robot does not know where the
obstacles are). We use an iRobot Create equipped with Kinect RGB-depth sensor and a laptop. The Kinect perceptual
module produces a point-cloud where each point, corresponding to a pixel in the RGB image, has horizontal, vertical,
and depth coordinate information. We encode the Kinect observations with a 1 × 3 grid cells (1m × 1m). The robot also
has three bumpers to detect a collision from the front, left, and right. Figures 1a-1b show a picture of the robot and its
environment. In order to reach the goal, the robot needs to turn left to avoid a first box and wall on the right, while not
turning too much, to avoid the couch. Next, the robot must turn right to avoid a second box, but make sure not to turn
too much or too soon to avoid colliding with the wall or first box. Then, the robot needs to get into the hallway, turn
right, and move forward to reach the goal position; the goal position is set to 6m forward and 1.5m right from the initial
position.

The state is represented with 3 non-negative integer features (densities in each cell) and 2 continuous features (robot
position). Densities are computed by counting the number of Kinect points in a cell. The robot has three discrete actions:
turn left, turn right, and move forward. The reward is minus the distance to the goal. If the robot’s front bumper
is pressed and the robot moves forward, it receives a penalty equal to 2 times the current distance to the goal, and
if the robot’s left bumper is pressed and the robot does not turn right, and vice-versa, it again receives 2 times the
current distance to the goal. The robot outputs actions at a rate of 1.7Hz. We used a linear Radial Basis Function (RBF)
approximator as the function approximator architecture for the value function. To solve (4), we used CVX, a package for
specifying and solving convex programs [12, 13].
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We started from a single trajectory of demonstration, then incrementally added trial-and-error data while fixing the
expert data. The number of data points added varied at each iteration, but the average was 160 data points, which is
around 1.6 minutes of exploration, gathered using an ε-greedy exploration policy (decreasing ε over iteration). Over the
11 iterations, training time was approximately 18 minutes. Initially, α

m was set to 0.9, then decreased as new data was
acquired. To evaluate the performance of each algorithm, we ran each iteration’s policy for a task horizon of 100 (∼1
min.), and repeated 5 times, to compute the mean and standard deviation.

As seen in Figure 1c, APID outperformed both LSPI and supervised LfD. The supervised LfD method kept running into
the couch. Its poor performance is due to the difference in state distribution induced by the expert and the one induced
by the agent’s policy [14]. LSPI had a problem of exploring unnecessary states - when ε-greedy exploration policy was
used, it explored regions of state space that are not relevant in learning the optimal plan, such as exploring the far left
areas from the initial position. APID was able to leverage the expert data to efficiently explore most relevant states and
avoid unnecessary collisions. For example, it learned to avoid the first box in the first iteration, then explored states near
the couch where Supervised LfD failed. Finally, Table 1 gives the time it took for the robot to get to the goal (within
1.5m). The goal was reached only in the initial expert demonstration trajectory, and in iterations 9, 10 and 11 of APID.
Note that the times achieved by APID (iteration 11) are similar to the expert

Table 1: Average time to reach the goal

Average Vals Demonstration APID-9th APID-10th APID-11th
Time To Goal(s) 35.9 38.4± 0.81 37.7± 0.84 36.1± 0.24

4 Conclusion

We proposed a regularized algorithm that allows us to benefit from expert’s demonstrations in the reinforcement learning
framework. This leads to policies that perform very well even with a few data samples and gradually improve when
more trial-and-error samples are collected. This extension increases the range of real-world sequential decision-making
problems that can efficiently be solved. In future work, we will explore more applications of APID.
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Abstract

An important type of decision making concerns how people choose to gather information which reduces their uncer-
tainty about the world. For example, when learning about a novel piece of technology, like a smartphone, people often
actively intervene on various aspects in order to better understand the function of the system. Interventions allow us to
tell apart causal structures that are indistinguishable through observation, but only if the right variables are intervened
on. Normative models of decision making developed in the machine learning literature specify a process of comparing
hypotheses to identify those interventions that will allow a learner to distinguish between them. An experiment that
asked subjects to decide between two causal hypotheses found that while they often chose useful interventions, they fre-
quently perform interventions whose expected effects were typical of one causal structure but that did not always allow
the two structures to be distinguished. We interpret this tendency as a type of positive-test-strategy with a preference for
outcomes that are representative of a single causal structure.

Keywords: active learning; causal learning; interventions; information search
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Introduction

To learn about causal relationships in the world, we often cannot rely on passive observation (i.e., unsupervised learning)
alone. In order to understand why certain variables covary, we need the ability to actively change them and observe the
effects of these changes. Active interventions are thus a crucial instrument for learning what causal structures underlie
patterns of covariation in the world. There exists considerable evidence in psychology that people understand how
causal systems behave in response to interventions (Waldmann & Hagmayer, 2005) and that they can use the information
obtained from interventions to improve their inferences (Lagnado & Sloman, 2006).

It is still an open question, however, what strategies people use to plan their interventions with the goal of learning, that
is how they decide which information would be useful for learning how a causal system works. A medical researcher,
for example, needs to decide which of a patient’s symptoms to treat in order to find out what illness may have caused
their particular pattern of symptoms. Similarly, a scientist has to choose experimental manipulations that will tell apart
different scientific hypotheses.

Here, we will examine two broad categories of models that can be used to explain people’s decision-making processes
during hypothesis testing. Then, in a behavioral experiment with human participants, we evaluate which class of models
provides the best account of human decision making. The following section will give a short overview of these two key
modeling approaches we have explored.

Comparative strategies

The first type of strategy that might underlie people’s causal intervention decisions is based on a rational analysis of the
structure learning task. According to this rational perspective, people should choose interventions that will be useful for
distinguishing alternative hypotheses. There exists a larger group of optimal models, or sampling norms, that have been
proposed as methods for achieving this goal (Nelson, 2005). These models share the assumption that people anticipate
possible outcomes of their search behavior (here: of their interventions), and evaluate how useful these outcomes will be
for differentiating hypotheses. Importantly, they all rely on a process of comparison, because they only value information
that can help tell apart different hypotheses.

One sampling norm that captures the goal of causal structure learning particularly well is the Information Gain model
of hypothesis testing (IG). The model aims at reducing a learner’s uncertainty about which out of a number of possible
hypotheses is most likely to underlie some observed data. It was first applied to causal interventions in the machine-
learning literature (Murphy, 2001; Tong & Koller, 2001). However, it has also been proposed as a mechanism that guides
people’s intervention choices (Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

Non-comparative strategies

In contrast to such comparative models of intervention choice, there also exists a long tradition within the psychology
literature which shows that people seek information that only pertains to one specific hypothesis at a time. For example,
it has been shown in rule-learning tasks that behavior often follows a positive-test-strategy (PTS) or positivity bias. This
bias is a preference for seeking affirming information given a currently held hypothesis (e.g., Klayman & Ha, 1989),
rather than testing whether the rule does not hold for counterexamples.

In the causal domain, PTS could manifest in a preference to intervene on variables (nodes in a causal graph), with high
centrality (e.g., Ahn, Kim, Lassaline, & Dennis, 2000) within one candidate causal structure, irrespective of other hypothe-
ses. Nodes are central if they have a large number of direct or indirect descendant links which could be activated through
an intervention and thus count as positive evidence for a given structure. This metric can be completely at odds with a
comparative strategy such as IG, because the outcomes of interventions based on this strategy may not be at all helpful
for distinguishing one hypothesis from its alternatives.

Goals of this study

The aim of our study is to evaluate the degree to which people engage in comparative or non-comparative search behav-
ior during causal structure learning. To answer this question, we conducted a simple intervention experiment that was
set up to facilitate the use of a comparative strategy.

Methods

In this experiment, participants were repeatedly asked to make interventions on three-node causal systems to distinguish
between two causal hypotheses.
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Beginning: All nodes “off” Click to intervene on a node 
(lose $0.10 of possible bonus)

Intervention trials can be repeat until confident in which structure is correct

State of other components update Choice of structure

Which chip diagram
is correct?

Confidence rating

HighLow

How confident
are you in your

selection?

Figure 1: Intervention phase of the experiment which was repeated for each of the 27 structure comparisons. The true underlying
causal graph was selected randomly. Participants could make as many interventions as they wished, but lost $0.10 of a potential
bonus payment with each intervention.

Participants. We recruited one hundred and five participants (51 women and 55 men) aged 18 to 64 (M = 34.3 years, SD
= 12) via Amazon Mechanical Turk. All participants were paid $2 for participation with the option of earning another $1
bonus for their performance in the task (bonus structure is explained below).

Stimuli and Materials. All possible three-node structures with one or two links were used in the experiment. They
were exhaustively paired with each other to yield 27 unique structure pairs, which acted as hypotheses. All links had
causal strengths of 0.8 and there were no background causes that could turn on nodes without any causal impact from
another node or an intervention from the outside. In the experiment, causal graphs were described as computer chips
with multiple components (nodes), which could either be on or off as indicated by their color (red or green). Hypotheses
(pairs of causal graphs) were illustrated by arrow diagrams that show their respective causal links. During the task, the
order of the nodes was randomized on the screen so that each node could appear in one of five different locations.

Procedure. Participants played a game which had them imagine they were working in a computer chip factory in
which an accident had caused some of the chips to be mixed up. They were instructed to help identify the types of
individual chips by testing them through interventions. After an extensive instruction phase, participants tested 27 chips
corresponding to all 27 causal structure comparisons. They were told that each chip could be described by one of two
different chip types (hypotheses), which were presented to them with arrow diagrams. The diagrams remained at the
top of the screen the entire time that a chip was tested to facilitate comparison between them. For each chip comparison,
one of the hypotheses was randomly selected to be the true underlying structure of the test chip.

Figure 1 illustrates the intervention phase of the experiment. Interventions could be made by clicking on one of the
nodes, which could then activate other nodes on the chip. Activated nodes changed their color (from red to green).
Participants could make as many interventions as they wished, and were allowed to proceed any time when they felt
they had figured out the chip type. They then indicated which of the two hypotheses was most likely given the results
of their interventions.

Participants could receive a bonus of up to 1$ based on one randomly chosen comparison at the end of the experiment.
The bonus was only paid if they chose the correct structure at the end of that particular comparison, and it was further
reduced by $0.10 for every intervention they had made. Thus, participants were incentivized to respond accurately and
to use a minimal number of interventions.

Results

Model comparison.

To examine the degree to which participants rely on a comparative strategy when choosing their interventions, we cal-
culated the expected information gain for every intervention in all 27 structure comparisons. We fit these predictions
of the IG model to participants’ choices using a probabilistic choice rule with a temperature scaling parameter that was
estimated for each individual participant. We found that IG predicted choices well on some problem types but also con-
siderably deviated from them on others. To make sure that these deviations were not due to just random variation, we
compared bootstrapped samples from the choice data to samples from the model’s posterior, separately for each problem
type (plots are not shown in the interest of space). This gave us an indication of the expected uncertainty around our
measurement of people’s preferences, as well as the expected distribution of choices that a population of IG users would
produce. Even after accounting for uncertainty in this way, model predictions from IG still deviated from the empirical
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data because the two sets of samples overlapped only barely or not at all on certain problem types. We conducted the
same analysis using the PTS model and found similar results (good fit on some, but not all problem types).
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Figure 2: Log likelihood of IG model and agreement of IG
and PTS (kendall’s tau rank correlation), by problem type.

Next, we investigated whether a propensity for non-
comparative hypothesis testing, like PTS, could explain
why IG did not match people’s choices in some problems. To
do so, we derived a measure of agreement between the two
models, by calculating the rank correlation of their predictions
for the preference over the three nodes in a given problem type.
Figure 2 shows how this measure of model agreement relates
to the goodness of fit of the IG model, in each problem type.
Indeed, we find that the IG model had a lower likelihood in
precisely those problem types in which its predictions conflicted
with the PTS model. In addition to the bootstrapping analyses,
this provides another reason to believe that deviations from IG
on some problem types are not just due to random variation
in the data. Instead, the model might particularly struggle on
problems where other aspects of the task, like non-comparative
considerations, enter people’s decision process.

Finally, we fit a combined model that took a weighted combination of IG and PTS scores before applying the probabilistic
choice rule. Again, weights were estimated separately for each participant. When comparing posterior samples of this
combined model to bootstrapped samples of the data, we found that it made credible predictions on all 27 structure
comparisons.
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Figure 3: Median response time before making an interven-
tion and agreement of IG and PTS (kendall’s tau rank corre-
lation), by problem type.

Reaction times.

If, as the combined model suggests, participants are influenced
by both comparative and non-comparative aspects of the task,
we expected that it should be particularly difficult to choose
an intervention when IG and PTS make divergent predictions
about which node to choose. We therefore looked at the time
it took participants to make an intervention, separately for each
problem type and again depending on the agreement between
IG and PTS. As Figure 3 shows, people did take significantly
longer to choose an intervention in problems with low model
agreement, r(25) = − 0.58, p < 0.005. This finding confirms
that comparative and non-comparative components may both
play a role in people’s intervention decisions and, when in con-
flict, can make certain problems more difficult than others.

Individual differences
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Figure 4: Response time and difference in model fit between
IG and PTS, by participant.

Using the combined model, we found considerable variation in
the relative weights that participants place on the two strate-
gies examined here (IG and PTS). Thus, we were interested in
finding out if the individual tendency to use either IG or PTS
manifested in other aspects of participants’ behavior in the task,
besides their intervention choices. To do so, we considered the
difference in log likelihood of the separate IG and PTS mod-
els for each participant as a proxy for their tendency of making
comparison-based interventions. We considered three indepen-
dent variables in relation to this measure:

First, we predicted that participants who are more prone to us-
ing IG, which is a computationally more intensive strategy than
PTS, would take longer to decide which intervention to make.
As predicted, we find that participants whose behavior is better
accounted for by the IG model compared to PTS take signifi-
cantly longer to choose interventions, r(103) = 0.21, p = 0.03.

We also expected that IG users would be more likely to choose the correct causal structure at the end of the intervention
phase. This is plausible because using IG leads to outcomes that will allow the learner to actually discriminate between
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graphs. It is also possible that if a non-comparative strategy is used, learners are more likely to falsely rely on outcomes
that appear to provide evidence for one of the graphs, but in fact do not exclude the possibility that the alternative is true.
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Figure 5: Accuracy and difference in model fit between IG
and PTS, by participant.

As expected, we found a positive relationship between the
degree to which participants’ choices were better fit by the
IG model and their average accuracy across all comparisons,
r(103) = 0.28, p < 0.01, as shown in Figure 5.

Finally, we also expected comparative hypothesis testers to need
fewer interventions overall before deciding which structure is
correct. Again, one reason for this is that they should have re-
ceived better data on average to help them actually discriminate
the two graphs. Another reason is that positive testers might
be tempted to want to recreate all positive effects of one of the
structures and thus require more interventions to achieve this
goal. As figure 6 shows, individuals better fit by IG made fewer
interventions than participants who relied more heavily on the
non-comparative strategy, r(103) = − 0.35, p < 0.001.
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Figure 6: Number of interventions and difference in model
fit between IG and PTS, by participant.

In sum, the combined model of IG and PTS not only provides
a better fit to people’s choices, but it also has some interesting
behavioral implications that we could observe in our data.

Discussion

In contrast to predictions of the rational approach to causal in-
formation search, we find that people’s intervention choices not
always aim at differentiating causal hypotheses. Instead, par-
ticipants’ choices in a simple causal intervention task were best
accounted for by a model that also included preferences based
on graph-specific, non-comparative features of a given problem.
Specifically, participants preferred intervening on causal nodes
that had the potential to trigger a large proportion of all the ef-
fects associated with one of the hypothesized graphs. We inter-
pret this preference as a type of positive-test-strategy, which favors seeking information that will lead to positive out-
comes that should be expected if a given graph was true. This finding is at odds with a rational model that is purely based
on seeking interventions that lead to surprising outcomes, like the IG model. In reality, it looks like people’s decisions
are guided by both comparative and non-comparative strategies during intervention-based causal structure learning.

Going forward, we are interested in testing whether people’s reliance on non-comparative strategies can be influenced
by the task environment. In our current experiment, using a non-comparative strategy still led to outcomes that would
enable participants to make correct graph choices, most of the time. However, if graph comparisons were designed so
that non-comparative strategies would not aid learning at all, it is possible that participants would switch to a more
comparison driven approach.
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Abstract

A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic
rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the
execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially
where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external
rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine an intrinsic
motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial
and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The
model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between
both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed
system elicits internal rewards when its models of the environment improve, while the habitual system does not. We test
the hypothesis that external rewards bias the competition in favour of the computationally efficient, but cruder and less
flexible habitual system, which can negatively influence intrinsic motivation in the class of tasks we consider, whereas
intrinsic rewards can lead to faster learning. Thereby, we account for the phenomenon that initial extrinsic reward leads
to reduced activity after extinction compared to the case without any initial extrinsic rewards.

Keywords: cognitive modelling; extrinsic rewards vs intrinsic motivation;
striatal competition; reinforcement learning
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1 Motivation

What motivates intelligent beings to perform certain actions in their environment is a central question in psychology.
The influential paradigm of operant conditioning [9] held that all behavior is stimulated by rewards presented to an
animal. This view was challenged, however, by observations made by White [10] that some behaviors are intrinsically
motivated, i.e., they are performed simply because the activity is intrinsically rewarding. Deci then examined what effects
external rewards would have on intrinsic motivation [3] and found that under certain circumstances, extrinsic rewards
could undermine intrinsic motivation. Later on, several studies (see extensive meta-analytic review in [4]) observed that
external rewards can decrease cognitive flexibility in problem solving, and have the potential to decrease performance
on complex tasks. These findings significantly contradicted predictions of earlier theories such as operant conditioning
or utility theory in economics.

To explain these observations, several theoretical accounts have been put forward (e.g. Self-Determination Theory [7]
amongst others) which suggest different cognitive mechanisms to account for the data. However, it is not clear what
computational mechanisms give rise to these phenomena. A computational model would enable quantitative comparisons
of different hypotheses, test various experimental settings, and generate predictions for new, untested scenarios.

Here, we provide such a computational model by extending two previously presented models explaining behavioral
control in the striatal systems [1], and trade-offs between habitual and goal-directed brain processes [5]. Both of these
models follow a hypothesis from behavioral economics, suggesting that two distinct control systems in the brain com-
pete for control of actions. The models are formalized using the framework of reinforcement learning (RL), and it is
assumed that one controller uses computationally efficient model-free RL, and the other one uses statistically efficient
model-based RL algorithms. The model-free system models a habitual process, implementing a cache of efficient actions
for a given situation, while the model-based system realizes a goal-directed process by searching a tree of recorded state-
action transition probabilities for alternative choices. Both computational models could account for several phenomena
from animal experiments designed to test devaluation resistance, including habituation after extensive training, non-
habituation in ambivalent tasks, and habituation in preference tasks. Our proposed model is a mixture of both earlier
models (see below for details), and extends them by including intrinsic rewards for the model-based goal-directed sub-
system. With this extension, we aim to explain two additional phenomena which the previous models could not account
for.

Reduced post-extinction activity – In creative tasks, the presence of strong extrinsic rewards can lead to diminished
activity after said rewards have been devalued. More specifically, the activity will be lower than it would have been had
the subject never received any extrinsic reward in the first place [3]. Strong extrinsic rewards are therefore expected to
suppress intrinsic motivation.

Activity without extrinsic reward – When dealing with a creative or complex system, both humans and animals can be
observed to interact (to ”play”) with it even if no extrinsic reward whatsoever is being provided or promised.

2 Related Work

Both previous models [1, 5] intend to give a formal account of the striatal system and its division in a model-based ”tree”
module and a model-free ”cache” module. They argue that the observed effects are caused by the adaptable model-
based system being active initially, but being replaced by the less adaptive but cheaper model-free system after extended
training in a devaluation task. The main difference lies in the competition mechanism used to arbitrate between both
systems in each model.

Uncertainty-based competition – In the earlier model by Daw et al. [1], it is assumed that the system is chosen which is
more certain about the action to be taken. To determine uncertainty, both the model-based and the model-free system are
implemented using Bayesian Learning [2]. Therefore, rather than learning Q-values for a given state, they learn distribu-
tions over them, meaning that each entry in the Q-table is represented by a mean and variance. Likewise, the transition
function and the terminal reward function employed by the model-based subsystem are also tables of distributions that
are adapted as experience is accumulated. A policy is then generated through tree search on this model. During ac-
tion selection, each available action’s Q-value to be used for exploration is then provided by the system with the lower
variance.

Since the tree search is performed until all the way to its leaf nodes rather than just along local edges, a sudden change
in the reward model resulting from a devaluation event will immediately be propagated all the way through the state
space. In contrast, the model-free system will have to perform the original sequence several times to register a change in
the terminal state’s value in the starting state.

Value-based competition – Keramati et al. [5] adapt the basic approach of Daw et al. [1] to use the value of perfect
information (VPI) instead of uncertainty. Here, the model-free system computes how much value would be gained from
knowing the true value of a given action. Intuitively, this value is higher if an action’s Q-distribution overlaps strongly
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with the best action, since in this case the former may turn out to be preferable. Conversely, once the distributions have
separated, knowing the true value of an action is unlikely to change which one is ultimately chosen. The VPI is then
compared against the costs of opportunity for performing a tree search, denoted by R̄τ , with R̄ being the average reward
observed thus far and τ being the cost in terms of deliberation time for traversing an edge of the tree. Only if the VPI is
higher than the opportunity costs is the model-based system activated to determine the true reward, which is then used
for action selection.

3 Theory Overview

The model we describe is primarily an extension of the one proposed by Daw et al. [1]. It also adopts some, but not all,
of the revisions introduced by Keramati et al. [5], so that our model can be considered to be a mixture between both.

Like in the latter, we use the VPI to mediate between the goal-directed and the habitual subsystem. The alternative
approach of using the variance of the Q-function’s estimates would not be plausible in a framework containing intrinsic
rewards. Intrinsic motivation is generally assumed to be high for regions of the state space in which the model has not
been learned yet. In these regions, the goal-directed system’s variance will also be particularly high. If the goal-directed
system’s variance is involved in the competition mechanism, this will lead to it being rejected in precisely those situations
when intrinsic motivation is high, thereby neutralizing the effect of the latter.

From the original approach by Daw et al. [1] we retain the use of Beta and Dirichlet distributions to represent the model
and the policies learned by the agent. Using Beta distributions for the policy carries the advantage of being able to
represent a limited amount of ambiguity arising from non-determinism, while Gaussians only model uncertainty.

Beyond these adaptations, there are two major extensions in our model that were not present in its predecessors, which
will be described in detail in the following.

Intrinsic rewards – The main contribution of our model lies in its extension with a mechanism for intrinsic motivation.
Currently we consider only one of multiple types of intrinsic reward, namely the learning progress of the transition
model. There are other proposed aspects to intrinsic motivation, such as competence-based and information-theoretical
mechanisms (for an overview, see e.g. [6]), but we focus on progress for the sake of simplicity, as it alone already accounts
for the phenomena we consider.

The central feature of intrinsic rewards lies in that their value depends on the current state of the model, as opposed to
extrinsic rewards that are provided by the process or environment. As such, intrinsic rewards can notably arise only in
the goal-directed system, and are not applied to the habitual one.

As measure of learning progress we use the magnitude of shifts in the means of the transition function’s distributions.
Formally, the intrinsic reward Is,a for choosing action a in state s is given by the equation:

Is,a =
∑

s′∈S
|∆µtranss,a,s′ | (1)

This value is, together with the transition costs, added to the result of the tree search:

Q̂trees, a := Qtrees,a + Is,a (2)

The resulting Q-values Q̂tree are then used in place of those determined by the search for the purpose of action selection.

Transition costs – Aside from intrinsic rewards, we also introduce transition costs. While a common element of reinforce-
ment learning and formalized in the Bellman Equation, they were not present in the model by Daw et al. [1]. Instead,
the terminal extrinsic reward of a trajectory was propagated all the way to the starting state. By accomodating them, we
enable the model to acquire minimum-time policies in tasks where trajectories can contain loops. Transition costs can
also be chosen differently for each action, thereby modelling energy conservation.

It is worth noting that action-based transition costs do not fall cleanly into the distinction between extrinsic and intrinsic
rewards. Traditionally considered extrinsic rewards, they are likewise applied to the habitual system, as opposed to
intrinsic rewards, which due to being model-based can naturally only occur within the goal-directed system. On the
other hand, they mimic intrinsic rewards in that they are essentially inherent – one may be tempted to say ”intrinsic”
– to the agent. Action costs are not provided by the environment, and can thus be assumed to occur even when other
extrinsic rewards do not.

Applying transition costs can easily be done by adding them to the target mean derived from the successor state during
both tree search and update of the habitual system, yielding a target mean µ̂ :

µ̂s,a = µs′,a∗ + ra (3)
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Figure 1: Development of the percentage of non-null action choices, with and without intrinsic rewards. Curves are
based on the theoretical greedy choice of action, even in the 20% of cycles in which an ε-greedy exploratory action was
ultimately used. Ratios were determined across bins of 200 samples and smoothed using locally weighted scatterplot
smoothing.

Since the update rule for the distribution parameters also requires the second moments of the successor states’ Beta
distributions, we generate a new distribution Q̂s,a = Beta(α̂, β̂) with the target mean µ̂s,a .

4 Experimental Results

Our predecessor models [1, 5] were primarily examined using a simple decision task inspired by experiments with
rats, where the animals had to manipulate a feeding apparatus in a short sequence to generate an extrinsic reward.
However, these tasks consist only of very few states and actions, making them too simple to showcase those phenomena
related specifically to intrinsic motivation. We therefore consider a more complex setting, adapted from the Playroom
environment used by Singh et al. [8], albeit simplified to accommodate the use of classical Bayesian RL.

In this task, the agent has to learn to manipulate a number of objects, each of which causes a different effect when
used. The agent possesses a hand and an eye, both of which must rest on an object for it to become usable. Aside
from performing an object affordance, the agent can also move its eye to a random object, bring the hand to the object
the eye is resting on, or perform a null action that has no effect whatsoever. The null action generates a small action
reward, unlike the other actions which cause negative ones. We thereby model an agent’s general tendency to prefer
the action that exerts the least effort. While still simple for a task aimed at intrinsic motivation, it is considerably more
complex than the food dispensal experiments. Most notably, trajectories can be cyclic, and one of the actions is non-
deterministic. In addition, the partial observability of the state when the light is off can lead to local minima in the policy.
In this framework, we observe the behavior of the system using different combinations of intrinsic and extrinsic rewards
whether the phenomena described in section 1 can be reproduced.

Activity without extrinsic rewards – A first experiment compares the activity of the system with and without intrinsic
rewards. In this setting, there are no external rewards whatsoever, aside from the action-dependent transition costs. One
would expect the overall activity, i.e. the occurrence of non-null actions, to be increased when not using intrinsic rewards.
And indeed, as Figure 1 illustrates, their use leads to a significantly lower rate at which the null action is chosen. The
activity with intrinsic motivation drops to a similar level as without it much later, once the model has stabilized and no
more intrinsic reward can be generated.

Post-extinction activity – To show that stronger extrinsic rewards lead to less activity, as hypothesized in section 1, we
next have the system learn a policy while providing the maximum extrinsic reward upon entering the goal state s+.
In this case, s+ is reached by having the music turned on and the lights off. After 200 episodes of training in the late-
evaluation case, and 75 episodes in the early devaluation case, we devalue it by replacing the distribution of the extrinsic
reward model for the goal state with the Beta distribution Beta(1, 15). The parameters of the replacement distribution
were chosen in accordance with Daw et al. [1] in such a way as to concentrate most of the probability mass at 0.

As one would expect, the post-devaluation activity, shown in Figure 2(a), drops sharply compared to its earlier level.
While the habitual system remains active, being unable to adapt to the change immediately, the goal-directed system
immediately switches to the use of the null action.
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Figure 2: Behavior of the system when using both intrinsic and extrinsic rewards, with devaluation occurring at episode
75 or 200. (a) Percentage of non-null actions chosen before and after devaluation, as well as during a run without extrinsic
rewards. (b) Ratio of how often the habitual system is selected. The vertical line marks the time of devaluation.

As the costs of opportunity for performing a tree-search decrease, it takes over from the habitual system as seen in
Figure 2(b). The previous takeover of the habitual system caused the agent to be active mostly in a limited region of the
state space, as any exploration attempts were cut short by the habitual system’s drive to reach the goal. Consequently,
the model in this area of the state space is very accurate already. Therefore, no intrinsic reward is generated anymore,
and the goal-directed system will not deviate from its path once having taken over. Essentially, due to the prolonged
activation of the habitual system, the intrinsic motivation will have been exhausted without having the chance to cause
any increased exploration and activity.

Most importantly, the activity after extinction is significantly lower than that which would result from using no extrinsic
rewards in the first place, as illustrated in Figure 2(a). This effect is caused by the model having stabilized along the tra-
jectory learned and continuously repeated by the habitual system. Therefore, no intrinsic reward is generated anymore,
and the goal-directed system will not deviate from its path once having taken over. Also note that the purely intrinsic
setting results in slightly lower activity than the pre-devaluation case. This seems plausible, since a system not driven by
extrinsic rewards would be more likely to try the sub-optimal null action to improve its model.

References
[1] N. D. Daw, Y. Niv, and P. Dayan. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behav-

ioral control. Nature Neuroscience, 8(12):1704–1711, 2005.

[2] R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI), AAAI/IAAI, pages 761–768, Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence.

[3] E. L. Deci. Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1):105–115,
1971.

[4] E. L. Deci, R. Koestner, and R. M. Ryan. A meta-analytic review of experiments examining the effects of extrinsic rewards on
intrinsic motivation. Psychological Bulletin, 125(6):627–668, 1999.

[5] M. Keramati, A. Dezfouli, and P. Piray. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS
Computational Biology, 7(5):e1002055, 2011.

[6] P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics,
1(6), 2007.

[7] R. M. Ryan and E. L. Deci. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-
being. American Psychologist, 55(1):68–78, 2000.

[8] S. Singh, A.G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning. In L. K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems 17: Proceedings of the 2004 Conference, Cambridge, MA, 2005. The MIT
Press.

[9] B. F. Skinner. Science and human behavior. Macmillan, New York, NY, USA, 1953.

[10] R. W. White. Motivation reconsidered. Psychological Review, 66:297–333, 1959.

4

Paper S54 182



Stimulus detection and decision making via spike-based
reinforcement learning

Giancarlo La Camera
Department of Neurobiology and Behavior

Stony Brook University
Stony Brook, NY 11794, USA

giancarlo.lacamera@stonybrook.edu

Robert Urbanczik
Department of Physiology

University of Bern
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Bühlplatz 5, Bern, Switzerland

senn@pyl.unibe.ch

Abstract

In theoretical and experimental investigations of decision-making, the main task has typically been one of classification,
wherein the relevant stimuli cueing decisions are known to the decision maker: the latter knows which stimuli are
relevant, and knows when it is being presented with one. However, in many real-life situations it is not clear which
segments in a continuous sensory stream are action relevant, and relevant segments may blend seamlessly into irrelevant
ones. Then the decision problem is just as much about when to act as about choosing the right action. Here, we present
a spiking neuron network which learns to classify hidden relevant segments of a continuous sensory stream of spatio-
temporal patterns of spike trains. The network has no a-priori knowledge of the stimuli, when they are being presented,
and their behavioral significance – i.e., whether or not they are action-relevant. The network is trained by the reward
received for taking correct decisions in the presence of relevant stimuli. Simulation results show that by maximizing
expected reward the spiking network learns to distinguish behaviourally relevant segments in the input stream from
irrelevant ones, performing a task akin to temporal stimulus segmentation.

Keywords: spiking neuron; temporal segmentation; signal detection; gradi-
ent learning; synaptic plasticity; spike-timing patterns; firing rate
patterns; neural circuit
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Spiking network models aspire to produce biologically plausible models of learning and decision making (see e.g. [1]).
For concreteness, consider the following 2 choice classification task: a set of input stimuli is to be associated with one of
two possible correct actions – e.g., ‘go left’ vs. ‘go right’. The correct decision is rewarded whereas the incorrect decision
is punished. In a ‘canonical’ spiking network model designed to learn this task [2, 3], populations of sensory neurons
project to populations of ‘decision neurons’ via plastic synapses, as shown in Fig. 1a. Each stimulus is represented by the
activation of a predefined sensory population, such as the orange population in Fig. 1a. After an input is presented to the
network, some competition occurs at the level of the decision populations, which ends when one of the two populations
enters a state of activity having higher firing rate than the other (or, in alternative models, its activity reaches a pre-defined
threshold earlier than the other population). The winning population initiates the corresponding action. If that action
is correct, the network is rewarded, otherwise it is punished. Based on this outcome, the synapses between the input
neurons and the decision neurons are modified so as to increase the chance of producing the correct action in response to
future presentations of the same stimulus. This class of models are able to capture much of the physiology and behavior
observed in typical laboratory tasks which inspired them [1]; however, they are designed to work in a somewhat limited
scenario, in which: 1) every stimulus presented to the agent is relevant, in the sense that, if met with the correct action,
a reward is obtained; 2) the agent knows the identity of all the stimuli and when they are being presented; 3) there is a
well-defined time period during which a decision must be made (decisions are enforced); 4) all decisions lead to feedback
(either reward or punishment) – hence, feedback is received for each stimulus presentation. Also, the network model of
Fig. 1a has as many input populations as relevant stimuli: to introduce a new stimulus, one has to augment the model
with an additional population of neurons encoding that stimulus.

Here, we present a spiking network model (the learning agent, or ‘agent’ for short) which learns to segment a continuous
input stream by identifying those segments of the stream that are action-relevant (see Fig. 1b). The relevant stimuli are
spatio-temporal patterns of spike trains hidden among a host of non-relevant patterns in the same continuous stream.
Learning is achieved with an online, spike-based learning rule that tries to maximize reward. Compared with the learn-
ing scenario outlined above, here 1) the a-priori relevance of the stimuli is not known to the agent; 2) the agent does not
know when and if a stimulus is being presented; 3) the agent is not required to make a decision at any time; and 4) only
correct decisions made in the presence of a relevant stimulus lead to feedback. This is the fundamental distinction between
relevant and non-relevant stimuli: if any decision is made in the presence of a non-relevant stimulus, nothing happens
– in particular, no rewarding feedback is given. If every action is costly (as assumed below), the optimal behavior in
the presence of non-relevant stimuli is to do nothing.1 Finally note that, contrary to the model of Fig. 1a, in our network
additional stimuli can be represented as new segments of the stream, with no need to add populations of input neurons.

Network architecture and decision dynamics. The spiking network model we propose in this work is illustrated in
Fig. 1b. Two decision populations of N = 100 spiking neurons each (labeled as L and R respectively) receive input
spike trains via plastic synapses (Fig. 1b). When the difference in spike counts between the two populations exceeds
a threshold ΘD, |spk(L) − spk(R)| > ΘD, a decision occurs. As long as |spk(L) − spk(R)| < ΘD, no decisions are
taken. Each stimulus is randomly deemed either relevant or irrelevant, with relevant stimuli arbitrarily associated to
one of two correct decisions, either ‘go left’ (accomplished if spk(L) − spk(R) > ΘD), or ‘go right’ (accomplished if
spk(L) − spk(R) < ΘD). When a decision occurs, a rewarding feedback is obtained after a minor delay (50ms), the
stimulus is removed, and the population activity is reset to zero. Every decision (whether correct or incorrect) incurs a
small cost −0.1 (to prevent the agent to take decisions continuously), and positive reward (R = 1) is given only for a
correct decision in the presence of a relevant stimulus (netting a total reward of R = 0.9). Incorrect decisions are not
punished (and thus only incur the cost R = −0.1). The rationale for such choice is that an additional negative reward for
an incorrect response to a relevant stimulus would signal the presence of a relevant stimulus at the time of a decision,
aiding the solution of the identification task. In case of multiple correct responses to the same relevant stimulus, only
the first such response is rewarded. We tested the model with both precise spike timing patterns (task 1) and firing rate
patterns (task 2), as detailed in a later section. In both tasks, stimuli were of random duration around a mean of 500ms.

Decision neurons and learning rule. We indicate with Ps a smoothed version of the readout spk(L) − spk(R) in the
following. The neurons contributing to the population activity responsible for making decisions were modeled as spike
response models with a noisy escape mechanism for action potential emission [4] – i.e., a spike is emitted with a given
probability φ(u(t)) depending on the current value of the membrane potential u at time t. Learning occurred via the
online learning rule introduced in [5],

dwνi
dt

= η|Rt|a(Ps)(r
ν − 1)Eνi , (1)

where wνi is the synaptic weight between pre-synaptic (input) neuron i and post-synaptic (decision) neuron ν, η is the
learning rate, Rt is the reward at time t, rν is an individualized reward signal that equals 1 if neuron ν made the right
decision, and −1 otherwise. The factor |Rt| insures that synaptic update is confined to a temporal window around
reward delivery. Eνi (t) ∝ (

∑
tν δ(t− tν)− φ(uν(t)))PSPi(t) is a low-pass filter of the time-derivative of the gradient

(with respect to the synaptic weights) of the log-likelihood of producing the output spike train {tν} given an input spike

1Note how this is different from a 3-way classification task where the stimuli are to be separated in 3 classes (‘go left’, ‘go right’,
and ‘do nothing’), and in which ignoring non-relevant stimuli would be rewarded as the correct response to those stimuli.
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Figure 1: Alternative neural circuit models for decision making tasks. a) In a ‘canonical’ decision-making circuit, each input stimulus
is represented by an increase in firing rate in a dedicated population of neurons (here, the orange population). Two decision popu-
lations code for ‘go left’ (red) and ‘go right’ (green), respectively. A read-out initiates either action, and the decision is met with a
reward or punishment. The outcome modulates synaptic plasticity (dashed curves) at either one of the pathways or both. To represent
a new relevant stimulus, a new population of neurons must be added to the network. b) In the type of cortical circuit studied in this
paper, the input is a spatio-temporal pattern of spike trains (each spike train coming from a different input neuron). Relevant inputs
are hidden segments of this pattern (shaded areas): if met with the appropriate response, a reward is delivered. The network has no
a priori knowledge of the relevant segments: these are formed by segmenting the input through a process of reinforcement learning.
No additional populations are required to represent additional stimuli – whether relevant or not. See the text for details.

pattern causing a post-synaptic potential PSPi(t) on neuron i at time t (see [4, 5] for details). Note that only the synapses
targeting neurons voting for the wrong decision (rν = −1) are updated according to the above learning rule; the update
is full (a(Ps) = 1) in case of an incorrect decision and attenuated by a factor a(Ps) ∝ e−P

2
s /N in case of a correct decision.

This allows for synapses to undergo a full update only when most needed (i.e., following a wrong population decision).
Moveover, synaptic updates for neurons voting for incorrect decisions are smaller for a larger population readout Ps
because of the value of the attenuation factor a(Ps) in this case. Since Ps can be interpreted as an internal measure of the
agent’s ‘confidence’ in its decision, the synaptic update is small for correct decisions taken with large confidence.

In the case of episodic learning, the learning rule Eq. 1 performs stochastic gradient ascent in a monotonic function of
reward and population activity [5]. This learning rule can be understood as an improvement over Williams’s general
gradient learning rule [6]. The need to introduce the individualized reward signal rν arises because otherwise learning
worsens as the population size increases, as demonstrated in [5]. The individualized reward signal can be made available
locally at each synapse by broadcasting feedback from the population readout Ps (e.g., through a neurotransmitter such
as acetylcholine or serotonin) and from each neuron’s own activity St (e.g., through intracellular calcium transients), in
addition to the global reward feedback Rt (see [5] for details).

Finally, learning occurred only on synapses targeting neurons in the L population, with the synapses projecting onto the
R population kept fixed. This way, the R population was a ‘contrast population’ used as reference for making decisions.
Since the only variable responsible for decisions is the difference between the activities of the two populations, this choice
is legitimate and allows for a minimal implementation. Note that there is no a priori preference for which population
should be the learning one: their roles can be interchanged without affecting the results.

Simulation results with spike timing patterns (task 1). In this scenario, stimuli were patterns of 60 spike trains. Each
spike train was obtained as a realization of a Poisson process with a constant firing rate of 6Hz. The choice of a Poisson
process is convenient but not strictly necessary, i.e., any other distribution could have been used instead [7]. Once
created, the spike patterns were presented each time unmodified, i.e., for each pattern, the spike trains were kept fixed
across repeated presentations (‘frozen’ patterns; this is an un-biological simplification that will be relaxed later). Note
that all spike patterns have exactly the same statistics, and thus they cannot be encoded or decoded by firing rate. As
shown in [5], stimuli of this sort can be classified by a single decision population equipped with the learning rule Eq. 1
within a so-called ‘time controlled’ paradigm [8], whereby an action is required at the end of stimulus presentation and
no stimulus identification is involved. Here, however, relevant stimuli must be identified first, and decisions can be
made at any time, or could not be made at all. A simulation run for this classification task with the online learning rule
Eq. 1 is shown in Fig. 2 for the case of 6 stimuli (the same model can also learn tens of stimuli; not shown here to ease
illustration). The network was able to learn to identify relevant segments and make the correct decision in response to
them (pink and green shaded areas in panel a), while holding actions in the presence of non-relevant segments – at least
in a large fraction of them and given the limited simulation times. Performance tends to increase with learning (panel
b, top). The evolution of decision times for the best and the worst stimuli (panel b, bottom) shows that as the network
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Figure 2: Simulation results with ‘frozen’ patterns of spike trains. a) Dynamics of decisions after learning for 3000 trials in the
architecture of Fig. 1b. The population readout (Ps in the main text) correctly makes the decision to go left in response to the ‘pink’
segments of the input stream, and to go right in response to the ‘green’ segments, by crossing a threshold (dashed horizontal lines,
positive for decision ‘left’ and negative for decision ‘right’). Correct decisions cause transient increase in reward feedbackRt (red line).
The numbers below the negative decision threshold label the segments. After a decision is taken, the current segment disappears and
reward or penalty is given after a delay of 50ms. Stimuli were presented in random order. b) Top: performance as % correct in
response to relevant stimuli steadily improves with learning and converges to a value close to optimal in 3000 trials (asymptotic overall
performance was only slightly worse; not shown). Bottom: decision times for two stimuli vs. number of presentations of those stimuli.
In both panels, curves were smoothed out with a low pass filter x̄n = (1 − λ)x̄n−1 + λxn, with λ = 0.05. c) Detail of decision times
(top) and performance (bottom) for all 6 stimuli used in the task. In the top panel, the squares represent the total durations of the
stimuli, dots are the sampled decision times in the last 100 trials, and crosses are the average decision times. After learning, the fastest
decisions were in response to relevant segments, whereas decision times were fewer and closer to the maximal stimulus duration
(∼ 500ms) for non-relevant segments (key: L=‘go left’, R=‘go right’ and N=‘non-relevant stimuli’)

became more confident about a decision, its response to the related stimulus became faster (best stimulus), whereas when
stimuli had not been yet correctly identified, the decision times tended to be flat or increase during learning to allow for
more information to be accrued (worst stimulus). In panel c), mean decision times and performance are shown for all
stimuli (stimuli marked N were non-relevant stimuli). The best stimulus (panel b) was stimulus 5, for which performance
reached 100% correct after training; the worst stimulus was stimulus 4, a non-relevant segment (like segment 3 in panel
a). Note that the end-performance with this stimulus after training was ∼ 75% correct (see panel c), bottom), which
means that ∼ 25% of the time the agent took an action during the presentation of this stimulus (the agent, however, is
still learning to ignore this stimulus, see panel b), bottom, dashed line). Note that in the case of stimuli 1 and 2 the agent
had become very confident of the correct decision, as implied by the short reaction times and the population activity
overshoots above the decision threshold in the time interval between the decision and the rewarding feedback.

Simulation results with firing rate patterns (task 2). The previous scenario assumed that patterns of spike trains are
reproduced exactly unmodified at each stimulus presentation (‘frozen’ spike patterns). This is clearly only a convenient
starting point. A more realistic scenario could be based on firing rate coding, whereby a stimulus is defined by the firing
rates of its input spike trains, collectively, but the spike times are generated anew during each stimulus presentation. This
is both a more realistic scenario and a more challenging learning task for our spike-based learning rule. The stimuli were
patterns of 60 Poisson spike trains with constant firing rate, each randomly sampled from values 6, 22, 40, 60 spikes/s.
The pattern of firing rates defining a stimulus were always fixed, but the actual spike times were generated anew at
each stimulus presentation to produce Poisson spike trains with the given firing rates. By construction, all stimuli have
the same overall firing rate, i.e., the stimuli could not be distinguished by unsupervised processing based on the overall
firing rate of the input. The simulation shown in Fig. 3 confirms that the agent is able to identify relevant stimuli coded
as patterns of firing rates, despite using a learning rule not explicitly designed to learn firing rates.

Conclusions and discussion. Learning to abstract relevant information from the environment is a crucial component
of decision making; yet, current models typically assume that the relevant inputs are known to the decision maker, and
defined once and for all. Here, we put forward a spiking network model able to detect stimuli from the environment
based on their behavioral relevance. Since the stimuli are presented in sequence in a continuous stream, with unknown
starting and ending points, the task is akin to temporal stimulus segmentation, i.e., the task of discovering boundaries
between successive stimuli. Segmentation tasks such as ours are typically solved by methods such as Hidden Markov
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Figure 3: Simulation results with stationary firing rate patterns, same keys as Fig. 2. See the text for details.

Models [9], which require a-priori knowledge of the relevant stimuli (or at least the number of relevant stimuli), are
not based on online algorithms, and lack biological plausibility. In contrast, our spiking network model learns online,
does not require a priori knowledge of the relevant stimuli or even when they are being presented, it allows for direct
comparison with neurobiological data and thus could help uncover potential correlates of decision confidence and other
aspects of decision making. Another hallmark of our study is the use of ‘information-controlled’ tasks, which allows
subjects to respond whenever they feel confident [8].

Our model differs from the class of neural-circuit models of decision making depicted in Fig. 1a, which require a neural
population encoding each stimulus, and a priori knowledge of the relevant stimuli, and when they start and end. Follow-
ing an approach more similar to ours, the ‘tempotron’ [10] can learn to separate spike patterns into two classes, which
could be interpreted as ‘relevant’ vs. ‘non-relevant’. However, the tempotron needs to know when stimuli start and end,
and is given feedback for non-responses to relevant stimuli, which helps their identification. Also, the tempotron is only
capable of binary decisions. Moreover, if applied in a population of neurons rather than in a single neuron, performance
again slows down if no feedback from the population activity (resulting in an individual reward signal) is given.

This work can be extended in a number of directions. One could consider a visual segmentation task wherein a sequence
of images slowly appear and disappear on top of a noisy background, and the task of the agent is to identify the images
that are action-relevant. Preliminary simulations with a simple version of this task show encouraging results. A second
direction is to go beyond 2 choice tasks. This could be obtained by subdividing the decision neurons into as many
subpopulations as alternative decisions, with each subpopulation encoding a different decision. Each subpopulation
would obey the same learning rule, which is aesthetically appealing and biologically plausible. Preliminary simulations
show that with this modified architecture, the network also does a better job at learning to ignore non-relevant stimuli.
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Abstract

Bayesian methods for reinforcement learning (RL) allow model uncertainty to be considered explicitly and offer a prin-
cipled way of dealing with the exploration/exploitation tradeoff. However, for multiagent systems there have been few
such approaches, and none of them apply to problems with state uncertainty. In this paper, we fill this gap by proposing
a Bayesian RL framework for multiagent partially observable Markov decision processes that is able to take advantage
of structure present in many problems. In this framework, a team of agents operates in a centralized fashion, but has
uncertainty about the model of the environment. Fitting many real-world situations, we consider the case where agents
learn the appropriate models while acting in an online fashion. Because it can quickly become intractable to choose the
optimal action in naı̈ve versions of this online learning problem, we propose a more scalable approach based on sample-
based search and factored value functions for the set of agents. Experimental results show that we are able to provide
high quality solutions to large problems even with a large amount of initial model uncertainty.

Keywords: Multiagent Learning, Bayesian Reinforcement Learning,
POMDPs
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1 Introduction

Bayesian reinforcement learning (RL) techniques are promising in that, in principle, they provide an optimal explo-
ration/exploitation trade-off with respect to the prior belief. In the context of multiagent systems, Bayesian RL has been
used in stochastic games [2] and factored Markov decision processes (MDPs) [18]. These approaches assume the state of
the problem is fully observable (or can be decomposed into fully observable components). Unfortunately, no approaches
have been proposed that can model and solve problems with partial observability. In fact, while planning in partially
observable multiagent domains has had some success (e.g., [1, 11]), very few multiagent RL approaches of any kind
consider partially observable domains (notable exceptions, e.g., [3, 13]).

We propose a framework for Bayesian learning in multiagent systems with state uncertainty using multiagent par-
tially observable Markov decision processes (MPOMDPs) that can exploit the multiagent structure in these problems.
MPOMDPs represent a centralized perspective where all agents share the same partially observable view of the world
and can coordinate on their actions, but have uncertainty about the underlying environment. To model this problem, we
extend the Bayes-Adaptive POMDP (BA-POMDP) [15]—which represents beliefs over possible model parameters using
Dirichlet distributions—to the multiagent setting. The resulting framework can be used as a Bayesian online learning
approach which represents the initial model using priors and updates probability distributions over possible models
as the agent acts in the real world. In particular, we utilize sample-based planning based on Monte Carlo tree search
(MCTS) which has shown promise performing planning in large POMDPs [16] and Bayesian learning in large MDPs [6].

Unfortunately, these methods become ineffective as the number of (joint) actions and observations scales exponentially
in the number of agents. To combat this intractability, we propose exploiting structure in the value functions associated
with the agents. That is, many multiagent problems possess structure in the form of locality of interaction: agents
interact directly with a subset of other agents. This structure enables a decomposition of the value function into a set
of overlapping factors, which can be used to produce high quality solutions [5, 9, 10]. We propose two techniques
for incorporating such factored value functions into MCTS, thereby mitigating the additional challenges for scalability
imposed by the exponential number of joint actions and observations. This approach is the first MCTS variant to exploit
structure in multiagent systems, achieving better sample complexity and improving value function generalization by
factorization.

2 Background

MPOMDPs form a framework for multiagent planning under uncertainty for a team of agents. At every stage, agents
take individual actions and receive individual observations. However, in an MPOMDP, the assumption is that the team
of agents is acting in a ‘centralized manner’, which means that we assume that all individual observations are shared via
communication. We will restrict ourselves to the setting where such communication is free of noise, costs and delays.

Formally, an MPOMDP is a tuple 〈I, S, {Ai}, T,R, {Zi}, O, h〉 with: I , a finite set of agents; S, a finite set of states with
designated initial state distribution b0;A = ×iAi, the set of joint actions, using action sets for each agent, i; T , a set of state
transition probabilities: T s~as

′
= Pr(s′|s,~a), the probability of transitioning from state s to s′ when the set of actions ~a are

taken by the agents; R, a reward function: R(s,~a), the immediate reward for being in state s and taking the set of actions
~a; Z = ×iZi, the set of joint observations, using observation sets for each agent, i; O, a set of observation probabilities:
O~as

′~z = Pr(~z|~a,s′), the probability of seeing the set of observations ~o given the set of actions ~a was taken which results in
state s′; h, the number of steps before termination or horizon. An MPOMDP can be reduced to a special type of POMDP
in which there is a single centralized controller that takes joint actions and receives joint observations [14].

Most research concerning POMDPs has considered the task of planning: given a full specification of the model, determine
an optimal (joint) policy, π, mapping past (joint) observation histories (which can be summarized by distributions b(s)
over states called beliefs) to (joint) actions. Such an optimal (joint) policy can be extracted from an optimal Q-value
function, Q(b,a) =

∑
sR(s,a)+

∑
z P (z|b,a)maxa′ Q(b′,a′), by acting greedily, in a way similar to the situations in regular

MDPs [17]. Computing Q(b,a), however, is complicated by the fact that the space of beliefs is continuous [7].

While POMDP planning methods can find solutions effectively given a problem model, for many real-world applications,
the model is not (perfectly) known in advance, requiring the agents to learn about their environment during execution.
To deal with such partially observable multiagent learning problems, we build on the framework of Bayes-Adaptive
POMDPs [15]. This approach utilizes Dirichlet distributions to model uncertainty over both transitions and observations.

Intuitively, if the agent could observe both states and observations, it could maintain vectors φ and ψ of counts for
transitions and observations respectively. That is, φass′ is the transition count representing the number times state s′
resulted from taking action a in state s and ψas′z is the observation count representing the number of times observation z
was seen after taking action a and transitioning to state s′. While the agent cannot observe the states and has uncertainty
about the actual count vectors, this uncertainty can be represented using the regular POMDP formalism. That is, the count
vectors are included as part of the hidden state of a special POMDP, called BA-POMDP.
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3 BA-MPOMDPs

The BA-POMDP can be extended to the multiagent setting in a straightforward manner as the Bayes-Adaptive multiagent
POMDP (BA-MPOMDP). The BA-MPOMDP model allows a team of agents to learn about its environment while acting
in a Bayesian fashion and is applicable in any multiagent RL setting where there is instantaneous communication. Since
a BA-MPOMDP can be simply seen as a BA-POMDP where the actions are joint actions and the observations are joint
observations, the theoretical results related to BA-POMDPs also apply to the BA-MPOMDP model.

Formally, a BA-MPOMDP is a tuple 〈I, SBM , {Ai}, TBM , RBM , {Zi}, OBM , h〉 where I, {Ai}, {Zi}, h are as before. The
state of the BA-MPOMDP now includes the Dirichlet parameters (i.e., the count vectors): sBM = 〈s, φ, ψ〉. As such, the set
of states is given by SBM = S×T ×Owhere T = {φ ∈ N|S||A||S||∀(s,~a)∑s′ φ

~a
ss′ > 0} is the space of all possible transition

counts and similarlyO is the space of all possible observation parameters: O = {ψ ∈ N|S||A||Z||∀(s,~a)∑~z ψ
~a
s′~z > 0}where

|A| is the number of joint actions and |Z| is the number of joint observations.

In order to define TBM , OBM , the transition and observation probabilities for the BA-MPOMDP, we need the expected
transition and observation probabilities induced by (the count vectors of) a state: T s~as

′
φ = E[T s~as

′ |φ] = φ~ass′/N
s~a
φ ,

O~as
′~z

ψ = E[O~as
′~z|ψ] = ψ~as′′~z/N

~as′
ψ , where Nsa

φ =
∑
s′′ φ

a
ss′′ , and Nas′

ψ =
∑
z′ ψ

a
s′z′ . The transition probabilities

P (〈s′, φ′, ψ′〉|〈s, φ, ψ〉, a) can be defined using a vector δass′ which is 1 at the index of a, s and s′ and 0 otherwise:
TBM ((s,φ,ψ),~a,(s′,φ′,ψ′)) = T s~as

′
φ O~as

′z
ψ if φ′ = φ + δ~ass′ and ψ′ = ψ + δ~as′z(and 0 otherwise). Similarly, for observations,

we define δ~as′~z to be a vector with value 1 at the index ~a, s′ and ~z and 0 otherwise: OBM ((s,φ,ψ),~a,(s′,φ′,ψ′),z) = 1 if φ′ =
φ + δ~ass′ and ψ′ = ψ + δ~as′z(and 0 otherwise). The reward model remains the same (since it is assumed to be known),
RBM ((s,φ,ψ),~a) = R(s,~a). We assume the initial state distribution b0 and initial count vectors φ0 and ψ0 are given.

4 Monte Carlo Tree Search for Multiagent POMDPs

Monte Carlo Tree Search for POMDPs A successful recent online planning method, called partially observable Monte
Carlo planning (POMCP) [16], extends Monte Carlo tree search (MCTS), and in particular the UCT algorithm [8], to
solving POMDPs. At every stage, the algorithm performs online planning, given the current belief, by incrementally
building a lookahead tree that contains (statistics that represent the) Q(b,a). The algorithm, however, avoids expensive
belief updates by creating nodes not for each belief, but simply for each action-observation history h. In particular, it
samples hidden states s only at the root node (called ‘root sampling’) and uses that state to sample a trajectory that first
traverses the lookahead tree and then performs a (random) rollout. The return of this trajectory is used to update the
statistics for all visited nodes. When traversing the tree, actions are selected to maximize the ‘upper confidence bounds’:
U(h,a) = Q(h, a) + c

√
log(N + 1)/n. Here, N is the number of times the history has been reached and n is the number of

times that action a has been taken in that history. When the exploration constant c is set correctly, POMCP can be shown
to converge in the limit. Moreover, the method has demonstrated good performance in large domains with a limited
numbers of simulations.

Because the BA-MPOMDP formalism constructs an (infinite state1) POMDP, POMCP could be applied here too. Doing
so means that during online planning, a lookahead tree will be constructed that has nodes corresponding to joint action
observation histories ~h, and where statistics are stored that represent the expected values Q(~h,~a) and upper confidence
bounds U(~h,~a). A shortcoming of Monte Carlo tree search methods is that they are not directly suitable for multiagent
problems due to the large number joint actions and joint observations, which are exponential in the number of agents.

The large number of joint observations is problematic, since it will lead to a lookahead tree with very high branching
factor and a breakdown of particle filtering to estimate the belief (necessitating starting from the initial belief again, or
acting using a separate policy such as a random one). The large number of actions results in exponentially many joint
actions that have to be selected at least a few times to drive down their confidence bounds (i.e., exploration bonus).

Coordination Graphs In many cases, the effect of a joint action is factorizable as the effects of the action of individual
agents or small groups of agents. For instance, consider a team of agents that is tasked with fighting fire at a number
of burning houses, as illustrated in Fig. 1(a). In such a setting, the overall transition probabilities can be factored as a
product of transition probabilities for each house [12], and the transitions of a particular house may depend only on the
amount of water deposited on that house (rather than the exact joint action).

We can consider agents’ interactions in the form of a coordination graph which represents interactions between subsets
of agents and permits factored linear value functions as an approximation to the joint value function. Specifically—for
the moment assuming a stateless problem—an action-value function can be approximated by Q(~a) =

∑
eQe(~ae), where

each component e is a value specified over only a (possibly overlapping) subset of agents. Note that in this and later
1Since there can be infinitely many count vectors, the state space is infinite, but a finite approximate model can be used [15].
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h3 h4

h1

a4a3

(b)

Figure 1: (a) Illustration of an MPOMDP in which a team of agents has to fight a fire, and (b) Illustration of the coor-
dination graph (as a factor graph) with houses represented as h1,. . . ,h4 and agents represented as a1,. . . ,a3. Each agent
should coordinate with the adjacent agents in the graph.

formulations, a normalization term of 1/|e| can be used to scale the Q-values back to the range of the original problem,
but the maximizing actions remain the same.

In cases where such a factorization holds, the maximization max~a
∑
eQe(~ae) can be performed efficiently via variable

elimination (VE) [5], or max-sum [4, 9]. These algorithms are not exponential in the number of agents (although VE is
exponential in the induced with), and therefore enable significant speed-ups for larger number of agents.

Factored Statistics The first technique we introduce, called Factored Statistics directly applies the idea of coordination
graphs inside MCTS. Rather than maintaining one set of statistics in each node that expresses the expected value for each
joint action Q(~h,~a), we maintain several sets of statistics, each one expressing the value for a set of agents Qe(~h,~ae). As
such, the Q-value function is approximated by Q(~h,~a) ≈∑eQe(

~h,~ae).

Since this method retains fewer statistics and performs joint action selection more efficiently via VE, we expect that this
approach will be more efficient than plain application of POMCP to the BA-MPOMDP. However, the complexity due
to joint observations is not directly addressed: because joint histories are used, reuse of nodes and the ability to create
nodes in the tree for the necessary observations seen during execution may be limited.

Factored Trees The second technique, called Factored Trees, additionally tries to overcome this burden of the large num-
ber of joint observations. This is done by further decomposing the joint histories into local histories over factors. That
is, in this case, the Q-values are approximated by Q(~h,~a) ≈ ∑eQe(

~he,~ae). This approach further reduces the number
of statistics maintained and increases the reuse of nodes in MCTS and the chance that nodes in the trees will exist for
observations that are seen during execution. As such, it aims to increase performance by utilizing more generalization
(now also over local histories), as well as producing more robust particle filters.

Finally, we note that this type of factorization has major implications for the implementation of the approach: rather than
constructing a single tree, we now need to construct a number of trees in parallel, one for each factor (or edge in the
coordination graph) e. A node of the tree of an component e now stores the required statistics: N~he

, the count for the
local history, n~ae , the counts for actions taken in the local tree and Qe for the tree.

5 Experimental Results

We performed an evaluation on the firefighting problem from Section 4. Each experiment was run for a given number of
simulations (the number of samples used at each step to choose an action) and averaged over a number of runs (resetting
the state and count vectors to their initial values). To determine the value of acting with the true model known, we
provide results from POMCP [16] and to show the result of acting solely based on the initial prior given by the initial
count vectors, we provide results from a ‘No learning’ method. This no learning approach uses the BA-MPOMDP in the
same way as the other methods, but never updates the count vectors, causing it to retain the same uncertain distribution
over models. We also provide results for the value produced by uniform random action selection. The values given are
the average undiscounted returns for the horizon (i.e., number of steps in the problem) shown. Experiments were run
on a single core of a 2.5 GHz machine with 8GB of memory.

The fire fighting domain [12] consists of four agents and five houses, each with 3 different fire levels. Fires are suppressed
more quickly if a larger number of agents choose that particular house. Fires also spread to neighbor’s houses and
can start at any house with a small probability. Priors were used that had high confidence in (near) correct transition
probabilities and low confidence in incorrect (near uniform) observation probabilities.

Results are shown in Table 1 where the benefits of the factored approaches are seen. For a small number of samples
(which is crucial on large problems, |S| = 243, |A| = 81, |Z| = 16) the factored tree method learns very quickly, providing
significantly better values. Using factored statistics will learn more slowly, but the value function is closer to optimal due
to the use of the full history. BA-MPOMDP and No learning perform poorly due to the incorrect prior and insufficient
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Horizon 10
50 Simulations 250 Simulations

POMCP (true) −87.3± 2.09 −50.6± 9.50
Factored statistics −47.1± 7.85 −21.8± 1.94
Factored tree −41.2± 3.85 −29.8± 5.64
BA-MPOMDP −85.6± 1.66 −51.6± 5.94
No learning −86.7± 1.59 −54.6± 6.41
Random −81.6± 4.09 −81.6± 4.09

Horizon 50
50 Simulations

POMCP (true) −425.7± 4.65
Factored statistics −403.9± 10.78
Factored tree −210.2± 12.01
BA-MPOMDP −436.9± 4.66
No learning −436.9± 4.66
Random −437.6± 5.73

Table 1: Undiscounted return (and standard error) for horizon 10 and 50 fire fighting problems averaged over 10 runs

samples to choose high-quality actions. After more samples (as seen by 250 samples), the performance of the flat models
improve, but the factored methods still perform better. POMCP(true) with 100000 simulations was able to achieve values
for horizon 10 of −19.83 ± 0.96 and 50 of −62.1 ± 6.96. Note that the ‘No learning’ method gives the value of using the
prior without learning, showing the benefit of the learning approaches. In particular, the factored approaches are able to
improve learning through generalization and make better use of the statistics and the particle filter.

6 Conclusions

We present the first method to utilize multiagent structure to produce a scalable method for multiagent Bayesian rein-
forcement learning with state uncertainty. To combat exponential growth of the number of joint actions and observations,
we propose two methods for decomposing the agents using a coordination graph to reduce 1) the number of joint actions
and 2) the number of joint histories considered. These methods are used in conjunction with a leading POMDP method,
POMCP [16], to generate a MCTS-based sample-based planner for our Bayes-Adaptive MPOMDP model. Our experi-
mental results demonstrate that the proposed techniques allow agents to both learn faster (with fewer simulations) and
produce higher quality solutions. We expect that these approaches can serve as the basis for many future work directions
in multiagent learning as well as be used to solve BA-POMDPs with large action and observation spaces.
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[8] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In ECML, 2006.

[9] J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. JMLR, 7, 2006.

[10] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: a synthesis of distributed constraint
optimization and POMDPs. In AAAI, 2005.

[11] F. A. Oliehoek. Decentralized POMDPs. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art.
Springer, 2012.

[12] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality of interaction in factored Dec-POMDPs. In AAMAS,
2008.

[13] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling. Learning to cooperate via policy search. In UAI, pages 489–496, 2000.

[14] D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: Analyzing teamwork theories and models.
JAIR, 16, 2002.

[15] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann. A Bayesian approach for learning and planning in partially observable
Markov decision processes. JAIR, 12, 2011.

[16] D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In NIPS 23, 2010.

[17] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[18] W. T. L. Teacy, G. Chalkiadakis, A. Farinelli, A. Rogers, N. R. Jennings, S. McClean, and G. Parr. Decentralized Bayesian rein-
forcement learning for online agent collaboration. In AAMAS, 2012.

4

Paper S62 192



Communicating with Unknown Teammates

Samuel Barrett
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
sbarrett@cs.utexas.edu

Noa Agmon
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 5290002 Israel
agmon@macs.biu.ac.il

Noam Hazon
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 5290002 Israel
hazonn@macs.biu.ac.il

Sarit Kraus1,2
1Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 5290002 Israel

2Inst. for Advanced Computer Studies
University of Maryland
College Park MD 20742

sarit@macs.biu.ac.il

Peter Stone
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Abstract

Teamwork is central to many tasks, and past research has introduced a number of methods for coordinating teams of
agents. However, with the growing number of sources of agents, it is likely that an agent will encounter teammates
that do not share its coordination method. Therefore, it is desirable for agents to adapt to these teammates, forming an
effective ad hoc team. Past ad hoc teamwork research has focused on cases where the agents do not directly communicate.
This paper tackles the problem of communication in ad hoc teams, introducing a minimal version of the multiagent,
multi-armed bandit problem with limited communication between the agents. The theoretical results in this paper prove
that this problem setting can be solved in polynomial time when the agent knows the set of possible teammates. Fur-
thermore, the empirical results show that an agent can cooperate with a variety of teammates not created by the authors
even when its models of these teammates are imperfect.

Keywords: Ad Hoc Teams, Multiagent Systems, Teamwork, Multi-armed
Bandits
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1 Introduction

Given the growing number of both software and robotic agents, effective teamwork is becoming vital to many tasks.
Robots are becoming cheaper and more durable, and software agents are becoming more common for tasks including
bidding in ad auctions. These agents are being developed by an increasing number of companies and research labora-
tories. As the number of sources of agents grows, so does the need for agents to cooperate with a variety of different
teammates.

This need is addressed in the area of ad hoc teamwork, where agents are evaluated in their ability to cooperate with a
variety of teammates. Stone et al. [12] define ad hoc teamwork problems as problems in which a team cannot pre-
coordinate its actions, and they argue that evaluating an ad hoc team agent fundamentally depends on both the domains
it may face as well as the teammates it can encounter. To this end, they introduce an evaluation algorithm that includes
this consideration.

Past work on ad hoc teamwork has focused on the case where the ad hoc agent cannot directly communicate to its team-
mates. Instead, the focus of this work is on how an agent can influence its teammates through limited communication
when a common language exists and the agent has more knowledge than its teammates. However, the ad hoc agent can-
not influence how its messages are interpreted, only the messages it sends. This work has three main contributions, the
first being the introduction of a minimal domain for investigating teammate communication. The second contribution is
proving that one scenario is solvable in polynomial time. However, for practical use, the polynomial algorithm does not
scale well, so the third contribution is the evaluation of an empirical planning algorithm in this domain.

The work in this paper shows that ad hoc agents can optimally learn about their environment and their teammates while
acting and communicating. This learning is tractable and can be performed in polynomial time in terms of the problem
parameters. In addition, even when it has imperfect assumptions about its teammates, an ad hoc agent can still learn
and adapt so as to enable its team to perform effectively.

2 Problem Description

This paper focuses on amultiagent, multi-armed bandit problem that allows limited communication because it serves as a
minimal decision making domain that exhibits the necessary properties for investigating communication with unknown
teammates. In ad hoc teamwork, the goal is to create agents that can cooperate with a variety of possible teammates.
We assume that a number of agents are pre-designed to cooperate to achieve the given task, and we want to design an
agent that can fit into this team. Matching the behavior of the other agents is either infeasible due to not knowing their
behaviors or undesirable if we have access to additional knowledge or better algorithms to give our agent.

Formally, the bandit problem in this paper is given by the tuple G = (A,C,P, T ) whereA is a set of two arms {arm1, arm2}
with Bernoulli payoff distributions, returning either 0 or 1, C is a set of possible communications to send and their costs,
P denotes the players in the problem with |P| = n + 1, and T is the number of rounds. Each round has a communication
phase followed by an action phase, and, in both, all agents act simultaneously. In the communication phase, each agent
can broadcast a message of each of the following types or send no message, each with an associated cost (cost(m)):

• obs – Send the agent’s last selected arm and payoff
• meanarm – Send the agent’s observed mean and number of pulls for the specified arm
• suggestarm – Suggest that the agent’s teammates pull the specified arm

In the action phase, each agent chooses a single arm and observes a payoff from that arm. The team’s goal is to maximize
the total rewards from the arms minus the costs of communication. Since the ad hoc agent’s teammates form an existing
team, we assume that they are tightly coordinated, i.e. that the team’s behavior can be described as a function of the
team’s total number of pulls and successes of each arm, but only the ad hoc agent’s pulls and successes that it has
communicated.

3 Preliminaries

Before discussing the theoretical analysis applied to this problem, it is important to understand the theoretical models
that will be used in our analysis. In Section 4, we model this problem as a Markov Decision Process (MDP). An MDP
is a 4-tuple M = (S, A, P, R) where S is a set of states, A(s) is the set of actions available from state s ∈ S, P (s, a, s′) =
Pr(st+1 = s′|st = s, at = a) is the transition function specifying the probability of reaching state s′ after taking action a in
state s, and R(s, a, s′) is the resulting immediate reward. In anMDP, the goal is to find an optimal policy π∗(s) that selects
actions in order to maximize the long term expected reward received. An extended version of this model known as the
Partially Observable Markov Decision Process (POMDP) is used when an agent receives observations, Ω(s) = o ∈ O,
rather than the true state. The underlying states and transition function remain unchanged from the original MDP, but
the agent now has a harder task, as it must additionally reason about which underlying state it is in.
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When reasoning about the difficulty of solving a POMDP, one approach is to reason about the δ-covering of its belief
space. For a metric space A, a set B is a δ-covering if ∀a ∈ A ∃b ∈ B such that |a − b| < δ. Intuitively, a δ-covering can
be thought of as a set of multi-dimensional balls filling a space. The covering number refers to the number of δ-balls that
are required to cover the belief space. From Theorem 1 in [9], it is known that a POMDP can be approximately solved in
time polynomial in terms of the size of its covering number. While this theorem shows this result for the infinite horizon,
discounted rewards case, these results extend to the finite horizon setting.

The difficulty of solving MDPs and POMDPs depends on the size of the state and action spaces, so we define the size of
these spaces here. The behavior of the teammates depends on the teams’ observations of the arms as well as the messages
the ad hoc agent has sent. Inspecting the number of possible outcomes shows that there are at most 6n4T 13 states. In the
communication phase, the ad hoc agent can optionally send a message of each type, result in 18 possible actions.

4 Theoretical Analysis

We investigate the version of the bandit problem where the ad hoc agent knows that its teammates’ behaviors are drawn
from a continuously parameterized set of stochastic behaviors. We consider a small number of possible behaviors, specif-
ically ε-greedy and UCB(c). For these behaviors, ε is the probability of taking a random action, and c is the scaling factor
of the confidence bound. Note that while we only use two models for simplicity, this analysis can be extended for any
fixed number of models.

To tackle this problem, we model it as a POMDP with three partially observed values: ε, c, and the probability of the
teammates being ε-greedy versus UCB(c). The transition function for the fully observable state variables remains the
same as the original MDP. The probabilities of the two models are updated given the probability that each of the models
would have predicted the observed actions, and the updates to the probability distributions of ε and c are described in
Lemma 1. The remainder of the POMDP remains as defined above.

In Lemma 1 and Theorem 2, we show that in this version of the problem, the ad hoc agent can perform within η of the
optimal behavior with calculations performed in polynomial time. This result comes from reasoning about the δ-covering
of the belief space, which defines the difficulty of solving the POMDP as discussed in Section 3.

Lemma 1. The belief space of the resulting POMDP has a δ-covering with size poly(T, n, 1/δ).

Proof. Using Proposition 1 of [7], we know that the fully observed state variables result in a multiplicative factor that is
polynomial in T and n. Therefore, we focus our analysis on the remaining unobserved variables. The belief space over
the probability between the two models is a single real value in [0,1], resulting in a factor of 1/δ. The parameter ε has a
uniform prior, so the posterior is a beta distribution, relying on two parameters, α and β. These parameters correspond
to the (fully observed) number of observed greedy and random pulls; thus, each are integers bounded by nT . Therefore,
the probability distribution over ε can be represented using a factor of size (nT )2.

The parameter c has a uniform prior, and UCB agents choose based on comparing
si+sc

i

pi+pc
i

+ c
√

ln(p0+pc
0+p1+pc

1)
pi+pc

i
for i =

1, 2. Using linear programming, pieces of the range of c can be eliminated by observing the actions of the teammates.
However, the posterior remains uniform; only the range changes. Given the nature of c, the eliminated pieces of the
range must be at the top or bottom of the current range of c. Therefore, the probability distribution over c can be
represented using two real values in [0, 1] that are the top and bottom of the uniform range of c, resulting in a factor of
1/δ2. Combining these all of these factors results in a δ-covering of size poly(T, n, 1/δ).
As discussed in Section 3, a POMDP can be solved approximately in polynomial time in terms of the size of its covering
number. Given this result and Lemma 1, Theorem 2 follows directly.

Theorem 2. If an ad hoc agent observes its teammates’ actions, knows the true arm distributions, and knows that its teammates are
drawn from a continuous set of ε-greedy and UCB teammates, it can calculate an η-optimal behavior in poly(n, T, b, 1/η) time.

5 Empirical Evaluation

While the previous section focused on proving that our formulations of the multi-armed bandit problem can be solved in
polynomial time, the existing techniques for calculating exact solutions are impractical for solving problems with more
than a handful of rounds and more than two arms. Therefore, in the empirical setting, we use Partially Observable
Monte-Carlo Planning (POMCP) [11], which has been shown to be effective on a number of large POMDPs.

5.1 Methods

POMCP is a Monte Carlo Tree Search (MCTS) algorithm that is based on the Upper Confidence bounds for Trees (UCT)
algorithm [8]. Specifically, POMCP starts from the current state of the problem and performs a number of simulations
until reaching the end of the problem. For its teammates, the ad hoc agent plans as if they are selecting actions using
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either the ε-greedy or the UCB algorithms. To model the effects of suggestions, agents are given some probability of
following the suggestion rather than taking their regular action, with the probability being uniformly drawn from [0,1]
at the beginning of an episode. In all of the evaluations, we assume that the ad hoc agent can observe its teammates’
actions and payoffs.

While we evaluate the ad hoc agent when it encounters teammates that are using the ε-greedy and the UCB algorithms,
we also consider a number of agents that were not created by the authors, denoted externally-created teammates. These
agents were designed by undergraduate and graduate students as part of an assignment on agent design. To prevent
any bias in the creation of the agents, the students designed the entire team and were unaware of the ad hoc teamwork
problem. These agents were given the same three types of messages available to the ad hoc agent. Note that these
teammates are not tightly coordinated and their behavior does not match our models.

5.2 Results

All of the evaluations use 100 trials with randomly selected teams. In this analysis, the ad hoc agent initially samples a
number of ε-greedy andUCB teamswith randomparameter values. The results are the average team rewards normalized
by the average reward if every agent continuously pulled the best arm. Statistical significance is tested with a paired
Student-T test with p < 0.05 and is denoted with a “+” in the figures when comparing POMCP to all other methods.

We compare three behaviors of the ad hoc agent:
• NoComm - Always pulls the best arm and does not communicate
• Obs - Always pulls the best arm and communicates its last observation
• POMCP - Plans using POMCP which arm to pull and what to communicate

NoComm and Obs serve as baselines. Unless otherwise specified, there are 3 arms, 10 rounds, and 7 externally-created
teammates to test how our approach scales to bigger problems than are theoretically proven. Furthermore, the costs
for sending messages are randomly selected for each run, and all agents are informed of the costs. To model the size
of different messages and allow for varied communication scenarios, the cost of sending the last observation is selected
from [0, 2m] (arm and payoff), the cost of sending the mean of an arm is in [0, 3m] (arm, pulls, and successes), and the
cost of suggesting an arm is in [0, m] (arm), where m = 0.75 unless specified.
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(b) UCB teammates
Figure 1: Normalized rewards with varied message costs with a logarithmic x-axis. Significance is denoted by “+”

Figure 1 presents the results when the ad hoc agent encounters the problem discussed in Section 4, cooperating with
teams that are ε-greedy or UCB, with varied message costs. Note that NoComm is unaffected by the message costs as it
does not communicate. The results indicate that the agent can effectively plan its actions, significantly outperforming the
baselines. When the ad hoc agent knows the correct behavior type, the results are similar to knowing that either ε-greedy
or UCB teams are possible.

On the other hand, Figure 2 shows the results with externally-created agents, a problem not covered by any theoretical
guarantees, as the models do not match the true teammates. If all agents start with no observations of the arms, all
of the considered behaviors for the ad hoc agent perform similarly because the teammates usually quickly converge to
the best arm. Therefore, for these results, we consider the case where in the first 5 rounds, the teammates’ pulls of the
best arm are biased to have a lower chance of success. Then, we evaluate how well the ad hoc agents help correct their
teammates’ biases. In these evaluations, we test the sensitivity of the agent to various problem parameters. Note that the
message costs are also applied to the externally-created teammates, which are informed of the current message costs, so
the performance of NoComm is also affected by message costs.

As the cost of communicating increases, NoComm becomes closer to the optimal behavior. As the number of rounds in-
creases, communicating is more helpful because there is more time to reap the benefits of better informing the teammates.
With more arms, it is harder to get the teammates to select the best arm, so communicating is less helpful. With more
teammates, communicating is more likely to be outweighed by other agents’ messages, but there is more benefit if the
team can be convinced, hence the improvement of Obs. Overall, the results in all of these scenarios tell a similar story,
specifically that reasoning about communication helps an ad hoc agent effectively cooperate with various teammates,
even when its models of these teammates are incomplete or incorrect.
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Figure 2: Normalized rewards with varied parameters when cooperating with externally-created teammates.

6 Related Work

Bowling and McCracken [3] consider robots playing soccer in which the ad hoc agent has a playbook that differs from
its teammates’. In [10], Liemhetcharat and Veloso reason about selecting agents to form ad hoc teams. Barrett et al. [2]
empirically evaluate an MCTS-based ad hoc team agent in the pursuit domain, and Barrett and Stone [1] analyze existing
research on ad hoc teams and propose one way to categorize ad hoc teamwork problems. A more theoretical approach
is Wu et al.’s work [13] into ad hoc teams using stage games and biased adaptive play.

Ad hoc teamwork is also closely related to the area of opponent modeling, differing in whether one models teammates
or opponents. Interacting with opponents often requires reasoning about worst case scenarios. One promising approach
for opponent modeling is the AWESOME algorithm [4], which tackles repeated games and guarantees convergence and
rationality. Further work investigates agents that explicitly model and reason about their opponent’s beliefs in the form
of interactive POMDPs [6] and interactive dynamic influence diagrams (I-DIDs) [5].

7 Conclusion

Past work into ad hoc teamwork has largely focused on scenarios in which the ad hoc agent cannot directly communicate
with its teammates. This work addresses this gap by introducing a minimal domain with communication, where ad
hoc agent controls what messages to send to its teammates, but it cannot control their reactions to the messages. Our
analysis proves that ad hoc team agents can optimally cooperate in some scenarios using only polynomial computation.
Furthermore, this paper evaluates an empirical algorithm for planning in ad hoc teamwork problems. This algorithm
is shown to be effective when cooperating with teammates created by a variety of developers even when planning
with imperfect models. These results show that an ad hoc agent can simultaneously learn about its teammates and the
environment to enable its team to perform effectively.

References

[1] S. Barrett and P. Stone. An analysis framework for ad hoc teamwork tasks. In AAMAS ’12, June 2012.

[2] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad hoc teamwork in the pursuit domain. In AAMAS ’11, May 2011.

[3] M. Bowling and P. McCracken. Coordination and adaptation in impromptu teams. In AAAI, pages 53–58, 2005.

[4] V. Conitzer and T. Sandholm. AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best
response against stationary opponents. Machine Learning, 67, May 2007.

[5] P. Doshi and Y. Zeng. Improved approximation of interactive dynamic influence diagrams using discriminative model updates.
In AAMAS ’09, 2009.

[6] P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent settings. JAIR, 24(1):49–79, July 2005.

[7] D. Hsu, W. S. Lee, and N. Rong. What makes some POMDP problems easy to approximate? In Advances in Neural Information
Processing System. 2007.

[8] L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In ECML ’06, 2006.

[9] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable
belief spaces. In Proc. Robotics: Science and Systems, 2008.

[10] S. Liemhetcharat and M. Veloso. Modeling mutual capabilities in heterogeneous teams for role assignment. In IROS ’11, pages
3638 –3644, 2011.

[11] D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In NIPS ’10. 2010.

[12] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous agent teams: Collaboration without pre-
coordination. In AAAI ’10, July 2010.

[13] F. Wu, S. Zilberstein, and X. Chen. Online planning for ad hoc autonomous agent teams. In IJCAI, 2011.

4

Paper S64 197



Online Learning in Markov Decision Processes with Changing
Reward Sequences

Travis Dick, András György, and Csaba Szepesvári
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Abstract

In this paper we consider online learning in finite Markovian Decision Process with changing reward sequences under
full and bandit-information. We propose to view this problem as an instance of online linear optimization. We propose
two methods for this problem: MD2 (mirror descent with approximate projections) and the continuous exponential
weights algorithm with Dikin walks. We provide a rigorous complexity analysis of these techniques, while providing
near-optimal regret-bounds. In the case of full-information feedback, our results complement existing results, while in
the case of bandit-information feedback, we manage to improve the dependence of regret significantly by removing the
restrictive assumption that the state-visitation probabilities are uniformly bounded away from zero under all policies.

1 Introduction

We consider the problem of online learning in discrete time finite Markov decision processes (MDPs) with arbitrarily
changing cost processes. It is assumed that a learner moves in a finite state space X . Occupying a state xt at time instant
t, the learner takes an action at ∈ A(xt), where A(xt) is some finite set of actions available at state xt. Then the agent
moves to some new random state xt+1, where the distribution of xt+1, given xt and at is determined by the Markov
transition kernel P (·|xt, at). Simultaneously, the agent receives some immediate cost ft(xt, at), where the cost function
ft : U → [0, 1] is assumed to be bounded and U = {(x, a) : x ∈ X , a ∈ A(x)}. The goal of the learner is to minimize
its total cost. We assume here that the cost function ft can change in an arbitrary manner between time instants. The
performance of the learner is measured against the best stationary policy in hindsight, giving rise to the expected regret:

RT = E

[
T∑

t=1

ft(xt, at)

]
−min

π
E

[
T∑

t=1

ft(x
π
t , a

π
t )

]
.

Here, for a given stationary policy π (i.e. , π is such that π(·|x) is a probability distribution over A(x) for any x ∈ X),
(xπt , a

π
t ) denotes the state-action pair that policy π would visit in time step t if this policy was was used from t = 1

(we may assume that xπ1 = x1 ). Note that a sublinear regret-growth, RT = o(T ) (T → ∞) means that the average cost
collected by the learning agent approaches that of the best policy in hindsight. Naturally, a smaller growth-rate is more
desirable.

Motivated by the desire to design robust learning algorithms, this problem has been studied under various conditions
by numerous authors [see, e.g., 3; 11; 8; 7; 9; 10].

We consider two variants of the above model with respect to what observations are available to the learner. In both
models the learner can observe its actual state, xt. In the full information feedback model, the learner can observe the full
cost function ft at the end of time instant t (this is equivalent to observing yt, the uncontrolled part of the state the learner
is leaving), while in the bandit feedback model the learner only observes the cost ft(xt, at) it receives.

Treating the online MDP problem as a huge but standard online learning problem, it is relatively not hard to obtain
algorithms that enjoy good regret bounds but whose computational complexity is huge. Therefore, earlier work in the
literature concentrated on obtaining computationally efficient algorithms that also achieve near-optimal regret rates. These
results either concern the (stochastic) shortest path problem (SSP, an episodic MDP), or unichain MDPs. Several methods
achieve near-optimal regret rates by running an independent expert algorithm for each x ∈ X , see Even-Dar et al. [2, 3]
for the full information case and Neu et al. [8, 7, 9, 10] for the bandit case). Yu et al. [11] gave other low-complexity
methods with inferior performance guarantees.
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The disadvantage of these methods is that, although they achieve optimal O(
√
T ) regret rate in terms of the time horizon

T , they often scale suboptimally in other problem parameters, such as the mixing time in the unichain case or the length
of the paths in the SSP case. In particular, the optimal-order bounds in the literature for the bandit setting require that all
states in X could be visited with positive probability under any deterministic policy, and the inverse of this, potentially
very small probability appears in the regret bounds. In this paper we alleviate this problem and obtain optimal-order
bounds that do not deteriorate with the minimum visitation probability.

To achieve this, we treat the MDP problem as an online linear optimization problem and show that the resulting methods
can be implemented efficiently. We note that the same idea was applied successfully to the deterministic shortest path
problem [4], where the minimum visitation probability can also be zero.

2 Preliminaries

First, let us introduce some notation. Let ∆S denote the set of probability measures over S. Note that for S finite, we can
also view as the unit simplex in R|S|: ∆S = {v ∈ [0, 1]|S| :

∑|S|
i=1 vi}. The standard inner product of Euclidean spaces will

be denoted by 〈·, ·〉. For p ≥ 1, the p-norm of vector v is denoted by ‖v‖p.

The structure of an online MDP is given by a state space X , action spaces A(x), x ∈ X , with U = {(x, a) : x ∈ X , a ∈
A(x)}, and probability transition kernel P : X × U → [0, 1] satisfying

∑
x∈X P (x|u) = 1 for all u ∈ U where P (x|u)

def
=

P (u, x). The learner’s starting state, x1, is distributed according to some distribution µ0 over X , where µ0 is a positive
distribution. At each time instant t = 1, 2, . . ., based on its previous observations, state and action sequences, the learner
choses an action at ∈ A(xt), possibly in a random manner. Extending this notion, we can say that the agent chooses a
(randomized) Markov policy πt : U → [0, 1],

∑
a∈A(x) πt(x, a) = 1, and choses at according to the distribution πt(xt, ·).

If πt = π independently of t, we say that {πt} is stationary and we identify such a control strategy with π. The set of
Markov policies will be denoted by Π.

In this paper we will consider two types of MDPs.

Loop-free stochastic shortest path (LF-SSP) problems. Here we assume that X has a layered structure, that is X can be
partitioned into disjunct sets X1, . . . ,XL such that if P (x′|x, a) > 0 then x ∈ Xl and x′ ∈ Xl+1 for some l = 1, . . . , L− 1, or
x ∈ XL, x′ ∈ X1, and P (x′|x, a) = µ0(x′) for any a ∈ A(x). This assumption means that starting in X1, the learner moves
through X2,X3, . . . to reach XL, after which the whole process returns to X1 and is restarted (we assume without loss of
generality that each x ∈ X is achievable by following a suitable policy). The transitions from a state in X1 to a state in
X1 gives rise to an episode of the MDP, and in this case t will index the episodes in the process. Since each episode starts
from the same distribution, the episodes are memoryless, and any policy π introduces an occupation measure µπ over
U , where for any stage index l,

∑
u∈Ul µ

π(u) = 1, where UI = {(x, a) : x ∈ Xl, a ∈ A(x)}. Furthermore, for any x ∈ X1,∑
a∈A(x) µ

π(x, a) = µ0(x). With this we can view K = {µπ : π ∈ Π} as a subset of ×Ll=0∆Ul ⊂ ×Ll=0R|Ul| = R|U|. Let
d = |U|. Note that K is a convex subset Rd: In fact, is is a polytope as it can be described by a set of linear constraints.
Furthermore, with an immediate cost function f : U → [0, 1], the expected total cost of policy π in an episode can
be written as 〈f, µπ〉. Note that with this the problem of finding the stationary policy with the smallest per episode
expected cost can be written as the linear optimization problem of arg minµ∈K〈f, µ〉: Once the solution of this problem
is found, a Markov policy πµ is extracted from the optimizing measure µ by πµ(x, a) = µ(x, a)/

∑
a∈A(x) µ(x, a). Then,

by construction, µπµ = µ. The above description implies that all paths from the starting layer X1 back to itself are of the
same length. This assumption is not restrictive, though, as any layered MDP can be modified without loss of generality
to satisfy this assumption [see 4]. For convenience, for online learning with changing costs in LF-SSPs we redefine the
regret to be the regret of the first T episodes and use ft to be the cost function effective in episode t. With this,

RT = E

[
T∑

t=1

〈ft, µπt〉
]
− min
µ∈K

T∑

t=1

〈ft, µ〉, (1)

where πt ∈ Π is the Markov policy used in the tth episode. The problem of keeping the regret low is thus viewed as an
instance of online linear optimization over the convex set K.

Recurrent MDPs. Here, following previous works, we assume the so-called uniform mixing condition: There ex-
ists a number τ ≥ 0 such that under any policy π and any pair of distributions µ and µ′ over X , ‖(µ− µ′)Pπ‖1 ≤
e−1/τ ‖µ− µ′‖1, where we use the convention of viewing distributions over X as row vectors of R|X | and Pπ ∈ R|X |×|X|
is the transition probability matrix underlying π: (Pπ)x,x′ =

∑
a∈A(x) π(a|x)P (x′|x, a), where WLOG we assume that

X = {1, . . . , |X |}. As Even-Dar et al. [3], we call the smallest τ satisfying this assumption the mixing time of the transition
probability kernel P . This assumption is not unrestrictive, but relaxing it would further complicate the paper and hence
we leave this for future work. As for LF-SSPs, for a Markov policy π, let µπ be its stationary distribution over U . Under
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the assumption of τ < ∞, µπ is uniquely determined. Introduce K = {µπ : π ∈ Π} ⊂ ∆U . Again, K is a polytope
and hence is a convex subset of R|U|. When discussing recurrent MDPs, we will take d = |U| as the “dimension” of the
problem. In this case, we are concerned with finding a sequence of policies whose expected total cost up to time T is
not much larger than that of the best policy in hindsight. Similarly to Neu et al. [7, 10], we can bound this expected
additional cost by

Eπ1:T

[
T∑

t=1

ft(Xt, At)

]
−min
π∈Π

Eπ

[
T∑

t=1

ft(Xt, At)

]
≤

T∑

t=1

〈ft, µπt − µπ〉+ (τ + 1)Tk + 4τ + 4, (2)

where Eπt:T denotes the expectation where the sequence (Xt, At) is generated by following the sequence of policies
π1, . . . , πT and similarly for Eπ , and k ≥ E [‖µπt − µπt+1‖1]for t = 1, . . . , T . Since we can recover a sequence of policies
from a sequence µt ∈ K, it is enough to find a sequence µ1, . . . , µt ∈ K such that the first term of the bound is small, and
k is not too large. This is an online linear optimization problem.

With this, we mapped the problem of online learning in MDPs (in both cases) to online linear optimization, which is well
studied problem in online learning (see Bubeck et al. 1 and the references therein).

3 Learning under Full Information in MDPs

In this section, we consider online learning in MDPs when the entire cost vector ft is observed at each time. The algo-
rithm that we apply is the so-called mirror-descent algorithm with the negative entropy regularizer. To implement the
projection to the set K needed by this algorithm, we use gradient descent; we call the resulting composite algorithm the
MD2 algorithm. In order to apply MD2 we need the components of the (occupation) measures bounded away from zero.
This will not be the case, since policies may choose actions with arbitrarily low probabilities. Without loss of generality
we can assume that there exists a β > 0 and a policy πexp such that the corresponding (occupation) measure µexp = µπexp

satisfies µexp(x, a) ≥ β for all (x, a) ∈ U . By the convexity of K, µδ = (1− δ)µ+ δµexp ∈ K for any 0 < δ < 1 and µ ∈ K
(i.e., there exists a policy inducing µδ), and for any loss function f we have |〈f, µδ〉 − 〈f, µ〉| = δ|〈f, µexp − µ〉|. Therefore,
we do not loose much if we use MD2 with Kδβ = {µ ∈ K : µ(x, a) ≥ δβ for all x, a} instead of K, since µδ ∈ Kδβ .

First we consider the simple case of the LF-SSP problem. The next result bounds the regret of MD2 when used with Kδβ

and the unnormalized negative entropy regularizer R(µ) =
∑L−1
l=0 Rl(µl), where µ = (µ0, . . . , µL−1), µl ∈ [0,∞)Ul and

Rl(µl) =
∑
i µl,i ln(µl,i) − µl,i is the unnormalized negative entropy regularizer over [0,∞)Ul . We denote by D(·, µ′) =

R(·)−R(µ′)− 〈∇R(µ′), · − µ′〉 the (unnormalized) Kullback-Leibler divergence underlying R.
Theorem 1. Assume MD2 is run for the LF-SSP problem on Kδβ with appropriate parameters starting from µ̂1 ∈ K. Then, for
any µ ∈ K, the regret of the algorithm can be bounded as RT ≤ C

√
LDmaxT with a universal constant C > 0, while the per-step

complexity is O(d4T 1/4 ln(Td)/β), where Dmax = maxµ∈K DR(µ, µ̂1) and d = |U|.

Note that the regret does not depend on 1/β, but Dmax = Θ(Lmaxl log(|Ul|)), making the regret scale with
O(L

√
T maxl log(|Ul|)). Note that Neu et al. [9] gave a O(L2

√
T ln maxx |A(x)|) for an algorithm whose complexity is

O(d) per time-step; the two bounds are incomparable. It is an interesting (and probably challenging) problem to achieve
the best of the two results.

In order to apply MD2 to the recurrent MDP case, we need to obtain a regret bound for the online linear optimization
on K and show that the sequence of policies does not change too quickly. We have

∣∣∣
∑T
t=1〈ft, µ〉 −

∑T
t=1〈ft, µδ〉

∣∣∣ ≤
δ
∑T
t=1 |〈ft, µexp − µ〉| ≤ 2δT . Therefore, running MD2 on Kδβ gives following result:

Theorem 2. Assume MD2 is run for the recurrent MDP problem on Kδβ with c = βδη

2
√
T

, and δ = 1/
√
T . Then the re-

gret of the sequence of policies given by πt(x, a) = µ̂t(x,a)
µ̂t(x) relative to any police π is bounded by Eπ1:T

[∑T
t=1 ft(Xt, At)

]
−

Eπ
[∑T

t=1 ft(Xt, At)
]
≤ 2
√
TDR(µ, µ̂1)(1 + 2(τ + 1)) + 3

√
T + 4τ + 4 with a per-step complexity of O(d4T 1/4 ln(Td)/β).

Note that this improves the previous state-of-the-art bound [7; 10] that scales with O(τ3/2
√
T ln |A|) as far as the depen-

dence of the bound on τ is concerned.

4 Learning under Bandit Information in MDPs

The purpose of this section is to consider online learning in MDPs with changing cost functions under bandit feedback,
i.e., when at time t, the only information received is ft(xt, at), the cost of the current transition. Based on the previous
section, we see that to control the regret, an MDP learning algorithm has to control the regret in an online linear bandit
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problem with decision set K, as well as the rate of change of the policies. As we have already seen, MD-based algorithm
will have slowly changing policies, hence our main concern is the linear optimization term.

In this section, focussing on LF-SSPs, we design computationally efficient bandit algorithms based on MD and the con-
tinuous exponential weights algorithm. In both cases, the immediate costs will be estimated in the same manner:

f̃t(x, a) = ft(x, a)I{x(l)
t =x,a

(l)
t =a}/µ

πt(x, a) . (3)

Note that in each stage l, f̃t(x, a) is nonzero only for the state-action pair visited in Ul: Hence, f̃t is available to the
learner. It is easy to see that as long as (B) µπt(x, a) is bounded away from zero for each state-action pair (x, a), the above
estimate is unbiased. In particular, denoting by Ft the σ-algebra generated by the history up to the beginning of episode
t, E

[
f̃t(x, a)|Ft

]
= ft(x, a) holds for all (x, a) ∈ U .

As before, we apply MD2 with the unnormalized negentropy regularizer on Kδβ . Note that the restriction to Kδβ is now
used to ensure both that the projection step can be implemented efficiently and that estimates in (3) be well-defined. In
particular, this implies that (B) will be satisfied and we get the following result:
Theorem 3. Run MD2 on Kδβ with the reward estimates (3). Let µ̂t be the output of MD2 in round t, define πt = πµ̂t (i.e. ,
by the conditionals induced by µ̂t) and run πt in episode t. Then, with appropriate parameters, the regret can be bounded as
RT ≤ C

√
|U|TDmax with some universal constant C > 0, while the computational cost is bounded by O(d4T 1/4 ln(Td)/β).

Based on the paper of Narayanan and Rakhlin [6], one can design another algorithm, which we shall call CEWA
with Dikin walks, which uses a randomized sampling strategy to sample from the distribution obtained from qt(µ) =

q1(µ) exp(−η∑t−1
s=1

˜̀
s(µ)) by normalizing it, where ˜̀t(µ) = 〈f̃t, µ〉 and f̃t is obtained using (3). The following result holds:

Theorem 4. Let πt be obtained by CEWA. Then, with appropriate parameters, the regret is bounded by RT ≤
√
LDKL(pµ, p1)T+1,

while the per step computational complexity is bounded by O(d8 lnT ).

Note that taking a uniform prior for p1, DKL(pµ, p1) = O(d ln d). Earlier works of Neu et al. [8, 9] assumed that every pol-
icy visits every state with positive probability, and their bounds scale inversely with the minimum visitation probability.
In contrast, we do not need such an assumption, and our bounds do not scale with any similar constant. The price we
pay is a slightly larger computational complexity.

In the recurrent MDP case it is harder to guarantee that an estimate similar to (3) be well-defined. The reason for this is
that we need to ensure that each state-action pair can be reached with positive probability when the estimate is formed.
To alleviate this problem, one can follow the approach of [10] to form the loss estimates and use the resulting estimates
in MD2.
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Abstract

A long term goal of Interactive Reinforcement Learning is to incorporate non-expert human feedback to solve complex
tasks. Some state-of-the-art methods have approached this problem by mapping human information to rewards and
values and iterating over them to compute better control policies. In this paper we argue for an alternate and more
effective characterization of human feedback: Policy Shaping. We introduce Advise, a Bayesian approach that attempts
to maximize the information gained from human feedback by utilizing it as direct policy labels.

We compare Advise to state-of-the-art approaches using a series of experiments. These experiments use two classic ar-
cade games, together with feedback from a simulated human teacher, which allows us to systematically test performance
under a variety of cases of infrequent and inconsistent feedback. We show that Advise has similar performance to the
state of the art, but is more robust to a noisy signal from the human and fairs well with an inaccurate estimate of its single
input parameter. With these advancements this paper may help to make learning from human feedback an increasingly
viable option for intelligent systems.

Keywords: Interactive Reinforcement Learning, Human-Agent Interaction,
Human-in-the-loop learning
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1 Introduction
A long–term goal of machine learning is to create systems that can be interactively trained or guided by non-expert end-
users. This paper focuses specifically on integrating human feedback with Reinforcement Learning. One way to address
this problem is to treat human feedback as a shaping reward. Yet, recent papers have observed that a more effective use
of human feedback is as direct information about policies [1, 2]. Most techniques for learning from human feedback still,
however, convert feedback signals into a reward or a value. In this paper we introduce Policy Shaping, which formalizes
the meaning of human feedback as policy feedback, and demonstrates how to use it directly as policy advice. We also
introduce Advise, an algorithm for estimating a human’s Bayes optimal feedback policy and a technique for combining
this with the policy formed from Bayesian Q-Learning1.

We validate our approach using a series of experiments. These experiments use a simulated human teacher and allow us
to systematically test performance under a variety of cases of infrequent and inconsistent feedback. The results demon-
strate two advantages of Advise: 1) it is comparable to or outperforms state of the art techniques for integrating human
feedback with Reinforcement Learning; and 2) by formalizing human feedback, we avoid ad hoc parameter settings and
make Advise robust to infrequent and inconsistent feedback.

2 Reinforcement Learning
Reinforcement Learning (RL) defines a class of algorithms for solving problems modeled as a Markov Decision Process
(MDP). An MDP is specified by the tuple (S, A, T, R), which defines the set of possible world states, S, the set of actions
available to the agent in each state, A, the transition function T : S ×A→ Pr[S], a reward function R : S ×A→ R, and a
discount factor 0 ≤ γ ≤ 1. The goal of RL is to identify a policy, π : S → A, that maximizes reward.

This paper used an implementation of the Bayesian Q-learning (BQL) RL algorithm [4]. BQL maintains parameters that
specify a normal distribution with unknown mean and precision for each Q value, Q[s, a], which represents an estimate
of the long-term expected discounted reward for taking action a in state s. This representation approximates the agent’s
uncertainty in the optimality of each action, which makes the problem of optimizing the exploration/exploitation trade-
off straightforward. Because the Normal-Gamma (NG) distribution is the conjugate prior for the normal distribution, the
mean and the precision are estimated using a NG distribution with hyperparameters 〈µs,a

0 , λs,a, αs,a, βs,a〉. These values
are updated each time an agent performs an action a in state s, accumulates reward r, and transitions to a new state s′.
Details on how these parameters are updated can be found in [4].

The NG distribution for each Q value can be used to estimate the probability that each action a ∈ As in a state s is optimal,

which defines a policy, πR, used for action selection. The optimal action can be estimated by sampling each Q̂(s, a) and
taking the max. A large number of samples can be used to approximate the probability an action is optimal by simply
counting the number of times an action has the highest Q value [4].

3 Related Work
A key feature of RL is the use of a reward signal. The reward signal can be modified to suit the addition of a new in-
formation source (this is known as reward shaping [5]). This is the most common way human feedback has been applied
to RL. However, several difficulties arise when integrating human feedback signals that may be infrequent, or occa-
sionally inconsistent with the optimal policy–violating the necessary and sufficient condition that a shaping function be
potential-based [5]. Another difficulty is the ambiguity of translating a statement like “yes, that’s right” or “no, that’s
wrong” into a reward. Typically, past attempts have been a manual process, yielding ad hoc approximations for specific
domains. Researchers have also extended reward shaping to account for idiosyncrasies in human input. For example, a
drift parameter can account for the human tendency to give less feedback over time [6].

Advancements in recent work sidestep some of these issues by showing human feedback can instead be used as policy
feedback. For example, Thomaz and Breazeal [1] added an UNDO function to the negative feedback signal, which forced
an agent to backtrack to the previous state after its value update. Work by Knox and Stone [2, 7] has shown that a general
improvement to learning from human feedback is possible if it is used to directly modify the action selection mechanism
of the RL algorithm. Although both approaches use human feedback to modify an agent’s exploration policy, they still
treat human feedback as either a reward or a value (e.g., “right” becomes +1 and “wrong” −1). In our work, we assume
human feedback is making a direct statement about the policy itself, rather than influencing the policy through a reward.

4 Policy Shaping
We use feedback labels directly to infer what the human believes is the optimal policy of action in the previous state. We
assume a human providing feedback knows the right answer, but noise in the feedback channel introduces inconsisten-
cies between what the human intends to communicate and what the agent observes. Thus, feedback is consistent, C, with
the optimal policy with probability 0 < C < 1. We also assume that a human watching an agent learn may not provide
feedback after every single action, thus the likelihood, L, of receiving feedback has probability 0 < L < 1. In the event
feedback is received, it is meant as a comment on the optimality of the immediately preceeding action.

Although many different actions may be optimal in a given state, we will assume for this paper that the human knows
only one optimal action, which is the one they intend to communicate. In that case, an action, a, is optimal in state s

1A longer version of this paper appears in NIPS 2014 [3].
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if no other action is optimal. The probability s, a is optimal can be obtained by application of Bayes’ rule in conjuction
with the binomial distribution and enforcing independence conditions arising from our assumption that there is only

one optimal action. This gives: C∆s,a(1 − C)
∑

j 6=a ∆s,j , where ∆s,a is the difference between the number of “right” and
“wrong” labels. We take this equation to be the probability of performing s, a according to the feedback policy, πF (i.e.,
the value of πF (s, a)). This is the Bayes optimal feedback policy given the “right” and “wrong” labels seen, the value for
C, and that only one action is optimal per state.

Because the use of Advise assumes an underlying RL algorithm will also be used, the policies derived from multiple
information sources must be reconciled. Before an agent is completely confident in either policy, it has to determine
what action to perform using the policy information each provides. We combine the policies from multiple information
sources by multiplying them together: π ∝ πR × πF . Multiplying distributions together is the Bayes optimal method for
combining probabilities from (conditionally) independent sources [8]. Note that BQL can only approximately estimate
the uncertainty that each action is optimal from MDP reward. Rather than use a different combination method to com-
pensate for the fact that BQL converges too quickly, we introduced the exploration tuning parameter, θ, from [9], that can
be manually tuned until BQL performs close to optimal.

5 Experimental Setup
We evaluate our approach using two game domains, Pac-Man and Frogger, with a simulated oracle. Pac-Man consists of
a 5x5 grid world with two food pellets, one ghost, walls, and the Pac-Man avatar. The goal is to eat all the pellets while
avoiding the ghost. Points are awarded for each pellet (+10) and winning the game (+500). Points are taken away as time
passes (-1) and for losing the game (-500). The action set consisted of the four primary cartesian directions. The state
representation included Pac-Man’s position, the position and orientation of the ghost, and the presence of pellets.

Frogger consists of a 4x4 grid world with two moving cars, two water hazards, and the Frogger avatar. The goal is to
cross the road without being run over or jumping into a water hazard. Each car drives one space per time step. The car
placement and direction of motion is randomly determined at the start and does not change. As a car disappears off the
end of the map it reemerges at the beginning of the road and continues to move in the same direction. The cars moved
only in one direction, and they started out in random positions on the road. Each lane was limited to one car. Points are
won for arriving at a safe spot on the far side (+500). Points are lost as time passes (-1), for being run over (-500), and for
hopping into a water hazard (-500). The action set consisted of the four primary cartesian directions and a stay-in-place
action. The state representation included frogger’s position and the position of the two cars.

A simulated oracle was used in the place of human feedback, because this allows us to systematically vary the parameters
of feedback likelihood, L, and consistency, C and test different learning settings in which human feedback is less than
ideal. The oracle was created manually by a human before the experiments by encoding the optimal action in each state.
For states with multiple optimal actions, a small negative reward (-10) was added to the MDP reward of the extra optimal
actions to preserve the assumption that only one action be optimal in each state.

6 Experiments
6.1 A Comparison to the State of the Art
In this evaluation we compare Policy Shaping with Advise to the more traditional Reward Shaping, as well as recent
Interactive RL techniques. Knox and Stone [2, 7] tried eight different strategies for combining feedback with an environ-
mental reward signal and they found that two strategies, Action Biasing and Control Sharing, consistently produced the
best results. Both of these methods convert human feedback to a value but recognize that the information contained in
that value is policy information.

Action Biasing, Control Sharing, and Reward Shaping can all be defined using the same set of parameters and variables.
Positive and negative feedback is declared a reward rh, and −rh, respectively. A table of values, H [s, a] stores the
feedback signal for s, a. The value B[s, a] controls the influence of feedback on learning, and is incremented by a constant
b when feedback is received for s, a, and is decayed by a constant d at all other time steps.

Action Biasing modifies the action selection of BQL to be argmaxa Q̂(s, a) + B[s, a] ∗ H [s, a]. Control Sharing defines a
transition between πR and a feedback policy as the probability P (a = argmaxa H [s, a]) = min(B[s, a], 1.0)2. Reward
Shaping modifies the MDP reward function to be R′(s, a)← R(s, a) + B[s, a] ∗H [s, a].

We compared the methods using four different combinations of feedback likelihood, L, and consistency, C, in Pac-Man
and Frogger, for a total of eight experiments3 4. Table 1 summarizes the quantitative results. In the ideal case of frequent
and correct feedback (L = 1.0; C = 1.0), we see in Table 1 that Advise does much better than the other methods early

2Control Sharing interprets feedback as a reward, but it does not use that information, so is unaffected if its magnitude changes.
3We manually tuned all the parameters before the experiments to maximize MDP reward. BQL:〈µs,a

0 = 0, λs,a = 0.01, αs,a =
1000, βs,a = 0.0000〉, θ = 0.0001 for Frogger, and θ = 0.5 for Pac-Man. Discount factor: γ = 0.99. Action Biasing, Control Sharing, and
Reward Shaping: b = 1, d = 0.001, for Action Biasing rh = 100, and for Reward Shaping rh = 100 in Pac-Man and rh = 1 in Frogger.

4We used the conversion rh = 1, 10, 100, or 1000 that maximized MDP reward in the ideal case to also evaluate the three cases
of non-ideal feedback. We had to use rh = 1.0 for Reward Shaping in frogger because the agent can end up in infinite loops when
feedback is less than ideal. This was not a problem in Pac-Man because the ghost can force Pac-Man out of oscillatory behavior.
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Ideal Case Reduced Feedback Reduced Consistency Moderate Case
(L = 1.0, C = 1.0) (L = 0.1, C = 1.0) (L = 1.0, C = 0.55) (L = 0.5, C = 0.8)

Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger

BQL + Action Biasing 0.24 ± 0.01 0.09 ± 0.03 0.07 ± 0.02 0.02 ± 0.04 -0.14 ± 0.1 0.02 ± 0.04 0.11 ± 0.02 0.05 ± 0.04
BQL + Control Sharing 0.14 ± 0.02 0.04 ± 0.04 0 ± 0.07 0.01 ± 0.04 -1.21± 0.07 -0.17 ± 0.08 -0.08 ± 0.11 0.01 ± 0.04
BQL + Reward Shaping 0.23 ± 0.01 0.06 ± 0.04 0.06 ± 0.02 0.02 ± 0.04 -0.2 ± 0.19 0 ± 0.05 0.07 ± 0.08 0.03 ± 0.04

BQL + Advise 0.32 ± 0.01 0.23 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0 ± 0.06 0.01 ± 0.04 0.05 ± 0.05 0.11 ± 0.03

Table 1: Comparing the learning rates of BQL + Advise to BQL + Action Biasing, BQL + Control Sharing, and
BQL + Reward Shaping. Each entry represents the average and standard deviation of the cumulative reward in 300
episodes, expressed as the percent of the maximum possible cumulative reward for the domain with respect to the BQL
baseline. Negative values indicate performance worse than BQL. Bold values indicate the best performance for that case.

in the learning process. A human reward that does not match both the feedback consistency and the domain may fail to
eliminate unnecessary exploration and produce learning rates similar to or worse than RL on its own. Advise avoided
these issues by not converting feedback into a reward.

The remaining results in Table 1 show performance for each of the non-ideal conditions that we tested: reduced feedback
frequency (L = 0.1; C = 1.0), reduced consistency (L = 1.0; C = 0.55), and a case we call moderate (L = 0.5; C =
0.8). Action Biasing and Reward Shaping performed comparably to Advise in three. In these three cases the rate of
accumulating information from feedback compared to the rate of information gained by BQL was not large enough to
make one particular method significantly outperform any other. This is especially true in Pac-Man, because BQL learned
to avoid the ghost very quickly, which made finding an optimal policy more a matter of eliminating redundant moves.

The results in Table 1 comprehensively show that Advise always performed at or above the BQL baseline, which indi-
cates robustness to less than ideal feedback. In contrast, Action Biasing, Control Sharing, and Reward Shaping blocked
learning progress in several cases with reduced consistency (column 5 has the most extreme example). Control Sharing
performed worse than BQL in three cases. Action Biasing and Reward Shaping performed worse than BQL in one case.

Having a prior estimate of the feedback consistency, C, allows Advise to balance what it learns from the human appro-
priately with its own learned policy. We could have provided the known value of C to the other methods, but doing so
would not have helped set rh, b, or d. These parameters had to be tuned since they only slightly correspond to C. We
manually selected their values with ideal feedback, and then used those same settings for the other cases. However,
different values for rh, b, and d may produce better results in the cases with reduced L or C. We tested this next.

6.2 How The Reward Parameter Affects Action Biasing
Here, we test how Action Biasing performed with a range of values for rh for the case of moderate feedback (L = 0.5 and
C = 0.8), and for the case of reduced consistency (L = 1.0 and C = 0.55). Control Sharing was left out of this evaluation
because changing rh did not affect its learning rate. Reward Shaping was left out of this evaluation due to the problems
mentioned in Section 6.1. The conversion from feedback into reward was set to either rh = 0, 500, or 1000.

The results in Fig. 1 show that a large value for rh is appropriate for more consistent feedback; a small value for rh is best
for reduced consistency. This is clear in Pac-Man when a reward of rh = 1000 led to better-than-baseline learning perfor-
mance in the moderate feedback case, but decreased learning rates dramatically below BQL in the reduced consistency
case. In that case, the use of rh = 0 produced the best results. Therefore, rh depends on feedback consistency.

This experiment also shows that the best value for rh is somewhat robust to a slightly reduced consistency. A value of
either r = 500 or 1000, in addition to r = 100 (see Table 1), can produce good results with moderate feedback in both Pac-
Man and Frogger. The use of a human influence parameter B[s, a] to modulate the value for rh is presumably meant to
help make Action Biasing more robust to reduced consistency. The value for B[s, a] is, however, increased by b whenever
feedback is received, and reduced by d over time; b and d are more a function of the domain than the information in
accumulated feedback. Our next experiment demonstrates why this is bad for IRL.

6.3 How Domain Size Affects Learning
Action Biasing, Control Sharing, and Reward Shaping use a ‘human influence’ parameter, B[s, a], that is a function of the
domain size more than the amount of information in accumulated feedback. To show this we froze the parameters and
evaluated the algorithms in a larger domain. Frogger was increased to a 6× 6 grid with four cars. An oracle was created
automatically by running BQL to 50,000 episodes 500 times, and then for each state choosing the action with the highest
value. The oracle provided moderate feedback (L = 0.5; C = 0.8) for the 33360 different states identified in this process.

Our results (omitted due to space constraints) show that, whereas Advise performed roughly the same as in the smaller
Frogger domain (see the last column in Table. 1), Action Biasing, Control Sharing, and Reward Shaping all had a negligi-
ble effect on learning, performing roughly the same as the BQL baseline. In order for those methods to perform as well
as they did with the smaller version of Frogger, the value for B[s, a] needs to be set higher and decayed more slowly by
manually finding new values for b and d. Thus, like rh, the optimal values to b and d are dependent on both the domain

and the quality of feedback. In contrast, the estimated feedback consistency, Ĉ, used by Advise only depends on the true
feedback consistency, C. For comparison, we next show how sensitive Advise is to a suboptimal estimate of C.
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Figure 1: How different feedback reward values affected BQL + Action Biasing. Each line shows the average and standard
error of 500 learning curves over a duration of 300 episodes. See the text for more details.

6.4 Using an Inaccurate Estimate of Feedback Consistency
Interactions with a real human will mean that in most cases Advise will not have an exact estimate, Ĉ, of the true feedback
consistency, C. It is presumably possible to identify a value for Ĉ that is close to the true value. Any deviation from the
true value, however, may be detrimental to learning. This experiment shows how an inaccurate estimate of C affected
the learning rate of Advise. Feedback was generated with likelihood L = 0.5 and a true consistency of C = 0.8. The

estimated consistency was either Ĉ = 1.0, 0.8, or 0.55.

Our results (omitted due to space constraints) show that in both Pac-Man and Frogger using Ĉ = 0.55 reduced the
effectiveness of Advise. The learning curves are similar to the baseline learning curves because using an estimate of C
near 0.5 is equivalent to not using feedback at all. In general, values for Ĉ below C decreased the possible gains from
feedback. In contrast, using an overestimate of C slightly boosted learning rates for these particular domains and case of
feedback quality. In general, however, overestimating C can lead to a suboptimal policy especially if feedback is provided

very infrequently. Therefore, it is desirable to use Ĉ as close to its true value, C, as possible.

7 Conclusion and Future Work
Overall, our experiments indicate that it is useful to interpret feedback is as a direct comment on the optimality of an
action, without converting it into a reward or a value. Advise performed comparably to or better than tuned versions
of Action Biasing, Control Sharing, and Reward Shaping. These methods are outperformed because they first convert
feedback into a reward, which reduces the effectiveness of the information. Their performance also suffers because their
use of ‘human influence’ parameters is disconnected from the amount of information in the accumulated feedback. In
contrast, Advise has only one input parameter, which is independent of the domain, and can be used to calculate the
exact amount of information in the accumulated feedback in each state. Advise combines the feedback policy with the
RL policy using the right amount of influence. It also always utilizes information from both sources.

In conclusion, this paper defined the Policy Shaping paradigm for integrating feedback with Reinforcement Learning.
We introduced Advise, which tries to maximize the utility of feedback using a bayesian approach to learning. Advise
produced results on par with or better than the current state-of-the-art IRL techniques, showed where those approaches
fail while Advise is unaffected, and it demonstrated robustness to infrequent and inconsistent feedback. We plan to

extend our work by computing Ĉ online as a human interacts with an agent, and addressing other aspects of human
feedback like errors in credit assignment.
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Abstract  
  
A  wealth  of  prior  research  has  implicated   the   neuro t ransmi t t e r   dopamine   in  reinforcement  learning  and  
decision  making.  However,   few  studies  have  examined  how  individual  differences   in  human  reinforcement  
learning  may  be  related  to  individual  differences   in  the  dopamine   system,  and  no  studies  have  previously  
used  PET  imaging  of  the  dopamine   system  to  examine   individual  differences   in  reinforcement  learning  in  
humans.  A  sample  of  25  healthy  young  adults  completed   a  reinforcement  learning  task  and  a  [18F]Fallypride  
PET  scan  of  dopamine  D2/D3  receptors.  A  whole-­‐‑brain   analysis  revealed  an  association   between  striatal  D2  
receptors  and  reinforcement  learning  such  that  individuals  with  higher  levels  of  receptor  availability   in  the  
right  ventromedial   caudate  and  nucleus  accumbens  were  better  able  to  learn  from  probabilistic   feedback  
which  of  two  stimuli  had  a  higher  expected  value.  The  task  included  both  gain  and  loss  conditions,   but  the  
effects  were  not  specific   to  either  condition  and  instead  were  related  to  general  learning  ability.  To  our  
knowledge   this  is  the  first  study  to  demonstrate   an  association   between  a  direct  measure  of  the  human  
dopamine   system  and  reinforcement  learning.  Consistent  with  a  large  body  of  prior  animal  work,  our  results  
suggest   that  the  human  striatal  dopamine  system  promotes   reinforcement   learning.  
  
Keywords:              dopamine,   reinforcement   learning,   individual  differences,   ventromedial   caudate,  
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Extended  Abstract  
  
Learning   from  rewards  and  aversive  stimuli   is  necessary   for  everyday   life.  Consistently,   studies  have  found  
that  the  nucleus  accumbens   (NAcc),  which  is  innervated  by  midbrain  dopamine  neurons,   is  recruited  
during  the  anticipation   of  reward  and  encodes  reward  prediction   errors  [1-­‐‑4].  Individual  differences   in  the  
prediction   error  signal  in  the  striatum  during  reinforcement-­‐‑based   learning  tasks  distinguish   learners   from  
non-­‐‑  learners   [5].  Furthermore,   enhancing   the  dopamine   system  pharmacologically   with  L-­‐‑DOPA  has  been  
shown  to  improve  choice  performance   towards  monetary  gains  but  not  monetary   losses  [6].  In  a  related  
study,  treating  older  adults  with  L-­‐‑DOPA  improved   reward  prediction   errors  in  the  NAcc  especially   for  
individuals  who  had  abnormal   signaling   in  the  NAcc  at  baseline   [7].  These  results  suggest  a  crucial  role  for  
individual  differences   in  dopamine   transmission,   particular   in  the  NAcc,  contributing   to  behavioral  
differences   in  reinforcement  learning  in  response   to  reward  feedback.  
  
Twenty-­‐‑five  healthy,  young  adult  participants   (61%  female;  age  range:  18–24,  M=20.88)   completed  our  
study  at  Vanderbilt  University.  All  participants  were  free  of  current  or  past  medical  or  psychiatric   illness,  
drug  free,  and  in  good  health.  
  
Participants  were  instructed   to  repeatedly   choose  between  a  pair  of  abstract   images  (Fig.  1)  in  a  stationary  
two-­‐‑armed  bandit  task.  On  each  trial,  participants   chose  from  one  of  three  pairs  of  fractal  cues  
corresponding   to  three  conditions:   gain,  loss,  neutral  [8].  Images  in  the  gain  cue  pair  each  had  a  chance  of  
winning  $1,  but  one  image  would  win  66%  of  the  time  while  the  other  image  would  win  33%  of  the  time.  
The  loss  cue  pair  each  had  a  chance  of  losing  $1,  but  one  image  would  lose  66%  of  the  time  and  the  other  
image  would  lose  33%  of  the  time.  In  the  neutral  cue  pair  all  choices  yielded  a  $0  outcome.  Participants  were  
instructed   to  try  to  win  as  much  money  as  possible   (i.e.,  maximize   their  earnings)  and  that  they  would  be  
paid  based  on  their  performance.   Participants   completed   a  practice  run  which  included  24  trials  of  each  
condition   (i.e.  gain,  loss,  neutral)   for  a  total  of  72  trials.  Participants   then  completed   two  paid  runs,  each  
with  the  same  parameters   as  the  practice  run.  The  participants   received   feedback  on  their  current  trial  
earnings   (but  not  cumulative   earnings)  after  each  choice.  On  a  separate  visit,  the  participants   received  a  5  
mCi  injection  of  [18F]Fallypride   and  underwent  a  PET  scan  to  assess  D2-­‐‑like  dopamine   receptor  availability.  
  
There  was  no  difference  between  the  percent  of  correct  choices  on  gain  trials  (77.77%;  range:  .45–1.00)  and  
the  percent  of  correct  choices  on  loss  trials  (78.42%;  range:  .56-­‐‑.97)  (t24  =   –.2;  p  =   .84).  The  average  percent  of  
choices  of  the  higher  expected  value  cue  in  the  learning  task  (across  conditions)  was  associated  with  greater  
[18F]Fallypride   binding  in  the  right  ventromedial   caudate  and  nucleus  accumbens   (peak  t24   =   4.62;  max  
coordinates   x  =   –4;  y  =   10;  z  =   –6)  after  controlling   for  age  and  gender  (Fig.  2).  We  extracted  binding  
potential  values  from  this  cluster  to  compare  valence  conditions.  The  correlation  between  D2  binding  and  
gain  learning  was  not  significantly   different   than  the  correlation  between  D2  binding  and  loss  learning,  t  =   –  
0.27,  p  =   .60.    These  data  run  counter   to  a  prediction   that  there  would  be  a  stronger  correlation  with  gain  
learning  based  on  the  pharmacological   findings  mentioned  above.  However   it  is  important   to  note  that  we  
cannot  distinguish   learning  from  positive  and  negative  PEs  in  this  task;  both  positive  and  negative  PEs  are  
generated   in  the  gain  and  loss  conditions.  
  
Previously   it  has  been  demonstrated   in  monkeys   that  individual  differences   in  D2  receptor  availability   are  
associated   specifically  with  the  ability  to  shift  behavior   in  a  reversal   learning  task  [9];  this  effect  was  limited  
to  the  dorsal  striatum  and  valence-­‐‑specific.  We  also  collected  behavioral  data  from  a  reversal   learning  task,  
but  did  not  observe  these  effects  in  our  human  sample.  
  
To  our  knowledge,   this  is  the  first  study  to  use  human  PET  imaging  to  directly  measure   individual  
differences   in  dopamine   receptors  and  reinforcement  learning.  The  findings  suggest   that  the  level  of  
available  D2/D3  receptors   in  the  NAcc  and  ventromedial   caudate  is  associated  with  improved   learning  
from  feedback   in  general.  Higher  levels  of  D2  receptor  availability  may  provide  more  sites  for  dopamine  
to  act  promoting   enhanced  reinforcement   learning.  Consistent  with  prior  animal  work,  our  results  suggest  
that  the  human  striatal  dopamine   system  promotes   reinforcement   learning.  Individual  differences  in  the  
dopamine  system  may  be  associated  with  learning  abilities  that  influence  broader  decision  making  in  
everyday  life,  and  our  results  suggest  that  dopaminergic  drugs  may  enhance  decision  making  where  
learning  rapidly  from  novel  feedback  is  required.
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Figure  1.  Task  Description.  Note  that  a  neutral  condition   is  not  shown.  
  

 
 
Figure  2.  Correlation   between  dopamine   receptor  availability   and  reinforcement   learning.  
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