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Abstract 
The use of model parsimony to select appropriate models for analysing human behaviour can limit the 
explanatory depth and power of analysis by restricting the number of parameters included in the best-
fitting model or the number of individuals included in the analysis. Here we present an extended q-learning 
model to investigate the effect of payoff framing on counterfactual updating. Parameter recovery is then 
used to determine whether preferring the simplest, plausible explanation gives the best measurement. The 
full and the parsimonious model recovered the original parameter values from the simulated data similarly. 
Although parameter values recovered by the full model were more variable it did not justify using the 
parsimonious model to investigate individual differences in parameter values estimated from the task 
behaviour. The present study provides a guideline for how parameter values based on an a priori model can 
be assessed to justify the use of a full model over a parsimonious. 
 
Keywords:  q-learning, model recovery, model parsimony, decision-making, uncertainty 
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1 Introduction 

Mathematical models are commonly used in cognitive psychology to characterise processes in human 
behaviour such as behavioural strategies, susceptibility to biases or the role of environmental factors for 
behaviours [1], [2]. One of the challenges of such modelling is the selection of appropriate models to explain 
the data being analysed. Meaningful measures and criteria are needed to analyse overall suitability 
(absolute model fit) and to compare different models (relative model fit). Differentiating between competing 
models by evaluating their ability to predict behaviour is complicated by the fact that models often differ in 
a number of ways including number of parameters and complexity. The most commonly used methods in 
contemporary psychology to assess model fit are goodness of fit (GOF) and model parsimony (corrected 
GOF). Both GOF and model parsimony are methods of relative model comparison; they compare one model 
to another – relative model fit – but cannot assess absolute model fit or model validity – whether the model 
is appropriate to describe the observed data in the first place. Commonly used measures of goodness of fit 
are mean squared error or maximum likelihood: typical examples of model parsimony – corrected GOF – 
are the Akaike Information Criterion [3] or the Bayesian Information Criterion [4]. A measure of absolute 
model fit is model flexibility or generalizability; it describes the ability of a model to make valid predictions 
about behaviour not only for one task but also for several tasks [6]. A model that has more parameters may 
provide a better description of the observed data on a particular task; yet fail in terms of its ability to 
generalize to other tasks. 

Some studies test several different models to identify the model, which best predicts the sample behaviour 
[5], [6]. This approach allows researchers to make inferences from the winning model’s characteristics 
compared to the inferior models. A potential disadvantage of this approach is that the model that best fits to 
data might not necessarily reflect processes of psychological interest – limiting the ability to investigate 
group or individual differences based on model parameters. On the other hand, researchers can define an a 
priori model to characterise theoretical interest, and look at group or individual differences of the model 
parameters [7], [8]. This approach enables researchers to choose any model of interest to explain the data; 
however standard tools to assess model fit – GOF and model parsimony – are no longer appropriate as they 
assess only relative model fit. Therefore it is often unclear the extent to which the a priori model provides a 
useful description of the processes underlying the data. 

This current study used a data set from a behavioural task typical of the application of RL model fitting in 
mainstream psychology. It sets out to determine whether for the case of nested models the use of the full 
model can be justified providing reliable parameter estimates for the analyses of group or individual 
differences using a novel probabilistic learning task. We specify an a-priori nested model to describe all 
processes of interest, and then compare parameter recovery of the full model GOF with a parsimonious 
model based on corrected GOF to determine which approach, if either, is preferable to recover true 
parameter values from simulated data. 

2 A probabilistic behavioural task involving counterfactual feedback 

There are considerable differences in the way in which positive and negative feedback is perceived, informs 
learning and leads to feelings of regret and behaviour to avoid potential negative feedback [9]. 
Counterfactual beliefs regarding “What could have happened” have been shown to strongly impact human 
behaviour besides the potential feeling of regret [10]. Behavioural data on a novel four-alternative 
probabilistic learning task were acquired from 83 participants. In the task individuals were instructed to 
maximize their reward by choosing continuously between four different stimuli. Feedback was presented 
not only for the selected stimulus but also for the forgone options (counterfactual feedback). The total of 220 
trials was divided into three sections differing in the rate at which the probabilities changed between the 
four stimuli. On trials 1-40 probabilities remained constant; on trial 41 each option was assigned a different 
probability of reward, which remained constant between trials 41 to 120. On trials 121 through 220 the 
probabilities changed every 20 trials between the four stimuli. Throughout both the stable and dynamic 
conditions, the probabilities were programmed such that there was always one stimulus with a high (.85), 
one low (.15) and two with a 50/50 probability of reward. Each stimulus paid the same reward per trial if 
chosen and successful. There was no change in total reward for an unsuccessful choice. 
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3 A q-learning model of counterfactual feedback  

To model the behaviour on this task, the classic q-learning model was extended such that after a trial on 
which stimulus j ε {1,2,3,4} was chosen, and outcomes Oi {1 = success, 0 = failure} revealed, for each stimulus 
i ε {1,2,3,4}, the value Vi was updated in the direction of Oi using a delta rule with Learning Rate α; 
tendencies of participants’ learning to be modulated according to whether a stimulus was selected (Selection 
Bias γ), the outcome of a stimulus (Outcome Bias β), and the outcome of the selected stimulus (Selection-
Outcome Bias δ), was achieved by the use of parameters which modulated the learning on each trial.  

Value Function: Expected reward of stimulus i on trial t+1: Qi(t+1)=α*γ*β*δ*Oi(t)+(1-α*γ*β*δ)*Qi(t)  

With trial t ε {1,2,…,220}, stimulus i ε {1,2,3,4}; outcome stimulus i on trial t: Oi(t) ε {0,1}; expected 
value Qi for option i on trial t: Qi(t); α always between 0 and 1; γ = 1 if i=j (i.e. selected), free otherwise; 
β=1 if Oi(t)=1, free otherwise, and δ=1 if i=j or if i≠j and Oj(t)=0 (i.e. selected or did not win), free 
otherwise. The value of α (Learning Rate), γ (Selection-Bias), β (Outcome-Bias), and δ (Selection-Outcome-
Bias) was bound between zero and one. 

To model participants’ choices based on the fully parameterized model described above a softmax choice 
rule with one parameter τ (Exploitation Rate) for model stickiness was used – how likely individuals follow 
the model-based reward-maximizing prediction [11]. The probability of choosing stimulus i is increased by 
increased value, and decreased by increases in the value of other stimulus values. 

Choice Function: probability stimulus i chosen on trial t+1: 𝑃! t+1 =
!"#  (!! ! ∗!)
!"#  (!! ! ∗!)!

!!!
 

We followed the typical approach to fitting the model for each individual. Values of all five free parameters 
(Learning Rate α, Selection Bias γ, Outcome Bias β, Selection-Outcome Bias δ and Exploitation Rate τ) that 
maximized the likelihood of the behavioural data were determined for each participant separately [12]. 
Corrected goodness of model fit was assessed using the Bayesian Information Criterion [BIC, 5]. For each 
participant, a set of model parameters was obtained, derived on the performance on both the first and 
second run through the task using the full model and Maximum Likelihood Estimation [MLE, 12]. 

The key question is the degree to which this ‘standard’ approach may be considered to have correctly 
characterised the individual variation in the psychological processes of interest. To answer this question, we 
investigated performance of the modelling procedure under the assumption that it had been successful. 30 
sets of pseudo-behavioural data were then generated for each individual participant’s set of model 
parameters. Afterwards a total of eight nested models were fitted to every simulated data set and the 
parameter values, which maximized the likelihood of the data, were noted (for each of the 30 simulations 
for each of 83 participants). The eight models are as follows. Model 1 included two free parameters 
(Learning Rate α and Exploitation Rate τ, original q-learning with δ-rule); Models 2a, 2b and 2c included 
both parameters from Model 1 and one out of the three bias parameters (γ, β or δ). Models 3a, 3b, and 3c 
included both parameters from Model 1 and two out of three bias parameters. Model 4 included all 
parameters (full model); it is the same model that was used to generate the simulated data sets. All models 
are nested in Model 4 by setting the appropriate bias parameters equal to one. 

If the task and modelling procedure are a reasonable method for estimating an 
individual’s parameters, then the mean for each model parameter across the 
30 data sets should reflect (recover) the corresponding parameter used to 
generate the pseudo-behavioural data. The similarity of the 30-parameter 
estimates obtained in this way to the parameters known to have generated 
these data sets thus reflect a measure of the suitability of a model-fitting 
process (typical to contemporary psychology) as a whole to this task. 

3  Results 

In Figure 1 the frequency of each model being the best model according to a 
parsimonious account was plotted across all participants and simulations. For 

Figure 1: Frequency tables of 
the most parsimonious model 
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more than half of the simulated data sets that were generated, the best model according to a parsimony 
criterion was not the full model that was used to generate the data, but rather Model 2a with three free 
parameters: Learning Rate α, Exploitation Rate τ and Selection Bias γ.  

To further assess parameter recovery the original parameter values and the recovered parameter values for 
the full model (M4) as well as the original parameter values and the parsimonious model were plotted 
(Figure 2); the left plot depicts the results for the “Full Model” and right plot for the “Parsimonious Model”. 
On the X-axis the parameter values used to generate the pseudo-behavioural data; black dots represent the 
recovered parameter value for each of the simulations per individual participant. The black line is the linear 
regression line with original parameter values as predictor variables and the simulated parameter values 
across all simulations as predicted values. The red line is the angle bisector in the first quadrant. The graph 
for the parsimonious model contains only the free parameters of the parsimonious model; parameters not in 
the parsimonious model or equal to one were excluded. If there were perfect recovery and minimal 
variance, all parameter values would haven been scattered around the angle bisector (red line, ideal) in the 
first quadrant. 

To quantify the discrepancy between parameter values used to simulate the data and parameter estimates 
recovered from pseudo-behavioural data, the bias and deviation for the full model and parsimonious model 
were calculated (Table 1). Bias is the mean difference between the recovered parameter estimate and the 
original parameter value averaged across all simulations. Deviation is the square root of the mean squared 
difference between the recovered parameter estimates and the original parameter value used to generate the 
data averaged across all simulations. 

  

Figure 2: Each pair of charts depicts values for one 
parameter; (A) Learning Rate, (B) Exploitation Rate, (C) 
Selection Bias, (D) Outcome Bias, (E) Selection 
Outcome Bias).  
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Model: Full Model Parsimonious 

 Bias Deviation Bias Deviation 

Learning Rate α a -.072 5.014 .013 4.485 

Exploitation Rate τ a .668 59.984 .888 68.513 

Selection Bias γ .026 3.618 .045 2.574 

Outcome Bias β .012 6.274 -.0445 2.893 

Selection-Outcome Bias δ .021 8.513 -.054 4.309 

For all parameters there was a positive linear trend between the generating parameter and the recovered 
parameter, confirming that the parameters of the generating model were, to an extent, recoverable by the 
model fitting used. However, there was considerable variability in the parameter estimates recovered from 
pseudo-behavioural data for each set of parameters. The positive linear relationship was clearest for 
Learning Rate α and Selection Bias γ suggesting the most reliable recovery of those parameter values.  

The two approaches (full versus parsimonious model estimation) performed in a similar fashion, with bias 
being smaller for the true model relative to the parsimonious model, and the deviation was smaller for the 
parsimonious model compared to the full models. Larger variability implies that parameter estimates based 
on a single behavioural test sessions would be less well able to characterise the processes underlying 
behaviour of a specific individual. However, while the parsimony-based estimates gave less discrepant 
recovery of the true parameters, it must be noted that this approach produced no estimates of the final two 
parameters (β and δ) for over 50% of simulated data sets. 

4  Concluding Remarks 

The current study used parameter recovery from simulated data to investigate the reliability of simple RL 
modelling fitting as frequently performed within the mainstream psychology literature. The results showed 
that using an a priori model with high explanatory power – and a larger number of parameters than a more 
parsimonious model - may be justified where estimates for all parameters are required.  Selecting estimates 
only from the most parsimonious models tended, unsurprisingly, to generate estimates closer to the 
generating parameter: however, this approach has the disadvantage that many individuals in the sample 
could not be used for analysis of group or individual differences in model-based parameter values, and 
there is a suggestion the parsimony restriction could generate a bias in the estimated parameters. 
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Abstract
The monolithic approach to policy representation in Markov Decision Processes (MDPs) looks for a single policy that can be rep-
resented as a function from states to actions. For the monolithic approach to succeed (and this is not always possible), a complex
feature representation is often necessary since the policy is a complex object that has to prescribe what actions to take all over the
state space. This is especially true in large-state MDP domains with complicated dynamics. It is also computationally inefficient to
both learn and plan in MDPs using a complex monolithic approach. We present a different approach where we restrict the policy
space to policies that can be represented as combinations of simpler, parameterized skills—a type of temporally extended action, with
a simple policy representation. We introduce Learning Skills via Bootstrapping (LSB) that can use a broad family of Reinforcement
Learning (RL) algorithms as a “black box” to iteratively learn parametrized skills. Initially, the learned skills are short-sighted, but
each iteration of the algorithm allows the skills to bootstrap off one another, improving each skill in the process. We prove that this
bootstrapping process returns a near-optimal policy. Furthermore, our experiments demonstrate that LSB can solve MDPs that, given
the same representational power, could not be solved by a monolithic approach. Thus, planning with learned skills results in better
policies without requiring complex policy representations.

Keywords: Reinforcement Learning, skills, learning
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1 Introduction

State-of-the-art Reinforcement Learning (RL) algorithms need to produce compact solutions to large or continuous state Markov
Decision Processes (MDPs), where a solution, called a policy, generates an action when presented with the current state. One such
approach to producing compact solutions is linear function approximation.

MDPs are important for both planning and learning in Reinforcement Learning (RL). The RL planning problem uses an MDP model
to derive a policy that maximizes the sum of rewards received, while the RL learning problem learns an MDP model from experience
(because the MDP model is unknown in advance). In this paper, we focus on RL planning, and use insights from RL that could be
used to scale up to problems that are unsolvable with traditional planning approaches (such as Value Iteration and Policy Iteration (c.f.,
Puterman 1994)). A general result from machine learning is that the sample complexity of learning increases with the complexity of
the representation Vapnik & Vapnik (1998). In a planning scenario, increased sample complexity directly translates to an increase
in computational complexity. Thus monolithic approaches - a single parametric policy that solves the entire MDP, scale poorly.
This is because they often require highly complex feature representations, especially in high-dimensional domains with complicated
dynamics, to support near-optimal policies. Instead, we investigate learning a collection of policies over a much simpler feature
representation (compact policies) and combine those policies hierarchically.

Generalization, the ability of a system to perform accurately on unseen data, is important for machine learning in general, and can
be achieved in this context by restricting the policy space, resulting in compact policies Sutton (1996). Compact policies can be
represented and combined hierarchically as Temporally Extended Actions (TEAs, Sutton et al., 1999). TEAs are control structures
that execute for multiple timesteps. They have been extensively studied under many different names, including skills Konidaris &
Barto (2009), macro-actions Hauskrecht et al. (1998); He et al. (2011), and options Sutton et al. (1999). TEAs are known to speed up
the convergence rate of some MDP planning algorithms Sutton et al. (1999); Mann & Mannor (2014). Learning a useful set of TEAs
has been a topic of intense research McGovern & Barto (2001); Konidaris & Barto (2009); Brunskill & Li (2014). However, prior
work suffers from one of the following drawbacks: (1) lack of theoretical analysis guaranteeing that the derived policy will be near-
optimal, (2) the process of learning TEAs is so expensive that it needs to be ammortized over a sequence of MDPs, (3) the approach
is not applicable to MDPs with large or continuous state-spaces, or (4) the learned TEAs do not generalize over the state-space. In
this work, we address these drawbacks in the form of a skill-learning algorithm and a formal theoretical analysis thereof.

Gσ5
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σ2σ1

G

σ1

Iteration 1
Gσ5

σ4

σ3

σ2
σ1

Iteration 2
G

Iteration 5
G

...

(a) (b) (c)

Figure 1: TEAs in an episodic MDP with S-shaped state-space. (a) Although most actions (represented as movements in a single,
linear direction) move towards the goal, σ5 moves away from the goal making it impossible to complete the task. (b) Planning
becomes trivial when a single TEA (the monolithic approach) takes the agent directly to the goal region. However, the policy is more
complex and difficult to learn. (c) Learning skills (denoted by black arrows) in an S-shaped domain with goal region denoted by G.
The domain is partitioned into five classes resulting in skill set Σ = {σ1, σ2, σ3, σ4, σ5}. In the first iteration, all skills except for
σ5 (which has immediate access to the goal region) are arbitrary. In the second iteration, σ4 bootstraps off of the reward propagated
back by σ5. This process repeats until useful skills are learned over the entire state-space.

Our main technical contributions are: (1) The introduction of Learning Skills via Bootstrapping (LSB), which requires no additional
prior knowledge apart from a partition over the state-space. A high level overview of the algorithm can be seen in Figure 1 c. (2) LSB
is the first algorithm for learning skills in continuous state-spaces with theoretical convergence guarantees. (3) Theorem 1, which
relates the quality of the policy returned by LSB to the quality of the skills learned by the “black box” RL algorithm. (4) Experiments
demonstrating that LSB can solve MDPs that, given the same representational power, can not be solved by a policy derived from a
monolithic approach. Thus, planning with learned skills allows us to work with simpler representations Barto et al. (2013), which
ultimately allows us to solve larger MDPs.

2 Background

Let M = 〈S,A, P,R, γ〉 be an MDP, where S is a set of states, A is a set of actions, P maps from state-action pairs to probability
distributions over next states, R maps each state-action pair to a reward in [0, 1], and γ ∈ [0, 1) is the discount factor. A policy π(a|s)
gives the probability of executing action a ∈ A from state s ∈ S. The value function of a policy π with respect to a state s ∈ S is
V πM (s) = E

[∑∞
t=1 γ

t−1R(st, at)|s0 = s
]

where the expectation is taken with respect to the trajectory produced by following π. We
denote the optimal value function by V ∗M . We say that a policy π is ε-optimal if V πM (s) ≥ V ∗M (s)− ε for all s ∈ S.

1
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One of the key ideas behind skills is that they may be learned locally, but they can be used throughout the entire state-space. We
present a new formal definition for skills.

Definition 1. A skill σ is defined by a pair 〈πθ, β〉, where πθ is a parametric policy with parameter vector θ and β : S → {0, 1}
indicates whether the skill has finished (i.e., β(s) = 1) or not (i.e., β(s) = 0) given the current state s ∈ S.

Skills are a special case of the options framework Sutton et al. (1999), and therefore, inherit their theoretical properties (e.g., Precup
et al. 1998). However, because skills are defined over parametrized policies, a skill can be initialized anywhere in the state-space.
This means that a skill learned in one region of the state-space can potentially be applied in any other region of the state-space.

Definition 2. Let Σ be a set of m ≥ 1 skills. A skill policy µ is a mapping µ : S → [m] where S is the state-space and [m] is the
index set over skills.

A skill policy selects which skill to initialize from the current state by returning the index of one of the skills. By defining skill
policies to select an index (rather than the skill itself), we can use the same policy even as the set of skills is adapting. Given a good
set of skills, planning can be significantly faster Sutton et al. (1999); Mann & Mannor (2014). However, in many domains we may
not be given a good set of skills. Therefore it is necessary to learn this set of skills given the unsatisfactory skill set. In the next
section, we introduce an algorithm for dynamically improving skills via bootstrapping.

3 LSB Algorithm
Algorithm 1: Learning Skills via Bootstrapping (LSB)

Require: M {Target MDP}, P {Partitioning of S},
K {# Iterations}

1: m← |P| {# of partition classes}
2: µ(s) = arg maxi∈[m] I{s ∈ Pi}
3: Initialize Σ with m skills. {1 skill per partition.}
4: for k = 1, 2, . . . ,K do {Do K iterations.}
5: for i = 1, 2, . . . ,m do {One update per skill.}
6: Policy Evaluation:
7: Evaluate µ with Σ to obtain V 〈µ,Σ〉M
8: Skill Update:
9: Construct Skill MDP M ′i from M & V

〈µ,Σ〉
M

10: Solve M ′i obtaining policy πθ
11: σ′i ← 〈πθ, βi〉
12: Replace σi in Σ by σ′i
13: end for
14: end for
15: Return 〈µ,Σ〉

(a)
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Figure 2: The Mountain Car domain: (a) The average generated
by LSB skill policy and the monolithic approach. (b) The average
cost (negative reward) for different partitions (i.e., grid sizes).

Learning Skills via Bootstrapping(LSB, Algorithm 1) takes a target MDP M , a partition P over the state-space and a number of
iterations K ≥ 1 and returns a pair 〈µ,Σ〉 containing a skill policy µ and a set of skills Σ. The partitioning can be arbitrarily defined
but partition classes (sub-partitions within the partitioning) must overlap and the goal region must be inside one of these classes. The
number of skills m = |P| is equal to the number of classes in the partition P (line 1) as there is one skill per partition class. The skill
policy µ returned by LSB is defined (line 2) by µ(s) = arg maxi∈[m] I {s ∈ Pi} , where I{·} is the indicator function returning 1

if its argument is true and 0 otherwise and Pi denotes the ith class in the partition P . Thus µ simply returns the index of the skill
associated with the partition class containing the current state. On line 3, skills are initialized arbitrarily. In our experiments, we
initialize the skills with untrained PG algorithms.

Next (lines 4-14), LSB performs K iterations. In each iteration, LSB updates the skills in Σ (lines 5-13). LSB updates each skill
individually and then performs policy evaluation in order to ensure convergence. Multiple iterations are needed so that the skill set
can converge (Figure 1).

The process of updating a skill (lines 6-12) starts by evaluating µwith the current skill set Σ (line 6). Any number of policy evaluation
algorithms could be used here. We used a straighforward variant of LSTD Sorg & Singh (2010). Then we use the target MDP M
to construct a Skill MDP M ′ (line 9). A Skill MDP M ′i is just an episodic MDP that terminates once the agent escapes from Pi
and upon terminating receives a reward equal to the value of the state the agent would have transitioned to in the target MDP. For
a formal definition of a Skill MDP, see the supplementary material. Next, LSB uses a planning or RL algorithm to approximately
solve the Skill MDP M ′ returning a parametrized policy πθ (line 10). Any planning or RL algorithm for regular MDPs could fill this
role provided that it produces a parametrized policy. In our experiments, we used a simple actor-critic PG algorithm. Then a new

skill σ′i = 〈πθ, βi〉 is created (line 11) where πθ is the policy derived on line 10 and βi(s) =

{
0 if s ∈ Pi
1 otherwise . The definition of βi

2
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Figure 3: Experiments: (a) Puddle World: Top figure: The average reward for the LSB algorithm generated by the LSB skill policy,
compared to the monolithic approach and an approximately optimal policy derived using Q-learning. Bottom left: The average cost
(negative reward) for each grid partition. Bottom right: Repeatable skills plot. (b) Pinball-world: Top Figure: The average reward
for the LSB algorithm generated by the LSB skill policy. LSB converges after a single iteration. Bottom left: Pinball world. Bottom
right: Pinball-world value function

means that the skill will terminate only if it leaves the ith partition. Finally, we update the skill set Σ by replacing the ith skill with
σ′i (line 12). Now, we analyze the quality of the policy returned by LSB. It turns out that this depends critically on the quality of the
skill learning algorithm.
Definition 3. Let P be a partition over the target MDP’s state-space. The skill learning error is defined as ηP = maxi∈[m] ηi ,
where ηi is the smallest ηi ≥ 0, such that V ∗M ′

i
(s) − V πθM ′

i
(s) ≤ ηi for all s ∈ Pi and πθ is the policy returned by the skill learning

algorithm executed on M ′i .

The skill learning error quantifies the quality of the Skill MDP solutions returned by our skill learning algorithm. If we used an exact
solver to learn skills, then ηP = 0. However, if we use an approximate solver, then ηP will be non-zero and the quality will depend
on the partition P . Generally, using finer grain partitions will decrease ηP . However, the following theorem reveals that adding too
many skills can also negatively impact the returned policy’s quality.
Theorem 1. Let ε > 0. If we run LSB with partition P for K ≥ logγ (ε(1− γ)) iterations, then the algorithm returns policy
ϕ = 〈µ,Σ〉 such that

‖V ∗M − V ϕM‖∞ ≤
mηP

(1− γ)2
+ ε , (1)

where m is the number of classes in P .

Theorem 1 tells us that when the skill learning error is small, LSB returns a near-optimal policy. The first term on the right hand side
of (1) is the approximation error. This is the loss we pay for the parametrized class of policies that we learn skills over. The second
term is the convergence error. It goes to 0 as the number of iterations K increases. At first, the guarantee provided by Theorem 1
may appear similar to (Hauskrecht et al. 1998, Theorem 1). However, Hauskrecht et al. 1998 derive TEAs only at the beginning of
the learning process and do not update them. On the other hand, LSB updates its skill set dynamically via bootstrapping. Thus, LSB
does not require prior knowledge of the optimal value function. Theorem 1 does not explicitly present the effect of policy evaluation
error, which occurs with any approximate policy evaluation technique. However, if the policy evaluation error is bounded by ν > 0,
then we can simply replace ηP in (1) with (ηP + ν). Again, smaller policy evaluation error leads to smaller approximation error.

4 Experiments and Results
We performed experiments on three well-known RL benchmarks: Mountain Car (MC), Puddle World (PW) Sutton (1996) and the
Pinball domain Konidaris & Barto (2009). Recall that LSB is a meta-algorithm. We must provide an algorithm for Policy Evaluation
(PE) and skill learning. For MC and PW, we used SMDP-LSTD Sorg & Singh (2010) for PE and a modified version of Regular-
Gradient ActorCritic Bhatnagar et al. (2009) for skill learning (see supplementary material for details). For Pinball, we use Nearest-
Neighbors Function Approximation (NN-FA) for PE and UCB Random Policy Search (UCB-RPS) for skill learning. The purpose of
our experiments is to show LSB can solve a complicated task with a simple policy representation by combining bootstrapped skills.
In our experiments, each skill is just a probability distribution over actions (independent of the state). We compare their performance
to the monolithic approach using the same representation. MC and PW experiments are run for 10 independent trials. Pinball is run
for 5 independent trials. A 2× 2 grid partitioning is used for the skill partition in MC and PW, whereas a 4× 3× 1× 1 partitioning
is used for pinball.

Figure 2a and Figure 3a Top compares the monolithic approach and LSB with a 2 × 2 grid for MC and PW respectively. In both
domains, the monolithic approach achieves low average reward. However, with the same restricted policy representation, LSB
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combines skills, resulting in a richer solution space and a higher average reward, as seen in the respective Figures. We then compared
the performance on various skill partitions. A 1 × 1 grid represents the monolithic approach. Partitions of 2 × 2, 3 × 3, 4 × 4 are
also compared. As the size of each partition class decreases (i.e., adding more skills), the skill learning error generally decreases,
decreasing the loss as seen in Figures 2b and 3a bottom left respectively. All grid partitions outperform the monolithic approach (1×1
grid). It is also important to note that it is possible for similar skills to be learned in different partition classes. Figure 3a Bottom right
shows a quiver plot superimposed on a 4 × 4 grid in PW. For each skill, the direction (black arrows in the figure) is determined by
sampling and averaging actions from the skill’s probability distribution. Skills in the same direction represent repeatable skills and the
skill set of 16 skills can be reduced to a set of 5 skills. Therefore, skill reuse may further reduce the complexity of a solution. Figure
3b Top shows the average reward of LSB in the Pinball domain (Figure 3b Bottom left). The algorithm outperforms the monolithic
approach and converges in a single iteration. The fast convergence is due to NN-FA Policy Evaluation being interlaced between every
iteration of skill learning, resulting in fast propagation of the value function (Figure 3b Bottom right).

5 Discussion
We introduced a bootstrapping procedure for learning skills. This approach is inspired by, and similar to skill chaining Konidaris
& Barto (2009). However, the heuristic approach applied by skill chaining may not produce a near-optimal policy. We provide
theoretical results for LSB that directly relate the quality of the final policy to the skill learning error. These are the first theoretical
results providing convergence guarantees in a continuous state space using skill learning. One limitation of LSB is that it learns
skills for all partition classes. This is a problem in high-dimensional state-spaces, but can be overcome by focusing only on the most
important regions of the state-space. One way to achieve this is by observing an expert’s demonstrations Argall et al. (2009). One
exciting extension of our work would be to incorporate skill interruption, similar to option interruption. Option interruption involves
terminating an option based on an adaptive interruption rule Sutton et al. (1999). Options are terminated when the value of continuing
the current option is lower than the value of switching to a new option. Mankowitz et al. 2014 have interlaced Sutton’s interruption
rule between iterations of value iteration and proved convergence to a global optimum. However, their results have not yet been
extended to use with function approximation.
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Abstract

One of the goals in scaling reinforcement learning (RL) pertains to dealing with high-dimensional and continuous state-
action spaces. In order to tackle this problem, recent efforts have focused on harnessing well-developed methodologies
from statistical learning, estimation theory and empirical inference. A key related challenge is tuning the many pa-
rameters and efficiently addressing numerical problems, such that ultimately efficient RL algorithms could be scaled to
real-world problem settings. Methods such as Covariance Matrix Adaptation - Evolutionary Strategy (CMAES), Policy
Improvement with Path Integral (PI2) and their variations heavily depends on the covariance matrix of the noisy data
observed by the agent. It is well known that covariance matrix estimation is problematic when the number of samples is
relatively small compared to the number of variables. One way to tackle this problem is through the use of shrinkage esti-
mators that offer a compromise between the sample covariance matrix and a well-conditioned matrix (also known as the
target) with the aim of minimizing the mean-squared error (MSE). Recently, it has been shown that a Multi-Target Shrink-
age Estimator (MTSE) can greatly improve the single-target variation by utilizing several targets simultaneously. Unlike
the computationally complex cross-validation (CV) procedure, the shrinkage estimators provide an analytical framework
which is an attractive alternative to the CV computing procedure. We consider the application of shrinkage estimators
in dealing with a function approximation problem, using the quadratic discriminant analysis (QDA) technique and show
that a two-target shrinkage estimator generates improved performance. The approach paves the way for improved value
function estimation in large-scale RL settings, offering higher efficiency and fewer hyper-parameters.

Keywords: covariance matrix estimation, path integral, classification uncer-
tainty
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1 Introduction

Reinforcement learning (RL) applied to real-world problems inherently involves combining optimal control theory and
dynamic programming methods with learning techniques from statistical estimation theory [1, 2, 3, 4]. The motivation is
achieving efficient value function approximation for the non-stationary iterative learning process involved, particularly
when the number of state variables exceeds 10 [5]. Recent efforts in scaling RL address continuous state and/or action
spaces by optimizing parametrized policies. For example, the Policy Improvement with Path Integral (PI2) [5] combines
a derivation from first principles of stochastic optimal control with tools from statistical estimation theory. It has been
shown in [6] that PI2 is a member of a wider family of methods which share probabilistic modeling concepts such as Co-
variance Matrix Adaptation - Evolutionary Strategy (CMAES) [7] and the Cross-Entropy Methods (CEM) [8]. The Path Integral
Policy Improvement with Covariance Matrix Adaptation (PI2 -CMA) [6] takes advantage on the PI2 method by determining
the magnitude of the exploration noise automatically [6]. The PI2-SEQ [9] scheme applies PI2 to sequences of motion
primitives. One application of the PI2-SEQ is concerned with object grasping under uncertainty [9, Sec. 5] while apply-
ing the experimental paradigm of [10]. The latter approach has illustrated that over time, humans adapt their reaching
motion and grasp to the shape of the object position distribution, determined by the orientation of the main axis of its
covariance matrix. Moreover, it has been shown that the PI2 optimal control policy can be approximated through linear
regression [11]. This connection allows the use of well-developed linear regression algorithms for learning the optimal
policy. The aforementioned methods rely on accurate covariance matrix estimation of the multivariate data involved.
Unfortunately, when the number of observations n is comparable to the number of state variables p the covariance esti-
mation problem become more challenging. In such scenarios, the sample covariance matrix is not well-conditioned and
is not necessarily invertible (despite the fact that those two properties are required for most applications). When n ≤ p,
the inversion cannot be computed at all [5, Sec. 2.2].

The same covariance problem arises in other related applications of RL. For example, in RL with Gaussian processes, the
covariance matrix is regularized [12, Sec. 2]. However, although the regularization parameter plays a pivotal role, it is
not clear how it should be set [12, Sec. 3]. Other related work [13] study the ability to mitigate potentially overconfident
classifications by assessing how qualified the system is to make a judgment on the current test datum. It is well known
that for a small ratio of training observations n to observation dimensionality p, conventional Quadratic Discriminant
Analysis (QDA) classifier perform poorly, due to a highly variable class conditional sample covariance matrices. In
order to improve the classifiers’ performance, regularization is recommended, with the aim of providing an appropriate
compromise between the bias and variance of the solution. While other regularization methods [14] define regularization
coefficients by the computationally complicated cross-validation (CV) procedure, the shrinkage estimators studied in this
paper provide an analytical solution, which is an attractive alternative to the CV procedure.

This paper elaborates on the Multi-Target Shrinkage Estimator (MTSE) [15] that addresses the problem of covariance matrix
estimation when the number of samples is relatively small compared to the number of variables. MTSE offers a com-
promise between the sample covariance matrix and well-conditioned matrices (also known as targets) with the aim of
minimizing the mean-squared error (MSE). Section 2 presents the MTSE and examine the squared biases of two diagonal
targets. In Section 3, we conduct a careful experimental study and examine the two-target and one-target shrinkage esti-
mator, as well as the Lediot-Wolf (LW) [16] method for different covariance matrices. We demonstrate an application for
the quadratic discriminant analysis (QDA) classifier, showing that the test classification accuracy rate (TCAR) is higher when
using the two-target, rather than one-target, shrinkage regularization. The QDA classifier is a fundamental component
in DeSTIN [17] which is a deep learning system for spatiotemporal feature extraction. The DeSTIN architecture currently
assumes diagonal covariance matrices, which is one of the targets examined in this paper. In our future research we
intend to utilize the results shown in this paper in order to improve the DeSTIN architecture.

2 Multi-Target Shrinkage Estimation

Let {xi}ni=1 be a sample of independent identical distributed (i.i.d.) p-dimensional vectors drawn from a density having
zero mean and covariance Σ = {σij}. The most common estimator of Σ is the sample covariance matrix S = {sij},
defined as

S =
1

n

n∑

i=1

xix
T
i (1)

and is unbiased, i.e., E {S} = Σ. The MTSE model [15] defined as

Σ̂ (γ) =

(
1−

t∑

i=1

γi

)
S +

t∑

i=1

γiTi, (2)
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where t is the number of the targets Ti, i = 1, . . . , t and γ = [γ1, . . . , γt]
T is the vector of shrinkage coefficients. Our

objective is therefore to find Σ̂ (γ) (2), which minimizes the MSE loss function

L (γ) = E

{∥∥∥Σ̂ (γ)−Σ
∥∥∥
2

F

}
. (3)

The optimal shrinkage coefficient vector γ that minimize L (γ) (3) can be found by using a strictly convex quadratic
program [15]. In this paper, we use the two diagonal targets

T1 =
Tr (S)

p
I, T2 = diag(S). (4)

Following the developments in [16, Sec. 2.2], the covariance matrix Σ can be written as Σ = VΛVT , where V and Λ
are the eigenvector and eigenvalue matrices of Σ, respectively. The eigenvalues of Σ are denoted as ζi, i = 1, . . . , p in
increasing order, i.e., ζ1 ≤ ζ2 ≤ . . . ≤ ζp, and it is well known that

∑p
i=1 ζi = Tr (Σ). As a result, the squared bias of T1

with respect to Σ can be written as

‖E {T1} −Σ‖2F =

∥∥∥∥
1

p
Tr (Σ) I−VΛVT

∥∥∥∥
2

F

=

p∑

i=1

(
ζi − ζ̄

)2
, ζ̄ =

Tr (Σ)

p
=

1

p

p∑

i=1

ζi (5)

where ζ̄ is the mean of the eigenvalues ζi, i = 1, . . . , p. The above result shows that ‖E {T1} −Σ‖2F is equal to the dis-
persion of the eigenvalues around their mean. Therefore, T1 becomes less suitable in describing Σ when the dispersion
of the eigenvalues (5) increases. On the other hand, the expression of the squared bias of T2 with respect to Σ can be
written as

‖E {T2} −Σ‖2F = ‖diag (Σ)−Σ‖2F =
∑

i 6=j
σij , (6)

which shows that it is equal to the off-diagonal entries in Σ. Therefore, T2 becomes less suitable for describing Σ when
the p variables of Σ are more highly correlated.

3 Experiments

In this section, we present an extensive experimental study of one-target and two-target shrinkage estimators. The
estimators are affected by the squared bias and the variance of a target, when the latter depends on the number of data
observations n. Therefore, we examine cases of different true covariance matrices Σ that result in different biases of T1

and T2. We then examine the estimator’s performance as a function of n. In order to study the effect of the squared
biases, we create a p × p covariance matrix Σ with determinant of one, i.e., |Σ| = 1, according to two parameters. The
first parameter is the condition number η, which is the ratio of the largest eigenvalue ζmax to the smallest eigenvalue
ζmin of Σ, i.e., η = ζmax

ζmin
. In the experiments, the p eigenvalues of Σ denoted as ζi, i = 1, 2, . . . , p are generated according

to

ζi = ζmin

(
(η − 1)

(i− 1)

(p− 1)
+ 1

)
, i = 1, . . . , p. (7)

Then, the eigenvalue matrix Σ is defined as having elements ζi, i = 1, 2, . . . , p in the matrix form

Λ (η) = diag (ζ1, ζ2, . . . , ζp) . (8)

The second parameter K, controls the rotation of Λ (η). Our approach is to select a set of orthonormal transformations,
as in [18, Sec. 2.B]

E (K) =
K∏

k=1

Ek = E1E2 . . .EK , where each matrix Ekis defined as Ek=
p−k∏

l=1

Ekl=Ek1Ek2 . . .EK(p−k). (9)

The matrix Ekl is an orthonormal rotation of 450 in a two-coordinate plane for the coordinates k and (p+ 1− l), i.e.,

Ekl = Ip×p + Φ (k, p+ 1− l) , (10)

where Φ (ik, jk) is defined as

[Φ]ij =





1√
2
− 1
1√
2

− 1√
2

0

if i = j = ik or i = j = jk
if i = ik and j = jk
if i = jk and j = ik

otherwise

. (11)
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The parameter K is an integer value with the range 0 ≤ K ≤ p − 1, where K = 0 indicates there is no rotation, and
K = p − 1 indicates full rotation, such that all the coordinates rotate with respect to each other at an angle of 450. Then,
by using Λ (η) (8) and E (9), the covariance matrix is created by

Σ (η,K) = E (K) Λ (η) ET (K) . (12)

By employing the covariance matrix (12), the biases of T1 and T2 can be controlled independently for η > 1. The
squared bias ‖E {T1} −Σ‖2F is affected only by η, and increases as η does, when ‖E {T1} −Σ‖2F = 0 for η = 1. The
‖E {T2} −Σ‖2F is affected only by K, and increases as K does, when ‖E {T2} −Σ‖2F = 0 for K = 0. It should be noted
that if η = 1 then K has no impact while if η is near 1, then K could has minor impact. The shrinkage estimators used
in the study are of the one-target variety with T1 and T2. In the figures that appear in this section, these estimators are
denoted as T1 and T2, respectively. The LW estimator [16] is of the one-target shrinkage variety with T1, which uses a
biased shrinkage coefficient estimator and is denoted as LW. Finally, the two-target shrinkage estimator appears in the
figures as TT. We show that the two-target estimator can improve classification results compared with one-target estima-
tors, when using the quadratic discriminant analysis (QDA) method. The purpose of the QDA is to assign observations to
one of several g = 1, . . . , G groups with p-variate normal distributions

fg (x) =
1√

(2π)
p |Σg|

exp
(
−0.5 (x−mg)

T
Σ−1g (x−mg)

)
, (13)

where mg and Σg are the population mean vector and covariance matrix of the group g. An observation x is assigned to
a class ĝ according to

dĝ (x) = min
1≤g≤G

dg (x) , (14)

with
dg (x) = (x−mg)

T
Σ−1g (x−mg) + ln |Σg| − 2 lnπg, (15)

where πg is the unconditional prior probability of observing a member from the group g. In our experiments, we classify
two groups (G = 2), with observations generated from a normal distribution with zero mean and π1 = π2. The covariance
matrix of the first group is the identity matrix Σ1 = I, while that of the second group is the covariance matrix Σ2 (η,K) =
Σ (η,K) (12), which is generated on the basis of the previous experiments. The goal is to study the effectiveness of the
shrinkage estimators when using QDA, by assigning observations to one of these two groups, based on the classification
rule (14). We run our experiments for n = 2, 3, . . . , 30. For each n, twenty sets of data of size n are produced.

(a) (b)

Figure 1: QDA for (a) Σ2 (η, 0) = Λ (η) with η = 10 and (b) an unrestricted Σ2 (10,K) with K = 5

We summarize for each experiment the average test classification accuracy rate (TCAR) with standard deviations (the bars
in the figure) over the twenty replications for each n. For each group, 105 test observations were generated in order to
exam the efficiency of the classifier. We provide the best TCAR, calculated by using (14), when the covariance matrices
are known, denoted in the figures as Bayes. We also compare the results for a regularization [19, sec. 6], where the
zero eigenvalues were replaced with a small number just large enough to permit numerically stable inversion. This has
the effect of producing a classification rule based on Euclidean distance in the zero-variance subspace. We denote this
procedure as the zero-variance regularization (ZVR). In all experiments, the TCAR of the two-target estimator is higher
than the one-target variety. The LW estimator is inferior to its unbiased version when dealing with a small number of
observations, and converges to its unbiased version as the number of observations increases. Fig. 1(a) presents the result
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when the covariance matrix is a diagonal matrix, i.e., Σ2 (η, 0) = Λ (η), with η = 10, and therefore T2 is unbiased while
T1 is biased. The target T1 provides a higher TCAR than T2 for small numbers of observations, and then T2 provides a
better TCAR. In Fig. 1(b), the covariance matrix is unrestricted, i.e., Σ2 (10,K), with K = 5. The targets T1 and T2 are
biased. The squared bias of T1 is not affected by K; whereas the higher the value of K, the higher the squared bias of
T2, and therefore T2 loses its advantage over T1.

In conclusion, it has been shown that the Multi-Target Shrinkage Estimator (MTSE) [15] can greatly improve the single-
target variation in the sense of mean-squared error (MSE) by utilizing several targets simultaneously. We consider the
application of shrinkage estimator in the context of a function approximation problem, using the quadratic discriminant
analysis (QDA) technique and show that a two-target shrinkage estimator generates improved performance. This is done
by a careful experimental study which examines the squared biases of the two diagonal targets. Unlike the computa-
tionally complex cross-validation (CV) procedure; the shrinkage estimators provide an analytical solution which is an
attractive alternative to the CV computing procedure, commonly used in the QDA. The approach paves the way for
improved value function estimation in large-scale RL settings, offering higher efficiency and fewer hyper-parameters.
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Abstract

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many
novel training techniques. One issue that has prevented reinforcement learning from taking full advantage of scalable
neural networks is that of catastrophic forgetting. The latter affects supervised learning systems when highly correlated
input samples are presented, as well as when input patterns are non-stationary. However, most real-world problems are
non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the
input space.

Unfortunately, reinforcement learning presents a worst-case scenario when it comes to precipitating catastrophic for-
getting in neural networks. Meaningful training examples are acquired as the agent explores different regions of its
state/action space. When the agent is in one such region, only highly correlated samples from that region are typically
acquired. Moreover, the regions that the agent is likely to visit will depend on its current policy, suggesting that an agent
that has a good policy may avoid exploring particular regions. The confluence of these factors means that without some
mitigation techniques, supervised neural networks as function approximation in temporal-difference learning will only
be applicable to the simplest test cases.

In this work, we develop a feed forward neural network architecture that mitigates catastrophic forgetting by partitioning
the input space in a manner that selectively activates a different subset of hidden neurons for each region of the input
space. We demonstrate the effectiveness of the proposed framework on a cart-pole balancing problem for which other
neural network architectures exhibit training instability likely due to catastrophic forgetting. We demonstrate that our
technique produces better results, particularly with respect to a performance-stability measure.

Keywords: Catastrophic Forgetting, Neural Networks, Reinforcement Learn-
ing
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1 Introduction

Catastrophic forgetting is a known phenomenon in supervised neural network settings as well as other parameterized
learning systems. One issue that prompts the problem of forgetting is correlated samples, which tend to produce gradi-
ents of persistent direction. This distorts the parameters of the network, thereby discarding previously learned represen-
tations.

In the case of offline training, where one has all of the data available in advance, input examples are usually shuffled.
This effectively results in a stationary distribution for the input samples. That is, each example is viewed as drawn
independently from a fixed distribution. In online learning, however, one does not have all of the data in advance. The
data can only be drawn as it is presented by the environment. If the data is being drawn in a correlated, or non-stationary
manner, then this presents major training difficulties for neural networks

With temporal-difference learning in particular, the input distribution is non-stationary for a variety of reasons. Short
term correlations occur since each successive state transition will produce a state that is connected to the previous sam-
pled state. This alone can cause problems when training with a neural network approximating the value function, since
the network will receive value updates for a sequence of closely related inputs. The input distribution can change over
longer time-scales as well since an agent can only be present in one region of the environment at any given time interval,
and may spend substantial time in a relatively small number of regions.

This problem is not uncommon since a good policy usually will preclude the agent from visiting certain regions of the
state/action space. Consider a near optimal policy for a given MDP. Under many environments, a near optimal policy
will dictate that the agent avoid regions that lead to failure. Should a neural network learn an optimal policy, it may
quickly forget how to maintain such policy due to lack of visitations at failure regions.

2 Background

Catastrophic forgetting is a well studied phenomenon. In the context of reinforcement learning it has been recently
recognized by various researchers, and is at times referred to as the unlearning problem [1] [2] [3].

In a more recent success of applying reinforcement learning combined with deep neural networks, an agent was trained
to play Atari video games [4]. One major contribution to the success of this work, was the utilization of a ”replay buffer.”
This replay buffer helps mitigate catastrophic forgetting by storing off-policy experience of the agent and sampling from
it randomly when performing updates to the network.

While a replay buffer can somewhat resolve the problem of correlations in training examples, there are issues that it may
not be able to overcome. As mentioned in the previous section, an agent that is learning a near-optimal policy may stop
visiting certain regions of the state space altogether. If this occurs, then the replay buffer of a fixed size will eventually
discard any experience gained from visiting those regions. One could scale a replay buffer by increasing its size at the
expense of memory, however scaling in this manner entirely contradicts the very reason neural networks are used to
learn in the first place. Neural networks are meant to approximate a mapping without requiring the storing of all the
data in the first place. If one has enough memory to store all of the data, then a neural network may not be the best tool
for learning. Instead, it may be more appropriate to use other memory-based learning techniques such as localized linear
regression [5].

Clearly, catastrophic forgetting mitigation strategies are necessary for facilitating scalability in a more data-driven man-
ner than a replay buffer. Ideally, new neural network architectures should be explored that are inherently designed to
address non-stationary input streams, as well as retain representations from prior training trajectories that have not been
visited over long periods of time.

3 Neuron Selection Technique

The technique proposed here, dubbed ”cluster-select”, has recently been introduced as a powerful technique applied to
non-stationary classification tasks [6] [7]. In this work, we extend this framework and apply it to online reinforcement
learning.

The primary motivation for our work is in the trade-off between techniques that use fully global representations and
those that employ strictly local representations. Most neural network activation functions are nonzero for most of the
input space, which yield global representations. This means that an update to minimize the error in one region of
the input space will affect distant, unrelated regions, likely increasing any error in those regions. Machine learning
techniques that employ fully global representations tend to generalize well yet suffer from catastrophic forgetting.

1
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On the other hand, some machine learning techniques employ fully local representations. This would include techniques
such as tabular methods, memory-based learning techniques, and radial basis functions. These techniques do not suffer
from catastrophic forgetting, however they all have trouble generalizing, because learning something at one region can
not be applied to other regions of the input space. Additionally, they all suffer from the curse of dimensionality since for
every added dimension, more storage is required. For tabular methods, this manifests as exponentially more memory
required with each added dimension. Likewise, radial basis representations will need exponentially more centroids for
a representation to effectively cover a high-dimensional input space.

For cluster-select we seek to find a balance between fully global and fully local techniques. There should exist techniques
that have some generalization power of global techniques, but also have some properties of local techniques in that they
do not suffer from catastrophic forgetting.

With regular feed-forward networks, neuron j can be viewed as having an input weight vector ~wj associated with it.
Cluster-select adds a centroid vector ~cj in addition to this weight vector. During the feed forward pass, the distance
between the input vector ~x and the centroid j is computed using Euclidean norm, such that

dj = ‖~x− cj‖22 (1)

This vector of distances is used to select the k neurons that are nearest to the centroid. Only the k nearest neurons are
allowed to have a nonzero output, and all others have their value forced to 0. If an output yj for a neuron j is allowed to
be nonzero, it is computed in the standard way that is done for feed forward neural networks: yj = f( ~wj · ~x) or simply
the dot product of the weights and input (with a bias term assumed to be included as an input), and some nonlinear
activation function f(·).
Back-propagation is thus only allowed to occur along the path of the k nearest neurons, with the error derivative forced
to 0 for all other neurons. This effectively builds a localized sub-network for each region of the input space, which shares
neurons with nearby regions. Effectively, this adds a localized representation to a neural network.

4 Experimental Results

For our test, we considered the the classic cart-pole reinforcement learning problem with no friction. The equations
governing the dynamics of this problem can be found in [8]. The problem involves a simulated cart on a horizontal track,
with a pole attached to it. The action space has been discretized such that a total of 3 actions involve applying a left
force, right force, or no force. This essentially produces bang-bang controls. An episode consists of the cart with the pole
started from a random angle, and a small random velocity. An episode proceeds until one of the state variables either
grows too large (within reasonable bounds), or 1000 steps elapsed.

Keeping the state variable within reasonable bounds meant that the cart horizontal position and velocity, as well as the
pole angular position and velocity were all limited. This was necessary, since a system having no friction would mean
that these state variables could be unbounded, potentially producing strange behavior if they grew too large. A negative
reward was assigned if the episode ended prematurely due to one of the state variables becoming out of bounds. The
goal of the task is to balance the pole upright by applying the horizontal forces to the cart, hence a small positive reward
was applied for every frame that the pole was in an upright position.

Each step of the system was simulated using the Runge-Kutta method of numerically solving the differential equations
that describe the system. Each step in the simulation consisted of roughly 20.0 milliseconds of simulated time, such that
50 steps equals one second. These tests all used the SARSA learning algorithm with one temporal difference update
performed on the network for every step (no batch updates, or replay buffers were used).

To test each method, a random search was performed over hyper-parameters. Hyper-parameters generally included: the
learning rate, a small decay constant for the learning rate to decay, the number of hidden neurons, the gamma constant
for temporal difference learning, the amount of reward to provide the agent for balancing the pole relative to the amount
of negative reward for going out of bounds, the initial ε to use for ε-greedy exploration, the amount to decay ε. For
cluster-select, there was an additional hyper-parameter for the number of neurons to select for a feed forward pass.

Each activation function was examined separately, where reasonable selections for the hyper-parameters were provided
for the random search. Upon performing approximately 200 runs for each activation function with a given set of hyper-
parameters, those that produced the best results were selected. Note that in the plots, performance was measured as a
function of the total number of steps that the agent was able to balance the pole and collect reward for an episode. The
total reward was not plotted, because the amount of reward to assign was a hyper-parameter.

Figure 1 provides results for a simple case with tabular value function. This particular result had its hyper-parameters
hand-tuned (i.e. no random searches of hyper-parameters were performed), and it is provided as a simple baseline level
of performance for the tabular case. The value function was maintained in a table of 80,000 states where the entry in the
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Figure 1: Result for a Tabular Qs,a Estimator
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Figure 2: Result for Cluster-Select Neural Net Qs,a Estimator

table was obtained as a function of the 4 state variables. This was done by binning the state variables such that the cart
position had 10 bins; the cart velocity, pole angle, and pole angular velocity all had 20 bins. The binning was performed
over the valid ranges of these state variables. The number of bins for each state variable was a hyper-parameter which
we hand-tuned. Figure 1 also shows a fit to an exponential curve of the form f(x) = a − b exp(−cx) where a, b, c are
constants pertaining to the fitted curve.

Figure 3 illustrates the results for a neural network with linear rectified activation functions. This activation function
produced some agents with the best performance. Unfortunately the good performance was unstable, and would often
regress as shown in this figure. These agents would learn to balance the pole well, then suddenly regress to terrible
performance. We hypothesize that this sudden regression is caused by catastrophic forgetting in the hidden layers.
Essentially, after the agent begins to learn to balance the pole well, it is unable to maintain this policy since the network
is no longer being trained on the failure states. Eventually it drops the pole, and ’unlearns’ the previous captured
representation. A plot of performance for networks with sigmoid and hyperbolic tangent activations is not provided,
since these networks did not reach adequate levels of performance. It is unclear why these particular activation functions
failed to deliver a proficient policy. It is possible that they simply required more training time, or that a good set of
hyper-parameters was never found. It is also possible that these activation functions are a poor match for this particular
problem.

On the other hand, the cluster-select technique generally had a much smoother learning curve. In particular, the learning
profile does not exhibit sudden dips (regressions) in performance, as Figure 2 clearly illustrates. In addition, Table 1
provides an objective measure of performance expressed as the log of the variance-adjusted performance. To compute
the latter we first fit the performance curve to an exponential function, as depicted in Figure 1. Next, we measure the
mean squared deviation of the original learning curve from the fitted function. Finally, we define the variance-adjusted
performance as the mean of the squared values of the original learning curve relative to the mean squared deviation
from the fitted function. This metric favors a learner that is both stable in its learning profile as well as reaches a high
performance level.

3

Paper M10 22



0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be

r o
f S

te
ps

 S
pe

nt
 "b

al
an

ci
ng

" P
ol
e

Linear Rectified Best #1
Linear Rectified Best #2
Linear Rectified Best #3

Figure 3: Result for a Linear Rectified Neural Net Qs,a Estimator

Tabular Hyperbolic Tangent Sigmoid Linear Rectified Cluster-Select
Performance (Mean Squared Sum) 310311 3674 17682 202616 243417
Deviation from Exponential Fit 1944 225.4 1083 7618 801.6
Log Variance Adjusted Performance 5.073 2.791 2.793 3.281 5.716

Table 1: Summary of Results

5 Conclusion

This work has demonstrated an unlearning effect that neural networks exhibit when combined with reinforcement learn-
ing. This was illustrated by establishing a test case that exhibits this phenomenon. A neural network architecture was
proposed that aims to reduce catastrophic forgetting by localizing activations of the network to regions of the input
space. This proposed architecture was shown to substantially reduce this unlearning effect.

We hope that the broader impact of this work will bring attention to this problem of catastrophic forgetting, as more work
needs to be put into developing solutions in order for the reinforcement learning community to benefit from modern
advances in neural networks and deep learning.
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This study presents two new algorithms for solving linear stochastic bandit problems. The proposed methods are 

inspired by the bootstrap approach to create confidence bounds, and therefore make no assumptions about the 

distribution of noise in the underlying system. We present the X-Fixed and X-Random bootstrap bandits which 

correspond to the two well-known approaches for conducting bootstraps on models, in the statistics literature. The 

proposed methods are compared to other popular solutions for linear stochastic bandit problems such as OFUL [5], 

LinUCB [6] and Thompson Sampling [9]. The comparisons are carried out using a simulation study on a hierarchical 

probability meta-model, built from published data of experiments, which were run on real systems. The response 

surfaces are presented with varying degrees of Gaussian noise for the simulations. The proposed methods perform 

better than the comparisons, asymptotically, while OFUL and LinUCB perform better in the early stages. The X-

Random bootstrap performs substantially worse when compared to the X-Fixed and the other methods in the initial 

stages. The proposed methods also perform comparably to a parametric approach which has the knowledge that the 

noise is Gaussian, both asymptotically and during the early stages. We conclude that the X-Fixed bootstrap bandit 

could be a preferred alternative for solving linear bandit problems, especially when we are dealing with an unknown 

distribution of the noise. More broadly, this research hopes to motivate the more extended use of non-parametric tools 

and techniques from statistics to analyse bandit problems.  
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1 Introduction 

In its classical form, the multi-armed bandit problem requires that a learning agent makes a choice, or selects an action, 

from 𝑛 alternatives, across 𝑡 trials, for each trial. After a choice is made in a given trial, the system presents the 

learning agent with a numerical reward from a stationary probability distribution associated with the action taken. The 

goal of the learning agent is to dynamically and sequentially choose alternatives, referred to as arms, which will 

maximize the expected total reward across the 𝑡 trials [1]. An extended version of this problem statement is the linear 

stochastic bandit problem, also referred to as linear bandits, or linear parameterized bandits. Originally proposed by [2] 

(a variant of the problem was considered by [7] prior to that), this conception varies from the standard multi-armed 

bandit, in that each arm or alternative is first parameterized into a set of features, which is known to the learning agent. 

The reward is still a sample from a stationary probability distribution, but its expected value is seen as the inner 

product of the feature vector and a fixed weight vector, which indicates the influence of each feature on the expected 

reward. The learning agent therefore seeks to understand these weights in its exploration phase, and uses this to exploit 

the system by picking promising arms. The critical advantage of this approach is that since we are tagging the rewards 

to the features, and not the arms directly, we don’t need to pull each arm (the set of which could be large or even 

infinite), but would still be able to learn about the expected reward of each arm by understanding them through a 

common set features (which is expected be smaller in size). [2,3,4,5, and 6] 

 

The linear stochastic bandit conception allows us to extend various real-world online learning problems to a bandit 

framework. Studies [7], [2] and [6] discuss the application of a selection problem in displaying internet banner Ads or 

News articles. The agent needs to choose an Ad among many, to display to a specific user. Here the agent focuses its 

learning on understanding the features, which are combination of the User’s and Ad’s characteristics, as opposed to 

learning directly about each individual ad. The reward is received when a user clicks on the Ad. Similarly, [4] presents 

an application in marketing where the agent is tasked with choosing a product (arm) to offer to a customer, and the 

various product characteristics such as price, popularity, etc., are the features. The scope for application also goes 

beyond selection problems that span single objects or single processes conceptualized as arms (products, Ads). 

Situations exist where we have a set of decisions, or a combination of actions that need to be conceptually repackaged 

as a single arm. As discussed in [3], take for instance, the standard case of choosing one out of 𝐾 clinical treatments, 

which is modelled as a classical bandit problem with 𝐾 arms. If we wanted to extend this context to a decision 

problem where we could choose any combination of the 𝐾 clinical treatments to be applied on a subject, then the set 

of possible decisions to choose from increase to 2𝑘. In this situation, we could treat each of the 2𝑘  combinations as 

separate arms in a linear bandit framework. We could conceptualize, at minimum, 𝐾 features (corresponding to 

presence of absence of a treatment), and perhaps even some interaction terms and higher order transformations as 

additional features. Another novel application related to such combinatorics is discussed by [8] where an agent needs to 

figure out, online, the quickest path of getting from one point to another in a network. Here, multiple paths involving a 

combination of edges in the network can be selected to achieve this task and the agent learns the cost of choosing a 

certain path, but not the cost of each of the edges. Modelling this through linear bandit framework involves considering 

each path as an arm, and each edge as a feature.  

 

In this study, we propose two algorithms to solve the linear stochastic bandit problems without making any 

assumptions about the noise in the system. Inspired by practices in the statistics community to generate confidence 

bands on linear models through bootstraps [10], we apply these bootstrap algorithms in conjunction with our linear 

bandit formulation to create an arm pulling agent. Both these algorithms rely on the popular concept of using an upper 

confidence bound associated with arms [2], derived from the bootstraps, in order to choose an arm. We compare these 

algorithms to other well researched solutions in the linear bandit space. Specifically, we look at the algorithm 

OFUL[5], LinUCB[6], and Thompson sampling for linear bandits[9]. In addition to these methods we also present a 

comparison to a theoretical approach of using confidence bands assuming a Gaussian error. We perform this 

comparison using a simulations on a hierarchical probability meta-model, which describe response surfaces inspired by 

real world systems. Section 2 describes the proposed bootstrap algorithms, and in section 3 we describe the test 

environment, and finally in section 4 we discuss the results with some directions for future research. 

2  Algorithms 

In a bandit framework, the use of sampling directly from past data to create an arm pulling agent is rarely seen 

(Thompson sampling, for instance, samples from a distribution, which is created from the data). One notable exception 
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can be seen with [17]. The bootstrap approaches sample from the data with replacement. The two main algorithms 

presented in this study are the X-Fixed and X-random Bootstrap Bandits, corresponding to the similarly named 

approaches of bootstrapping to evaluate the confidence bands of linear regression models discussed in the statistics 

literature. The use of these bootstrap approaches, especially with the above mentioned terminology, is first seen in [10] 

and well discussed in various sources such as [11],[12], and [13]. There are various advantages to using the bootstrap 

approaches. The main advantage being that these methods allow us to get confidence bounds without making any 

assumptions on the distributions or independence of variates, unlike some of the comparison methods. While such an 

approach could be computationally intensive, it could be very helpful in cases where the sampling distribution is 

unknown, or difficult to derive. 

 

The bootstrap approaches exploit the central idea that ‘The population is to the sample, as the sample is to the 

bootstrap sample’. Using this principle, the bootstrap can serve as an approach to mimic the variability we might see in 

a parameter (in our case, the parameters are the mean reward for each arm), by presenting the system with multiple 

samples. In the first case, X-fixed, we fit a linear model to the historic data (step 3), then we bootstrap on the residuals 

of a fitted model (steps 4-6). We then apply the bootstrapped residuals to the fitted model to create new outputs, and re-

regress the new outputs to the fixed inputs (step 7). We repeat these steps multiple times to get multiple linear fits. In 

the case of X-Random we bootstrap each data point, input and output pairs (steps 4-5), and form a regression of the 

bootstrapped sample (step 6). If we believe that the inputs are fixed, and the output is a random sample from a 

distribution that is determined by X, then the X-Fixed is appropriate. However, if we believe that the inputs 

characterized by the X matrix is in itself a random sample, then we would find the X-Random to be appropriate. The 

bandit algorithm which encompasses the two regression bootstrap approaches is discussed below: 

 

Assume a system where the full set of all possible unique arms we are interested in is 𝑀, and there are 𝐹 features that 

describe these arms. In this context we are interested in two different sets of arms, represented by two different 

matrices. We define matrix 𝑈 which is a unique set of all the arms, this matrix is of dimension 𝑀 × 𝐹. We also define 

matrix 𝑋 which represents the sequence of arms that have been tried, and for which rewards have been gathered. At 

trial or round 𝑡 this matrix is of dimension 𝑡 × 𝐹. We present the vector of rewards as vector R which is of also of size 

𝑡 and corresponds to the rewards received from the each row of matrix 𝑋. 
 

Algorithm 1: X-Fixed Bootstrap Linear Bandit Algorithm 2: X-Random Bootstrap Linear Bandit 

1. 1Run initial seed 𝑋 and obtain 𝑅 

2. For each trial t = 1..T 

3. Compute 𝛽∗ = (𝑋′𝑋)−1𝑋′𝑅 

4. Compute 𝑒∗ = 𝑅 − 𝑋′𝛽∗ 

5. For each Bootstrap b = 1..B 

6. Create 𝑒𝑏, a bootstrapped sample of 𝑒∗ and of the same 

size as 𝑒∗ 

7. Compute 𝛽𝑏 = (𝑋′𝑋)−1𝑋′(𝑋′𝛽∗ + 𝑒𝑏) 

8. For each arm m = 1..M 

9. Compute the performance of the arm defined by the 

vector 𝑈𝑚. across the bootstrap generated betas 𝛽𝑏 by 

defining 𝑌𝑚,𝑏 = 𝑈𝑚. × 𝛽𝑏 

10. End arm loop; End bootstrap loop 

11. Select 95% confidence bound for each arm across the 

bootstraps 𝑌�̂�=95th percentile(𝑌𝑚) across the B 

bootstraps 

12. Select arm 𝑈𝑚
𝑚𝑎𝑥 = max

𝑚𝜖𝑀
(𝑌𝑚)̂ 

13. Receive reward 𝑟 associated with arm 𝑈𝑚. 

14. Update 𝑋 = [𝑋; 𝑈𝑚
𝑚𝑎𝑥], update 𝑅 =  [𝑅;  𝑟] 

15. End loop for trial 

1. 1Run initial seed 𝑋 and obtain 𝑅 

2. For each trial t = 1..T 

3. For each Bootstrap b = 1..B 

4. Create 𝑋𝑏 a bootstrapped sample of 𝑋 and of the same 

size as 𝑋 

5. Create 𝑅𝑏  from 𝑅 by matching the selection of data 

points in 𝑋𝑏  

6. Compute 𝛽𝑏 = (𝑋𝑏
′𝑋𝑏)−1𝑋𝑏

′(𝑅𝑏) 

7. For each arm m = 1..M 

8. Compute the performance of the arm defined by the 

vector 𝑈𝑚. across the bootstrap generated betas 𝛽𝑏 by 

defining 𝑌𝑚,𝑏 = 𝑈𝑚. × 𝛽𝑏 

9. End arm loop; End bootstrap loop 

10. Select 95% confidence bound for each arm across the 

bootstraps 𝑌�̂�=95th percentile(𝑌𝑚) across the B 

bootstraps 

11. Select arm 𝑈𝑚
𝑚𝑎𝑥 = max

𝑚𝜖𝑀
(𝑌𝑚)̂ 

12. Receive reward 𝑟 associated with arm 𝑈𝑚. 

13. Update 𝑋 = [𝑋; 𝑈𝑚
𝑚𝑎𝑥], update 𝑅 =  [𝑅;  𝑟] 

14. End loop for trial 
1The algorithms discussed and the comparisons are assumed to be presented with a bare minimum seed of arms and rewards which allow the agent to 

make an initial estimate for all the 𝑓 features’ weights. 

 

In addition to the above mentioned two algorithms, we also evaluate a parametric approach which conceptualizes the 

pure noise to be from a Gaussian distribution with mean 0. For this approach we evaluate the upper confidence band (a 

variant of the confidence bound for functional forms): 

𝑌�̂� = 𝑈𝑚
′(𝑋′𝑋)−1𝑋′𝑅 + 𝑡0.05,𝑛−2𝑠{

1

𝑛
+ 𝑈𝑚

′[𝑋′𝑋]−1𝑈𝑚}1/2                        (1) 

, where 𝑡 implies the student– 𝑡 distribution, and the arm is chosen in accordance to 𝑈𝑚
𝑚𝑎𝑥 = max

𝑚𝜖𝑀
(𝑌𝑚)̂ 
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We compare the bootstrapped linear bandits to parametric Gaussian bound discussed above, and three other established 

methods of working with linear bandits. These are algorithms OFUL[5], LinUCB[6], and Thompson sampling for 

linear bandits[9]. The Thompson sampling approach is a Bayesian set up, where, in each step a parameter vector is 

sampled from a posterior distribution. The arm that maximizes the reward for this sampled vector is chosen, and a 

corresponding reward is received. The posterior distribution is then updated to account for the newly received reward. 

On the other hand, with LinUCB and OFUL, in each iteration the parameter vector is calculated through a linear 

regression. These methods then select the best arm by choosing the one with the highest upper confidence bound. 

3  Test environments 

Inspired by the examples discussed in [3] and [8], we create a combinatorial application of linear bandits, and perform 

a simulation study on it. Specifically we replicate the extension of experimenting with clinical treatments. We take a 

sample case where 𝐾 = 7 treatments can be offered to patients, but these treatments are not mutually exclusive. Hence 

leading to 2𝑘 = 128 possible combinations or arms to decide from. We parameterize a total of 28 features for the 

linear bandits, corresponding to the presence and absence of the 7 treatments, and the 7𝐶2 = 21 two-way interactions. 

Given this feature set, each bandit algorithm is seeded with an initial experimentation from a 27−2, 32 run factorial 

experiment, the minimum balanced design required to estimate all the 28 features. 

 

The response surfaces for experimentation are simulated based off of the general linear model, with main, effects, two-

way interactions, three-way interactions, no higher order effects, and pure Gaussian noise, as shown in the equation 

below.  

 

𝑦𝑟(𝑥1, 𝑥2, . . , 𝑥7) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
7
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

7
𝑗=𝑖+1

6
𝑖=1 + ∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

7
𝑘=𝑗+1

6
𝑗=𝑖+1

5
𝑖=1 + 𝜀         (2) 

where    𝜖~𝑁(0, 𝜎𝜀
2). 

 

The selection of response surfaces which could contain three-way interactions was intentionally included despite the 

bandit parameterizations ending with two-way interactions, to reflect the likely scenarios of missing features in any 

parameterization exercise. We could think of these as hidden features. In order to make the simulated responses more 

relevant to real-world response functions, we use a hierarchical probability meta-model (HPM), which was originally 

proposed in [12]. The HPM provides the mathematical structure to determine 𝛽s for the GLM seen in equation (2). A 

study by [14] populate this model’s parameters based off of a meta study of 113 data sets from published studies of 

different engineering systems. The use of this HPM to evaluate experimental algorithms has been used in other studies 

by [15, 16]. We are, therefore, dealing with meta-data, and real experiments which inspires our study to an 

environment of only 128 arms, as opposed to larger set of arms seen in other studies which use purely synthetic data. 

4  Results and Discussion 

In this study we look at a simulation of 10,000 response surfaces characterized by versions of equation 2 that have 

different 𝛽s. The pseudo-performance of the selected arm (in line with pseudo-regret discussed in [5]) is described by 

Figure 1: Simulation for 𝝈𝜺 = 𝟓       Figure 2: Simulation for 𝝈𝜺 = 𝟏𝟎 
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(𝑈𝑚. 𝜃 𝑈𝑚
∗ . 𝜃⁄ ).100 where 𝑈𝑚 is the selected arm which is represented as a vector of its true features, 𝑈𝑚

∗  is the 

optimal arm and the true parameters are 𝜃 (which are actually unknown to the agents).  

We report our findings across both, the 𝜎𝜀 = 5 and the 𝜎𝜀 = 10 scenarios, which correspond to medium and high 

levels of noise. For instance, the largest standard deviation of the distributions used for generating parameters in 

equation (2) is equal to 10. The overarching findings of our study is that the proposed algorithms, both the bootstraps, 

perform better than the comparisons, asymptotically, while OFUL and LinUCB perform best in the early stages. This is 

despite the fact that three comparisons of OFUL, LinUCB, and Thompson sampling have had their parameters fine-

tuned to provide the best performance for the test case, whereas the bootstrap methods, and the Gaussian UCB 

comparison use the arbitrary, but popularly used bound of the 95th percentile. The Gaussian UCB comparison also has 

a significant edge, since the Gaussian assumption happens to be replicated by the test environment. The X-Random 

bootstrap works poorly when compared to the X-Fixed and most other methods in the initial stages. This should be 

expected, and is because the initial distribution of 𝑋 is a careful selection of equi-spaced points from a designed 

experiment (which is in line with the assumptions of 𝑋-Fixed) and not a random sample from the population of 𝑋. 

However, the fact that only a partial set of the features are allowed to be captured could favour the X-Random in the 

long run. Our future efforts seek to create analytical regret bounds for the linear bootstrap approaches, and look at 

efficient implementations of making the bootstrapped algorithms faster.  
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Abstract

Humans possess a repertoire of decision strategies. This raises the question how we decide how to decide. Behavioral
experiments suggest that the answer includes metacognitive reinforcement learning: rewards reinforce not only our
behavior but also the cognitive processes that lead to it. Previous theories of strategy selection, namely SSL and RELACS,
assumed that model-free reinforcement learning identifies the cognitive strategy that works best on average across all
problems in the environment. Here we explore the alternative: model-based reinforcement learning about how the
differential effectiveness of cognitive strategies depends on the features of individual problems. Our theory posits that
people learn a predictive model of each strategy’s accuracy and execution time and choose strategies according to their
predicted speed-accuracy tradeoff for the problem to be solved. We evaluate our theory against previous accounts by
fitting published data on multi-attribute decision making, conducting a novel experiment, and demonstrating that our
theory can account for people’s adaptive flexibility in risky choice. We find that while SSL and RELACS are sufficient
to explain people’s ability to adapt to a homogeneous environment in which all decision problems are of the same type,
model-based strategy selection learning can also explain people’s ability to adapt to heterogeneous environments and
flexibly switch to a different decision-strategy when the situation changes.

Keywords: Strategy Selection; Decision-Making; Heuristics; Bounded Ratio-
nality; Cognitive Control; Learning
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1 Introduction

How should we decide? There is no single best decision strategy because different problems require different tools.
Fortunately, the mind appears to be equipped with a toolbox of different strategies each of which is adaptive for a
particular set of problems (Payne, Bettman, & Johnson, 1988; Gigerenzer & Selten, 2002). Yet, being a skilled carpenter
requires more than a toolbox: you also have to know when to use which tool. Todd and Gigerenzer (2012) postulate
that we choose heuristics that are well-adapted to our current situation (i.e. ecologically rational), but they do not explain
how we are able to do so. Empirical evidence suggests that people do indeed choose heuristics adaptively (Payne et al.,
1988; Bröder, 2003; Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011). Despite some progress (Shrager & Siegler,
1998; Erev & Barron, 2005; Rieskamp & Otto, 2006), the problem of formulating the computational principles of strategy
selection remains unsolved (Marewski & Link, 2014).

According to previous theories of strategy selection we learn to choose the strategy that works best on average across all
problems in an environment (Rieskamp & Otto, 2006; Erev & Barron, 2005) or category (Shrager & Siegler, 1998). This
approach ignores that every problem has distinct characteristics that determine the strategies’ differential effectiveness.
These context-free accounts therefore predict the formation of rigid mental habits that always pursue the same strategy
when the environment is stable, whereas people can flexibly switch between cognitive strategies (Payne et al., 1988;
Lieder et al., 2014). By contrast, our theory posits that people learn a mental model predicting the effectiveness of
cognitive strategies from features of the problem to be solved. We evaluate our model against empirical data and two
previous theories of strategy selection: SSL (Rieskamp & Otto, 2006) and RELACS (Erev & Barron, 2005) which use
model-free reinforcement learning to estimate how well each strategy performs on average across all problems.

2 Model-based strategy selection learning

Strategy selection is a metacognitive decision with uncertain consequences. We therefore leveraged rational metareasoning
– a decision-theoretic framework for choosing computations (Russell & Wefald, 1991) – to develop a rational model of
strategy selection that is theoretically sound, computationally efficient, and competitive with state-of-the-art algorithm
selection methods (Lieder et al., 2014). Rational metareasoning chooses the strategy s? with the highest value of compu-
tation (VOC) for the problem specified by input i:

s? = argmax
s∈S

VOC(s, i), (1)

where S is the set of the agent’s cognitive strategies S. The VOC of executing a cognitive strategy s is the expected net
increase in utility over acting without deliberation. If the strategy chooses an action and the utility of the available actions
remains approximately constant while the agent deliberates, then the VOC can be approximated by the increase in the
expected return due the resulting action minus the opportunity cost of the strategy’s execution time T :

VOC(s; i) ≈ E [R|s, i]− E [TC(T )|s, i] , (2)

where R is the increase in reward and TC(T ) is the opportunity cost of running the algorithm for T units of time. The
reward R can be binary (correct vs. incorrect output) or numeric (e.g., the payoff). Equations 1-2 reveal that near-optimal
strategy selection can be achieved by learning to predict the strategies’ expected rewards and execution times from
features f(i) of the input i that specifies the problem to be solved. These predictions can be learned by Bayesian linear or
logistic regression as described in Lieder et al. (2014).

Equation 1 is optimal when the VOC is known, but when the VOC is unknown the value of exploration should not
be ignored. To remedy this problem, we employ Thompson sampling (Thompson, 1933)–a near optimal solution to
the exploration-exploitation dilemma (May, Korda, Lee, & Leslie, 2012). Concretely, each heuristic s is chosen (S = s)
according to the probability that its VOC is maximal:

P (S = s) ∝ P
(
s = argmax

s
VOC(s; i)

)
. (3)

For more information on our model and methodology please consult Lieder and Griffiths (2015).

3 Learning when to use fast-and-frugal heuristics

Fast-and-frugal heuristics perform very few computations and use only a small subset of the available information
(Gigerenzer & Selten, 2002). For instance, the Take-the-Best heuristic for multi-attribute decision-making chooses the
option with the highest value on the most predictive attribute that distinguishes the options and ignores all other at-
tributes. This strategy works in so-called non-compensatory environments in which the attributes’ predictive validities
fall off so rapidly that the decision recommended by the most predictive attribute cannot be overturned by rationally
incorporating some or all of the remaining attributes. Yet it can fail miserably in compensatory environments in which

1

Paper M20 30



A B

Block Number
1 2 3 4 5 6 7

P
ro

b
. 
o
f 
c
h
o
o
s
in

g
 T

T
B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Noncompensatory Env. (ModBaSS)
Noncompensatory Env. (People)
Noncompensatory Env. (SSL)
Compensatory Env. (ModBaSS)
Compensatory Env. (People)
Compensatory Env. (SSL)

Compensatory Trials in %
0 20 40 60 80 100

O
p
ti
m

a
l 
C

h
o
ic

e
s
 i
n
 %

 w
it
h
 9

5
%

 C
I

50

60

70

80

90

100 ModBaSS
SSL
RELACS
People

Figure 1: A: Model-based strategy selection (ModBaSS) explains findings by Rieskamp and Otto (2006).
B: Model-based strategy selection (ModBaSS) outperforms SSL and RELACS–especially in heterogeneous environments.

no single attribute reliably identifies the best choice by itself. In those environments the Weighted-Additive strategy
(WADD), which computes a weighted average of all attributes (e.g. a gamble’s expected value), is often more effective.

Bröder (2003) found that people use Take-the-Best more frequently in non-compensatory environments than in compen-
satory environments. Rieskamp and Otto (2006) conducted an experiment suggesting that this adaptation results from
reinforcement learning. As a first test of our model we demonstrate that it can explain the findings reported by Rieskamp
and Otto (2006). Rieskamp and Otto’s first experiment was structured into seven blocks comprising 24 trials each. In
each trial participants chose between two investment options based on five binary attributes whose predictive validities
were constant and explicitly stated. To apply our general model-based strategy selection theory to multi-attribute deci-
sion making, we chose the following features f = (f1, f2, f3): the validity of the most reliable discriminative cue (f1), the
gap between the validity of the most reliable cue favoring the first option and the most reliable cue favoring the second
option (f2), and the absolute difference between the number of attributes favoring the first option and the second op-
tion respectively (f3). The simulated agent’s toolbox contained two strategies: Take-the-Best and the Weighted-Additive
strategy. We created compensatory and non-compensatory environments similar to those used by Rieskamp and Otto
(2006): In the non-compensatory environment Take-the-Best always makes the Bayes-optimal decision, and in the com-
pensatory environment the Weighted-Additive strategy always makes the Bayes-optimal decision. In both environments
Take-the-Best and the Weighted-Additive strategy make the same decision on exactly half of the trials.

We found that model-based strategy selection can explain people’s ability to adapt to compensatory as well as non-
compensatory environments (see Figure 1A): When the environment was non-compensatory our model learned to use
Take-the-Best. Conversely, when the environment was non-compensatory our model learned to avoid Take-the-Best and
use the Weighted-Additive strategy instead. Our simulation results show that model-based strategy selection captured
that participants gradually adapted their strategy choices to the decision environment. However, SSL explains people’s
choices equally well; the mean squared errors of the fits achieved by model-based strategy selection and SSL were almost
identical (0.0050 vs. 0.0048 ); see Figure 1A.

4 Strategy selection in mixed environments

Since model-based and context-free strategy selection can both explain the results of Rieskamp and Otto (2006), a new
experiment is needed to test if people learn a model enabling them to predict the strategies’ effectiveness from features
of the problem to be solved. We thus investigated under which conditions model-based strategy choices differ from
those of SSL and RELACS. Concretely, we evaluated the performance of context-free versus model-based strategy se-
lection in 11 environments with p ∈ {0%, 10%, 20%, · · · , 100%} compensatory and 1 − p non-compensatory problems.
Our simulations revealed that the performance of context-free strategy selection drops rapidly with the variance in the
environment’s compensatoriness whereas model-based strategy selection is much less susceptible to it (see Figure 1B):
As the ratio of compensatory to non-compensatory problems approaches 50/50 the performance of SSL and RELACS
drops to the chance level. By contrast, the performance of model-based strategy selection, remains above 70%. The rea-
son for this difference is that model-based strategy selection learns to use Take-the-Best for non-compensatory problems
and the Weighted-Additive strategy for compensatory problems whereas SSL and RELACS learn to always use the same
strategy. We can therefore determine whether people use context-free or model-based strategy selection by measuring
their performance in a heterogeneous environment with the following experiment:

2
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4.1 Methods

We recruited 120 participants on Amazon Mechanical Turk. Each participant was paid 50 cents for about five minutes
of work. The experiment comprised 30 binary decisions. Participants played the role of a banker deciding which of
two companies receives a loan based on the companies’ ratings on six criteria. The decision problems were chosen such
that Take-the-Best and the Weighted-Additive strategy make opposite decisions on every trial. In half of the trials, the
decision of Take-the-Best was correct and in half of the trials the decision of the Weighted-Additive strategy was correct.
Thus, always using Take-the-Best, always using the Weighted-Additive strategy, choosing one of the two strategies at
random, or context-free strategy selection would result in an accuracy of 50%; see Figure 1B.

4.2 Results and Discussion

People chose the more creditworthy company in 64.6% of the trials (99% CI: [62.5%; 66.6%]). We can thus conclude that
people performed significantly better than chance (p < 10−15). This is qualitatively consistent with model-based strategy
selection but inconsistent with context-free strategy selection; see Figure 1B.

In conclusion, people’s performance in homogeneous decision environments is consistent with model-based and context-
free strategy selection, but context-free strategy selection is insufficient to explain human performance in heterogeneous
environments whereas model-based strategy selection can account for it. Thus our results suggest people use model-
based strategy selection.

5 Adaptive flexibility in strategy selection

People adapt their strategy not only to reoccurring situations, but they can also flexibly switch strategies as soon as the
situation changes. This flexibility has been empirically demonstrated in decision-making under risk: Payne et al. (1988)
found that people adaptively switch decision strategies in the absence of feedback.

To determine if model-based strategy selection can explain this finding we simulated Experiment 1 from Payne et al.
(1988). This experiment comprised ten instances of each of four types of decision problems that were presented in
random order. The four problem types were defined by the time constraint (15 seconds vs. none) and the dispersion of
the outcomes’ probabilities (low vs. high). In each problem participants chose between four gambles. The four gambles
assigned different payoffs to four possible outcomes but they shared the same outcome probabilities. Payne et al. (1988)
measured the use of fast-and-frugal attribute-based heuristics, namely Take-the-Best or Elimination-by-Aspects (EBA;
Tversky, 1972), by the proportion of time their participants spend processing the options’ payoffs for the most probable
outcome. For the compensatory Weighted-Additive strategy this proportion is only 25%, but for Take-the-Best and
Elimination-by-Aspects it is up to 100%. When the dispersion of outcome probabilities was high, people focused more
on the most probable outcome, and time pressure also increased people’s propensity for selective and attribute-based
processing; see Figure 2. Thus, people seem to use non-compensatory strategies such as Take-the-Best and Elimination-
by-Aspects more frequently when time is limited or some outcomes are much more probable than others.

We performed 1000 simulations of people’s strategy choices in this experiment. We simulated people’s prior learning
experiences about risky choice strategies by applying model-based strategy selection learning to ten instances of each of
the 144 types of decision problems considered by Payne et al. (1988). We then applied model-based strategy selection with
the learned model of the strategies’ performance to a simulation of Experiment 1 from Payne et al. (1988). Since their
participants received no feedback, our simulation assumed no learning during the experiment. Model-based strategy
selection correctly predicted that time-pressure and probability dispersion increase people’s propensity to use Take-the-
Best or Elimination-by-Aspects; see Figure 2. SSL and RELACS, by contrast, predict that there should be no difference
between the four conditions. This is because SSL and RELACS cannot learn to choose different strategies for different
kinds of problems. Their strategy choices only change in response to reward or punishment but the experiment provided
neither. In conclusion, model-based strategy selection can account for adaptively flexible strategy-selection in decision-
making under risk but SSL and RELACS cannot.

6 General Discussion

We have proposed a rational solution to the strategy selection problem: model-based strategy selection learning. The
primary difference to previous accounts is that our model chooses strategies based on the distinct characteristics of in-
dividual problems, whereas SSL and RELACS learn which strategy works best on average across all problems. Thus,
people’s adaptive flexibility appears to require learning to predict the strategies’ effectiveness from features of the prob-
lem to be solved. We have previously found that model-based strategy selection can account for people’s adaptive
strategy selection in sorting numbers but previous theories cannot (Lieder et al., 2014). Here we have shown that this
conclusion also holds for our capacity to select decision-strategies.

3
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Figure 2: Model-based strategy selection predicts the increase in selective attribute-based processing with dispersion and
time pressure observed by Payne et al. (1988).

In conclusion, model-based strategy selection is a promising framework for cognitive modeling. It could, for instance, be
used to explain paradoxical inconsistencies in risky choice by identifying why people use different heuristics in different
contexts. Furthermore, our model of strategy selection learning can be applied to education and cognitive training: First,
our model could be used to optimize problem sets for helping students learn when to apply which procedure (e.g. in
algebra) rather than drilling them on one procedure at a time. Second, our model could be used to design cognitive
training programs promoting adaptive flexibility in decision making and beyond. Future work will also explore learning
the VOC of elementary information processing operations (Russell & Wefald, 1991) as a model of strategy discovery.
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Abstract

One of the most frequent problems in both decision making and reinforcement learning (RL) is expectation maximization
involving functionals such as reward or utility. Generally, these problems consist of computing the optimal solution of a
density function. Instead of trying to find this exact solution, a common approach is to approximate it through a learning
process.

In this work we propose a functional gradient rule for the maximization of a general form of density-dependent function-
als using a stochastic gradient ascent algorithm. If a neural network is used for parametrization of the desired density
function, the proposed learning rule can be viewed as a modulated Hebbian rule. Such a learning rule is biologically
plausible, because it consists of both local and global factors corresponding to the coactivity of pre/post-synaptic neurons
and the effect of neuromodulation, respectively.

We first apply our technique to standard reward maximization in RL. As expected, this yields the standard policy gradi-
ent rule in which parameters of the model are updated proportional to the amount of reward. Next, we use variational
free energy as a functional and find that the estimated change in parameters is modulated by a measure of surprise sig-
nal. Finally, we propose an information theoretical equivalent of existing models in expected utility maximization, as a
standard model of decision making, to incorporate both individual preferences and choice variability. We show that our
technique can also be applied into such novel framework.

Keywords: Stochastic gradient ascent, reinforcement learning, decision mak-
ing, expected utility maximization, multi-factor learning rules,
free energy, surprise, neuromodulation.
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1 Introduction

Theoretical descriptions of synaptic plasticity have been dominated by Hebb’s rule [1] which is based on two major
factors: locality and coactivity. According to Hebb’s rule, both pre- and post-synaptic neurons have to be active to make
their connection stronger. Empirical studies, however, show the existence of other global factors that can influence synaptic
plasticity [2]. These global factors correspond to diffusive action of neuromodulators or feedback from the activity
state of a whole population. Deficits in activity of the neuromodulatory system (corresponding to global factors) in
humans and animals leaves many tasks un-learnable [3]. For instance, Dopamine (DA) as a neuromodulator is used in
signaling reward prediction error that takes part in temporal difference (TD) learning algorithms such as Q-learning and
SARSA [4]. Acetylcholine (Ach) is another candidate neuromodulator used in signaling alertness [5]. It is thus of interest
to expand on Hebbian learning rules and formulate general new synaptic plasticity rules that combine two Hebbian
activity factors with one or multiple global factors. The simplest 3-factor learning rule, including two Hebbian terms
modulated by a third factor, is an example.

Expectation maximization, on the other hand, is one of the most frequently encountered problems in both decision mak-
ing [6] and reinforcement learning (RL) [4]. It consists of computing the optimal solution of a density function. It might
represent a learning agent’s policy in RL, or the likelihood of selecting different choices in a decision making process. We
introduce a functional gradient rule for the maximization of a general form of density-dependent functionals, such as
reward or utility, using a stochastic gradient ascent algorithm. We obtain a learning rule by which we approximate the
optimal solution through a learning process. This learning rule benefits from a biological plausibility if a neural network
is used for parametrization of the desired density function. This is consistent with a modulated Hebbian learning rule
(i.e., 3-factor learning rule) in which both global and local factors influence the synaptic connections among the neurons.
We apply our technique to standard reward maximization in RL and a variational learning problem to show that reward
and surprise signals can be interpreted as third factors in this framework. We further propose a more general formal-
ism of expected utility maximization, a standard model of decision making, that can be solved using functional gradient
rule. The aim of such a novel approach is to incorporate both individual preferences and choice variability in the decision
making process regardless of the specific details of the model used.

2 Methods

We apply a stochastic gradient ascent technique to approximate the optimal density function that maximizes a functional
F[P ] = 〈F [P ]〉P where 〈.〉P denotes the average with respect to the probability density P (x) of the random variable X .
The term F [P ] might be considered as a general form of reward or utility function which itself depends on the density
function P . The general form of the online gradient rule will be derived in the following.

Theorem 1 (functional gradient rule): The stochastic gradient ascent algorithm for maximizing a functional F[P ] =
〈F [P ]〉P over all possible distributions P parametrized by θ ∈ Rn yields the online learning rule,

∆θ ∝ F̃∇θ lnP, (1)

where the multiplier factor F̃ is defined as

F̃ =
∂

∂P
(PF [P ]) = F [P ] +

∂F [P ]

∂ lnP
. (2)

Proof: In order to have an online learning rule for θ ∈ Rn, we need to find a term ∆θ such that 〈∆θ〉P = ∇θF[P ]. Using
the nice trick P∇θ lnP = ∇θP we have

∇θ 〈F [P ]〉P =

∫
dx P∇θF [P ] + F [P ]∇θP =

∫
dx P

(
∂F [P ]

∂P
∇θP

)
+ F [P ] (P∇θ lnP )

=

〈
∂F [P ]

∂P
∇θP + F [P ]∇θ lnP

〉

P

=

〈
∂F [P ]

∂P
(P∇θ lnP ) + F [P ]∇θ lnP

〉

P

=

〈(
∂F [P ]

∂P
P + F [P ]

)
∇θ lnP

〉

P

=

〈
∂ (PF [P ])

∂P
∇θ lnP

〉

P

. (3)

Corollary 1: The multiplier factor F̃ in the learning rule (1) can be replaced by F̃ + c where c ∈ R is a constant term
because 〈(

F̃ + c
)
∇θ lnP

〉
P

=
〈
F̃∇θ lnP

〉
P

+ c 〈∇θ lnP 〉P , (4)

and 〈∇θ lnP 〉P =
∫
dx P∇θ lnP =

∫
dx ∇θP = ∇θ

∫
dx P = ∇θ(1) = 0.
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Corollary 2: If F [P ] does not explicitly depend on P or is linear in lnP , then the multiplier factor F̃ can be replaced by
F [P ]. The proof is simply done by using Corollary 1 in (2).

We want to stress that our proposed learning rule (1) can indeed be embedded in the class of biologically plausible
3-factor learning rules, if a neural network is used for parametrization. The term F̃ represents a globally modulating
third factor, depending on the properties of the neuronal ensemble in a nonlocal fashion. The term ∇θ lnP represents a
Hebbian term, which can be shown to depend on both pre- and postsynpatic activity. As an example, we use a population
of spiking neural network for learning the density function P . The neuron model that we use here is a generalized linear
model (GLM). This model has the form of a Spike Response Model (SRM) with escape noise [7, 8]. The membrane
potential ui(t) of neuron i at time t is given as ui(t) =

∑
j wij(Xj ∗φ)(t)+ηi(t), where wij is the synaptic efficacy between

pre-synaptic neuron j and post-synaptic neuron i, Xj(t) =
∑
f δ(t − t

f
j ) denotes the presynaptic spike train, φ(t) is the

somatic EPSP, and ηi(t) = −η0

∫ t
0
ds e−

t−s
τa Xi(s) is the adaptation potential (η0 and τa are constants). The spikes are

then generated by a stochastic Poisson process with an exponential escape rate ρi(t) [8] conditioned on the membrane
potentials,

ρi(t) = ρ0 exp(
ui(t)− θ

∆U
), (5)

where θ and ∆U are physical constants of the neuron. Free parameters θ ∈ Rn by which P is parametrized are synaptic
efficacies wij between neurons. Each sampled observed data x is modeled as a set of spike trains {Xi} generated by all
the neurons within a neuronal population. P (x) is then modeled as the likelihood of generating each set of spike trains,
corresponding to each sampled observed data x, in that population. The likelihood of a particular spike train x = {Xi}
which is observed in the interval [0, T ] can be written as [9, 10]

lnP (x) =
∑

k

∫ T

0

dt [ln ρk(t)Xk(t)− ρk(t)], (6)

and its gradient with respect to the particular synaptic weight wij is calculated as (see [10, 11] for details)

∇wij lnP (x) =
1

∆U
(Xj ∗ φ)(t) [Xi(t)− ρi(t)]. (7)

Therefore, we conclude that the learning rule for synaptic weights wij according to gradient ascent ∆wij ∝ ∇wij lnP (x)
can be calculated locally and is written as a product of two local (Hebbian) factors: (Xj ∗ φ)(t) which depends on the
pre-synaptic neuron j and [Xi(t)− ρi(t)] that depends on the state of the post-synaptic neuron i.

3 Results

In this section we describe two examples of using our proposed functional gradient rule. First, reward maximiza-
tion in the context of RL can be formulated as finding the optimal policy π(a|s) that maximizes the expected reward
〈R(s, a)〉π(a|s)f(s) where R(s, a) denotes the reward for taking action a in state s and f(s) is the density function of state
space. The online learning rule (1) for reward maximization in RL is

∆θ ∝ R∇θ lnπ, (8)
where θ is used to parametrize policy π. Note that since reward R(s, a) does not explicitly depend on the policy π, the
multiplier factor F̃ in (1) is the reward R := R(s, a) itself, according to Corollary 2. The learning rule (8) is the standard
policy gradient rule used in the reward maximization approach known as R-max [12].

Second, variational methods are typically used in complex statistical models which are defined by a joint distribution
p(v, h) over a set of observed (visible) v and unobserved (hidden) h variables. The joint distribution p is known as a
generative model governed by some adaptive parameters θ ∈ Rn. Two main purposes of using variational methods are
to analytically approximate the posterior distribution p(h|v) of hidden variables (for statistical inference over them) or to
derive a lower bound for a marginal likelihood p(v) =

∑
h p(v, h) of the visible variables (usually for model selection). A

computationally tractable lower bound L(q;w, θ) for the marginal likelihood p(v) of the visible variables is calculated as

ln p(v) = ln
∑

h

p(v, h) = ln
∑

h

q(h|v)
p(v, h)

q(h|v)

≥
∑

h

q(h|v) ln
p(v, h)

q(h|v)
:= L(q;w, θ), (9)

where we have applied Jensen’s inequality. Here w ∈ Rm denotes adaptive parameters used for expressing q(h|v). It is
easy to see that the difference between the true log likelihood ln p(v) and its approximated lower bound L(q;w, θ) is

ln p(v)− L(q;w, θ) =
∑

h

q(h|v)
q(h|v)

p(h|v)
:= DKL(q||p). (10)
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Therefore, maximizing the lower boundL(q;w, θ) is equivalent to minimizing the Kullback-Leibler divergenceDKL(q||p)
of the true posterior distribution p(h|v) from the approximated one q(h|v). The lower bound L(q;w, θ) is known as
(negative) variational free energy F[q; v] in statistical learning [13] that can be expressed as

F[q; v] = −L(q;w, θ) = 〈− ln p(v, h)〉q −H(q). (11)

The variational free energy F[q; v] for each observed variable v can be considered as a measure of its novelty indicating
how much the new observed data v is surprising. Here surprise is taken to be the negative log-likelihood − ln p(v) of
observed data v. One can express variational free energy F[q; v] as 〈F [q; v]〉q where F [q; v] = − ln p(v, h) + ln q(h|v),
denotes the instantaneous amount of free energy for observed data v. The online learning rule, suggested by Theorem 1,
for variational free energy minimization is then given by

∆w ∝ −F∇w ln q, (12)

where the minus sign is because of the minimization and F = F [q; v] is the instantaneous amount of free energy for
observed data v. Note that since F [q; v] is linear in ln q, the multiplier factor F̃ in (1) would be equal to F [q; v] according
to Corollary 2. The significance of learning rule (12) is that it explicitly shows that the amount of estimated change in
parameters w for learning q is proportional to the amount of surprise or information contained in the observed data v.
In other words, the surprise signal measured by the instantaneous free energy modulates the learning rate such that
surprising observed data v yields more change of the parameter w for learning the approximate posterior distribution q.

4 Discussion

A standard model of decision making is expected utility maximization [14] in which a decision maker selects a choice x∗ ∈ X
with the highest subjective expected utility U(x∗) among all other alternatives x ∈ X . In a probabilistic framework, it can
be interpreted as selecting choice x∗ with probability 1 and choosing the rest with probability 0 (i.e. P (x) = δ(x − x∗) is
the corresponding choice selection density function which determines the likelihood of selecting different choices, where
δ(.) denotes the Kronecker delta function). The density function P (x) = δ(x − x∗) maximizes the expected value of the
utility function 〈U(x)〉P among all possible density functions P (x) because

〈U(x)〉P =
∑

x

U(x)P (x) ≤
∑

x

U(x∗)P (x) = U(x∗) = 〈U(x)〉δ(x−x∗) . (13)

In reinforcement learning, however, choosing the action with the highest value function does not allow for sufficient
exploration; this requires choice variability, e.g., by adding noise. Furthermore, individual preferences should be incor-
porated into the decision making processes, such as action selection in RL.

Expected utility theory accounts for individual differences by explicitly modeling different beliefs about the probabilities
of different outcomes. Instead of using a stochastic action selection function (such as a sigmoid) we propose an informa-
tion theoretical equivalent of existing models to incorporate both individual preferences and choice variability. As such
we do not need to impose any specific form of constraints existing in different models. In contrast to maximizing just the
average utility 〈U(x)〉P , maximizing the functional

F[P ] = 〈U(x)〉P +
1

λ1
H(P )− 1

λ2
H(P, P0)

=

〈
U(x)− 1

λ1
lnP (x) +

1

λ2
lnP0(x)

〉

P

, (14)

yields a choice selection density function P (x) which not only leads to a relatively high average utility, but also allows
exploration. Further, it does not allow the solution to be highly different from a reference P0. While the entropy H(P ) =
〈− lnP (x)〉P of a density function P in (14) models choice variability, the relative entropy H(P, P0) = 〈− lnP0(x)〉P
models subjectivity by involving a subjective reference density function P0. The minus sign in the last term of the first
line in (14) penalizes those density functions that are highly different from a subjective reference P0. The parameters λ1

and λ2 control the fuzziness of the solution by changing the weights of the second and third terms, respectively. By taking
the derivative of (14) with respect to P and setting it equal to zero, one could find that the functional (14) is maximized
by

P ∗(x) = arg max
P

F[P ] =
P0(x)

λ1
λ2 eλ1U(x)

Z(λ1, λ2)
, (15)

where Z(λ1, λ2) =
∑
x P0(x)

λ1
λ2 eλ1U(x) is the normalizing factor. Equation (15) resembles a (modified) Bayes’ rule in the

sense that the effect of utility U in making the posterior density function P ∗ is controlled by a free parameter λ1 and a
prior belief P0 that is affected by the ratio λ1

λ2
. Although the optimal density P ∗ that yields the maximal functional value
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F[P ∗] = 1
λ1

lnZ(λ1, λ2) is explicitly derived in (15), it can also be learned using the functional gradient rule (1). This
is because the functional (14) can be expressed as 〈F [P ]〉P where F [P ] = U(x) − 1

λ1
lnP (x) + 1

λ2
lnP0(x) is a density-

dependent functional.

If the maximizer P ∗ is approximated by any other density P̃ , then its corresponding functional value F[P̃ ] differs from
its maximal value F[P ∗] in proportion to the KL divergence DKL(P̃ ||P ∗) ≥ 0. This is because,

F[P ∗]− F[P̃ ] =
1

λ1
lnZ(λ1, λ2)−

〈
U(x)− 1

λ1
ln P̃ (x) +

1

λ2
lnP0(x)

〉

P̃

=
1

λ1

〈
lnZ(λ1, λ2)− ln eλ1U(x) + ln P̃ (x)− λ1

λ2
lnP0(x)

〉

P̃

=
1

λ1

〈
ln

Z(λ1, λ2)P̃ (x)

eλ1U(x)P0(x)
λ1
λ2

〉

P̃

=
1

λ1

〈
ln

P̃ (x)

P ∗(x)

〉

P̃

=
1

λ1
DKL

(
P̃ ||P ∗

)
. (16)

As an example, we investigate a binary decision making task (such as the two-armed bandit problem) in which a subject
has to make a decision between two alternatives x = 1 and x = 0. The probability P (x) of making decision x is modeled
by a Bernoulli distribution parametrized by θ such that P (x) = θx(1 − θ)(1−x). We use P0(x) = 0.5 to incorporate no a
priori preference in making different decisions. We further assume that λ1 = λ2 = λ to make the formula simpler. As
such, the optimal probability of making the decision x = 1 in our binary example is equal to

P ∗(x = 1) =
eλU(x=1)

eλU(x=1) + eλU(x=0)
=

1

1 + e−λ∆U
, (17)

where ∆U = U(x = 1) − U(x = 0) is the difference between the decisions’ utilities. If U(x = 1) > U(x = 0), the
probability P ∗(x = 1) of making decision x = 1 in (17) is greater than 0.5. The parameter λ then determines how big that
probability should be for different values of ∆U . Note that the stochastic (sigmoid) action selection function, which is
used in the expected utility theorem for modeling choice variability, is explicitly derived in (17) as the optimal solution
in the sense that it maximizes the functional (14).
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Abstract

If basal ganglia are widely accepted to participate in the high-level cognitive function of decision-making, their role is
less clear regarding the formation of habits. One of the biggest problem is to understand how goal-directed actions are
transformed into habitual responses, or, said differently, how an animal can shift from an action-outcome (A-O) system
to a stimulus-response (S-R) one while keeping a consistent behaviour.

We introduce a computational model (basal ganglia, thalamus and cortex) that can solve a simple two arm-bandit task
using reinforcement learning and explicit valuation of the outcome (Guthrie et al. (2013)). Hebbian learning has been
added at the cortical level such that the model learns each time a move is issued, rewarded or not. Then, by inhibiting
the output nuclei of the model (GPi), we show how learning has been transferred from the basal ganglia to the cortex,
simply as a consequence of the statistics of the choice. Because best (in the sense of most rewarded) actions are chosen
more often, this directly impacts the amount of Hebbian learning and lead to the formation of habits within the cortex.

These results have been confirmed in monkeys (unpublished data at the time of writing) doing the same tasks where the
BG has been inactivated using muscimol. This tends to show that the basal ganglia implicitely teach the cortex in order
for it to learn the values of new options. In the end, the cortex is able to solve the task perfectly, even if it exhibits slower
reaction times.

Keywords: basal ganglia, decision making, habits, Hebbian learning, rein-
forcement learning
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1 Introduction

According to Schneider and Shiffrin (1977), a behaviour is automatic (i.e. becomes an habit) if a sensory events always
elicit the same behaviour, even if the subject is doing something else. Think, for example, of someone entering a dark
room while talking on the phone and switching on the light without ever really thinking about it. How this behaviour
is acquired in the first place? How do we learn such habits? Seger and Spiering (2011), characterized habit learning
using five definitional features: inflexible, incremental, unconscious, automatic, and insensitive to reinforcer devaluation.
This tentative definition seems to be clearly in opposition with decision making that we could think of as flexible and
highly sensitive to reinforcer devaluation. However, there are more and more evidences these two types of learning are
somehow linked together (Yin and Knowlton (2006)), the question being how?

In a recent (unpublished) study, monkeys have been tested on a two-armed bandit task using a pharmacological ap-
proach, combining both decision making and procedural learning. Primates have been daily accustomed with the setup
which is composed of four buttons placed on different directions (0, 90, 180 and 270) and another one on central position
which detects the contact with monkeys hands. These buttons correspond to the four possible appearance directions
of a cursor on a perpendicular screen. The monkeys initiated a trial keeping their hand on the central button, which
induced the appearance of the cursor in the central position of the screen. After a random delay (0.5-1.5 s), two cues
appeared in two (out of four) different positions determined randomly for each trial. Two experimental conditions were
alternated by blocks of ten trials. On Habitual Condition (HC), the two cues (HC1 and HC2) are the ones with which the
animals have been trained. Each cue had a fixed probability for monkeys to be rewarded (PHC1=0.75 and PHC2=0.25).
The nature and the probability of each cue remained the same during each working session and between each working
session. On Novelty Condition (NC), the two cues presented are new (NC1 and NC2). Each cue had a fixed probability
for monkeys to be rewarded (PNC1=0.75 and PNC2=0.25). Once the cues are shown, the monkeys had a delay period
(0.5-1.5s) to press the button according to one cue during a random time (0.5-1.5s). The cursor appeared on the chosen
cue. An ”end-of-trial” signal corresponding to the disappearance of the cursor indicated to the monkeys that the trial
is actually finished. Monkeys were rewarded (0.3 ml of water) or not according to the reward probability of the chosen
target. They could then start a new trial after an inter-trial interval included between 500ms and 1.5 ms. The procedure
is summarised in 1 In one condition, the internal part of the Globus Pallidus (the main output structure of the BG) is in-
jected with a saline solution (no effect) and in the other condition, it is injected with muscimol (inactivation). Results tend
to show that performances related to familiar cues stay unchanged, independently of GPi inactivation, while learning of
new cues is deeply impacted when GPi has been inactivated. This tends to suggest BG might be critical in learning deci-
sion and this learning can be later transferred to the cortex. In accordance with this hypothesis, we build a computational
model whose architecture is described in the next section.

2 Methods

The architectural basis of the model has been originally described in Guthrie et al. (2013) where authors introduced
a biophysical model of action selection that can solve a two-arm bandit task, such as the one describe above. Two
parallel action selection pathways compose the model with inputs from distinct areas of the cortex: one for handling the
cognitive action selection, and the other for the motor selection. The model includes the cortex (Cx), the thalamus (Th)
and several nuclei of the BG: striatum (Str), the subthalamic nuclei (STN) and the globus pallidus internal and external
(GPi, GPe). Each module is made of a closed- loop positive feedback direct pathway (Cx-Str-GPi-Th-Cx) and two closed-
loop negative feedbacks, indirect pathway (Cx-Str-GPe-STN-GPi-Th-Cx) and hyperdirect pathway (Cx-STN-GPi-Th-Cx),
and is based on the center-surround architecture of Mink (1996). The interactions between these three pathways are able
to induce an action selection at the motor level. However, the task requires first the actual selection of the best cue before
performing the corresponding motor action. In the Guthrie et al. (2013) model, this is implemented at the striatal level
where a dopamine reward signal is used to implement a simple value-based learning. The general architectural of the
model is illustrated on Figure 2.

In the original model, the inactivation of the basal ganglia output (GPi) results in the inability of the model to make a
decision since there is no competitive mechanism at the cortical level. We thus added lateral connections in each cortical
modules (self-excitation and surround inhibition) such that a unique cognitive and motor decision can be made. At this
point, there is no guarantee that the motor decision corresponds to the cognitive ones. The model can choose a cue A but
moves toward the location of a cue B. To overcome this problem, we also need to establish a cross-talking between the
different cortical modules, independently of the BG pathways. This has been made using excitatory connections from
and to the associative cortical module. Hebbian learning in cortical level allows the cortex to make a consistent decision
in the absence of GPi, even if it does not guarantee to make the optimal decision.

One important property of the cortical decision is that it is significantly slower than the BG decision. This can be shown
by measuring the time of motor decision; defined as the time required for the difference between the two most activated
units in the motor cortex to become greater than a given threshold (40Hz). Before learning, the BG decision time (GPi is

1
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intact) is around 250ms while the cortical decision time (GPi is disabled) is around 800 ms. This difference in timing is
actually critical for the BG to teach the cortex as explained in the results section.

3 Results

We tested the model using 4 different paradigms:

• HC/GPi: Habitual condition using already learned stimuli with intact GPi.
• HC/NoGPi: Habitual condition using already learned stimuli with lesioned GPi.
• NC/GPi: Novel condition using non familiar stimuli with intact GPi.
• NC/NoGPi: Novel condition using non familiar stimuli with lesioned GPi.

Each condition has been tested for 250 experiments where each experiment consists in 120 consecutive trials (presentation
of the cues, decision, potential reward and reset). Before starting an new experiment, the model is trained on the familiar
stimuli until the performance is over 0.95. Performances were measured as the ratio of optimal choices compared to the
number of trials. Response time has been recorded as the time of the motor decision. This time is relative to the stimulus
onset (t=500ms).

As shown in 3a, our results are equivalent to the experiments in monkeys (3b). In the habitual condition, performances
are optimal with or without lesion, indicating the cortex is able to make the optimal decision without the help of the
basal ganglia. However, in the novel condition, things are quite different. For the intact model, the model starts a trial at
chance level, giving random choices. Nevertheless, after a few trials (around 15), it reaches a near-optimal performance,
indicating the model has learned the respective reward probability associated with each cue. For the lesioned model, the
performances stay at the level of chance, indicating the cortex is unable to learn the task ”on its own”. It is to be noted
that due to Hebbian learning, the lesioned model tend to first choose a given random cue and stick to this choice until the
end of the experiment. If this is the right cue, the performance can reach 1 for a single experiment, but over the course of
the 250 experiments, the mean performance is around 0.5.

4 Conclusion

The aim of this model is to gain a better understanding of the role of the basal ganglia in the formation of habits. It is based
on a previous model by Guthrie et al. (2013) that explain the dynamic of action selection in the BG. The model has been
further refined with connections at the cortical level which are consistent with neuro-anatomy. We also implemented
Hebbian learning at the cortical level, independently of reward. However, since BG helped to choose the best action
anytime, this results in having cortical learning to be naturally modulated according to the value of the different cue,
simply because the best cue is chosen more often. After learning, the cortex is able to choose the best cue without help of
the BG, hence forming a new habit.
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Figure 1: Behavioural paradigm. A session is made up of at least 250 trials broken down into alternate blocks of 10 trials
in Habitual (top) or Novelty (bottom) Conditions. In each trial, two cues were displayed simultaneously in two out of
four randomly chosen possible positions on the screen. The monkey signalled its choice by moving the cursor to one of
the cues and was rewarded by 300 µl of fruit juice with a predefined fixed probability that depends on the choice. In
the Habitual Conditions (top) the cues (HC1, P=0.75 and HC2, P=0.25) are the one with which the monkeys has been
trained and therefore are familiar with. In the Novelty Condition (bottom), the cues (NC1 and NC2) have the same
values (P=0,75 and P=0,25 respectively), but the pairs are changed (new shape and colours) for each session.
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Figure 2: The main pathways in the model are the direct pathway (Cortex-Striatum-GPi-Thalamus-Cortex), the indirect
pathway (Cortex-Striatum-GPe-STN-GPi-Thalamus-Cortex), and the hyperdirect pathway (Cortex-STN-GPi-Thalamus-
Cortex). Learning occurs at two different levels: Hebbian learning from cognitive to associative cortex (1) and from
associative to motor cortex (2), and reinforcement from cognitive cortex to cognitive striatum (3).
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Figure 3: Results averaged over 250 simulations. 3a) In HC, performances of the model are optimal (1), with or without
GPi (the dashed line is not shown, because it coexists with the straight one). In NC, only the intact model (with GPi) is
able to learn the new stimuli while lesioned model performances stay at the level of chance. 3b) Monkeys’ performances
are analogous to the models.
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Abstract
We introduce Carli–a modular architecture supporting efficient value function specialization for relational reinforcement learning.
Using a Rete data structure to support efficient relational representations, it implements an initially general hierarchical tile coding
and specializes it over time using a fringe. This hierarchical tile coding constitutes a form of linear function approximation in which
conjunctions of relational features correspond to weights with non-uniform generality. This relational value function lends itself to
learning tasks which can be described by a set of relations over objects. These tasks can have variable numbers of both features and
possible actions over the course of an episode and goals can vary from episode to episode. We demonstrate these characteristics in
a version of Blocks World in which the goal configuration changes between episodes. Using relational features, Carli can solve this
Blocks World task, while agents using only propositional features cannot generalize from their experience to solve different goal
configurations.

1 Introduction

Many kinds of problems can be formulated as reinforcement learning problems. Simple reinforcement learning algorithms (such as
both Sarsa(λ) and Q(λ)) directly suffer from the curse of dimensionality. The number of Q-values to be learned scales directly with
the product of the size of the state-space, |D1×D2×D3× . . . |, and the size of the action-space, |{A1, . . . , An}|. As the state-space
and action-space grow large for more complex problems, it becomes difficult to learn efficiently. The issue is a lack of some capacity
to generalize.

Linear function approximation is one approach to adding the ability to generalize to these temporal difference methods. The simple
value function can be replaced by n basis functions, φ1, . . . , φn. The Q-function is estimated by Q(s, a) =

∑n
i=1 φi(s, a)wi, where

φi(s, a) is commonly 1 or 0 to indicate whether the feature is currently active for a given state and action, or not, and where the
weight, wi, represents the value contribution of the feature for the action under consideration, or a partial Q-value. That each feature
applies to many states provides the agent with the ability to learn about states which the agent has yet to visit. For example, the feature
(stack, matches, goal-stack) applies to many actions throughout the state-space and not just to one specific state-action pair.

A second approach to support generalization from experience is to start with a coarse tile coding, and to break the tiles into smaller,
more specific tiles over time. As the agent specializes its value function, it learns a more refined policy, but without the full cost
associated with starting with a maximally specialized value function from the beginning. It is possible to combine this with linear
function approximation by keeping coarser, more general tiles in the system and allowing general learning to continue even as the
smaller, more specialized tiles are added [Bloch and Laird, 2013]. This strategy assumes that the hierarchy accurately captures the
structure of the true value function to some degree, allowing more general patterns in the value function to be captured by the more
general tiles and requiring the more specific tiles to capture the finer details.

Relational reinforcement learning is a third approach to support generalization from experience [Tadepalli et al., 2004; Džeroski et
al., 2001]. Given relations and conjunctions thereof, it is possible to condense both the state-space and action-space for certain tasks.
For example, if the agent is concerned that (stack, matches, goal-stack), it can learn about all actions in which that match is
present, regardless of the labels of any of the blocks in either the stack or the goal-stack. As these features do not always depend
on the size of the state-space and action-space, they can be particularly effective for scenarios with arbitrarily large state-spaces.

As relational reinforcement learning allows an agent to reason about objects more abstractly, it allows the agent to generalize from
its experience to solve problems from outside its training set. The alternative of propositionalizing the relational representation tends
to create far more features and has more difficulty transferring to similar problems.
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We develop the Carli1 architecture using all three of these methods to provide generalization. The intent is to explore not only how
to efficiently implement a relational reinforcement learning agent with dynamically variable specialization, but to investigate how
best to do this specialization and learn with this kind of system. The manner in which the Carli architecture maps states and actions
to weights and specializes that mapping over time is critical. As explored by Bloch and Laird [2013], Whiteson et al. [2007], and
McCallum [1996], Carli uses a tile coding that begins with large, general tiles and then specializes it over time to generate smaller
tiles and more specific weights. As done by McCallum [1996], a fringe is stored alongside each leaf weight to allow the agent to
make informed decisions about which features to use next when specializing a tile. However, instead of collecting instances, we
store fixed-size metrics to be used by different specialization criteria. And like the system explored by Bloch and Laird [2013], it
keeps more general tiles in the system as more specific ones are added, allowing more general learning to continue as the policy
is refined. The major contribution of Carli is its unique use of the Rete algorithm to implement a computationally efficient value
function, providing a specializable, hierarchical tile coding that supports relational features.

2 Related Work

Efficient rule matching is a well established problem in the context of rule-based systems. We map the problem of providing weights
for linear function approximation onto this matching problem. The Soar cognitive architecture [Laird, 2012] and Soar-RL [Nason and
Laird, 2004]–its implementation of reinforcement learning–were the primary inspiration for this work. Soar would require significant
modification to support efficient value function specialization as implemented in Carli.

Driessens et al. [2001] implemented the RRL-TG algorithm. They implemented query packs as a way to use more memory to allow
common parts of queries to be represented only once in their data structure. This optimization enforces a similar structure to that of
Rete, sharing earlier tests in order to save work. RRL-TG requires specializations to be binary splits based on truth tests, which Carli
does not require.

Adlin being the name of their Icarus-based architecture, Asgharbeygi et al. [2005] noted that “when the time constraint is extremely
strict or the environment is changing too rapidly, Adlin does not provide a satisfying performance gain.” The goal of their relational
reinforcement learning system is to guide inference rather than to provide near optimal control, but one solution they considered
to deal with their performance problem as part of their future work was “to incorporate the simple idea behind truth maintenance
systems and Rete matchers,” which is related to what we have done in our work.

In order to support online, relational reinforcement learning, it is necessary to support efficient detection of conjunctions of relational
features specifically. A system explored by Bloch and Laird [2013] that used a trie to store the value function did not support the
use of relational features. Their trie implementation was efficient but ill suited for supporting relational tests. It may have been
possible to modify the implementation to support a variable number of actions, but any relational features would have needed to be
be propositionalized. This propositionalization would have increased the number of features considerably and, due to the lack of a
notion of variable binding, additionally made it difficult to support conjunctions of relational features that refer to the same variables.

3 Carli

We use Rete [Forgy, 1979] to provide efficient rule matching and weight retrieval for our agents. Rete provides the relational structure,
variable bindings, and efficiency we need to support relational features. Hierarchical tile codings are implemented in the Rete as a set
of rules sharing the same tests up until feature specialization occurs, and the work to fire these shared tests is effectively free in the
Rete. The cost of minimally firing and retracting rules to match changes in the environment is linear in the number of changes rather
than in the size of the state-space. Efficient implementation of the Rete algorithm has been explored in detail by Doorenbos [1995].

One way to specialize a tile coding over time is to maintain a fringe of possible future specializations and to conditionally (or
periodically) choose from among those possible specializations to expand the value function. As part of that expansion, it is necessary
to create a new fringe for the new tiles which have been added to the tile coding.

The hierarchical structures of both Rete and this kind of tile coding line up in a way that makes their joint implementation very
convenient, albeit non-trivial. We found it useful to define a rule grammar to specify the combinations of features. The rules adhering
to this grammer together constitute our tile coding. Given our grammar, we can extract details about the types of features the rules
are adding to the system. At the time of fringe expansion, we can separate the new features from the rules (in the case that they
correspond to fringe tiles) and modify other rules to incorporate the new features in order to create a new fringe. Similarly, it is
possible to collapse a tile coding to undo earlier specializations should it be deemed useful to do so.

1Carli can be downloaded from https://github.com/bazald/carli.
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(a) Flat / Non-Hierarchical.
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(b) Full Hierarchy.
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(c) Value Criterion.
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Figure 1: These plots display task performance (in blue) and total system CPU time (in red) for Carli agents in Blocks World.
Propositional features are dotted and relational features are dashed. The legend in figure 1d applies to all figures 1a through 1d.

4 Blocks World

Blocks World presents a configuration of blocks, each with a unique label. The agent is tasked with moving one block at a time
from the top of a stack of blocks to either the top of a different stack or the table. The agent completes the task when the blocks
configuration matches the goal configuration.

The Blocks World task that interests us exposes the goal configuration to the agent and changes the goal from episode to episode.
Agents using a standard propositional representation (dotted in figure 1) of this formulation of the Blocks World task should be
unable to learn a near optimal strategy for solving new goal configurations because they must ultimately capture some details of the
task specific to a particular goal configuration in order to function at all. Agents using relational representations (dashed in figure 1)
should can capture connections between stacks of blocks in both the current configuration and the goal configuration, generalizing
to different goal configurations. Agents using both representations together (dash-dotted in figure 1) should still be able to learn to
solve the task, though they may require more time to do so.

The propositional features available to our agents are: whether the destination block is in the right place or not (a propositionalized
relational feature that is equivalent to the second relational feature below); the name of the block to be moved; and the name of the
destination block.

The relational features available to our agents are: whether the source stack of blocks matches a goal stack or not; a stack that is
a subset of a goal stack would be considered matching; placing a block on top of such a stack would cause it to no longer match;
whether the destination stack matches a goal stack or not; whether the top block of the source stack matches the top of the destination
stack or not (a top block being considered to match the top of the destination stack if and only if the destination stack matches a goal
stack and the additional block will allow it to continue to match); and whether the destination (stack) is the table.

We train our Carli agents on-policy with a discount rate of 0.9 and an eligibility trace decay rate of 0.3 using Blocks World in-
stances with 4 blocks. Figures 1a through 1d plot the cumulative reward divided by the number of episodes solved and the current
computational time required per step of the environment.

Figures 1a and 1b depict performance of agents doing all specialization before the first step. Both sets of agents specialize maximally
before the first step, choosing features at random. The flat agents discard more general features from the system while the hierarchical
agents keep the more general features for linear function approximation. It is clear that the hierarchical tile coding is advantageous
to the agents that include the relational features, although it also allows divergence in the agent using only propositional features.
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Figures 1c and 1d depict performance of agents doing online specialization after gaining some experience, but still early in their
lifetimes. The agents using the value criterion attempt to minimize error when specializing the value function by choosing feature
axes in the fringes which present large value discrepancies between Q-values. The agents using the policy criterion attempt to be
more tolerant of error in the value function by choosing only feature axes that are likely to alter their policies when specializing the
value function. These specialization criteria are derived from those presented by Whiteson et al. [2007]. The performance pattern for
agents using the different sets of features predicted at the beginning of this section holds.

The memory utilization differs depending primarily on which features are included. The agents using only the propositional features
tend to include approximately 52 weights in their value function. The agents using only the relational features tend to include
approximately 25. And agents using both sets of features tend to include between 300 and 350 weights (304 for the value criterion,
and 350 for the policy criterion, and 390 for the full hierarchy). As shown in the figures, the computational cost scales sublinearly
with memory usage, although more selective criteria may be needed to keep memory costs down in large domains. Computing the
relational features is more expensive than computing the propositional features, but their increased power is clearly valuable.

5 Future Work

We intend to explore additional domains in the future, including Infinite Mario [Togelius et al., 2010]. However, the number of
distinct variables is currently fixed by the features initially provided to the system. One extension would be to allow Carli agents
to reason about a number of different blocks, enemies, and pits in the environment without enumerating a fixed number of block,
enemy, and pit variables ahead of time. Its unclear whether this higher order fringe grammar would have sufficient value to be worth
the complications involved in its implementation.

Adding support for Greedy-GQ(λ) [Maei, 2011], a temporal difference method that is guaranteed to converge when using linear
function approximation, would probably improve the performance of Carli agents.

We could benefit from better tests to determine which features to include, in addition to our value and policy criteria. There is a
tradeoff between specializing quickly and specializing slowly. If our system specializes more quickly it can begin learning a more
specialized policy faster, but it may be more likely to geneate a suboptimal Rete structure.

Our Rete value function implementation supports efficient despecialization to undo suboptimal specializations, but we have yet to
develop criteria to allow us to decide when to despecialize or respecialize with different features tests higher up in the Rete.
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Abstract

In reinforcement learning, the notions of experience replay, and of planning as learning from replayed experience, have
long been used to find good policies with minimal training data. Replay can be seen either as model-based reinforcement
learning, where the store of past experiences serves as the model, or as a way to avoid a conventional model of the
environment altogether. In this paper, we look more deeply at how replay blurs the line between model-based and model-
free methods. Specifically, we show for the first time an exact equivalence between the sequence of value functions found
by a model-based policy-evaluation method and by a model-free method with replay. We then use insights gained from
these relationships to design a new reinforcement learning algorithm for linear function approximation. This method,
which we call forgetful LSTD(λ), improves upon regular LSTD(λ) because it extends more naturally to online control, and
improves upon linear Dyna because it is a multi-step method, enabling it to perform well even in non-Markov problems
or, equivalently, in problems with significant function approximation.

Keywords: reinforcement learning, model-based learning, experience replay,
LSTD(λ)
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1 Introduction

In reinforcement learning (RL) (Sutton & Barto, 1998), value-function based methods are traditionally divided into two
categories: model-free and model-based. Model-free, or direct, methods learn a value function directly from samples,
from which a policy can be easily derived. In contrast, model-based, or indirect, methods learn a model of the environ-
ment dynamics and derive a value function or policy from the model using planning. Compared to model-free methods,
model-based methods are typically more computational expensive, but make more efficient use of observed experience.
Interestingly, neural and behavioral data suggests that the brain also has multiple reasoning systems that trade-off com-
putational efficiency for sample efficiency in different ways (Daw et al., 2005).

While many RL methods can be easily classified as either model-free or model-based, there are also methods for which
this is less straightforward. For example, LSTD (Bradtke & Barto, 1996; Boyan, 2002), which computes a least-squares
solution over a set of samples, can be considered model-free because it does not explicitly construct a model of the
environment dynamics. However, its characteristics, high computational cost combined with an efficient use of samples,
are typical of those of a model-based method. This also holds — albeit to a lesser extend — for model-free methods
enhanced by experience replay (Lin, 1992). Hence, some people argue that a sample set should also be considered a
model. Another method that is hard to classify is linear Dyna (Sutton et al., 2008), which uses observed samples to update
a value function, as well as construct a model, which is then used to produce simulated samples to further improve the
value function.

The distinction between model-free and model-based methods is further blurred by the theoretical result that the fixed
point of a linear, least-squares model on a set of samples is the same as the LSTD solution of those samples (Sutton et al.,
2008; Parr et al., 2008). In practise, however, the value function computed by a model-based method (at any particular
time) is different. This is partly because it learns only an estimate of the least-squares model, and because, due to bounded
computation per time step, its iterative planning process terminates before convergence is reached.

In this paper, we show that the relation between model-free and model-based methods runs even deeper than assumed
up to now. Specifically, we show for the first time an exact equivalence between the sequence of value functions found by
a model-based method and by a model-free method with replay. This result raises an intriguing question: is there really
a fundamental difference between model-free and model-based methods, or are they just two different ways of looking
at the same thing?

The replay technique we use is different from the classical technique introduced by Lin (1992). Rather than presenting
old samples as new to the learning agent, we replay updates with an improved update target, starting from the initial
value estimate. This way of doing replay yields a powerful strategy for deriving methods that trade off computational
efficiency with sample efficiency in different ways. We demonstrate this by using it to derive a new method, which we
call forgetful LSTD(λ). This method gracefully forgets old information when new information is observed (similarly to
linear Dyna), which is important in control tasks. On the other hand, it uses a multi-step model similar to the model used
by LSTD(λ) (Boyan, 2002). Using multi-step models is key for obtaining robust model-based behaviour in problems with
significant function approximation, or similarly, state aggregation. However, this is not widely known, as evidenced by a
number of recent publications that conclude that learned models appear to be fundamentally limited, based on observed
behaviour from a one-step model. We illustrate the importance of multi-step models with a small experiment.

2 Problem Setting and Notation
We focus in this paper primarily on discrete-time Markov reward processes (MRPs), which can be described as 4-tuples of
the form 〈S, p, r, γ〉, consisting of S, the set of all states; p(s′|s), the transition probability function, giving for each state
s ∈ S the probability of a transition to state s′ ∈ S at the next step; r(s, s′), the reward function, giving the expected
reward after a transition from s to s′. γ is the discount factor, specifying how future rewards are weighted with respect
to the immediate reward.

The value-function v of an MRP maps each state s ∈ S to the expected value of its return, which is the discounted sum of
rewards following that state:

v(s) = E
{ ∞∑

i=1

γi−1Rt+i |St = s
}
.

We consider the case where the learner does not have access to s directly, but can only observe a feature vectorφ(s) ∈ Rn.
The value function is approximated using linear function approximation, in which case the value of a state is the inner
product between the weight vector θ ∈ Rn and its feature vector: v̂t(s) = θ>t φ(s). As a shorthand, we will indicate
φ(St), the feature vector of the state visited at time step t, by φt.

The basic definition of an MRP is often extended with the concept of terminal states, which terminate the return and
divide the environment interaction into episodes. We model this by using a time-dependent discount factor that is equal
to 0 when a terminal state is reached. This way of modelling episodic tasks makes that we can treat episodic tasks and
continuing tasks fully uniformly.

1
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3 Planning by Replaying the Past

Classical experience replay, as introduced by Lin (1992), maintains a bag of (recent) samples that are used for additional
updates. Basically, the sequence of observed samples is artificially enlarged by injecting old samples. Replaying experi-
ence in this way is a simple strategy to improve sample efficiency, but it also has some downsides. For example, it cannot
be combined with multi-step update targets such as the λ-return (Sutton, 1988), because old samples are mixed with new
samples. We introduce an alternative form of replaying samples that can be combined with any update target.

Our way of replaying experience is illustrated by Algorithm 1. Starting from the initial weight vector, all previously
performed updates are redone —in the same order— with an update target based on the most recent weight vector.
This update sweep can be repeated multiple times per time step (controlled by the K-parameter). This form of replaying
experience also forms the basis of best-match learning, which combines a model-free value function with a partial, tabular
model to obtain convergence in the tabular case (van Seijen et al., 2011). It is also related to the idea behind fitted Q-
iteration (Riedmiller, 2005).

Algorithm 1: Replaying TD(0) updates

INPUT: α,K,θinit
θ ← θinit
V ← ∅ (V is an ordered set)
obtain initial φ
Loop:

obtain next feature vector φ′, γ and reward R
add (φ, R, γ,φ′) to V
Repeat K times:

θtarget ← θ
θ ← θinit
For all (ϕ, r, γ̄,ϕ′) in V (from oldest to newest):

θ ← θ + α
[
r + γ̄ θ>targetϕ

′ − θ>ϕ
]
ϕ

φ← φ′

Algorithm 2: Planning with a learned linear model

INPUT: α,K,θinit
θ ← θinit
b← θinit, F ← 0
obtain initial φ
Loop:

obtain next feature vector φ′, γ and reward R
F ← F + α

[
γφ′ − Fφ

]
φ>

b← b+ α(R− b>φ)φ
Repeat K times:

θ ← b + F>θ
φ← φ′

Algorithm 2 shows a model-based method. It uses the same model, and model update rules, as linear Dyna. However,
instead of using the model to generate simulated samples, the model is used to perform planning updates (similar to
value iteration updates for a tabular model). The theorem below states that the sample-based approach of Algorithm 1
and the model-based approach of Algorithm 2 are, in fact, equivalent.

Theorem 1 Given the same sequence of samples and parameter settings, Algorithm 1 and Algorithm 2 compute the same weight
vectors at each time step.

Proof The outline of the proof is to rewrite the updates from Algorithm 1 in terms of matrices and vectors, which results
in the F and b updates of Algorithm 2.

Let {φ0, R1, γ1,φ1, . . . , Rt, γtφt} be the observed experience sequence at time t. In addition, let θ(t) be the result of a
single replay sweep over the t samples in V . In other words, θ(t) is incrementally defined by:

θ(i+1) = θ(i) + α [Ri+1 + γ(θtarget)
>φi+1 − θ>(i)φi]φi , for 0 ≤ i < t

with θ(0) := θinit. This update can be rewritten as:

θ(i+1) = (I − αφiφ
>
i )θ(i) + αφiRi+1 + αγi+1φiφ

>
i+1θtarget (1)

where I is the identity matrix. Now, consider that the following holds:

θ(i) = bi + F>i θtarget , (2)

then
θ(i+1) = (I − αφiφ

>
i ) (bi + F>i θtarget) + αφiRi+1 + αγi+1φiφ

>
i+1θtarget

= bi+1 + F>i+1θtarget

with
bi+1 = (I − αφiφ

>
i )bi + αφiRi+1 (3)

F>i+1 = (I − αφiφ
>
i )F>i + αγi+1φiφ

>
i+1 . (4)

So, if (2) holds for i, and F> and b are updated according to (3) and (4), then (2) holds for i + 1. It can be easily checked
that (2) is true for i = 0, if b0 = θinit and F0 = 0. Hence, with this initialization, it is true for all i. Finally, updates (3) and
(4) can be rewritten as:

2
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bi+1 = bi + α
[
Ri+1 − b>i φi

]
φi

Fi+1 = Fi + α
[
γi+1φi+1 − Fiφi

]
φ>i ,

which are the model updates of Algorithm 2.

4 Forgetful LSTD(λ)

In this section, we introduce a new method that combines a multi-step model, similar to the one of LSTD(λ), with graceful
forgetting, as occurs in linear Dyna.

4.1 Derivation (outline)

Applying the replay strategy displayed in Algorithm 1 to the true online TD(λ) algorithm (van Seijen & Sutton, 2014),
and rewriting the updates in terms of vectors and matrices, just like we did in the proof of Theorem 1, results in the
following updates:

bi+1 =
(
I − αφiφ

>
i

)
bi + αei+1Ri+1 (5)

F>i+1 =
(
I − αφiφ

>
i

)
F>i + αei+1[γi+1φi+1 − φi]

> + αφiφ
>
i , (6)

with b0 = θ0 and F>0 = 0, and
ei+1 =

(
I − αφiφ

>
i

)
γiλei + φi ,

with e0 = 0. Note that for λ = 0, ei+1 = φi and equations (5) and (6) reduce to equations (3) and (4).

Using equations (5) and (6), we could generalize Algorithm 2 such that it uses a multi-step model instead of a one-step
model. Instead, we rewrite the equations, using Ai := (I − F>i )/α and di := bi/α (for all i), as:

di+1 =
(
I − αφiφ

>
i

)
di + ei+1Ri+1

Ai+1 =
(
I − αφiφ

>
i

)
Ai + ei+1 [φi − γi+1φi+1]> ,

with d0 = θinit/α and A0 = I/α. Finally, rewriting Equation (2) in terms of Ai and di yields:

θ(i) = θtarget + α(di −Aiθtarget) .

The pseudocode implementing these updates is shown in Algorithm 3. We added two generalizations: we allow the
matrix A and vector d to be initialized randomly, and we allow the step-size used in the update of the model to be
different than the step-size used in the planning updates. The former, we indicate by β; the latter by α. The reason for
making this distinction is that α and β influence the computed value functions in very different ways. The parameter
β is a forgetting parameter that determines how easily old information is overwritten by new information. It directly
influences the model and hence the fixed point. On the other hand, α is a parameter that influences the iterative process
for finding this fixed point. Its value determines if, and how quickly, this process converges.

We call this method forgetful LSTD(λ) for obvious reasons: when the forgetting parameter β is set equal to 0, and
Ainit = 0 and dinit = 0, the model At, dt reduces to the model learned by LSTD(λ) (Boyan, 2002). Note that LSTD(λ)
traditionally solves the model using the inverse of At, whereas Algorithm 3 uses an iterative process. While in principle
these techniques can be interchanged, an iterative process offers more flexibility and control over computation time,
which is important in an online setting.

Algorithm 3: Forgetful LSTD(λ)

INPUT: α, β, λ,K,θinit,dinit, Ainit

θ ← θinit, d← dinit, A← Ainit

obtain initial φ
e← 0
Loop:

obtain next feature vector φ′,γ and reward R
e← (I − βφφ>)e+ φ

A← (I − βφφ>)A+ e(φ− γφ′)>
d← (I − βφφ>)d+ eR
e← γλe
Repeat K times:

θ ← θ + α(d−Aθ)
φ← φ′
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Figure 1: Multi-step versus one-step model.
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4.2 Extension to Control

One of the main advantages of having a prediction method that gracefully forgets old information when new information
comes in is that it can be used for control with minimal modification. The feature vectors observed simply have to be
features describing state-action pairs, φt = φ(St, At), instead of only states. With these features, values can be computed
that predict the return for separate actions in a state (i.e., the Q-values), which can then be used for any exploration
strategy, for example ε-greedy or some softmax selection strategy.

The role of forgetting is vital in a control setting, because the policy changes over time. Hence, old samples are no longer
representative for the current policy and can inhibit policy improvement when maintained in the model.

4.3 Multi-Step Model versus One-Step Model

To demonstrate the importance of a multi-step model in problems with significant function approximation we perform
an empirical comparison between forgetful LSTD(λ) with λ = 0 and λ = 0.95, on the mountain car control task (Sutton &
Barto, 1998) We set β = α, dinit = θinit/α and Ainit = I/α. With these settings, forgetful LSTD(λ) with λ = 0 computes
the same value functions as Algorithm 2 (as well as Algorithm 1), which is based on the (one-step) linear Dyna model.

Our mountain car task implementation is as described by Sutton & Barto (1998), but we make the task more challenging
by using coarse tile coding: 3 tilings, each consisting of 3-by-3 tiles. We normalize the feature vectors, and use α = 0.01
and K = 1. We used ε-greedy exploration with ε = 0.01. The maximum episode length is set at 10,000 steps.

Figure 1 shows the performance over the first 2000 episodes, averaged over 100 independent runs. Note that the graph
of linear Dyna contains performance jumps with a size of roughly 100 steps, which corresponds with 1 run out of the 100
runs hitting the 10,000 steps limit. This illustrates very clearly the stability issues that one-step models can cause.

5 Conclusion & Future Work

We showed that the relation between sample-based and model-based approaches runs much deeper than previously
assumed. Specifically, we showed that TD(0) enhanced by replay computes, at each time step, the same values as a
method based on a linear model. This result proves that these seemingly different approaches are simply different ways
of looking at the same updates. To obtain this result, we used a form of replay that, is contrast to the classical way, can be
combined with any update target. We demonstrated this by deriving a new, sample-efficient method, that can be used for
control in tasks with significant function approximation. This method is just one example of how this new insight can be
exploited. In future work, we intend to derive new methods that apply this idea to non-linear function approximation,
as well as methods that can flexibly adapt to the available amount of computational resources by using partial models.
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Abstract 

Lost causes and unobtainable goals: Dynamic choice behavior in multiple goal pursuit.  

How do people choose to split their time between multiple pursuits when one of those pursuits becomes unobtainable? 

Can people cut their losses or do they more often chase a lost cause? We created a procedure where participants make 

repeated decisions, choosing to spend their free time between three different domains. One of these domains was a lost 

cause or unobtainable goal that would require all of the participant’s resources to maintain. We found that participants 

will chase a lost cause, or continue to commit resources to a domain, despite harming other domains, but only when 

that domain is considered the most important of the three. When the lost cause is not the most important of the three 

domains participants will cut their losses deescalating their commitment to that domain.   
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1 Introduction 

In the current studies, we examine how people allocate their time among different pursuits over time when one pursuit 

is an unobtainable goal. We varied the domains/activities available as well as their value and importance. In general, 

rational decision making considerations would entail cutting losses to free up time to devote to other pursuits. In fact, 

the ability to disengage from an unobtainable goal has been shown to be positively related wellbeing (Wrosch et al., 

2003). However, the research on sunk costs (Arkes and Blumer, 1985) and keeping options (Shin and Arieley, 2004) 

open suggests that people may devote more resources to the unobtainable domain, essentially chasing a lost cause. 

There are three important aspects of the current work that have not been studied together: explicit opportunity costs, 

repeated choices with feedback regarding the results of the decisions, and using domains other than monetary choices 

allowing for differences in a priori importance to be measured. 

2  Experiment 1 

To explore time allocation decisions, we created a computer game we called Sim Life (see Figure 1) where participants 

made repeated choices to spend their free time among three domains. The status on each domain (i.e., the cumulative 

rewards or losses) is displayed throughout the task; the status of a domain improves when it is selected and decays 

when not chosen. Participants made 100 choices, simulating the number of days in an academic quarter. After each 

choice participants were shown a five second slide show of pictures representing the domain they had just selected to 

simulate the passage of time. The status of each domain was calculated on a 100 point scale with the visual feedback 

composed of ten categorical levels. The feedback functions we employed were structured so that two domains decayed 

by 3 points every trial and were increased by 7 points if chosen. The third option (the lost cause) either decayed faster 

(6 points per trial) or increased by a smaller increment if chosen (4 points).  

Before starting the game, participants indicated their personal importance of each domain in three separate questions. 

The first was a rank ordering of the three domains. Second they indicated on a 1-5 scale how important each domain 

was to them. Finally, participants allocated 100 points between the three domains representing their relative 

importance. Results from these three measures were consistentthroughout.  

In the game, participants were told that they have a set schedule of classes, studying, and work which leaves them two 

hours of free time each day that they can choose to spend on one of the three domains. In Experiment 1, the three 

domains were friends, their romantic partner, and academics. In addition to the reason for the lost cause (weak reward, 

strong loss), our other between-subjects condition was which domain was instantiated as the lost cause. Based on pilot 

data, we expected academics to be considered more important than the other two domains. 

2.1 Methods 

59 (37 F, mean age = 20.55) participants were randomly assigned to one of three conditions. The only difference 

between conditions was which domain was instantiated as the lost cause; relationship, friends, or academics.   

2.2  Results 

Mean importance ratings. For simplicity, we only present results of paired samples t tests using the 1-5 importance 

ratings using a Bonferoni correction. Analyses of the other measures are consistent with the reported results. Consistent 

with pilot studies, participants rated academics as more important than relationship (t (58) = 7.28, p < .01) and friends 

(t (58) = 8.23, p < .01). There was no difference between relationship and friends (t (58) = 0.146, p = .88). 

Choice. To analyze choice over time, we split the data into 10 sequential blocks of trials, calculating the choice 

frequency for each domain in each block. Mean choice proportions for each condition are shown in Figure 1 with the 

domain instantiated as a lost cause highlighted. To examine choice behavior, individual change scores across the ten 

blocks of trials were calculated for each participant in each domain with negative scores indicating de-escalation of 

resource allocation across trials, and positive scores indicating increased resource allocation. To test whether choices 

between the lost cause and the other two domains differed, we performed a repeated measures ANOVA on the change 

scores from each domain across the three conditions revealing a significant interaction between domain change scores 

and which domain was the lost cause (F(4, 120) = 2.658, p < .05, partial eta
2
 = .081). 

When academics (the most important domain) was the lost cause, participants escalated their resource allocation to 

academics as trials progressed, chasing a lost cause (mean change score = 2.03, SD = 2.83, significantly different than 

0, t (30) = 3.99, p < .01). When the friends domain was the lost cause, participants cut their losses for friends, 

allocating fewer choices to the domain as trials progressed on average (mean change score = -1, SD = 2.68) though this 

was not significantly different than 0 (t (15) = 1.49, p = 1.57). When relationships was the lost cause, participants 
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neither escalated nor de-escalated resource allocation to that domain across trials (mean change score = 0.1765, SD = 

2.5,  t (15) = 1.49, p = 1.57).  

The status of each domain is a direct function of choice frequency (given the feedback structure). When participants 

were able to cut their losses, that is stop selection of domains that were not advantageous (friends and relationships), 

they did better overall and had M = 2.05 in each of the lost cause domains and an overall mean of 32.45 across all 

domains. In contrast, when the lost cause was in the domain they cared most about (academics) they chased the lost 

cause earning fewer points altogether  with academics getting M = 24.4 and M = 11.96 across all three domains which 

is significantly lower than the mean final status of the other two groups (t (58) = 3.17, p < .01, d = .8196). 

 

Figure 1. Experiment 1 choice frequency. The mean choice frequency across block of ten trials for each 

domain is displayed for each condition. The lost cause, indicated for each condition above the graph, is 

represented by the dashed line. 

3  Experiment 2 

To control for differences in the domains, this experiment used the same paradigm, but with three academic classes as 

the domains making all feedback on the same scale of grades. Classes were chosen so that there would be no clear a 

priori differences in domain importance. We predicted that participants in Experiment 2 should cut their losses in the 

lost cause, regardless of which domain was instantiated as the lost cause. 

The same procedure from Experiment 1 was used with 72 participants. The three domains in this experiment were 

three academic classes, History, English, and Math. Participants were instructed to allocate their studying time among 

the three classes as they wanted over the course of 100 simulated days. 

3.1 Results and Discussion 

Mean importance ratings show that English was rated less important than History (t (71) = 4.95, p < .01) and Math (t 

(71) = 2.67, p < .01). There was no difference in importance ratings between History and Math (t (71) = 2.076, p = 

.05). Figure 2 shows the mean choice proportion for each domain across trials. In each condition, participants initially 

allocated more resources to the lost cause (presumably attempting to keep the three domains equal before realizing it 

was a lost cause), but decreased their choices for the lost cause as trials progressed. There was a significant interaction 

between change scores from each domain and the three lost cause conditions (F (4, 154) = 10.55, p. < .01, partial eta
2
 = 

2.15). The decrease in choices for the lost cause was significant for English (M = -1.42, t (32) = -3.729, p < .01), 

History (M = -1.33, t (26) = -2.66, p = .013), and Math (M= -1.95, t (20) = -4.34, p < .01). 

Experiment 2 showed that when the three domains were comparable, participants cut their losses. That is, they behaved 

quite normatively. We designed the stimuli so that the three domains would be equally important. Though the 

importance ratings differed, this was driven primarily by English being rated less important than History or Math. The 

difference in ratings between History and Math was very small and non-significant with no class clearly more 

important than the other two.  To further test the explanation that the importance of the domain is crucial to chasing a 

lost cause Experiment 3 was designed to extend both of the previous experiments using three academic classes but 

manipulating the importance of one. 
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Figure 2. Experiment 2 choice frequency. The mean choice frequency across block of ten trials for each domain is 

displayed for each condition. The lost cause, indicated for each condition above the graph, is represented by the dashed 

line. 

4  Experiment 3 

In this experiment we used the academic classes of History, Sociology, and Psychology. The importance of one 

domain, Psychology, was manipulated by telling Participants that “although you would like to have the highest GPA at 

the end of the quarter, Psychology is required for your major and you need to obtain a C or better to avoid retaking the 

class”.  

Experiment 3 followed the same procedure as the first two experiments with 96 undergraduate participants with the 

exception of the additional instructions. 

4.1  Results and Discussion 

The manipulation of domain importance was successful with participants rating Psychology as more important than 

History (t (95) = 10.31, p < .01), and Sociology (t (95) = 9.06, p < .01).  

Mean choice frequencies for are shown in Figure 3. In the conditions where Sociology and History were the lost cause, 

choices mirrored the results from Experiment 2. Testing choice frequency change scores against 0 show that 

participants cut their losses for both Sociology (M = -1.94, t (32) = -4.31, p < .01) and History (M = -1.94, t (32) = 

-5.016, p < .01). In the condition where the manipulated domain, Psychology, was the lost cause, participants chased 

the lost cause, increasing their allocation of time for Psychology (M = 1.4, t (32) = 2.986, p < .01). 

The mean value of each domain (essentially their GPA at the end of the game) reflects the optimality of choice 

strategy. In the Sociology and History conditions, participants on average failed the lost cause, but passed their other 

two classes (the mean scores of 49 and 25 are represented as a C and D respectively during the game), while in the 

Psychology condition, where participants chased the lost cause, the mean ending values indicate that on average a 

participant in this condition spent so much time on Psychology that he or she failed all three classes. Averaging the 

final status of the three domains for an individual is analogous to a semester GPA. Using this measure participants in 

the Psychology condition were significantly lower than participants in both the History condition (t (61) = 5.49, p < 

.01, d = 1.4) and the Math condition (t (61) = 6.18, p < .01, d = 1.6). There was no difference between the History and 

Math conditions (t (64) = .393, p = .696, d = .09). 
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Figure 3. Experiment 3 choice frequencies. The mean choice frequency across block of ten trials for each domain is 

displayed for each condition. The lost cause, indicated for each condition above the graph, is represented by the dashed 

line. 

5  Discussion 

There is a large body of work in judgment and decision making detailing how human choices deviate from what are 

considered rational or normative standards (Shafir & LeBoeuf, 2002). Our work follows, expands, and qualifies this 

basic finding by showing that in repeated choices, people will chase a lost cause when the domain is important. In other 

situations, individuals are able to cut their losses. In contrast to sunk cost studies, the present tasks made the 

opportunity costs available but showing participants that choosing other options would improve the overall status of 

things, whereas remaining in the lost cause will eventually diminish all gains. This was sufficient information for 

individuals to make adjustments in domains that they cared equally about but not when one domain was more 

important.  

Aging, negative life events, and economic forces are but a few factors that can place people in a position where they 

would be better off disengaging from an activity once enjoyed (Worsch, et al., 2004; Dohrenwend & Dohrenwen, 

1974; Held, 1986; Wrosch & Freund, 2001). For example, new parents may find that they are unable to spend the same 

amount of time pursuing leisure activities as they once could. Beyond external changes, personal choices about time 

allocation can have detrimental effects on well being. Expanded work hours for example have negative effects on 

marital relations (White & Keith, 1990). Our results could lead to research on possible interventions designed to 

improve well being, including making opportunity costs more salient and reframing a problematic domain to minimize 

its perceived importance. 
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Abstract

This work investigates the implicit discounting that humans use to compare rewards that may occur at different points
in the future. We show that the way discounting is applied is not constant, but changes depending on context and in
particular can be influenced by the apparent complexity of the environment. To investigate this, we conduct a series of
neurophysics experiments, in which participants perform discrete-time, sequential, 2AC tasks with non-episodic charac-
teristics and varying reward structure. The varying rewards in our games cause participants behaviour to change giving
a characteristic signal of their future reward discounting. Model-free, model-based and hybrid reinforcement learning
models are fit to participant data, as well as a lighter weight model which does not assume a learning mechanism. Results
show that the complexity of the task affects the geometric discount factor, relating to the length of time that participants
may wait for reward. This in turn indicates that participants may be optimising some hidden objective function that is
not dependent on the discount factor.
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1 Introduction

Our brains adapt our behaviour in order to improve some measure of success in the world. Because our life is a con-
tinuous, ongoing experience, the mechanism by which we learn cannot always rely on having previously experienced
present conditions, nor is it always possible to partition previous experience into well defined parts. In the terminology
of reinforcement learning, we learn mostly on-line in a non-episodic environment, and we are (hopefully) perpetual learners,
i.e. the learning is never completed.

In sequential decision making tasks, rewards may occur distributed over time, yet need to be related to the present time
for decision making. To address this, a reward, r, that arises ∆ units of time in the future, can be viewed as having
the same value as an immediate reward f(∆)r, where f(∆) ≤ 1 is a monotonically non-increasing function (i.e. f
is a discount function). This is often viewed as a trick to allow learning (behavioural adaptation) to occur as soon as
new experience is available. We call f(∆)r the present value of future reward r. This discounting of future rewards
may be more than just a mathematical convenience trick. For instance, it is often also used to explain how humans
defer immediate gratification in favour of more substantial long-term outcomes, e.g. in neuroscience and economics.
However, two agents that model the world in the same way, but use different discount functions f , will not have exactly
the same preferences, nor will their decisions always coincide with the optimal choice evaluated over their lifetimes. As a
consequence, a sophisticated on-line learning agent may sometimes wish to change their discount function f depending
on the context, e.g. the complexity of the task, and we show evidence that humans do precisely that.

Game 1A

r(1, a1, 2) $0
r(2, a1, 1) $25
r(1, a2, 1) $25
r(1, a2, 2) $0
r(2, a2, 1) $x

Game 2A

r(1, a1, 2) $0

r(2, a1, 1)
{ $50 w.p. x

$0 w.p. (1-x)
r(1, a2, 1) $10
r(1, a2, 2) $0
r(2, a2, 1) $10

Games type A

Game 1B

r(1, a1, 2) $0
r(2, a1, 1) $5
r(3, a1, 1) $x
r(1, a2, 1) $20
r(1, a2, 2) $0
r(2, a2, 3) $0
r(3, a2, 1) $25

Game 2B

r(1, a1, 2) $0
r(2, a1, 1) $10

r(3, a1, 1)
{ $80 w.p. x

$0 w.p. (1-x)
r(1, a2, 1) $10
r(1, a2, 2) $0
r(2, a2, 3) $0
r(3, a2, 1) $10

Games type B

Figure 1: Transition dynamics (central) games played by participants in experiments, step-wise effects of the two actions,
a1 and a2, shown separately for clarity. Reward structures (left/right) describe two games for each game type – r(s, a, s′)
is reward for transitioning from state s to s′ under action a. Non-deterministic binary outcomes are labelled w.p. (with
probability). All games have non-deterministic transitions in state 1 for action a2. Games 2A & 2B have some non-
deterministic rewards. The value of x changes slowly during play.

Related work Reinforcement learning models offer a biologically plausible framework in which to study human be-
haviour in sequential learning tasks [3–5]. In particular, evidence for reward prediction errors in the brain, have a close
analog to the temporal differences in the widely used temporal difference (TD) learning algorithm [4].

In discrete time tasks, some RL methods, including TD, use a geometrically discounted reward, often called γ ∈ [0, 1].
Here, a guaranteed reward, r, lying k time-steps in the future is assigned present value γkr. Values of γ < 1 allow
on-line algorithms (those that continuously incorporate new experience) to approximately optimise the average reward
per time-step [6]. However, for machine learning practitioner γ is typically a free parameter, which is chosen a priori to
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suit the learning conditions. The choice of γ can have a profound effect on the trade-off between accuracy and speed of
convergence [7], with larger γ leading to more accurate but slower learning.

The work from [1] tests human participants on episodic state-based 2AC choice tasks, and fits multiple RL models to
the data, including model-based1, model-free, and hybrid (combined model-based/model-free, see [2]) variants. They
find that a participants’ behaviour is best described by hybrid models, and estimate γ values close to 1. However, they
use tasks with episodic structure, where the length of episodes is fixed. In these tasks, it is sufficient for participants to
optimise the average reward per episode, and update learning after each episode, therefore avoiding the need for on-line
learning .

Tasks with non-uniform length to their episodes (and unknown overall time constraints), require participants to optimise
over a longer, uncertain period of time, and it is no longer feasible to use γ = 1. Work described in [5] investigates such
a task, where they find that participants with chemically elevated seratonin levels appear to use lower γ values, than
when under control conditions. The authors link lower γ values to more impulsive behaviours, i.e. geared towards
more immediate gratification. This in turn, may help to explain some of the characteristic behavioural changes that are
associated with recreational drug use. However, the work from [5] only fit one RL model to the data, without the same
comparative evaluation across multiple models seen here and in [1]. More importantly, we investigate how different
degrees of task complexity affect the induced reward discounting.

Contributions The proposed poster will demonstrate the following contributions:

• We develop a suite of discrete-time sequential state-based 2AC (two action choice) tasks, that induce behaviours
designed to elicit human reward discounting characteristics.

• We consider a suite of model-free, model-based, and hybrid reinforcment learning (RL) methods, and infer the
maximum-likelihood parameters for each model on each participant’s data, including the geometric discount γ.
We call these bottom-up analysis methods.

• We develop a (top-down) method for inferring γ without assuming a specific learning mechanism.
• We compare both approaches on synthetic data, and show that bottom-up methods (unsurprisingly) perform

more accurately on data generated by a matching model. Conversely, our top method accurately recovers γs
from data generated by a wide range of RL methods and parameters.

• Some model-free RL methods consistently outperform other RL models on experimental data. The top-down
method consistently gives predictions of γ, which are more stable than the best bottom-up methods and have
greater evidential weight (using Akaike’s information criterion (AIC)).

• More complex tasks are associated with higher values of γ (using both bottom-up and top-down analysis), and
γ has a strong relationship with the characteristic time-scale of the task. However, noise characteristics have at
best a weak effect on the induced value of γ.

This last finding indicates that an individual’s discounting function can change depending on context, and appears to be
influenced by the characteristic time-scale of the task. This may be surprising to some RL researchers, as the vast majority
of RL algorithms that use a discounting function keep that function fixed.

2 General Approach

We design sequential state-based 2AC tasks, whose reward structure change slowly, but unpredictably, during play at
a medium time-scale. Participants are told to optimise the total reward over the duration of a game, and the changing
reward structure forces them to continuously explore and adapt behaviour at the short time-scale to achieve this.

We define a participant’s planning timescale as the effective number of time-steps in the future, k, that a reward must be
for its present value to half that of its immediate value, i.e. r

2 = f(k)r. The task is designed such that a user is repeatedly
presented with a choice between an immediate small reward versus a longer term, larger reward. We refer to this as
a choice between shorter and longer paths. The changes in the reward structure are such that there are periods of the
experiment where even participants with very short planning timescale would still prefer to wait for larger rewards.
Conversely, there are also periods where even participants with very long planning timescales prefer the short term
rewards.

These changes in reward structure will therefore induce behavioural changes in the participants, causing them to switch
between preferring shorter paths to preferring the longer paths, and vice versa. These switches can help us to identify
each individual’s planning timescale, l, in terms of a step-wise geometric discount γ (where l = ln 0.5

ln γ ). A variety of games

1As with [1], we differentiate between model-free RL methods (pure value based learning), and model-based methods (e.g. includ-
ing an environmental model to accelerate learning and improve predictions).
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are used with different levels of complexity. Some games present a choice between waiting 1 or waiting 2 time-steps for
a reward. Other games present a choice between waiting 1 or waiting 3 time-steps for a rewards. We also explore
differences between games with deterministic but changing game rewards (Games 1A & 1B, see Section 4), versus games
with probabilistic rewards with changing distributions (Games 2A & 2B).

Figure 2: Performance on synthetic data (a) Average γ-recovery accuracy, ||γ̂ − γ||2. Data generated on game 1A using
generating agent and a selection of parameters, then γ recovered by inferring agent. (b) Average γ-recovery accuracy on
synthetic data averaged over all generating agents for a variety of generating parameters. (c) Corresponding averaged
Akaike’s information criterion (AIC). The best performance for each game is highlighted in bold.

3 Results

It is unclear a priori what learning approach participants will employ, whether or not it is equivalent to an RL method,
and if so whether it is model-based, model-free or hybrid. We use a gradient based method to find the maximum-
likelihood parameters for each method from observed traces of states, actions and rewards. A top-down method is
also developed, which assumes that a geometric factor is used to discount future rewards, but without assuming a
specific learning mechanism. For brevity the following shorthand is used for inference methods and RL algorithms: Top-
down (TD), SARSA Softmax (S-SM), SARSA ε-greedy (S-EG), Q-Learning Softmax (Q-SM), Q-Learning ε-greedy (Q-EG),
Model-based (MB) & Hybrid method combining Q-EG + MB (Hyb).

Synthetic Data Figure 2 (a) shows the root mean squared (RMS) γ-recovery accuracy between the recovered discount
factor, γ̂, and the generating value, γ, on synthetic data for a variety of methods. Each RL methods in the suite is used
both to generate synthetic data, and to recover γ. As expected, the recovery performance is best when the inferring agent
is the same as the generating agent. Figures 2 (b) and (c) respectively show the average RMS recovery accuracy and the
average AIC of each bottom-up and the top-down method on synthetic data. Data is averaged over a selection of all
agents, each with a variety of the parameters. The top-down method performs the best overall, and competes with the
best recovering model in all cases. Also, the top-down method has the best average AIC2 of all methods.

Experimental Data We next apply these methods to the experimental participant data. We fit each bottom-up and the
top-down models to each participant’s behaviour, and evaluate the strength of evidence for the given model (using AIC).
On the majority of individual participants, and averaged overall, the top-down model has the lowest AIC of all models.
Figure 3 (a) shows the mean recovered discount factors γ̂ for each game using both the top-down (TD) method and the
two best performing RL methods. We find γ̂ in reasonable agreement between these algorithms, both at the population
level and individually. To our knowledge, this is the first direct evidence that humans change their discounting function
depending on the complexity of the associated game, where complexity is measured in terms of characteristic timescale
between rewards. This shows an average γ̂ ∈ [0.55, 0.6] for games with a long-path of length 2 (1A & 2A) and an average
γ̂ ∈ [0.75, 0.9] for games with a long path of length 3 (1B & 2B). There is no discernable difference between games with
deterministic and non-deterministic rewards, e.g. Game 1A versus Game 2A.

To explore these results further, we plot in Figure 3 (b) the individually inferred discount factors γ̂ against the average
experienced path length, l̄ (time between visits to state 1). The dotted line represents the orthogonal least squares fit to
the data after individual variances have been normalised, and the positive slope is in agreement with our hypothesis
that longer average pathlengths lead to longer horizons. The pair of variables γ̂ and l̄ have a Pearson’s product-moment
correlation coefficient of r = 0.1833, and the corresponding 1-tailed test for a significant positive linear relationship

2AIC is chosen over BIC for simplicity. However, BIC penalises complexity, in terms of number of parameters, more heavily. RL
methods have more parameters than the top-down method, so the top-down approach would be preferred by either measure.
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Figure 3: (a) Average inferred discount factors γ̂ on per game basis, with top-down and two best performing RL methods
shown. (b) Individually inferred discount factors γ̂ versus the average pathlength, l̄, experienced by each participant in
each game. The dotted line shows the orthogonal least squares fit after normalising the variance. (c) Timeline of events in
a single step of a task. The current state is presented (phase 0), a choice is requested (phase 1), the choice is then made –
or assigned randomly on time-out (phase 2), the next state and reward is displayed (phase 3/0), and the game continues.

between the two variables gives a p-value of 0.055. The AIC values on participant data give greater support for model-
free reinforcement learning models than the model-based or hybrid models (not shown). This is in contrast to the findings
of [1] on fixed length episodic tasks. However, further investigations are required to determine if this is significant.

4 Methodology

Psychophysics experiments (N=24 participants) involved basic computer interaction and were conducted in accordance
with local ethics committee guidelines. Participants were presented with sequential decision making tasks (see Figure
2 (c)). At each time-step, the participant is presented with an image representing the current state. After a pause of
0.5 seconds, the participant chooses one of two actions within a further 1.5 seconds (or a random choice is made and
displayed). After another 0.5 seconds, the resulting state is presented along with a numeric reward, indicating the value
of the most recent transition. The reward structure varies slowly so participants must continually explore and adapt.
Participants are not told how long the task will last, and therefore must view the task as one with an unknown horizon.
There were 4 fundamental tasks, shown in Figure 1, and each participant was presented all 4 tasks in a random order
with breaks. Each task (game) repeatedly presents the participant with (limited) control over whether she takes a longer
path leading to a larger reward, or a shorter path that leads to a smaller reward. The expected value of the larger reward
is varied throughout play. The shorter path in each game is of length 1 time-step. Games of type A (Game 1A & 2A)
have a long path length of 2 steps. Games of type B (Game 1B & 2B) have a long path length of 3 steps. Participants are
instructed to try to achieve as large a total reward as possible over the lifetime of each game.

Top Down Method To predict γ with the top-down method, we (a) estimate the underlying policy at each time-step, (b)
identify the time points in the trace when the dominant action in the policy changes, and (c) use gradient ascent to deter-
mine the maximum likelihood value for the gaussian/exponential filter width over recent rewards and a corresponding
γ which best explains the switching points.
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Abstract

Imitation learning or learning from demonstrations is a means of transferring knowledge from a teacher to a learner, that
has led to state-of-the-art performances in many practical domains such as autonomous navigation and robotic control.
The aim of the learning agent is to learn the expert’s policy through trajectories demonstrated by the expert. One solution
to this problem is inverse reinforcement learning (IRL), where the learner infers a reward function over the states of the
Markov Decision Process on which the mentor’s demonstrations seem optimal. However, since expert trajectories are
practically expensive, it becomes crucial to minimize the number of trajectory samples required to imitate accurately.
Moreover, when the state space is large, the agent must be able to generalize knowledge acquired from demonstrations
covering a small subset of the state space, confidently to the rest of the states. To address these requirements, we first
propose a novel reduction of IRL to classification where determining the separating hyperplane becomes equivalent to
learning the reward function itself. Further, we also use the power of this equivalence to propose a Knows-What-It-
Knows (KWIK) algorithm for imitation learning via IRL. To this end, we also present a novel definition of admissible
KWIK classification algorithms which suit our goal. The study of IRL in the KWIK framework is of significant practical
relevance primarily due to the reduction of burden on the teacher: a) A self-aware learner enables us to avoid making
redundant queries and cleverly reduce the sample complexity. b) The onus is now on the learner (and no longer on the
teacher) to proactively seek expert assistance and make sure that no undesirable/sub-optimal action is taken.

Keywords: Reinforcement Learning; Markov Decision Process; Learning
from Demonstrations; Imitation Learning; KWIK; Knows what it
knows; Online learning; Inverse Reinforcement Learning;
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1 Introduction

Imitation learning is broadly solved in two different ways. One approach is to pose it as a supervised learning problem
where a classifier learns the action labels for all states in the state space based on training data (the expert’s demonstra-
tions). The other approach is a model-based solution that uses inverse reinforcement learning (IRL) to find a mapping
from states to real-valued rewards that makes the expert trajectories seem optimal. The learner hence follows the optimal
policy on these rewards. IRL methods have the advantage of representing the acquired knowledge succinctly as rewards
over the states.

In practice, both these approaches could suffer from a considerable burden on the teacher who is expected to produce
sufficient trajectories for accurate imitation. What makes this more undesirable is that many of the trajectories happen
to be redundant and yet expensive. To this end, Judah et al. [4] have proposed active learning algorithms for supervised
learning based imitation learning and analyse their PAC label complexity. On the other hand, there has been very little
work on formally understanding active imitation learning through IRL. Silver et al. [8] have studied active learning
heuristics where the learner requests trajectories in such a way that the knowledge about the reward function acquired is
either novel or reduces uncertainty in the current beliefs. Lopes et al. [6] only provide an empirical technique to actively
query by choosing states with the greatest uncertainty with respect to the policy that was learnt using Bayesian IRL.

A drawback with all of the above active learning algorithms is that they assume that the learner has complete access to
the state space and can also query the expert for a demonstration on any of these states. Often this might not be desirable
because some states may not even be realizable and furthermore, this knowledge might not be accessible to the learner.
Chernova and Veloso [2] address this by allowing the learner to ‘interactively’ request the teacher’s demonstrations
whenever it encounters a state where its confidence on the learnt policy is below a threshold. They provide an algorithm
that pertains only to the supervised learning based imitation learning and support it with empirical results.

To overcome these multiple issues, we propose the novel idea of considering imitation learning in the Knows-What-It-
Knows (KWIK) framework [5]. A KWIK algorithm is an online learning algorithm that is considered to be self-aware i.e.,
if and only if the learner believes that it has insufficient experience to predict on a new sample, does the learner ask the
expert for the answer. Considering imitation learning in this framework significantly benefits us in four ways. First, we
overcome the problems that come with allowing the learner to query on any arbitrary state. The learner makes queries
only on the states that it encounters. Secondly, we are able to allow the learner to enact its policy and learn on-the-fly.
Thirdly, the burden on the expert is substantially reduced as the learner only selectively requests demonstrations. Finally,
we are guaranteed that the learner does not mistakenly assume that it knows what to do when it actually does not. This
is of practical importance because we would not want the learner to take a non-optimal and possibly dangerous action
which could have been avoided if the expert had intervened.

Though Walsh et al. [10] study what is called as a generalized apprenticeship learning protocol in relation to KWIK
learnable classes, their problem domain, as they claim, is fundamentally different from the imitation learning problem
that we consider. They study a learner that has access to the rewards during exploration, while the teacher augments
this knowledge.

Next, we propose a reduction of the KWIK apprenticeship learning problem via IRL to KWIK classification. Note that
this reduction to classification is not the same as direct imitation learning methods that use a classifier to learn a mapping
from states to actions. We are primarily interested in finding the unknown reward function defined over the state-action
pairs and not just what action label a state corresponds to. We show that learning the reward function is equivalent to
learning the separating hyperplane in the classification problem.

Our next contribution in this work is a novel definition of KWIK classification that applies to this equivalence in imitation
learning. The KWIK framework requires that the learner achieves point-wise accuracy, unlike in a PAC-learner. That
is, if the learner makes a prediction on a new sample without seeking expert advice, the learner must be ε-accurate.
However, it is not possible to define ε-accuracy on discrete labels (unless we consider a continuous action space in which
case we would opt for KWIK online regression algorithms [9]). One could overcome this by defining accuracy with
respect to the prediction about the distance of the sample from the separating hyperplane, as considered in some selective
sampling algorithms [1, 3]. However, these algorithms have significantly different assumptions than that expected by the
KWIK imitation learning agent and are hence not applicable. We further motivate the validity of our definition of KWIK
classification by providing polynomial KWIK bounds for 1-D classification. Finally, we also provide a KWIK protocol
for imitation learning that uses an underlying KWIK classifier that suits our requirement that the learner takes ε-optimal
actions.

2 Preliminaries

Definition A Markov Decision Process (MDP) is represented as a 5-tuple (S,A, T, γ,R) where S is a set of states; A is
a set of actions; T is a set of state transition probabilities; γ ∈ (0, 1] is a discount factor; and R : S → A is the reward
function.
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We assume that the state-action pairs can be mapped to a k−dimensional vector of features, φ : S × A → [0, 1]k. For
example, in a maze where a puddle has to be avoided we could have three boolean features each describing whether the
state is a puddle or a goal or neither. Thus, the actual reward R(s, a) corresponding to an action at a state is equal to
~w · φ(s, a) where w ∈ Rk. We need to ensure that ||w||1 ≤ 1 so that the rewards themselves are upper-bounded by 1.

A policy π is a mapping from states to (probability distributions over) actions. The value of a state-action pair under a
policy π is

Qπ(s, a) = Eπ[R(s, a) +
∑∞
t=1 γ

tR(st, at)|π]
= ~w · Eπ[φ(s, a) +

∑∞
t=0 γ

tφ(st, at)|π]
where s1, s2 . . . are the subsequent states visited by following the policy and a1, a2 . . . are the corresponding actions taken
at those states. Thus we see that the Q−values can also be linearly parametrized. We assume that the learning agent is
presented these Q−value parameters in the form of φQ : S × A → Rk. The IRL task now reduces to interacting with the
expert and making an accurate estimate of the vector ~w.

Definition We define the Knows-What-It-Knows protocol with parameters (ε, δ) (ε ∈ [0, 1], δ ∈ [0, 1)) as follows . Con-
sider a hypothesis space H ⊆ (X → Y ) from which the adversary picks a target function h∗ ∈ H . During a run, for each
time-step the adversary picks an input x ∈ X for which the learner either emits a ⊥ (dont-know) or makes a prediction
ĥ(x). If the learner emits ⊥, the adversary informs the learner of h∗(x). For an algorithm to be an admissible KWIK
algorithm, we need that with probability 1− δ the following conditions hold good:

• Whenever the algorithm makes a prediction ĥ(x), |ĥ(x)− h∗(x)| ≤ ε

• The number of time-steps for which the algorithm emits ⊥ is bounded by B(ε, δ) a function that is polynomial
in 1/ε, 1/δ and some parameters that define H .

3 KWIK-Learner for Binary Classification

Definition We define an admissible KWIK-learner for binary classification as follows. We assume that the hypothesis
class is the set of separating hyperplanes {~w|~w ∈ Rk, ||~w||1 ≤ 1}. If the adversary picks a ~w∗, the correct label of ~x is
given by SGN(~w∗ · ~x) ∈ {+1,−1}. For the learner to be admissible, the following must hold good for every run, with
probability 1− δ :

• Whenever the algorithm makes a prediction on x, if |~w∗ · ~x| > ε, then ĥ(~x) = SGN(~w∗ · ~x)

• The number of time-steps for which the algorithm emits ⊥ is bounded by B(ε, δ) a function that is polynomial
in 1/ε, 1/δ and k.

Intuitively, we require that the algorithm predicts correctly on all the points that are sufficiently far away from the
separating hyperplane; if the sample point is within the ε−margin of the hyperplane, we allow the classifier to make
mistakes.

This may be compared to the KWIK-MB model proposed by Sayedi et al. [7] where the KWIK algorithm is also allowed
to make a fixed number of mistakes. However, our model is significantly different in that we allow infinitely many
mistakes but restrict them to a very small space around the separating hyperplane. If we did not allow the learner to
make infinitely many mistakes, we would expect the learner to perennially refine its knowledge in the small space around
the hyperplane. This might require exponentially many queries to accurately place the hyperplane. Furthermore, we will
see that our condition also eventually suits our imitation learning problem where the learner is required to be ε-optimal.

Next, we discuss assumptions about noise in the expert’s labels. In the KWIK framework, we assume that the noisy
observation produced by the expert has an expectation equal to the correct output. Thus, for classification we assume a
teacher to be (εT , εY )-optimal, if the teacher outputs y for an input x such that:

E[y] > εY if ~w∗ · ~x ≥ εT
E[y] < −εY if ~w∗ · ~x ≤ −εT

In other words, we expect that for all input points that are at least εT away from the separating hyperplane, the expert
labels them correctly with probability at least 1/2+εY /2. A good teacher will have a high εY and a small εT . We note that
this is a significantly relaxed assumption when compared to the selective sampling approach of Dekel et al. [3] where
they assume that the accuracy of the expert increases with the distance from the separating hyperplane.
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3.1 A simple KWIK 1-D classification algorithm

We analyse a naive algorithm for 1-D classification to demonstrate how the KWIK conditions we proposed allow us
to design algorithms with a KWIK-bound polynomial in 1/ε and 1/δ even under the relaxed noise assumption of the
teacher’s outputs. Assume the input space spans unit length and that 4εT < 2ε < εY , which is natural because it is not
possible for the learner to outdo the teacher.

The learning algorithm discretizes the input space into 2
ε segments. When the adversary presents a sample belonging to a

segment, the algorithm emits ⊥when the number of samples already queried in this segment is fewer than O( 1
ε2 ln(

2
εδ )).

When the number of samples is however greater than this, we can show that if the segment is completely outside the
εT -margin around the separating point, the proportion of queried points in this segment that would have been labelled
correctly by the expert will be at least 1/2 + εY /2 − ε > 1/2 with a high probability of 1 − εδ/2. Thus, after acquiring
sufficient samples in each of the segments, we will correctly learn the labels of all the segments outside an ε−margin of
the separating point with probability 1− δ. Thus, the number of queries made will be O( 1

ε3 ln(
2
εδ )).

4 KWIK Inverse Reinforcement Learning Protocol

We now present the reduction of IRL to KWIK classification. At any state s ∈ S, the learner is presented with a set of
at most |A| actions of which the learner is required to pick an ε−optimal action. Let ~w be the unknown weight vector
for the rewards. We assume that the learner has access to a KWIK classification algorithm whose input space is Rk and
whose accuracy parameter is set to be ε/(|A| − 1).

For some a∗, a′ ∈ A, we expect the classifier to predict SGN(~w · (φQ(s, a∗) − φQ(s, a′))) given (φQ(s, a
∗) − φQ(s, a′)) as

input. If it predicts, say, +1, from the conditions we stipulated, we know that ~w · (φQ(s, a∗)−φQ(s, a′)) > ε/(|A| − 1). We
will use this property to use the classifier to identify the action that corresponds to nearly the highest Q-value.

If the classifier is unable to predict, and instead outputs a ⊥ we request expert advice in the form of a preference over
these pair of actions. We note that we could study various other modifications of this algorithm, where the expert only
provides knowledge about the best action amongst all actions instead of pairwise preferences.

Algorithm 1 KWIK Inverse Reinforcement Learning Protocol

Require: Teacher T (εT , εY ) with true weight vector for rewards ~w, Admissible KWIK Classifier C( ε
|A|−1 , δ) with weight

estimate for rewards ~̂w
for t = 1, 2, . . . do

s = Current State of the Environment
âbest = a1
for i = 2, . . . |A| do

Present φQ(s, ai)− φQ(s, âbest) to C
if Output of C =⊥ then

Present φQ(s, ai)− φQ(s, âbest) to T
T outputs noisy observation of SGN(~w · (φQ(s, ai)− φQ(s, âbest)))
C learns from output of T and updates ~̂w
if Output of T = +1 then

âbest = ai
else
C outputs SGN( ~̂w · (φQ(s, ai)− φQ(s, âbest)))
if Output of C = +1 then

âbest = ai
Perform âbest

In Algorithm 1, at any state the learner scans all the possible actions (which is at most |A|) and maintains a candidate ac-
tion that it considers to be the best amongst the actions that have been iterated through. The correctness of this algorithm
would follow if we show that after iterating over all the actions, if the algorithm has not queried the teacher, it always
chooses an ε-optimal action. We prove the following lemma from which the above statement follows directly by setting
i = |A|.

Lemma 4.1 After iterating over the first i actions, if the algorithm has not made any queries, the candidate action picked by the
algorithm is (i− 1)

ε

|A| − 1
− optimal with respect to the best action amongst the first i actions.
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Proof The claim clearly holds good when i = 1. For any arbitrary round i < |A| assume that the claim is true. That is, if
âi is the candidate action picked by the algorithm, and a∗i is the best action amongst the first i actions, then:

~w · φQ(s, âi) ≥ ~w · φQ(s, a∗i )− (i− 1)
ε

|A| − 1
(1)

If the algorithm chose ai+1 over âi, we know from the KWIK classifier conditions that

~w · φQ(s, ai+1) ≥ ~w · φQ(s, âi)−
ε

|A| − 1
(2)

If this decision were to be inconsistent with our claim, ai+1 must not be an i ε
|A|−1 -optimal action (among the i+1 actions).

Then a∗i must still be the best action amongst the first i + 1 actions. However, from inequalities (1) and (2), we can see
that:

~w · φQ(s, ai+1) ≥ ~w · φQ(s, a∗i )− i
ε

|A| − 1
which makes ai+1 an i ε

|A|−1 -optimal action amongst the first i+ 1 actions, which is a contradiction.

On the other hand, if the algorithm still chose âi over ai+1, it would be inconsistent with our claim only if ai+1 was the
best action amongst the i+ 1 actions and if âi was not sufficiently optimal. That is,

~w · φQ(s, âi) < ~w · φQ(s, ai+1)− i
ε

|A| − 1
(3)

However, this implies a much weaker inequality:

~w · φQ(s, âi) < ~w · φQ(s, ai+1)−
ε

|A| − 1

which would have ensured that the KWIK classifier indicated that ai+1 was a better action. Hence, by induction we show
that the lemma holds good for all i = 1, . . . |A|.

5 Conclusion and Future Work

In this work, we have provided an understanding of IRL in the KWIK framework, which has not been studied before.
Apart from the practical relevance of a KWIK imitation learning algorithm, this setup provides scope for theoretical
guarantees that can be provided for active query based IRL which have not been provided so far. We have also laid the
groundwork for a new class of algorithms that can be termed as ‘KWIK classifiers’ that will suit tasks similar to IRL-
based imitation learning. Since the existing selective sampling based classification approaches do not apply here due
to their strong assumptions, an appropriate direction for future work will be to design admissible KWIK classification
algorithms that suit our conditions.
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Abstract

This paper introduces a general principle for automated skill acquisition based on the interaction of a reinforcement
agent with its environment. Our approach involves identifying a hierarchical description of the given task in terms
of abstract states and extended actions between abstract states. Identifying such useful structures present in the task
often provides ways to simplify and speed up reinforcement learning algorithms and also enables ways to generalize
such algorithms over multiple tasks without relearning policies for the entire task. In our approach, we use ideas from
dynamical systems to find metastable regions in the state space and associate them with abstract states. We use the
spectral clustering algorithm PCCA+ to identify suitable abstractions aligned to the underlying structure. The clustering
algorithm also provides connectivity information between abstract states which is helpful in learning decision policies
across such states. Skills are defined in terms of the transitions between such abstract states. These skills are independent
of the current tasks and we show how they can be efficiently reused across a variety of tasks defined over some common
state space. Another major advantage of the approach is that it does not need a prior model of the MDP and it works
well even when the MDPs are constructed from sampled trajectories. We empirically demonstrate that our method
finds effective skills over a variety of domains. An important contribution of our work is the extension of automated
skill acquisition to dynamic domains with an exponential state space such as the Infinite Mario game using function
approximation of the state space through CMAC encoding with hashing.

Keywords: Reinforcement Learning; Markov Decision Process; Automated
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1 Motivation and Introduction

Automated discovery of skills or options has been an active area of research and several approaches have proposed for
the same. The current methods could be broadly classified into sample trajectory based and partition based methods.
One existing approach is to identify bottlenecks from trajectories through state space [4] and cache away policies for
reaching such bottle neck states as options. Another approach is to identify strongly connected components of the MDP
using clustering methods, spectral or otherwise and to identify access-states that connect such components as in [6]. Yet
another approach is to identify the structure present in a factored state representation [1] and find options that cause what
are normally infrequent changes in state variables. Identifying subtasks using betweeness centrality measures based on
a graphical representation of an agent’s interaction with its environment is another method that has been tried [9]. While
these methods have had varying amounts of success, they have certain deficiencies. Bottleneck based approaches don’t
have a natural way of identifying the part of the state space where options are applicable without external knowledge
about the problem domain. Spectral methods need some form of regularization in order to prevent unequal splits, and
this can lead to arbitrary splitting of the state space.

In this paper, we present a framework that detects well-connected or meta stable regions of the state space from a MDP
model estimated from trajectories. We use PCCA+, a spectral clustering algorithm from conformal dynamics [11] that
not only partitions the MDP but also returns the connectivity information between the regions. We then propose a
very effective way of constructing options using the same framework to take us from one metastable region to another.
Using these options, we use SMDP Value learning to learn a policy over the subtask to solve the given task. One major
advantage of the approach is that we get the policy for free while doing the partitioning by exploiting the membership
functions returned by PCCA+. Our approach is able to learn reasonably good skills even with limited sampling which
makes it useful in situations where exploration is limited by the environment costs. It also provides a way to refine the
abstractions in an online fashion without explicitly reconstructing the entire MDP. More importantly, we extend it to the
case where the state space is so large that exact modeling is not possible. In this case, we utilize function approximation
through state-aggregation and estimate the transition model on these aggregated states. The approach is shown to work
well in practice using such an approximation on the Mario domain.

The main advantages of the PCCA+HRL method are:

1. PCCA+HRL does not require any prior model for the MDP and can acquire skills from sampled trajectories.
2. The clustering algorithm produces characteristic functions that describe the degree of membership for all the

states belonging to a particular metastable region and also provide a powerful way to naturally compose options.
3. PCCA+HRL looks for well-connected regions and not bottle-neck states and hence discovers options that are

better aligned to the structure of the state space.
4. PCCA+HRL algorithm also returns connectivity information between the metastable regions, which allows us

to construct an abstract graph of the state space, where each node is a metastable region thus combining both
spatial and temporal abstractions meaningfully.1

5. Since the method works with sampled trajectories, PCCA+HRL can be run on abstract state representations.

2 Spatial Abstraction using PCCA+

Spectral clustering was made popular by the works of [8], [5] and [2]. Although the spectra of the Laplacian preserves
the structural properties of the graph, clustering data in the eigenspace of the Laplacian does not guarantee this. For
example, k-means clustering [7] in the eigenspace of the Laplacian will only work if the clusters lie in disjoint convex sets
of the underlying eigenspace. Partitioning the data into clusters by projecting onto the largest k-eigenvectors [5] does
not preserve the topological properties of the data in the eigenspace of the Laplacian. For our task of spatial abstraction,
we require a clustering approach that exploits the structural properties in the configurational space of objects as well as
the spectral sub-space, quite unlike earlier methods. We take inspiration from the work of [11] which proposes a spectral
clustering algorithm PCCA+ based on the principles of Perron Cluster Analysis of the transition structure. We extend
their analysis to detect spatial abstractions in autonomous controlled dynamical systems.

In this approach, the spectra of the Laplacian L (derived from the adjacency matrix S) is constructed and the best trans-
formation of the spectra is found such that the transformed basis aligns itself with the clusters of data points in the
eigenspace. We use a projection method to find the membership of each of the states to a set of special points lying on
the transformed basis, which we identify as vertices of a simplex in the Rk subspace (the Spectral Gap method is used to
estimate the number of clusters k). For the first order perturbation, the simplex is just a linear transformation around the
origin and to find the simplex vertices, we need to find the k points which form a convex hull such that the deviation of

1While it is possible to create such graphs with any set of options using some ad-hoc processing based on domain knowledge, the
structure of the graphs so derived depend on the set of options used and may not reflect the underlying spatial structure completely.
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all the points from this hull is minimized. Hence, we start by finding the data point which is farthest located from the
origin and iteratively identify data points which are located farthest from the hyperplane fit to the current set of vertices.
Please refer to [11] for a complete description of the approach.

The PCCA+ algorithm returns a membership function, χ, defining the degree of membership of each state s to an abstract
state Sj . The connectivity information between two abstract states (Si, Sj) is given by (i, j)th entry of χTLχ while the
diagonal entries provide relative connectivity information within a cluster. The connectivity information is utilized to
learn decision policies across abstract states. This framework also contains an intrinsic mechanism to return information
about the goodness of clustering of states from the presence of sharp peaks (indicates good clustering) in the eigenvalue
distribution.

3 Option generation from PCCA+HRL

We use the partitions of the state space into abstract states along with the membership function to define options [10].
We use the structural information obtained to define behavioral policies for the subtasks independent of the task being
solved as we believe that to find a hierarchical optimal solution for the entire task, it is not necessary to solve the subtasks
optimally and that any behavior interpreted by exploiting the structure present in the domain can be used. This claim
is strengthened by our observations on experiments run on several domains. Hence, we do not have to learn the option
policies, rather these policies are derived from the structures exploited in the state space.

In order to derive subtask options, the membership function χ gives us an elegant method to compose options to exit
from a given abstract state. In case of multiple exits or bottlenecks, PCCA+HRL is able to compose multiple options,
each taking the agent to the respective exit. Formally, an option is a triple (I ,µ,β). Given that the agent is in state s,
the initiation set I consists of all states belonging to the abstract state S such that argmaxjχij = argmaxjχsj = S∀i.
Suppose the state s belongs to abstract state Si, we want to construct a policy to take the agent to the exit of Si leading to
the abstract state Sj . If the agent follows a stochastic gradient ascent on the membership functionmSj (s)∀s ∈ Si, then this
would take the agent to the exit of the abstract state. Thus, we define the option policy µ(s, a) which takes the agent from
Si to Sj as a stochastic gradient function as follows: µ(s, a) = max(α(s)(

∑
s′ P (s, a, s

′)mSj (s
′)−mSj (s)), 0)∀s ∈ Si, where

α(s) is a normalization constant to keep the values of µ ∈ [0, 1]. Finally, termination condition β is a probability function
which assigns the probability of termination of the current option at state s. It can also be viewed as the probability of a
state s being a decision epoch given the current option being executed. For an option taking an agent from abstract state
Si to Sj , we define β as follows: β(s) = min(

log(mSi
(s))

log(mSj
(s)) , 1)∀s ∈ Si, since it provides a smooth peaked function.

We evaluated our approach on the 2-room domain. The domain consists of 2 unequal sized rooms where the agent has to
start from one room and end in the other. We observe that PCCA+HRL acquires the skill to reach the doorway from any
state in the first room and to navigate from this doorway to the intended goal state. We identify 3 abstract states where
one corresponds to the lone goal state. Figure 1a compares the average return with respect to the number of epochs of
decision for different methods. Our approach identifies 2 options as compared to 12 by LCut and 10 by Random Options
with primitive actions method, and also consistently attains higher average return than the two.

4 Model Estimation

We now propose an online method for efficiently finding Spatio-Temporal abstractions while the agent is following
another strategy. The method is inspired from the UCT framework which is a Monte-Carlo search algorithm based on
rollouts. A rollout-based algorithm builds its look-ahead tree by repeatedly sampling episodes from the initial state.
The tree is built by adding the information gathered during an episode to it in an incremental manner. We use the UCT
algorithm because it is more effective than the vanilla Monte-Carlo planning where the actions are sampled uniformly,
while UCT does a selective sampling of actions.

In the UCT approach, in state s, at depth d, the action that maximizes Qt(s, a, d) + cNs,d(t),Ns,a,d(t) is selected, where
Qt(s, a, d) is the estimated value of action a in state s at depth d and time t, Ns,d(t) is the number of times state s
has been visited up to time t at depth d and Ns,a,d(t) is the number of times action a was selected when state s has

been visited, up to time t at depth d, ct,s has the form ct,s = 2Cp

√
ln(t)
s , where Cp is an empirical constant. A variant

of this search method is used in PCCA+HRL. Since we are composing option policies rather than learning them, we
replace Q(s, a) with the stochastic gradient function µ(s, a), where the particular µ corresponding to the greedy option
chosen from the option value function. Hence the search criteria becomes max(argmaxa(s)(

∑
s′ P (s, a, s

′)msj (s
′) −

msj (s), 0)(d) + cNs,d)(t),Ns,a,d(t). To include the underlying reward structure, we modify the local adjacency matrix D as

Dposterior = Dprior(s, s
′) +

∑
a φ

a
ss′e
−v|Rss′

a | where Rss′
a is the reward received while v is the regularization constant and

φass′ is the number of times the transition occurred from s to s′s with action a which ensures the adjacency function has

2

Paper M39 70



very low value at spike points, returns a value for 1 for zero rewards and allows for easy tuning of relative weights by
change the parameter v.

Algorithm 1 PCCA+HRL
Q =⇒ ActionV alueFunction

1: Observe initial state so
2: Initialize Q arbitrarily
3: Initialize T transition matrix
4: U={}
5: for e=1 to maximum number of episodes do
6: Initialize Membership function χ, Simplex Vertex Y =PCCA+ (τ)
7: Find all pairs of connected abstract states Ck=(Sj , Sk) from the non-zero entries in χTTχ
8: O′k = Ok∀k
9: ∀Ck construct Ok = Ik, µk, βk

10: match Ok∀k(New set of Options) with previous sets of options O′k∀k
11: find k for which so ∈ Ck(1)
12: i = k; si = s0
13: while not the end of episode do

14: Oi ⇐
{
argmaxOQ(si, O) w.p 1− ε
A uniform random option Ok = Ik, µk, βk w.p ε s.t si ∈ Ik

15: Update Q(Oi, si) using any action value function learning method
16: Sample action according to α(µi(s) + cNs,d(t),Ns,a,d(t)) and follow until termination. return termination state st
17: φass′ = φass′ + δass′ where δ-function =1 if action a takes from state s to s′

18: Rss′
a = reward returned while taking action a in state s taking the system to state s′

19: U(s, a, s′) = U(s, a, s′) + φass′e
−v|Rss′

a |

20: D(s, s′) =
∑

a U(s, a, s′); P (s, a, s′) = U(s,a,s′)∑
s′ U(s,a,s′)

21: T (s, s′) = D(s,s′)∑
s D(s,s′)

22: si = st

The proposed approach was evaluated on the taxi domain. The problem can be formulated as an episodic MDP with 3
state variables: location of taxi, passenger location in the taxi and destination location out of 4 designated locations in the
world. The problem is episodic wherein in each episode, the taxi starts at a randomly chosen square, there is a passenger
at one of the 4 locations (chosen randomly) and the passenger wishes to be transported to the destination. The taxi must
go to the passenger, pick up the passenger, go to the destination and put down the passenger. The episode ends when
the passenger reaches the destination. There are 6 primitive actions possible, 4 navigation actions that move the taxi one
square North, South, East or West, a pickup and a put-down action. There is a rewards of -1 for each action, +20 for
delivering the passenger and -10 if the taxi executes pickup or put-down illegally.

The results for the average return were compared with the LCut method and with Random Options generated using
primitive actions in Figure 1b. The PCCA+HRL method identified 20 options while the LCut method identified 27
options. Among the 20 options discovered by PCCA+HRL are the different pick-up and drop-off options corresponding
to the different destinations. Our approach consistently performed significantly better than the random options method.
In the case of the LCut approach, our approach does significantly better for smaller number of epochs. For larger number
of epochs, the LCut method performs marginally better but the difference is not at all significant.

5 PCCA+HRL with function approximation

We extend our approach to the case where the state space is so large that exact modeling is not possible. In this case,
we perform function approximation through state-aggregation, learn a transitional model in these aggregated states and
run partitioning on it. This approach was tested on the Infinite Mario domain (developed for Reinforcement Learning
Competition 2009). It is interesting because it requires the the agent to learn at several levels; from representation to
path-planning and devising strategies to deal with various components of the environment. The state space has no set
specification. The visual scene at any time is divided into a 2-D matrix of 352 tiles, where each tile can take 25 values,
leading to 25352 possible states at every instant. The agent can choose to stay still or move left or right at two different
speeds. It can jump while moving or standing. It earns a huge positive reward when it reaches the finish line and smaller
reward by collecting coins, mushrooms and killing monsters. It gets some negative reward by dying before reaching the
finish line and a small negative reward for each step taken.
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(a) Avg. Reward for 2-room domain (b) Avg. Return for Taxi domain
(c) Cumulative goal completions in
Mario Domain

Since the domain is dynamic, we define coordinates with Mario as a reference point. We define a CMAC encoding
with hashing to make the state representation tractable. A CMAC uses multiple overlapping tilings of the state space to
produce a feature representation for a linear mapping where all learning takes place. To avoid the curse of dimensionality
and reduce memory requirements with little loss of performance through hashing, a consistent random collapsing of a
large set of tiles into a smaller set. We chose a grid size of 1024 with 2 tilings, giving us a state space of size 4096. Upon
running PCCA+HRL to autonomously play Mario, it was able to compose subtasks on structures in the game, like kill
the monster, collect the coin, etc. We compare our results with the QLearning technique in Figure 1c. The performance
measure here is the cumulative number of sub-goals achieved over the episodes.

6 Conclusion and Future Work

Viewing random walks on MDPs as dynamical systems allows us to decompose the state space along the lines of tempo-
ral scales of change. Thus well-connected regions of the state space were identified as metastable states and we proposed
a complete algorithm that identifies metastable states and learns options to navigate between them. We demonstrated
the effectiveness of the approach on a variety of domains. We also discussed some crucial advantages of our approach
over existing option discovery algorithms. While the approach detects intuitive options, it is possible that under a suit-
able re-representation of the state space, some of the metastable regions detected can be identical to each other. We are
looking to use notions of symmetries in MDPs to identify equivalent metastable regions. We wish to explore function
approximation of the state space further in the context of option discovery in the observation space. Another promising
line of inquiry is to extend our approach to continuous state spaces, taking cues from Proto Value Functions [3].
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Abstract
While the framework of trajectory optimization based on local approximations of the dynamics and value function has been available
for over four decades, it was only recently explored in terms of applicable algorithms for efficient control of real robotic and biological
systems. Although local trajectory optimization is more scalable than global optimal control and reinforcement learning methods,
it is still challenging to combine computational efficiency and robustness to model errors. Inspired by the work on differential
game formulations and their connection to linear stochastic control problems [1], in this work we reformulate a nonlinear stochastic
control problem to a Cooperative Stochastic Differential Game (CSDG). Based on second-order local dynamic programming, we
introduce a method for solving CSDG called Cooperative Game-Differential Dynamic Programming (CG-DDP). Different from
the classical Differential Dynamic Programming (DDP), CG-DDP seeks two cooperative control policies that exhibit more robust
performance under stochastic disturbance than a single control policy. Compared to the minimax-DDP which has a non-cooperative
game interpretation, the proposed framework features a more efficient optimization scheme. We demonstrate the performance of
CG-DDP using two simulated examples.

Keywords: Trajectory optimization, stochastic differential game, optimal control,
dynamic programming.
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1 Introduction

Model-based trajectory optimization with backward-forward sweeps is a family of powerful frameworks in the field of optimal con-
trol. It was originally introduced in 1970 under the name “Differential Dynamic Programming (DDP)” [2]. Since then numerous
extensions and variations of DDP have been developed in control, machine learning and robotics communities to improve its perfor-
mance and applicability [3, 4, 5, 6, 7, 8]. The most attractive characteristics of DDP are its computational efficiency and scalability
to high-dimensional dynamical systems compared to global methods. However, since DDP is rooted in local approximation of the
dynamics model and value function around a nominal trajectory, model errors could significantly degrade its performance and there-
fore restrict its applications in many real world scenarios. In control theory the issue of robustness has been addressed in two ways,
namely robust control and stochastic control. On one hand, modern robust control methods seek to bound the model uncertainty
(H∞ control). For instance the minimax DDP [3] is an extension of DDP and a conservative (risk sensitive) approach by considering
the worst case scenario. While the minimax-DDP is theoretically appealing due to the explicitly bounded disturbance tolerance,
numerical convergence to the desired saddle point is challenging. On the other hand, stochastic control takes into account noise as
probability distributions for control law design. In this class of methods a typical assumption is zero-mean Gaussian noises.

In this work, we present an alternative approach to trajectory optimization based on Cooperative Stochastic Differential Games, called
Cooperative Game-Differential Dynamic Programming (CG-DDP). Different from existing trajectory optimization frameworks, CG-
DDP seeks two cooperative control policies. We will demonstrate its performance under disturbance using numerical examples.

2 Cooperative Stochastic Differential Game Problem Formulation

Consider the following jump diffusion process given by the stochastic differential equation (SDE)

dx = f(t,x(t))dt+ B(t,x(t))τ (t)dt+ C(t)dω + H(t)dp, (1)

where x ∈ Rnx is the state, τ ∈ Rnu is the control, ω ∈ Rnw and p ∈ Rnp are standard Wiener and Poisson processes. The
dimensionality of the terms f ,B,C,H in (1) is defined as f ∈ Rnx , B ∈ Rnx×nu , C ∈ Rnx×nw and H ∈ Rnx×np . Moreover let hj
be the jth the column vector in H. For the Poisson process E[dpj ] = λjdt and λj ∈ R ∀1 ≤ j ≤ np. We denote λ = [λ]np×1 the
rate with which jumps occur. Consider a finite-horizon stochastic optimal control problem for the cost functional

J(t,x;π) = E
[
q(x(T ))︸ ︷︷ ︸

Terminal cost

+

∫ T

t

L
(
t,x(t), π(t,x(t))

)
︸ ︷︷ ︸

Running cost

dt
]
, (2)

where the goal is to find a control policy τ = π(t,x(t)) that minimizes the total cost accumulated over the time interval [t, T ]. Here
we define two control variables u ∈ Rnu and v ∈ Rnu such that the original control input is split into two parts: τ = u + v. Now
we will show that the original control problem can be reformulated as a two-player Cooperative Stochastic Differential Game with
a given time interval [t, T ] and players u,v. Let functions πu, πv be strategies (policies) for u and v from t to T . πu = ∅ implies
u(t), ...,u(T ) = 0 and πv = ∅ is defined similarly. In addition πu∪πv denotes a cooperative game theoretic control strategy. Next we
define the payoff function for each individual player. For player u the payoff Vu(πu∪πv) = Ju(t,x; ∅)−Ju(t,x;πu, πv), ∀πu, πv,

where Ju(t,x;πu, πv) = E
[
qu(x(T ))+

∫ T
t
Lu(t,x(t), πu, πv)dt

]
, and Ju(t,x; ∅) corresponds to the cost with both controls taken

to be zero. Payoff for v, i.e., Vv(πu ∪ πv) can be defined similarly. The coalition or cooperative payoff function is defined as
V(πu ∪ πv) = J(t,x; ∅)− J(t,x;πu ∪ πv), where J(t,x;πu ∪ πv) = E

[
q(x(T )) +

∫ T
t
L(t,x(t), πu, πv)dt

]
, and J(t,x; ∅) is the

uncontrolled cost. Therefore the coalition πu ∪ πv has a real valued payoff assigned by the cooperative payoff function for which
V(∅) = 0. Both u and v try to maximize the assigned individual payoff function at t. The above stated problem defines a coalition
game with players u and v. We follow [9] and denote this two player Cooperative Game by CG(x, T − t) played at current state x
for the time interval [t, T ], where both players u and v agree to cooperate based on an optimality principle. The optimality principle
for a cooperative scheme includes: i) an agreement on a set of cooperative strategies/controls, and ii) a mechanism to distribute total
payoff among players, iii) group rationality requires the players to seek a set of optimal cooperative strategies πu and πv that justify
the participation of each in the CG(x, T − t). This is mathematically expressed as V(πu∗ ∪ πv∗) ≥ V(∅ ∪ πv),V(πu ∪ ∅), ∀πu, πv.
Considering the fact that J(t,x; ∅) does not depend on the selected strategies, the solution to CG(x, T − t) is therefore to solve

argmin
πu,πv

E
[∑

j={u,v} q
j(x(T )) +

∫ T
t

∑
j={u,v} Lj(t,x(t), πu, πv)dt

]
. We choose to distribute the individual payoff functions s.t.

qu(x) + qv(x) = q(x), Lu(x) + Lv(x) = L(x), so that we seek strategies πu, πv to solve

argmin
πu,πv

E
[
q(x(T )) +

∫ T

t

L(t,x(t), πu, πv)dt

]
, (3)

subject to (1). This problem is called the Cooperative Stochastic Differential Game in Game Theory literature [9], and is denoted by
CSDG(x, T − t) the solution to which is stated in the following theorem.
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Theorem 2.1 A set of controls [u∗(t),v∗(t)] provides an optimal solution to the problem CSDG(x, T − t) if there exists a continu-
ously differentiable function V (t,x) : [t, T ]× Rnx → R which satisfies the PDE

−∂V
∂t

(t,x)− 1

2
tr(CCTVxx(t,x))−

np∑

j=1

(V (t,x + hj(t))− V (t,x))λj(t) = min
u(t),v(t)

(
L(t,x,u,v) + V Tx (f(x) + B(x)(u + v)

)
,

with the boundary condition V (T,x) = q(T,x).

Theorem 2.1 is an extension of [9] for the case of minimum game for jump diffusion processes. This theorem provides necessary
conditions for the existence of cooperative control strategies that are group rational. Given the existence of such a value function
one has to solve this PDE in order to obtain the optimal control strategy at a given (t,x). However, finding the solution for the
PDE in Theorem 2.1 is computationally intractable especially for systems with moderate to high dimensions. This is so-called the
curse of dimensionality. One way to bypass this is to rely on approximation methods that solve this problem locally, in particular
by approximating the value function along nominal trajectories. DDP is known to be one of the most efficient approaches to value
function approximation that features second order convergence and scales to high dimensional systems. In this work we propose
a scheme to solve the CSDG locally by transforming the continuous-time problem to discrete-time and working with second order
approximations of value/cost functions, and first order approximation of the dynamics. The resulting framework is called Cooperative
Game-Differential Dynamic Programming (CG-DDP). For the rest of the analysis we use the discretized representation of the system
in (1), i.e.,

xt+dt = xt + f(xt)dt+ B(xt)(ut + vt)dt+ C(t)dω + H(t)dp. (4)
To simplify notation we use subscripts of variables to denote discrete time step, e.g., xt = x(t).

3 The Cooperative Game-Differential Dynamic Programming Framework

3.1 Backward-sweep: optimal cost-to-go

The proposed trajectory optimization method is rooted in the Dynamic Programming principle. First we consider a variation of the
Bellman equation with both ut and vt

V (t,xt) = min
ut,vt

E

[
L(t,xt,ut,vt) + V (t+ dt,xt+dt)

]

︸ ︷︷ ︸
Q(xt,ut,vt)

. (5)

The goal is to find two cooperative feedback policies such that the pair (ut,vt) minimizes the total cost. First we build a local model
of the dynamics model along a nominal trajectory x̄t, ūt, v̄t.

δxt+dt = Atδxt + Bt

(
δut + δvt

)
+ Ctdω︸ ︷︷ ︸

δxcont
t+dt

+Htdp︸ ︷︷ ︸
δxjump

t+dt

, (6)

where δxt = xt − x̄t, δut = ut − ūt and δvt = vt − v̄t are defined as the deviations from the nominal trajectory, At =
(Inx×nx

+ fx(x̄t))dt, Bt = B(t, x̄t)dt, Ct = C(t)
√

dt and Ht = H(t)dt. To evaluate the expectation under minimization in (5) we
use the Ito stochastic chain rule for jump diffusion process and the nonlinear jump term of the value function has been approximated
till its second order Taylor series expansion. Next we build a local quadratic model of the value function by expanding theQ-function
up to the second order

Q(x̄t + δxt, ūt + δut, v̄t + δvt) ≈ Q0 +Qxδxt +Quδut +Qvδvt +
1

2

[
δxt
δut
δvt

]T [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt
δut
δvt

]
. (7)

where all the Q-related terms are given as

Q0 = Vt+dt +
1

2
tr(VxxCtC

T
t ) +

np∑

j=1

(
V T
x hjtλ

j
t + (hjt )

TVxxh
j
tλ
j
t

)
dt,

Qx = V T
x At + Lx, Qu = V T

x Bt + Lu, Qv = V T
x Bt + Lv, Qxx = AT

t VxxAt + Lxx, Qxu = ATVxxBt + Lxu,

Qxv = AT
t VxxBt + Lxv, Quu = BT

t VxxBt + Luu, Qvv = BT
t VxxBt + Lvv, Quv = BT

t VxxBt + Luv,

(8)

where Vt = V (t, x̄t). In order to find the optimal policies for δut and δvt such that the second-order expansion of the Q-function is
minimized, we take the gradients of (7) with respect to δut and δvt

Qδu
(
xt + δxt,ut + δut,vt + δvt

)
= 0 ⇒ δu∗t = −Q−1uu

(
Quxδxt +Quvδvt +Qu

)
,

Qδv
(
xt + δxt,ut + δut,vt + δvt

)
= 0 ⇒ δv∗t = −Q−1vv

(
Qvxδxt +Qvuδut +Qv

)
.

(9)
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Solving the system of equations (9) results in explicit expressions of optimal control updates δut = Iu+Luδxt and δvt = Iv+Lvδxt
where Iu, Iv and Lu,Lv are feedforward and feedback components, respectively. By plugging them into the value function, we can
split the value function into zero, first and second order terms in δxt , i.e., V (x̄t + δxt) = Vt + V T

x δxt + 1
2δx

T
t Vxxδxt, where

Vt =Q0 + lTuQu + lTvQv +
1

2

(
lTuQuulu + lTvQvvlv + lTuQuulv + lTvQvulu

)
,

Vx =Qx + LT
uQu + LT

vQv +Qxulu +Qxvlv + LT
uQuulu + LT

vQvvlv + LT
uQuvlv + LT

vQvulu,

Vxx =Qxx + LT
uxQux + LT

vQv +Qxulu +Qxvlv + LT
uQuuLu + LT

vQvvLv + LT
uQuvLv + LT

vQvuLu.

(10)

Since the optimal cost-to-go is computed backward in time, this computational scheme is called the backward-sweep in trajectory
optimization. Next we introduce the forward-sweep part of CG-DDP.

3.2 Update control laws and forward sweep

Now we compute the optimal controllers for the next iteration as

u∗t = ut + δu∗t = ut + Iu + Luδxt, v∗t = vt + δv∗t = vt + Iv + Lvδxt. (11)

Obviously these are linear, time-varying policies but without any a-priori policy parameterization. The results in eq.(11) are locally
optimal controls for the original nonlinear system in the vicinity of the nominal trajectory x̄. To obtain an optimal trajectory we
iteratively update the nominal trajectory by applying the optimized controls. The resulting trajectory becomes the new nominal for
the next iteration. The proposed trajectory optimization approach is a second-order method that relies on the Hessian matrices and
are expressed as

Hu = Quu −QuvQ
−1
vvQvu, Hv = Qvv −QvuQ

−1
uuQuv. (12)

The cost-to-go decreases in the direction of δut and δvt for positive definite Hu and Hv. In the proposed framework we implement
line search by adding a parameter ε > 0 such that δu∗t = εIu + Luδxt and δv∗t = εIv + Lvδxt. Initially ε = 1, when the trajectory
generated by the new policy has a higher cost than the current one, the policy would be rejected and decrease ε. Whenever the policy
is accepted we reset ε = 1. This trick has also been used in [4] to encourage convergence. The optimization is performed iteratively
in internal simulation. The control policy implemented in the physical system under stochastic disturbances is

τ ∗t = π(xt) = ū∗t + Lu

(
xt − x̄∗t

)
︸ ︷︷ ︸

u∗
t

+ v̄∗t + Lv

(
xt − x̄∗t

)
︸ ︷︷ ︸

v∗
t

. (13)

Where x̄∗t , ū
∗
t , v̄
∗
t are the optimized trajectory and controllers obtained from simulation (the final nominal trajectory). x̄t is the actual

state deviation from the optimal trajectory. We do not apply the open-loop policy Iu and Iv whose magnitudes usually vanish (or
become very small) during the final stage of optimization.

3.3 Relations to existing methods

The proposed framework is related to various existing methods. In particular, we compare the proposed CG-DDP with DDP [2] and
minimax DDP [3] in this section. The proposed CG-DDP is derived similarly as the original DDP [2]. However, CG-DDP is based
on a different problem formulation (5) which leads to two cooperative control policies. Note that when the eigenvalues of Qvv are
sufficiently large, the CG-DDP policy is equivalent to the standard DDP policy. For a simple example, in the scalar case we have

Qvv →∞ =⇒ Hv →∞ =⇒ Iv,Lv → 0 =⇒ δv∗t → 0,

Qvv →∞ =⇒ Hu → Quu =⇒ Iv → Q−1uuQu,Lv → Q−1uuQux =⇒ δu∗t → Q−1uuQu +Q−1uuQuxδxt︸ ︷︷ ︸
DDP policy

.

Intuitively when v is sufficiently expensive, we retrieve the DDP solution. Therefore CG-DDP can be viewed as a generalization of
DDP. Furthermore, according to the group rationality of CSDG, CG-DDP yields no worse solution than DDP.

One might notice that our approach is related to the minimax DDP [3]. The minimax DDP is derived from a non-cooperative game
formula

min
ut

max
vt

[
q(xT ) +

∫ T

t

L
(
t,xt,ut,vt

)
dt
]
. (14)

While the scheme is different from our case, the resulting policy formulations share some similarities. In particular eq.(9) appears in
the minimax-DDP as well. The minimax DDP is based on H∞ control theory such that the optimal control gain would minimize the
effects of the worst disturbance to the system. There are several key differences between CG-DDP and minimax DDP. In particular, in
minimax-DDP the non-cooperative policy v is not applied to the physical systems since it is treated as disturbances. In CG-DDP the
policies for both player u,v are applied. Furthermore, in CG-DDP the backward Riccati equations are different from the minimax-
DDP case. In particular the coupling terms between u and v (e.g.,Quv) and noise-related terms appear in CG-DDP (10). Compared
to minimax-DDP, the major benefits of CG-DDP can be summarized as follows: i) in minimax-DDP the existence of solution depends
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on tuning of the cost function. For instance for a cost defined as L(xt,ut,vt) = (xt− xdt )
TQ(xt− xdt ) +uT

t Ruut− vT
t Rvvt, the

existence of the min-max solution depends on the choice of Ru and Rv. In CG-DDP, the existence of solution does not depend on
the tuning of the cost functions. ii) In minimax-DDP the optimal solution is a saddle point while in CG-DDP the optimal solution is
an extremum. Numerically it is more challenging to find the saddle point since monotonicity during convergence cannot be assured
in the min-max case where Hu and Hv are positive definite and negative definite, respectively.

4 Experiments and Analysis

In this section we provide simulation results and analysis based on two dynamical systems: the cart and double inverted pendulum
(CDIP) system and the PUMA-560 robot manipulator. For the CDIP (3DOF) system, the task is to swing-up the two-link pendulum
from the initial position (both point down). For PUMA-560 (6DOF), the task is to steer the end-effector to the desired position and
orientation. See Fig.1d for an example of both tasks. We performed two experiments in order to test the efficiency and robustness of
CG-DDP, respectively. For comparison we use the minimax-DDP [3] and standard DDP [2]. For both tasks, we apply non-Gaussian
disturbances (jump-diffusion processes) to the systems.

In this experiment we sample 100 stochastic trajectories by applying the optimized control policies for both tasks. Results of tra-
jectory costs are shown in Fig.(1a,1b). Both CG-DDP and minimax-DDP show superior performance in terms of robustness against
disturbance as they successfully steer all trajectories to the targets. In the standard DDP case, a few trajectories diverge from the target
due to the stochastic disturbances. The performance differences between CG-DDP and DDP can be theoretically justified from the
group rationality of the cooperative controllers (solution to CSDG) which guarantees that the two-controller coalition works better
(or at least equal) than one. Fig.1c shows the comparison in terms of number of iterations required for convergence and average
computational time per iteration. CG-DDP shows faster convergence in both tasks. The minimax-DDP shows slower convergence
than the other two methods due to the lack of monotonicity in convergence.
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Figure 1: Simulation results

5 Conclusions

Our work introduces a novel trajectory optimization framework based on Cooperative Stochastic Differential Games (CSDG) for
nonlinear systems. The resulting framework is called Cooperative Game-Differential Dynamic Programming (CG-DDP). CG-DDP
can be considered as a generalization of DDP with two controllers and yields no worse solution than DDP according to the property
of group rationality. CG-DDP can be easily integrated with learned dynamics to develop scalable and robust reinforcement learning
algorithms. This work can be a precursor to several interesting theoretical problems and applicable algorithms for decision-making
in autonomous systems. Future work will focus on extending CG-DDP to the case of systems with unknown dynamics.
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Abstract

Over the last several years deep learning algorithms have met with dramatic successes across a wide range of application
areas. The recently introduced deep Q-learning algorithm represents the first convincing combination of deep learning
with reinforcement learning. The algorithm is able to learn policies for Atari 2600 games that approach or exceed human
performance. The work presented here introduces an open-source implementation of the deep Q-learning algorithm and
explores the impact of a number of key hyper-parameters on the algorithm’s success. The results suggest that, at least
for some games, the algorithm is very sensitive to hyper-parameter selection. Within a narrow-window of values the
algorithm reliably learns high-quality policies. Outside of that narrow window, learning is unsuccessful. This brittleness
in the face of hyper-parameter selection may make it difficult to extend the use deep Q-learning beyond the Atari 2600
domain.

Keywords: Reinforcement learning, deep Q-Learning, feature learning
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1 Introduction

The last several years have seen dramatic progress in the application of deep neural network architectures to problems
in both supervised and unsupervised learning. The recently introduced deep Q-learning algorithm [6, 7] represents the
first convincing application of deep feature learning to a non-trivial reinforcement learning task. Deep Q-Networks are
able to approach or exceed human performance on a range of Atari 2600 games. Policies are learned completely from
scratch based on pixel-level input.

The success of deep Q-learning in the Atari domain is a potentially important result. Scaling up reinforcement learn-
ing algorithms to handle continuous and high-dimensional tasks has been a longstanding challenge. Powerful feature
learning algorithms are likely to be essential to making progress in this area. The success of deep Q-learning is also
somewhat surprising. The algorithm has no theoretical convergence guarantees. On the contrary, it is well recognized
that Q-learning has a tendency to be unstable when coupled with non-linear function approximation [8, 4]. These factors
make it particularly important to reproduce the deep Q-learning results.

The goal of the work described here is twofold: first to reproduce the results of the original deep Q-learning workshop
paper [6] by developing an open-source implementation that can be used as a starting point for future research1, and
second, to systematically explore the impact of several key hyper-parameters on the success of the algorithm.

2 Methods

The implementation described here uses the Arcade Learning Environment [2] as an interface to an Atari 2600 emulator.
The deep Q-learning implementation is built on top of Theano [3, 1] and uses the neural network code developed for
Sander Dieleman’s galaxy zoo Kaggle competition entry [5].

The implementation follows the published description as closely as possible. The network architecture, image prepro-
cessing, exploration schedule etc., all match the published specifications. As in the original paper, weight updates are
handled using RMSProp with a batch size of 32.

The RMSProp algorithm [9] involves scaling weight updates on a per-weight basis according to a running average of the
square of the gradient. The following two equations describe the update rules for tracking the average gradient values
and updating weights.

rt,w = ρ rt−1,w + (1− ρ)
(
∂L

∂w

)2

(1)

wt+1 = wt + α
1
√
rt,w

∂L

∂w
(2)

The two hyper-parameters that appear in the equations above are the decay rate ρ and the step size parameter α. The
results presented below will explore the impact of these two parameters along with the discount rate γ

An additional factor that is not described in the original paper is the approach that was taken to weight initialization.
For all of the results presented below, the bias weights are initialized to .1 and all other initial weight values are drawn
from N (0, .0001).

3 Results

Results are reported below for three of the seven games mentioned in the original paper: Breakout, Seaquest and Enduro.
Successful policies are learned for each game. Table 1 compares the best average reward received for each game with the
corresponding results from [6].

Figure 1 illustrates the impact of hyper-parameter selection on the success of the deep Q-learning algorithm. Several
trends are apparent in the data. First, it appears that the larger value of ρ tends to lead to better learning results, particu-
larly for Enduro and Seaquest. Although the results are not presented here, a number of unsuccessful preliminary tests
were performed on Breakout with ρ = .9.

Second, at least among values examined here, it appears that no single set of hyper-parameters is optimal across all
games. For example, the best hyper-parameter settings for Enduro results in no learning for Seaquest. It is possible to
find settings that work reasonably well across multiple games, but any one choice will be a compromise.

1https://github.com/spragunr/deep_q_rl
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Figure 1: Each graph represents one training run with the indicated parameter settings for the indicated game. Training
takes place over 100 epochs where each epoch represents 50,000 actions. Learning is evaluated after every epoch by
testing the learned policy for 10,000 steps with an ε-greedy policy using ε = .05. The average per-game reward is plotted
for each epoch. The lower bounds for all y-axes are 0. The upper bounds are 200 for Breakout, 1000 for Enduro, and 2500
for Seaquest. (Note that the incomplete data in some of the graphs represent jobs that had not completed at the time of
submission.)

The most striking observation is that some games show significantly more sensitivity to hyper-parameter selection than
others. In particular, 21 of the 24 different settings for Seaquest show no noticeable learning progress. Only one setting
results in learning that is comparable to reported results.
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Breakout Enduro Seaquest
DQN [6] 168 470 1705
DQN (current results) 162 804 2228

Table 1: Maximum average total reward for learned policies. The results labeled “DQN [6]” represent the best policies
discovered using an unspecified, but constant, set of parameters. The results labeled “DQN (current results)” represent
the maximum values across all of the graphs in Figure 1.

Note that the graphs in Figure 1 represent a single training run for each parameter setting. It has been our experience
that learning results tend to be reasonably consistent for a given set of hyper-parameters, but further experiments would
be necessary to quantitatively determine how hyper-parameter values impact the variability of learning.

4 Conclusion

Even in the realm of supervised learning, the problem of tuning hyper-parameters for gradient-based optimization of
neural networks is notoriously difficult. The situation becomes worse when these networks are used in conjunction with
value function estimation. In supervised learning progress can be tracked by observing the value of the loss function
or the error on a validation set. In reinforcement learning the value of the loss function is not a reliable indicator of
progress: the value function is a moving target, so increases in the loss function may represent changes in the magnitude
of the estimated value function rather than a lack of progress in learning. The only reliable way to monitor progress is to
periodically evaluate the learned policy. This process is noisy, slow, and computationally expensive.

Given these challenges, it is particularly desirable that a reinforcement learning algorithm that incorporates deep neu-
ral networks be relatively robust to hyper-parameter selection. The results reported here suggest that improving the
robustness and reliability of deep Q-learning may be a valuable avenue for future research.

These results were prepared in reference to the original deep Q-learning paper [6]. The authors of that paper have recently
published an extended set of results obtained using a slightly modified version of the algorithm [7]. The updated version
of the algorithm periodically copies the network weights so that the target Q-values are calculated using weights that are
held constant across many updates. The authors report that this modification improves the stability of the algorithm. It
will be a focus of future work to determine how this modification impacts the algorithm’s sensitivity to hyper-parameter
selection.
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Abstract

In this work, we detail a model of the cognitive map predicated on the assumption that spatial representations are op-
timized for maximizing reward in spatial tasks. We describe how this model gives rise to a number of experimentally
observed behavioral and neural phenomena, including neuronal populations known as place and grid cells. Place and
grid cells are spatially receptive cells found in the hippocampus and entorhinal cortex, respectively. Classic place cells
have a single firing field tied to a specific location in space. The firing properties of these cells are sensitive to behav-
iorally relevant conditions in the environment; for instance, they tend to be skewed along commonly traveled directions,
clustered around rewarded locations, and influenced by the geometric structure of the environment. Grid cells exhibit
multiple firing fields arranged periodically over space. These cells reside in the entorhinal cortex, and vary systematically
in their scale, phase, and orientation.

We hypothesize that place fields encode not just information about the current location, but also predictions about fu-
ture locations under the current policy. Under this model, a variety of place field phenomena arise naturally from the
disposition of rewards and barriers and from directional biases as reflected in the transition policy. Furthermore, we
demonstrate that this representation of space can support efficient reinforcement learning (RL). We also propose that
grid cells compute the eigendecomposition of place fields, one result of which is the segmentation of an enclosure along
natural boundaries. When applied recursively, this segmentation can be used to discover a hierarchical decomposition
of space, allowing grid cells to support the identification of subgoals for hierarchical RL. This suggests a substrate for
the long-standing finding that humans tend to divide space hierarchically, resulting in systematic biases about relations
between locations in different regions.

Keywords: spatial navigation, hippocampus, reinforcement learning
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1 Introduction

Traditionally, efforts to understand the cognitive map have sought to characterize the receptive fields of spatial cells in the
hippocampus and entorhinal cortex and explain what neural computations could be responsible for the implementation.
Our work has been motivated instead by considering the downstream purpose of these representations. The question we
hope to address is to what extent place and grid cell encoding can be understood as an optimal substrate for maximizing
expected future reward.

Figure 1: Sample place
field (above) and grid
field (below)

We consider first the problem of reward optimization in a Markov decision process, which
consists of the following: a set of states S , a set of actions A, a transition distribution P (s′|s, a)
specifying the probability of transitioning to state s′ ∈ S from state s ∈ S after taking action
a ∈ A, a reward function R(s) specifying the expected reward in state s, and a discount fac-
tor γ ∈ [0, 1]. An agent chooses actions according to a policy π(a|s) and collects rewards as
it moves through the state space. The standard RL problem is to choose a policy that max-
imizes the value (expected discounted future return), V (s) = Eπ [

∑∞
t=0 γ

tR(st) | s0 = s]. In
our simulations we feed the agent the optimal policy; however, the policy dependent com-
putations considered can be nested within algorithms for policy improvement. To simplify
notation, we assume implicit dependence on π and define the state transition matrix T , where
T (s, s′) =

∑
a π(a|s)P (s′|s, a).

Most work on RL has focused on model-free and model-based algorithms [2]. However, there
exists a third class that has received less attention. As shown by Dayan [3], the value func-
tion can be decomposed into the inner product of the reward function with the “successor
representation,” denoted by M :

V (s) =
∑
s′ M(s, s′)R(s′), M = (I − γT )−1 (1)

where I denotes the identity matrix. The SR encodes the expected discounted future occupancy of state s′ along a
trajectory initiated in state s and can be expressed as M(s, s′) = E [

∑∞
t=0 γ

tI{st = s′} | s0 = s], I{·} = 1 if its argument is
true, and 0 otherwise.

The SR obeys a recursion analogous to the Bellman equation for value functions:

M(s, j) = I{s = j}+ γ
∑
s′ T (s, s

′)M(s′, j). (2)

This recursion can be harnessed to derive a temporal difference learning algorithm for incrementally updating an esti-
mate M̂ of the SR [3, 8]. After observing a transition s→ s′, the estimate is updated according to:

M̂(s, j)← M̂(s, j) + η
[
I{s = j}+ γM̂(s′, j)− M̂(s, j)

]
, (3)

where η is a learning rate (unless specified otherwise, η = 0.1 in our simulations). The SR represents an elegant compro-
mise between model-free and model-based algorithms: like model-free algorithms, policy evaluation is computationally
efficient, but at the same time the SR provides some of the same flexibility as model-based algorithms.

2 The successor representation and place cells

In this section, we explore the neural implications of using the SR for policy evaluation: if the brain encoded the SR, what
would the receptive fields of the encoding population look like, and what would the population look like at any point
in time? This question is most easily addressed in spatial domains, where states index spatial locations. For an open
field with uniformly distributed rewards we assume a random walk policy, and the resulting SR for a particular location
is an approximately symmetric, gradually decaying halo around that location (Fig. 2a)—the canonical description of a
hippocampal place cell. In order for the population to encode the expected visitations to each state in the domain from
the current starting state (i.e. a row of M ), each receptive field corresponds to a column of the SR matrix. This allows
the current state’s value to be computed by taking the dot product of its population vector with the reward vector. The
receptive field (i.e. column of M ) will encode the discounted expected number of times that state was visited for each
starting state, and will therefore skew in the direction of the states that likely preceded the current state.

For this reason, when an animal has been trained to travel in a preferred direction along a linear track, we expect place
fields to become skewed opposite the direction of travel as has been observed experimentally [16, 17]. When barriers are
inserted into the environment, the probability of transitioning across these obstacles will go to zero such that receptive
fields will be discontinuous across barriers (Fig. 2c,e). In this way SR place fields are constrained by environmental
geometry. Consistent with this idea, experiments have shown that place fields become distorted around barriers (Fig.
2h) [20, 26].
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Figure 2: SR place fields. (a–f) Simulated SR place fields. Top two rows are unrewarded conditions, bottom two show
place fields near reward (marked by +). Maximum firing rate (a.u.) indicated for each plot. (a, b) Empty room. (c, d)
Single barrier. (e, f) Multiple rooms. (g–h) Experimentally recorded place fields from rats in (g) an empty room [30] and
(h) rooms with barrier [26]. (i–j) Percentage of neurons firing in segments of an annular water maze for (i) experimental
hippocampal recordings [12] and (j) simulated SR place fields.

Another way to alter the transition policy is to introduce a goal, which induces a tendency to move in the direction
that maximizes reward. Under these conditions, we expect firing fields centered near rewarded locations to expand to
include the surrounding locations and to increase their firing rate (Fig. 2b,d,f), as has been observed experimentally
[6]. Meanwhile, we expect the majority of place fields that encode non-rewarded states to skew slightly away from the
reward (Fig. 2b,d,f). Under certain parameter settings, the spread of the rewarded locations’ fields compensates for the
skew of surrounding fields away from the reward, and we observe “clustering” around rewarded locations, as has been
observed experimentally in the annular water maze task (Fig. 2i,j) [12]. However, this parameterization sensitivity may
explain why goal-related firing is not observed in all tasks [13].

In related previous work, Gustafson and Daw [9] showed how topologically-sensitive spatial representations recapitu-
late many aspects of place cells and grid cells that are difficult to reconcile with a purely Euclidean representation of
space. They also showed how encoding topological structure greatly aids reinforcement learning in complex spatial en-
vironments. Our contribution was to show that the SR naturally encodes topological structure in a format that enables
efficient RL.

3 Eigendecomposition of the successor representation: hierarchical decomposition and grid
cells

Reinforcement learning and navigation can often be made more efficient by decomposing the environment hierarchically.
For example, the options framework [29] utilizes a set of subgoals to divide and conquer a complex learning environment.
Recent experimental work suggests that the brain may exploit a similar strategy [1, 22, 5]. A key problem, however, is
discovering useful subgoals; while progress has been made on this problem in machine learning, we still know very little
about how the brain solves it (but see [23]). In this section, we show how the eigendecomposition of the SR can be used
to discover subgoals. The resulting eigenvectors strikingly resemble grid cells observed in entorhinal cortex.

A number of authors have used graph partitioning techniques to discover subgoals [18, 25]. These approaches cluster
states according to their community membership (a community is defined as a highly interconnected set of nodes with
relatively few outgoing edges). Transition points between communities (bottleneck states) are then used as subgoals.
One important graph partitioning technique, used by [25] to find subgoals, is the normalized cuts algorithm [24], which
recursively thresholds the eigenvector with the second smallest eigenvalue (the Fiedler vector) of the normalized graph
Laplacian to obtain a graph partition. Given an undirected graph with symmetric weight matrix W , the graph Laplacian
is given by L = D −W . The normalized graph Laplacian is given by L = I − D−1/2WD−1/2, where D is a diagonal
degree matrix with D(s, s) =

∑
s′ W (s, s′). When locations on the graph are projected onto the eigenvectors of L, they

cluster according to their community membership (with the Fiedler vector clustering points according to the two broadest
communities). Locations in distinct communities but close in Euclidean distance – for instance, nearby points on opposite
sides of a boundary – will therefore be represented as distant in the eigenspace.

The normalized graph Laplacian is closely related to the SR [14]. Under a random walk policy, the transition matrix is
given by T = D−1W . If φ is an eigenvector of the random walk’s graph Laplacian I − T , then D1/2φ is an eigenvector
of the normalized graph Laplacian. The corresponding eigenvector for the discounted Laplacian, I − γT , is γφ. Since
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Figure 3: Thresholded eigendecomposition of the
SR. Each panel shows the same eigenvectors sam-
pled from the top 100 (excluding the constant first
eigenvector) for two of the environmental geometries
shown in Fig. 2 (no reward). (a) Empty room. (b) Sin-
gle barrier. Thresholded at zero to eliminate negative
firing rates.

the matrix inverse preserves the eigenvectors, the normalized graph Laplacian has the same eigenvectors as the SR,
M = (I − γT )−1, scaled by γD−1/2.

A number of representative SR eigenvectors are shown in Fig. 3 for two different room topologies. The higher frequency
eigenvectors display the latticing characteristic of grid cells [10]. The eigendecomposition is often discontinuous at
barriers, and in many cases different rooms are represented by non-overlapping sinusoids. Importantly, the grid fields
show compartmentalization resembling that observed experimentally by Derdikman and Moser [4].

In the multiple rooms environment, visual inspection confirms that the SR eigenvector with the second smallest eigen-
value divides the enclosure along the vertical barrier: the left half is almost entirely blue and the right half almost entirely
red, with a smooth but steep transition at the doorway (Fig. 4a). Applying this segmentation by thresholding recursively,
as in the normalized cuts algorithm, produces a hierarchical decomposition of the environment (Fig. 4b,c). By identi-
fying useful subgoals from the environmental topology, this decomposition can be exploited by hierarchical learning
algorithms [1, 23].

4 Further discussion of hierarchical maps

Segmentation

Second LevelFirst Level

b

c

a

Figure 4: Normalized cut segmentation. (a)
The results of segmentation by thresholding
the second eigenvector of the multiple rooms
environment in Fig. 2. Dotted lines indi-
cate the segment boundaries. (b, c) Eigenvec-
tor segmentation applied recursively to fully
parse the enclosure into the four rooms.

In 1978, Stevens and Coupe [28] reported behavioral evidence that peo-
ple represent space hierarchically. Human subjects would, for instance,
systematically conclude that San Diego, CA is further west than Reno,
NV, despite this being untrue. This can be explained by considering the
spectral representation of these locations in the entorhinal cortex. Differ-
ent nodes that lie in the same community map to nearby locations in the
space of the eigenvectors, a result that justifies the commonly used tech-
nique of “spectral clustering.” Furthermore, if we apply the recursive
thresholding and segmentation discussed in the previous section, two
locations in the same community will map to the exact same thresholded
value. A point in this thresholded eigenspace is therefore represented as
a state abstraction, with different states mapped to a single point. It
is straightforward to imagine how information learned about points in
this space–such as which is west of the other–necessarily generalize to
all states that map to the same (or perhaps nearby) spectral coordinates.
Thus, you expect to see these hierarchically organized generalizations.

Furthermore, Stevens and Coupe [28] showed that people overestimate
the distance between two locations when they were separated by a
boundary (e.g., a state or country line), again hypothesizing this to arise from a hierarchical organization of space (see
also [11]). Under our model (using the difference in activation for states given initial state s, |M(s, s)−M(s, s′)|, as a proxy
for the perceived distance between s and s′), distance estimates between points in different regions of the environment
are altered when an enclosure is divided by the weak boundary that segmentation would effectively impose. We see
that as the permeability of the barrier decreases (making the boundary harder to cross), the percent increase in perceived
distance between locations increases without bound. This gives rise to a discontinuity in perceived travel time at the
weak boundary. Interestingly, the hippocampus is directly involved in distance estimation in large-scale environments
[19], suggesting the hippocampal cognitive map as a neural substrate for distance biases.

5 Conjunctivity and repeated firing fields

In addition to the previously discussed phenomena, place cells can develop conjunctivity and often exhibit multiple
firing fields. Conjunctivity refers to joint selectivity for multiple stimulus dimensions, such as both location and smell at
that location or time during the trial, and tends to arise predominantly when aspects of the stimulus are jointly relevant to
the task [15]. Additional firing fields often arise for the same place cell in different rooms, but at the same corresponding
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location relative to the boundaries of the new room [27]. If the dimensions of the new room are changed, the place fields
will even “stretch” to maintain their position relative to boundaries [21].

To address these phenomena, we note that it is non-trivial for the animal to compute location from the stream of sensory
input it experiences, and that “locations” in the cognitive map should be thought of as latent variables. We hypothesize
that perhaps the cognitive map is conservative in assigning new variables when not necessary. Under this interpretation,
a place cell with multiple firing fields is just representing two different but similar locations as the same. Similarly, a
place cell might learn conjunctivity as the animal learns that two distinct conditions occur in the same location. That is,
the place field still has only the one and the same receptive field in task space, but task space no longer has a one-to-one
mapping onto its spatial correlates.

To realize this intuition, we have begun to fit a sticky Hierarchical Dirichlet Process - Hidden Markov Model [7]. This is
a Bayesian non-parametric model in which observations at each location are generated by a Markov process over latent
states, and a new state will be inferred if it is sufficiently improbable that a previously observed state is responsible.
“Hierarchical” refers to the fact that the model allows for switching between “contexts” in which different Markov chains
are active. This indirectly encodes global remapping: if context changes suddenly and dramatically, it no longer becomes
plausible that the same location will be encountered, and it becomes useful to draw upon a novel map.
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Abstract 
Reinforcement learning (RL) has been posed as a competition between model-free (MF) and model-based 
(MB) learning. MF learning cannot solve problems such as revaluation or latent learning, hallmarks of MB 
behavior. However, we suggest that varieties of MB-like behavior are equally well or better predicted by a 
third solution to the RL problem: the successor representation (SR). We conducted two experiments to test 
this hypothesis, comparing the classic ‘reward devaluation’ (reward structure changes, transition structure 
stays the same) with ‘transition devaluation’ (reward structure stays the same, transition structure changes). 
Behaviorally, we found that while subjects were sensitive to both conditions, they were more sensitive to 
reward than transition devaluation. Furthermore, faster responses showed greater sensitivity to reward 
than transition devaluation, while slower responses displayed equal sensitivity to both. MF, MB, and 
mixture models do not predict this asymmetry between reward and transition devaluation. On the other 
hand, a pure SR strategy will only be sensitive to reward but not transition devaluation, because the 
successor representation effectively “compiles” the transition structure and therefore cannot adapt quickly 
to changes. We propose two novel SR mixture models that can better explain our asymmetrical findings. 
One model is an extension of the Dyna style architecture, SR-Dyna, in which the successor representation is 
computed during real experience and updated via simulated experience during periods of episodic replay 
and pre-play. Another is a mixture SR-MB strategy, whereby the value function for a model-based strategy 
is initialized using the SR. While SR-Dyna combines the advantages of incremental learning with planning, 
SR-MB may be better suited to decision making under time-pressure. Compared to MB and MF RL 
methods, the successor representation (SR) family of models better captures the asymmetry in our 
behavioral findings. 
 
Keywords:  Successor representation, Retrospective revaluation, Reinforcement learning, Human 
behavior, Dyna architecture 
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1 Introduction 

When faced with a reinforcement-learning (RL) problem, model-free (MF) learning uses cached values to 
determine decisions. Model-based (MB) learning, on the other hand, uses a model of transitions and 
rewards to determine the optimal policy. Many important RL problems, such as retrospective revaluation or 
latent learning, cannot be solved by a purely model-free strategy and are considered hallmarks of model-
based learning (or a mixture of MF-MB). However, MB strategies are working memory intensive, error-
prone, and even intractable for large search spaces such as wide and deep trees (Lengyel and Dayan, 2008; 
Collins et al., 2012). At the same time, varieties of MB-like behavior are widely prevalent across animals. 
This prevalence of MB-like behavior together with the overwhelming computational cost and error-
proneness of MB strategies may suggest that less computationally costly mechanisms are at play. Here we 
tested the hypothesis that human solutions to classical MB problems such as retrospective revaluation can 
be simulated by a third strategy that lies between model-free and model-based learning: the successor 
representation (SR; Dayan, 1993; Gershman et al., 2012; Stachenfeld et al., 2014). We suggest that a family of 
models including the successor representation strategy can better explain observed differences under 
reward vs. transition devaluation, as we explain below. 

To solve the RL problem, the SR (M in Figure 1.B. notation) represents each state by the expected discounted 
future occupancy of its successor states. The value function can in turn be computed by taking the inner 
product of the SR and the reward function. The SR approach to value computation has two advantages. 
First, it renders value computation a linear operation, which is both biologically plausible and comparable 
in computational complexity to the MF system. Second, the SR (like the MB system) is sensitive to reinforcer 
devaluation, but with lower computational cost. Thus, SR lies between MF and MB strategies in terms of 
computational demand and sensitivity to devaluation. Here we also suggest that a biologically plausible 
mechanism for episodic consolidation and replay could update the SR via simulated experience, in absence 
of direct experience. This hybrid Dyna-like solution (see below) is sensitive to transition devaluation as well.  

A. Comparison of model solutions to devaluation  

 
                       MF   MB   MF-MB SR    SR-MB  SR-Dyna 

B. Value function and the successor representation 
(M) 

 
C. SR-Dyna architecture 

        

Figure 1. (A) Model predictions for reward and transition revaluation. Predicted revaluation scores for model-free 
(MF), model based (MB), mixture model (MB-MF), purely successor representation (SR), hybrid SR-MB, and the SR-
Dyna architecture for reward (black) vs. transition (gray) devaluation conditions. Only the SR family of models makes 
asymmetrical predictions for reward and transition devaluation (as shown in the following sections, data points at the 
alternative SR-MB or SR-Dyna models, fit to data in figure 4). (B) Value function for state s is computed as the inner 
product of the successor representation M and the reward vector R. The successor representation is computed using the 
inverse of the discounted transition matrix (gamma is the discount factor, over the expected utility of the frequency of 
visit to a successor state). (C) The SR-Dyna architecture. SR-Dyna incorporates the successor representation, learned 
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via real experience, and an episodic reinstatement mechanism that updates the SR via replay and preplay (simulated 
experience). 
 
In 2 experiments, we asked whether humans behave in accordance with the SR. We compared solutions to 
the classic ‘reward devaluation’ (reward structure changes, transition structure stays the same) with 
‘transition devaluation’ (reward structure stays the same, transition structure changes) among models and 
in human behavior. MB and MF solutions predict symmetrical responses to the problem: MF predicts no 
revaluation to either devaluation condition, while the MB and mixture MF-MB models predict equal 
revaluation under both types of devaluation (Figure 1). A pure SR strategy, on the other hand, predicts an 
asymmetrical response as it is only sensitive to reward devaluation but not sensitive to transition 
devaluation, because on its own SR does not update itself in absence of direct experience. The reason for this 
asymmetry is that the SR effectively “compiles” the transition structure and therefore cannot adapt quickly 
to changes. That said, a family of hybrid models offer a possible solution to this shortcoming where the SR 
initializes a MB strategy that solves transition devaluation; or more interestingly, a Dyna-like solution 
updates the SR via replay (Sutton, 1990). Dyna-like architectures treat planning as a learning problem that is 
enhanced via simulated or imagined experience. We thus suggest SR-Dyna, an extension of the Dyna 
architecture, where the SR is updated via virtual experience generated by a simulation mechanism, e.g. 
episodic reinstatement or sampling. Notably, SR-Dyna solves MB-like problems in absence of MB 
computation. 
 
2 Methods 
 
2.1 Task  
 
We designed a task to study revaluation behavior under varieties of devaluation. The schematic 
experimental conditions are shown as Markov reward processes (MRPs; i.e., Markov decision processes 
without the decision component) in Figure 1. States are represented as numbered circles and arrows specify 
transitions. Participant passively experienced these transitions throughout the experiment while performing 
a cover task. Every MRP consisted of 3 states; each tagged with a distinct background color in the 
experiment and contained a distinct image of a face, scene, or an object. Each MRP consisted of 6 states with 
state transitions that divided them into two trajectories. In the first phase of the experiment, participants 
passively observed the transition among states while performing a category judgment on the images 
associated in each state (face, scene, object). 
 

 

 
Figure 2. Schematic design 
Revaluation scores are calculated 
as the difference between the 
subject’s preference between state 1 
and 2 during phase 3 (following 
devaluation) and their preference 
after phase 1 (learning). 

 

We conducted 2 studies that were identical except for the preference rating condition (Figure 3). In study 1, 
participants had virtually unlimited time (60 s) to rate their preference between states 1 and 2 on a sliding 
scale. In study 2, participants made a forced choice between the two starting states with a 1.5 s deadline. 
Both studies consisted of 20 trials (or games), each corresponding to one of three conditions: reward 
devaluation (8 trials), transition devaluation (8 trials), and catch trials or the control condition (4 trials).   
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During phase 1, participants passively experienced all states and their associated reward. The passive 
presentation of stimuli and trajectories enabled us to control exposure to the entire state space across 
participants. To ensure that participants attended to each state and assess the extent to which they were 
attending to the stimuli, they were asked to perform a category judgment task during the passive 
navigation of the MRPs. Phase 1 was concluded once the participant reached learning criterion, or after 20 
stimulus presentations. Trials in which participants did not learn the trajectories leading to most rewarding 
states were excluded from further analysis.  
 

 

Study 1 
(sliding scale, 

20 s time) 

 
Study 2  

(forced choice,  
1.5 s deadline) 

 
Figure 3. (Left) The time course of a trial in the experimental paradigm. (Right) In Study 1 participants used a sliding 
scale with virtually no deadline (20 s delay) in order to rate their preference. In Study 2, preference rating after both 
phases was a forced choice with a short deadline (1.5 s). 
 
During Phase 2, participants passively viewed all states except the starting states of each trajectory (states 1 
and 2 in Figure 1, see also Phase 2 in Figure 2). As in Phase 1, participants performed a category judgment 
on the images of the states they visited. This category task served as a measure of attention to the states 
during both Phase 1 and Phase 2. During Phase 2, depending on the trial condition, any of the following 
three changes took place. In the reward devaluation condition, the rewards associated with end states 
changed. In the transition devaluation condition, the transition structure between second and third states 
within each trajectory changed (Figures 1 and 2). In the control condition (no devaluation) no changes took 
place in the second phase. The last condition controlled for participants’ choices in absence of any 
devaluation, ensuring that any differences in starting state preferences between Phase 1 and Phase 3 cannot 
be explained by simple forgetting of the starting states (memory decay) or by making more random 
responses.  
 
3 Results 
 
3.2 Study 1 (n = 58) results 
 
69 participants were recruited for Study 1, 4 participants were excluded as they did not learn the task and 
could not finish the study within the allotted 1.5 hours. 7 were removed from the final analysis due to 
accuracies below 80% in the categorization task, a threshold used as a measure of attention to /engagement 
with the experiment. Revaluation scores were computed as the difference in initial state preference between 
Phases 1 and 3 (∆ preference = initial state preference in Phase 3 – initial state preference in Phase 1). 
Revaluation score were computed separately for the reward devaluation and transition devaluation 
conditions.  
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The difference between the revaluation scores of the reward vs. transition devaluation conditions was 

significant at p = .005 (Figure 4). We also tested the conditions for any differences in reaction times to the 
reward or the transition revaluation, and found that responses to decisions under transition devaluation 
were significantly slower than decisions under reward devaluation (p < .05). 
 
3.2 Study 2 (n= 52) results and model fits 
 
60 participants were recruited for Study 2, 4 were excluded, as they did not learn the task. 4 were removed 
from the final analysis due to accuracies below 80% in the categorization task. The overall difference 
between the Study 2 revaluation scores for the reward devaluation vs. the transition devaluation conditions 
was not significant, but trending at p = .0795. Since the preferences were deadlined, we predicted that the 
difference between the conditions would be best elicited in the fastest responses, when participants had less 
time for computations and were more likely to rely on precomputed state structures. We thus divided the 
responses into four quartiles based on the reaction times (Figure 5). First, we found significant differences 
between revaluation scores under reward and transition devaluation in the first quartile, i.e. fastest 
responses (p = .0208). Our predictions also pertained to the difference between the fastest vs. the slowest 
responses.  So we also tested for differences between revaluation scores between the first quartile (fastest 
responses) vs. the last quartile (slowest responses) and found that it was significant at p = .0387 (two-tailed). 
 

Data            SR-Dyna fit   SR-MB fit 
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Figure 5. Study 2 Revaluation behavior under reward and transition devaluation conditions and model fits. 
Left: Behavioral results are split in quartiles based on response times. For each subject we separated the trials into four 
quartiles on the basis of response times. In the 0-25th percentile RT’s we observed a significant difference between 
reward and transition revaluation scores (p = .0208) and between revaluation scores in the first vs. the last percentile 
(p = .0387). Middle: Model fits for SR-Dyna (r = .91, p = .002). Right: Model fits for SR-MB (r = .91, p = .002).  
 
We fit both hybrid SR models to the findings: SR-MB (Figure 5, right), and SR-Dyna, an extension of the 
Dyna-like architecture (Figure 1.C.). SR-MB assumes that participants carry out value iteration, initialized 
with the successor representation (SR). Both models assume that there is "computational noise" (due to 
attentional lapses or other cognitive errors) that increases linearly with the number of iterations. As such, 
revaluation magnitude is pulled towards 0. In other words, there is a tension between value iteration - 
which increases revaluation - and noise -which decreases it. This tension gives rise to the non-monotonic 
curves: with more processing time, the influence of the SR initialization diminishes (Figure 5). This can 

 
Figure 4. Study 1 results (n=58) 
(Left) Revaluation behavior during reward devaluation, 
transition devaluation, and catch trials. (Right) reaction 
times to the preference decision under reward and 
transition devaluation (* p < .05, ** p < .005, *** p < .001).  
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be motivated by the idea that planning is error-prone and these errors compound, or that there was more 
noise in the slowest quartile as participants were simply distracted.  
 
4  Discussion 

We explored the hypothesis that humans use the successor representation to solve sequential decision 
problems. In two experiments we compared decisions in response to devaluation of rewards and 
contingencies in the transition structure (transition devaluation). We observed an asymmetrical pattern: 
decisions requiring retrospective revaluation of rewards were more accurate and faster than those requiring 
transition revaluation. The observed asymmetry of decisions under reward vs. transition devaluation is not 
predicted by classical RL solutions (i.e. MF, MB, MF-MB mixture). We suggest that a family of SR solutions 
can better account for the asymmetry in our empirical findings. It is possible that the brain uses either of 
two hybrid models: SR-MB, in which the SR initializes a “rough draft” that is subsequently refined by MB 
computation; or SR-Dyna, in which the SR is updated via virtual experience or episodic replays in a Dyna-
like architecture. Crucially, our suggested SR-Dyna solution is free of any MB calculations. Future studies 
can test whether SR-Dyna can predict and simulate varieties of related neural findings such as forward and 
reverse replay or latent learning. Model fits with SR-MB and SR-Dyna were equally good. We thus suggest 
a novel addition to the Dyna family of solutions in reinforcement learning: SR-Dyna, a combined learning 
and planning strategy that uses the SR. 
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Abstract

For robots to be effective in human environments, they should be capable of successful task execution in unstructured
environments. Of these, many task oriented manipulation behaviors executed by robots rely on model based grasping
strategies and model based strategies require accurate object detection and pose estimation. Both these tasks are hard in
human environments, since human environments are plagued by partial observability and unknown objects. Given these
difficulties, it becomes crucial for a robot to be able to operate effectively under partial observability in unrecognized
environments. Manipulation in such environments is also particularly hard, since the robot needs to reason about the
dynamics of how various objects of unknown or only partially known shape interact with each other under contact.
Modelling the dynamic process of a cluttered scene during manipulation is hard even if all object models and poses were
known. It becomes even harder to reasonably develop a process or observation model, with only partial information
about the object class or shape. To enable a robot to effectively operate in partially observable unknown environments we
introduce a policy learning framework where action selection is cast as a probabilistic classification problem on hypothesis
sets generated from observations of the environment. The action classifier operates online with a global stopping criterion
for successful task completion. The example we consider is object search in clutter, where we assume having access to
a visual object detector, that directly populates the hypothesis set given the current observation. Thereby we can avoid
the temporal modelling of the process of searching through clutter. We demonstrate our algorithm on two manipulation
based object search scenarios; a modified minesweeper simulation and a real world object search in clutter using a dual arm
manipulation platform.

Keywords: Hypothesis Classification, Greedy Action Selection, Policy Learn-
ing, Learning from Demonstration
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1 Introduction

For robots to be able to manipulate in unknown and unstructured environments the robot should be capable of operating
under partial observability of the environment. Object occlusions and unmodeled environments are some of the factors
that result in partial observability which in turn causes an uncertainty in the robot state estimate. A common scenario
where this is encountered is manipulation in clutter. In the case that the robot needs to locate an object of interest and
manipulate it, it needs to perform a series of decluttering actions to accurately detect the object of interest. To perform
such a series of actions, the robot also needs to account for the dynamics of objects in the environment and how they
react to contact. This is a non trivial problem since one needs to reason not only about robot-object interactions but also
object-object interactions in the presence of contact. In the example scenario of manipulation in clutter, the state vector
would have to account for the pose of the object of interest and the structure of the surrounding environment. The
process model would have to account for all the aforementioned robot-object, object-object interactions. The complexity
of the process model grows exponentially as the number of objects in the scene increases. This is commonly the case in
unstructured environments. Hence it is not reasonable to attempt to model all object-object and robot-object interactions
explicitly.

Also in some cases of human decision making we observe that we don’t reason over all the possible agent-object and
object-object interactions when manipulating in unstructured environments. For instance, imagine the case where you
are looking for your keys on a table among clutter. When sifting through clutter we don’t reason about all possible
agent-object or object-object interactions. Since we have an accurate model of the object of interest, i.e the keys, we
only reason about a limited set of cases. Such as the possibility of the keys being occluded by an object, etc. Under
this setting we can formulate the problem as one where we construct a set of hypothesis about the possible poses of the
object of interest given the current evidence in the scene and select actions based on our current set of hypothesis. This
hypothesis set tends to represent the belief about the structure of the environment and the number of poses the object
of interest can take. The uncertainty relating to the pose of the object of interest is directly dependent on the structure
of the environment, i.e on the number other known or unknown objects in the environment. The agent’s only stopping
criterion is when the uncertainty regarding the pose of the object is fully resolved. The question to naturally pose is, is it
possible to learn a search policy for such settings in real systems. Also what are the constraints that must be applied to
the problem setting to make learning tractable. A crucial factor to note is, as the size of the environment grows, the size
of this hypothesis set also grows.

2 Problem Formulation

Consider a robot that has access to a database of object models O = {O1, ...., On} and a set of actions A = {a1, ..., aK}.
These actions could be movement primitives. Our task is to locate an object of interestOi ∈ O in a cluttered environment.
To accomplish this task, we need to execute a sequence of actions from A to manipulate the environment, to accurately
detect Oi. For this problem we denote our current state vector as Xt ∈ X which comprises of the pose of Oi represented
by Pt ∈ P . Pt is dictated by an object model and the current structure of the environment Et ∈ E . Et is a voxelized repre-
sentation where the occupancy of voxels are informed by the poses of all the other detected objects in the environment,
whose shapes are dictated by object models or shape primitives. Let b denote the belief state, i.e. the distribution over
the state space X . Our objective is to learn a policy that will give us an action to execute given our current belief about
the state. In essence we want to learn a policy π : b(Xt)→ A, where Xt = [Pt; Et]. To determine the optimal sequence of
actions to achieve our task, we can formulate the problem as a POMDP, where our optimal policy would be given by

π∗ = argmax
π

V π(b(X0))

where b(X0) is our initial belief. The optimal policy, denoted by π∗ yields the highest expected reward value for each
belief state, which is represented by an optimal value function V ∗. This value function can be calculated as

V ∗(b(Xt)) = max
a∈A

[
R(b(Xt), a) + γ

∑

Zt∈Z
O(Zt|b(Xt), a)V

∗(τ(b(Xt), a, Zt))

]

Here γ is a discount factor and our reward is defined as:

R(b(Xt), a) =

{
1 if a = ater
0 otherwise

An action a = ater if the object of interest is successfully located. In this formulation we also assume access to an obser-
vation model O(Zt|b(Xt), a) and a belief space process model τ(b(Xt), a, Zt), i.e we can accurately predict the outcome
of an action. The belief model process model in this formulation inherently assumes one of two criteria. Either we can
model the dynamics of interactions between various rigid bodies in the environment or we can model the evolution of

1
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the hypothesis set as an outcome of actions executed. As mentioned earlier in Section 1, both of these tasks are non
trivial. Given the context of our problem it is not easy to model object-object and robot-object interactions or model
the change in the state uncertainty as an outcome of physical interaction. A possible argument to model either of these
phenomena would be to learn from demonstrations or synthetic data. Even if we were to learn these distributions from
demonstrations or synthetic data, the number of samples required to reasonably approximate the state space would be
exponential in the number of objects in the environment. A similar argument can be made for the observation model.
Also, the belief function b(Xt) is hard to estimate given a large state space, as it needs to account for the object pose P
and the entire structure of the environment E . Hence, we constrain this general formulation.

We note that we can in principle filter the belief using Bayesian filtering to account for the entire history of observations
and actions. In our case, the belief function b() represents the distribution over the object poses and current structure
of the environment. Note that the object poses are dependent on the structure of the environment hence modeling this
uncertainty is not straightforward. Instead of parameterizing the distribution of the state vector Xt, we adopt a non
parameterized approach where we use a discrete set of hypotheses H = {H1, ....,Hm} that can be constructed using the
model of our object of interest Oi and the current state of the environment Et. The state of the environment at time t is
estimated from observation Zt given by a visual sensor. Given our current observation Zt, we specify the belief b(Xt) as
the current hypotheses object poses with respect to the visible environment, given by the setHt = b(Xt). This hypothesis
set is constructed using tools from vision that take the object modelOi and observation Zt and returnHt = φ(Zt,Oi). The
objective of the problem is to manipulate the environment till we have reduced the cardinality of our current hypothesis
set to 1, ‖Ht‖ = 1 so that we can successfully execute a model based manipulation action. We define this action as
a terminal action ater ∈ A with reward 1. In an effort to make learning and inference in this setting tractable, we
approximate quantities that can easily observed and modeled. Instead of trying to learn the dynamics of interactions
in the environment, we try to directly learn a mapping between the belief state b(Xt) and actions A. This mapping is
learned with discriminative classifiers that return an action given the current belief state. To ensure that the state space
of the problem does not grow exponentially with the number of objects in the scene, we make the classifiers agnostic to
the complete state of the environment and instead have them classify actions based on features computed on the current
hypothesis setHt. We assume that we can construct the hypothesis set for any object model O under any observation in
Z , i.eH = φ(Zt,Oi). Hence our policy learning problem is reduced to

π∗ = argmax
a

wT f(b(Xt), a) where b(Xt) = Ht

Here different policies can be learned and compared by either altering the features or the number of classes, i.e actions.

3 Modified Minesweeper Simulation

We emulate the problem of action selection under partial observability using a modified minesweeper scenario. In our
modified minesweeper scenario, the mines are organized into a fixed size H-structure in the grid. The objective of the
game is to accurately determine the pose of this hidden H-structure by opening a minimum number of non-mine cells.

(a) (b) (c)

Figure 1: Modified Minesweeper

As in the classical minesweeper scenario opened cells may either be
numbered or empty indicating the number of mines in the 8-connected
neighbourhood or the opened cell might be a mine in which case the
game terminates. The agent selects actions based on its current hypoth-
esis set. This set is constructed based on the current observation, i.e
opened cells and their values. The game is completed when the agent
has narrowed down its set of hypothesis to one. The set of actions
available to the agent is to open a cell from the 8-connected neighbour-
hood of the current open cell. The game play is initialized randomly.

(a) (b) (c)

(d) (e) (f)

Figure 2: Hypothesis Set and Game Envi-
ronment Updates

A demonstration of this game play environment is show in Figure 1, where
Figure 1a is the actual game play environment, Figure 1b is the ground
truth location of the hidden H-structure and Figure 1c shows the features
computed on the current hypothesis set. The feature we use is an inverse
distance transform where cells close to the current set of hypothesis get a
high score and cells far away from the hypothesis set get a low score. We
then extract local templates from the features computed on the hypothe-
sis set. These templates are 3x3 patches around the current expert loca-
tion. The class corresponding to the feature is the location of the next ac-
tion selected by the expert in the 8-connected neighbourhood. The evo-
lution of the hypothesis set corresponding to the current game environ-
ment is demonstrated in Figure 2. We train the agent with demonstrations
from an expert where the expert plays the game over a number of trials.

2
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Agent Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

MC 12.3 8.4;2 8.1 10.1 7.1;1 8.3 7.1;1 10.1 12.6 13.2;2

BE 13.8 11.3 13.2 16 10.6 15.6 20.8 11.6 12.1 14.5

B8 12.3;3 8.4;2 9.1;3 10.1;2 9;4 17.8;4 8.3;3 10.1;2 12.6;5 13.2;3

HP 25.6 9.3 8;1 6.4 7.8;1 13.8 8.3 7.1 28.5 21

Table 1: Results of Minesweeper Tests

We compare different agents against a heuristic
player (HP). The agents trained were a Multiclass
(MC) 1 vs all SVM trained on the local templates
with 8-connected neighbourhood as; a binary agent
(BE) that classifies a local template from anywhere
on the grid as actionable or not and a binary 8-
connected (B8) agent that applies the binary agent to
the 8-connected grid. We tested the various agents
over 100 different trials with 10 random poses of the
hidden H-structure and each of the 10 poses had 10 different initializations for the agent. The results are tabulated in
Table 1. The results show the mean number of actions taken over the successful trials off the 10 trials. The number of
failed attempts in these 10 trials are boldfaced. Failures result due to opening a mine or in the B8 case failing to classify
any neigbouring grid as actionable. The best result for each random pose are highlighted in green.

4 Transition to a Real Robot Environment

We apply the same policy learning framework to a real robot decluttering experiment, where the robot is tasked with
locating an object of interest in a cluttered environment. Here the input observation Zt is an RGBD pointcloud. The
hypothesis set Ht, of the object of interest is computed using the output of an object classifier [1], that returns an object
class and pose hypothesis for every pointcloud cluster in the environment. These hypotheses are then projected on to
a planar support surface (tabletop) to compute a hypothesis feature similar to the minesweeper scenario. The general
pipeline is demonstrated in the figure below.

(a) Input Point Cloud (b) Pointcloud Clustering (c) Preprocessing Overlay (d) VP-Tree Classifier

Figure 3: Point cloud preprocessing

(a) Projected hypothesis (b) Hypothesis Overlay (c) Env Occupancy Grid (d) Inverse Dist Transform

Figure 4: Hypothesis Feature Computation

5 Conclusions and Future Work

We have demonstrated a policy learning approach for hypotheses based action selection. Our approach is trained in a
supervised manner with expert demonstrations. The key features of our approach are we can accomplish complex tasks
without reasoning about a process or observation model. Our approach also has the ability to scale to large environments
and the learning complexity is agnostic to the size of the environment. Our proposed model simplification approach is
only valid for the class of POMDP problems where states are strictly markovian in nature ex: [2, 3], i.e where the current
observation encompases the history of all previous observations. In the future we are going to perform more tests on our
robotic setup and apply this frame work to other policy learning tasks.
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Abstract
Reversal learning is one of the most venerable paradigms for studying the acquisition, extinction, and reacquisition
of knowledge in humans and other animals. It has been of particular value in asking questions about the roles played
by prefrontal structures such as the orbitofrontal cortex (OFC). Indeed, evidence from rats and monkeys suggests that
these areas are involved in various forms of context-sensitive inference about the contingencies linking cues and actions
over time to the value and identity of predicted outcomes. In order to explore these roles in depth, we fit data from a
substantial behavioural neuroscience study in rodents who experienced blocks of free- and forced-choice instrumental
learning trials with identity or value reversals at each block transition. We constructed two classes of models, fit their
parameters using a random effects treatment, tested their generative competence, and selected between them based
on a complexity-sensitive integrated Bayesian Information Criteria score. One class of ’return’-based models was
based on elaborations of a standard Q-learning algorithm, including parameters such as different learning rates or
combination rules for forced- and fixed-choice trials, behavioural lapses, and eligibility traces. The other novel class
of ’income’-based models exploited the weak notion of contingency over time advocated by Walton et al (2010) in
their analysis of the choices of monkeys with OFC lesions. We show that income-based and return-based models are
both able to predict the behaviour well, and examine their performance and implications for reinforcement learning.
The outcome of this study sets the stage for the next phase of the research that will attempt to correlate the values of
the parameters to neural recordings taken in the rats while performing the task.

Keywords: reversal learning, orbitofrontal cortex, income, return, Q-learning
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1 Introduction

It has been known for over four decades that the OFC makes an important contribution to flexibility in decision-
making [2], particularly when changes in stimulus-reward contingencies require the subject to change behavior in
order to maintain optimal performance. Contingency emerges from the coupling between choices and rewards; how
this relationships are measured and accumulated over trials is as yet not completely clear. We consider two studies
that examined influences of both choice and reward patterns. The first involved macaque monkeys performing a
three-armed bandit task with stimulus-reinforcement contingency reversals before and after OFC lesions [5]. OFC
lesions did, as expected, impair the subjects’ performance after the contingency-reward reversal. However, careful
examination of their choices revealed just a subtle impairment of the subject’s ability to assign a reward to the single
correct choice. Subjects instead associated these rewards with the series of choices made in the recent past. This would
allow the subject to make correct choices for times when the same choice leads to a reward, but performance after a
contingency reversal would still be greatly impaired. It can also be seen as being reminiscent of what is known as an
income-, rather than a return-based, method for determining preference [3]. In the second study, rats performed an
odor-guided instrumental learning task in which the magnitude and identity of the rewards were subject to reversals.
Behaviour was recorded together with neural activities in the OFC [4] and ventral striatum (VS). Here, we model the
rats’ behavior with both return- and income-based learning rules inspired by the monkey study.

2 Experimental Methods and Data

Figure 1: Experimental performance of rat R01 in odour-directed task for free-choice presentations. Trials averaged
across 30 sessions. Cue-response contingency changes occur at the onset of each block in a sequence of value-
identity-value-identity reversals. These trials are interspersed amongst forced trials which also provide evidence about
the consequences of choices.

We modelled behavioral data from rats (n = 13) trained to perform an odor-guided instrumental learning task with
three odor cues [4]. Trials commenced with a head-poke into a central well followed by receipt of an odour indicating
the possible rewards from left and right wells. Two odour cues were associated with ”forced” trials, in which the
subjects could only get reward by going either left or right appropriately – each well was associated with either a
small (one drop) or large (three drops) of reward for a block. Randomly mixed (7/20) with the forced trials were
”free” trials indicated by a third odor cue, in which both wells were ’armed’ with the same reward available on the
forced trials. The reward identity was either chocolate or vanilla flavored milk, which the subjects liked equally.
The cue-reward contingency was fixed for each block but then changed at each block transition in a sequence of
value-identity-value-identity reversals across the next four consecutive blocks of trials. Block transitions were partly
occasioned by satisfactory performance of the subjects; the first block lasted 43±16 trials; subsequent blocks lasted
63±10.7. Behavior and single unit neural activity in non-lesion and unilaterally lesioned OFC and VS were recorded
simultaneously.

Figure 1 shows rat R01’s average performance over 30 sessions of the odour-directed task across five sequential blocks
of free trials. As can be seen in the figure, the rat begins the free trial presentations in block 1 with a 50% probability
of choosing the higher valued reward, but by the fifteenth trial is on average selecting this option with about 90%
probability. After the first reversal of reward value at the onset of block 2, the performance of the rat drops to well
below 50%, but again, by the fifteenth trial, has recovered to selecting the larger reward with about 80% probability.
The rat’s performance continues to improve through the identity reversal in block 3 but repeats the pattern seen in
blocks 2 and 3 after the second value reversal in block 4 and identity reversal in block 5.
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3 Learning Rules

3.1 Introduction

We consider two classes of learning rule. The first involves variants of regular, contingent Q-learning, in which the
value of a choice is only dependent on the reward received for that choice. The second class, correlational Q-learning,
measures a temporally-delocalized correlation between the stream of rewards earned by the subject and the stream of
choices made, without monitoring the detailed contingency between the two. We lack the space to discuss the many
variants of these learning rules that we also considered.

3.2 Contingent Q-learning: Q2

To fix the notation, we consider a return-based QR-learning rule with two parameters: θR = (TR, αR
Q), where TR

is the temperature associated with a softmax choice and αR
Q is the learning rate for QR-values. The probability of

choosing action at on trial t, and the update to QR
t based on the prediction error ∆QR

t are given by

p(at|θ;QR
t ) = e

QRt (at)

TR /
∑

b
e
QRt (b)

TR QR
t+1(b) = QR

t (b) + αR
Q∆QR

t (b) ∆QR
t (b) = rt −QR

t (at),∀b (1)

3.3 Correlational Q-learning: QB5

We designed a novel, income-based, learning rule based on the correlation between low-pass filtered rewards and
choices that captures the impaired causal relationship between rewards and choices following OFC lesions in macaques
[5]. This involves three additional parameters (now labelled with the superscript I) beyond contingent QR-learning as
follows: θI = (T I , αI

Q, α
I
C , χ

I
C , λ

I
Q) where T I is the temperature associated with a softmax choice, αI

Q and αI
C are

the learning rates for QI -values and the choice kernel respectively, χI
c is the weight of the choice kernel and λIQ is an

eligibility trace parameter. The critical difference from contingent QR-learning is the prediction error ∆QI
t (b):

∆QI
t (b) = ρt

Ct(b)∑
d Ct(d)

−QI
t (b) with ρt+1 = ρt + αI

C(rt − ρt) (2)

where the probability of choosing action at on trial t, the updated QI , the eligibility trace eIt and the choice kernels
Ct are updated according to

p(at|θI ;QI
t ;Ct) = e

QIt (at)+χ
I
cCt(at)

TI /
∑

b
e
QIt (b)+χ

I
cCt(b)

TI QI
t+1(b) = QI

t (b) + αI
Q∆QI

t (b)(1− λIQ)eIt (b) (3)

eIt+1(b) = λIQ
(
eIt (b) + δatb

)
and Ct+1(b) =

{
(1− αI

C)Ct(b) + αI
C(1− Ct(b)) if at = b

(1− αI
C)Ct(b) otherwise

(4)

4 Model Results and Evaluation

By including or excluding parameters (for instance, eliminating the eligibility trace), both classes of models can
be seen as a lattice of possibilities. We fit the resulting set of models to the data using the approximate type II
maximum likelihood scheme in [1]. That is, we treat the subjects as ’random effects’, i.e., with a hierarchical generative
model involving top-level independent Gaussian distributions associated with each parameter. We fit the means and
standard deviations of these distributions using the expectation-maximization algorithm in conjunction with a Laplace
approximation for the posterior distributions for each subject. We transformed the Gaussian random variables via non-
linear functions exp(·) (for the temperature) and σ(·) = ε+(1−2ε)/(1+exp(−·)) (for the other parameters, where ε =
0.010) to keep them in the appropriate ranges. We compare models using the integrated Bayesian Information Criteria
(iBIC) [1] score, which combines the likelihood of the choices under the full generative model with a complexity
penalty.

There are various ways to incorporate the forced trials into this analysis. Unsurprisingly, the subjects perform these
trials very well; however, although they do provide information about the reward availability on each side, this infor-
mation might not be associated by the subjects with the odor that signals a free choice. We are currently exploring the
best way to incorporate them; all the results here exclude them from consideration entirely.

Figures 2 and 3 illustrate the workings of the two representative models above: return-based Q2 and income-based
QB5.

We generated simulated performance data by sampling values of model parameters for each session via the non-linear
transforms from the top-level Gaussian distributions, using these to compute choice probabilities on a trial-by-trial
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Figure 2: Q2 results for rats R01 (A) and R03 (B) showing average performance across 100 sessions with parame-
ters drawn from hyperparameter means ± standard deviation in non-linear coordinates. R01: TR = exp(0.005 ±
0.031),αR = σ(−0.293± 1.000); R03: TR = exp(0.241± 0.042), αR = σ(−0.530± 1.000)

Figure 3: QB5 results for rats R01 (A) and R03 (B) showing average performance across 100 sessions with parameters
drawn from hyperparameter means ± standard deviation in non-linear coordinates. R01: T I = exp(0.215 ± 0.002)
αI
Q = σ(0.197 ± 0.072), αI

C = σ(2.400 ± 0.147), χI
C = σ(1.341 ± 0, 261), λIQ = σ(−0.982 ± 1.300), R03:

T I = exp(0.319 ± 0.005) αI
Q = σ(−0.193 ± 0.650), αI

C = σ(1.781 ± 0.248), χI
C = σ(0.658 ± 0.194),λIQ =

σ(−1.420± 0.248)

basis, and then picking choices from these probabilities. Both models were able to reproduce the experimental results
well. Figure 4 shows iBIC scores for the two models for each of two rats. For subject R01, the Q2 model (normalized
iBIC score = 0.8752) had a slight performance advantage over QB5 (normalized iBIC score = 0.8793) but for subject
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R03, who demonstrated a much slower recovery from reversals than rat R01, QB5 had better performance (normalized
iBIC score = 1.0522) compared to Q2 (normalized iBIC score = 1.0848). Moreover, Q2 recovered slightly faster from
reversals than QB5, occasionally outperforming the experimental subject. Interestingly, rat R03 recovered from the
second reversal slightly faster than from the first. We are currently studying individual sessions to see if, contrary to
the apparent sloth of learning overall, there is evidence for the sort of near-instantaneous state-switching suggested by
Wilson et al [6].

5 Conclusion

Reversal learning has been a touchstone for understanding flexible behaviour and is a significant target for work in
OFC. Inspired by findings from macaques with OFC lesions [5], we introduced a new class of Q-learning rules we
call correlational Q-learning that takes into account the possibility for contingency mis-assignment between a series of
outcomes and the choices that lead to those outcomes. We compared this class with standard, contingent, Q learning
algorithms on the behavior of rats in an odor-guided instrumental learning task with value and identity reversals.
We chose 2 rats out of our population of 13, one each fit better by the two rules; performance overall was quite
comparable. The next steps for behavioural modeling are to study the integration of forced trials with the free ones,
assessing the possibility of adaptive learning rates or rapid context switches following reversals [6] and systematically
to test the benefits of all the parameters. We will thus obtain a rich set of potential correlates with which to analyze the
simultaneously-collected electrophysiological data.
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Abstract 
Most of our everyday decisions rely crucially on context: foraging for food in the fridge may be appropriate 
at home, but not at someone else’s house. Yet the mechanism by which context modulates how we respond 
to stimuli remains a topic of intense investigation. In order to isolate such decisions experimentally, 
investigators have employed simple context-based decision-making tasks like the AX-Continuous 
Performance Test (AX-CPT). In this task, the correct response to a probe stimulus depends on a cue stimulus 
that appeared several seconds earlier. It has been proposed (Braver, 2007) that humans might employ two 
strategies to perform this task: one in which rule information is proactively maintained in working memory, 
and another one in which rule information is retrieved reactively at the time of probe onset. While this 
framework has inspired considerable investigation, it has not yet been committed to a formal model. Such a 
model would be valuable for testing quantitative predictions about the influence of proactive and reactive 
strategies on choice and reaction time behavior. To this end, we have built a drift diffusion model of 
behavior on the AX-CPT, in which evidence accumulation about a stimulus is modulated by context. We 
implemented proactive and reactive strategies as two distinct models: in the proactive variant, perception of 
the probe is modulated by the remembered cue; in the reactive variant, retrieval of the cue from memory is 
modulated by the perceived probe. Fitting these models to data shows that, counter-intuitively, behavior 
taken as a signature of reactive control is better fit by the proactive variant of the model, while proactive 
profiles of behavior are better fit by the reactive variant. We offer possible interpretations of this result, and 
use simulations to suggest experimental manipulations for which the two models make divergent 
predictions. 
 
Keywords:  cognitive control; context-dependent decision-making; proactive and reactive control; dual-
mechanisms of control; drift diffusion model 
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1 Introduction 
Most of our daily decisions depend crucially on context. While our normal response to seeing a new email 
from a good friend might be to open it, this response may be suppressed if our goal is to work. However, if 
an email alert were to arrive about an approaching winter storm, we should be able to respond to it despite 
its former irrelevance. This ability to modulate our behavior based on context has been termed “cognitive 
control.” The traditional account of these context effects is a proactive one, in which context is represented by 
patterns of ongoing neural activity (possibly sustained by the frontoparietal network) and modulates the 
response to incoming stimuli (Miller & Cohen, 2001). Recently, the Dual Mechanisms of Control (DMC) 
account has proposed that, since active task preparation is costly, people may sometimes use a reactive 
strategy. Instead of actively maintaining the context, it could be stored passively (perhaps in a pattern of 
synaptic weights) and reactivated when the relevant stimulus is presented (Braver, 2007). Under the DMC 
framework, people can switch between these two strategies based on their intrinsic motivation, the 
constraints of their cognitive architecture, and the particular demands of the task (Braver, 2007).  
While the DMC framework has inspired a large body of experimental work in humans, we provide the first 
computational instantiation of it, and apply it to the AX-Continuous Performance Test (AX-CPT), a classic 
task from the cognitive control literature. In the AX-CPT, a contextual cue (A or B) is presented briefly on 
each trial, followed by a probe stimulus (X or Y) after a short delay. Participants must respond to the probe 
stimulus differently depending on whether it was preceded by (i.e. in the context of) an A or a B.  
We model proactive control as identifying the probe (X or Y) in the context of the cue (A or B), and reactive 
control as recalling the cue (A or B) in the context of the probe (X or Y).  We instantiate the probe 
identification or cue recall processes as drift-diffusion models, which allow us to predict the pattern of 
choices and reaction times for the different trial types in the task. Using these models, we show that choice 
behavior taken as a signature of proactive or reactive control can be produced by both instantiations of our 
model, though they make different predictions for reaction time distributions. Moreover, we find – counter-
intuitively – that proactive behavior is better fit by the model we termed “reactive”, while reactive behavior 
is better fit by the model we termed “proactive”, and offer possible interpretations. Our simulations suggest 
that manipulating uncertainty about the cue and probe separately could bring subjects into a parameter 
regime where the two models make the most distinct predictions.  
2 Methods  
2.1 The AX-CPT Task 
On each trial of the task, a cue (A or B) signals how to 
respond to the upcoming probe (X or Y), which appears 
a few seconds later. In the variant we use, the subject 
must press the left button on AX and BY trials, and the 
right button on AY and BX trials (Fig. 1). Manipulating 
the frequencies of cue and probe stimuli can be used to 
investigate subjects’ control strategy. Since AX trials are 
the most common, a subject proactively preparing responses will be biased to incorrectly respond Left on 
AY trials, since X is more likely than Y. On the other hand, a subject reacting to the probe will be biased to 
incorrectly respond Left on BX trials, since A precedes X more often than B. The relative proportion of AY 
and BX errors and reaction times in such designs are therefore taken to reflect an index of proactive or 
reactive control (Braver, 2009). 
2.2 Behavioral Experiments to Induce Proactive and Reactive Strategies	  
To encourage subjects to use both types of control, we used a number of within-subject manipulations. In 
the proactive manipulation, subjects were rewarded for correctly responding faster than 500ms, which is 
difficult without proactive task preparation. In the reactive manipulation, we introduced a distractor task 
between the cue and probe, making it more difficult to actively maintain the context during the delay 
period, such that subjects might have to retrieve their context representation at the time of the probe.	  
We ran 11 small experiments, varying trial frequencies (while maintaining AY and BX frequencies equal), 
the duration of the delay period, and the difficulty of the second task. While these variations are interesting 
and will be reported separately, here we aggregate the results from all experiments (120 subjects) in order to 
draw general inferences about the proactive-bias and reactive-bias conditions.  
 

Trial	  
Type	  

Freq.	   Response	  

AX	   50%	   Left	  
AY	   20%	   Right	  
BX	   20%	   Right	  
BY	   10%	   Left	  

Figure	  1 Trial	  timeline,	  trial	  frequencies	  and	  response	  rules.	  
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2.3 Drift Diffusion Model of Context-Dependent Decision-Making on the AX-CPT 
At its heart, the AX-CPT is a two-alternative forced choice (2AFC) task: participants make a decision 
between left and right on the basis of a context cue (A or B) and a probe stimulus (X or Y).  Such 2AFC tasks 
have been modeled successfully using drift diffusion models (DDMs), in which a decision is made by 
gradually accumulating evidence for either left or right response and responding when the evidence crosses 
some decision threshold, z (see Bogacz, 2006, for a detailed review).	  Unlike classic 2-AFC tasks, however, in  
the AX-CPT, subjects must integrate memory of the cue they saw seconds earlier with incoming perceptual 
evidence about the probe, and the dynamics of this integration should vary by strategy. We implemented 
the proactive strategy as a drift diffusion process reflecting perceptual evidence accumulation about the 
probe, the parameters for which are set by the noisily encoded cue in memory. We modeled the reactive 
strategy as a drift diffusion process reflecting retrieval of the cue from memory, the parameters of which are 
set by noisy perception of the probe. This distinction reflects the DMC conception of proactive control as 
task configuration triggered by the cue and reactive control as task configuration triggered by the probe.  
2.3.1 Drift Diffusion-on-Probe (DDP) model of “proactive” strategy 
In the proactive variant, which we will term “Drift Diffusion-on-Probe” (DDP), the true cue, C, is encoded in 
memory as 𝐶,	  with some bit-flip noise, 𝜀! , which reflects the probability that the cue is encoded incorrectly. 
Given its noisy cue representation, the model computes the posterior probability distribution over the rule, 
R (i.e. R = “left on X, right on Y” or “right on X, left on Y”) using Bayesian inference:  𝑃 𝑅 𝐶 ∝ 𝑃 𝐶 𝑅 𝑃(𝑅), 
with the prior set based on trial frequencies, and the likelihood computed using the true value of 𝜀!.	  	  

The model then samples the rule from 𝑝 𝑅 𝐶 , and uses this sampled rule to set up the parameters of the 
DDM on the probe. The sampled rule determines the direction of the drift, the threshold, z, and starting 
point,  𝑥!, for drift diffusion on the probe. The model therefore has two starting point and threshold 
parameters (one for each cue: 𝑧!, 𝑧! , 𝑥!!, 𝑥!!), a drift rate parameter for the probe (𝑎), cue noise (𝜀!) and a 
response time offset due to motor planning and execution (T0) – seven free parameters in total.   
These assumptions, in combination with standard results from the DDM literature (Busemeyer & 
Townsend, 1993; Navarro & Fuss, 2009), allow us to compute reaction time distributions for correct and 
error trials in each of the four trial types (AX, AY, BX, BY).  This, in turn, allows us to fit the model to the 
experimental data.  
To develop an intuition about how the model behaves, consider that the 
probability of using Rule B given that 𝐶=B increases with the frequency 
of B cues and decreases with encoding noise, 𝜀! . As 𝜀!  increases, the 
model will be more likely to confuse B for A cues, given the higher 
frequency of A. This will cause it to respond incorrectly on BX, and 
produce the typically “reactive” mistake. In other words, the higher the 
cue noise, the more reactively our “proactive” model behaves.  
2.3.2 Drift Diffusion-on-Cue (DDC) model of “reactive” strategy 
For the reactive variant, which we term “Drift Diffusion-on-Cue” (DDC), 
we reversed this process to reflect the fact that the reactivation of task 
representations is triggered and modulated by the probe. In this variant, 
the probe is encoded with some bit-flip noise 𝜀!, and must be decoded in 
order to set the rule (e.g. Rule = “Right on A, Left on B”.) As the probe 
encoding noise increases, the model will be more likely to confuse Y’s for 
X’s, given the higher frequency of X’s, causing it to respond incorrectly on 
AY trials. By a similar intuition as above, our “reactive” model will 
produce typically “proactive” mistakes as probe noise increases. The 
sampled rule also sets the starting point for drift diffusion on the cue. Given 
the trial frequencies (Fig. 1), a rational subject might set the X starting point 
closer to the Left, but the Y starting point closer to the Right threshold. 
Note that both variants of the model implement noise in the cue and probe representations, but they do so 
in different ways. In the DDC model, noise in the cue representation would be reflected in a low drift rate, 
causing impaired BX performance. In the DDP model, a low drift rate would reflect noise in probe 
perception, impairing AY performance, while the cue encoding noise 𝜀!  facilitates BX errors. 

Figure	  2 Proactive	  DDM	  on	  Probe	  (A)	  
and	  Reactive	  DDM	  on	  Cue	  (B) 
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2.4 Fitting our Model to Data 
We used maximum likelihood estimation to fit the DDP and DDC models separately for each subject in each 
experimental condition. The Bayesian Information Criterion can show us which model fits the data best in 
which condition, but does not allow us to assess the quality of that fit. We therefore computed a “pseudo 
𝑅!” statistic (Fernandes, 2014), which measures how well our models fit the data relative to a null model – 
with minimal assumptions – and a “saturated model” that overfits the data. Following Fernandes (2014), we 
defined the pseudo 𝑅! as: 

𝒑𝑹𝟐 ≝ 𝟏 −
𝑳𝑺 − 𝑳𝑻
𝑳𝑺 − 𝑳𝑯

 

where 𝐿!is the log likelihood of the saturated model, 𝐿! is the log likelihood of the theoretically-informed 
model, and 𝐿!is that of the homogeneous or null model. These benchmark models should reflect the most 
and least constrained forms of our models. The homogeneous model assumes no variation by trial type and 
assumes all trials are drawn from a mixture of two arbitrary DDMs. The saturated model assumes no shared 
properties between trial types and assumes each trial type is drawn from a separate mixture of two arbitrary 
DDMs. (We make the mixture-of-DDMs assumption because our models produce a mixture of two DDMs 
by occasionally sampling from the wrong rule due to encoding noise.) The resulting saturated model has 32 
parameters, and thus many more degrees of freedom than our 7-parameter models.  

A pseudo 𝑅! value of 0 means our theoretical model does no better than a model that does not distinguish 
between trial types, and a value of 1 means that our model performs as well as a model that fits each trial 
type separately.  
2.5 Landscaping Analysis: Finding where the models make distinct predictions 
To infer in which part of the parameter space the DDP and DDC models make the most distinct predictions, 
we performed a “landscaping analysis” (Navarro, Pitt & Myung, 2004): we simulated behavior with each 
model, sampling uniformly from the parameter space, and fit this behavior with both models (repeating 
with both models as the simulating model). This analysis lets us identify parts of the parameter space where 
one model cannot fit the other’s generated data, and therefore the models make distinct predictions.  
3 Results  
3.1 Behavioral Results 
As Figure 3 shows, the proactive manipulations 
generally succeeded at eliciting more AY than BX 
errors (t(119)=	  3.35, p=0.001), while the reactive 
manipulations were more variable at eliciting 
more BX than AY errors (t(119)=1.89, p=0.06). 
While mean response times varied by trial type 
(AY errors were faster than AY corrects, while 
AX errors were slower than AX corrects), they 
did not vary by condition, possibly because the 
incentive to respond faster in the proactive 
condition reduced the overall variability in 
decision times.  
3.2 Model Goodness of Fit by Experimental Condition and Model Type	  

The mean pseudo  𝑅!  values ranged between 0.68 for DDP (SD=0.26) and 0.69 for DDC (SD=0.28) (Fig. 4A). 
Since the saturated model had four times as many parameters, our models received a consistently lower BIC 
than the saturated model (all 𝑝 < 10!!"), suggesting that our models are a parsimonious description of the 
data. We discuss more detailed results next. 
3.2.1 DDM on Cue Model Fits Proactive Behavior Better; DDM on Probe Model Fits Reactive Behavior Better  
Considering only the proactive condition, the DDC model fit behavior significantly better than DDP 
(t(119)=4.1, 𝑝 < 10!!), while there was no difference between models for the reactive condition (t(119)=0.07, 
p=0.94). However, since there were large individual differences in how well the reactive manipulation 
elicited the desired behavior, we also split subjects into two groups based on their “proactive error index” 

Figure	  3	  Mean	  behavior	  in	  the	  two	  experimental	  conditions. 
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(AY errors – BX errors.) This revealed that proactive 
behavior was significantly better fit by the DDC than 
the DDP model (t(110)=10.00, 𝑝 < 10!!") while 
reactive behavior was better fit by the DDP than the 
DDC model (t(106)=	  3.64, 𝑝 < 10!!, see Fig. 4B). This 
pattern was the opposite of what we had predicted, 
but can be explained by the fact that both models can 
in fact produce both types of behavior. Given that 
the DDC model represents cue noise through a low 
drift rate, it would need broad reaction time 
distributions in order to produce BX errors. This was 
not the case in our data, where subjects were 
encouraged to react quickly. Therefore, the DDP 

model was able to better capture BX errors through its bit-flip cue noise parameter (which does not affect 
reaction times.) Similarly, the DDC model’s probe noise parameter could better account for proactive AY 
errors. This effect is further exacerbated by the lack of reaction time differences across conditions in our data 
(AY trials were slower than BX in both conditions). In such cases, the encoding noise parameter is better 
suited for producing error changes without large corresponding RT differences. We are currently running 
experiments without an RT deadline, to see if this effects holds when we induce more natural variability in 
reaction time distributions. Realistically, subjects may not adopt purely cue-based or probe-based strategies, 
and evidence accumulation might happen on both stimuli simulataneously at the time of response. We are 
currently building models that capture this interaction.  
3.2.2 Behavior in proactive condition was better fit by all models than behavior in reactive condition 

Both models received higher pseudo  𝑅! scores for the proactive condition than the reactive condition 
(t(119)=2.09, p=0.04 for DDP and t(119)=	  2.73, p=0.007 for DDC, see Fig. 4A). Given that we did not reward 
speed or accuracy in the reactive condition, participants were likely more unstable in their strategy across 
trials. Such behavior is better fit by the saturated model, since it fits a weighted sum of two arbitrary DDMs. 
However, splitting behavior by the proactive error index did not reveal lower pseudo  𝑅!  scores for reactive 
behavior (t(216)=0.46, p=0.64 for DDC), and the DDP model even trended towards fitting reactive behavior 
better than proactive behavior (t(216)=1.96, p=0.05), suggesting that the poorer fit was not related to higher 
BX errors, but rather specific to our reactive manipulation. Thus, while the reactive manipulation may have 
promoted more noisy behavior, our models can fit reactive profiles of behavior as well as proactive ones.  
3.2.3 Landscaping analysis points to more sensitive experimental manipulations for model identification 

Besides removing the cap on reaction times, our simulations suggest 
experimental manipulations that can help to test the predictions of our two 
models more precisely. Comparing the log likelihoods of the two models (on 
data generated by one of them) for various parameter combinations revealed 
that they make the most distinct predictions when both encoding noise and 
drift rate are high, or when both encoding noise and drift rate are low. These 
are all regimes in which one stimulus (cue or probe) is encoded very noisily, 
while the other is encoded with high fidelity. To test this, we plan to 
parametrically degrade the cue and probe stimuli independently of each 
other. We predict that, in regimes with less peaky reaction time distributions 
(low drift rate), the DDP model will fit better when the probe uncertainty 
exceeds the cue uncertainty, and vice versa. In addition, we plan to test how 
the proactive index (AY – BX errors and RTs) relates to the time spent 
integrating probe or cue evidence, respectively. 
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Abstract

Value-based approaches to reinforcement learning (RL) maintain a value function that measures the long term utility
of a state or state-action pair. A long standing issue in RL is how to create a finite representation in a continuous,
and therefore infinite, state environment. The common approach is to use function approximators such as tile coding,
memory or instance based methods. These provide some balance between generalisation, resolution, and storage, but
converge slowly in multidimensional state environments. Another approach of quantizing state into lookup tables has
been commonly regarded as highly problematic, due to large memory requirements and poor generalisation. In par-
ticular, attempting to reduce memory requirements and increase generalisation by using coarser quantization forms a
non-Markovian system that does not converge. This paper investigates the problem in using quantized lookup tables
and presents an extension to the Q-Learning algorithm, referred to as Coarse Q-Learning (CQL), which resolves these is-
sues. The presented algorithm will be shown to drastically reduce the memory requirements and increase generalisation
by simulating the Markov property. In particular, this algorithm means the size of the input space is determined by the
granularity required by the policy being learnt, rather than by the inadequacies of the learning algorithm or the nature
of the state-reward dynamics of the environment. Importantly, the method presented solves the problem represented by
the curse of dimensionality.

Keywords: Reinforcement Learning, Temporal Difference Learning, Continu-
ous State, Quantized state, Function Approximation.
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1 Introduction

Reinforcement Learning (RL) is a valuable tool for sequential decision making problems. However, while it works
well with discrete states and actions, it can struggle with continuous state environments where an infinite state space
must be represented within a finite amount of memory. The simplest approach is to quantize the state variables by
partitioning them into a multidimensional grid. Each region, usually a hypercube, within the grid is then regarded
as an atomic input or cell1. This approach is simple, but the resolution of quantization needs to be very fine to avoid
the system becoming non-Markov and therefore never converging (Geramifard et al., 2013; Santamarı́a et al., 1997).
However this exponentially increases the number of cells, and therefore the memory requirements, as well as vastly
slowing learning. The failings of quantization have led researcher to seek other ways to reduce the size of the state
representation while maintaining good performance. While a discussion of these is beyond the length of this paper
they include more robust function approximators and state adaptation. Function approximators such as tile coding
(Sutton, 1996) provide improved balance between generalisation, resolution, and storage over quantization (Santamarı́a
et al., 1997), but converge slowly with multidimensional state environments. Other approaches have enabled temporal
abstraction by limiting the points where decisions are made and allowing temporally-extended actions such as in options
(Sutton et al., 1999). While these approaches have improved RL in continuous environments they still represent an
attempt to find a work around, rather than a solution, to the problems of quantization.

This paper takes a fresh look at the quantization approach and investigates the cause of its behaviour under coarse parti-
tioning. We propose a modification to Q-Learning (Watkins and Dayan, 1992), Coarse Q-Learning2 (CQL), which allows
a much coarser quantization without exhibiting the divergent behaviour of Q-Learning. Results show that the coarsity
of partitioning under CQL is only limited by the policy being learnt. This eliminates the need to unneccesarily finely
quantize domains and so reduces memory requirements, increases generalisation and speeds-up learning. The follow-
ing section introduces a simple environment that illustrates Q-Learning’s divergence under coarse quantization. Section
3 introduces CQL and discuss the differences to Q-Learning. The next section then analyses CQL’s performance and
discusses why this algorithm converges successfully while Q-Learning diverges. It will also compare these algorithms
using a non-smooth environment where CQL’s potential for use within state adaptation is apparent.

2 Analysing Divergence in Quantized Continuous State Environments

In finite state environments a tabular representation can be used and Q-learning is guaranteed to converge (Geramifard
et al., 2013; Santamarı́a et al., 1997). However, with continuous variables there are an infinite number of states, each
requiring action-utility values. We can still use a tabular approach by quantizing variables into small discrete cells
(Geramifard et al., 2013) where all states in each cell share the same state-action value. The challenge is determining how
fine grained a representation needs to be to still converge to a solution. In domains with reasonably smooth state-action
space (Kaelbling et al., 1996) discretising on the scale of the average step-size can yield a situation akin to a finite discrete
problem in that an action will usually result in moving from one cell to the next in a single step. However this can
represent a significant memory allocation and will significantly slow learning.

a)a)  b)a)  

Figure 1: a) A simple environment where the agent must learn a path from the starting position to the goal. b) The
performance of Q-Learning in terms of episode length when each cell is the size of a single step.

1Terminology varies with both the environment-variable and the quantized inputs often called states, while tile coding research
refers to the quantized inputs as tiles. We will use state for the environment-variables’ raw value, and cell for the quantized input.

2Late in the preparation of this paper we discovered that da Silva and Costa (2009) previously used this name, but the only similarity
to our approach is the use of clamped actions. Their method did not work, but this is due to the incompleteness of the algorithm and
the unstable nature of the state representation used in their evaluation. We address these issues in this paper.
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The environment in Fig 1a illustrates the problem with quantization. Two continuous state variables representing an x, y
coordinate in the range 0..1. Each time-step the agent can move a distance of 128−1 in any cardinal direction and receives
a penalty of -0.1. The agent receives a penalty of -0.2 for colliding with an edge and a reward of 12.8 when the goal is
achieved. Alhough this is an exceptionally simple task it requires 128(x) × 128(y) × 4(actions) = 65536 values to accurately
represent the environment using fine-grained quantization. Furthermore, when tested over ten trials Q-Learning took
an average of 35881 episodes (stdev 44643) to converge to an optimal solution (Fig 1b). Quantizing in this fashion is
clearly intractable in higher dimensional problems, as noted previously (Kaelbling et al., 1996; Geramifard et al., 2013;
Santamarı́a et al., 1997). To reduce memory requirements and accelerate learning cells must cover more states. For
instance, if cell size is doubled then the number of cells is reduced to 16384. Applying this two-step cell size to the above
problem results in faster learning as it has less cell values to learn. However the agent never fully converges and starts
behaving erratically. The non-Markovian environment and the resulting lack of convergence is clearer as the number of
steps per cell is increased. Fig 2 illustrates Q-Learning’s divergence as cell size is increased.

a)a)  b)
a)  

Figure 2: a) A moving average of the length of the last 100 episodes. With each increase in cell size the agent settles on
a worse solution and behaves increasingly erratically. b) The average length of the last 500 episodes, illustrating that
Q-Learning diverges as the number of steps in each cell increases.

The cause of the problem is that the agent must take multiple steps within each cell, which changes the problem to be
non-Markovian (Geramifard et al., 2013), and therefore not guaranteed to converge using Q-Learning (Kaelbling et al.,
1996). When multiple steps are taken in the same cell the agent must repeatedly select an action to perform. When close
analysis is done of the cell-action values it can be seen that these decisions change over time. This is caused by the self-
referential learning loop that has been created by the representation - the new cell-action value is based on the difference
between the new cell’s value and the original cell’s value, plus any reward. When the new cell and the original cell are
the same the difference is zero and the result is just the reward - hence the cell-action value will be driven up or down
continuously and never converge. Furthermore, once a particular action has been taken its value will be changed and
so when the agent must repeat the action-selection for this cell the choice may be different. This results in oscillating or
cyclical behaviour, as shown in Fig 3.

 

Figure 3: Shows Q-Learning behaviour in the environment from Fig 1 with 4 large cells. The path progresses from light
at the start of an episode to dark at the end. a) shows the random walk at the start of training, b) shows that a decent
policy has been learnt after 121 episodes, however, c) shows that policy is very unstable causing the agent to easily revert
to an essentially random walk. This pattern of reverting back to a random walk repeats often.

3 Coarse Q-Learning

The aim for CQL was to prevent the wandering seen in the last section, by modifying Q-Learning in order to simulate the
Markov property by treating each cell c ∈ C in the way that a single state would be in a finite tabular state environment.

2
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This is accomplished by using clamped-actions which are simply actions that, once selected, are repeated until a new cell is
entered. When the agent enters a cell it selects a clamped-action and repeatedly executes it until the current cell is exited.
Individual steps within that cell are treated as sub-steps of a single clamped-step by the agent. This is similar to the
extended-actions used in options (Sutton et al 1999) except there is no underlying state as far as the agent is concerned.
The use of clamping actions does raise some issues that will be discussed in the following subsections.

Cell Definition A cell, c, encapsulates one or more states, such that c1 ∪ c2 ∪ . . . ∪ cn = S, where n ≤| S |. CQL learns
common action values for all states in a cell, so it is important that the optimal policy for each of the states contained in
the cell is the same. Therefore cells should be formed such that: ifπ∗(s) 6= π∗(s′)then 6 ∃ci where s ∈ ci and s′ ∈ ci,∀ci ∈ C
This means the cardinality and structure of cells is tied to the optimal policy. Clearly, this policy is not known a priori, and
so we anticipate that one main use of CQL will be in conjunction with state adaptation to discover appropriate cells. This
paper will only validate that it learns successfully and future work will investigate its utilisation with state adaptation. It
should be noted here, that theoretically CQL could be used in other generalisations such as tile coding which could break
this cell selection rule but there should be at least some cells ci where s ∈ ci and s′ 6∈ ci or vice-versa.

Exiting Cells CQL assumes that an agent repeatedly taking the same action will eventually exit the current cell. Where
this does not hold then a means is required to detect this. One approach may be to identify a change in reward where an
agent leaves a cell and then returns to the same cell (eg a wall collision) - this approach is used in this paper. Alternatively
the agent may observe the continuous state and terminate the clamped-action if these values are not changing sufficiently,
or it may time-out if more than a threshold number of steps have been taken without leaving the current cell.

Gathered Reward and Update Rule As the agent’s choice of action is fixed until the current cell is exited, there is no
need to update action values after each sub-step. Therefore CQL sums the reward until the cell is exited, when the total
reward is then applied - as if the cell was a single step in a finite tabular environment. As this is treated as a single step
update, any discounting or λ attenuation will be less resulting in a larger update for earlier cells.

Algorithm 1 Coarse Q-Learning

1: Initialise Q(s, a) arbitrarily and e(s, a)← 0, ∀s, a
2: repeat for each episode:
3: Initialise s, a; Initialise t← 0
4: repeat for each step of episode
5: Take action a; observe r, s′; t← t+ r
6: if s′ = s and not (stuck in cell) then
7: a′ ← a
8: else
9: Choose a′ from s′ using policy derived from
Q (e.g. ε-greedy)

10: a∗ ← argmaxbQ(s′, b) (if a′ ties for the max,
then a∗ ← a′)

11: δ ← t+ γQ(s′, a∗)−Q(s, a); t← 0

12: e(s, a)← e(s, a) + 1 // or e(s, a)← 1
13: for all s, a do
14: Q(s, a)← Q(s, a) + αδe(s, a)
15: if a′ = a∗ then
16: e(s, a)← γλe(s, a)
17: else
18: e(s, a)← 0
19: end if
20: end for
21: end if
22: s← s′; a← a′

23: until s is terminal
24: until no more episodes

4 Empirical Evaluation of Coarse Q-Learning

a)a)  b)a)  

Figure 4: a) Results for CQL over 2000 time steps with different cell sizes. b) Compares the final 500 episodes of Q-
Learning and CQL.
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Fig 4a shows how CQL learns with different sized cells, while 4b compares it against Q-Learning. CQL learns faster and
does not show any signs of divergence as cell size increases. The results also show that if a fine quantization is used CQL

performs just like Q-Learning. Therefore, CQL can be applied wherever Q-Learning is currently used without adversely
affecting results, but if there is some coarsity in the state representation this algorithm will outperform Q-Learning.

a)a)  b)

Figure 5: a) The expert created partitioning of PuddleWorld. b) Comparing the reward received of CQL and Q-Learning
on the expert-partitioning of PuddleWorld. The average of the last 500 episodes over ten runs is given in brackets.
Finally we look at how CQL performs in a problem domain with a non-smooth state-action-reward - PuddleWorld (Boyan
and Moore, 1995; Sutton, 1996). Due to the puddles a uniform coarse quanitization does not allow optimal performance,
as cells may contain both puddle and free-space in which the optimal actions are different. A more effective coarse
representation might be derived using state adaptation techniques (Whiteson et al., 2007; Pyeatt et al., 2001). We have
simulated this by using an expert partitioning shown in Fig 5a which requires just 10 cells, far less than the 256 uniform
cells we found were required for Q-learning to converge on this problem. In the results shown in Fig 5b, it can be seen
that on this partitioning CQL has far exceeded the performance of Q-Learning which never converges to a stable policy.

5 Conclusion

This paper took a fresh look at the quantization approach to generalisation. We identified the fundamental problem
leading to divergence when Q-Learning is applied to coarsely quantized environments as the self-referential learning
loop. This paper introduced Coarse Q-Learning, which uses clamped-actions and gathered rewards to prevent aimless
wandering and to simulate the Markov property. CQL was tested in a simple smooth environment and the non-smooth
PuddleWorld bench mark and in both cases significantly outperformed Q-Learning. Most importantly it did not exhibit
the same divergent behaviour clear in Q-Learning. The coarseness of partitioning under CQL is only limited by the policy
being learnt and so it can learn effectively without fine quantization, significantly simplifying the problem being learnt,
reducing memory requirements, increasing generalisation and speeding-up learning.
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Abstract

Potential-based reward shaping is a theoretically sound way of incorporating prior knowledge in a reinforcement lear-
ning setting. While providing flexibility for choosing the potential function, under certain conditions this method gua-
rantees the convergence of the final policy, regardless of the properties of the potential function. However, this flexibility
of choice may cause confusion when making a design decision for a specific domain, as the number of possible candi-
dates for a potential function can be overwhelming. Moreover, the potential function either can be manually designed,
to bias the behavior of the learner, or can be recovered from prior knowledge, e.g. from human demonstrations. In
this paper we investigate the efficacy of two different methods of using a potential function recovered from human
demonstrations. Our first approach uses a mixture of Gaussian distributions generated by samples collected during
demonstrations (Gaussian-Shaping), and the second approach uses a reward function recovered from demonstrations
with Relative Entropy Inverse Reinforcement Learning (RE-IRL-Shaping). We present our findings in Cart-Pole, Moun-
tain Car, and Puddle World domains. Our results show that Gaussian-Shaping can provide an efficient reward heuristic,
accelerating learning through its ability to capture local information, and RE-IRL-Shaping can be more resilient to bad
demonstrations. We report a brief analysis of our findings and we aim to provide a future reference for reinforcement
learning agent designers who consider using reward shaping by human demonstrations.

Keywords: Reinforcement Learning, Inverse Reinforcement Learning,
Reward Shaping, Learning from Demonstration.
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1 Introduction
Incorporating prior knowledge in Reinforcement Learning (RL) in a domain-independent way is an open research ques-
tion. While there is not a single, domain-generic, best way, of incorporating prior knowledge in RL, some options include:
using a model of the environment dynamics, having an initial policy, a value function, a reward function, or initial state
values [1, 2].

In this paper we explore two new options for incorporating human demonstrations into the reward signal of an RL agent
[3]. The first approach we present, Gaussian-Shaping [4], takes advantage of the demonstrations locally within the state
space and allows demonstrations of different lengths in order to generate multiple Gaussian distributions for reward
shaping with a potential function based on a similarity metric (i.e., the distance to the closest demonstrated state-action
pair). The second approach, Relative Entropy Inverse Reinforcement Learning-Shaping (RE-IRL-Shaping), is based on feature
matching and it uses a set of demonstrated trajectories in order to infer a potential function that generalizes over the en-
tire state space for shaping. Feature matching is one of the main approaches to solve the inverse reinforcement learning
(IRL) problem. In this approach an IRL algorithm tries to find a set of parameters for a reward function, in order to max-
imize the reward for experiences with matching feature counts to a demonstration set. RE-IRL algorithm is a model-free
algorithm that finds reward feature weights by minimizing the relative entropy between a set of demonstrated features,
and features along trajectories that are sampled from a demonstrator’s internal policy modeled as a probability distri-
bution. A common property of both of our approaches is that the potential function serves just as a heuristic reward
input in the RL setting. An important implication is that when learning just a reward heuristic, a learner does not need to
assume that the demonstrator is an expert, or that the outcome of the inferred data is optimal by any metric. This is be-
cause the environment reward acts as a consistent, true reward signal that the agent can rely on. Therefore as long as the
demonstrations are not deliberately malicious to hinder learning, we can drop the requirement that the demonstrations
originate from an expert demonstrator. Note that, unlike our work, most state-of-the-art learning from demonstration
algorithms do make the assumption that the demonstrator is an expert for learning a task [5]. We investigate the learning
performance of our agents in three commonly used simulated domains: Cart-Pole, Mountain Car, and Puddle World.
We aim to help future RL solver designers make more informed design decisions through comparative analysis of the
presented methods.

To give an insight into our motivation, we first look at how prior work has incorporated human input in the RL setting.
Knox and Stone introduced the TAMER framework where an RL agent receives feedback only from a human in order to
model the internal reward signal of the human. Although agents in the TAMER framework do incorporate human input
in the RL setting, the framework omits the environment signal altogether, which contrasts with our approach [6].

In a follow up work, Knox and Stone designed a comparative based on analysis of eight different techniques for com-
bining the modeled human reward signal with environment reward. Approaches they introduced varied from using the
modeled human reward as a potential function for shaping the environment reward, to simply adding an extra action
choice that maximizes the modeled human reward [7]. The general finding of the study is that the combination of a
modeled human reward function with a RL agent outperforms the RL agent, and the agent that maximizes the modeled
human reward alone. The general idea of using multiple reward functions is similar to our approach in spirit, however
our approach is not interactive. Instead we first learn reward functions based on a demonstration data-set. Moreover
instead of comparing different techniques for merging the environment reward with the human reward signal, we analyze
the use of two different shaping rewards.

Griffith et al. use simple human feedback such as right or wrong for shaping a policy in interactive reinforcement learning
setting [8]. The approach they present interprets the human feedback as a comment on the optimality of actions. In our
work we shape the reward function, and instead of treating the human input as the ground truth, both of our approaches
use demonstrations to recover a reward heuristic.

To the best of our knowledge, our choice of potential functions for reward shaping, both using a mixture of Gaussians,
and RE-IRL has not been proposed, or studied before. Next, we talk about the two different potential functions we used
for reward shaping, the functions’ effects on the performance curve of a Q-Learner agent, and our interpretation of the
results.

2 Reward Shaping by Demonstration
In this paper we focus on recording the trajectory (st, at) of an agent throughout multiple episodes of teaching, and using
the recorded trajectories for inferring a shaping function. When available, if we rely on the environment reward as a con-
sistent source of reward, we can drop the assumption that the human input has to be optimal. We can shape the standard
reward function using a potential function generated based on demonstrations. Even though the demonstrations should
still be non-malicious (i.e. not target toward purposefully confusing the learner), reward shaping supplies an agent with
a biased, and hopefully more informative reward input. Our baseline agent is a Q-Learning agent, and in both of our
methods, the only addition we make is for the shaping of the reward function of a standard Q-Learner. Watkins defines
the standard update for a Q-function [3] as

Q(s, a)← Q(s, a) + α(R(s, a, s′) + γ arg max
a′

Q(s′, a′)−Q(s, a)) (1)
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In our methods, instead of using just a reward function R(s, a) we add a shaping reward F (s, a, s′, a′) and use a shaped
rewardR′ = R+F . We compute the shaping reward F based on a potential function Φ(s, a) [9, 10]. Next we present how
we infer the potential function Φ(s, a), and the shaping reward F (s, a, s′, a′) from human demonstrations. We would like
to highlight that neither of our techniques require the model of the environment, but only human interaction with the
system for collecting demonstration data.

2.1 Using Local Information with Gaussian Distributions
Here we introduce our first method for inferring a potential function Φ using demonstration data, based on sample (i.e.
state) similarity given a discrete action a. We show i) how we decide what constitutes a similar sample, ii) how we pick the
most similar sample within a demonstration set, and once we do, iii) how we use the similarity as a heuristic for reward
shaping. We use the following set of equations:

Σ = σI (2)
g(s, sd,Σ) = e(− 1

2 (s−sd)T Σ−1(s−sd)) (3)
Φ(s, a) = max

(sd,a)
g(s, sd,Σ) (4)

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (5)
where, s is the state that is being experienced by the agent at a given time, sd is one of the states demonstrated which we
iterate through, I is an identity matrix, and Σ is the covariance matrix that defines the reach of influence of demonstrated
state-action pairs. Σ is domain specific and we tune σ manually, however it is possible to learn metrics, such as Σ,
autonomously for RL agents [11]. The intuition for tuning Σ is to set it to larger values for higher dimensional state-
spaces. Eq. 3 is a multivariate Gaussian distribution, which outputs the value of a similarity metric that varies between
0 and 1 depending on the distance between the current state and the closest demonstrated sample within the set of
demonstrations. Eq. 4 is the potential function for reward shaping, based on which we compute our shaping reward
using Eq. 5 [10].

The idea behind our algorithm is simple: once we decide the spread of demonstrated samples and tune σ (Eq. 2), we
iterate through demonstrated samples using Eq. 3, and assign the maximum similarity value as the value of the potential
for the state (Eq. 4). We compute the similarity metric both for the current state s′ and the previous state s of the agent,
and compute the difference using Eq. 5, where γ is the discount factor. For a more detailed description and analysis of
this approach we refer the readers to Brys et al. [4].

Eq. 3 is the reason why we call this approach local. Given an action and a set of demonstrations, encounters with states
that are similar to demonstrated states result in high potential for reward shaping. If the agent transitions from a state s
that is not similar to any of the demonstrated states, into a state s′ that is very similar to one of the demonstrated states,
Eq. 5 returns a positive shaping reward indicating that the agent took an action in a good direction. In the opposite case,
Eq. 5 returns a negative shaping reward.

Even though using sample similarity in this fashion helps to guide the agent toward demonstrated states, this approach
imposes a constraint on the quality of the demonstrations themselves. Since currently we do not incorporate the quality
of a given sample within our algorithm (i.e. good demonstration vs. bad demonstration), similarity to all demonstrated
states is considered to be equally good. That is, if the agent has been demonstrated an action in a state similar to its
current state, this can only mean that the action is valuable in that current state. Consequently, if the set of demonstrations
includes undesired data points (intentional or unintentional), when the agent experiences states similar to these undesired
data points, it is possible that the resulting shaping reward will be positive, which would degrade the agent’s learning
performance. We recognize the importance of automated demonstration quality assessment. One idea for assessing the
demonstration quality is to analyze the statistics of the features which may give an idea about the consistency of the data,
however we leave this idea for future work, since it deserves to be the main focus of a separate analysis.

2.2 Using RE-IRL As a Heuristic for Reward Shaping
Our second method for inferring a potential function Φ from demonstration data is based on Relative Entropy Inverse
Reinforcement Learning (RE-IRL), a model-free inverse reinforcement learning technique introduced by Boularias et al.
[12]. The input for RE-IRL is a set of demonstrations which are trajectories of equal length, and the output is a set of
reward feature weights ω required to compute a reward value for a given state s. We show i) how we compute a reward
using a linear combination of learned feature weights, and ii) how we use the reward as the potential function for reward
shaping. The set of equations we use for our approach are:

RIRL(s, a) =
n∑

i=0

ωifi(s) (6)

Φ(s) = RIRL(s, a) (7)
F (s, a, s′, a′) = γΦ(s′)− Φ(s) (8)

where, fi is ith reward feature, ωi is ith feature weight, s′ is the state vector for the current state of the agent, and s is the
previous state vector.
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Figure 1: Learning performance results in (a) Cart-Pole, (b) Mountain Car, and (c) Puddle World domains.

Coeff. Cart-Pole Mountain Car Puddle World
α 0.25

16
0.1
14

0.2
10

γ 1.0 1.0 1.0
ε 0.05 0.1 0.05
λ 0.25 0.95 0.95
σ 0.2 0.1 0.1

(a)

variable ωi
cartx 0.4245
cartẋ 0.56805
poleθ 0.33986
poleθ̇ 0.61774

(b)

variable ωi
x -0.999
ẋ 0.001

(c)

variable ωi
x 0.76
y 0.6497

(d)

Table 1: Learning coefficients we used for our experiments (a). Reward feature weights in (b) Cart-Pole, (c) Mountain
Car, and (d) Puddle World domains. x and y are position variables; ẋ is velocity; θ is angle and θ̇ is angular velocity.

Our approach has two parts: first we learn a reward function by recovering reward feature weights based on a set of
demonstrations, and then we use the learned reward function as a potential function for reward shaping. In order to
obtain reward feature weights, RE-IRL computes the average feature values (for each feature) over a set of demonstrated
trajectories, and uses importance sampling for estimating feature weights in order to iteratively drive a gradient to zero.
The gradient is simply the difference between the average (demonstrated) feature values and sampled feature values.
For further details of the RE-IRL we refer our readers to [12]. Instead of using the learned function as a reward function
(Eq. 6), we define a potential function (Eq. 7) for shaping reward (Eq. 8). This algorithmic setup incorporates a function
we learn from human demonstrations into autonomous learning as a shaping reward (or heuristic).

The weights we recover for each reward feature indicate how each feature value affects the reward output. For instance
a feature can positively, or negatively dominate others in terms of reward output and understanding each feature’s
contribution in the reward output can be informative. Moreover RE-IRL computes feature weights using the entire
trajectory space and set of demonstrations. As a consequence of average feature matching, this approach is robust against
small changes in demonstrations. This global use of the demonstration data is in contrast with the previous approach we
introduced. If the agent transitions into a state where, the linear combination of the reward features is higher than a
previous state, this transition yields a positive shaping reward.

Although we take advantage of the demonstration data on average, in this approach we are limited with the linear
combination of the reward features for computing the potential function. This is an important factor to consider when
choosing which reward features to use. Even though the reward features can be arbitrarily engineered to design an
ad-hoc solution depending on the domain, here for simplicity and compatibility with our previous approach, we chose
to use the state variables as reward feature in each domain. We acknowledge that as a future work we need a thorough
investigation for choosing the set of reward features.

2.3 Experiments
We tested our approach in three domains using 10 demonstrated trajectories for each domain. The length of demonstra-
ted trajectories respectively were 156, 182, and 39 respectively for Cart-Pole, Mountain Car, and Puddle World domains.
In order to keep the demonstration lengths equal, for shorter demonstrations, we appended the final state as an absorb-
ing terminal state at the end of the demonstration. The demonstrations we recorded begin at the initial state and end
at the goal (for Mountain Car and Puddle World) or the failure state (for Cart-Pole) of the agent. The demonstrator is
the first author who has experience with all three domains. The demonstrator made the demonstrations for reaching the
goal as quickly as possible in Mountain Car and Puddle World, and for keeping the pole in balance as long as possible
for the Cart-Pole domain. Table 1a shows the RL coefficients we used for our experiments.

Table 1b - 1d list the feature weights we use for RE-IRL-Shaping, which we obtained from our set of demonstrations. We
can see that in Cart-Pole domain, positive values of state variables result in a positive potential. Although these values
are based on demonstrations, one can argue that encouraging the agent toward positive states is not optimal in Cart-
Pole. RE-IRL-Shaping performed better than our Gaussian-Shaping algorithm (Fig. 1a). We conclude that this difference
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originates from the way our two techniques take advantage of the demonstrations. However, in Cart-Pole the standard
Q-Learning agent outperformed both of our approaches.

For RE-IRL-Shaping agent, in the Mountain Car, the position of the car is negatively weighted, and even though positive
velocities contribute positively, the effect of the velocity of the car is highly dampened in comparison with the position
of the car. This is because the demonstration data includes left and right swings of the car until the car reaches the goal
state. The initial state in the domain is s0 = [−0.5, 0.0], and the shaping reward is positive as long as the car goes to
the left. This is the only way for the car to speed up fast enough, so it can climb the hill to reach its goal. This set of
weights provides an informative heuristic for the RE-IRL-Shaping agent however its performance is not any better than
the standard Q-Learner.

In the Puddle World domain, weights for both state variables (x and y position) yield a high potential as the RE-IRL-
Shaping agent goes to the right and up in the world. This aligns well with the purpose of the agent since the goal
is on the upper right corner of the world, and we can see the positive effect of this potential function on the learning
performance of RE-IRL-Shaping agent especially within the first 30 episodes. This algorithm outperforms the standard
Q-Learner, even though Gaussian-Shaping algorithm shows the best overall learning performance.

As shown in Fig. 1b and 1c, the Gaussian-Shaping agent outperforms the standard Q-Learning agent, and RE-IRL-
Shaping agent in Mountain Car and Puddle World domains. In both domains, the agents start from an initial non-goal
state, and the common purpose is to keep moving until reaching a goal state. We use demonstration data not only to
help guide the agents toward desired states, but also to initialize the Q-function using Eq. 4, with Q0(s, a) = Φ(s, a) as
described by Wiewiora et al. [10]. The results show a remarkable boost in the learning performance of Gaussian-Shaping
agent in these two domains, starting from the very first episode.

On the other hand, in the Cart-Pole, agents start in a desired equilibrium state, and the purpose is to try to stay close to
that initial state. This fundamental difference in the purpose of the task, the level of difficulty of the task for a demons-
trator, and the failure (or borderline failure) states that are saved in demonstrations, affect the learning performance of
the Gaussian-Shaping agent (Fig. 1a). The performance of the agent suffers from samples that are close to failure states,
which highlights the importance of the content of the demonstrations.
3 Conclusion
With this work we present two different potential functions for reward shaping: a function based on similarity of the
samples to demonstrated states, and a function learned with inverse reinforcement learning. Both potential functions
enable us incorporate prior knowledge in RL. Our analysis in three standard RL domains shows that our sample si-
milarity approach speeds up learning remarkably. However, it is sensitive to states that may be less optimal that are
included in the demonstration data-set. On the other hand, even though with the current choice of reward features,
our inverse reinforcement learning approach is less effective in improving the learning performance, when the majority
of the demonstrations are in agreement, this approach is comparatively more robust against small disturbances in the
demonstration data. We leave addressing the noise sensitivity, and reward feature selection issues for future work.
References

[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge, MA, USA: MIT Press, 1st ed., 1998.
[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” IJRR, 2013.
[3] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, University of Cambridge England, 1989.
[4] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé, “Reinforcement learning from demonstration
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Abstract

Many reinforcement learning algorithms try to solve a problem from scratch, i.e., without a priori knowledge. This
works for small and simple problems, but quickly becomes impractical as problems of growing complexity are tackled.
The reward function with which the agent evaluates its behaviour often is sparse and uninformative, which leads to
the agent requiring large amounts of exploration before feedback is discovered and good behaviour can be generated.
Reward shaping is one approach to address this problem, by enriching the reward signal with extra intermediate rewards,
often of a heuristic nature. These intermediate rewards may be derived from expert knowledge, knowledge transferred
from a previous task, demonstrations provided to the agent, etc. In many domains, multiple such pieces of knowledge
are available, and could all potentially benefit the agent during its learning process. We investigate the use of ensemble
techniques to automatically combine these various sources of information, helping the agent learn faster than with any
of the individual pieces of information alone. We empirically show that the use of such ensembles alleviates two tuning
problems: (1) the problem of selecting which (combination of) heuristic knowledge to use, and (2) the problem of tuning
the scaling of this information as it is injected in the original reward function. We show that ensembles are both robust
against bad information and bad scalings.

Keywords: Reward Shaping; Ensembles
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1 Motivation

With many reinforcement learning algorithms taking a tabula rasa approach, their sample complexity is often pro-
hibitively high to be useful in realistic settings. In other words, they require too many experiences, too much ‘trial-and-
error,’ before reaching a desirable level of performance. Imagine a task where the agent only receives positive reward
after a very specific, complex sequence of actions has been executed (e.g., the ’combination lock’ problem [1]). If the
goal of the task is to execute this sequence of actions, then the reward function perfectly encodes this task. But, due to
its sparsity, it will also likely result in very slow learning. A lot of research has therefore focused on speeding up these
reinforcement learning algorithms by steering their exploration based on expert knowledge [2], knowledge transferred
from previous tasks [3, 4], provided demonstrations [5, 6], human advice [7, 8, 9], abstract knowledge learned during
learning [10], etc. In many cases, one has several such pieces of information available, e.g., several heuristic rules can
be devised, or multiple source tasks are available to transfer from, etc. Problems a system designer is then faced with
are (1) how to include this knowledge in the learning process, and (2) how to combine the various pieces of knowledge
in an optimal way. More often than not, the system designer would start his own trial-and-error process of trying out
combinations and tuning their parameters. This tuning process often requires many more experiences than are gained in
the end by using the best performing combination. In reality, we would like an off-the-shelf solution that we can supply
with different forms of information, and that can combine these automatically in a near-optimal way.

Our contribution towards this goal consists of injecting the information in the learning process through an approach
called reward shaping, and using ensemble techniques to automatically and robustly combine the various pieces of
information supplied.

2 Reward Shaping

Recall the example above, where the environment’s reward is only positive when the required sequence of actions has
been executed. If we can find a way to provide positive feedback for each step in this sequence of actions, the task will
become easily learnable for the agent, as its behaviour is reinforced at every step. Of course, typically we do not know
the solution beforehand, and can only provide information of a heuristic nature, i.e., rules of thumb that provide general
guidelines, but are not perfect in every situation.

The idea behind reward shaping is to harness such information to enrich the environment’s sparser reward and thus
provide faster, more informative feedback for the agent’s behaviour. The agent is supplied with an extra reward signal
F that is added to the environment’s reward R, making the agent learn on the composite signal RF = R + F . Since
the agent’s goal is defined by the reward function (solving the task optimally means finding a description of behaviour,
i.e., a policy, that achieves the maximum accumulated reward in expectation), changing the reward signal may actually
change the task. Ng et al. [2] proved that the only sound way to modify the reward, while guaranteeing that the task’s
optimal policy does not change, is through potential-based shaping. That is, define a potential function Φ over the state
space, and define F as the difference between the potential of states s′ and s, given observed transition (s, a, s′):

F (s, a, s′) = γΦ(s′)− Φ(s)

This formulation preserves the total order over policies, and therefore also the optimality of policies. It has been success-
fully used to facilitate solving of such complex tasks as RoboCup TakeAway [11], StarCraft [12], Mario [13], helicopter
flight [14, 15], etc.

The intuitition behind defining Φ is that states with high potential will be desirable to the agent, i.e., it will be encouraged
to explore such states. A good potential function should therefore yield higher and higher potentials as the agent gets
closer and closer to states that are desirable with respect to the base reward, thus quickly leading the agent to optimal
behaviour. Again, in absence of knowledge of the full solution, we can only use heuristic information when defining
Φ. Consider Mountain Car [16], a problem where an underpowered car, starting in the valley between two hills, needs
to learn how to drive to the top of one of the hills by driving up and down the opposing hills, thereby building up
momentum until it can finally reach the goal. See Figure 1 (a) for a visual representation of the problem. A first heuristic
one could devise is to encourage the car to gain height: Φ(s) = height(s). Since the goal location is at the top of a hill,
this makes sense. But, as the car needs to build up momentum by driving up and down the two hills, in many situations,
the car should actually choose to go down instead of trying (and failing) to get further up the hill. Thus, this rule is not
perfect. Another heuristic that can be devised is to encourage increasing speed: Φ(s) = speed(s). This also makes sense,
as the underpowered car needs some initial speed to climb up the hill. But, again, the car needs to drive up the hills
many times, each time slowing down in the process, so this heuristic is not perfect either. Basically, the car is constantly
trading potential and kinetic energy until it can reach the goal. While both heuristics could be useful for helping the
agent solve the task, it is unclear how we could optimally combine them without going through an extensive tuning and
engineering phase.

To overcome this problem, we propose an ensemble approach to reward shaping with multiple heuristics that automates
the process of combining them.
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magnitude bias.7 We slightly modify the formulation from [32], by
ranking Q-values, instead of policy probabilities, i.e. let r : D⇥A!
N be the ranking map of a demon. Then rd(a) > rd(a0), if and only
if Qd(s, a) > Qd(s, a0). The combination or ensemble policy acts
greedily w.r.t. the cumulative preference values P :

P (st, a) =

|D|�1X

d=1

rd(a), 8a 2 A (10)

In the next section we validate our approach on the typical moun-
tain car benchmark and interpret the results.

5 Experiments

In this section we give comparison results between the individuals in
our ensemble, and the combination policy. We remind the reader that
while all policies eventually arrive at the same (optimal) solution, our
focus is the time it takes them to get there.

We focus our attention to a classical benchmark domain of
mountain car [24]. The task is to drive an underpowered car up
a hill (Fig. 2). The (continuous) state of the system is composed
of the current position (in [�1.2, 0.6]) and the current velocity
(in [�0.07, 0.07]) of the car. Actions are discrete, a throttle of
{�1, 0, 1}. The agent starts at the position �0.5 and a velocity of
0, and the goal is at the position 0.6. The rewards are �1 for every
time step. An episode ends when the goal is reached, or when 2000
steps8 have elapsed. The state space is approximated with the stan-
dard tile-coding technique [24], using ten tilings of 10 ⇥ 10, with
a parameter vector learnt for each action. The behavior policy is a
uniform distribution over all actions at each time step.

Figure 2: The mountain car problem. The mountain height h is given
by h = sin(3x).

In this domain we define three intuitive shaping potentials. Each
is normalized into the range [0, 1].

Right shaping. Encourage progress to the right (in the direction of
the goal). This potential is flawed by design, since in order to get
to the goal, one needs to first move away from it.

�1(x) = cr ⇥ x (11)

7 Note that even though the shaped policies are the same upon convergence –
the value functions are not.

8 Note the significantly shorter lifetime of an episode here, as compared to
results in Degris et al. [5]; since the shaped rewards are more informative,
they can get by with very rarely reaching the goal.

Height shaping. Encourage higher positions (potential energy),
where height h is computed according to the formula in Fig. 2.

�2(x) = ch ⇥ h (12)

Speed shaping. Encourage higher speeds (kinetic energy).

�3(x) = cs ⇥ |ẋ|2 (13)

Here x = hx, ẋi is the state (position and velocity), and c =
hcr, ch, csi is a vector of tuned scaling constants.9

Thus our architecture has 4 demons: < d0, d1, d2, d3 >, where d0

learns on the base reward, and the others on their respective shaping
rewards. The combination policy is formed via rank voting, which
we found to outperform majority voting, and a variant of Q-value
voting on this problem.

The third (speed) shaping turns out to be the most helpful univer-
sally. If this is the case one would likely prefer to just use that single
shaping on its own, but we assume such information is not avail-
able a priori, which is a more realistic (and challenging) situation.
To make our experiment more interesting we consider two scenarios:
with and without this best shaping. Ideally we would like our combi-
nation method to be able to outperform the two comparable shapings
in the first scenario, and pick out the best shaping in the second sce-
nario.

We used � = 0.99. The learning parameters were tuned and se-
lected to be � = 0.4,� = 0.0001,↵ = h0.1, 0.05, 0.1, 0.1i, where
� is the trace decay parameter, � the step size for the second set of
weights in Greedy-GQ, and ↵ the vector of step sizes for the value
functions of our demons.10 We ran 1000 independent runs of 100
episodes each. The evaluation was done by interrupting the off-policy
learner every 5 episodes, and executing each demon’s greedy policy
once. No learning was allowed during evaluation. The graphs reflect
the average base reward. The initial and final performance refer to
the first and last 20% of a run.

Table 1: Results for the scenario with two comparable shapings. The
combination has the best cumulative performance. In the initial

stage it is comparable to the right shaping, in the final – to the height
shaping (each being the best in the corresponding stages), overall
outperforming both. The results that are not significantly different

from the best (Student’s t-test with p > 0.05) are in bold.

Performance
Variant Cumulative Initial Final
No shaping -336.3 ± 279.5 -784.7 ± 385.9 -185.1 ± 9.9
Right shaping -310.4 ± 96.9 -378.5 ± 217.4 -290.3 ± 19.3
Height shaping -283.2 ± 205.2 -594.2 ± 317.0 -182.3 ± 7.5
Combination -211.2 ± 94.2 -330.6 ± 179.5 -180.2 ± 1.5

The results in Fig. 3, and Tables 1 and 2 show that individual shap-
ings alone aid learning speed significantly. The combination method
meets our desiderata: it either statistically matches or is better than
the best shaping at any stage, overall outperforming all single shap-
ings. The exception is the final performance of the run in Scenario 2,
where the performance of the best shaping is significantly different

9 The scaling of potentials is in general a challenging problem in reward
shaping research. Finding the right scaling factor requires a lot of a priori
tuning, and the factor is generally assumed constant over the state space.
The scalable nature of Horde could be used to lift this problem, by learning
multiple preset scales for each potential, and combining them via either a
voting method like the one described here, or a meta-learner. See Section 6.

10 These were tuned individually, as the value functions differ in magnitude.
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Figure 1: (a) A visual representation of Mountain Car. (b) An ensemble of shapings in Mountain Car. The ensemble of
shapings approximates the performance of the best shaping, which was unknown a priori.

3 Ensembles of Shapings

Ensemble techniques were developed to combine multiple ‘weak’ decision making algorithms into a stronger ‘super’
decision maker, aiming to outperform any of the constituting components. We propose to apply this idea to combine
many ‘weak’ or suboptimal heuristics in reinforcement learning.

To do so, we first create multiple copies of the reward signal, each injected with a different potential-based reward
shaping function. Given scalar reward function R and potential-based shaping functions F1 through Fm, we construct a
multi-objective reward function R = [R+ F1, . . . , R+ Fm] [13, 17, 18]. This process is called multi-objectivization. Each of
the individual signals encodes a different piece of heuristic information and could be used on its own to solve the task,
but we posit that creating an ensemble using these signals can help to solve the task faster by combining the different
heuristics automatically.

An ensemble is then created by having m off-policy learning algorithms learn in parallel on the same experiences, each
evaluating the behaviour according to one of the different enriched reward signals. The Horde [19] architecture is well-
suited for this purpose given its off-policy convergence guarantees with linear function approximation and its computa-
tional efficiency, although it does place restrictions on the behaviour policy. In practice, an ensemble of Q-learners may
work equally well, although it lacks convergence guarantees as strong as Horde.

An ensemble policy π is derived by combining each component’s preferences:

π(s) = arg max
a

m∑

i

pi(s, a)

These preferences could be simple votes or rankings [20] or more complex dynamic, confidence-based preferences [17].
The preferences of each ensemble component will be biased by the heuristic that component is using, and employing a
combination mechanism like majority voting ensures that the ensemble action will be their common denominator. Thus,
even though heuristics do not apply in every situation, they can compensate for each other’s suboptimality.

4 Mountain Car

In the Mountain Car task, discussed above, a learning agent receives a negative reward for every step taken, and this
sequence of negative rewards only stops when he arrives at the goal location. Therefore, the optimal policy, maximizing
the accumulated rewards, reaches the goal in a minimum number of steps. The reward function itself is very uninforma-
tive, as it does not provide any gradient information towards the goal. We suggested using height and speed as heuristics
to help the learning agent find such behaviour faster. A third heuristic we will investigate is encouraging the agent to
move to the right, since the goal is located at the far right of the world.

In Figure 1, we compare the performance of the GQ(λ) reinforcement learning algorithm [21] learning to solve Mountain
Car without shaping, with a single one of the three proposed shaping functions, and with an ensemble of shapings
encoded in the Horde architecture. Majority voting is employed as the mechanism to derive a policy from the ensemble.
We observe that the speed shaping is the most useful of the three heuristics when used on their own, and, while this
knowledge was not available a priori , the ensemble automatically approximates this best performance.
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Figure 2: An ensemble of shapings in Predator-Prey. The scaling of the individual shapings has a large impact on
performance, while the ensemble is unaffected.

5 Predator-Prey

We perform a similar experiment in the multi-agent Predator-Prey or Pursuit domain [22]. Two predators must learn how
to coordinate in order to catch a fleeing prey, and only receive a positive reward when the prey is caught by at least one of
the predators. Three heuristics we propose that could help are: (1) encouraging proximity to the prey, (2) encircling of the
prey, and (3) separation between the predators. Figure 2 (a) compares the performance between standard Q(λ)-learning
without shaping, with one of the three shapings, and an ensemble that uses a confidence measure to combine the three
shapings [17]. The ensemble automatically, without prior knowledge, outperforms the best shaping alone (about 15%
improvement in initial performance), even though two of the three shapings on their own are ineffective or detrimental
to performance compared with the baseline.

An issue with the previous experiments is that we needed to tune the magnitudes of the shapings in order to provide the
best performance. Of course, all this tuning is counterproductive, since our goal is to minimize the sample complexity of
reinforcement algorithms, whereas tuning requires extra samples to select the best performing variants. Now, we argue
that ensembles of shapings are not only robust with respect to the quality of the different heuristics provided, but also to
their scalings. Figure 2 (b) shows the results of the same Predator-Prey experiment as in the (a) part of that figure, except
that we simply left the magnitudes of the shapings as they were pre-tuning. In this case, every shaping on its own is
detrimental to performance, yet the ensemble performs similar to the situation with the tuned scalings.

In other work, we have taken this one step further, by including multiple versions of the same heuristic in the ensemble,
each version differently scaled [23]. In that paper, we present experiments in Mountain Car and Cart Pole that show how
such an ensemble completely removes the need for tuning, automatically approximating the fastest possible learning
given several shapings and arbitrary ranges of scalings. That is the first approach to reward shaping that truly removes
the need for tuning.

6 Conclusions and Future Work

Reward shaping is a useful tool to incorporate prior knowledge to help a reinforcement learning agent reduce the number
of experiences required to reach a desirable level of performance. Yet, in order for the shaping to be successful, there is
usually some tuning necessary with respect to what knowledge to include, and how to scale the magnitude of the shaping
compared to the base reward signal’s magnitude. The number of extra experiences required for this tuning phase will
typically be much higher than what is gained in the end by applying the best shaping.

In this work, we have investigated the use of shaping ensembles to remove this need for tuning, proposing an off-the-
shelf solution that automatically can combine many different pieces of information. Ideally, a system designer can now
create a number of shaping functions based on the information he has (even creating multiple shapings with the same
piece of knowledge, but differently scaled) and combine them in an ensemble that automatically uses this information in
a good, if not best, way.

As we discussed before, reward shaping can be used to encode things other than heuristic expert knowledge. Therefore,
ensembles could for example be used to achieve multi-task transfer, assuming each source task will contribute different
information to the target task, or to incorporate demonstrations given by different experts, assuming different experts’
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demonstrations are significantly different. The ultimate goal is to demonstrate how an ensemble provided with a number
of these types of information can allow a reinforcement learning agent to solve a complex practical application, such as a
robotics manipulation task.
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ABSTRACT 

We present a novel Reinforcement Learning (RL) model of altered gait velocity patterns in Parkinson’s 
Disease (PD) patients. PD gait is characterized by short shuffling steps, reduced walking speed, increased 
double support time and sometimes increased cadence. The most debilitating symptom of PD gait is the 
context dependent cessation in gait known as freezing of gait (FOG). Cowie et al (2010) and Almeida and 
Lebold (2010) investigated FOG as the changes in velocity profiles of PD gait, as patients walked through a 
doorway with variable width. The Cowie et al study reported a sharp dip in velocity, a short distance from 
the doorway that was greater for narrower doorways in PD freezers at ON and OFF dopaminergic 
medication. Almeida and Lebold also reported the same for ON medicated PD freezers and non-freezers. In 
this study, we sought to simulate these gait changes using a computational model of Basal Ganglia (BG) 
based on RL, coupled with a spinal rhythm mimicking central pattern generator model. In the model, a 
simulated agent was trained to learn a value profile over a corridor leading to the doorway by repeatedly 
attempting to pass through the doorway. Temporal difference error in value, associated with dopamine 
signal, was appropriately constrained in order to reflect the dopamine-deficient conditions of PD. Simulated 
gait under PD conditions exhibited a sharp dip in velocity close to the doorway, with PD OFF freezers 
showing the largest decrease in velocity compared to PD ON freezers and controls. Step length differences 
were also captured with PD freezers producing smaller steps than PD non-freezers and controls. This model 
is the first to explain the non-dopamine dependence for FOG, giving rise to several other possibilities for its 
aetiology. Analysing the influence of external factors on motor behaviour urges the need to understand gait 
at the level of the cortex, BG and the spinal cord. The study focuses on the contributions of the BG to gait 
impairment. 

 

KEYWORDS: Gait, Freezing of Gait, Doorway, Basal Ganglia, Reinforcement Learning. 
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INTRODUCTION 

Gait disorder is a common motor impairment observed in patients with Parkinson’s disease (PD), a 

neurodegenerative disorder that involves a loss of dopaminergic neurons in the brain. It manifests in 

several ways including reduced stride length, reduced walking speed, increased cadence and increased 

double support duration [1]. One of the dramatic consequences of the pathology involves a paroxysmal 

inhibition in the ability to initiate locomotion, also known as freezing of gait (FOG). It is an episodic 

phenomenon associated with a sudden, intermittent cessation of locomotion which occurs in response to 

certain contextual situations. These may include situations such as a start hesitation (freezing while 

initiating a step), turn hesitation (freezing occurring while performing a turn) and destination hesitation (on 

reaching an endpoint). PD gait features such as reduced stride length and walking speed appear to be 

gradually aggravated under certain environmental conditions, culminating in a motor block, or a freezing 

episode [2]. In some cases freezing can be seen in contexts such as facing transverse lines on a road crossing 

or narrow confined spaces or doorways [3] while on the other hand the same transverse lines on a treadmill 

alleviates freezing symptoms [4]. This indicates that control over gait, influenced by higher level areas 

(cortical and subcortical ) on the locomotor apparatus (spinal cord), needs to be properly understood. 

An RL based model of the cortico-basal ganglia (BG) system that controls the gait rhythms is presented in 

this study. Two experimental studies [5, 6], that investigate the gait patterns of PD patients as they approach 

a doorway, are simulated using the model. The study of Cowie et al. (2010) shows a sharp dip in velocity as 

the PD patient approaches the doorway, a dip that becomes sharper in the case of narrower doorways [6]; 

this effect was more pronounced in PD patients (ON and OFF freezers) than in healthy controls. Almeida 

and Lebold (2010) consider a similar setup but compare the gait patterns of PD freezers with non-freezers in 

terms of step lengths [5]. The proposed BG model accounts for the above mentioned velocity profiles and 

gait features (stride / step lengths) of PD patients from these two experimental studies [7].  

We model them at two stages of control: 1) the higher level of control representing the cortico-BG system, 

and 2) the spinal level central pattern generators (CPG) that translate the higher level gait commands such 

as velocity into gait rhythm (fig. 1b). The BG model is essentially simulated using the Actor-Critic 

architecture, with the difference that the Actor is modeled by the GEN (GO/EXPLORE/NOGO) policy [8-

11]. The spinal CPGs are modeled by networks of adaptive Hopf oscillators [12],  described elsewhere [7]. 

The model is used to simulate the results of two PD gait studies [5, 6] 

THE MODEL 

The environmental context of the experiments involves the healthy controls and the PD subjects to walk 

through a doorway of a specific width. The proposed model uses this as a base to make an agent (simulated 

subject) repeatedly approach a doorway, walking along a short path and compute the velocity profile along 

the length of the track. The agent aims at passing through the doorway without bumping into the sides of 

the doorway. The well-known tradeoff between accuracy and speed in motor function [13-15] might cause 

rapid approaches to the doorway, thus resulting in a collision. Therefore, in our model, the agent learns to 

reduce its speed in the vicinity of the doorway, which it does using RL mechanisms. The overall model 

architecture is as shown in Fig. 1. 
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Fig 1 The model architecture with the cortico-BG 

system along with the CPGs 

 

The model mainly consists of three components – 

the Cortico-BG system, CPG, and the locomotor 

apparatus. The Cortico-BG system, shown inside 

the dashed box (fig. 1), takes a representation of 

the view of the doorway, the ‘view vector’, from 

the position, X, of the agent. It is obtained from 

the cortical module: VISION. It is a 1x50 array of 

zeros and ones, where the position of ones 

denotes the part of the visual field where the 

doorway is situated. The block denoting τ denotes 

the time delay in the passage.  The BG (consisting 

of the CRITIC, ACTOR (GEN), VALUE 

DIFFERENCE, and the TD ERROR modules) uses 

the view vector and updates the agent’s velocity   

( x yv and v ). 

The Critic computes the value 'V' for the view vector (ϕ(t),see [7] for details of view vector computation) as 

follows. 

i itanhV( t ) ( W ( t ) ( t ) )            (1)
 

The update equation for the above approximation (having weight vector, W) is given by 

W (t )               (2) 

Here, 'δ(t)' denotes the TEMPORAL DIFFERENCE (TD) error in value function, that is correlated to 

dopamine signaling [16]. The TD error with the discount factor γis represented as follows. 

1r( t ) V( t ) V( t )               (3) 

The policy (Actor) used in this study is the GO/EXPLORE/NOGO (GEN) policy. It represents an approach 

to action selection that involves stochastic hill-climbing over the value function space.  Since the value peaks 

at the doorway in this scenario (reward is obtained at the doorway), the GEN can be used to climb the value 

gradient without bumping on the sides of the doorway. This form of actor in the BG differs from the 

classical RL implementation of Actor, wherein the action is typically modeled as an explicit function of the 

state ϕ, but the GEN policy computes the action by following the value gradient (value difference 

V ( ) ( 1)V t V t    ) over the position space, X. Although value is a function of the view vector, ϕ(t), we 

perform the hill-climbing over the position space, X, that is mapped onto the view vector uniquely. The 3 

discrete regimes – GEN [7] are modeled as below.  
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where ( ) 1/ (1 exp( ))sig sigsig x x   , value difference term (δV) . The gain parameters of GEN include AG, AN, 

AE for the GO, EXPLORE and NOGO regimes, respectively. The slopes of the sigmoids in the GO and the 

NOGO regimes are λG , λN, and the extent of exploration in the EXPLORE regime is controlled by σ. The first 

term in the eqn. (4) denotes the 'GO' regime that is significant when δV (VALUE DIFFERENCE) value is 

high. This means that the previous position update, X(t-1),  had caused significant increase in the value and 

hence ΔX(t) is allowed to be in the same direction as ΔX(t-1).  A low level of δV implies that the previous 

position update had caused significant decrease in the value. Therefore, the position update is in the 

opposite direction to the previous update, and thus a 'NOGO'. Whereas at the intermediate levels of δV, the 

policy randomly explores the position update (velocity - x yv and v ) space (i.e., EXPLORE). 

This velocity information coming from the GEN is sent to the CPG module which is a network of Hopf 

oscillators, translating this velocity into joint angles (θi). More information on the same can be found at [7, 

12]. The subsequent block labeled STRIDE uses the θi and velocity information from GEN, to compute the 

next position. The ENVIROMENT (doorway) module checks if the new position results in a collision of the 

agent with the doorway. A positive reward, r = 5, is delivered if there is no collision, and a punishment 

(negative r = -1) in case of collision. The BG uses the view vector and reward information to compute value, 

thereby completing the cycle.  

RESULTS 

 

Fig 2: The normalised velocity profiles of the controls 

and PD freezers in the Cowie et al. experiment (A) and 
model (B). The 100% velocity in the experiment is the 
velocity exhibited under a no door condition and in the 
model the velocity is normalized using the average 
velocity far (5-6 m) from the doorway (Published in 
[7]). 

 

 

Fig 3: The step length profiles seen in the Almeida and 

Lebold experiment (A) and simulations (B) (Published 

in [7]).

The PD freezers show an exaggerated decrease in velocity on approaching a doorway, which seems to be 

amplified in the case of narrow doorways. The model is able to capture this behavior effectively. The 

velocity profile obtained from the model of Cowie et al. (2010) for controls and the PD freezers in the 

experiment and model is shown in Fig. 2a and 2b respectively. The velocity in the model has been 

normalised by using an average velocity far from the doorway. Additionally the Almeida and Lebold study 
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showed differences in step length between the controls, PD non-freezers and PD freezers. Our model 

captures this effect, where PD freezers show significantly reduced step lengths compared to non-freezers 

and controls as seen in Fig. 3. 

DISCUSSION 

 Most models of BG take into account only the opponency of GO and NOGO signals arising from the direct 

and indirect pathways respectively [17, 18] to explain human behaviour. The current model necessitates the 

presence for an EXPLORE regime, needed for RL to take place effectively in the BG. In the model this 

regime is controlled by the parameter σ (extent of exploration) which is found necessary to explain the 

velocity dip seen before the doorway. It also seems to control the switch between the direct and the indirect 

pathways. The most interesting observation from the model is that the dopamine related parameters alone 

(simulated by clamping the temporal difference error in PD-OFF condition, and adding a dopamine 

medication constant in PD-ON condition) cannot explain the experimental behaviour. On exploring the 

roles of γ (discount factor earlier reported to represent the function of neuromodulator serotonin [19, 20]) 

and σ (exploration control parameter earlier reported to represent the function of neuromodulator 

norepinephrine [19]) in the velocity of gait, the model predicts the significant roles of non-dopamine 

correlates in FOG. The model suggests that in addition to clamping the TD error, the values of γ and σ had 

to be appropriately reduced in comparison to the controls for explaining the behaviour of PD freezers, 

whereas the PD non-freezers are differentiated from the freezers by having an increased σ. This is the first 

model to explain altered gait patterns using a cortico-BG system along with the spinal cord neural rhythm 

generators.  
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Combining Approximate Planning and Learning in a Cascade

Joseph Modayil, Kavosh Asadi, and Richard S. Sutton
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Abstract
A core competence of an intelligent agent is the ability to learn an approximate model of the world and then plan with it. Planning
is computationally intensive, but arguably necessary for rapidly finding good behavior. It is also possible to find good behavior
directly from experience, using model-free reinforcement-learning methods which, because they are computationally cheaper, can
use a larger representation with more informative features. Our first result is to empirically demonstrate that model-free learning with
a larger representation can perform better asymptotically than planning with a smaller representation. This motivates exploring agent
architectures that combine planning (with a small representation) and learning (with a large representation) to get the benefits of both.
In this paper we explore a combination in which planning proceeds oblivious to learning, and then learning, in parallel, adds to the
approximate value function found by planning. We call this combination a cascade. We show empirically that our cascade obtains
both benefits in the Mountain-Car and Puddle-World problems. We also prove formally that the cascade’s asymptotic performance is
equal to that of model-free learning under mild conditions in a prediction (policy evaluation) setting. Finally, another way in which
learning may be advantaged over planning is that it can use eligibility traces. We show empirically that in this case the cascade is
superior even if planning and learning share the same representation.

Keywords: Reinforcement Learning, Planning
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1 Introduction

Planning is a mainstay of intelligent systems, both artificial and natural. In artificial systems, planning algorithms use computation
and a model of the environment’s dynamics to find good behavior, and planning as a kind of search has been essential to many AI
successes. A∗ search supports route-finding in navigation systems (Nilsson, 2009). Game-tree search has led to the best results
in checkers (Schaeffer et al., 2007), poker (Bowling et al., 2015), and the game of Go (Gelly et al., 2012). Planning is also an
essential aspect of natural intelligence. In this setting, planning refers to an animal’s ability to rapidly modify its behavior using an
approximate internal model of the environment, such as when an rat in a maze encounters an unexpected obstacle and rapidly decides
on an alternative route to food (Tolman, 1948). Planning enables an agent to achieve good behavior through sheer computation when
given an environmental model. If a model of the environment is not known a priori, it is sometimes possible to achieve good behavior
by planning with an approximate model that is learned from experience (Abbeel et al., 2010). Learning a model requires additional
computation, but it is arguably necessary to rapidly find good behavior when good models are not otherwise available. Methods that
learn a model and plan with it to achieve good behavior are known as model-based reinforcement learning.

It is also possible in principle to learn good behavior directly from experience without using a model, through methods that are known
as model-free reinforcement learning. Such learning methods are less sample efficient than using a model, as they adapt behavior
only from immediate experience. However, they require much less computation, and so we can expect them to support a larger
and more expressive representation. Through the use of a larger representation, they have the potential to obtain better performance
asymptotically. This expectation motivates the exploration of an architecture that combines both planning and learning methods to
obtain both benefits (rapid adaptation and high asymptotic performance).

Architectures that combine model-based and model-free learning have been studied both as abstract algorithms and as computational
models for the behavior of brains. One successful algorithmic combination is known as Dyna (Sutton 1990), in which both model-
based and model-free updates are made to the same value function in a tabular approach. This idea was extended to linear function
approximation (Sutton et al., 2008, Parr et al., 2008), in which the model-based and model-free updates can be applied in parallel
when they share the same representation and asymptotic solution. In psychology and neuroscience, researchers have explored novel
ways of combining model-based and model-free methods: in competition (Daw et al., 2005), in weighted sums (Gläscher et al., 2010),
and in co-operation (Gershman et al., 2014). These studies describe several ways to combine model-based and model-free methods,
but they do not address the different computational costs of these methods under function approximation. Our approach is motivated
by the need for a flexible way to combine the benefits of model-based and model-free methods under function approximation.

We first show through an example that model-based (planning) and model-free (learning) methods perform differently when using
representations of different sizes and similar amounts of computation. Planning methods achieve good behavior rapidly, and learning
methods achieve better behavior eventually. We propose a new architecture for combining learning and planning methods, in which
the planning method constructs one value function with a small representation, and the learning method adds to it to make a better
value function with a large representation. We call this architecture a cascade, and we demonstrate empirically that it has the merits
of both methods. Further results show theoretical convergence guarantees and more benefits from learning with eligibility traces.

2 Problem formulation with linear function approximation

Reinforcement learning problems are often expressed with the formalism of a Markov decision process. A Markov decision process
is written as a tuple (S,A,R, T, d0, γ), where S is a set of states, A is a finite set of actions, and R ⊂ R is a set of real rewards.
The environmental dynamics function T : S × A × R × S → [0, 1] gives the probability of a transition from a state by an action,
first receiving a reward, and then arriving at the next state. An agent starts at an initial state that is drawn from the distribution,
d0 : S → [0, 1], and selects an action from each state according to some probabilistic policy π : S × A → [0, 1]. Using a
policy for selecting actions at each state, the agent experiences a trajectory of states, actions, and rewards, S0, A0, R1, S1, A1, . . .,
where S0 ∼ d0. Problems are called episodic if the trajectories terminate after a finite number of steps, and this common case is
handled within the same formalism by including an artificial terminal state from which all actions give a zero reward and return to
the terminal state. The discount factor γ is used to define the return, Gt ≡

∑∞
i=1 γ

i−1Rt+i. The expected return, or value, is the
focus of reinforcement learning algorithms. The value of a state under a fixed policy π is defined as the expected return from the
state, vπ(s) ≡ Eπ[Gt|St = s]. A similar quantity is defined for the expected return after taking an action from a state, namely
qπ(s, a) ≡ Eπ[Gt|St = s,At = a], which is called the action value function of the policy π. Conversely, an (approximate) action
value function can be used to define an ε-greedy control policy, namely the policy that at every state takes an action with the greatest
value with probability 1 − ε, and otherwise (with probability ε) selects an action from the uniform distribution. We consider the
control task of finding a policy that maximizes the expected return.

We are interested in the setting where the agent does not have the capacity to reason directly with the underlying states of the
environment. This situation arises when the number of states is larger than the agent’s memory, and also when the agent does not
observe the state directly (also called a partially observable Markov decision process). In this setting, it is common to construct
real-valued features from the information available to the agent at each state, and to approximate value functions as a linear function
of the features, which is also known as linear function approximation. These features are represented with a vector, x ∈ Rn.
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3 Solutions by learning and by planning

We first describe a model-free learning method, Sarsa(λ), for a control problem (Rummery and Niranjan, 1994; Sutton and Barto,
1998). The method uses state feature vectors given by x : S → Rn, for which an element of the vector space is denoted x.
These features are used to approximate the action values for the agent’s (current) policy π, qπ(s, a) ≈ q̃L(x(s), a;w•), where
q̃L(x, a;w•) ≡ w>a x, with a separate weight vector, wa, for each action. We use the notation of w• = {wa}a∈A for the set of all the
weight vectors. For each experienced transition from (x, A) to (x′, A′) with reward R, the learning method computes the temporal
difference error, δ ← R+γq̃L(x

′, A′;w•)− q̃L(x, A;w•), and changes the weights using this error. The quality and rate of learning
are often improved through the use of eligibility traces, which are specified with a choice of λ ∈ [0, 1].

We now describe a model-based method for a control problem, namely an integrated approach to model-learning and planning from
the reinforcement learning literature (Sutton et al., 2008). We define another feature vector mapping from states, y : S → Rm, for
which an element of the vector space is denoted y. We define a linear model of the expected next reward from a state by the vector ba,
which approximates the expected next reward from state St = s and action At = a as Rt+1 ≈ b>a y(s). We define a one-step linear
model of the expected linear dynamics by the matrix Fa, which approximates the expected next feature vector from state St = s and
action At = a as y(St+1) ≈ Fay(s). Both the reward model and feature-vector transition model make predictions about the next
time step and are updated using a one step learning rule. The value function v(s) is modeled with a state-based approximate value
function parameterized by a weight vector v, namely v(s) ≈ ṽ(y(s);v), where ṽ(y;v) ≡ v>y. Using these quantities, we define
an approximate action value function, q̃P (y, a;F•,b•,v) ≡ (b>a + γv>Fa)y. The weight vector v is adapted from the reward and
transition models by planning with the model, namely by simulating an expected feature vector transition that starts from the artificial
feature vector, ei, the ith unit basis vector.

Although we do not show the two methods in detail here, they require substantially different amounts of memory and computation at
every time step. With respect to the number of features, the model-free method, Sarsa(λ), requires linear memory and computation,
and the model-based method requires quadratic memory and computation for the matrix operations. Many factors can influence
run-times of these methods, but under similar resource restraints, a learning method can support a substantially larger representation
than a planning method.

Episode

Steps

Control by Planning

Sarsa(λ)

We tested both methods on the Mountain-Car domain, which is described by Sutton and Barto
(1998). In this simulation domain, an under-powered car in a valley chose one of three actions
(forward, reverse, coast) at each time step, with the objective of moving to the top of one hill
as quickly as possible. The starting state was a zero velocity and a position near the bottom of
the hill that was drawn from a uniform distribution over [−0.7,−0.5]. The discount factor γ
was set to one and the reward was −1 per step, so the goal was to reach the terminal state in
the fewest number of steps. The eligibility trace parameter λ was set to zero.

The methods were tested with representations of different sizes. The features were made by
tile-coding (Sutton and Barto, 1998) with a 16 × 16 tiling of the state space. Two offset
tilings were used for planning and ten offset tilings were used for learning, yielding binary
feature vectors of dimension 512 and 2560 for planning and learning respectively. The differ-
ent representations used by planning and learning led to both methods incurring comparable
computational costs. In our implementation, the average time for one step of planning and
learning was 12 milliseconds and 6.5 milliseconds respectively. As shown in the figure on the
right, planning with the smaller representation rapidly achieved a good behavior, and learning with the larger representation achieved
a better behavior eventually.

4 A cascade of planning and learning

f1 f2 f3P1 P2 P3

Our desire to combine planning and learning methods with different representations led us
to a simple and general architecture for combining adaptive processes. We define a cascade
to be a series of ongoing processes, where each process is working towards a common goal,
and each process is adapted locally from its output. The cascade is inspired in part by the
earlier cascade correlation architecture for supervised learning (Fahlman and Lebiere, 1990).
We show a general cascade as a block diagram on the right. Each process in the cascade is
oblivious to the outputs of all the subsequent processes in the series, and is only impacted by the net output of previous processes.
The adaptation in each process is local: the local output is used to update local parameters. In particular, each process is oblivious to
the following processes.

We use the idea of a cascade to combine planning and learning methods, a cascade with just these two processes. As described
previously, both methods generate an approximate value function with a linear function of the features. In this cascade, the planning
method is first and adapts without knowledge of the subsequent learning method. The learning method improves on the action value
function from planning by adding on to it, and the parameters are updated to reduce the error of the final value function.
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Episode

Steps

Control by Planning

Sarsa(λ)

Cascade

Mountain Car

Episode

Steps

Control by Planning

Sarsa(λ)

Cascade

Puddle World

Figure 1: (Left) On the Mountain-Car problem, where the control objective is to minimize the number of steps, our proposed approach
of the cascade has the merits of planning (Model-based Control) and learning (Sarsa(λ)). The graph shows that the cascade achieved
a good initial behavior from planning with a small representation and the better asymptotic performance from learning with a larger
representation. The error bars show the standard error of the mean computed over 300 independent runs. (Right) On the Puddle-World
problem, the cascade achieved similar benefits. Again, a smaller representation was used for planning and a larger representation was
used for learning.

Pseudocode for planning and learning in a cascade

Initialize: v, F•, b• ,w•
Set eligibility traces za to zero, ∀a ∈ A
Receive initial feature vectors x, y, and take action A.
while episode not terminated do

Receive reward R, and feature vectors x′ and y′

#Control
A? ← argmaxa(b

>
a + γv>Fa)y′ +w>a x

′

A′ ← A∗ with prob. 1− ε, else from A at random
Take action A′
#Model-free learning of action values
δ ← R+ γ

(
(b>A′ + γv>FA′)y′ +w>A′x′

)

−
(
(b>A + γv>FA)y +w>Ax

)
zA ← zA + x
wa ← wa + αLδza ∀a ∈ A
za ← γλza ∀a ∈ A
x← x′

#Learning of one-step models
bA ← bA + αP (R− b>Ay)y
FA ← FA + αP (y

′ − FAy)y
>

#Planning with the learned models
for p planning steps do

for each feature index i do
Mi,a ← (b>a + γv>Fa)ei ∀a ∈ A
v′(i)← (1−ε)(maxaMi,a)+

ε
|A|
∑
a∈AMi,a

end for
v← v′

end for
y← y′

A← A′

end while

More concretely, the planning method proceeds as usual and adapts its
weights v,F•,b• to compute an approximate action value function q̃P .
The learning method builds on this function by constructing the cascaded
action value function,

q̃C(x,y, a;v,F•,b•,w•) ≡ (b>a + γv>Fa)y +w>a x

= q̃P (y, a;v,F•,b•) +w>a x,

and only adapts the learning weights, w•. The weights w• are adapted by
using this action value to compute the temporal-difference error δ. Sub-
stituting in the approximate value functions for the cascade, we find that
on an experienced transition from (x,y, A) to (x′,y′, A′) with a reward
of R, the temporal difference error δ is given by the following formula,

δ ← R+ γq̃C(x
′,y′, A′;v,F•,b•,w•)− q̃C(x,y, A;v,F•,b•,w•).

The temporal difference error is used to update the weight vector in learn-
ing by the same Sarsa(λ) algorithm, where the model-based contribution
to the approximate action value function can be viewed as a bias for the
model-free algorithm. Pseudocode for the cascade with this combination
of model-based and model-free methods is shown on the right. The cas-
caded action value is used for ε-greedy action selection. Note that the
model-based part (model-learning and planning) and model-free part (di-
rect learning of action-values) operate as essentially decoupled processes,
and the original planning and learning methods can be recovered from the
cascade by fixing the weights of the other method to zero. The individual
step sizes are written as αL for learning and αP for planning.

5 Empirical Results

We applied our proposed cascade method to the Mountain-Car problem
described previously. The step size parameters and representations were
kept the same. Due to the spacing of the offsets in the tile coding, the
cascade has a larger representation than either of its components, but this
representation is not more expressive than the one used in learning.

The results for the cascade on the Mountain-Car problem are shown on the left graph in Figure 1. The cascade had better performance
than Sarsa(λ) in the initial stages and also achieved the same asymptotic performance, but the cascade reached this performance level
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faster. No algorithm parameters were changed for the cascade, the step sizes were 0.001 for planning and 0.1 for learning, and
the number of planning steps was p = 1. These same parameters were used for the planning and learning methods. The mean
computation time per step for the cascade was 16.6 milliseconds, slightly less than the sum of times for the component methods.

We performed another experiment in the Puddle-World problem, which is another standard domain for testing reinforcement learning
algorithms with function approximation (Sutton, 1996). The underlying state state space was the unit square in [0, 1] × [0, 1] ⊂ R2,
and there were four actions for moving the agent in the four cardinal directions. Each move was of length 0.05 plus a Gaussian
noise with mean 0 and standard deviation of 0.01. Moves that would leave the square were truncated to the edges. The agent started
each episode at the co-ordinates (0.25, 0.6) and ended at a terminal state. The discount factor γ was set to one. The puddles had an
oval shape and were located as described in the original paper. Moving through the puddles was costly, as the reward was −1 for
each transition plus −400 times the distance to the edge of the puddle when the agent was in a puddle. The representations used for
planning and learning were again made by tile-coding and of different sizes, where planning used a single 8 × 8 tiling and learning
used ten 8 × 8 tilings. The value used for λ was 0.9, the number of planning steps was p = 5, and the step-size α for both methods
was 0.1. The results for Puddle-World and Mountain-Car were qualitatively similar, as shown in Figure 1.

6 Additional Results

We have found some additional properties of the cascade approach to combining planning and learning. We have shown in the
policy evaluation setting, that when the individual planning and learning methods converge, the cascade converges as well. When
the features used for planning are representable as linear functions of the features used for learning, then the limiting performance of
the cascade will be the same as for learning alone, so the benefits of planning come with no asymptotic harm. In addition, there are
advantages for the cascade even when they use the same representations due to possibility of using eligibility traces in the model-free
learning process. Eligibility traces enable asymptotically better temporally extended predictions under function approximation, and
the improved predictions give rise to better control policies in some environments.
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Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. H. (2008). Dyna-style planning with linear function approximation
and prioritized sweeping. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI), 528–
536.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189.

4

Paper T10 132



 

Recurrent Neural Network Modeling of Anterior Cingulate Cortex Function   

 

 
 

 Danesh Shahnazian Clay Holroyd 

 Department of Psychology Department of Psychology 

 University of Victoria University of Victoria
 dshahnaz@uvic.ca Holroyd@uvic.ca 

 

 

  

 

 

Abstract 

Despite decades of effort a unified theory of anterior cingulate cortex (ACC) function has yet to be realized. In 

particular, two seemingly incompatible classes of theory have emphasized a role for ACC in carrying out functions 

related to reinforcement learning: performance monitoring theories suggest a critic-like function, and action selection 

theories suggest an actor-like function. To reconcile these views, we recently proposed that ACC is responsible for 

option selection and maintenance according to principles of hierarchical reinforcement learning [1,2]. This position 

holds that the ACC learns the value of tasks, selects tasks for execution based on the learned values, and applies 

sufficient control over task performance to ensure that the selected task is successfully completed. Nevertheless, 

although this theory accounts for a wide range of empirical observations including the behavioral sequelae of ACC 

damage [3], it does not address abundant ACC single unit data nor influential neuroimaging findings related to conflict 

and surprise. Here we address this issue by implementing the proposed task control mechanism in a recurrent neural 

network architecture. The model simulates ensemble activity of ACC neurons at an abstract level, as well as univariate 

signals associated with surprise, conflict, and error processing. These simulations constitute a first step toward 

reconciling the action selection and performance monitoring theories of ACC function. 
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1 Introduction 

Despite decades of intense research on anterior cingulate cortex (ACC) there is still no consensus about the function of 

this brain region. Most theories of ACC function can be classified into either of two categories related to principles of 

reinforcement learning: performance monitoring theories suggest that ACC plays the role of a critic, and action 

selection and valuation theories propose that the ACC is an actor [4, 5]. For example, a prominent theory based mainly 

on functional neuroimaging data suggests that the ACC is involved in monitoring for response conflict [6], and 

single-cell recording in primates emphasize a role in action selection [7]. However, many of these theories do not 

adequately account for the behavioral sequelae of ACC damage, indicating that these putative functions are not 

uniquely implemented by ACC [2]. 

In view of this observation, we have recently proposed a novel theory that holds that ACC supports the selection and 

execution of extended behaviors according to principles of hierarchical reinforcement learning (HRL) [2]. This 

HRL-ACC theory holds that the ACC is responsible for the selection and execution of options, which are temporally 

abstract behaviors that describe context-specific action policies. According to the theory, ACC selects options for 

execution based on their learned values and then applies sufficient control over task execution to ensure that the 

selected option is completed successfully, as illustrated in recent computational simulations [3].  

Despite these successes, the original HRL-ACC theory did not directly address a wealth of ACC-related data (such as 

conflict and surprise signals seen in human neuroimaging data [6, 8, 9], and complex patterns of single-cell activity 

observed in non-human primate studies [7]) because, according to the theory, these signals are correlated with but not 

causally related to ACC function [2]. Here we extend the HRL-ACC theory to account for these phenomena by training 

simple recurrent neural networks to execute options as series of stimulus-action sequences [10]. We then examine the 

dynamics of the network hidden units to provide a qualitative account of ensemble cell activity in rodent ACC [11], 

and leverage the error signal used to train this network to account for conflict and surprise signals observed in human 

ACC [6,9]. 

2 Model 

The model is implemented in a simple, discrete-time recurrent neural network with 4 layers (Figure 1) [12]. The input 

layer receives information about relevant stimuli and action consequences in the environment. The output layer 

predicts the network input on the subsequent time step. A hidden layer maps the input at each time step to the output of 

the network on that time step, in the presence of information preserved in a context layer. In turn, the context layer 

stores the activation levels of the hidden layer units for one time step.  

 

 

Figure 1. Network structure. Feedforward connections are depicted in black and recurrent connections are depicted in yellow [12]. 

Each unit is fully connected via excitatory projections to the units in its immediate downstream layer. The activation 

level of each unit is a logistic function of its summed inputs. The connection weights between units are initialized to 

random values between 1 and -1. For each simulation the network is trained by exposing it to repeated iterations of a 

set of target sequences using the back-propagation through time algorithm [13]. 

3  Simulation of ACC ensemble activity  
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ACC neurons are sensitive to a complex array of task-related events including stimuli, actions and rewards [14]. This 

neural activity appears to reflect dynamically evolving representations of task characteristics that are distributed across 

multiple cells (e.g., [11, 15]). Ma et al. [11] used a sequential lever pressing task to investigate ensemble coding of 

task-related information in ACC. Rats were required to perform three different sequences of three presses on three 

visually distinct levers to obtain reward (Figs. 2 and 3) [11].  Ma et al. found that lever presses of the same temporal 

order but of different spatial location are coded more closely in the state space than lever presses of the same temporal 

location but of different temporal order (Fig. 4). Because previous studies have shown that RNNs provide a useful 

means for analyzing such distributed representations in sequential tasks [12, 15, 16], we utilized a RNN to simulate the 

results of Ma et al. In particular, we trained the network to predict each step of each trial on the behavioral task, and 

then analyzed the activation levels of the hidden layer units as a proxy for distributed ACC activity. The network 

contained 50 hidden units, 50 context units, 7 input units (each corresponding to one sensory input: orienting in the 

direction of any of 3 levers, completion of lever press, and the sequence context) and 11 output units that predict what 

will occur on the subsequent time step (consisting of 9 combinations of 3 orientations and 3 stimuli types). Each trial 

was modeled as a sequence of events across 7 discrete time steps: the initial activation of a particular context unit 

(indicating which sequence to perform) as followed by 3 iterations of an orient-to-lever and pressing lever sequence, 

and ending with the activation of unit indicating reward delivery. The network achieved 100% accuracy after 6000 

trials of training. To track the trajectory of the network through a task-related state space [12], we performed 

multi-dimensional scaling on the hidden unit activation levels during task execution and compared the results 

qualitatively to ensemble ACC neuron activity of rats executing the same task sequences. 

We found that the different sequences produced trajectories through the network state space that were nearly parallel, a 

pattern that was consistent across runs that started from different initial conditions. Figure 5 shows the set of 

trajectories for a representative simulation. For both the empirical and simulated data, lever presses of the same 

temporal order in different sequences were coded in close proximity in the state space, whereas lever presses of the 

same spatial location but of different temporal orders were coded further apart (i.e., right lever presses in the 1
st
 and 2

nd
 

sequence in Figure 4, vs. the 3
rd

 lever press in the blue trajectory and1
st
 lever press in the green trajectory in Figure 5). 

These results are consistent with the suggestion that ACC ensemble activity tracks the animal’s progression through a 

“task space” [15].  

 

 

4 Simulation of ACC univariate activity 

A common finding in the human neuroimaging literature [6, 8, 17] is that ACC is activated by response conflict [6], 

errors [17] and otherwise unexpected events [17]. Of relevance to this issue, RNNs are predictive mechanisms: they are 

trained based on the current state to predict the immediately following state. Further, the error signal used to train the 

RNN reflects the discrepancy between these internal predictions and actual outcomes. Our conception of ACC as 

implementing option execution in an RNN therefore suggests that ACC implements an internal model that predicts the 

outcomes of actions at different stages of task execution, enabling the ACC to detect discrepancies between the 

 
Figure 2 Schematic 
illustration of Ma et 

al. apparatus 

 
Figure 3 the spatial 

arrangement of stimuli 

relative to the levers [13] 

 
Figure 4 results of MDS 

performed on data recorded from 
ensemble of neurons in the ACC. 

Each dot represents the collective 

activity of 34 ACC neurons for a 
single subject. Levers of the same 

spatial location but  of different 

temporal order are coded far apart 
[13] 

 
Figure 5 trajectory of hidden units’ activation level 
revealed by MDS, each color indicates a different 

sequence. The numbers indicate temporal order 

within the sequence. The letters indicate the rest of 
network’s output 
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predictions of the internal model and external events. On this view, this discrepancy signal accounts for the surprise 

and conflict signals associated with the ACC BOLD response and with related event-related brain potential (ERP) 

components. In the following simulations, the discrepancy signal was calculated as the sum of the difference between 

the activation level of each output unit and its corresponding target.  

We examined this issue by simulating the ERP response to novel stimuli (N2) and error commission (error-related 

negativity, ERN). Wessel and colleagues [8] utilized a paradigm that combined elements of a response compatibility 

task and an oddball task (Figure 6). On each trial subjects responded to an imperative stimulus indicating which of two 

buttons to press that was flanked by stimuli mapped either to the same or to a different response. The response was 

immediately followed by the appearance of a frequent “standard” stimulus on most trials, by an infrequent “novel” 

stimulus on a random subset of correct trials, or by a “target” stimulus on only 3 trials. As commonly observed, they 

found an enhanced ERN following error commission and large N2 to the unexpected novel stimuli (Figure 7). 

To simulate these effects, we used a network comprised of 10 hidden units, 7 sensory units (representing the 4 possible 

flanker task stimuli and the standard, target and novel stimuli) and 4 output units (corresponding to predictions of the 2 

possible responses and of the novel and standard stimuli).We exposed the network to a series of input-output mappings 

corresponding to the average participant performance on the task.  For example, when presented with a flanker 

stimulus as input, the network predicted the agent’s response as output. Note that each exposure emulated one trial in 

the actual paradigm and that the network was not trained on the task beforehand. Figure 8 shows the discrepancy signal 

to errors (ERN), standard stimuli, novel stimuli, and correct responses labeled as “baseline”. The network produces 

relatively larger discrepancy signals to errors and to novel stimuli, which are both relatively unexpected, consistent 

with the empirical ERP data (Figure 7).  

We also simulated the fMRI BOLD response to task events related to surprise, conflict, and errors in a “go-change” 

paradigm (Figure 9) [9]. These simulations follow the example of the predicted-response outcome (PRO) model of 

ACC function, which utilizes a dedicated prediction mechanism to account for such phenomena [9]. On each trial of 

this task the participants are first presented with a cue indicating the trial difficulty (low vs. high), followed by an 

arrow indicating which of two buttons should be pressed. On a fraction of these trials, called “change trials”, the initial 

arrow is followed by a second arrow indicating that the participants should override their first response and press the 

other button; the remaining trials are called “go trials”. The result of this experiment shows greater ACC activity on 

trials associated with high response conflict, error trials, difficult correct trials (“high error likelihood”, HEL), and 

unexpected errors. Figure 10 shows these effects as simulated by the PRO model [17].  

To account for these findings, we exposed the network to a sequence of input-output mapping corresponding to the 

average participant performance on the change-go task. For example, when presented with an arrow in the first time 

step, the network waits to see if a change signal is issued at the 2
nd

 time step and then predicts the agent’s response.   

The network was composed of 10 hidden units, 6 sensory inputs (corresponding to difficulty cues, two arrow 

directions, and two possible change signals), and two output units (corresponding to predictions of two possible 

responses). The discrepancy signal produced by the model qualitatively replicated the results reported in [17] (compare 

Figures 10 and 11).  

The activity level of each output unit of a recurrent neural network reflects the probability that a particular event will 

occur at that time step, as determined by the frequency of occurrence of that event on that time step during the course 

of training [10]. For example, because most responses are correct, the model predicts correct responses; error responses 

are therefore unexpected and produce larger discrepancy signals. Likewise, on difficult trials associated with high error 

likelihood, correct responses are less frequent and therefore produce relatively larger discrepancy signals. 

 

Figure 6 Wessel paradigm [8] 

 

Figure 7 ERPs associated with 
error commission and novel 

stimuli [8] 

 

Figure 8 strength of discrepancy between network’s output and 
actual event.  Baseline is the average signal to correct responses 
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Figure 9 change-go paradigm [9] 

 

Figure 10 ACC’s activity under 
different conditions [17] 

 

Figure 11 Strength of discrepancy between network’s predictions 

and the actual event 

5    Discussion 

We propose that the ACC selects high-level options based on their learned reward values and then monitors the 

execution of those options by producing "surprise" signals when events deviate from the expected execution of the 

option. We previously instantiated the reward-learning component of the theory in an abstract model of rodent ACC 

function [3]. Here we extended the theory by implementing options in a RNN. These simulations provide a qualitative 

account of the ensemble activity of neural networks in ACC, consistent with previous observations that ACC tracks 

progress through subcomponents of task execution [11, 15]. The simulations also account for surprise, conflict, and 

error signals commonly observed in the ERP and the fMRI BOLD response that have been previously simulated with 

dedicated monitoring mechanisms [17]. These simulations constitute a first step in reconciling theories of ACC 

function based on actor/reinforcement learning vs. critic/performance monitoring. 
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Abstract

Non-stationary environments are characterized by changes in the underlying reward structure. Detecting and respond-
ing to these changes can be challenging for reinforcement-learning (RL) systems, especially when feedback validity is
low. Here we present the results of two experiments suggesting that RL in humans is dependent on knowledge about
environmental uncertainty. Specifically, we had participants choose between two options with different reward prob-
abilities. Reward probabilities were either static (a stationary environment) or occasionally reversed (a non-stationary
environment). In contrast to previous work, our first experiment revealed no environment-dependent modulation of
the feedback-related negativity (FRN), a component of the human event-related potential (ERP) thought to index an RL
prediction error. However, when participants in a second experiment were cued as to which environment they were in,
we observed the predicted enhancement of the FRN in non-stationary environments relative to stationary environments.
These results suggest that while an RL system may be involved in uncertainty detection in humans, it’s probably not the
whole story.

Keywords: non-stationary environments, electroencephalography, feedback-
related negativity, uncertainty
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1 Introduction

In order to maximize their utility, value-driven decision makers must first learn about their world, and then optimally
exploit this information by selecting those actions that are most likely to lead to a reward. The world is an uncertain place
though, and which choice is best may change. Reinforcement learning (RL) models are able to detect and adapt to shifts
in reward payouts through the computation of a prediction error (a comparison between actual and expected outcomes)
and the subsequent modification of the value associated with a choice. However, the lack of an explicit representation of
uncertainty in RL models (i.e. model-free RL) limits their ability to rapidly detect shifts in reward probabilities, especially
when feedback validity is low (that is, when the likelihood of a reward is low). Furthermore, others have pointed out
that the predictions of model-free RL may not closely align with either human performance or neural data (Alexander
& Brown, 2011). In other words, while there is evidence implicating a medial-frontal RL system in humans (Holroyd &
Coles, 2002), the role of this system in detecting uncertainty is currently unclear.

Evidence for an RL system in humans comes from both electroencephalographic (EEG) and functional magnetic reso-
nance imaging (fMRI) recordings made during feedback processing. For example, a negative deflection is observed in the
human event-related potential (ERP)—averaged EEG in response to an event—following nonrewards, but not rewards
(Miltner, Braun, & Coles, 1997). The voltage difference between rewards and nonrewards is called the feedback-related
negativity (FRN), which is typically maximal at frontal-central scalp locations, and occurs 200–350 ms after feedback (see
Walsh & Anderson, 2012, for a review). The FRN has been source-localized to anterior cingulate cortex (ACC: Miltner et
al., 1997; Walsh & Anderson, 2012) and is thought to reflect an RL prediction error (Holroyd & Coles, 2002).

Given that the FRN indexes an RL prediction error, we might predict an enhancement of this component following an
unexpected shift in reward probabilities (i.e. in non-stationary environments relative to stationary environments). In-
deed, that is what Bland and Schaefer (2012) found when they varied uncertainty across blocks of a decision-making task.
While this result might suggest that model-free RL is sufficient for detecting unexpected uncertainty, it’s worth noting
that Bland and Schaefer (2012) used feedback validities of either 73% or 83% (i.e. these were the likelihoods of winning
if the optimal response was made). This choice of values was consistent with many previous studies on probabilistic
reversal learning (e.g. 70%: O’Doherty, Critchley, Deichmann, & Dolan, 2003; 75% or 80%: Behrens, Woolrich, Walton,
& Rushworth, 2007; 80%: Chase, Swainson, Durham, Benham, & Cools, 2010). In light of Bland and Schaefer’s (2012)
observation of an enhanced FRN in uncertain environments, we wondered if the same enhancement would be seen in
the presence of reduced feedback validity (e.g. below 70%)—we hypothesized that it would not, since in such a scenario
it would prove too difficult to distinguish between nonrewards indicating a reward probability shift, and nonrewards
due to bad luck.

Our goal here was to investigate the neural mechanisms behind how humans deal with shifting reward probabilities
(also called unexpected uncertainty). To do this we recorded electroencephalographic (EEG) and behavioural data in
two decision-making experiments. In Experiment 1, participants were given no clue as to when reward probabilities
might shift, while in Experiment 2 they were shown a cue indicating whether or not a probability shift might occur.
Feedback validity was kept low at all times, and so we hypothesized that in Experiment 1 no difference would be seen
between the FRN in stationary environments and the FRN in non-stationary environments. In contrast, we hypothesized
that the cues provided in Experiment 2 would provide the top-down influence necessary to help the RL system sort out
which nonrewards ”counted” (i.e. which nonrewards indicated that the less optimal choice was being made), and as
such Experiment 2 would yield the enhanced FRN in non-stationary environments as predicted by previous work.

2 Method

2.1 Experiment 1

We tested 20 university-aged participants, all of whom were volunteers who received extra course credit. All participants
provided informed consent as approved by the Health Sciences Research Ethics Board at Dalhousie University. Partici-
pants were seated comfortably in front of a display and performed a simple gambling task. The task was a two-armed
bandit (Sutton & Barto, 1998) in which participants were asked to maximize their reward. On each trial participants
chose one of two slot machines, represented by squares of different colours. Participants were told that choosing one of
the slot machines was more likely to result in a win compared to choosing the other slot machine. Unknown to partic-
ipants, choosing the higher probability square resulted in a win with probability P(win) = 0.6, and choosing the lower
probability square resulted in a win with P(win) = 0.1. Participants completed 24 blocks of 20 trials each. In half of the
blocks, chosen at random, the colours of the squares would swap partway through the block. Within these blocks—called
non-stationary blocks—the colour swap, or context shift, occurred randomly between trials 11 and 20. See Figure 1 for
trial timing.

EEG data were filtered (0.1–25 Hz pass band) and rereferenced to the average of the two mastoid channels. Next, eye
movements were corrected using the algorithm of Gratton, Coles, and Donchin (1983) and baseline corrected using the
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Figure 1: Experimental design, with timing details. Coloured squares could appear on either side. Choosing one coloured
square was more likely to result in a win compared to selecting the other coloured square.

epoch 200 ms prior to feedback. Data were epoched around feedback events (200 ms before the event to 600 ms after
the event) and any epochs with artifacts were discarded (i.e. epochs with a voltage change greater than 100 uV). Finally,
we computed average epochs for each feedback type (wins/losses) both early and late within a block (trials 1–10 versus
trials 11–20). Based on the grand average waveforms (e.g. Figure 3) and in line with previous research (Miltner et al.,
1997; Holroyd & Coles, 2002) the FRN was defined as the mean voltage 200–400 ms post feedback, at electrode FCz. In
addition to EEG, we recorded trial accuracy (whether or not the best bandit was chosen, regardless of outcome).

2.2 Experiment 2

Experiment 2 was carried out identically to Experiment 1 (using 20 different participants) with the exception that, prior
to each block, participants were cued as to whether the block was stationary (no reward switch could occur) or non-
stationary (a reward switch may occur). Block cues were images of two different casinos in which participants would be
gambling—either an honest casino (stationary environment) or a dishonest casino (non-stationary environment). Partic-
ipants were told that there was an honest casino and a dishonest casino, although they were not told which was which.

3 Results

3.1 Behavioural Data

Participants in both experiments improved over time (Figure 2), and eventually detected and responded to the reward
reversal that occurred in the non-stationary environment. There was a slight performance advantage in the cued experi-
ment relative to the uncued experiment (a significant main effect of experiment on mean performance: F(1,38) = 19.13, p
<.001).

3.2 EEG Data

An FRN was observed in both Experiment 1 and Experiment 2. However, we noted an important difference between
Experiment 1 and Experiment 2 with regards to how the FRN changed over time. In Experiment 1, there was no effect of
environmental uncertainty on the FRN, (F(1,19) = 0.241, p = .629), and no time-environment interaction, (F(1,19) = 1.011,
p = .327). In other words, the FRN responded the same way, regardless of environmental uncertainty. In Experiment 2,
there was both a main effect of environmental uncertainty, (F(1,19) = 6.145, p = .023), and a significant time-environment
interaction, (F(1,19) = 7.489, p = .013). See Figure 4 for a summary.

4 Discussion

The goal of these experiments was to investigate the degree to which an RL system in humans is engaged in detecting
probabilistic reward reversals in highly uncertain environments, i.e. when feedback validity is low. Participants in
both experiments learned optimal responses in a two-armed bandit task. However, participants in Experiment 2 were
given the advantage of knowing whether or not the environment (block) they were in could include reversals. Besides
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Figure 2: Mean accuracy, defined as the proportion of trials in which the optimal response was chosen, regardless of
outcome. (a) In Experiment 1 participants were uncued as to which block type they were currently engaged. (b) In
Experiment 2 block cues afforded a slight performance advantage relative to Experiment 1.

Figure 3: Sample ERP waveform response to feedback, with scalp topography. This is from Experiment 2 (Cued), non-
stationary blocks only. Other conditions showed a similar timing and topography.

performing better, participants in Experiment 2 also showed a difference in the FRN, an ERP component thought to
index an RL prediction error. In particular, the participants in Experiment 1 had the same FRN in each environment
(stationary/non-stationary). In contrast, participants in Experiment 2 (who knew which environment they were in)
showed an enhanced FRN in non-stationary environments.

While these results suggest the involvement of an RL system in humans when detecting reward reversals, they also
suggest limits on such a system. In particular, our results suggest the need for an explicit representation of uncertainty
in humans. Such a model-based system could, in theory, respond more rapidly to reward reversals than RL alone. For
example, the detection of a reversal might signal the RL system to alter its parameters (e.g. learning rate) in such a way
so as to expedite relearning. One influential model for uncertainty detection in humans is that of Yu and Dayan (2005).
Their model simulates levels of two neurotransmitters: acetylcholine (ACh) and norepinephrine (NE). According to Yu
and Dayan (2005), ACh levels signal feedback validity (also called expected uncertainty), and NE levels signal reward
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Figure 4: Summary of response to feedback. (a) When participants were uncued as to the uncertainty of the current
block, there was no change in the FRN. (b) When cued as to block uncertainty, the FRN was enhanced for non-stationary
blocks.

reversals (also called unexpected uncertainty). Thus, we might speculate about an RL system in humans (as indexed by
the FRN) that works in conjunction with an ACh-NE system for uncertainty detection.

In summary, we provide evidence that uncertainty-based modulation of the FRN (a neural RL signal) is highly dependent
on prior knowledge about the learning environment. Our results suggests that human RL is informed by an explicit
system for uncertainty detection—a system that may be fooled when feedback validity is low, but performs better when
you know whether or not you are in an uncertain environment.
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Abstract

In this work, we propose a framework of learning with preferences, which combines some neurophysiological findings,
prospect theory, and the classic reinforcement learning mechanism. Specifically, we extend the state representation of
reinforcement learning with a multi-dimensional preference model controlled by an external state. This external state is
designed to be independent from the reinforcement learning process so that it can be controlled by an external process
simulating the knowledge and experience of an agent while preserving all major properties of reinforcement learning.
Finally, numerical experiments show that our proposed method is capable to learn different preferences in a manner
sensitive to the agent’s level of experience.

Keywords: Preference learning, prospect theory, affective state, reinforcement
learning.

Acknowledgements

This work has been partly supported by IGSSE - International Graduate School of Science and Engineering, Technische
Universität München, Germany.

Paper T17 143



1 Introduction

The expected utility hypothesis is commonly used to model human’s decision making behavior in scenarios with un-
certain outcomes, such as gambling. However, situations where preferences of individuals among the same choices are
important, are not handled properly by the classic expected utility theory of Bernoulli. The Prospect Theory (PT), pro-
posed by Kahneman and Tversky [7] introduces the concept of reference point to the expected utility theory of Bernoulli.
This reference point enables to model preferences of individuals among same choices. It means that an internal reference
point for a specific decision is essential to model the decision making behavior of people. Meanwhile, in psychology,
a similar concept of affective states plays an important role in describing human’s behavior. The human affect system
is responsible to regulate the perception and assessment of events. It is able to assign rapidly emotions to occurring
situations. This affective representation is then used to influence the decision making process, cf. [6].

Recently, it is considered that both affective and cognitive systems are essential in future smart systems, cf. [8]. The
work in [2] also hypothesizes that rational decisions of humans are primarily influenced by so-called somatic markers, i.e.
the positive or negative feeling towards a specific situation. Therefore, it is vitally important to consider both affective
component and cognitive component, in order to design an autonomous and rational decision making agent. Because
of these inseparable components involved in the human decision making system, we propose to integrate an externally
controlled affective state into autonomous decision making. This results in a simulated emotional and rational experience
of a reinforcement learning agent. There are examples (c.f. Section 3) where the level of experience influences the outcome
of a task.

2 Related Works and Motivations

There are numerous works about the integration of affective and subjective components into Reinforcement Learning
(RL) agents. We selected those, which have influenced our idea of integrating an internal affective state into RL.

First of all, the work of Kenji Doya describes neuromodulatory systems and the (global) signals that regulate the (rein-
forcement) learning mechanisms of the human brain [3]. He argues that specific signals control and regulate the meta-
parameters (like randomness, action selection, reward prediction error, speed of memory update) for the reinforcement
learning process. But there is no clear hypothesis regarding how the brain generates those signals. It seems to be a pro-
cess separated of the actual learning running in different brain areas. This suggests that the brain has the capability of
dynamically adjusting these metaparameters towards new or dynamically changing environments.

Besides these neurophysiological findings, the Prospect Theory shows the psychological influence of external and inter-
nal signals on the decision making behavior of human. In the Prospect Theory, a value function is described which is
sensitive to deviations of the outcome (reward) according to a reference point in case of a risky choice. The reference
point thereby is set by the current decision problem and depends rather on the losses and gains than on the final net
asset value. This is also the reason why the framing of a choice problem becomes critical. The framing of the problem
results in an external shift of the reference point which alters obviously the decision behavior [10].

A concrete combination of Reinforcement Learning and Prospect Theory is described by Ahn [1]. He has extended
the conventional framework of RL for Markov decision processes (MDPs) with PT-based subjective value functions to
model experienced-utility and predicted-utility functions. Furthermore, these functions vary dynamically according to
the affective state of the decision maker (agent). This enables the agent to choose an action according to different risk
attitudes and action tendencies on the basis of subjectively evaluated previous outcomes of decisions. The performance
of his algorithm appears to be very good in the selected domains, but are difficult to reproduce due to the parameter
dependence (which were additionally optimized for each domain). Moreover, the reference point of the PT value function
is set automatically by the algorithm and an external control is not intended. Both, the external control as well as a strict
separation of the reference point from the learning process seem to be important, if we consider the framing hypothesis
and neurophysiological findings.

A third topic which has influenced our idea were preferences and biases. As preferences are fundamental for the hu-
man choice behavior, they are also an important component in learning. Human decision making is based on both, an
objective and a subjective component [2]. Both components mainly depend on the emotional experience of a person.
That means that decisions are evaluated in terms of objective and subjective rewards. The subjective rewards base on
experienced feelings and emotions of previous outcomes of actions and decisions. Over time, specific situations and
their past outcomes are associated with particular emotions (and their corresponding bodily changes). During decision
making, these emotion-situation pairs are used as physiological signals (or somatic markers) to bias decision making to-
wards certain policies while avoiding others. The whole set of somatic markers can be seen as the (emotional) experience
of a human and is gathered during life. Regarding the development of artificial life-long learning agents such an emo-
tional component is still a side issue. Therefore, the introduction of an experience-driven learning agent with specific
preferences and aversions is vitally important to build more human like agents [12, 11].

A concrete approach combining RL with preferences is described by Fürnkranz et al. [5], where they combine preference
learning [4] with RL. They learn a preference model from qualitative feedback and use it for ranking different policies
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Figure 1: (a) Reinforcement Learning framework with integrated preference model and affective state regulation.
(b) Preference model using Gaussian distribution functions to add a reward bonus to a specific state or action according
to the experience level SA. In the depicted model there are three different experience levels. The actual preference in each
level is highlighted (orange) and results in a reward bonus with a higher mean than the average. The different reward
boni in each level are added up.

(fixed trajectory of a Markov process). The main drawback of this approach is the qualitative feedback which is used
to evaluate already learned policies. This external qualitative feedback is given by human experts. Also, the learning
process is directly interrelated with the preference model and there is no control how much the preference model affects
the decision.

As we have seen the human learning process depends on external signals like framing effects and on internal signals
generated by neurophysiological systems, preferences, and (emotional) experience. These are the influencing factors we
want to use in our algorithm to model an agent with experience based preferences. Therefore, we propose a framework
which should illuminate the role of an internal affective state (like an experience value) in the context of RL. We con-
structed this affective state so that it fulfills the Markov property, enabling the external control of the policy together
with a preference model. In parallel, the affective state could also be used to model reference points as proposed in the
prospect theory, enabling the agent to subjectively evaluate outcomes according to a (subjective) reference point. There
are possible applications in the field of artificial intelligence, human-computer interfaces, and decision-support systems
(recommender systems) where preferences of policies are needed and they are an essential aspect of rational autonomous
agents.

3 Reinforcement Learning with Preferences

Basic Reinforcement Learning assumes a scenario in which an agent acts in a (finite) state space by performing different
actions. A reward signal gives the agent feedback about its actions. The goal of RL is defined as maximizing the expected
total sum of rewards. The basic formulation of a RL problem builds on the notation of a Markov decision process [9]:

• A set of states S ∈ {s1, s2, . . . , si} and a set of actions A(si) ∈ {a1, a2, . . . , aj} which the agent can perform in a
particular state si.

• Transition probabilities Pa
ss′ = Pr{st+1|st, at} which denote the probabilities that an action at in state st leads

to state st+1.
• A reward function r(st, at) giving the agent reward according to the state and action performed.

We extended this basic RL framework with an additional state called affective state SA (Figure 1a). According to this state
the agent uses a preference model (Figure 1b) which gives a reward bonus to specific actions or states. In our experiment
we use a one-dimensional state representation for controlling the preference model. For representing more complex
affective states (e.g. general mood states) it would be possible to extend the state representation to a multi-dimensional
vector controlling different preference models.

The basic idea underlying our preference model are various reward functions which are selected according to an affective
state SA. The additional reward functions correspond to reward facets which an agent can only perceive with increased
experience or external feedback. The difference between our framework and approaches for multi-dimensional or dy-
namic reward environments surfaces in scenarios, where the agent first has to learn how the reward process works. For
example, as a novice in cooking someone tells you to cook fried eggs and gives you eggs, a pan, and all other necessary
equipment. You will start frying eggs until it looks like a fried egg. Now someone tastes and tells you that the yolk has
to be cooked through. Up to now, as a beginner in cooking you only judged fried eggs according to the appearance, but
now a new dimension is added: how the yolk has to be cooked. Next time cooking fried eggs (with an increased level of
experience), this dimension is also considered and evaluated.

Another example, more complex especially for machines is the taste of coffee. As a beginner in drinking coffee you only
judge your coffee according to the overall taste of bitterness or sweetness and probably the temperature. After drinking
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coffee regularly you start to taste different flavors within a specific kind of coffee. Consequently, your experience in
drinking coffee has added new dimensions of possible rewards to your preference model. As a coffee expert you choose
your coffee according to a variety of different tastes and ways of preparation.

So, our preference model consists of several levels of reward functions which are only visible or accessible to the agent
in a specific affective state (like a specific level of experience). We additionally introduce the constraint, that each level of
experience can only increase, hence the additional reward functions are always added and can never be removed again
(no-go-back-policy).

The signal generation representing the level of experience seems to be a substantial question. There are several solu-
tions conceivable, like a monotonically increasing function according to the action taken by the agent or more advanced
approaches considering the gathered knowledge and external feedback. Furthermore, according to neurophysiology a
strict separation of the control signals for the learning process is desirable. That means, the internal affective signal (in
the actual case the level of experience) must be externally controlled and should only be based partially on the results of
the learned actions and outcomes. Ideally, it should base on past experiences, temporal effects, external feedback, and
cognitive biases (like framing effects). Therefore, we decided to use in this stage of the development a simple stepwise
function which increases the level of experience in three steps after a specific number of actions and does not inter-
fere directly with the reinforcement learning process. This might be a oversimplification but allows a clear and concise
formulation of the experiment.

4 Experiment

We conducted an experiment to investigate the properties of this extended reinforcement learning framework demon-
strating that additional reward functions which are controlled externally can introduce preferences to the learned policy.
In the experiment we simulated a three-armed bandit with Gaussian distributed rewards. At the beginning, each arm
returns the same Gaussian distributed reward rext with µj = 1 and σj = 1 for all arms j = 1, 2, 3. The experiment
was repeated independently 100 times and 300 trials were played. Afterwards, the results where averaged. In this
experiment, we used a simple affective state, which can be compared to a general level of experience. The state was
generated externally and was modelled as an exponential increasing process simulating a continuously increasing level
of experience.

We have used Q-learning with ε-greedy exploration [9] to learn the optimal policy in this experiment (ε = 0.05, α = 0.8,
γ = 0.4). The results depicted in Figure 2 show that with increasing experience level the policy changes. At the first
level (beginner, 0 ≤ SA ≤ 0.5), the agent is not able to differentiate the decisions and each action aj is taken equally.
After gaining some experience (intermediate, 0.5 < SA ≤ 0.95) a second layer or dimension of reward functions is
added to the learning process (second layer of Figure 1b). Now, the agent receives the original reward of the bandit
process and an additional reward bonus (in the current setting also Gaussian distributed) which is added to the actual
reward. In the intermediate level a preference model (or reward dimension) with µ2,int = 15, µ1,int = µ3,int = 1
and σ1,int = σ2,int = σ3,int = 1 is added. So, a clear preference for action a2 is introduced at this level of experience
and the agent starts to prefer this action. In the expert level (0.95 < SA ≤ 1), a preference model is added which
assigns a reward bonus, slightly higher than the one for action a2, to action a3 (µ3,exp = 15, µ1,exp = µ2,exp = 1 and
σ1,exp = σ2,exp = σ1,exp = 1). This results in a bias for action three which is therefore most frequently selected while the
probability for action one and two decreases. The total reward r for updating the Q-function can be denoted as

r(st, at, SA) = rext +
∑

j∈A,k∈SA

Xj,k, Xj,k ∼ N (µj,k, σ
2
j,k), (1)

where SA denotes the set of experience levels, A the set of possible actions, and rext the external reward given by the
three-armed bandit. Xj,k is the reward bonus for a given action j in a specific affective state k which is in this example a
sample of a normal distribution N (µj,k, σ

2
j,k).

5 Results

The results of the experiment as depicted in Figure 2 are straight forward and meet our expectations. But they show
that the extension of the conventional RL framework with various reward process dimensions controlled by an external
affective state can introduce preferences to the learned policy. In the introduction we motivated this extension by psycho-
logical and neurophysiological findings. This enables developers of learning agents to use it for developing agents with
preferences, specific tastes and risk dispositions. The additional reward dimensions could be used e.g. for integrating
prospect theory value functions besides conventional (like Gaussian) reward functions to simulate rational componentes
of decision making (like risk aversion and attraction) while preserving the main underlying reward process maximizing
the expected utility.
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Figure 2: Learned policy for a simulated increasing level of experience. First, the agent acts like a beginner end selects
every action equally (the thickness of the bars corresponds to the frequency of selection). At trial 98 the agent enters
the intermediate state and can perceive an additional reward model with a preference for the second action (a2). In the
expert state, another reward model is added with a preference for action three (a3).

6 Conclusion

The basic premise of the paper is that traditional RL can be extended by a preference model which is controlled by a
single external state not interfering with the learning process. We also described in this paper the multi-dimensional
approach of constructing a preference model with various reward functions as well as the application of it to integrate
distinct preferences, biases, or cognitive frames into the framework of reinforcement learning.

In future studies we want to investigate the properties of such a framework regarding uncertainties in the reward pro-
cess, the exploration and exploitation trade-off, and learning different “flavors or tastes” of polices. The property of an
increasing reward function space would also be an interesting topic for further studies. Our vision is to build artificial
agents with human-like preferences and sensitivity towards framing effects.
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Abstract
Twitter, a popular social network, presents great opportunities for on-line machine learning research. However, previous research has
focused almost entirely on learning from passively collected data. We study the problem of learning to acquire followers through
normative user behavior, as opposed to the mass following policies applied by many bots. We formalize the problem as a contextual
bandit problem, in which we consider retweeting content to be the action chosen and each tweet (content) is accompanied by context.
We design reward signals based on the change in followers. The result of our month long experiment with 60 agents suggests that (1)
aggregating experience across agents can adversely impact prediction accuracy and (2) the Twitter community’s response to different
actions is non-stationary. Our findings suggest that actively learning on-line can provide deeper insights about how to attract followers
than machine learning over passively collected data alone.
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1 Introduction

Twitter is an on-line social network that allows people to post short messages (140 characters maximum), called status updates or
tweets. It also allows users to read status updates posted by other users. Two additional actions are: (1) re-posting another user’s
status update, this action is called retweeting, and (2) favoriting a tweet, i.e. the tweet is marked as a favorite of the user. As one of
the largest social networks, Twitter provides a great opportunity for evaluating machine learning algorithms on real-world data and
evaluating them on-line. We target the problem of attracting followers in a community on Twitter and argue that actively learning can
provide deeper insights than learning over passively collected data alone.

Without performing active experiments it is difficult to determine whether factors turned up in the analysis are only correlated, but
not causally related, with attracting followers. Moreover these factors may change over time or vary depending on the history of an
individual user. Therefore running experiments where algorithms control an account (rather than simply observing its behavior) can
provide useful insights into the development of on-line relationships.

One difficulty of creating agents with the goal of acquiring followers is that naive exploitative strategies, such as mass following, are
quite successful. This kind of aggressive following policy is easily labeled as bot behavior and is treated accordingly by the Twitter
community. Our objective is to learn strategies that attract followers but avoid violating behavioral norms. By doing so, the agents
receive followers based on providing a valuable service rather than exploiting other users.

Twitter has been the subject of intense research. Most of the work so far applied machine learning on passively collected data as
opposed to learning from data collected on-line. However, collecting data on-line allows the agent to respond to the social network
in real-time and choose actions most suitable to that time. This allows us to learn what causes users to follow (not just what is
correlated). Although the problem of acquiring followers seems to be a popular subject on the Internet, we are unaware of any
academic research that has examined an on-line approach for learning to attract followers.

The main contributions of this work are:

(1) We formalized the problem for learning to attract followers as a contextual bandit problem [3]. Our formulation encourages
normative (rather than exploitative) behaviors, because the action space focuses on retweeting content (not following users).

(2) We executed a month long on-line experiment with 60 agents. Each agent interacted directly with the Twitter API and controlled
a live Twitter account.

(3) We provide evidence for advantages of active learning over learning from passively collected data: the reward signal, based on
the change in followers is non-stationary. Analyzing a data set collected in the past may result in poor performance, and more data
is not always better. Although we had limited data for each individual agent, we found that aggregating data from multiple agents
resulted in less accurate prediction. Therefore, learning should be applied to individual agents.

2 The Setting

One of the main contributions of this work is the development of a well-defined problem for actively learning in a social network. To
our knowledge, no previous work has proposed a well-defined, active problem in social networks.

We allow a learning system to control a single user account on the Twitter social network. We will refer to this learning system as an
agent. Our first intuition was to identify a multi-armed bandit problem [2], where the agent plays in a series of rounds. Let A be a set
of K ≥ 2 actions. At each round, the agent selects an action a ∈ A associated with an initially unknown probability distribution over
rewards. Once an action is selected, a reward is sampled from its corresponding distribution. The goal of the agent is to maximize its
expected reward.

To formalize a problem as a multi-armed bandit, we needed to answer a few questions: (1) What are the rewards? (2) What are the
actions available to the agent? (3) What is a round?

2.0.1 Rewards

Our objective is to design an agent that learns how to acquire followers. However, gaining followers is a rare event. A reward based
entirely on the change in followers is difficult to learn from because the signal is sparse. Thus, we constructed reward signals from
both changes in number of followers and other related events as explained in section 3.

2.0.2 Actions

The number of messages that can be expressed in 140 characters is too large to address directly. Additionally, users can perform
other actions like following other users, retweeting existing status updates, and favoriting tweets, thereby significantly increasing the
number of possible actions. However, a traditional multi-armed bandit problem assumes that the number of actions K is reasonably
small.
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In our experiment we used other users’ content as actions rather than trying to invent new content. Furthermore, we restricted the set
of tweets considered by the agent for retweeting to recent tweets containing the word “baseball”. We chose the domain “baseball”
because it has a large community but still represents a specialized domain where agents can learn to retweet valuable content.

Since in our setting it is very unlikely to sample more than once a specific action, we modeled the problem as a contextual bandit
problem [3], which is a generalization of the multi-armed bandit problem. In each trial t, the algorithm observes a set At of possible
actions sampled from a distribution ρ with support A, where A is the collection of all tweets. Each action a ∈ At corresponds to a
status update that can be retweeted and is described by a feature vector xt,a. This feature vector xt,a describes properties of the action
and the state of the environment. After choosing an action, the algorithm receives a reward rt,at from which it learns and improves
to the next trial. The objective of the agent is to learn a decision rule µ that maximizes

r = EAt∼ρ [rt,at | µ] , (1)
where r is the expected reward. In our experiment we use decision rules of the form

µ(At) = arg max
a∈At

f(xt,a) (2)

where f is a learned function that predicts the expected reward.

Due to the high-dimension ofX = {xt,a}, the feature space, we estimate rewards using function approximation/regression. The result
of function approximation is a function f : X → R that predicts the reward received for selecting the action a ∈ At corresponding
to xt,a.

2.0.3 Rounds

A round could potentially be any constant length of time. However, enforcing normative behavior along with providing enough time
between actions to allow other users to respond, led us to choose a time period of one hour between rounds.

A typical round in our setting is as following. First, the agent requests and receives a collection of recent tweets from the Twitter API
about a specialized domain (e.g., baseball). Next, the agent examines the tweets it received from the Twitter API and retweets one
of them. Finally, the agent sleeps for an hour and requests information about what changed. The agent then uses this information to
calculate a reward and updates its decision rule. This finishes the round and a new round begins immediately.

2.0.4 The Exploration-Exploitation Dilemma

Exploration, trying actions with uncertain reward, is a critical issue in multi-armed bandit problems. We want the agent to choose
an action that will have a high probability of attracting followers (exploitation), but the agent also needs to try various actions to
learn what attracts followers (exploration). For simplicity, we use a simple the popular ε-greedy exploration strategy, which selects a
random action with probability ε and the action with the highest predicted reward with probability (1− ε).

3 Experiment

We designed and executed an experiment to determine whether simple machine learning algorithms could learn to attract more
followers on Twitter than a random baseline. We created 60 Twitter accounts, each agent controlled one account. Every hour t ≥ 0,
each agent requested a collection of tweets At from Twitter. The agents selected a tweet at ∈ At to be retweeted (i.e., a status
update) based on a list of features that were extracted from the tweets, xt,at . One hour later a reward signal for at was computed by
the agent. In line with our objective of maintaining normative behavior, agents only followed the user that posted at (before the agent
retweeted it) with probability P (follow) = 0.5. The entire experiment was performed by using Twitter API.1

The reward signal used during the experiment was
rt,at = α0∆a,t + α1∆u,t + α2ft + α3wt , (3)

where ∆a,t is the change in the number of agent’s followers, ∆u,t is the change in the number of followers for the tweet’s original
poster, ft is the number of favorites the tweet received, and wt is the number of retweets made to this tweet. The coefficients were
α0 = 100, α1 = 10, α2 = 10, and α3 = 1, aligned with our objective we gave significantly higher weight to change in number of
agent’s followers.

Our experiment focused on tweets containing the string “baseball”, because there is a constant flow of status updates and the topic
is specialized enough so that an agent might learn useful knowledge about the domain. Status updates with offensive language were
filtered before the agent made a selection. We divided the agents in three groups of 20: (1) uniform random (UR), (2) a gradient-based
estimator (GE), and (3) a batch-based estimator (BE).

GE and BE estimated the reward signal for each status update from a collection of 87 features. We extracted features from the tweet
and the user that posted it. We selected features based on prior work, such as [6, 5], along with others.

To encourage exploration, GE and BE selected a status update according to the uniform random rule with probability ε = 0.05.
1https://dev.twitter.com/docs/api/1.1
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3.1 Uniform Random (UR) Agents

The baseline UR algorithm selected retweets according to a uniform random distribution over the set of status updates. Thus, UR
does not do any learning.

3.2 Gradient Estimator (GE) Agents

The GE algorithm incrementally updated a linear function approximator. GE applied gradient descent to minimize Mean Squared
Error (MSE) and used a constant learning rate (η = 0.1). To better utilize the data, we introduced an adviser [4] to the GE algorithm.
The adviser observes tweets not retweeted by the agent, and one hour later, at the same time the agent observes its reward, the adviser
computes a modified reward signal

r′t,at = β0∆a,ut
+ β1fa,t + β2wa,t , (4)

for the other tweets where ∆a,ut
is the change in the number of followers for the tweet’s original poster, fa,t is number of favorites

the tweet received, wa,t is the number of retweets made to this tweet, and coefficients β0 = 10, β1 = 10, β2 = 1. Then, the adviser
generates a hypothesis, using a batch training approach. The hypothesis generated by the adviser is weighted with the hypothesis
generated by the agent. To reduce noise in the reward signal, GE only takes a learning step each 8 hours, averaging over all the
hypotheses, to generate a new hypothesis as suggested by [1].

3.3 Batch-based Estimator (BE) Agents

The BE algorithm used Ordinary Least Squares (OLS) to train a linear function approximator after each round on all instances where
the algorithm received the reward signal (3). All samples were weighted the same and the algorithm minimized MSE over the training
samples. The BE algorithm used only samples it had selected to retweet (i.e., it did not use an advisor like the GE agents).

4 Experimental Results

We ran the experiment for about one month (May 9 – June 11, 2014) generating more than 600 status-updates for each account. At
the end of the experiment, the average number of followers for the different groups was: 41.1 for UR, BE finished with 41.6, and
GE had 44.95. Thus, GE acquired about 10% more followers on average than UR. A one sided T-test on the UR and GE groups
shows that the difference is statistically significant with p = 0.0291 (i.e., 97.09% confidence that the two groups are generated by
distributions with different means). However, the difference between UR and BE groups was not significant (see the next section for
details). Two weeks before the end of the experiment, the average number of followers was 23.6, 23.6, and 23.8 for BE, UR, and GE
respectively. However, over the last two weeks the difference between UR and GE grew 11 fold. This demonstrates that machine
learning can attract more followers than a random strategy. It also raises the question: Why did GE outperform UR, while BE did
not? In the next section, we analyze our experimental data to gain insight on attracting followers.

5 Importance of Active Learning

For comparison, throughout the analysis we normalized the rewards to have zero mean and a standard deviation of one. We noticed
the poor performance of the BE algorithm. When we tested the performance offline, we found that Ordinary Least Squares (OLS)
resulted in divergence. Therefore, while analyzing the data we used different function approximation models, Ridge Regression,
LASSO, Elastic Net, and Support Vector Regression (SVR).2 These methods apply types of regularization, thus gave better results
(in off-line training).

In this section we show the importance of actively learning from data as opposed to learning from passively collected data. We
identify two main problems in learning from passively collected: (1) the relationship between the features and reward function
appears to be non-stationary, and (2) generalizing between agents tends to degrade prediction accuracy.

5.1 Nonstationarity

By examining the data, we found considerable evidence that the reward signal is a non-stationary function of our features. Thus
training only on passively collected data is probably not satisfactory, because the best actions for acquiring followers seem to be time
sensitive.

For each BE agent data (sorted chronologically) we trained and evaluated SVR model (achieved the smallest MSE). We divided the
samples into chunks containing 100 sequential instances. The size was selected by experimentation yielding the smallest MSE. Each
chunk was split into 75% training data and 25% testing data. Finally, we took the median MSE over all of the agents. The median
MSE was 0.24, an improvement of 15% over when trained with all the data together. Thus, training with all data resulted in more
error.

2The implementations used in our analysis are available at http://scikit-learn.org.
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Figure 1: MSE of an SVR algorithm trained on the
first 100 samples and tested on the remainder of the
data. The MSE is plotted as a function of time (in
days) after the 100 samples were collected. The error
increases over time indicating that the reward signal
we are trying to predict is nonstationary.
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Figure 2: Comparison of MSE per user with 100 sam-
ples, all users with 2000 samples, and all users with
100 samples (75% training, 25% test). Combining
data between users negatively impacts prediction ac-
curacy.

Next we looked at predicting the number of followers rather than the reward signal (3) used in our experiments. For each agent, we
trained SVR on the first 100 samples (sorted chronologically) and then used the remaining samples as test data. Figure 1 shows that
the MSE increases as the experiment progresses. This is consistent with our hypothesis that the best strategy for attracting followers
is changing over time.

These findings suggests that the reward signal is non-stationary, therefore learning from on-line data may result in more accurate
predictions, as opposed to learning from passively collected data.

5.2 Generalizing Across Users

We examined the evolution of the weights learned by the GE agents. Specifically, we examined the median values and standard
deviations for the weights between all the agents. The median values did not converge to a single point on weights space. On the
contrary, the standard deviations increased over time, meaning the agents were learning different hypotheses.

Figure 2 shows the increase in error for BE agents when generalizing between agents compared to training on a single agent’s data.
We show the MSE for an SVR algorithm in three different cases, (1) per user with 100 samples, (2) combined data with 2000 samples,
(3) combined data with 100 samples (using a moving window over the data). The MSE increases when generalizing over data from
multiple users. When we used the same sample size (100) the MSE increased dramatically (around 4 fold). Even when we used a
20 times bigger training sets for the combined users’ data (corresponding to 100 samples from each agent), the MSE still increased
compared to the per user setup.

This demonstrates the importance of an agent learning from its own history. Simply generalizing over multiple agents’ history
actually degrades performance even with significantly more training data.
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Abstract
Reward engineering is the problem of expressing a target task for an agent in the form of rewards for a Markov decision process.
To be useful for learning, it is important that these encodings be robust to structural changes in the underlying domain; that is, the
specification remain unchanged for any domain in some target class. We identify problems that are difficult to express robustly via the
standard model of discounted rewards. In response, we examine the idea of decomposing a reward function into separate components,
each with its own discount factor. We describe a method for finding robust parameters through the concept of task engineering, which
additionally modifies the discount factors. We present a method for optimizing behavior in this setting and show that it could provide
a more robust language than standard approaches.
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1 Introduction

Software engineers are tasked with building programs that are robust to inputs. A sorting algorithm, for example, should work
regardless of the size of the array it is operating on. Similarly, the reward engineering principle states that one should design rewards
for reinforcement learning that are: general so the agent can operate in a dynamic environment, and allow the agent to be autonomous,
without the need for interference from the designer [1]. If the size of the state space doubles, for example, one should not need to
modify the rewards in order for the agent to still reach the goal.

Unfortunately, designing reliable reward functions is often difficult [2], particularly when there are multiple reward sources. For
example, unintuitive reward values in the Maze problem generate drastically different policies [3]; an agent learning to ride a bicycle
learned to ride in circles after receiving a positive reward for moving towards a goal [4]; and human generated rewards that were used
for shaping caused “positive circuits” to form [5]. Such sub-optimal loops that distract one from reaching their goal have even been
described in economic models of humans. We tend to over-indulge when there is an immediate reward and procrastinate when the
reward is delayed (I’ll quit smoking tomorrow; my diet can wait until after Thanksgiving, etc). If we were following the traditional
definition of reinforcement learning, where the task is described as maximizing the total expected reward, then chain-smoking would
be considered optimal behavior and so would over-eating. Thus, the reward engineer should have the freedom to determine which
behaviors are truly desired, and rewards should rather be thought of as a bridge for producing these desired behaviors. Additionally,
in order to be general, these reward functions should be designed well enough that they work across many perturbations of the
environment. However, if poorly generated reward functions cause problems in static environments, it is unlikely that they will be
able to generalize.

We have observed that rewards do not alone effect an agent’s behavior, but rather the rewards coupled with the discount factor [5, 6, 7].
We believe that the difficulty is not necessarily that there are multiple rewards, but that the discount factors are entangled. It is
impossible to discriminate the value of short term rewards from long term ones. We postulate then that we should also derive
multiple discount factors when there are multiple rewards. A lower discount factor on short term goals could allow the agent to go to
sub-goals, or to enjoy the benefits of shaping, without crippling its behavior.

We describe the approach of deriving robust rewards and discount factors as task engineering and make the following contributions: 1)
we formally describe the notion of task engineering 2) describe how to derive parameters that allow the learning algorithm to perform
well on a variety of instantiations of a task 3) derive an approach for using multiple discount factors with the learning algorithm Sarsa
and 4) show problems where this approach is more robust than the standard Sarsa model with a single discount factor.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple 〈S,A, P,R〉. The set S consists of the states in the environment, s ∈ S. The function
A returns the actions a ∈ A(s) that the agent can take in a state s ∈ S. The function R(s, a) is the reward given for taking action
a in state s, and the transition model P (s, a, s′) returns the probability of transitioning to state s′ after taking action a in state s [8].
The goal of an MDP planning algorithm is to find a policy π that maps states to actions in such a way that it maximizes the long-
term expected reward, that is, the value, of a state. The discount factor 0 ≤ γ ≤ 1 encodes how rewards retain their value over
time. An algorithm might seek to learn an action-value function which can be used for estimating the value of taking an action
in a particular state. One such model-free algorithm is known as Sarsa, which makes the following updates to state-action pairs:
Q(s, a) = Q(s, a) + α[R(s, a) + γQ(s′, a′)−Q(s, a)].

3 The Problem of Multiple Rewards and Single Discounts

Reward functions in reinforcement learning are traditionally described as defining an agent’s task [8]. This seems appropriate for
monolithic reward functions, where a single reward is often used to motivate the agent to go to some goal [2]. However, when there
are multiple rewards, it becomes less clear whether the reward function translates directly as the task. This distinction has often been
seen in the literature, where metrics other than cumulative reward are used to determine whether a policy was successful or not. In
particular, a learning algorithm might choose a policy that maximizes an intermediate reward rather than the reward at the goal. As
such, rewards should be viewed as an intermediate representation for encouraging correct behavior, rather than the actual task. Thus,
we follow terminology that distinguishes a task from the reward function [5]. We formally define what this concept means, and
include the role of the task engineer.

3.1 Formalities

Define a labeled MDP as a set of states, actions, labels, transitions, and a labeling function. A labeling function maps states to labels.
A reward mapping is a function that maps labels to scalar values. A set of labeled MDPs with the same label set is an MDP family.
Define a task τ as a predicate on a history H of labels l. The task objective τo is completed when the predicate becomes true. The
behavior parameters for a task, Θ(B), are used to modify the agent’s behavior, and include a reward mapping and discount factor. The
task parameters of an MDP family F , Θ(F ), represent the physics of the MDP. Each label receives a score representing how desirable

1

Paper T21 154



it is for the task objective. The task performance of an agent for some task instantiation Θ
(F )
f for an optimal policy generated by

some behavior parameter Θ
(B)
b can then be described as: τp(Θ

(B)
b ,Θ

(F )
f ) =

∑
l∈H score(l) That is, the task performance is the

total overall score the agent receives during its policy. We can compute the expected task performance E[τp] of Θ
(B)
b with respect

to Θ
(F )
f : E[τp] = 1

|F |
∑
θ
(F )
f

τp(Θ
(B)
b ,Θ

(F )
f ). Additionally, we define the task efficiency as how quickly the agent is able to solve

a task for some task instantiation Θ
(F )
f for an optimal policy generated by some behavior parameter Θ

(B)
b :τe(Θ(B),Θ(F )) = 1

|H| .

We can compute the expected task efficiency E[τe] of Θ
(B)
b with respect to Θ

(F )
f :E[τe] = 1

|F |
∑
θ
(F )
f

τe(Θ
(B)
b ,Θ

(F )
f ). The role of a

task engineer is to find a Θ
(B)
b that maximizes both the expected task performance and the expected task efficiency. Later, we will

describe an approach for finding these parameters.

3.2 On Robustness

Many types of MDP Families can be thought of as members of a broader class of MDPs, which we call Hallway problems. In such
tasks, the agent needs to get to a goal which is some amount of steps from the agent’s location. The further away the goal is, the
longer the hallway will be. The number of steps to the goal is directly effected by the task parameters, which might determine the
number of obstacles in the domain, action dynamics, the initialization of the agent’s location, or the location of the goal. In some
types of hallways, intermediate rewards might be picked up along the way to the goal. In many cases, these rewards are used to
encourage the agent’s behavior. However, depending on how far away the goal is, they can often lead to distractions that hinder the
agent from making progress. We have observed two types of hallways that might cause such distractions, which we will discuss
below. In both of these hallways, the task objective is to go to the goal, which is located at the end of a hallway of length L. The
behavior parameters that the task engineer can modify are the rewards and discount factors.

3.2.1 Positive Reward Hallways (PRHs)

In a Positive Reward Hallway (PRH), there are positive intermediate rewards, such as those used for sub-goals or reward shaping.
Such hallways might introduce positive loop behavior where the agent becomes tempted to repeatedly receive some positive reward [4,
9, 5].

Suppose we have such a hallway where some state A allows the agent to repeatedly receive an intermediate reward of RA and
a terminal state B allows the agent to receive a reward of RB . Suppose that RB is some positive constant C times RA, that is,
RB = CRA. Then if the agent is currently located in state A, in order for the agent to choose going to B over staying in A, the
following must be true:

∑∞
t=0RAγ

t < CRAγ
L−1. By rearranging and dividing out RA, we get:

1

1− γ < CγL−1. (1)

In order for this equation to be valid, i.e., for the agent to go to the goal in a large percentage of task instantiations we might need
to greatly increase the value of C, especially as L increases. Even then, the scaling factor might not be large enough to motivate the
agent. We cannot simply increase the value of γ to make the long-term value larger, because this will also increase the intermediate
reward’s value.

3.2.2 Negative Reward Hallways (NRHs)

In a Negative Reward Hallway (NRH), there are negative intermediate rewards, such as those used to inhibit undesirable behaviors. If
there is some probability “slipping” and exhibiting such a behavior, then paralyzing loops may be introduced where the agent chooses
to remain safe instead of risking taking a bad action.

Suppose we have such a hallway where some state P allows the agent to receive an intermediate reward of 0 and a terminal state Q
allows the agent to receive a reward of RQ. Suppose the agent receives a negative reward of RU every time it reaches an undesirable
state with label U . Assume that there is some expected value of U , E[U ]. This value is difficult to express because we do not know
how often the agent will visit U . However, we do know that it is dependent on the probability of slipping. Additionally, the value of
the discount factor directly effects E[U ]. If the agent is currently located in state P , in order for the agent to choose going to Q rather
than staying in P , the following must be true:

0 < E[U ] + γL−1RG. (2)

In order for this equation to be valid, the right-hand-side of the equation needs to be positive. However, as the probability of taking
undesirable actions increases, E[U ] will become more dominant. This problem can be remedied by making the value of RG very
positive, but as the length of the hallway increases, the value of G decreases, and so the agent will become more likely to want to stay
in state P . We might be tempted to decrease γ in order to decrease the expected value of U , but this approach would also decrease
the goal state’s value.
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(a) Task performance for single discount factor (b) Task performance for multiple discount factors

Figure 1: Here, the task objective is accomplished when the r.h.s. of the Equation 1 is greater than the l.h.s. We generated an MDP
Family of task parameters whose lengths ranged from 1 − 5000. We evaluated the Expected Task Performance for perturbed values
of the discount factor and scalar C. For multiple discount factors 1b, we set γ1 to 1 and perturbed γ2.

3.2.3 Extending to Multiple Discount Factors

In both of these hallway problems, the discount factor causes conflicts for the desired policy. If γ is large, then the long-term value
for states A and P will increase. If γ is small, then the value of state B will rapidly decrease. This becomes even more true as the
length of the hallway L increases. This problem is clearly shown in Figure 1a. We do not have experiments for the NRH because the
probability of hitting the wall is unknown, and so we cannot show how the discount factor will effect U ’s value. Still, intuitively, if
we decrease U ’s value by too much, then the agent might exhibit more undesirable behaviors, and have poor task performance.

Suppose we use a distinct discount factor for each reward function, say γ1 for the intermediate states and γ2 for the goal states. Notice
that now these state values will no longer be tied together. We can make γ1 < γ2, which will allow the intermediate state’s value
to be discounted more rapidly than the goal state’s value. We can appropriately treat the intermediate reward as a short term reward
without having any effect on the long-term goal’s value. Additionally, if we make γ2’s value very large, then the goal’s expected
value will no longer be as dependent on L. The effect of this is clearly shown in Figure 1b.

These examples suggest that by using multiple discount factors we can more robustly solve task parameter instantiations where the
behavior parameter instantiations might introduce distractions. By using multiple discount factors in such problems, we will be able
to decrease a distracting state’s long-term value without destroying the performance when the task parameters change.

4 Approach

We now show how to optimize behavior for such reward functions. We define a Multiple Reward Component MDP (MRC-MDP) as
a tuple 〈S,A, P,R〉, where S, A, and P are as before, but R is now defined as a vector of reward components, each with its own
discount factor. This problem was solved in prior work [10, 11], however, both of these solutions require one to have the transition
model, which may be infeasible. Therefore, we provide a method for using multiple discount factors with Sarsa.

We follow an approach where the Q-function is decomposed into N separate Q functions for each reward function [12]. We then
provide a distinct discount factor for each Q-function. That is,

Qi(s, a) = Qi + α[Ri(s, a) + γiQi(s
′, a′)−Qi(s, a)].

We can then take the overall sum of these components for a global Q function, which can be used for action selection. We call this
approach Decomposed Sarsa with Multiple Discount Factors, or DECS-MDF.

Because we are interested in engineering agents whose maximized reward leads to correct task performance, the role of the task
engineer is to find rewards and discount factors that produce this desired output. Even if we find behavior parameters that work for
a particular setting, these parameters might not work for a wide range of variations of the task parameters. Therefore, we follow
an approach that searches for parameters that do well in a sample of the possible members of the MDP family [13]. This work
exhaustively searches for rewards that yield high performance. However, brute force is computationally expensive. We extend upon
that work by using optimization and modifying the search parameters to also include multiple discount factors.

Searching for the parameters requires evaluating the parameters on their fitness, which is a value that is often used in optimization
problems such as Hill-Climbing and Simulated Annealing [3]. Typically, one only needs to plug a fitness function and a method
for choosing neighbors of the current parameters into these types of optimization problems. The steps for evaluating the fitness of
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the parameters are as follows: 1) Randomly sample a set of task parameters F from the Hallway MDP family 2) Plug the current
parameters Θ

(B)
b into the learning algorithm 3) Calculate the expected task performance E[τp] as the current fitness.

5 Related Work

As we have seen, additional rewards may introduce locally optimal policies that distract the agent from completing the task [4, 5, 9].
Such issues have been addressed by using potential-based shaping functions that maintain the desired behavior for the optimal
policy [9]. The idea of “positive loops” is similar to human’s tendencies to over-indulge or under-indulge. Thus, economists often
weight future and immediate rewards separately in economic models [14, 15]. Many works have shown that the choice of the
discount factor effects the agent’s policy [5, 7]. It has even been shown that poorly chosen discount factors might be the cause of
loops in human generated reward [5]. Other works have addressed solving MDPs with multiple rewards and discount factors [10, 11].
However, these approaches require a transition model.

There are some works that evaluate the robustness of reinforcement learning algorithms. Pareto fronts have been used for evaluating
multi-objective functions [16]. In another approach, reward functions that receive high fitness in a variety of MDPSs are exhaustively
searched for, where each state in a history of trials receives a score for reaching some criteria [13]. Our approach for optimizing
behavior parameters expanded upon this work.

6 Conclusion

We have shown that multiple discount factors might provide a robust language for solving tasks where multiple rewards might act as
a bridge for guiding the agent to the goal. We provided a method for solving such problems, and showed why it could potentially be
robust to perturbations of the task. We hope to extend these ideas to larger efforts in reward engineering.
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Abstract

We present a new data analysis framework, Multi-Objective Markov Decision Processes for Decision Support, for devel-
oping sequential decision support systems. The framework extends the Multi-Objective Markov Decision Process with
the ability to provide support that is tailored to different decision-makers with different preferences about which objec-
tives are most important to them. We present an extension of fitted-Q iteration for multiple objectives that can compute
recommended actions in this context; in doing so we identify and address several conceptual and computational chal-
lenges. Finally, we demonstrate how our model could be applied to provide decision support for choosing treatments
for schizophrenia using data from the Clinical Antipsychotic Trials of Intervention Effectiveness.
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1 Introduction

Markov Decision Processes (MDPs) provide a framework for reasoning about the actions of an autonomous agent in
an environment as it strives to achieve long-term success through non-myopic decision making. Operating within this
framework, reinforcement learning (RL) methods for finding optimal actions in MDPs hold great promise for using lon-
gitudinal data to help humans make better-informed decisions. Indeed, “batch reinforcement learning” methods, e.g.
fitted Q-learning [Ernst et al., 2005] are already being used to aid decision-making in diverse areas including medicine,
ecology, intelligent tutoring systems, and water reservoir control. Although headway has been made in these appli-
cation areas, progress is hampered by the fact that many sequential decision support problems are not well-modelled
by standard Markov Decision Processes. One reason for this is that in most cases, human action selection is driven by
multiple competing objectives. In other words, the quality of a policyis not well-captured by a single scalar “reward”
or “value.” Multi-Objective Markov Decision Processes (MOMDPs) [Roijers et al., 2013] accommodate multiple objec-
tives by allowing vector-valued rewards. “Solving” a MOMDP entails finding a policy or policies that are optimal for a
particular solution concept which is essentially a partial order on policies. The set of policies that are maximal according
to the partial order are considered “optimal” and are indistinguishable according to the chosen solution concept. The
widely-used Pareto optimality [Ehrgott, 2005] is one example of a solution concept.

We present a new framework, Multi-Objective Markov Decision Processes for Decision Support (MOMDP-DS), for devel-
oping decision support systems. Our framework leads us to identify and relax two assumptions inherent in the standard
MOMDP solution concepts when used for decision support: i) The assumption that a unique action specified by a policy
will be carried out by the decision-maker. ii) The assumption that the preferences of the decision-maker do not change
over time. Rather than force the decision maker to select a single policy to follow a priori, we prefer to allow her or him
to revisit action selection at each decision point in light of new information, both about state and about their own prefer-
ences and priorities regarding different outcomes of interest. We can actually accommodate changes in preference over
time while still making optimal decisions according to our new solution concepts by introducing the non-deterministic
multi-objective fitted-Q algorithm. This allows us to perform fitted-Q backups using multiple reward functions. We are
particularly motivated by clinical decision-making; therefore we demonstrate the use of our algorithm using data from
the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE).

2 Background

Our new approach extends Multi-Objective Markov Decision Processes (MOMDPs) with the goal of providing data-driven
decision support. To do so, as an intermediate step we learn a non-deterministic policy (NDP) that encodes the set of all
non-dominated policies. In this section we review the existing literature on MOMDPs and NDPs.

The most basic definition of a Markov Decision Process is as a 4-tuple 〈S,A, P,R〉 where S is a set of states, A is a set of
actions, P (s, a, s′) = Pr(s′|s, a) gives the probability of a state transition given action and current state, and R(s, a) gives
the immediate reward obtained in state s when taking action a. The most common goal of “solving” an MDP is to find
a policy π : S → A that maximizes V π(s) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s] pointwise for all states. Here, Eπ indicates that
the expectation is taken assuming the state-action trajectories are obtained by following policy π, and 0 < γ < 1.

Like previous work by Lizotte et al. [2012] and by many others, we examine the setting where the typical definition of an
MDP is augmented by assuming aD-dimensional reward vector R(st, at) is observed at each timestep. We define a finite-
horizon MOMDP with finite time horizon T as a tuple of state spaces St, action spaces At, state transition functions Pt :
St×At → P(St+1) where P(St+1) is the space of probability measures on St+1, and reward functions Rt : St×At → RD for
t ∈ {1, ..., T}. In keeping with the Markov assumption, both Rt and Pt depend only on the current state and action. In this
work we assume finite action sets, but we do not assume that state spaces are finite. We define a policy π as a sequence of
functions πt for t ∈ {1, ..., T}, where πt : St → At. The value of a policy π is given by Vπ(s) = Eπ[

∑T
t=1 R

t(st, at)|s1 = s]
which is the expected sum of (vector-valued) rewards we achieve by following policy π. We base our method on assessing
actions using a partial order on their vector of Q-values. Perhaps the most common partial order on vectors comes from
the notion of Pareto-optimality [Ehrgott, 2005]. For example, an action a is Pareto-optimal at a state sT if for all reward
dimensions d = 1, . . . , D and for all actions a′ we have QT [d](sT , a) ≥ QT [d](sT , a

′). We will show that for t < T , the
problem of deciding which actions are optimal is more complex, but we will still leverage the idea of a partial order.

Milani Fard and Pineau [2011] describe non-deterministic policies for MDPs with a finite state space and a single reward
function. Given an MDP with state space S and an action set A, an NDP, Π, is a map from the state space to the set 2A \∅.
One can view the NDP as a compact way of expressing a set of policies that might be executed. Suppose that #A = |Π(s)|
is the number of actions provided by the NDP Π at all states. Then the number of policies that are consistent with Π, that
is, the policies for which π(s) ∈ Π(s), is #A|S|. So the NDP Π is a compact encoding of an exponential number of policies.
We will make use of this property to encode Pareto-optimal policies.
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3 Non-deterministic Fitted-Q for Multiple Objectives (NDFQMO)

Our non-deterministic fitted-Q algorithm for multiple objectives uses finite-horizon, batch data. We present a version
that uses linear value function approximation because this model is commonly used by statisticians working in clinical
decision support [Shortreed et al., 2011] and because available data often contain continuous-valued patient features
(e.g., symptom and side-effect levels, laboratory values, etc.) and outcomes (e.g., symptom scores, body mass index). It
is a flexible model because we will not restrict the state features one might use. For learning, we assume a batch of n data
trajectories of the form si1, a

i
1, r

i
1, s

i
2, a

i
2, r

i
2, ..., s

i
T , a

i
T , r

i
T , for i = 1, ..., n and rit = (rit[1], r

i
t[2], ..., r

i
t[D])

ᵀ for t = 1, ..., T .

At time T , we define the approximate Q-function as the linear least squares fit

for d = 1, . . . , D Q̂T [d](sT , aT ) = φT (sT , aT )
ᵀ
ŵT [d], ŵT [d] = arg min

w

n∑

i=1

(
φT (siT , a

i
T )

ᵀ
w − riT [d]

)2
(1)

giving the estimated vector-valued expected reward function Q̂T (sT , aT ) = (Q̂T [1](sT , aT ), ..., Q̂T [D](sT , aT ))ᵀ. Here,
φT (sT , aT ) is a feature vector of state and action. Having obtained the Q̂T from (1), we construct an NDP ΠT that will
give, for each state, the actions one might take at the last time point. For each state sT at the last time point, each action
aT is associated with a unique vector-valued estimated expected reward given by Q̂T (sT , aT ). Thus, we decide which
among these vectors is a desirable outcome, and place their corresponding actions into ΠT (s). For now we let ΠT (sT ) be
the set of Pareto-optimal (i.e., non-dominated) actions for state sT ; however, we could use other definitions for ΠT (sT ).

For t < T , it is only possible to define the expected return of taking an action in a given state if we first decide which
policy will be used to choose future actions. In standard fitted-Q, for example, one assumes that the future policy is given by
π(s) = arg maxa Q̂(s, a). In the non-deterministic setting, we may know that the future policy belongs to some set, but
we do not know which policy in the set will be chosen; therefore, we explicitly include the dependence of Q̂t[d] on the
choice of future policy:

Q̂t(st, at;πt+1, ..., πT ) = (Q̂t[1](st, at;πt+1, ..., πT ), ..., Q̂t[D](st, at;πt+1, ..., πT ))ᵀ

where
for d = 1, . . . , D Q̂t[d](st, at;πt+1, ..., πT ) = φt(st, at)

ᵀ
ŵt[d]πt+1,...,πT

,

and

ŵt[d]πt+1,...,πT
= arg min

w

n∑

i=1

(
φt(s

i
t, a

i
t)

ᵀ
w − (rit + Q̂t+1[d](s

i
t+1, πt+1(sit+1);πt+2, ..., πT ))

)2
.

Figure 1 illustrates what a Q̂T−1 function might look like for a fixed state sT−1,D = 2 basis rewards, and twenty different
potential future policies πT . For a fixed value of sT−1, each choice of aT−1 and πT generates a vector-valued estimated
Q, Q̂T−1(sT−1, aT−1) = (Q̂T−1[1](sT−1, aT−1;πT ), Q̂T−1[2](sT−1, aT−1;πT ))ᵀ, which we can plot as a point in the plane.
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Figure 1: A vector-valued Q-function for a fixed
state sT−1. Here, aT−1 ∈ A = {+,4,#,×,♦}, and
πT ∈ P , a collection of 20 possible future policies.

We say that such a point represents an expected return that is achiev-
able by taking some action in the current state and following it with
a fixed sequence of policies until we reach the last time point.

LetQt(at, st) be the set of all expected returns achievable from st by
taking action at and then following some future policy. Given the
Qt(at, st) for each at, our next task is to use them to define Πt(st)
for all st. Although QT (sT , aT ) are singletons, for t < T this is not
the case, and we must take this into account when defining Πt(st).
We present two definitions for Πt(st) based on a strict partial order
≺. (For example ≺may be the Pareto partial order.)

Π∀(st) = {a : ∀Q̂ ∈ Qt(st, a) 6 ∃a′ 6= a, Q̂′ ∈ Qt(st, a′) s.t. Q̂ ≺ Q̂′}
Π∃(st) = {a : ∃Q̂ ∈ Qt(st, a) 6 ∃a′ 6= a, Q̂′ ∈ Qt(st, a′) s.t. Q̂ ≺ Q̂′}.

Under Π∀, action a is included if for all policies we might follow af-
ter choosing a, no other choice of current action and future policy is
preferable. Π∀ is appealing in cases where we wish to guard against
a naı̈ve decision maker choosing poor sequences of future actions.
For theQT−1 shown in Figure 1, we would have Π∀(sT−1) = {+,♦}.
The4 action is obviously eliminated because any + point dominates every single4 point. The # and× actions eliminate
each other: There are # points that are dominated by × points, and × points that are dominated by # points. Note that
therefore, Π∀(st) may be empty: if our example only contained the × and # actions, we would have Π∀(sT−1) = ∅. In
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practice we find that Π∀ can be very restrictive; we therefore present Π∃ as an alternative. Under Π∃, action a is included
if there is at least one fixed future policy for which a is not dominated by a value achievable by another (a′, Q̂′) pair.
Note that Π∃ ⊇ Π∀, and that because the relation Q̂ ≺ Q̂′ is a partial order on a finite set, there must exist at least one
maximal element; therefore Π∃(st) 6= ∅. In the Figure 1 example, we have Π∃(sT−1) = {+,♦,×}; note that # is not in-
cluded because there is always another action that can dominate it if we choose an appropriate future policy. In order to
provide increased choice and to ensure we do not generate NDPs with empty action sets, we will use Π∃ in our examples.
However, because our goal is decision support, depending on the application area we may want to present both Π∃ and
Π∀ to a decision maker, or perhaps their set-difference, to give a more complete picture of action consequences.

The next step is to formQt (our set of candidate policies for the current time point) from Πt (our NDP.) We only consider
policies that i) are consistent with the learned NDP, and ii) are representable using the approximation space chosen for Q̂.
We define these notions of consistency and representability and show how the set of consistent and representable policies
can be efficiently enumerated using mixed integer linear programming. A policy πt is consistent with an NDP Πt and
we write πt < Πt if and only if πt(st) ∈ Πt(st) ∀st ∈ S . We denote the set of all policies consistent with Πt by C(Πt).
When constructing Qt, we will only consider future policies that are consistent with the NDPs we have already learned
for later time points. This is analogous to fitted-Q in the scalar reward setting, where we estimate the current Q function
assuming we will follow the greedy policy of the optimalQ function at later time points. In our setting, there are likely to
be multiple policies whose values are considered “optimal.” The restriction to consistent policies is not an approximation
in the sense that we are only eliminating policies that we assume would never be executed—this is analogous to scalar
fitted-Q learning where the only future policy considered is the learned optimal policy. Although we cannot reduce the
set of possible future policies to a unique choice as we can for scalar fitted-Q, we can still make significant computational
savings. Note that |C(Πt)| =

∏
st∈Sn |Πt(st)|where Sn contains the observed states in our dataset. Because |Πt(st)| ≤ |A|,

we have |C(Πt)| ≤ |A|n. If Πt screens out enough actions from enough observed states, restriction to consistent policies
can result in a much smaller Qt. Unfortunately, in the worst case where ∀st Πt(st) = At, we have |C(Πt)| = |A|n, and
if for some fraction η of the n trajectories (0 < η ≤ 1) we have |Πt(st)| ≥ 2, then we have |C(Πt)| ∈ Ω(2n). Therefore in
many interesting cases, including even just the consistent future policies in Qt is computationally intractable.

We therefore impose a further restriction on policies inQt that does not eliminate any policies that are optimal according
to some scalar reward signal. In scalar fitted-Q, the learned optimal policy is given by arg maxaQ(s, a). If the learned
Q-functions are linear in some feature space, then the learned optimal policy can be represented by a collection of linear
separators that divide feature space into regions where different actions are chosen. This is true for any scalar reward
signal. Therefore, in the scalar reward case, any future policy that cannot be represented in this way is never considered
when computing Q̂ for earlier timepoints, no matter what the reward function is. We therefore will “prune away” these
consistent but un-representable policies in order to reduce the size of Qt by introducing policy φ-consistency: Given a
feature map φ : S ×A → Rp, we say a policy πt is φ-consistent with a non-deterministic policy Πt over some dataset with
n trajectories, and we write πt <φ Πt, iff πt(sit) ∈ Πt(s

i
t) ∀i ∈ 1, ..., n and ∃w∀sit, πt(sit) = arg maxa φ(st, a)ᵀw. We denote

the set of all policies that are φ-consistent with Πt by Cφ(Πt). We have two main results about the effect of this pruning,
which are given in abbreviated form below without proof. In the following, a scalarization function is simply a function
that consumes a vector and produces a scalar, and is non-decreasing in every input.
Theorem 1. Given a linear space of Q-functions based on features φ, and scalarization function ρ, there exists a feature-consistent
policy πφ for which πφ(s) = arg maxa Q̂(s, a) for all states, where Q̂ is learned from rewards given by applying ρ to the rit.
Theorem 2. Given a dataset of size n, feature map φ, and action setA, there are O(ndim(φ) · |A|2 dim(φ)) feature-consistent policies.

Theorem 1 implies that for any partial order we care about, for any policy π there is a φ-consistent policy that is estimated
to be at least as good. Theorem 2 implies that for fixed |A| and dim(φ) there are only polynomially many φ-consistent
future policies, rather than a potentially exponential number of consistent policies as a function of n. Therefore, by
considering only φ-consistent future policies, we can ensure that the size of QT−1 is polynomial in n.

Algorithm 1 NDFQMO

Learn Q̂T = (Q̂T [1], ..., Q̂T [D]), place in QT
for t = T − 1, T − 2, ..., 1 do

for all sit in the data do
Generate Π∃t (sit) using Qt+1

for all πt ∈ Cφ(Π∃t ) do
for all Q̂t+1 ∈ Qt+1 do

Learn (Q̂[1]t(·, ·, πt, ...), ..., Q̂[D]t(·, ·, πt, ...)) using Q̂t+1

Place (Q̂[1]t(·, ·, πt, ...), ..., Q̂[D]t(·, ·, πt, ...)) in Qt

We express the set Cφ(Π) using a Mixed Integer Pro-
gram (MIP). To formulate the constraints describing
Cφ(Π), we use indicator constraints. Each indicator
constraint is associated with a Boolean variable, and
is only enforced when that variable is true. We in-
troduce n× |A| indicator variables αi,j that indicate
whether π(si) = j or not, adding constraints to en-
sure that, for each example in our dataset, exactly
one action indicator variable is on. We then add in-
dicator constraints to enforce linear separability of
the solutions with a margin condition to avoid de-
generacy. The resulting policies are recovered from the αi,j . Algorithm 1 gives an overview of our non-deterministic
fitted-Q algorithm for multiple objectives.
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4 Empirical Example: CATIE
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Figure 2: NDP produced by NDFQMO

We illustrate our approach using data from the Clinical
Antipsychotic Trials of Intervention Effectiveness (CATIE)
study [Stroup, T. S. et al, 2003]. CATIE was an 18-month
study of n = 1460 patients with two main phases of treat-
ment. Most patients began in “Phase 1,” and were ran-
domized to one of five treatmentswith equal probability:
olanzapine♦, risperidone×, quetiapine#, ziprasidone+,
or perphenazine4. Over time, patients could discontinue
their Phase 1 treatment and begin “Phase 2” on a new
treatment if needed. Batch RL has been used to analyze
this study using a single basis reward [Shortreed et al.,
2011] and convex combinations of basis rewards [Lizotte
et al., 2012]. We present the treatment recommendations
of a non-deterministic fitted-Q analysis using two basis
rewards that measure symptom relief and side-effects, the
the Positive and Negative Syndrome Scale (PANSS) which
measures symptoms, and Body Mass Index (BMI), a mea-
sure of obesity. PANSS and BMI are transformed so that
higher is better. Our features are the patient’s most recent
PANSS and most recent BMI, and baseline characteristics.

Figure 2 shows the NDP learned for Phase 1. Each point
corresponds to one value of s1 in our dataset, and at each
point is placed a marker for each action recommended
by the learned NDP. (Figure 1 is in fact a plot of the Q-
function for Phase 1 where (PANSS,BMI) = (50.1, 48.6),
limited to aQ1 of size 20 for clarity.) In this NDP, the mean
number of choices per state is 3.94, and 82% of states have had one or more actions eliminated while still giving recom-
mendations that allow a decision-maker to produce a Pareto-optimal expected outcome. In comparison, if we eliminate
actions using the approach by Lizotte et al. [2012] based on convex reward combinations (not shown) the mean number
of choices per state is 2.23, and 100% of states had one or more actions eliminated; these also lead to Pareto-optimal
expected outcomes but at the cost of eliminating much more choice. Using φ-consistency to reduce computation was
critical; in the Phase 2 NDP there are over 10124 consistent policies but only 1311 φ-consistent policies. Finding these took
less than one minute on an Intel Core i7 at 3.4 GHz using CPLEX.

Incorporating uncertainty will be important moving forward. For example, if joint prediction intervals for the returns
of an action include a Pareto-optimal point, we could include it in Π even if the Q-value for that action is dominated.
This definition of Π(st) could be incorporated into the framework we have described. Our overarching goal is to expand
the toolbox of data analysts by developing new methods for producing decision support systems in very challenging
settings. To have maximum impact, decision support must take into account sequential aspects of the problem at hand
and at the same time acknowledge the fact that different decision makers have different preferences. Working toward
this goal, we have presented a novel approach for learning non-deterministic policies for MDPs with multiple objectives.
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Abstract

People overweight extreme events in decision-making and overestimate their frequency. Previous theoretical work has
shown that this apparently irrational bias could result from utility-weighted sampling–a decision mechanism that makes
rational use of limited computational resources (Lieder, Hsu, & Griffiths, 2014). Here, we show that utility-weighted
sampling can emerge from a neurally plausible associative learning mechanism. Our model explains the over-weighting
of extreme outcomes in repeated decisions from experience (Ludvig, Madan, & Spetch, 2014), as well as the overestima-
tion of their frequency and the underlying memory biases (Madan, Ludvig, & Spetch, 2014). Our results support the
conclusion that utility drives probability-weighting by biasing the neural simulation of potential consequences towards
extreme values.
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1 Introduction

People overweight extreme events in decision-making and overestimate their frequency (Lichtenstein, Slovic, Fischhoff,
Layman, & Combs, 1978; Ludvig et al., 2014; Madan et al., 2014). The cognitive bias to overweight extreme events
appears irrational, because it violates expected utility theory. Yet, expected utility theory may not be the right metric of
rationality for agents with finite computational resources, because it is computationally intractable. Recent behavioral
and neural evidence suggests that the brain approximates the solutions to intractable inference and decision problems
by Monte-Carlo sampling (Fiser, Berkes, Orbán, & Lengyel, 2010; Vul, Goodman, Griffiths, & Tenenbaum, 2014). This
suggests that the brain might approximate expected utilities by an efficient sampling algorithm such as importance
sampling (Hammersley & Handscomb, 1964; Geweke, 1989). Every approximation has to trade-off two sources of error:
bias and variance. The optimal bias-variance tradeoff of importance sampling overweights extreme events in a manner
that resembles people’s biases in frequency estimation and risky choice (Lieder et al., 2014). Utility-weighted sampling
is a tractable and psychologically plausible approximation to optimal importance sampling that simulates s potential
outcomes o(a)1 , · · · , o(a)s of an action a with a relative frequency q proportional to the product of their probability p(o|a)
and the absolute value of their utility |u(o)|:

q(o|a) ∝ p(o|a) · |u(o)|. (1)

The utilities of the simulated outcomes are then combined into an estimate of the expected utility

Û (a) =
1

∑s
j=1 1/|u(ô

(a)
j )|

s∑

j=1

sgn
(
u(ô

(a)
j )
)
, (2)

where sgn is +1 for positive and −1 for negative arguments.

We have previously shown that utility-weighted sampling explains the overweighting of extreme events in decisions
from description (Lieder et al., 2014). Ludvig et al. (2014) and Madan et al. (2014) demonstrated that in decisions from
experience people overweight the more extreme of two outcomes even when both occur with a relative frequency of
50%. These findings speak to utility-weighted sampling and rule out the alternative interpretation that extreme events
are over-weighted only because they are rare (Zhang & Maloney, 2012). Here we show that utility-weighted sampling
can arise from reward-modulated associative learning during repeated decisions from experience and demonstrate that
it is sufficient to explain the findings of Ludvig et al. (2014) and Madan et al. (2014).

2 Reward-modulated associative learning leads to utility-weighted sampling

Utility-weighted sampling can be implemented using a stochastic winner-take-all network (c.f. Nessler, Pfeiffer, Buesing,
& Maass, 2013) whose units represent potential outcomes o. The network’s inputs represent the alternatives a of the
choice and their weights wa,o encode the strength of the associations between the alternatives and the outcomes. These
stimulus-reward associations therefore determine the relative frequency with which the network simulates each outcome
for each alternative. In this section we propose a learning rule for the weights wa,o that tunes the network to simulate
outcomes according to utility-weighted sampling (Equation 1).

Choosing an alternative a and receiving a rewarding outcome o reinforces their associationwa,o. The association strength-
ens more the more surprising the outcome is (Courville, Daw, & Touretzky, 2006). Our model captures this effect by
updates that are proportional to the absolute value of the reward prediction error PE(o) as in the successful Pearce-Hall
model of classical conditioning (Pearce & Hall, 1980):

wt+1(a, o) =

{
(1− γ) · (wt(a, o) + α · |PE(o)|) if A(t) = a and O(t) = o

(1− γ) · wt(a, o) if A(t) = a and O(t) 6= o
, (3)

where A(t) and O(t) are the chosen alternative and the outcome in trial t, α is the learning rate, and γ is the forgetting
rate. The reward prediction error is the difference between the experienced reward r(o) and reward expectancy r̄:

PE(o) = r(ot)− r̄t. (4)

We model the brain’s representation of rewards r(o) according to efficient coding Summerfield and Tsetsos (2015):

r(o) =
o

omax
t − omin

t

+ ε, ε ∼ N (0, σ2
ε) (5)

where ε represents neural noise, and omax
t and omin

t track the highest and the lowest received reward and are initialized
by 0 and 1 respectively. We assume that the reward expectancy is formed by temporal difference learning:

r̄t = r̄t−1 + η · (rt − r̄t−1), (6)
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where η is the temporal-difference learning rate and the initial reward expectancy r̄0 is a free parameter. We assume that
the initial association strengths are zero. This concludes the learning part of our model. To model decision-making we
assume that the rate at which units representing alternative a activate units representing outcome o is proportional to
their connection strength:

P (Ô(a) = o) ∝ wa,o. (7)

Since the learning rule (Equation 3) increases the weight wa,o with probability p(o|a) by an increment proportional to
|PE(o)| the normalized weight wa,o/

∑n
o=1 wa,o which determines the probability that outcome owill be simulated (Equation

7) converges to p(o|a) · |PE(o)|. Furthermore, the reward prediction error PE(o) can be interpreted as a utility function for
outcomes whose value is relative:

u(o) = PE(o) =
o− ō

omax − omin + ε, ε ∼ N (0, σ2
ε). (8)

Therefore the network gradually learns to perform utility-weighted sampling (Equation 1). The simulated outcomes are
then read out by a decision network that chooses the alternative with the highest value of the utility estimate defined
in Equation 2. Thus, after sufficient learning the simulation network and the decision network jointly perform utility-
weighted sampling. The above equations are meant as an abstract specification of network properties rather than the
definition of a concrete neural network, but they suggest that the brain can learn to perform utility-weighted sampling.
In the following we will refer to this model as utility-weighted learning (UWL).

3 Utility-weighted sampling predicts overweighting of extreme events in decisions from
experience

To test whether our model can explain people’s risk preferences in decisions from experience and how they change with
learning we fitted our model to the block-by-block choice probabilities in the four experiments by Ludvig et al. (2014). In
each experiment people make a series of binary choices. For instance, Experiment 1 comprised 5 blocks with 48 choices
each. There were a total of four options: a sure gain of +20 points, a sure loss of −20 points, a risky gain offering a
50/50 chance of +40 or 0, and a risky loss offering a 50/50 chance of 0 or −40 points. In most trials participants either
chose between the risky and the sure gain (gain trials) or between the risky and the sure loss (loss trials). After each
choice subjects were shown the number of points earned, and they received no additional information about the options.
Experiments 2-4 used different outcomes but were otherwise similar.

To account for people’s unsystematic errors due to inattention to the task, we extended the model by assuming that
people choose randomly with probability prandom and use utility-weighted sampling otherwise. The parameter estimates
were s = 1 samples, learning rate α = 1, forgetting rate γ = 0.375, noise standard deviation σε = 0.1, initial reward
expectancy r̄0 = 3, TD learning rate η = 0.05, probability of random choice prandom = 0.64. We found that utility-
weighted learning captures several qualitative properties of how people’s risk preferences changes with experience: Our
simulations of Experiments 1-2 captured that people gradually become more risk-averse on loss trials but more risk-
seeking on gain trials (Figure 1A). Our simulations of Experiment 3 captured that this effect is reduced when gains and
losses are nonextreme in the context in which they occur (Figure 1B), and the simulation of Experiment 4 captured that
more experience makes people more risk-seeking when the high outcome is extreme, but more risk-averse when the low
outcome is extreme, even if all outcomes are gains or all outcomes are losses (Figure 1C). According to utility-weighted
learning the determinant of risk-seeking is that the high outcome is farther away from the learned reward expectancy
than the low outcome. The reward expectancy tracks to average across all recent outcomes. Thus, UWL predicts risk
seeking when the high outcome is farther away from the average outcome than the low outcome.

Madan et al. (2014) reproduced Experiment 1 from Ludvig et al. (2014) with added memory tests after the choice trials.
In addition, Madan et al. (2014) conducted a second experiment in which all outcomes were shifted by +60 points. Since
both experiments added a performance-dependent financial bonus, we fitted Madan et al.’s data separately from those
of Ludvig, et al. (2014). We modeled people’s frequency estimates according to utility-weighted sampling and their
answer to the memory recall question by the outcome that occurred most frequently in the decision maker’s mental
simulations; if two or more outcomes occurred equally frequently one of them was chosen at random. The maximum
likelihood parameter estimates indicated increased accuracy motivation: more simulations (s = 2), faster learning (α =
9), and slower forgetting (γ = 0). The estimated standard deviation of the noise was σε = 0.1, the estimated initial
reward expectancy r̄(0) was 7, the estimated rate at which the reward expectancy is updated was 0.5, and the estimated
probability of random choice was 0. With these parameters our model captured people’s memory biases (see Figure
2) and their relationship with risk seeking: Even though the risky choice generated the moderate outcome (0 points)
and the extreme outcome (±40 points) equally often, for most people the extreme outcome came to mind first (Figure
2B), and their frequency estimates were significantly higher for the extreme loss than for the moderate outcome (Figure
2A). This was not the case for the high gain (+40), because according to the parameter estimates participants entered the
experiment with the expectation that outcomes would average 560 points.

2

Paper T28 165



A B C

Block Number
1 1.5 2 2.5 3 3.5 4 4.5 5

R
is

k
y
 C

h
o

ic
e

 i
n

 %

35

40

45

50

55

60
Ludvig et al. (2014), Experiments 1-2

Gain Trials, People
Gain Trials, UWS
Loss Trials, People
Loss Trials, UWS

Block Number
1 2 3 4 5

p
ri
s
k
y

g
a

in
s
-p

ri
s
k
y

lo
s
s
e

s
 %

-15

-10

-5

0

5

10

15

20

25
Ludvig et al. (2014), Exp. 3

Extremes, People
Extremes, UWS
Nonextreme, People
Nonextreme, UWS

Block Number
1 1.5 2 2.5 3 3.5 4 4.5 5

R
is

k
y
 C

h
o

ic
e

 i
n

 %

30

35

40

45

50

55

60

65
Ludvig et al. (2014), Experiment 4

HX Trials, People
LX Trials, People
HX Trials, UWS
LX Trials, UWS

Figure 1: UWL fit to block-by-block risky choice frequency in Experiments 1-4 by Ludvig et al. (2014).
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Figure 2: UWL predicts the biased memory recall and frequency estimates observed by Madan et al. (2014). Error bars
denote 95% confidence intervals. A: Difference between estimated frequencies of extreme versus moderate outcomes. B:
Proportion of people who recalled the extreme outcome first minus proportion who recalled the moderate one first.

In addition, our model correctly predicted that people who recalled the extreme gain first were more risk seeking on gain
trials than people who remembered the moderate outcome first (56.32± 0.24% vs. 50.83± 0.26% risky choices) whereas
people who remembered the extreme loss first were less risk seeking on loss trials than people who remembered the
moderate outcome first (31.83% ± 0.34% vs. 33.67 ± 0.34% risky choices). The simulated frequency estimates were
significantly correlated with risk seeking: The higher the estimated frequency of the extreme loss the less risk seeking on
loss trials (r = −0.4419, p < 10−15). The higher the estimated frequency of the extreme gain the more risk seeking on gain
trials (r = 0.23,p < 10−15). Utility-weighted learning also captured that people were more risk seeking when the most
recent risky choice in the same context yielded the good outcome than when it yielded the bad outcome: For gain trials
UWL predicted 8.6% higher risk seeking after receiving the high gain (+40) than after winning nothing on the previous
risky gain trial. Conversely, UWL predicted 6.0% less risk seeking following the large loss (-40) compared to no loss on
the previous risky loss trial. Finally, our model captured that all qualitative effects were invariant to adding 60 points to
all outcomes so that the same qualitative effects occurred in Experiment 2.

4 Discussion

We have shown that utility-weighted sampling can emerge from reward-modulated associative learning during repeated
decisions from experience. Our learning rule assumes that synaptic plasticity is modulated by the absolute value of the
reward prediction error (Equation 3). Recent work has discovered a neural correlate of the absolute reward prediction
error in the basolateral amygdala (Roesch, Esber, Li, Daw, & Schoenbaum, 2012). This suggests that the proposed learning
mechanism could be implemented by neuromodulation of synaptic plasticity in the basolateral amygdala or downstream
regions (Dayan, Kakade, & Montague, 2000; McGaugh, McIntyre, & Power, 2002). Our simulation results demonstrate
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that utility-weighted sampling is a viable model of decisions from experience. Contrary to the predictions of prospect
theory (Kahneman & Tversky, 1979) people over-weight extreme events regardless of their probability (Ludvig et al.,
2014). Our model explains this anomaly and provides a quantitative, mechanistic foundation for the extreme-outcome rule
(Madan et al., 2014) according to which extreme events come to mind first and consequently bias our decisions. Future
work will test our model against alternative models of repeated decisions from experience.

The sampling mechanism we are proposing for decisions from experience is slightly different from the one we proposed
for decisions from description (Lieder et al., 2014), but this merely reflects the difference in how information is presented
in these two paradigms. Future work will evaluate utility-weighted sampling against alternative models on the Technion
choice prediction tournament (Erev et al., 2010). Its mechanistic nature allows our model make the following predictions:

1. The rate of stimulus-reward learning is proportional to the extremity of the reward.
2. Incentivising people to consider many possible outcomes should reduce the effect of extreme events, whereas

time pressure and cognitive load enhance it.
3. The probability-weighting function (Tversky & Kahneman, 1992) depends on the ratio of the outcomes’ utilities.
4. Individuals with high reward and loss sensitivity are more susceptible to overestimate extreme events.

Taken together our previous and present work on utility-weighted sampling illustrate how resource-rational analysis
(Griffiths, Lieder, & Goodman, 2015) can be used to connect the computational level of analysis to the algorithmic and
the implementation level (Marr, 1982).
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Abstract

The focus of this work is to develop a planner for high-speed navigation in unknown environments, for instance locating
a specified goal in an unknown building in minimum time or flying as fast as possible through an unmapped forest. We
model this problem as a POMDP and discuss why it is so difficult even under the assumption of noiseless dynamics and
observations. We then describe our method of predicting probabilities of collision as a way to approximate the POMDP
solution. We employ a Bayesian non-parametric learning algorithm to predict probabilities of collision associated with
different planning scenarios, and select trajectories in a receding-horizon fashion that minimize cost in expectation with
respect to those probabilities. We also describe the training procedure for our learning algorithm and draw the similar-
ities between our approach and batch, model-based reinforcement learning. We show two principal results. First, we
show that by using a learned model of collision probability, our robot can navigate significantly faster in certain envi-
ronments than a robot that enforces absolute safety guarantees, provided that it has access to training data from similar
environments. Second, leveraging the Bayesian nature of our learning algorithm, we show that in situations where the
robot does not have any relevant training data to draw upon, it seamlessly and automatically reverts to a prior estimate
of collision probability that keeps it safe.

Keywords: autonomous navigation, unknown environment, Bayesian non-
parametric learning, batch model-based reinforcement learning,
POMDP
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1 Introduction

s

s1

a

Figure 1: The set of actions a0 for
a car in state s0 is shown in an ex-
ample planning scenario. The goal
(blue) is located in an unobserved
portion of the map (gray).

Mobile robots and autonomous vehicles offer solutions to a wide range of practical
problems, including information gathering, industrial fabrication and assembly,
home or workplace service, and many more. In each one of these cases, a robot
must move about in a space that may be previously unmapped, or a prior map
may be out of date due to rearrangement of objects. In either case, the level of prior
map knowledge may not be sufficient to plan high-speed collision-free trajectories.
Still, we would like robots to move quickly so that they can complete tasks in
a timely manner. We would like to close the speed gap with human pilots and
fast moving animals that can navigate at high speeds based on their learned or
intuitive understanding of the way their actions and perceptual capabilities work
in familiar environments.

1.1 POMDP formulation

We wish to control a dynamic vehicle, such as a car, airplane, or quadrotor from
a start location through an unknown environment to a specified goal in minimum
expected time, where the expectation is taken with respect to an unknown map.
While solving this problem exactly as a partially observable Markov decision pro-
cess (POMDP) is completely intractable, the POMDP formalism is useful for specifying the planning task. The following
POMDP tuple, (S,A, T,R,O,Ω), applies to an RC car equipped with a planar LIDAR being used for this research:

States S: {Q×M}, where:

• Q is the set of continuous-valued vehicle configurations: q = [x, y, ψ, k, v] ∈ R5.
• M is the set of n-cell occupancy maps: m = [m0,m1, . . . ,mn] ∈ {0, 1}n.

For a given problem instance, the true underlying map,m, is fixed for all time, while the configuration, q, changes at each
time step as the robot moves. We assume that q is fully observable, while m is partially observable since only a subset of
the map cells can be observed by the sensor from a given location.

ActionsA: A pre-computed discrete set of trajectories of specified length, which roughly span the vehicle’s maneuvering
capabilities. Figure 1 shows an example of action set A. All actions are the same length, but differ in their time duration
as a function of their speeds.

We define two functions here for convenience. The deterministic collision function C(s, a) : S × A 7→ {0, 1} indicates
whether taking action a from state s would result in a collision. The deterministic state-transition function F (s, a) :
S ×A 7→ S returns the future state reached by taking action a from state s. In this state transition, the map portion of the
state remains fixed at its true value. If a collision would occur along trajectory a (i.e., if C(s, a) = 1), then F (s, a) clamps
the future vehicle configuration to its last feasible position and orientation along trajectory a and sets the velocity to zero.

Observations Ω: The set of LIDAR scans containing l ranges, ri, to the nearest occupied map cells around the agent,
o = [r1, r2, . . . , rl] ∈ Rl

+.

Conditional Transition Probabilities T : We assume deterministic vehicle dynamics and a fixed map, P (st+1|st, at) = 1
for st+1 = F (st, at) and 0 otherwise.

Conditional Observation Probabilities O: We assume a noiseless sensor observing the environment and vehicle config-
uration, so P (ot+1|st+1, at) = 1 for the LIDAR scan corresponding to the map geometry visible from state st+1, including
a perfect measurement of qt+1, and 0 otherwise.

Cost Function R: We use a minimum-time cost function R(s, a), which returns the time duration of an action Ja(a)
if the action succeeds without collision, and adds an additional collision penalty Jc if the action results in a collision.
R(s, a) = Ja(a) if C(s, a) = 0, and R(s, a) = Ja(a) + Jc if C(s, a) = 1.

1.2 Belief space

In a general belief-state MDP, the agent maintains a belief over its state b(s) = P (q,m). We use bt to denote the belief at
time t andmt to denote the belief over maps at t. Since q is fully observable in our problem, the belief really represents the
agent’s belief over which of the exponentially many possible maps it is in. Let ρ(b, a) =

∑
s∈S b(s)R(s, a) be a belief-state

cost function. The optimal value (or cost-to-go) for a belief can in principle be computed using the Bellman equation:

V ∗(bt) = min
at



ρ(bt, at) +

∑

st

b(st)
∑

st+1

P (st+1|st, at)
∑

ot+1

P (ot+1|st+1, at)V
∗(st+1)



 (1)
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In the summation over st, equation (1) is effectively taking an expectation over maps where the probability applied to
each possible map is contained within b(st). The summation over ot+1 performs a state estimation update to compute
the distribution over future states given the current belief bt and an action at. If our prior belief, bt, assigns uniform
probability to all possible maps, then this state estimation update serves to eliminate those maps that are not consistent
with the current observation and raise the uniform probability of the remaining possible maps. If our prior belief assigns
high probability to realistic maps containing common structures such as hallways, rooms, doors, etc., and low probability
to unrealistic maps, then this state estimation update would help us infer useful information about regions of the map
that have not been directly observed yet. For instance, it might infer that the straight parallel walls of a hallway are likely
to continue to be straight parallel walls out into the unknown regions of the map. All of this prior knowledge about
likely environments enters the problem through the agent’s initial belief, b0, which we must somehow provide.

1.3 Missing information: The central challenge of this work

Unfortunately, learning an accurate distribution over the space of all real-world environments the robot may encounter
would be extremely difficult. This difficulty results from the high dimensionality (≈ 106) of building-sized occupancy
grid maps, the strong assumption of independence between map cells, and the richness of man-made and natural spaces
which resist a more compact parameterization. Without significant modeling effort, or restriction of the problem domain
to specific environments, the best prior we can reasonably provide is to say that every map is equally likely. Of course,
this prior is completely unhelpful for planning, and prevents the agent from exploiting intuitive knowledge of “typical”
environments to navigate faster. Our solution must compensate for this missing knowledge.

Our approach is to learn a specific function that enables the agent to drive at high speed as if it had an accurate prior
over environments enabling it to make reasonable inferences about the unobserved environment. We approximate the
expected future reward that is computed in the right-hand end of equation (1) using a learned function, fc(φ(bt, at)), that
estimates the probability that a collision will occur with some unforeseen obstacle in the future, given some features φ of a
planning scenario. This learned function eliminates the need for expensive summations over states and observations and
an explicit prior over environments. The relevant information that would be contained within a prior over environments
is represented instead implicitly through the training data for the learning algorithm.

2 Predicting Future Collisions

Figure 2: Examples of “collision”
and “non-collision” training events.

In this section, we focus on learning to predict the probability of collision asso-
ciated with a given planning scenario. In practice, it is common for planners to
avoid collisions by rejecting actions that commit the robot to entering unknown
space, implying an assumption that driving into unknown regions of the map al-
ways carries a high probability of collision. However, our central claim in this line
of research is that this assumption may not be correct. In many cases, the agent
can indeed plan to drive at high speeds into unknown regions of the map without
significant risk if it is equipped with prior experience in similar environments [1].
We summarize this experience as a learned function:

fc(φ(bt, at)) ≈ P (“collision is inevitable if we execute at from belief bt”) (2)

where φ(bt, at) is a vector of features summarizing the agent’s current belief (par-
ticularly the map estimate) and the selected action. Relevant features for this pre-
diction might include vehicle speed along at, distance to the map frontier, some
measure of clutter, free space ahead, etc.

To predict collision probabilities, we collect a training data set D =
{(φ1, y1), . . . , (φN , yN )} offline in a manner reminiscent of batch model-based re-
inforcement learning. Labels yi are binary indicators (“collision,” “non-collision”)
associated with a planning scenarios described as points φi in feature space. We
generate each data point by randomly sampling a feasible configuration qt within
a training map, and simulating the sensor from qt to generate a belief bt. We then
randomly select among the reachable configurations, qt+1, and run a (resolution)
complete planner to determine whether there exists any feasible trajectory from
qt+1 that avoids collision with the true underlying map to some horizon (several
times longer than the horizon of the initial action at). If there exists a feasible tra-
jectory, ynew = 0, otherwise ynew = 1. Finally, we compute the features φnew(bt, at) describing this planning scenario and
insert (φnew, ynew) into D. Figure 2 illustrates an example of “collision” and “non-collision” points being generated.

We use a non-parametric Bayesian inference model developed by Vega-Brown, et al., which generalizes local kernel
estimation to the context of Bayesian inference for exponential family distributions [2]. In our case, we consider collision
to be a Bernoulli distributed random event with beta-distributed parameter θ ∼ Beta(α, β), where α and β are prior
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pseudo-counts of collision and non-collision events, respectively. Using the inference model from Vega-Brown, et al., we
can efficiently compute the posterior probability of collision given a query point φ and the observed training data set D:

fc(φ) = P (y = “collision”|φ,D) =
α(φ) +

∑N
i=1 k(φ, φi)yi

α(φ) + β(φ) +
∑N

i=1 k(φ, φi)
, (3)

where k(φ, φi) is a kernel function reflecting proximity in feature space between our query point φ and each other data
point in D. We write prior pseudo-counts as functions α(φ) and β(φ), since they may vary across the feature space.
We use the kernel sum Neff. =

∑N
i=1 k(φ, φi), i.e., the effective number of training data points near φ, as a measure of

data density. The prior also contributes Npr. pseudo data points to each prediction, where Npr. = α(φ) + β(φ). The ratio
Neff./(Neff. +Npr.) determines the relative influence of the training data and the prior in each prediction. We useNpr. = 10,
and typically when planning in an environment for which we have training data, Neff. ≈ 500.

2.1 Planning with learned probabilities of collision

In this section, we describe the specific approximations we make that reduce equation (1) to our proposed objective
function. First, we restrict the planner to disregard future environmental measurements since we have no meaningful
way yet to predict what the most likely future measurements might be given our uniform prior over maps. The planner’s
belief of the map thus remains fixed to its current value bt at planning time, and this eliminates the summation over ot+1.
As map knowledge decays with distance ahead of the vehicle, so does the information available for collision prediction.
Therefore, rather than attempting to predict collisions deep in the unknown regions of the map, along a long sequence
of actions, we simplify the problem by lumping all future collision probability beyond at into a single prediction fc,
independent of the future action sequence (at+1, at+2, . . . ).

We also assume that no collisions occur during the chosen action at, since the agent can nearly always perceive obstacles
in its immediate vicinity and perform conventional collision checking. This assumption allows us to replace ρ(bt, at) with
Ja(at). Finally, we assume that the remaining cost-to-go after at, given the map knowledge mt contained in belief bt, is
well approximated by a heuristic function h(qt+1,mt). This heuristic, coupled with our learned probability function,
provides a simple approximation to the expected future reward beyond action at that would be impossible to compute
without an explicit prior over environments, and intractable even with one. Having made these approximations, equa-
tion (1) reduces to our proposed objective function:

Expected Cost Objective Function: V ∗(bt) ≈ min
at

{Ja(at) + fc(φ(bt, at))Jc + h(qt+1,mt)} . (4)

At each time step, in receding horizon fashion, we select the action a∗t minimizing this objective. We begin to execute a∗t
while re-planning. By re-planning at a high rate, we incorporate new sensor data into the belief as it is obtained.

2.2 Relevance of training data across environment types

Machine learning algorithms are designed to make good predictions for query points near their training data. For some
algorithms, predictions that extrapolate beyond the region of training data may be arbitrarily bad. For navigation tasks,
we want our planner to recognize when it has left the region of feature space for which it has training data, and auto-
matically revert to safe behaviors. For instance, if the agent moves from a well-known environment type into one it has
never seen before, we want it to stay safe. Fortunately, the inference model of equation (3) enables this capability.

The Bayesian nature of our inference model enables us to inject prior knowledge that will keep the planner safe when
there is little relevant data. If we query a feature point in a region of high data density (Neff. � Npr.), fc(φ) will tend
to a local weighted average of neighbors and the prior will have little effect. However, if we query a point far from the
training data (Neff. � Npr.), the prior will dominate the prediction. By specifying priors α(φ) and β(φ) that are functions
of our features, we can endow the planner with all of our own (perhaps conservative) domain knowledge about which
regions of feature space are safe and which are dangerous. In this work, we have designed our prior functions α(φ) and
β(φ) such that P (“collision”) = α(φ)/(α(φ) + β(φ)) = 0 if there exists enough free space for the robot to come safely to a
stop from its current velocity, and P (“collision”) = α(φ)/(α(φ) + β(φ)) = 1 otherwise. Therefore, as Neff. drops to zero,
this stopping distance safety constraint becomes active.

3 Results

In this section, we present simulation results in two different types of environments, the “Markov Hallway” and the
“Poisson Forest”. We use generative distributions for these map types to sample random environments. A Markov chain
enables us to sample hallways with a specified width and turn frequency, and a Poisson process enables us to sample 2D
forests with an average obstacle rate. Figure 4 shows an environment with both hallway and forest segments.

To measure the performance of our planner and the benefit of our learned model, we compare against a conservative
baseline planner that guarantees absolute safety. This baseline planner only considers trajectories that lie within the
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known free space and it ensures that it always has room to stop before hitting an obstacle or unknown map cell. This
planner is intended to navigate as fast as is possible without the use of domain knowledge or hand-coded behaviors to
increase speed, and represents the solution we might select if we did not have a learned model of collision probability.

Figure 3 shows the performance of the planner in 25 randomly sampled hallway environments over a range of Jc values.
The blue plots show performance using dense training data collected in a hallway environment drawn from the same
distribution, plus prior knowledge. The red plots show performance of the planner making predictions based on the data
alone, using no prior. The black plots show the performance with the prior only, and no data. The left-most plot shows
that the for low values of Jc all planners crash in every trial, but become safer as Jc is increased. Above Jc = 0.25, all
planners succeed in reaching the goal without collision 100% of the time. The middle plot shows velocity normalized by
the speed of baseline planner. Finally, the right-most plot illustrates average violation of the stopping-distance constraint.
For Jc = 0.25, the planners with training data violate their stopping-distance constraints by about 5.75m on average,
indicating that they are indeed taking risks to travel as fast as possible while maintaining an empirical success rate of
100%. In practice, we must pick a value of Jc to determine how aggressive and risky the planner will be. If we pick
Jc = 0.25, we can expect to succeed in every trial while navigating 1.8 times faster than baseline.
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Figure 3: Simulation results using our learned model with dense training data combined with the prior (blue), using the
data alone with no prior (red), and using the prior alone without any data (black). The prior alone is enough to keep the
robot safe in the absence of data, but having training data improves performance.
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Figure 4: Simulation results from a hybrid hallway-forest map. One planner uses hallway data combined with the prior
(blue), and another uses hallway data alone with no prior (red). Without a safe prior, the robot crashes in the forest.

Figure 4 illustrates the use of a safe prior when transitioning from a known environment (hallway) to an unknown one
where no data are available (forest). With the prior, the effective number of data points drops to Npr. = 10 when the
agent enters the forest (gray region in left and right plots) and the planner is guided by the information in the prior. If the
planner has no data and no prior, the effective data density drops to zero and it is unable to distinguish between safe and
risky behaviors. Therefore it accelerates to full speed resulting in a crash (red dot). In 20 trials of random hallway-forest
maps, 100% succeeded with the prior, and 100% crashed without the prior.
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Abstract

The capacity to learn an increasing number of flexible sensorimotor skills in an open-ended autonomous fashion is one
of the most remarkable features of human intelligence. How can we design robot controllers that exhibit the same
capability? We start from the idea that to accomplish this objective one needs to design a complex architecture formed
by multiple components, rather than single algorithms. The decisions at the high-level are critical for the specification
of the single components and their interplay, and hence for the overall success of the system. Here we look at the brain
architecture and functioning possibly underlying open-ended development in humans and claim that it suggests two
possible principles that can be exploited to build open-ended learning robots: (a) The sensorimotor hierarchy underlying
motor behaviour should have three specific levels of organisation rather than a continuously graded granularity; (b)
Intrinsic motivations should guide the formation of specific goals, and regulate the skill learning processes pivoting on
them, rather than guiding learning processes at fine spatial and temporal scales. Here we draw from the biology to
support these principles and present our past and current work implementing and testing their utility for open-ended
learning robots.

Keywords: Multiple skill learning, intrinsic motivations,
hierarchical and modular reinforcement learning,
brain macro-architecture, autonomous humanoid learning robots.
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1 Introduction

The capacity of autonomously learning an increasing number of flexible sensorimotor skills in an open-ended fashion is
one of the most remarkable features of human intelligence. This capacity relies on key features of the brain’s architecture,
functioning, and learning, such as a hierarchical structure capable of storing multiple sensorimotor skills at different
levels of abstraction, and intrinsic motivation systems driving learning in an autonomous open-ended fashion.

The construction of robots capable of truly open-ended learning would not only be a milestone for artificial intelligence
but also a fundamental technological achievement. Open-ended robots could be placed in specific environments and
asked to autonomously acquire a rich repertoire of skills without the need for external intervention. The users of the
robots could later require such robots to carry out specific tasks relevant to them: the robots could accomplish these tasks
with little or no additional learning by relying on the skills previously acquired through autonomous exploration. This
would be useful, for example, for service robots having to act in environments posing challenges unforeseen at design
time. Open-ended leaning curious robots, generating a continuous flow of novel/surprising behaviours and situations,
would also be useful for educational/entertaining applications.

The objective of this abstract is to propose two insights that have been gained by looking at how the human brain possibly
implements open ended learning. We say ‘possibly’ since unfortunately we still lack neuroscientific research directly
addressing the problem of open-ended learning. These insights relate to two principles that can be followed to design
an architecture for open-ended learning robots. We discuss the two principles in the next sections, first mentioning the
biology that suggested them, then expanding the implications for the architecture, and finally illustrating some initial
implementations of them and their current and future possible extensions.

2 The sensorimotor structure of the architecture should pivot on three levels

Biology. Looking at the primate brain, it appears that the flexibility of their behaviour relies on a three-level organisa-
tion. First, information from the musculoskeletal system is processed within the somatosensory cortex to guide move-
ment performance through its closed loops with the primary motor cortex. One important recent insight about the
functioning of this system is that these circuits have an inherently dynamic nature and produce sophisticated movement
trajectories as opposed to the classic (opposing) views of motor cortex as encoding equilibrium points (desired postures)
or low-level dynamic aspects of movements (e.g., muscle forces) [Graziano, 2011]. Second, movement trajectories are
modulated by premotor cortex which possibly encodes a repertoire of actions (e.g., ‘reach’, ‘fine grap’, ‘power grasp’,
etc.) in terms of ‘proximal goals’ (i.e., immediate visual and proprioceptive effects) [Gallese and Goldman, 1998] formed
on the basis of information on proprioception and object size, position, and orientation. Overall, data on the premo-
tor/motor cortex functioning suggest that the brain learns and plans movement trajectories together with their dynamic
implementation (control). Third, the prefrontal cortex forms higher-level goals at multiple levels of abstraction (e.g., ‘eat-
ing’ or ‘hitting a target with a stone’) [Miller and Cohen, 2001] and through these triggers specific proximal-goal/action
sequences. These cortical areas, characterised by associative (Hebbian) learning processes, form segregated loops with
basal-ganglia, which learn to select their contents by trial-and-error learning processes, and cerebellum, which learns
by supervised learning processes [Middleton and Strick, 2000]. With practice, action and action-sequence performance
becomes habitual (i.e., directly triggered by stimuli) and under the control of the first two levels. However, the third level
comes into play again when expected action outcomes are not accomplished.

Robots. Within machine learning, the general framework to implement the autonomous learning of hierarchical skills
is the reinforcement learning (RL) option framework (OF) [Sutton et al., 1999]. An option is formed by a policy, an
initiation set, and a termination function. Critically, the policy of an option can recall primitive actions and also other
options. This means that the OF allows the creation of options (skills) with any level of granularity along a continuum.

The OF has been applied with success to grid/discrete setups [Barto and Mahadevan, 2003] but has not taken off in robot
control. The introduction of ‘dynamic movement primitives’ (DMPs) [Ijspeert et al., 2002] has marked an important
advance in this field. DMPs are dynamical models that can produce discrete or rhythmic movements. Some parameters
of a DMP regulate the trajectory and dynamics of a movement, while metaparameters establish the trajectory initial point,
final point (‘goal’), and execution speed. RL techniques can search for these parameters, thus optimising the movement
trajectory and dynamics [Kober and Peters, 2009]. Notwithstanding the success of these approaches for learning single
tasks, few systems can learn to compose multiple movement primitives/DMPs to form more complex behaviours and
have various limitations, so this is largely an open problem (e.g., Konidaris et al., 2011, Stulp et al., 2012).

The biological evidence mentioned above suggests organising an open-ended learning architectures as follows. First,
the architecture should not be organised at a ‘continuous’ granularity, as implicitly suggested by the OF, but rather be
organised at three levels. The lower level should be based on dynamic devices, such as DMPs, acquiring with RL the
movement trajectories and dynamics solving tasks (interestingly, alongside control theory, initial inspiration on DMPs
is rooted on organisms’ central pattern generators, Ijspeert and Kodjabachian, 1999). The intermediate level should
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select and trigger different DMPs (e.g., controlling different actuators) and also furnish high-level parameters to them
(e.g., initial/final postures depending on target position, movement speed, etc.). The granularity of encoded movements
should be at the level of ‘grasp’, ‘reach’, etc. Learning could be based on RL and associative/supervised learning. The
third level should encode higher-level goals. In contrast to the other two levels, this level should be able to encode
goals with different levels of granularity, similar to what is done in the OF (which, however, does not propose specific
mechanisms to manage the learning and management of recursive option execution).

Some of our models implement the first level of the architecture and in part its second level. In Castro da Silva et al. [2014]
we proposed a humanoid robot controller that learns to map the position of a target in space to suitable parameters of
a DMP used to throw a ball to the target. This mapping is based on supervised learning techniques and methods to
identify low-dimensional manifolds, within the DMP parameter space, corresponding to policy parameter clusters. In
Santucci et al. [2014] we showed that reinforcement learning processes are important for learning to select, through goals,
different ‘expert controllers’ sending their output to different sets of actuators, e.g., to the left or right arm of a robot. In
the future, the second level of these systems could be extended by using information on the initial posture of the robot,
and on the world state, to set the meta-parameters of the lower-level dynamical skills. This would augment its on-line
flexibility. Moreover, the third level of the architecture could be implemented on the basis of RL mechanisms operating
on abstract representations of lower-level skills capturing their overall states such as ‘not applicable’, ‘in execution’, ‘goal
accomplished’ [Hart and Grupen, 2011, Konidaris et al., 2011].

3 Intrinsic motivations should lead to the self-generation of goals and guide the acquisition of
skills directed to them

Biology. The hierarchical brain system described above is regulated by motivational systems playing at least two roles:
(a) they motivate the selection of particular actions and goals; (b) they modulate learning, e.g., by triggering the neuro-
modulator dopamine that regulates trial-and-error learning in basal ganglia. Basic motivations are related to the attain-
ment of resources important for homeostatic regulations of the body (e.g., food, water, warm, physical integrity) [Mirolli
et al., 2010]. These are also called ‘extrinsic motivations’ (EMs) to distinguish them from ‘intrinsic motivations’ (IMs).
IMs, instead, are related to the performance of actions ‘for their own sake’ [Berlyne, 1966], i.e., without the immediate
biological function of the attainment of external material resources relevant for biological fitness. IMs, related to things
such as curiosity and exploration, have been proposed to have the biological function of driving the learning of knowl-
edge and skills that are used only later to obtain useful resources, resources that are possibly not present at the moment
of the learning [Singh et al., 2010, Baldassarre, 2011]. In neuroscience, issues relevant for IMs are studied with differ-
ent research objectives: we consider two of them which are most relevant for open-ended learning. First, research on
memory and the hippocampus has shown how this structure strongly responds to novel items (e.g., objects) and novel
associations between familiar items [Kumaran and Maguire, 2007]. On this basis, the hippocampus regulates motiva-
tion and learning in various parts of brain through dopamine [Lisman and Grace, 2005], in particular at the level of the
basal ganglia/prefrontal cortex system dealing with the formation and management of high-level goals and the control
of attention. Second, research on dopamine regulation has shown that sudden unpredicted visual/sound changes in the
environment are detected by the superior colliculus, causing strong phasic bursts of dopamine. This has been proposed
to have an important role in the formation of skills [Redgrave and Gurney, 2006, Mirolli et al., 2013].

Robots. Given their nature, IMs are ideally suited for driving progressive autonomous open-ended development in the
absence of external rewards, tasks, and other types of external guidance. Computational analysis on IMs [Baldassarre
and Mirolli, 2013] has resulted in systematisations of IM mechanisms relevant for exploiting them in robots. Oudeyer
and Kaplan [2007] have distinguished between ‘competence-based IMs (CB-IM), related to action (e.g., see Barto et al.,
2004, Schembri et al., 2007) and ‘knowledge-based IMs (KB-IMs)’, related to sensorial aspects of stimuli. Successively,
Baldassarre and Mirolli [2013] and Barto et al. [2013] have distinguished KB-IMs into ‘novelty-based IMs (NB-IMs)’ (e.g.,
see Nehmzow et al., 2013), related to the detection of novel stimuli not present in memory, and ‘prediction-based IMs
(PB-IMs)’ (e.g., see Schmidhuber, 2010), related to the temporal anticipation of stimuli. In the past, IMs have been used as
main means to guide the cumulative learning processes of autonomous robots (e.g., Schmidhuber, 1991, Oudeyer et al.,
2007, Baldassarre and Mirolli, 2013). As we have argued in Santucci et al. [2012], however, IMs have usually been used
to produce learning signals at each time step, e.g. in proportion to the size or change of a prediction error of a predictor
predicting the effects of own actions. This had a very limited capacity to support the accumulation of skills.

Biological evidence mentioned above suggests a different use of IMs to guide open-ended learning. In particular, learning
of skills needs to be organised around few critical states of the world becoming potential goals (or sub-goals) for future
behaviour. IMs can play important roles when behaviour becomes organised around goals. First, NB-IMs can focus
attention and exploration of the robot on novel aspects of the environment related to the goal. Second, CB-IMs can
contribute to select those goals whose skills have a high rate of learning. Third, PB-IMs can play the critical role of
supporting the self-generation of goals [Mirolli and Baldassarre, 2013]. For example, an accidental unpredicted effect of an
agents own action can lead to the formation of the goal of causing that effect again and to improve the skill in doing so.

2
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We have implemented models to test these ideas. In Baldassarre et al. [2013] and Fiore et al. [2014] NB-IMs drive bio-
inspired embodied/robotic systems to focus attention on different parts of the environment where they have caused
novel changes with own actions, and this allows them to acquire visual and manipulation skills. In Santucci et al. [2013]
we used CB-IMs measuring skill improvement to select (externally assigned) goals where to focus learning resources.
We are at the moment implementing and testing other architectures that extend these systems with the capacity of self-
generating goals on the basis of PB-IMs (cf. Baranes and Oudeyer, 2013).

4 Concluding remarks

We have seen two ways in which looking at the brain gives suggestions about principles to follow to build open-ended
learning robotic architectures. The first suggestion is to structure the overall architecture with three specific levels, each
having its functioning and learning properties. The second suggestion is to use intrinsic motivations to self-generate
critical goals and to drive and manage the acquisition of skills around them. There are other important indications from
brain that we could not present here for lack of space. One with paramount importance concerns the need to endow the
system with active vision [Hayhoe and Ballard, 2005] guided by bottom-up and top-down attention processes. This gives
fundamental advantages to exploration and learning processes of autonomous robots [Marraffa et al., 2012, Ognibene
and Baldassarre, 2014, Sperati and Baldassarre, 2014]. In conclusion, complex architectures are needed to build open-
ended learning robots and those architectures can be built in innumerable, mostly wrong, ways. Thus, understanding
how nature has structured those architectures could greatly help to meet the hard challenge of building truly open-ended
learning robots.
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Abstract 

Decision Makers in a Changing Environment Anticipate Negative Changes and Resist Positive Changes. 

We examined decisions from experience with dynamic underlying probabilities. In a two-button choice task with a sure 

gain and a risky prospect between a high gain and no gain, we varied the probabilities of the risky option from .01 to1 

over the course of 100 trials. Model simulations predict three phenomena: 1) When the high gain changes from certain 

to rare adaptation occurs rapidly, 2) when the high gain changes from rare to certain, adaptation occurs slowly, and 3) 

when held constant, choices drift towards the sure option. These predictions are confirmed by human behavior. One 

important deviation from human choice behavior is a much higher degree of lag when high gains change from rare to 

frequent.  

Keywords:  Risk, Decisions from Experience, Instance Based Learning Theory 
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1 Introduction 

A common assumption in studies of decisions under risk is that risk is static and does not change over time. Though 

most paradigms reflect this assumption, many real world decisions are made in environments where risk is 

non-stationary. For example, most preventative health decisions are made to avoid a negative health events, but the 

probability of most negative health events increase over time making the decision environment different at any point in 

time. While changes in underlying probabilities may be known, such as increasing health risks, often information about 

changing risks is unknown or neglected. In these situations changes in risk may only be learned through feedback.  

Rakow and Miler (2009) explored non-stationary risks in repeated decisions from feedback. Using a two button choice 

task common in studying experience based decision making (Barron & Erev, 2003), participants made repeated 

decisions between two options. At a given point in the game, the underlying probability of one option changed over ten 

trials making the expected value of that option either greater than or less than the expected value of the alternative 

option. Using multiple feedback manipulations over several stimuli pairs, Rakow and Miller found that participants 

choices did change with changing probabilities but were relatively slow to change, an observation they call the 

stickiness effect. They also replicated well known variance effect, where an option with less variability is preferred to 

an option with more variability
1
 (Busemeyer & Towndsend, 1993). An intriguing effect reported by Rakow and Miller 

was that negative-to-positive changes elicited less stickiness behavior than positive-to-negative changes 

(direction-of-change effects). This effect however was not replicated in their second experiment, and an explanation of 

this observation was left for future work. 

We attempt to provide an explanation for the direction-of-change effect in the current work, but also we extend the 

work by Rakow and Miler to rare outcomes where a very rare outcome becomes very likely and vice versa. In 

traditional decision making experiments, where participants are presented with fully described options in terms of 

possible outcomes and their associated probabilities, rare events are typically given more weight on a decision than 

they objectively deserve. In decisions based on experience however, the opposite has been found, with rare events 

having less impact of choice than they objectively deserve. Though there is some evidence that this finding may 

change over time (Harman & Gonzalez, in press), underweighting of rare outcomes in experience based decision 

making is a solid phenomenon regardless of sampling biases or the valence of the rare outcome. In the current work, 

the worst (best) outcome changes from rare to common over time. Model simulations predict that rare negative 

outcomes will have more influence on choice than rare positive outcomes.    

 

1.1  A binary choice paradigm with changing probabilities 

One option was always a sure gain of 250 points. The second option was a gamble that could result in either 500 points 

(high outcome) or 0 points (low outcome). In the first condition, the probability of obtaining the high outcome when 

the gamble is chosen begins at .01 and increases by .01 on each subsequent trial reaching a probability of 1 on the final 

trial. This condition represents an environment where rewards change from rare to certain over time. The second 

condition is a control condition where the probability of receiving the high outcome is .5 throughout all 100 trials (note 

that the expected value of the two options is equal on every trial in this condition). In the final condition, the 

probability of obtaining the high outcome when choosing the gamble is 1 at trial 1 and decreases by p = .01 on each 

subsequent trial until it is p = .01 at trial 100. This condition represents an environment where a reward changes from 

certain to rare over time. 

2 Methods 

2.1 Participants 

240 participants (152 male, 88 female, mean age 31.32) completed the experiment on MTurk (U.S. IP restricted) and 

were compensated with both a set amount and an additional payment based on performance.  

                                                           
1
 given equal expected values and positive outcomes The opposite is true for negative outcomes (Weber et al. 2004) 
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2.2 Procedure 

After providing consent and answering demographic questions, participants were given instructions for the game. 

Participants were paid $.50 for participating and an additional payment based on the amount of points accrued during 

the game (mean bonus payment = $ .26). Participants were randomly assigned to one of three conditions, each with a 

risky and dynamic probability option and a safe and stationary option (left/right presentation of options were 

counter-balanced). 

Upon completion of the task, participants filled out a funnel debriefing designed to ascertain their knowledge of 

changes in the underlying probabilities. The funnel debriefing asked participants to describe the two options they 

choose from,  whether they thought one was better than the other (gave the most points on average), and whether they 

thought one was better at one point in the game and worse at another point in the game. If a participant reported one 

option changed, they were asked whether the target option was better at the beginning or the end of the game and asked 

to indicate on a 0-100 trial sliding scale at which point they think the option became better (worse). 

3  Modeling 

We produced predictions via simulation using an Instance Based Learning (IBL) model of repeated binary choice 

(Gonzalez & Dutt, 2011). IBL is a decision making model that uses parts of the ACT-R cognitive architecture 

(Anderson & Libeaire, ***) to capture effects of memory (recency and frequency) in repeated choice. Simulation 

results are plotted in Figure 1 and discussed in the results section. 

4  Results 

We first collapse across trials to examine overall choice and performance. The three dependent variables we use for 

this analysis are the proportion of choices for the risky option (PRisky), the proportion of alternations from one option 

to another (Arate), and the total points earned in the task. The three conditions differed in the proportion of risky 

choices (F (2, 296) = 30.03, p < .01) with the highest proportion of risky choices in the decreasing condition (M=.48), 

followed by the static condition (M= .34) and the smallest proportion in the increasing condition (M=.27), all 

significantly different (LSD, p < .01). There was a significant difference in A rate between groups (F (2, 296) = 10.62, 

p < .01) driven by the increasing condition (M = .2) which was significantly lower than both the decreasing condition 

(M=.29) and the static condition (M= .29). There was also an effect in overall points earned (F (2, 296) = 30.03, p < 

.01). All three groups differed from each other with the highest number of points in the decreasing condition 

(M=27,388) followed by the increasing condition (M = 26,377) and the static condition (M= 24,862). To summarize 

the overall descriptive statistics using the static condition as the baseline, participants in the decreasing condition 

choose fewer risky options while participants in the increasing condition choose the risky option more frequently. This 

likely reflects early experience in the task which will be explored next. Alternation rates were lower in the increasing 

condition and were not different in the decreasing condition. Participants in both of the non-stationary conditions 

earned more points than those in the static condition. 

Choice data for the three conditions over time is shown on the left hand side of figure 1. For each condition figure 1 

plots the average choice proportion for the risky option on each trial. The dotted line in the two dynamic conditions 

plots the probability of obtaining the high (500) outcome when choosing the risky option. Because of the outcome 

structure, the dotted line can also be interpreted as the relative expected value of the risky option compared to the safe 

option on any given trial. For example at trial 50, the expected value of the risky option is 250 ([500 * p .5] + [0 * p 

.5]). The advantage of this representation is that the theoretical (dis)advantage of the risky option is apparent based on 

the distance (below) above the midpoint. 
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Figure 1. Choice proportion for the risky option over time for humans and the IBL Model.   

 

Descriptively, the observed choice proportions are consistent with the patterns predicted from the IBL model. In the 

increasing probability condition (n = 76, top figures) where the probability of the high outcome goes from  rare to 

certain, choice proportion quickly favors the safe option and slowly starts to abandon the safe option as trials progress; 

however humans on average only return to selecting the risky option only about half of the time as trials progress.  In 

the stationary condition (n = 81), where the probability of the high outcome in the risky option is always .5 and the 

expected values of the two options are equal throughout the task, choice proportions favor the safe option over the 

course of the task. In the decreasing probability condition (n = 83, bottom figures), where the probability of the high 

outcome goes from certain to rare, choice proportions quickly favor the risky option and decrease as the probability of 

the high option decreases.  

Two deviations from the model predictions are apparent. When the high outcome changes from rare to certain, the lag 

in choice proportions moving towards the risky option was more extreme than predicted, with choice proportions only 

reaching .5 by trial 100 (50 trials after the expected values favor the risky option). When the high outcome went from 

certain to rare, the change in choice proportion was slightly less extreme than predicted and choice proportions closely 

mirrored the underlying expected values (or the probability of the high outcome).  

To provide a fit index, we calculated the MSD between the model predictions and the observed choice proportions. The 
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static condition had the best predictive fit with an MSD of 0.004466, followed by decreasing probability and increasing 

probability, with respective MSD’s of 0.029 and 0.027847. In terms of optimal choice, the average number of choices 

from the option with the highest underlying expected value over the 100 trials was 66.93 in the decreasing condition 

and 58.45 in the increasing condition.   

5 Discussion 

Results from this study replicate Rakow and Milner’s direction of change effect while extending it to more extreme 

changes in probability. Choice proportions were predicted well by the cognitive assumptions of IBL. One notable 

divergence between model simulations and observed data was the slow adaptation of humans in the negative to 

positive condition. Observed results suggest the possibility of a subset of participants that after experiencing negative 

outcomes under-sample as the game proceeds, never learning that the underlying probabilities have changed to make 

the risky option superior. 
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Abstract

Maximum entropy inverse optimal control (MaxEnt IOC) is an effective means of discovering the underlying cost func-
tion of demonstrated agent’s activity. To enable inference in large state spaces, we introduce an approximate MaxEnt
IOC procedure to address the fundamental computational bottleneck stemming from calculating the partition function
via dynamic programming. Approximate MaxEnt IOC is based on two components: approximate dynamic program-
ming and Monte Carlo sampling. This approach has a finite-sample error upper bound guarantee on its excess loss. We
validate the proposed method in the context of analyzing dual-agent interactions from video, where we use approximate
MaxEnt IOC to simulate mental images of a single agents body pose sequence (a high-dimensional image space). We
experiment with sequences image data taken from RGB data and show that it is possible to learn cost functions that lead
to accurate predictions in high-dimensional problems that were previously intractable.1
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1 Introduction

The Maximum Entropy (MaxEnt) Inverse Optimal Control (IOC) framework is an effective approach for discovering the
underlying reward model of a rational agent [2, 3]. For instance, Kitani et al. [4] used MaxEnt IOC in the context of
understanding and modeling human activities, where the recovered reward model encodes a person’s set of preferences.
They considered the computer vision problem of mentally (visually) simulate human activities. By integrating visual
attributes of the scene as features of the reward function, they showed that highly accurate pedestrian trajectories could
be simulated in novel scenes.

Most current approaches of MaxEnt IOC, however, are limited to problems with small state space. So for example,
its application to visual prediction problems has been limited to 2D pedestrian trajectories. To extend MaxEnt IOC to
deal with the inherent high-dimensional nature of observed human activity from image data, previous approaches [5, 6]
relied on clustering techniques to quantize and reduce the size of the state space. However, coarse discretization of
the state space resulted in non-smooth trajectories and inhibited the model’s power to simulate the subtle qualities of
activity dynamics. To address this problem, we recently introduced an approximate MaxEnt IOC algorithm that is suitable
for dealing with problems with large or high-dimensional state space [1]. This paper summarizes the algorithm, the
theoretical results, and the application of the framework in the context of analyzing dual-agent interactions from video.

At the heart of the problem of maximum entropy MaxEnt IOC and sequence prediction is an inference problem of com-
puting the log-partition function that requires enumeration of all possible action sequences into the future given a set of
observations. In the same way that the value function is computed for optimal control, the log-partition function of max-
imum entropy IOC can be computed using dynamic programming – differing only in the substitution of the “soft-max”
operator for the “max” operator in the Bellman equations. This relationship was noted as early as [7] and formalized
in [2]. While dynamic programming renders this efficient for small scale problems, more appropriate techniques are
needed for dealing with problems with large state space.

When the state space is large, one natural approach is to use approximate dynamic programming for the approximate
calculation of these functions. The approximate MaxEnt IOC algorithm of this paper in fact uses Approximate Value
Iteration (AVI) to compute the softmax-based value (log-partition) function. The AVI procedure uses a regression esti-
mator at each iteration. The choice of regression estimator is flexible and one can choose to work with local averagers,
random forests, boosting, deep neural networks, etc. In this work, we particularly utilize a reproducing kernel Hilbert
space-based (RKHS) regularized estimator due to its flexibility and favourable properties. We also briefly mention the
theoretical properties of this algorithm and provide a finite-sample upper bound guarantee on the excess loss, i.e., the
loss of our approximate procedure compared to an “ideal” MaxEnt IOC procedure without any approximation in the
computation of the log-partition function or the feature expectation.

2 IOC for High-Dimensional Problems

The problem of the inverse optimal control, which is also known as inverse reinforcement learning, is to recover an
agent’s (or expert’s) reward function based on its policy (or samples from the agent’s behavior) when the dynamics of
the process is known. Our approach to IOC is based on the Maximum Entropy Inverse Optimal Control of [3]. Let us
first define a parametric-reward Markov Decision Process (θ-MDP). θ-MDP is defined as a tuple (X ,A,P, g, θ), where
X is a state space, A is a finite set of actions, P : X × A → M(X ) is the transition probability kernel, g : X × A → Rd

is a mapping from state-action pairs to feature vectors of dimension d, and θ ∈ Rd parametrizes the reward.2 In our
approach, the state space X can be large, e.g., RD. We consider θ-MDPs with finite horizon of T . Given a sequence
z1:T = (z1, . . . , zT ), we denote f(z1:T ) =

∑T
t=1 g(zt). In IOC, we assume that P is known (or estimated separately).

Consider a set of demonstrated trajectories Dn = {Z(i)
1:T }ni=1 with each trajectory Z1:T = (Z1, . . . , ZT ) ∼ ζ with

Zt = (Xt, At) and ζ being a distribution over the set of trajectory. Also denote ν ∈ M(X ) as the distribution of X1.
We only assume that the initial distribution ν is known, but the joint distribution ζ is not. For a policy π, denote Pπ(Z1:T )

as the distribution induced by following policy π. In the discrete state case, Pπ(Z1:T ) =
∏T−1
t=1 P(Xt+1|Xt, At)π(At|Xt)

(and similarly for continuous state spaces). Define the causal conditioned probability P {A1:T ||X1:T } =
∏T
t=1 P {At|Xt} =∏T

t=1 πt(At|Xt), which reflects the fact that future states do not influence earlier actions (compare with conditional prob-
ability P {A1:T |X1:T }). We define the causal entropy Hπ as Hπ = EPπ(Z1:T ) [− logP {A1:T ||X1:T }].
The primal optimization problem in Maximum Entropy Inverse Optimal Control estimator [3] is

arg max
π

Hπ (A1:T ||X1:T ) s.t. EPπ(Z1:T )

[
f(Z1:T )

]
=

1

n

n∑

i=1

f
(
Z

(i)
1:T

)
. (1)

2M(Ω) is the set of probability distributions over Ω.

1

Paper T45 184



Algorithm 1 – Backward pass

D(t)
m = {(Xi, Ai, R

t
i, X

′
i)}mi=1, Rt

i =
〈
θ , g(Xi, Ai)

〉

Q̂T ← 0
for t = T − 1, . . . , 2, 1 do
Y t
i = Rt

i + soft max Q̂t+1(X ′i, ·)
Q̂t ← argmin

Q
1
m

∑m
i=1

∣∣Q(Xi, Ai)− Y t
i

∣∣2 +

λQ,m ‖Q‖2H
π̂t(a|x) ∝ exp(Q̂(x, a))

end for

Algorithm 2 – Forward pass
f ← 0
repeat
X̂1 ∼ ν
for t = 1, . . . T − 1 do
Ât ∼ π̂t(·|X̂t), f += gt(X̂t, Ât)

X̂t+1 ∼ P(·|X̂t, Ât)
end for

until N sample paths
f ← 1

N
f (estimated log-partition function gradient)

The motivation behind this objective function is to find a policy π whose induced expected features, EPπ(Z1:T )

[
f(Z1:T )

]
,

matches the empirical feature count of the agent, that is 1
n

∑n
i=1 f(Z

(i)
1:T ), while not committing to any distribution beyond

what is implied by the data. The dual of this constrained optimization problem is (Theorem 3 of [3])

min
θ∈Rd

logZθ −
〈
θ ,

1

n

n∑

i=1

f
(
Z

(i)
1:T

)〉
, (2)

in which logZθ is the log-partition function (Theorem 3 of [3]). For notational compactness, define b̂n, b̄ ∈ Rd as b̂n =
1
n

∑n
i=1 f(Z

(i)
1:T ) and b̄ = EZ1:T∼ζ

[
f(Z1:T )

]
. The vector b̄ is the true expected feature of the agent, which is unknown.

A key observation is that one might calculate logZθ using a Value Iteration (VI) procedure: For any θ ∈ Rd, define
rt(x, a) = r(x, a) =

〈
θ , g(x, a)

〉
, and perform the following VI procedure: Set QT = rT , and for t = T − 1, . . . , 1,

Qt(x, a) = rt(x, a) +

∫
P(dy|x, a)Vt+1(y), Vt(x) = soft max(Qt(x, ·) , log

(∑

a∈A
exp(Qt(x, a))

)
. (3)

We compactly write Qt = rt + PaVt+1, where Pa(·|x) = P(·|x, a). It can be shown that logZθ = Eν [V1(X)]. Also the
MaxEnt policy solution to (1), which is in the form of Boltzmann distribution, is πt(a|x) = πt,θ(a|x) = exp(Qt(x,a))∑

a′∈A exp(Qt(x,a))
=

exp(Qt(x, a)− Vt(x)).

Instead of the original dual objective (2), we aim to solve the regularized dual objective

min
θ∈Rd

L(θ, b̂n) , logZθ −
〈
θ , b̂n

〉
+
λ

2
‖θ‖22 , (4)

which can be interpreted as a relaxation of the constraints in the primal [8]. It can be shown that ∇θ logZθ =
EPπ(Z1:T )

[
f(Z1:T )

]
with X1 ∼ ν, so the gradient of the loss function, which can be used in a gradient-descent-like

procedure, is

∇θL(θ, b̂n) = EPπ(Z1:T )

[
f(Z1:T )

]
− b̂n + λθ. (5)

For problems with large state space, the exact calculation of the log-partition function logZθ is infeasible as is the calcula-
tion of the the expected features EPπ(Z1:T )

[
f(Z1:T )

]
. Nonetheless, one can aim to approximate the log-partition function

and estimate the expected features. We use two key insights to design an algorithm that can handle large state spaces.
The first is that one can approximate the VI procedure of (3) using function approximators. The Approximate Value Iter-
ation (AVI) procedure has been successfully used and theoretically analyzed in the Approximate Dynamic Programming
and RL literature [9]. The second insight, which is also used in some previous work such as [10], is that one can estimate
an expectation by Monte Carlo sampling and the error behavior would beO( 1√

N
) (forN independent trajectories), which

is a dimension-free rate. These procedures are summarized in Algorithms 1 and 2. We describe each of them in detail.

To perform AVI, we use samples in the form of D(t)
m = {(Xi, Ai, Ri, X

′
i}mi=1 with Xi ∼ η ∈ M(X ), Ai ∼ πb(Xi), Ri ∼

R(·|Xi), and X ′i ∼ P(·|Xi, Ai). Here πb is a behavior policy.3 Given these samples, one can estimate Qt with Q̂t by

3In general, the distribution η used for the regression estimator is different from ζ. Furthermore, for simplicity of presentation we
consider that η is fixed for all time steps, but this is not necessary. In practice one might choose to use D(t)

m = D(t)
n extracted from the

demonstrated trajectories Dn.
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solving a regression problem in which the input variables are Zi = (Xi, Ai) and the target values are Ri + V̂t+1(X ′i), and

V̂t+1 = log
(∑

a∈A exp(Q̂t(x, a))
)

. That is, Q̂t ← Regress
({(

(Xi, Ai), Ri + V̂t+1(X ′i)
)}m

i=1

)
.

Let us define Q̃t = rt + PaV̂t+1 and note that E
[
Ri + V̂t+1(X ′i)|(Xi, Ai)

]
= Q̃t(Xi, Ai), i.e., Q̃t is the target regression

function. We will shortly see that the quality of approximation, which is quantified by εreg(t) , ‖Q̂t − Q̃t‖2, affects the
excess error of approximate MaxEnt IOC procedure.

The choice of regression estimator is flexible in approximate MaxEnt IOC algorithm. It is desirable to use a pow-
erful estimator that makes εreg(t) as small as possible. One such a choice is the family of regularized least-
squares estimators, which is also used in the Regularized Fitted Q-Iteration algorithm for control [11]: Q̂t ←
argminQ∈F |A|

1
m

∑m
i=1

∣∣∣Q(Xi, Ai)−
(
Ri + V̂t+1(X ′i)

)∣∣∣
2

+ λQ,mJ(Q). Here F |A| is the set of action-value functions, J(Q)

is the regularization functional, which allows us to control the complexity, and λQ,m > 0 is the regularization coefficient.
One particular choice is F |A| being a reproducing kernel Hilbert space (RKHS) and J being its corresponding norm, i.e.,
J(Q) = ‖Q‖2H. The AVI procedure with the RKHS-based formulation is summarized in Algorithm 1.

To estimate EPπ(Z1:T )

[
f(Z1:T )

]
we may use Monte Carlo sampling: Draw a sample state from the initial distribution ν

and then follow the sequence of policies πt and count the features along the trajectory. Repeat this procedure N times
(Algorithm 2).

Because of the approximation of AVI as well as the error caused by the Monte Carlo sampling, the solution θ̃n of the
approximate MaxEnt IOC procedure would have an error. We compare its loss to the ideal, but unavailable, case when the
log-partition function could be solved exactly, the expectation was calculated exactly, and the true expected feature vector
was available, i.e., minθ∈Rd L(θ, b̄). Huang et al. [1] provides a finite-sample error upper bound guarantee that compares
the loss of our procedure, that is L(θ̃n, b̂n), compared to the best possible loss assuming that the log-partition function
could be solved exactly, the expectation was calculated exactly, and the true expected feature vector was available, i.e.,
minθ∈Rd L(θ, b̄). Under certain reasonable simplifying assumptions, the result is that for any δ > 0, it holds that

L(θ̃n, b̄)− min
θ∈Rd

L(θ, b̄) ≤ cT
3
√
T ln(1/δ)

λ
√
n

εreg,

with probability at least 1 − δ.4 Here εreg is an upper bound on the sequence
(
εreg(t)

)T−1
t=1

. The value of c > 0 depends
on the MDP and distributions ν and η through concentrability coefficients [12, 13, 14], and the number of actions. The
regression error εreg depends on the regression estimator we use, the number of samples m, and the intrinsic difficulty of
the regression problem characterized by its smoothness, sparsity, etc.

3 Mental Simulation of Human Interactions

We validate our approach in the context of analyzing dual-agent interactions from video, in which the actions of one
person are used to predict the actions of another [5]. The key idea is that dual-agent interactions can be modelled as
an optimal control problem, where the actions of the initiating agent induces a cost topology over the space of reactive
poses – a space in which the reactive agent plans an optimal pose trajectory. Therefore, IOC can be applied to recover
this underlying reactive cost function, which allows us to simulate mental images of the reactive body pose.

A visualization of the setting is shown in Figure 1a. As shown in the figure, the ground truth sequence contains both
the true reaction sequence q1:T = (q1, . . . , qT ) on the left hand side (LHS) and the pose sequence of the initiating agent
(obervation) o1:T = (o1, . . . , oT ) on the right hand side (RHS). At training time, n demonstrated interaction pairs {q(i)1:T }ni=1

and {o(i)1:T }ni=1 are provided to learn the reward model of human interaction. At test time, only the initiating actions on
the RHS o1:T are observed, and we perform inference over the previously learned reactive model to obtain an optimal
reaction sequence x1:T . We follow [5] and model dual-agent interaction as an MDP in the following way. We use an
819-dimensional HOG feature [15] of an image patch around a person as our state (pose) representation. The actions are
defined as the transition between states (poses), which are deterministic because we assume humans have perfect control
over their body and one action will deterministically bring the pose to the next state.

Given two people interacting, we observe only the actions of the initiator on the RHS and attempt to simulate the reaction
on the LHS. For evaluation, we used videos from UT-interaction 1, UT-interaction 2 datasets [16]. The UTI datasets consist
of RGB videos and has six actions: hand shaking, hugging, kicking, pointing, punching, pushing. In each interaction

4The simplifications are that N ≥ nT , the number of samples m used in the regression estimation is in the same order as n, and the
regression problem is not trivial, so εreg does not go to zero faster than 1/

√
m. These are all reasonable assumptions.
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ObservationSimulationGroundtruth

(a)

AFD/NLL NN HMM DMDP KRL Ours
shake 4.57/447 5.99/285 4.33/766 5.26/467 4.08/213
hug 4.78/507 8.89/339 3.40/690 4.11/475 3.53/239
kick 6.29/283 6.03/184 5.34/476 5.94/286 3.92/197
point 3.38/399 6.16/321 3.20/714 3.66/382 3.06/391
punch 3.81/246 5.85/193 4.06/396 4.71/254 3.44/145
push 4.21/315 7.73/214 3.75/446 4.67/324 3.94/145

(b)

Figure 1: (a) Examples of ground truth, partial observation, and visual simulation over occluded regions. (b) AFD and
NLL per activity category for UTI

video, we occlude the ground truth reaction q1:T = (q1, . . . , qT ) on the LHS, observe o1:T = (o1, . . . , oT ) the action of
the initiating agent on the RHS, and attempt to visually simulate q1:T . Our baselines for comparisons are per frame
nearest neighbor (NN), a hidden Markov model (HMM), discretized MDP-based (DMDP) MaxEnt IOC formulation [4],
and the smoothing kernel-based RL (KRL) approach to MaxEnt IOC [5]. We compare the ground truth sequence with the
learned policy using two metrics of Negative Log-Likelihood (NLL) − logP (q1:T |o1:T ) = −∑t logP (qt|qt−1, o1:T ) and
the average image feature distance (AFD) 1

T

∑
t ||qt − xt||2, where xt is the resulting reaction pose at frame t.

The average NLL and image feature distance per activity for each baseline is shown in Figure 1b. To evaluate the
accuracy of our Monte Carlo (MC) sampling algorithm, we compare with the Forward pass in [4] using our learned
policy π̂. Empirical results verify that our MC sampling strategy (N = 500) is able to achieve comparable performance.
All optimal control based methods (DMDP and the proposed method) outperform the other two baselines in terms of
image feature distance. Although the DMDP is able to achieve a lower than NN and HMM image feature distance, its
NLL is worse then theirs. Furthermore, the proposed approximate MaxEnt IOC consistently outperforms the KRL value
function approximation. Our method directly performs IOC on the continuous state space rather than interpolating
value function of discretized state space. For more details, additional experiments, and comparison with other IOC and
IRL algorithms refer to Huang et al. [1].
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Abstract

Hierarchical Task Networks, or HTNs, are a popular model in planning for representing tasks or decision processes that
are organized in a hierarchy. Although HTNs are known to be at least as expressive as STRIPS planning, being expressive
enough to represent highly complex decision processes is not the main reason for their popularity. On the contrary, by
imposing ordering constraints on the tasks at each level of the hierarchy, an HTN can significantly simplify the search
for an action sequence that achieves a desired goal.

In this paper we present a novel algorithm that automatically generates HTNs from PDDL, the standard language for
describing planning domains. The HTNs that our algorithm constructs contain two types of composite tasks that interact
to achieve the goal of a planning instance. One type of task achieves fluents by traversing the edges of invariant graphs
in which only one fluent can be true at a time. The other type of task traverses a single edge of an invariant graph by
applying the associated action, which first involves ensuring that the preconditions of the action hold. The resulting
HTNs can be applied to any instance of a planning domain, and are provably sound, such that the solution to an HTN
instance can always be translated back to a solution to the original planning instance. In several domains we are able to
solve most or all planning instances using HTNs created from a single example instance.

Keywords: planning, classical planning, hierarchical task networks
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1 Introduction

Hierarchical Task Networks, or HTNs, are a popular tool for encoding expert knowledge in the form of a task hierarchy
into a planning domain. Each task in the hierarchy has several possible decompositions, each involving a fixed set of
subtasks and an associated partial order on subtasks. The solution to an HTN is a sequence of decompositions and
ordering choices that results in a sequence of primitive tasks that is applicable in the initial state. HTNs have been
successfully used in a variety of applications, usually by severely restricting the ordering choices to simplify the search
for a solution. In the extreme case, each task only has one possible decomposition in which case no search at all is
necessary to find a solution. Properly designing an HTN can be a time-consuming task for a human expert, but once this
work is done, there is little need to optimize search.

We ask the following question: is it possible to devise an automatic, domain-independent approach for generating HTNs
automatically from a basic description of a planning domain? Although there have been earlier attempts to generate
HTNs automatically [4, 7], these approaches rely on partial information about the task decomposition. In contrast,
we generate HTNs directly from the PDDL encoding of a planning domain and a single representative instance. Our
approach is to generate HTNs that encode invariant graphs, which are similar to lifted domain transition graphs but
can be subdivided on types. In experiments, we tested our approach on planning benchmarks from the International
Planning Competition (IPC). In four domains, our algorithm is able to construct HTNs that make it possible to efficiently
solve any instance using blind search. The approach is partially successful in other domains, but the branching factor
becomes a problem for large instances. Still, the experimental results partially answers our question in the affirmative.

2 Planning Domains

We consider the fragment of PDDL that models typed STRIPS planning domains with positive preconditions and goals.
A planning domain is a tuple d = 〈T , ≺, P, A〉, where T is a set of types, ≺ an inheritance relation on types, P a set of
predicates and A a set of actions. Each predicate p ∈ P and action a ∈ A has a parameter list (ϕ(p) and ϕ(a), respectively)
whose elements are types. Each action a ∈ A has a precondition pre(a), an add effect add(a), and a delete effect del(a).
Each precondition and effect consists of a predicate p and a mapping from ϕ(p) to ϕ(a).

Given a domain d, a STRIPS planning instance is a tuple p = 〈Ω, I, G〉, where Ω is a set of objects, I is an initial state, and
G is a goal state. Instance p implicitly defines a set F of propositional variables or fluents by assigning objects in Ω of the
appropriate type to the parameters of each predicate, and a set O of operators by assigning objects in Ω to the parameters
of each action. The initial state I ⊆ F and goal state G ⊆ F are both subsets of fluents.

Each operator o ∈ O has a precondition pre(o) ⊆ F , an add effect add(o) ⊆ F and a delete effect del(o) ⊆ F , each a subset
of fluents instantiated from the preconditions and effects of the associated action a. A state s ⊆ F is a subset of fluents
that are true, while fluents in F \ s are false. An operator o ∈ O is applicable in s if and only if pre(o) ⊆ s, and the result
of applying o in s is a new state s ⋉ o = (s \ del(o)) ∪ add(o). A plan for p is a sequence of operators π = 〈o1, . . . , on〉 such
that oi, 1 ≤ i ≤ n, is applicable in I ⋉ o1 ⋉ · · · ⋉ oi−1, and π solves p if it reaches the goal state, i.e. if G ⊆ I ⋉ o1 ⋉ · · · ⋉ on.

3 Hierarchical Task Networks

We introduce a notation for HTN domains inspired by Geier and Bercher [2]. An HTN domain is a tuple h = 〈P, A, C, M〉,
where P is a set of predicates, A is a set of actions (i.e. primitive tasks), C is a set of compound tasks and M is a set
of decomposition methods. Each task c ∈ C and method m ∈ M has an associated parameter list ϕ(c) and ϕ(m),
respectively. Unlike STRIPS domains, HTN domains are untyped and we allow negative preconditions. A task network
is a tuple tn = 〈T, ≺〉, where T ⊆ A ∪ C is a set of tasks and ≺ is a partial order on T . A method m = 〈c, tnm, pre(m)〉
consists of a compound task c ∈ C, a task network tnm = 〈Tm, ≺m〉 and a precondition pre(m). Each precondition p ∈ P
and task t ∈ Tm has an associated mapping from ϕ(p) or ϕ(t) to ϕ(m).

Given h = 〈P, A, C, M〉, an HTN instance is a tuple s = 〈Ω, I, tnI〉, where Ω is a set of objects, I is an initial state and
tnI is a task network. Just like for STRIPS, Ω induces sets F and O of fluents and operators, as well as sets C and M of
grounded compound tasks and methods. A grounded task network has tasks in O ∪ C, and is primitive if all tasks are
in O. The initial state I ⊆ F is a subset of fluents, and the initial grounded task network tnI = 〈{tI}, ∅〉 has a single
grounded compound task tI ∈ C.

We use (s, tn) →D (s′, tn′) to denote that a pair of a state and a task network decomposes into another pair, where
tn = 〈T, ≺〉 and tn′ = 〈T ′, ≺′〉. A valid decomposition consists in choosing a task t ∈ T such that t′ 6≺ t for each t′ ∈ T ,
and applying one of the following rules:

1. If t is primitive, the decomposition is applicable if pre(t) ⊆ s, and the resulting pair is given by s′ = s ⋉ t,
T ′ = T \ {t} and ≺′= {(t1, t2) ∈≺| t1, t2 ∈ T ′}.
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(in ?p ?t) (at ?p ?l) (in ?p ?a)

(loadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(unloadtruck ?p ?t ?l)
(at ?t ?l)

(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 1: Invariant graphs in LOGISTICS.

2. If t is compound, the decomposition method m = 〈t, tnm, pre(m)〉 is applicable if pre(m) ⊆ s, and the resulting
pair is given by s′ = s, T ′ = T \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈≺| t1, t2 ∈ T ′} ∪ {(t1, t2) ∈ T ′ × Tm | (t1, t) ∈≺} ∪ {(t2, t1) ∈ Tm × T ′ | (t, t1) ∈≺}.

The first rule removes a primitive task t from tn and applies the effects of t to the current state, while the second rule
uses a method m to replace a compound task t with tnm while leaving the state unchanged. If there is a finite sequence
of decompositions from (s1, tn1) to (sn, tnn) we write (s1, tn1) →∗

D (sn, tnn). An HTN instance is solvable if and only if
(sI , tnI) →∗

D (sn, 〈∅, ∅〉) for some state sn, i.e. the resulting task network is empty.

4 Invariants

In STRIPS planning, a mutex invariant is a subset of fluents such that at most one is true at any moment. We generalize
mutex invariants and use the Fast Downward planning system [3] to generate lifted (i.e. parameterized) invariants. We
then use lifted invariants to construct invariant graphs. One reason our approach needs a representative instance is to test
whether a lifted invariant corresponds to actual mutex invariants.

We illustrate the idea using the LOGISTICS domain. Fast Downward finds a single lifted invariant {(in ?o ?v), (at ?o ?p)},
i.e. a set of predicates with associated parameters. Parameters that appear across predicates (?o) are bound and take on
the same value for all predicates. The remaining parameters (?v and ?p) are free and can be assigned any object of the
appropriate type. Each assignment to bound parameters corresponds to a mutex invariant, formed by the set of fluents
induced by all assignments to free parameters. The meaning of the lifted invariant for LOGISTICS is that across all
instances, a given object ?o is either in a vehicle or at a location.

Given an invariant, our algorithm generates one or several invariant graphs by going through each action, finding each
transition of each invariant that it induces (by pairing add and delete effects and testing whether the bound objects are
identical), and mapping the types of the predicates to the invariant. We then either create a new invariant graph for the
bound types or add nodes to an existing graph corresponding to the mapped predicate parameters.

Figure 1 shows the invariant graphs in LOGISTICS. In the top graph (G1), the bound object is a package ?p, in the middle
graph (G2) a truck ?t, and in the bottom graph (G3) an airplane ?a. Note that the predicate in is not actually part of the
two bottom graphs, since trucks and planes cannot be inside other vehicles. Nevertheless, the invariant still applies: a
truck or plane can only be at a single place at once. Each edge corresponds to an action that deletes one predicate of the
invariant and adds another. To do so, the action has to include the parameters of both predicates, including the bound
objects. In the figure, the invariant notation is extended to actions on edges, which have bound and free parameters.

5 Generating HTNs

In this section we describe our algorithm for automatically generating HTNs. The idea is to construct a hierarchy of tasks
that traverse the invariant graphs to achieve certain fluents. In doing so there are two types of interleaved tasks: one that
achieves a fluent in a given invariant (which involves applying a series of actions to traverse the edges of the graph), and
one that applies the action on a given edge (which involves achieving the preconditions of the action).

Formally, our algorithm takes as input a STRIPS planning domain d = 〈T , ≺, P, A〉 and outputs an HTN domain h =
〈P ′, A′, C, M〉. The algorithm first constructs the invariant graphs G1, . . . , Gk described above. Below we describe the
components of the generated HTN domain h.

5.1 Predicates and Tasks

The set P ′ ⊇ P extends P with three predicates for each p ∈ P : persist-p, visited-p, and achieving-p. Respectively we
use these predicates to temporarily cause p to persist, to flag p as an already visited node during search, and to prevent
infinite recursion in case p or another predicate from the same invariant is currently being achieved.
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(:method (achieve-p)
()
((set-flags-i) (achieve-p-i)
(clear-flags-i) (lock-p)))

(:method (achieve-p-i)
((p′) (¬visited-p′))
((visit-p′) (do-p′-a-i) (achieve-p-i)))

(:method (do-p-a-i)
()
(((achieve-p1) · · · (achieve-pk)) (a)
((unlock-p1) · · · (unlock-pk))))

Figure 2: Outline of the generated methods.

Each action a ∈ A from the input STRIPS planning domain d becomes a primitive task of h. We add extra preconditions
to ensure that a is not grounded on the wrong type, and that a does not delete a predicate that is supposed to persist. We
also add primitive tasks for visiting, locking and unlocking each predicate p ∈ P . Visiting marks a predicate as visited,
locking causes a predicate to temporarily persist, while unlocking frees a predicate so that it can be deleted again. For
each invariant graph Gi, we add two primitive tasks set-flags-i that marks each predicate p ∈ P in Gi as being achieved,
and clear-flags-i that clears all flags for Gi.

We also include three types of compound tasks. For each predicate p ∈ P that appears in any invariant graph, a task
achieve-p that achieves p. For each invariant graph Gi and each p ∈ P in Gi, a task achieve-p-i that achieves p in Gi.
For each invariant graph Gi, each predicate p ∈ P in Gi, and each outgoing edge of p (corresponding to an action a ∈ A),
a task do-p-a-i. The first task is a wrapper task that achieves a predicate p in any invariant, while the other two are the
interleaved tasks for achieving p by traversing the edges of an invariant graph Gi.

5.2 Methods

We describe the methods associated with each of the three types of compound tasks in turn. Since we use the HTN
planner SHOP [6] to solve HTN instances, we outline each method in SHOP syntax in Figure 2.

The first type of task, achieve-p, has one associated method for each invariant graph Gi in which p appears. This method
decomposes achieve-p into the task achieve-p-i, setting and clearing flags and locking p. The second type of compound
task, achieve-p-i, has one associated method for each predicate p′ in the invariant graph Gi and each outgoing edge of p′

(corresponding to an action a that deletes p). Intuitively, one way to achieve p in Gi, given that we are currently at some
different node p′, is to traverse the edge associated with a using the compound task do-p′-a-i. Before doing so we mark
p′ as visited to prevent us from visiting p′ again. After traversing the edge we recursively achieve p from the resulting
node. To stop the recursion we define a “base case”, a method that is applicable only when p holds and decomposes
achieve-p-i into an empty task list.

The third type of compound task, do-p-a-i, has only one associated method that applies action a to traverse an outgoing
edge of p in the invariant graph Gi. The tasks in the decomposition have to ensure that all preconditions p1, . . . , pk of
a hold (excluding p, which holds by definition, as well as any static preconditions of a). Thus the method achieves all
preconditions of a (locking them temporarily), then applies a, then unlocks the preconditions. To restrict the available
choices when solving the HTN, we impose a total order on all tasks, except tasks (achieve-p1) · · · (achieve-pk) of the
method do-p-a-i, since it may be difficult to determine in which order to achieve the preconditions of an action.

6 Optimizations

Achieving the preconditions of an action a in any order is inefficient since an algorithm solving the HTN instance may
have to backtrack repeatedly. For this reason, we include an extension of our algorithm that uses a simple inference
technique to compute a partial order in which to achieve the preconditions of a. We define a set of predicates whose
value is supposed to persist, and check whether a path through an invariant graph is applicable given these persisting
predicates. While doing so, only the values of bound variables are known, while free variables can take on any value.
We match the bound variables of predicates and actions to determine whether an action allows a predicate to persist.

We use the same algorithm for precondition ordering to order a set of goal predicates PG. We then order a set of fluents
of each predicate p ∈ PG using a similar algorithm. To do so, the invariant graphs need to be partially grounded on each
pair of fluents to be ordered. This partial grounding is done over the example instance only. The algorithm finds the
indices of the parameters of p that invalidate the invariant, and generalize to any given instance of the planning domain.

7 Results

We ran our algorithm on the 9 typed STRIPS planning domains from IPC-2000 and IPC-2002, in order to directly compare
the performance of our automatically generated HTNs with hand-crafted HTNs. Since hand-crafted planners were not
allowed to compete in later competitions, there exist no hand-coded HTNs from those competitions to compare to.
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HTNPrecon HTNGoal FDBlind Hand-crafted
FREECELL[60] 0 - - 0 - - 5 228 17834 60 - -
BLOCKS[35] 0 - - 12 50.84 6877 18 32.5 7856 35 0.3 0
ROVERS[20] 20 1.7 16 20 2.0 16 6 219 32787 20 1 1
LOGISTICS[80] 80 8.3 75 80 29.2 75 10 1.58 432 80 - -
DRIVERLOG[20] 7 74.5 5080 8 60.1 4913 7 40.2 3421 20 - -
ZENOTRAVEL[20] 4 1527.8 194477 6 1453.8 161365 8 162 5994 20 0.2 0
MICONIC[150] 150 0.66 0 150 0.75 0 55 509 75372 150 0.0 0
SATELLITE[20] 18 0.59 1.2 20 1 0.7 6 702 22982 20 - -
DEPOTS[22] 4 59.73 4655 15 1178.8 50404 4 53.5 6034 22 - -

Table 1: Results in the IPC-2000 and IPC-2002 domains, with the number of instances of each domain shown in brackets.

We performed experiments with two versions of our algorithm. The base algorithm that achieves the preconditions and
goals in any order was slow in testing, so we activated precondition ordering in both versions. The first version, HT-
NPrecon, achieves the goals in the order they appear in the PDDL definition. The second version, HTNGoal, implements
our goal ordering strategy in addition to precondition ordering.

Table 1 shows the results for the 9 domains. For each planner we report the number of instances solved and the maximum
time taken to solve an instance. We also report the maximum number of backtracks (in thousands). For hand-crafted
domains which could not be solved by the JSHOP planner we provide only coverage. As expected, our goal ordering
strategy mainly improves the performance of the algorithm in BLOCKS and DEPOTS, the two domains that are most
sensitive to goal ordering. In addition, goal ordering enables us to solve two additional instances in SATELLITE. The
hand-crafted HTNs successfully solve all instances of all domains with little backtracking; however, our algorithm gen-
erates HTNs in a fraction of a second, while the hand-crafted HTNs were carefully designed by human experts.

8 Conclusion

In this paper we have presented what we believe to be the first domain-independent algorithm for generating HTNs. All
the algorithm needs is a PDDL description of the planning domain and a single representative instance. In four domains,
the algorithm successfully generates HTNs that can be used to efficiently solve any instance, thus being competitive with
HTNs designed by human experts and heuristic search algorithms. Although the success of the algorithm is limited in
the remaining domains, we believe that there are still many potential benefits. In many cases, even though the resulting
HTN is not constrained enough, subtasks identified by the algorithm may still be useful. This is the case, for example, in
BLOCKS, where the resulting HTN contains tasks and methods for putting a block on top of another block. In such cases,
the algorithm can help suggest initial decompositions that can later be refined by a human expert.

The avenue for future research that we find most promising is to test different restrictions on the invariant graphs. If
the representative instance can still be solved under some restriction, the resulting HTN may still be able to solve other
instances, and the restriction has the effect of reducing the branching factor. In essence, this mechanism would reduce
the number of ways to traverse the invariant graphs.

Another option is to translate the resulting HTNs back to classical planning instead of using an HTN solver [1, 5]. In this
way we can take advantage of the reduced branching factor offered by the HTNs, and use heuristic search planners to
solve the resulting classical planning instances.
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Abstract

In this paper, we are interested in systems with multiple agents that wish to cooperate in order to accomplish a common
task while a) agents have different information (decentralized information) and b) agents do not know the complete
model of the system i.e., they may only know the partial model or may not know the model at all. The agents must
learn the optimal strategies by interacting with their environment i.e., by multi-agent Reinforcement Learning (RL).
The presence of multiple agents with different information makes multi-agent (decentralized) reinforcement learning
conceptually more difficult than single-agent (centralized) reinforcement learning.

We propose a novel multi-agent reinforcement learning algorithm that learns ε-team-optimal solution for systems with
partial history sharing information structure, which encompasses a large class of multi-agent systems including delayed
sharing, control sharing, mean field sharing, etc. Our approach consists of two main steps as follows: 1) the multi-
agent (decentralized) system is converted to an equivalent single-agent (centralized) POMDP (Partial Observable Markov
Decision Process) using the common information approach of Nayyar et al, TAC 2013, and 2) based on the obtained
POMDP, an approximate RL algorithm is constructed using a novel methodology. Particularly, in the second step, since
the POMDP obtained in the first step requires the complete-knowledge of system model, we introduce a new concept
that we call “Incrementally Expanding Representation (IER)”. The main feature of IER is to remove the dependency of
the POMDP from complete-knowledge of the model. Then, based on an appropriately defined IER, we follow three
sub-steps: 2a) convert the POMDP to a countable-state MDP ∆, 2b) approximate ∆ with a sequence of finite-state MDPs
{∆N}∞N=1, and 2c) use a RL algorithm to learn optimal strategy of MDP ∆N .

We show that the performance of the RL strategy converges to the optimal performance exponentially fast. We illustrate
the proposed approach and verify it numerically by obtaining a multi-agent Q-learning algorithm for two-user Multi
Access Broadcast Channel (MABC) which is a benchmark example for multi-agent systems.

Keywords: Reinforcement Learning, Multi-agent Systems, Stochastic Sys-
tems.
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1 Introduction

In this paper, we propose a multi-agent Reinforcement Learning (RL) algorithm that guarantees team-optimal solution.
Existing approaches for multi-agent learning may be categorized as follows: exact methods and heuristics. The exact
methods rely on the assumption that the information structure is such that all controllers can consistently update the
Q-function. These include approaches that rely on social convention and rules to restrict the decisions made by the
controllers [5]; approaches that use communication to convey the decisions to all controllers [6]; and approaches that
assume that the Q-function decomposes into a sum of terms, each of which is independently updated by a controller [7].
Heuristic approaches include joint action learners heuristic [8] where each controller learns the empirical model of the
system in order to estimate the control action of other controllers; frequency maximum Q-value heuristic [9] where
controllers keep track of the frequency with which each action leads to a “good” outcome; heuristic Q-learning [10]
which assigns a rate of punishment for each controller; and distributed Q-learning [11] which uses predator-prey models
to assign heuristic sub-goals to individual controllers. To best of our knowledge, there is no RL approach that guarantees
team optimal solution. In this paper, we present an approach that guarantees team-optimal solution.

2 System Model

Let Xt ∈ X denote the state of a dynamical system controlled by n agents. At time t, agent i observes Y it ∈ Yi and
chooses U it ∈ U i. For ease of notation, we denote the joint action and the joint observation by Ut = (U1

t , . . . , U
n
t ) and

Yt = (Y 1
t , . . . , Y

n
t ), respectively. The dynamics of the system are given by

Xt+1 = f(Xt,Ut,W
s
t ), (1)

and the observations are given by
Yt = h(Xt,Ut−1,W

o
t ). (2)

In this paper, all system variables are considered finite valued. Let Iit ⊆ {Y1:t,U1:t−1} be information available at agent i
at time t. The collection ({Iit}∞t=1, i = 1, . . . , n) is called the information structure. In this paper, we restrict attention to an
information structure called partial history sharing (PHS) [1], which will be defined later.

At time t, agent i chooses action U it according to control law git as follows

U it = git(I
i
t). (3)

We denote gi = (gi1, g
i
2, . . .) as strategy of agent i and g = (g1, . . . ,gn) as joint strategy of agents. The performance of

strategy g is measured by the following infinite-horizon discounted cost

J(g) = Eg

[ ∞∑

t=1

βt−1`(Xt,Ut)

]
, (4)

where discount factor β ∈ (0, 1). We are interested in the following problem.

Problem 1 Given the information structure, action spaces {U i}ni=1, observation spaces {Yi}ni=1, discount factor β, and any ε > 0,
develop a (model-based or model-free) reinforcement learning algorithm that guarantees an ε-optimal strategy g∗.

3 Preliminaries on Partial History Sharing

Herein, we present a simplified version of partial history sharing information structure, originally presented in [1].

Definition 1 ( [1], Partial History Sharing (PHS)) Consider a decentralized control system with n agents. Let Iit denote the
information available to agent i at time t. Assume Iit ⊆ Iit+1. Then, split the information at each agent into two parts: common
information Ct =

⋂n
i=1 I

i
t i.e. the information shared between all agents and local information M i

t = Iit\Ct that is the local
information of agent i. Define Zt := Ct+1\Ct as common observation, then Ct+1 = Z1:t. An information structure is called partial
history sharing when the following conditions are satisfied:

a) The update of local information M i
t+1 ⊆ {M i

t , U
i
t , Y

i
t+1}\Zt, i ∈ {1, . . . , n}.

b) For every agent i, the size of local information M i
t and the size of common observation Zt are uniformly bounded in time t.

These conditions are fairly mild and are satisfied by a large class of models.

Remark 1 Note that conditions (a) and (b) are valid even if there is no common information between agents i.e., Ct = ∅.
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4 Approach

In this section, we derive our results for systems that have partial history sharing information structure defined above.
Our approach consists of two steps. In the first step, we consider the setup of the complete-knowledge of the model
and use the common information approach of [1] to convert the multi-agent system with PHS information structure to an
equivalent single-agent POMDP. In the second step, based on the obtained POMDP, we develop an approximate RL
algorithm for the setup of incomplete-knowledge of the model. We show that the error associated with the approximate
RL converges to zero exponentially fast.

4.1 Step 1: An Equivalent single-agent POMDP

In this section, we present common information approach of [1] and its main results for the setup of complete-knowledge
of the model described in Section 2. Let Γit :Mi 7→ U i be the mapping from the local information of subsystem i to action
of subsystem i at time t i.e. U it = Γit(M

i
t ).

Consider a virtual coordinator (single agent) that observes the common information shared between all subsystems by
time t i.e. Ct. Based on Ct, the coordinator prescribes functions Γt = (Γ1

t , . . . ,Γ
n
t ) ∈ G to subsystems, where G =

∏n
i=1 Gi

denotes the space of joint mappings Γt and Gi denotes the space of mappings Γit. Hence, Γit = ψit(Ct), ∀i ∈ {1, . . . , n}
where ψt = {ψ1

t , . . . , ψ
n
t } is called the coordination law and Γt = (Γ1

t , . . . ,Γ
n
t ) is called the prescription. In the sequel, for

ease of notation, we will use the following compact form for the coordinator’s law, Γt = ψt(Ct).We callψ = {ψ1,ψ2, . . .}
as the coordination strategy. In the coordinated system, dynamics and cost function are as same as those in the original
problem in Section 2. In particular, the infintie-horizon discounted cost in the coordinated system is as follows:

J(ψ) = Eψ
[ ∞∑

t=1

βt−1`(Xt,Γ
1
t (M

1
t ), . . . ,Γnt (Mn

t ))

]
. (5)

Lemma 1 ( [1], Proposition 3) The original system described in Section 2 with PHS information structure is equivalent to the
coordinated system.

According to [1], Πt = P(Xt,Mt|Z1:t−1,Γ1:t−1) is an information state for the coordinated system with initial state
Π1 = PX . It is shown in [1] that

1. There exists a function φ such that Πt+1 = φ(Πt,Γt, Zt).
2. The observation Zt only depends on (Πt,Γt) i.e. P(Zt=zt|Π1:t=π1:t,Γ1:t=γ1:t)=P(Zt=zt|Πt=πt,Γt=γt).

3. There exists a function ˆ̀such that ˆ̀(πt,γt)=E[`(Xt,Ut|Z1:t−1=z1:t−1,Γ1:t=γ1:t)].

Assume that the initial state π1 is fixed. LetR denote the reachable set of above centralized POMDP that contains all the
realizations of πt generated by πt+1 = φ(πt,γ, z),∀γ ∈ G,∀z ∈ Z,∀t ∈ N, with initial information state π1. Note that
since all the variables are finite valued, then G (set of all prescriptions γ) and Z (set of all observations of the coordinator)
are finite sets. Hence, R is at most a countable set. In the next step, we develop an approximate RL algorithm based on
the obtained POMDP for the setup of incomplete-knowledge of the model.

4.2 Step 2: An Approximate RL algorithm for POMDP

In the previous step, we identified a single-agent POMDP that is equivalent to the multi-agent system with PHS infor-
mation structure. However, the obtained POMDP requires the complete knowledge of the model. To circumvent this
requirement, we introduce a new concept that we call Incrementally Expanding Representation (IER). The main feature of
IER is to remove the dependency of the POMDP from the complete knowledge of the model. Using the IER, we fol-
low three sub-steps: 2a) convert the POMDP to a countable-state MDP ∆, 2b) construct a sequence of finite-state MDPs
{∆N}∞N=1 of MDP ∆, and 2c) use a generic RL algorithm to learn an optimal strategy of ∆N .

Definition 2 (Incrementally Expanding Representation (IER)) Let {Sk}∞k=1 be a sequence of finite sets such that S1 ( S2 (
. . . ( Sk ( . . ., and S1 is a singleton, say S1 = {s∗}. Let S = limk→∞ Sk be the countable union of above finite sets, B : S → R
be a sujrjective function that maps S to the reachable set R, and f̃ : S × G × Z → S. The tuple 〈{Sk}∞k=1, B, f̃〉 is called an
incrementally expanding representation (IER), if it satisfies the following properties:

(P1) Incremental Expansion: For any γ ∈ G, z ∈ Z, and s ∈ Sk, we have that

f̃(s,γ, z) ∈ Sk+1. (6)

(P2) Consistency: For any (γ1:t−1, z1:t−1), let Πt be the information state of the obtained POMDP and St be the state obtained by
recursive application of (6) starting from S1 = s∗. Then, Πt = B(St).
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Lemma 2 Every multi-agent system with PHS information structure has at least one IER.

4.2.1 Countable-state MDP ∆

Let the tuple 〈{Sk}∞k=1, B, f̃〉 be an IER of the POMDP obtained in the first step. Then, define MDP ∆ with countable
state space S, finite action space G, and dynamics f̃ such that:

(F1) S = limk→∞ Sk is the (countable) state space and G is the finite action space of MDP ∆. The initial state is
singleton s∗. The state St ∈ Sk, k ≤ t, evolves as follows:

St+1 = f̃(St,Γt, Zt), St+1 ∈ Sk+1,Γt ∈ G, Zt ∈ Z,
where observation Zt only depends on (St,Γt). At time t, there is a cost depending on the current state St ∈ S
and action Γt ∈ G given by ˜̀(St,Γt) = ˆ̀(B(St),Γt) = ˆ̀(Πt,Γt).

(F2) State space S, action space G, and dynamics f̃ do not depend on the unknowns.

The performance of a stationary strategy ψ̃ : S 7→ G is quantified by J̃(ψ̃) = Eψ̃
[∑∞

t=1 β
t−1 ˜̀(St,Γt)

]
.

Lemma 3 There exists at least one ∆ that satisfies F1 and F2. Also, let ψ̃∗ be an optimal strategy of MDP ∆. Construct a strategy
ψ∗ for the coordinated system as follows: ψ̃∗(s) =: ψ∗(B(s)),∀s ∈ S. Then, J̃(ψ̃∗) = J(ψ∗) and ψ∗ is an optimal strategy for
the coordinated system, and therefore can be used to generate an optimal strategy for the original multi-agent system.

4.2.2 Finite-state incrementally expanding MDP ∆N

In this part, we construct a series of finite-state MDPs {∆N}∞N=1, that approximate the countable-state MDP ∆ as follows.
Let ∆N be a finite-state MDP with state space SN and action space G. The transition probability of ∆N is constructed as
follows. Pick any arbitrary set D∗ ∈ SN . Remap every transition in ∆ that takes the state s ∈ SN to s′ ∈ SN+1\SN to a
transition from s ∈ SN to any (not necessarily unique) state in D∗. In addition, the per-step cost function of ∆N is simply
a restriction of ˜̀ to SN × G. Also, we assume that there exists an action or a sequence of actions that if taken, the system
transmits to a known state (states) d∗ in D∗. Then, dynamics of ∆N is as follows.

St+1 =

{
f̃(St,Γt, Zt) f̃(St,Γt, Zt)∈SN
d∗ f̃(St,Γt, Zt)∈SN+1\SN

(7)

Theorem 1 Let ψ̃∗ be an optimal strategy of MDP ∆ and ψ̃∗N be an optimal strategy of MDP ∆N . Then, the difference in
performance is bounded as follows: |J̃(ψ̃∗) − J̃N (ψ̃∗N )| ≤ 2βτN

1−β Lmax , where Lmax denotes the maximum instantaneous cost and
τN is a model dependent parameter that is N ≤ τN .

4.2.3 RL algorithm for MDP ∆N

Let T be a generic (model-based or model-free) RL algorithm designed for finite-state MDPs with infinite horizon dis-
counted cost. By a generic RL algorithm, we mean any algorithm which fits to the following framework. At each iteration
k ∈ N, T knows the state of system, selects one action, and observes an instantaneous cost and the next state. The strategy
learned by T converges to an optimal strategy as k →∞.

Let ψ̃kN : SN → G be the learned strategy associated with RL algorithm T operating on MDP ∆N at iteration k such that
lim
k→∞

|J̃N (ψ̃kN )− J̃N (ψ̃∗N )| = 0. (8)

Now, we convert (translate) the strategies in ∆N to strategies in the original multi-agent system described in Section 2,
where the actual learning happens. Hence, we define a strategy gkN := (gk,iN , . . . , gk,nN ), at iteration k, as follows:

gk,iN (s,mi) := ψ̃k,iN (s)(mi),∀s ∈ SN ,∀mi ∈Mi,∀i, (9)

where ψ̃k,iN denotes the ith term of ψ̃kN and state s updates according to (7).

Theorem 2 Let J∗ be the optimal performance of the original multi-agent system given in (4). Then, the approximation error
associated with using the learned strategy is bounded as follows:

lim
k→∞

|J∗ − J(gkN )| = |J̃(ψ̃∗)− J̃N (ψ̃∗N )| ≤ εN , (10)

where εN = 2βτN

1−β Lmax ≤
2βN

1−βLmax. Note that the error goes to zero exponentially in N .
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5 Example

Consider a 2-user multi access broadcast channel (MABC) system first defined in [4]. The system consists of 2 users that
have a buffer of size 1 (thus, Xt = (X1

t , X
2
t ) ∈ {0, 1}2). Packets arrive at each user i according to independent Bernoulli

processes with rate pi. Each user observes the state of its own queue i.e. (Y it = Xi
t) and transmits if it has a packet (i.e.

U it ∈ {0, 1} and U it ≤ Xi
t ). If only one user transmits, then the transmission is successful and the packet is removed from

the queue. If both users transmit, there is a ”collision” and the packets remain in the queues. Users can sense whether the
channel was used or if a collision took place. Thus, the information available at each user i is Iit = {Xi

t ,U1:t−1}, where
Ut = (U1

t , U
2
t ). The objective is to maximize the throughput. Hence, the instantaneous reward is defined as follows:

r(Xt,Ut) = U1
t + U2

t − 2U1
t U

2
t .

At time t, the common observation Zt = Ut and the common information Ct = {U1:t−1}. For this specific model,
the prescription γi is completely specified by Ait := γit(1) (since γit(0) is always 0). Hence, U it = γit(X

i
t) = Ait · Xi

t .
Therefore, we may equivalently assume that the coordinator generates actions At = (A1

t , A
2
t ). Define Πt = (Π1

t ,Π
2
t ),

Πi
t = P(Xi

t = 1 | U1:t−1,A1:t−1), as information state for the coordinated system with initial state Π1 = (p1, p2). Thus,
the reachable set R is given by R := {(1, 1), (1, p1), (p2, 1), (p1, p2)} ∪ {(p1, Tn2 p2) : n ∈ N} ∪ {(Tn1 p1, p2) : n ∈ N},
where Tni q = Ti(T

n−1
i q). Let b1, b2 be any arbitrary number in (0, 1). Define S = {Sk}∞k=1 as the countable state space

of ∆, where S1 = {(0, 0)} and Sk = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 1 − bi1), (1 − bi2, 0)}k−1i=1 , k ≥ 2. The action space is
A = {(0, 1), (1, 0), (1, 1)} (note that the action (0, 0) is dominated, so it is removed without loss of optimality).

Figure 1: This figures shows the learning pro-
cess of MDP ∆N in a few snapshots. In this sim-
ulation, we use the following numerical values:
b1 = 0.25, b2 = 0.83, N = 20, β = 0.99, p1 =
0.3, p2 = 0.6. In particular, the optimal strategy
is a recurrent class consisting of states (0, 1− b11),
(1 − b12, 0), (1 − b22, 0), and (1 − b32, 0). The learn-
ing procedure is plotted in black and the optimal
recurrent class is plotted in red. It is seen that
the state of the system is eventually trapped in
the optimal recurrent class. The optimal strategy
says that user with rate of 0.6 must transmit 3
times more than the user with rate of 0.3.
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Abstract
The planning process is central to goal-directed behaviour in any task that requires the organization of a series of actions aimed at
achieving a goal. Although the planning process has been investigated thoroughly, relatively little is known about how this process
emerges and evolves during childhood. In this paper we describe three reinforcement learning models of planning, in the Tower of
London (ToL) task, and use Bayesian analysis to fit each model to pre-existing data from 3-4 year-old and 5-6 year-old children
performing the task. The models all capture the increased organisation seen in the older children’s performance. It is also shown
that, at least for this dataset, the most complex model – that with discounting of future rewards and pruning of highly aversive states
– provides no additional explanatory power beyond a simpler discounting-only model. Insights into developmental aspects of the
planning process are discussed.

Keywords: Reinforcement Learning, Shaping Rewards, Planning, Tower of London
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1 Introduction

Environmental stimuli combined with external rewards or punishments may elicit certain responses, which ultimately lead to learned
behaviours. In this context, extrinsic motivation, which means to be moved to do something because of a specific reward outcome,
may be distinguished from intrinsic motivation, which means to be moved to do something because it is inherently enjoyable [1].
Intrinsic motivation is evident in animal behaviour, where it has been found that organisms engage in exploratory, playful and
curiosity-driven behaviour even in the absence of an environmental reinforcement [4]. Similarly, researchers in many areas in
cognitive science emphasize the importance of intrinsically motivated behaviour in human development and learning.

Our concern in this paper is whether instrinsic motivation might play a role in the cognitive processes underlying planning. Human
planning has been studied extensively using look-ahead puzzles, in which subjects have to preplan mentally a sequence of moves in
order to transform a starting configuration of the puzzle to a goal configuration, subject to a set of rules. In the Tower of London
(TOL; [7]) task, for example, subjects are required to rearrange three balls on three pegs so that the configuration of balls matches
a goal state (see figure 1), but in doing so they must adhere to a set of rules or constraints. Thus they must move only one ball at a
time, and place it back on a peg before moving another ball. The task can be viewed as a sequential decision making puzzle, with
reward obtained if / when the player achieves the goal state. Here, however, we use computational methods to explore the effects
of more frequent feedback – reflecting intrinsic motivation – on appropriate moves that may guide the subject towards solving the
puzzle. Specifically, we model an existing dataset from children’s planning on the ToL by incorporating a reward shaping function,
representing the intrinsic motivation of the child, within the framework of model-based reinforcement learning.

Figure 1: A typical Tower of London problem. The task consists of a board with three pegs, each one with different heights, and
three different coloured balls. The right peg can contain up to three balls, the middle peg up to two balls and the left one only one
ball. The balls are initialy arranged in one configuration on the pegs and the goal is to move balls – one at a time and from peg to peg
– in order to achieve the given goal configuration. The problem shown requires 3 moves, but more difficult problems may require up
to 7 moves.

2 Modelling the ToL task

In problems such as the ToL, the goal is achieved by decomposing it into subgoals and evaluating the order of simple moves towards
the goal [3]. It is this evaluation procedure that guides our approach to planning in such a task. We model children’s behaviour on
the ToL as a Markov Decision Process (MDP) and follow model-based approaches.

2.1 The Extended State Space of ToL

Within the empirical study on which this work is based (described in more detail below), some children (especially the younger ones)
failed to adhere to the task rules. That is, although it was explained to each child that he/she should only move one ball at a time
using only one hand, and although the child in each case claimed to understand this restriction and demonstrated this knowledge in a
series of practice trials, sometimes he/she would pick up one ball in one hand in order to reorder the position of the other two balls
that would otherwise require a series of moves. This typically occurred when the state of the apparatus almost matched the goal
state, with two balls on one peg being in the wrong order (e.g., red immediately above blue when blue should have been immediately
above red). One possibility in this case is that the child’s look-ahead process suggests to him/her that there is great similarity between
the current and goal states, yet any (legal) move would result in a decrease in similarity. From the perspective of search through a
decision tree, pruning of the tree might take place when facing such situations, leaving the child with only one viable option – to
move both balls at the same time and hence break the task rules.

In order to accommodate breaking the task rules by subjects, we expand both the state space (from 36 states to 114 states) by adding
two more locations representing the hands of the child (effectively two additional pegs, each of which can hold at most one ball),
and the set of available actions (adding actions corresponding to moving balls to and from the hands). This yields an extended state
transition matrix T : S×A with [114×25] entries.

2.2 The Reward Function

The design of the transition matrix is straightforward, as the task is deterministic, but for the reward function further assumptions are
necessary. In the Tower of London task, the reward from the environment is given to the subject only at the goal state. In addition
to this, however, we assume that subjects are driven step-by-step towards the goal state by an internal reward function, which is
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related to the similarity of the current configuration of the task, state st at time t, to the desired configuration (i.e., the goal state).
By “similarity” we mean the degree of overlap, in terms of positions of the balls at the pegs, between two states (as defined in the
following paragraph). In other words, in the planning process we assume that subjects evaluate their future actions in terms of not
just whether they achieve the goal state, but (for other states) how close they bring them to the goal state. Previous work has shown
that such a modification to the reward structure often suffices to render straightforward otherwise intractable learning problems.
Additionally, proper modification can leave the optimal strategy invariant (see [6]).

To calculate state similarity, as required by the internal reward function, we represent each state within the ToL by a set of 24 binary
features (bits). For each ball we assign three bits to represent its vertical position on the peg and five bits for the peg that the ball is
placed on (three for the real pegs and two representing the hands). According to this scheme if the red ball is at the lowest position on
the first peg then it will be represented as Rpos = (1,0,0) and Rpeg = (1,0,0,0,0). The state vector is the concatenation of the vectors
for each ball: st = (Rpos,Rpeg,Gpos,Gpeg,Bpos,Bpeg). We then define the similarity between two states as the inner product between
those states. The reward shaping function therefore has the form F(s,s′) = φ(s′)− φ(s) where φ(x) = xT xgoal is the inner product
between the state representations under comparison (with bold letters denoting the state vector of features).

It seems that some children perceive some configurations (“towers” where all three balls are on the longest peg, or “flats” where all
three balls are on different pegs) as being the same, independent of the arrangement of colour. The above approach helps us capture
similarity in the structure of a particular configuration (i.e., the number of balls on each of the pegs is the same for both configurations
independent of colour).

3 Methods

3.1 Model-based analysis

In this section we describe three model-based RL models used to describe the planning process. The models, the model fitting and
model comparison procedures are described in detail in [5] but we repeat the description here for completeness. All three models
assume that subjects choose actions stochastically, with the probability of choosing action (or choice) c from state s at time t given
by:

p(ct |st) =
eβQ(st ,ct )

∑c′ eβQ(st ,c′)
(1)

The parameter β is an inverse temperature that represents the subject’s sensitivity to rewards. The three models differ in the calculation
of the function Q(st ,ct).

The first model is the Lookahead model. This model is simply a tree search model in the sense that searches all available options
until the end of the tree:

Qlo(s,c) = R(s,c)+max
c′

Qlo(s′,c′) (2)

where s′ is the successor state from state s by selecting choice c. In all the models we set R(s,c) = (1−w)Rext +wRint . This means
that a low w will indicate goal directed behaviour whereas high w indicates planning driven by state similarity.

For the extended ToL with 25 available actions at each state1, and a decision tree of depth D = 3, the total number of action choices
considered by the lookahead model is 16275. This number is large and children are unlikely to evaluate this number of actions during
planning. One possibility is that they prune the decision tree and evaluate action trajectories according to their expected outcome.
This leads to the second model, the Discount model.

We assume that at each depth of the decision tree, a biased coin is flipped in order to determine whether the tree search should be
terminated and return zero reward. Let the probability of stopping be γ , and using a mean-field approximation (in order not to use
the immense number of possible choices at the branches of the decision tree), the Q values are estimated by:

Qd(s,c) = R(s,c)+(1− γ)max
c′

Qd(s′,c′) (3)

Then the future outcome, k steps ahead, is weighted by the probability (1− γ)k−1 that it is encountered.

The third model we used is a modification of the Discount model, and we refer to this as the Pruning model. We test the hypothesis
that subjects avoid states with great dissimilarity with the goal state. Thus we modify the calculation of Q from the Discount model
to the following:

Qpr(s,c) = R(s,c)+(1− x)max
c′

Qpr(s′,c′) (4)

where

x =
{

γS if Rint(s,c) is a large dissimilarity
γG else

(5)

1The actual available choices, at each state are given by counting all possible transitions of the balls at the pegs, including the two extra pegs
which represent the hands of the child.
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γS (Specific pruning parameter) is the probability that the subject stops evaluating the decision tree at a state where the immediate
reward leads to a state with great dissimilarity with the goal state. γG (General pruning parameter) is γ as in the Discount model.

3.2 Model fitting procedure

We assume an hierarchical model on how data are generated for each age group. Each model is characterized by a set of parameters
ki, for each subject i, that are generated by a Gaussian distribution ki ∼ N (µµµ,v2) with parameters θθθ = (µµµ,,,v2). We will refer to these
as hyperparameters. The whole analysis is applied separately for each of the two age groups. We fit the model parameters and the
hyperparameters in a joint scheme, using the EM algorithm [2], maximising the marginal likelihood given all data by all N subjects:

θ̂θθ
ML

= argmax
θθθ

P(C |θθθ) = argmax
θθθ

(
N

∏
i

∫
P(ci|ki)P(ki|θθθ)dNki

)
(6)

where C = {ci}N
i=1 is the set of all actions performed by each subject i. Actions are assumed to be independent. Thus they factorize

over trials. According to the above, for the E-step at the jth iteration we use the Laplace approximation to approximate the integral
of the marginal (eq. 6) and the parameters are estimated at the maximum of the posterior distribution (MAP). For the M-step we
estimate the hyperparameters θθθ = (µµµ,,,v2), by maximising the expectation computed at the E-step. For the Lookahead model we fitted
1 parameter, for the Discount model 2 parameters, and for the Pruning model 3 parameters. All parameters were transformed before
inference to enforce constraints (β≥ 0, 0≤ γS,γG ≤ 1). The above procedures were verified by using surrogated data from a known
decision process.

3.3 Model comparison

Given the three models, and given that the models have different number of parameters, it is important to compare the models to
understand which best accounts for the children’s behaviour. Having no prior knowledge about each model, we assume that models
are equally likely a priori. Thus we examine only the log likelihood of each model logP(C |M ). This quantity can be approximated
by the Bayesian Information Criterion (BIC) as:

logP(C |M ) =
∫

P(C |θθθ)P(θθθ|M )dθθθ≈−1
2

BICint = logP(C |θ̂θθML
)− 1

2
|M| log |C | (7)

where |C | is the total number of choices made by all subjects of the group being examined, and |M | is the number of prior parameters
(mean and variance for each parameter) that we estimated empirically above. The first term on the right hand side of equation 7 was
estimated by standard Monte Carlo approximation. The Bayesian Information Criterion (BICint), apart from penalizing the model for
extra parameters, is not the sum of individual likelihoods, but the sum of integrals over individual parameters thus the int (integral)
subscript. With this approach we compare not only how well a model fits the data when its parameters are optimized, but also how
well a model fits the data when we use information about where the group level parameters lie on average [5].

Although the above gives a good comparative measure of model fit, an absolute measure is needed in order to ensure that the best
model does indeed describe the data generation procedure efficiently. Given the MAP estimation of each subject’s parameters, we
compute the mean total “predictive probability” for subjects N, in a number of trials T , which is the geometric mean of all the
P(ct |st ,ki) where ct is the action selected at trial t by the ith subject, at the state st from a decision process parametrized by ki.

4 Experimental results and discussion

To evaluate the three planning models we consider existing data from seventeen 3-4 year olds (mean age 47 months) and seventeen
5-6 (mean age 68 months) years old on six ToL problems of graded difficulty [8]. The younger children in this study struggled to
complete many of the problem, and in both groups some children failed to complete all problems. Therefore in the analysis below
we restrict attention to data from 10 of the younger children and 13 of the older children. Given the population and the number of
problems we obtained 60 and 78 action sequences for younger children and older children respectively. Among younger children,
7 out of 10 performed illegal moves (37 total), whereas 5 out of 13 of the older children used illegal moves (22 total). As illegal
moves we count the transition of a ball from a peg to the hand and not the other way around. The original dataset and experimental
conditions are described in detail in [8] and summarised in Table 1.

The phenomenon of the direction of the behaviour towards a perceptual match with the goal state (i.e., reaching a state with the
same configuration of the balls as the goal state, except the colour of the balls is different in the goal state, and declaring that the
goal state reached) is much evident in younger children. The inferred parameter w was 0.28 and 0.52 (Pruning Model estimation)
for older and younger children respectively, revealing a significant difference between the planning mechanisms between the two
groups. This suggests that younger children pursue a similarity match between goal state and their current state whereas the older
children follow more goal directed behaviour. However, by comparing BICint scores (e.g., 5-6yrs old group: Lookahead (1455),
Discount (1105), Pruning (1115)) and mean predictive probabilities (e.g., 5-6yrs old group: Lookahead (0.85), Discount (0.89),
Pruning (0.89)), we found that the Discount and Pruning models describe children’s behaviour better than the Lookahead model,
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Table 1: The percentage of children showing different behaviours in each age group
Sequences 3-4yrs 5-6yrs
Reached goal correctly 38.3% 64.1%
Reached goal with illegal moves 40.0% 24.3%
Perception matching 20.0% 5.1%
Interrupted/Stopped 1.7% 6.4%
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Figure 2: Model parameters estimates: (A) Reward sensitivity β estimates from the three models. (B) Estimations of General pruning
γG and Specific pruning γS parameters for the two age groups given the pruning model.

though the extra parameter of the Pruning model does not improve the model predictions beyond that of the Discount model (at least
in the specific ToL problems tested). This may reflect a lack of sophistication in planning ability at these ages. Further investigation
of behaviour on specific ToL problems could reveal the importance of various features that affects their planning process.

An analysis of choice behaviour according to our models shows that older children prune, in general, more than the younger children.
However the difference is very small. This early termination of the decision tree for the younger ones, appears to be mainly because
are driven by the (perceived) similarity of the current state to the goal state, leading to them “cheating” by holding two balls at the
same time In addition, younger children tend to overprune their decision tree and confuse the objective similarity between states. On
the other hand older children demonstrated a better level of planning (i.e., reaching the goal state by following the rules consistently).
They tend to prune but in a way that leads them to the goal state without shortcuts (i.e., without picking up more than one ball at
a time). Furthermore, the older children tended not to show confusion in distinguishing very similar states. Finally looking at the
reward sensitivity parameter β (Fig 2A), younger children are much more greedy to rewards than older children pursuing a perceptual
match between current state and goal state.

We have demonstrated a method for analysing human behaviour in puzzle tasks where the main reward factor is the internal reward,
represented by a shaping reward function. By testing it in a real world example as the above, useful insights can be gained concerning
differences in mental planning between age groups, though further work needs to be conducted to formally explore the relationship
between internal reward representations and planning in child development.
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Abstract

The dependency of the value function on the dynamics and a fixed rewards function makes the reuse of information dif-
ficult when domains share dynamics but differ in their reward functions. This issue is present when attempting to reuse
options to solve different tasks in the same domain. If instead of a value function, a successor representation is learned
for some fixed dynamics, then any value function defined on any linear reward function can be computed efficiently.
This setting can be particularly useful for reusing options in some hierarchical planning settings. Unfortunately, even
linear parametrization of successor representation require a quadratic number of parameters with respect to the number
of features and as many operations per temporal difference update step. We present a simple temporal difference-like
algorithm for learning an approximate version of the successor representation with an amortized runtime O(nk) for n
features and the maximum rank-k of the approximation. Preliminary results indicate that the rank parameter can be
much smaller than the number of features.

Keywords: successor representation, occupancy function, universal option
model, incremental singular value decomposition, temporal dif-
ference
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1 Introduction

Hierarchical planning is a necessity for solving very large problems by breaking the problem into many short-horizon
sub-problems. Options, a reinforcement learning (RL) formulation of macro-actions, can allow an agent to plan at a more
abstract level [7]. In order to efficiently plan with options, it is necessary to build option models predicting the total
reward from the start of an option in a given state to its completion. However, simply learning a value function for every
option might not allow for the amount of generalization an efficient agent requires. This is in part due to the dependency
of value functions on both the dynamics of the problem and the reward function.

As motivations for this work, we can think about a specific kind of hybrid RL planner. One can imagine a series of
sub-tasks (i.e., reward functions), generated by an high-level planner, which are fed to an RL agent. In this context, we
wish the RL agent to generate, off-line, and efficiently, new policies for the sub-tasks. This can be done with pre-defined
options and their learned models. However, since every sub-task uses a different reward function, we need a generalized
version of these models as proposed by Yao [8] in order to build models invariant to the reward function. Given these
tools, the RL agent could then use model-based methods (e.g., dyna [4]) to efficiently find a good policy. This gener-
alization of option models is achieved by learning a successor representation in lieu of value functions [3]. Successor
representations (SR), which predict the expected discounted times future states are visited, have recently gained traction
as models for animal behaviour. They offer an interesting addition to the model-free learning process (the habitual sys-
tem). In addition, there seems to exist interesting shared characteristic between the successor representation and place
cells as wells as well as the egiendecomposition of the SR and grid cells [5]. These results suggest that a compressed
version of the SR might be useful for planning.

The SR solve an important issue with re-using options but come with a quadratic memory and computational cost.
These drawbacks limit their usefulness as a tool for efficient planning. In this work, we present an approximate linear
successor representation algorithm which would allow universal option models to be learned in much bigger feature
spaces. In order to learn a rank-k approximation on n features, our temporal difference-like algorithm has an amortized
cost O(k2 + nk) and requires 4nk + k parameters. This allows new value functions to be evaluated with a smaller
matrix-vector product in O(nk). Preliminary results indicate that k can be set much smaller than n. Furthermore, the
performance degrades gracefully as the rank decreases, allowing a designer to choose a trade-off between computation
time and accuracy.

We begin in Section 2 by presenting the reinforcement learning framework used as well as the definition of the successor
representation. In Section 3, we define the rank-k approximation of the successor representation, after which, we present
a novel algorithm for incrementally learning an approximate successor representation with a series of singular value
decompositions. We present some preliminary results in Section 4 demonstrating the correctness of this approach in a
small domain. We conclude with a discussion of the promising future work this approach might lead to. For brevity,
we present the approximate successor representation algorithm as a standalone algorithm but the reader should keep in
mind that this approach can easily be adapted to replace the “accumulation part” from Yao’s work on learning universal
option models [8].

2 Background

We model the problem as a Markov Decision Process (MDP) with states S, actions A, transition probabilities Pa(s, s0),
and reward function r(s, a) for s and s0 2 S and a 2 A. We consider actions sampled from a fixed policy ⇡ inducing
transition probabilities P⇡ . We seek to represent value functions V ⇡ defined as

V ⇡(s) = E

" 1X

t=0

�tRt

����� S0 = s

#
,

where Rt is the reward received at time t, and � 2 [0, 1) is a discount factor. Given that we only consider the fixed policy
case, we omit the ⇡ superscript but it is important to keep in mind that the value function always depends on the policy.

In some cases, the states are discrete and few in number, allowing us to keep a separate value for each. We refer to
this as the tabular case. However, in most interesting applications, the state space is large and continuous. In order to
handle this case, we consider approximating the value functions with a linear combination of basis functions. This can
be written as

V̂ (s) = ✓T�(s),

where � : S ! Rn corresponds to some feature representation of the state, and ✓ 2 Rn is a parameter vector. The
successor representation is defined as the discounted total number of times a state is seen after starting from any other
state [3]. More formally, in the tabular case, we define a matrix F , so that element [F ]i,j denotes the expected discounted
sum of indicator random variables with value 1 if the agent is in state j at that time, given that the trajectory starts in

1
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state i.

[F ]ij = E

" 1X

t=0

�t1St=j

����� S0 = i

#
,

where 1St=j has value one when the state at time t is j and zero otherwise. The successor representation can be naturally
extended to linear function approximation in the following way

�(s)>✓i ⇡ E

" 1X

t=0

�t[�(St)]i

����� S0 = s

#

⇥ , [✓1 ✓2 . . . ✓n] ,

where ✓i is the vector of parameters for a linear value function where feature i is accumulated instead of the rewards, and
⇥ is a concatenation of the columns ✓i. This means that �(s)>⇥ is a row vector in which entry j is, approximately, the
expected discounted accumulation of feature j’s future value. It is important to note that the successor representation is
invariant to the reward function. Computing the successor representation can be particularly helpful, as it allows us to
easily compute any linear value function with arbitrary linear reward function (sharing the same transition probabilities).
For a reward function of the form r(s, a) = w>�(s), we compute a corresponding value function as V (s) = �(s)>⇥w.

Once ⇥ is obtained, all that is required is to estimate w through linear regression, which is significantly easier to do
than fitting a value function as it doesn’t require any temporal abstraction. In addition, in many cases, it makes sense to
assume w is given.

Since each column of ⇥ is analogous to a value function, the parameters ⇥t at time t can be updated using temporal
difference with eligibility traces [6], giving the following update rule for a sample transition {st, rt, st+1}:

et  ��et�1 + �(st)

�t  �(st) + �⇥>
t �(st+1)�⇥>

t �(st)

⇥t+1  ⇥t + ↵et�
>
t , (1)

where �t is a vector of temporal difference errors (for each feature), and et is an eligibility trace vector allowing updates to
propagate through recently visited states. This results in update steps requiring O(n2) operations per complete update.

3 Approximate Linear Successor Representation

Since the successor representation is inherently quadratic in size, a natural approach is to consider some form of com-
pression. Unfortunately, it is known that in the tabular case F = (I � �P⇡)�1 and is therefore full rank. Instead, we
consider a rank-k approximation of ⇥ of the form ⇥̂ = U⌃V >, where ⌃ is a k ⇥ k diagonal matrix and U and V are both
n ⇥ k orthogonal matrices. The optimal such approximation (with respect to the reconstruction error) would be the sin-
gular value decomposition (SVD) of ⇥. For this reason, we will consider an incremental SVD algorithm with truncation.
The truncation will cause the algorithm to be sub-optimal (i.e., the result might not be the true SVD) but, empirically, this
hasn’t caused any problems for large enough k. In our experiments, we have observed the singular values of ⇥ decay
very quickly which might suggest that k can often be set much smaller than n.

Instead of keeping a set of parameters ⇥, our algorithm maintains five matrices, U,⌃, V, A, and B. The matrices U,⌃, V
carry the same meaning as before. We include two extra n ⇥ k matrices which serve as temporary storage for updates.
These buffers allow us to defer updates of the SVD in order to improve the runtime as well as the numerical accuracy. At
all times, we can compute the most recent estimate of ⇥ as ⇥̂ = U⌃V > +AB>. The matrix-vector product ⇥̂>�(s) can be
evaluated as a series of n ⇥ k matrix-vector operations. This algorithm is never required to build the quadratic ⇥̂. Since
every temporal-difference learning update has the form of an outer product, et’s are stored as columns of A and �t’s as
columns of B. This allows updates of the SVD to be deferred while still updating the values of ⇥̂. We store k updates in
A and B before updating the SVD and zeroing A and B.

We use a simple algorithm presented in Brand et al. [2] for updating the SVD. It requires two QR decompositions on
n⇥k matrices and one SVD on a 2k⇥2k matrix, as shown in Algorithm 1. This results in an amortized cost of O(k2 +nk)
per update. The full pseudocode for our approximate linear successor representation (ASLR) update step is given by
Algorithm 2. Note that in the case where k = n, this algorithm is exact (given infinite numerical precision) and will give
the true SVD of ⇥ since every update step is identical to (1).

4 Experimental results

We offer a set of preliminary results on the behaviour of rank-k approximations of the successor representation. We
refer to the temporal-difference algorithm for learning successor representation as SR and our approach as ALSR. In

2
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Algorithm 1 SVD update

function UPDATE-SVD(U,⌃, V, A, B, k)
Qa, Ra  QR((I� UU>)A)
Qb, Rb  QR((I� V V >)B)

K  

⌃ 0
0 0

�
+


U>A
Ra

� 
V >B
Rb

�>

U 0,⌃0, V 0  SVD(K)
U  [U Qa] U 0

V  [V Qb] V 0

⌃ ⌃0

return TRUNCATE(U,⌃, V, k)
end function

Algorithm 2 ALSR update

Given a sample transition {st, rt, st+1}
et  ��et�1 + �(st)
�t  �(st) + �(V ⌃U> + BA>)�(st+1)

�(V ⌃U> + BA>)�(st)
if i � k then

U,⌃, V  UPDATE-SVD(U,⌃, V, A, B, k)
A 0m⇥k

B  0m⇥k

i 0
else

A1:m,i  et

B1:m,i  �t
i i + 1

end if

(a) The sorted singular values of ⇥
in the 4-room domain with tabular
representation and random actions.
The successor representation was es-
timated from 1000 episodes each of
1000 steps.

(b) The sorted singular values of ⇥
in the Moutain car domain with a
20 ⇥ 20 radial basis encoding plus
a bias term. The successor repre-
sentation was estimated from 4000
episodes of experience following an
energy pumping policy.

(c) The sorted singular values of ⇥
in the Moutain car domain with 10
tilings discretizing the state in a 10 ⇥
10 grid plus a bias term. The suc-
cessor representation was estimated
from 4000 episodes of experience fol-
lowing an energy pumping policy.

Figure 1: The sorted singular values of ⇥

small domains, it is computationally feasible to approximate ⇥ fully using batched Least-Squares Temporal Difference
(LSTD) [1] followed by a full SVD. In order to establish whether or not it is reasonable to approximate ⇥ with our
approach, we plotted in Figure 1 the singular values of the successor matrix for the 4-room domain, defined in Sutton et
al. [7], with tabular representation and random actions, and the Mountain car domain with a radial basis encoding and
CMAC encoding under an energy pumping policy. These plots show that there are few important singular values. This
result is encouraging since such a structure indicates that the matrix can be approximated with a relatively small rank.

We explored ALSR’s performance more carefully on the Mountain car domain, in which an agent is tasked with driving
a 1D under-actuated car back and forth in order to escape a valley. We used the dynamics described by Sutton and
Barto [6], with random restart. The agent followed an energy pumping policy which always attempts to drive in the
same direction as the velocity. With a 20 ⇥ 20 radial basis function encoding, we considered the effect of the parameter
k with the approximated solution. With LSTD, we computed an empirical truth to which we compared ⇥̂ by computing
the Frobenius norm of their difference. Figure 2a shows the effect of the rank parameter, k, on the speed of convergence.
Figure 2b highlights the effect of k on the solution after 3000 episodes. The dotted line represents the SR performance.

Our results in this experiment indicate that the performance of ALSR decreases as the rank is reduced, as one would
expect. It is also encouraging to note that the same performance as SR is achieved with a rank significantly smaller than
the number of features. This paves the way for much larger experiments where the computational gain of using ALSR
could much greater. As a final observation, note that the required rank for achieving a reasonable performance with
ALSR is higher than the required rank for a good approximation of ⇥. This is most likely due to the greedy nature of
the truncations in the incremental SVD. With our implementation, ALSR with k = 40 was an order of magnitude faster
than SR when running on 900 features. This advantage decreased as the number of features was reduced, as expected.
Though we haven’t rigorously evaluated ALSR’s runtime, this result hints that it would be advantageous in cases with a
large number of features.
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(a) The error of the estimated ⇥̂ with respect to the
number of episodes. The bottom lines represent the full
successor representation and the approximate succes-
sor representation with high rank. Scores are averaged
over 5 independent trials.

(b) The error of the estimated ⇥̂ as a function of the
rank parameter. The score represent the ⇥̂ learned after
3000 episodes. Scores are averaged over 5 independent
trials.

Figure 2: Estimation accuracy of ⇥ in the Mountain Car domain

5 Discussion

In this work, we proposed a novel approach for learning successor representation. Our ALSR algorithm is more efficient
than the full SR temporal-difference algorithm and can potentially be applied to much large domains. We presented
some preliminary results on small domains in which we have observed a graceful decay in performance as the rank is
lowered and a comparable performance to that of the full successor representation.

Our results are preliminary and of limited scope. In the future, we hope to expand on this work by exploring ALSR’s
behaviour in larger domains, and settings with changing policies. In order to achieve better performance, we plan on
adapting some of the modern temporal-difference algorithm variants to work with ALSR. This work focused on the
successor representation used by the universal option model. There still remains a quadratic part in these models to
optimize before they can be fully applied to large domains. It is possible that the model’s expected next state functions
can be similarly approximated by an incremental SVD approach. ALSR could easily be adapted to serve this goal in the
future.

Finally, we would like to explore the link between the singular vectors found by ALSR and proto-value functions. The
left singular vectors U can be seen as forming a basis over value function. It is possible that they can be used as proto-
value functions (or could be equivalent in some way). This is an interesting avenue for upcoming research we hope to
pursue.
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Abstract 

Cumulative prospect theory (CPT) is a highly successful formal mathematical model of decision making 
under risk (Tversky & Kahneman, 1992). While CPT has been used extensively to describe typical patterns 
of decision making across the population, few studies have investigated the extent to which individuals 
differ in these decision-making patterns and how well CPT can account for these individual differences. 
However, recent advances in hierarchical Bayesian methods have improved the ability to estimate CPT 
parameters at the individual level (Nilsson, Rieskamp, & Wagenmakers, 2011). In the current study, we 
investigated individual differences in patterns of decision making under risk. Participants chose between 
sure outcomes and gambles. We focused on three key issues. First, we wanted to know whether 
participants’ choices were best described as variations on a single pattern or whether there were multiple 
distinct patterns. We found multiple distinct patterns of choice behavior; indeed some participants were 
more likely to gamble in precisely the opposite conditions of other participants. Second, we evaluated the 
ability of a CPT-based model to account for this range of choice behavior. We established that, employing 
the fundamental CPT concept of a relative point of reference, a wide variety of decision-making behavior 
could be accounted for. And third, we investigated the ability of the CPT-based model to predict 
performance of the same participants on a second decision-making task using the parameter values from 
the initial task. We showed that, consistent with stable individual styles of decision making, the parameter 
values from a task with mixed gambles (i.e. gambles with both gains and losses as outcomes) were 
successful at predicting choices on a task with only positive gambles (i.e. gambles where all outcomes were 
gains). Overall, we found a diverse set of choice behaviors that were, nonetheless, well accounted for by 
CPT. 
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1 Introduction 

According to cumulative prospect theory (CPT), when faced with decisions involving uncertain but well-
defined outcomes, known as decision making under risk, individuals subjectively evaluate the values and 
probabilities of each available option [4]. CPT has been highly successful as a description of choice behavior 
as it occurs in everyday life and across a variety of decision-making tasks. However, most studies have 
focused on the general pattern across participants within a single task, which may mask important 
differences in decision-making styles between participants and across tasks. To investigate these potential 
differences, the present study used recent advances in the ability to fit CPT-based models at the individual 
level using hierarchical Bayesian methods [3]. 

We studied decisions between two options: a sure outcome and a gamble with two probabilistic outcomes. 
Information about the final outcomes of the gambles was not revealed to participants until after they had 
completed the two tasks. This was done so that we could focus on participants’ existing choice preferences 
without emphasizing trial-by-trial learning effects that would arise if outcomes were revealed after each 
trial. We believe it is important to characterize decision making in this way as a point of reference on which 
to then build theories that incorporate learning. 

We focused on three key issues. First, we wanted to know whether participants’ choices were best described 
as variations on a single pattern or whether there were multiple distinct patterns. Second, we evaluated the 
ability of a CPT-based model to account for the observed range of choice behavior across participants. And 
third, we investigated the ability of the CPT-based model to predict performance of the same participants 
on a second decision-making task using the parameter values from the initial task. 

1.1 Model Definition 

We used a CPT-based model with four parameters: probability distortion, ߛ, diminishing marginal utility, ߙ, 
loss aversion, ߣ, and choice consistency, ߮ [1, 3]. This choice of parameterization strikes a good balance 
between flexibility and predictive value while being amenable to estimation [1, 3]. In this model, the 
decision-maker determines a subjective expected utility, EU, for an option, O, by summing across the n 
possible outcomes of that option as follows: 

ሺܱሻܷܧ ൌ ∑ ሻݔሺݒሻሺݓ

ୀଵ , 

where each possible outcome has a probability, p, and a value, x. The objective probabilities are transformed 
into subjective decision weights by a probability function, w(), and the objective values are transformed into 
subjective utilities by a value function, v(). The probability function is defined as: 

ሻሺݓ ൌ
ം

ሺംାሺଵିሻംሻభ ം⁄ , 

where a probability distortion parameter, 0  ߛ  1, determines the degree of overweighting of small 
probabilities and underweighting of large probabilities (see Figure 2c). The value function is defined as: 

ሻݔሺݒ ൌ 	 ൜
ఈݔ

െߣሺെݔሻఈ				
if	ݔ  0
if ݔ ൏ 0

	, 

where a diminishing marginal utility parameter, 0  	ߙ  1, determines the discounting of large magnitude 
values, and a loss aversion parameter, 0  	ߣ  5, determines the overweighting of losses compared to gains 
(see Figure 2c). Finally, the probability, p(), of choosing an option, A, over an alternative option, B, is 
determined from their subjective expected utilities according to a version of Luce’s choice rule:  

,ܣሺ ሻܤ ൌ
1

1  ݁ఝሾாሺሻିாሺሻሿ
 

where a consistency parameter, 0  ߮  5, determines how much more likely it is that the option with the 
larger subjective expected value is chosen (see Figure 2c). 
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2 Methods 

Two decision-making tasks consisting of decisions between a gamble and a sure outcome were completed 
by 68 healthy undergraduates. The gambles were presented as pie charts showing two monetary values 
with complementary probabilities (see Figure 1a and 1b). The two tasks were administered in separate 
sessions. Participants were informed that they would receive a monetary bonus of between $1 and $5 based 
on the selections they made after they completed both tasks. The positive task involved only positive 
monetary values while the mixed task involved both negative and positive values. In all trials on the mixed 
task, the gamble loss was a negative value, while the gamble win and the sure outcome were positive. 

In both tasks, trials differed in the probability of winning the gamble, the magnitude of the winning gamble 
outcome, and whether the gamble or the sure outcome was the better choice. Each of these factors 
(Probability, Magnitude, and Better Choice) had two levels, for a total of eight trial types. The better 
outcome was either the gamble (G) with an EV of $5 more than the sure outcome, or the sure outcome (S) 
with an EV of $5 more than the gamble. The probability of winning the gamble was either high (H) (.55 to 
.75) or low (L) (.25 to .45). And the magnitude of the winning gamble outcome was either large (L) (positive 
task: $80 to $100; mixed task: $110 to $130) or small (S) (positive task: $40 to $70; mixed task: $80 to $100). 
The value of the losing gamble outcome in the positive task ranged from $10 to $25 and in the mixed task 
from −$10 to −$25. All values were multiples of $5. Each task had 128 task trials, with 16 in each of the 8 
conditions. In order to identify participants not properly engaged with the task, we also included catch 
trials where one option dominated the other. Catch trials were not included in the main analysis. 

 

2.1 Model Estimation 

We adapted a hierarchical Bayesian Markov chain Monte Carlo (MCMC) parameter estimation method 
running in R and JAGS [3]. For each of the four model parameters, we estimated the mean and variance of 
the population distribution as well as individual parameter values. Uninformed priors were used for all 
parameters. A total of 30,000 samples were obtained across three chains after a burn-in of 1,000 samples per 
chain. The model was fit to the mixed task data, and we used the mean parameter values of the posterior 
distributions found for each participant to simulate their behavioral performance on the same trials the 
participants had completed in the lab, for both the mixed and positive tasks. 

We fit two versions of the model with different reference points. For the “unshifted” version, $0 was used as 
the reference point for the values in each trial. In other words, the stated values were used as is. For the 
“shifted” model, the sure outcome was used as the reference point for values in each trial. The intuition 
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Figure 1. Examples of decisions in the (a) mixed and (b) positive tasks. (c) Mixed task results across 
all participants showing how often participants chose the gamble over the sure outcome for each of 
the different trial types. 
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being that the participant knows they can pick the sure outcome, so the possible gamble outcomes are 
evaluated relative to the guaranteed sure gain. 

3 Results 

Participants had an average age of 20.6 years and were mostly female (79%). A total of seven particiants 
were dropped from final analysis due to high no-response rates and/or inadequate performance on catch 
trials, leaving 61 participants in the analysis. Aggregating results across all participants for the mixed task 
revealed that participants gambled more often when the gamble was the better choice than when the sure 
outcome was the better choice, ES = 10.88%, F(1,60) = 51.27, p < .001, but probability and magnitude did not 
have a significant influence (see Figure 1c). 

Based on our a priori expectation from an earlier study, we used partitioning around medioids [2] to find 
four clusters of participants from gambling percentages with each of the eight trial types (see Figure 2a and 
2b). A Duda-Hart test established that the participants grouped into multiple clusters, p < .001. These 
clusters demonstrated four distinct patterns of decision-making. They differ in the magnitude and direction 
of influence of the manipulations of probability, magnitude, and better choice on the percentage of the time 
they chose to gamble. The first cluster (Mixed: A) was most sensitive to expected value, gambling more 
often when the gamble had a higher EV than when the sure outcome had a higher EV, ES = 17.78%, F(1, 16) 
= 37.08, p < .001. The second cluster (Mixed: B) was most sensitive to probability, gambling more far often 
when the probability of winning the gamble was high than when it was low, ES = 62.45%, F(1, 7) = 123.34, p 
< .001. The third cluster (Mixed: C) was also most sensitive to probability, but they showed the opposite 
tendency, gambling more often when the probability was low than when it was high, ES = 36.72%, F(1, 15) = 
41.35, p < .001. Finally, the distinguishing characteristic of the fourth cluster (Mixed: D) was their 
infrequency of gambling across all conditions. 

 
We then fit our unshifted and shifted reference point models (see Figure 2a and 2b). Diagnostic plots 
showed MCMC chain convergence for each parameter. Evaluating model fit at the level of individual 
participants, the shifted model, R2 = 0.91, RMSE = 9.35, out-performed the unshifted model, R2 = 0.69, RMSE 
= 17.25. Likewise, when fit was evaluated at the cluster level, the shifted model, R2 = 0.99, RMSE = 3.01, out-
performed the unshifted model, R2 = 0.60, RMSE = 17.07. And finally, in terms of the deviance information 
criterion (DIC), the shifted model, DIC = 7545, is preferred to the unshifted model, DIC = 8266. The value 
function, probability function, and choice rule calculated by averaging the individual mean parameter 
values from each cluster for the preferred shifted reference point model are shown in Figure 2c. 
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Figure 2. Mixed task results as a function of trial type for each of the behaviorally-defined clusters 
(solid lines) along with model fits based on (a) unshifted and (b) shifted reference points (dotted 
lines). (c) Value, probability, and choice functions for each cluster based on mean estimated 
parameter values for the shifted reference point model. 

(b) 

(c) Mixed:A Mixed:B Mixed:C Mixed:D

Better Choice:
Magnitude:
Probability:

0

25

50

75

100

G
L
L

G
L
H

G
S
L

G
S
H

S
L
L

S
L
H

S
S
L

S
S
H

G
L
L

G
L
H

G
S
L

G
S
H

S
L
L

S
L
H

S
S
L

S
S
H

G
L
L

G
L
H

G
S
L

G
S
H

S
L
L

S
L
H

S
S
L

S
S
H

G
L
L

G
L
H

G
S
L

G
S
H

S
L
L

S
L
H

S
S
L

S
S
H

Trial type

G
am

bl
in

g
pe

rc
en

ta
ge

(a) 

Paper T52 211



 4

Next we used participants’ estimated parameter values from the shifted reference point model fit to the 
mixed task to predict choice behavior on the positive task. Model fit was evaluated at the individual 
participant level, R2 = 0.17, RMSE = 26.09, and at the cluster level, R2 = 0.81, RMSE = 10.63 (see Figure 3). To 
further assess the consistency of decision-making between tasks we fit the shifted reference point model 
directly to the positive task results, and then correlated the individual mean parameter values derived from 
the positive task with those from the mixed task. Values for three of the four parameters were correlated 
across tasks: ߙ, r(59) = .68, p < .001; ߣ, r(59) = .54, p < .001; ߛ, r(59) = .33, p = .008; ߮, r(59) = .23, p = .07. 

 

4 Discussion 

The present study reinforces the importance of looking beyond overall trends when attempting to 
characterize decision making. The aggregate results showed no significant effects of the manipulations of 
probability or magnitude on choice behavior, but a cluster analysis revealed that this was due to distinct 
patterns of performance that cancelled each other out in the overall results. In our tasks, some participants 
were quite sensitive to small differences in expected value. Other participants were most strongly 
influenced by manipulations of probability, with some gambling more often when they had a high 
probability of winning a little more, and others gambling more often when they had a small probability of 
winning a lot more. And still others tended not to gamble much no matter the options. 

We probed the extent to which CPT would be useful for characterizing, not just the average trend, but the 
full range of individual results. We found that a CPT-based model employing the sure outcome as a relative 
reference point was able to account for the qualitatively different patterns of choice behavior through 
quantitative adjustments of model parameters. The use of a relative point of reference is consistent with the 
framing effects which were central to the development of CPT [4]. 

Finally, we were able to apply the individual parameter estimates from one task to predict performance on a 
second, albeit similar, task. This supports other findings that decision-making styles, characterized as CPT 
parameter values, can remain consistent across tasks and represent trait-like attributes of individuals [1]. In 
ongoing work, we are expanding the types of decisions being modeled in order to determine how stable 
these parameter values are, investigating their neural correlates using fMRI, and incorporating ambiguity 
and learning from outcomes into the model. 
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Figure 3. Positive task results as a function of trial type for each of the behaviorally defined clusters 
(solid lines), and predictions from the shifted model fit to the mixed task results (dotted lines). 
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Abstract
This paper presents a probabilistic framework for learning decentralized control policies for cooperative multiagent systems operat-
ing in a large partially observable stochastic environment based on batch data (trajectories). In decentralized domains, because of
communication limitations, the agents cannot share their entire belief states, so execution must proceed based on local information.
Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general framework for modeling multiagent
sequential decision making processes in the presence of uncertainty. Although Dec-POMDPs are typically intractable to solve for
real-world problems, recent research on macro-actions in Dec-POMDPs has significantly increased the size of problems that can
be solved. However, existing methods are confined to tree-based policies in finite-horizon problems, and assume the underlying
POMDP models are known a priori. To accommodate more realistic scenarios when the full POMDP model is unavailable and the
planning horizon is unbounded, this paper presents a policy-based reinforcement learning approach to learn the macro-action policies
represented by Mealy machines. Based on trajectories of macro-actions, observations, and rewards generated by interacting with
the environment with hand-coded policies (demonstrations) and random exploration, an expectation-maximization (EM) algorithm
is proposed to learn the decentralized macro-action policies, leading to a new framework called POEM (Policy-based EM), which
has convergence guarantee for bath learning. The performance of POEM is demonstrated on two domains, including a benchmark
navigation-among-movable-obstacle problem, and a newly designed large search and rescue problem. Our empirical study shows
POEM is a scalable batch learning method that can learn optimal policies and achieve policy improvement over hand-coded (subop-
timal) policies for missions in partially observable stochastic environments.

Keywords: Dec-POMDPs, Reinforcement Learning, Multiagent Planning, Mealy
Machine, Monte-Carlo Methods
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1 Introduction
Multi-agent and multi-robot systems are becoming an important solution to many real-world problems. For example, in disaster
situations, such as earthquake, hurricane, or terrorist attacks, it is urgent that trapped survivors can be found and rescued within
48 hours. Otherwise, the chance of finding victims alive decreases substantially [7]. To solve a search and rescue (SAR) problem
efficiently, a team of ground vehicles and aerial vehicles have to be deployed to locate, rescue and medically stabilize survivors
trapped in hazardous spaces. This SAR problem in its most general form can be formulated as a decentralized partially observable
Markov decision process (Dec-POMDP) [2, 12], where a team of agents must cooperate to optimize some global objective in the
presence of uncertainty. Moreover, because of possibly limited range of communication, each agent has to make its own decisions
based on its own local observations when there are no other agents in the effective communication range. To date, researches have
achieved significant progress on solving the cooperative multiagent sequential decision-making problems that arise in numerous
applications including transportation [3], extra-planetary exploration [5], and traffic control [14]. However, most Dec-POMDP
formulations assume low level state-action granularity and operate with primitive actions which last exactly one time step, so large
problems remain intractable.

Recent research has addressed the more scalable macro-action based Dec-POMDP (MacDec-POMDP) case where each agent has
macro-actions (temporally extended actions), which may require different amounts of time to execute [4]. However, current MacDec-
POMDP methods [4] require knowing domain models a priori, and are confined to tree-based policy representations in finite horizon
problems. For many real-world problems, such as SAR, the exact domain model may not be directly available, and the planning
horizon might be indefinite. To solve long horizon (or infinite-horizon) MacDec-POMDP problems when the domain models are
unknown, we propose a policy-based expectation maximization (POEM) algorithm to learn the macro-action based finite-state con-
trollers (FSCs). POEM adopts a special type of FSC, Mealy machine [1] for policy representations, and performs batch off-policy
reinforcement learning (RL) based on trajectories collected by executing hand-coded and exploration policies.

2 Background
A Dec-POMDP can be represented as a tuple 〈N ,A,S,O, T ,Ω,R, γ〉, where N is a finite set of agent indices; A = ⊗nAn
and O = ⊗nOn respectively are sets of joint actions and observations, with An and On available to agent n. At each step,
action ~a = (a1, · · · , aN ) ∈ A is selected and a joint observation ~o = (o1, · · · , oN ) is received; S is a set of finite world states;
T : S ×A×S → [0, 1] is the state transition function with T (s′|s,~a) denoting the probability of transitioning to s′ after taking joint
action ~a in s; Ω : S × A × O → [0, 1] is the observation function with Ω(~o|s′,~a) the probability of observing ~o after taking joint
action ~a and arriving in state s′;R : S ×A → R is the reward function with r(s,~a) the immediate reward received after taking joint
action ~a in s; γ ∈ [0, 1) is a discount factor. Because each agent lacks access to other agents’ observations, each agent maintains a
local policy Ψn, defined as a mapping from local observation histories to actions. A joint policy consists of the local policies of all
agents. For an infinite-horizon Dec-POMDP with initial belief state b0, the objective is to find a joint policy Ψ = ⊗nΨn, such that
the value of Ψ starting from b0, V Ψ(b(s0)) = E

[∑∞
t=0 γ

tr(st,~at)|b0,Ψ
]
, is maximized.

A MacDec-POMDP with local macro-action (MA) is defined as a Dec-POMDP whereMn represents a finite set of MA for each
agent n, withM = ⊗Mn the set of joint MAs. Here, MAs are represented by options [13]. Given Hn, the observation history of
agent n’s local option is defined by the tuple: Mn = 〈βmn , Imn , πmn 〉, where βmn : Hn → [0, 1] is a stochastic termination condition,
Imn ∈ Hn is the initiation set and πmn : Hn × An → [0, 1] is an option policy for macro-action m. Macro-actions are natural
representations for robot or human operation for completing a task (e.g., navigating to a way point or placing an object on a robot).

A FSC is a compact way to represent a policy as a mapping from histories to actions. Formally, a stochastic FSC for agent n is
defined as a tuple Θn = 〈An,On,Zn, µn,Wn, πn〉, where, An and On are the same as defined in the Dec-POMDP; Zn is a finite
set of nodes used to represent the policy for agent n; µn is the initial node distribution with µzn the probability of agent n initially
being in z; Wn is a set of Markov transition matrices with W z,z′

n,o denoting the probability of the controller node transiting from z to
z′ when agent n in z sees observation o; πn is a set of stochastic policies with πa,on,z the probability of agent n taking action a in z after
seeing observation o. This type of FSC is called Mealy machine [1], where an agent’s local policy for action selection πa,on,z depends
on both current controller node (an abstraction of history) and immediate observation. There is another type of FSCs called Moore
machines, where πan only depends on controller node, is also widely used for (Dec-)POMDP policy representations. In contrast to a
Moore machine, by conditioning action selections on additional immediate observations, a Mealy machine can use this observable
information to initiate a valid macro-action controllers when the MacDec-POMDP model is unknown.

There are several features in MacDec-POMDP frameworks that benefit policy learning. Firstly, observations are determined by the
termination condition of macro-actions (although a more general model of high-level observations can be included). Therefore, the
observation set can be encoded as Ω̄ = {Null,Ω}, where Ω is a set indicating what agents see after the corresponding macro-action
termination condition is satisfied, and Null indicates the same macro-action is still in execution. Additionally, controllers stay in the
same nodes until current macro-actions are completed, hence the diagonal elements of W corresponding to each o ∈ Ω can be set to
zero, i.e. W (zτ = z|zτ−1 = z, oτ 6= Null) = 0. Moreover, before a macro-action terminates, the agent stays in the same controller
node, i.e. W (zτ = z|zτ−1 = z, oτ = Null) = 1.

A Dec-POMDP planning problem can be transformed into an inference problem and then efficiently solved by an EM algorithm.
Previous EM methods [8] have achieved success in scaling to larger problems, but these methods require using a Dec-POMDP model

1
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both to construct a Bayes net and to evaluate policies. When the exact model parameters T , Ω and R are unknown, an RL problem
must be solved instead. To address this important yet less addressed problem in decentralized domains, a global empirical value
function is constructed based on the macro-action, observation and reward trajectories, and the product of local policies of all agents.
Definition 1. (Global empirical value function) Let D(K)={(~ok0 ~mk

0r
k
0 · · ·~okTk~akTk rkTk)}Kk=1 be a set of episodes resulting from N

agents who choose actions according to Ψ=⊗nΨn, a set of arbitrary stochastic policies with pΨn(a|h) > 0, ∀ action a, ∀ history

h. The global empirical value function is defined as V̂
(
D(K); Θ

) def.
=
∑K
k=1

∑Tk
t=0

γt(rkt−Rmin)
∏t
τ=0

∏N
n=1 p(m

k
n,τ |hkn,τ ,Θn)∏t

τ=0

∏N
n=1 p

Ψn (mkn,τ |hkn,τ )
where

hkn,t = (mk
n,0:t−1, o

k
n,1:t), 0 ≤ γ < 1 is the discount and Rmin is the minimum reward.

Definition 1 provides an off-policy learning objective: given data D(K) generated from a set of behavior policies Ψ, find a set
of decentralized policies Θ = {Θi}Ni=1 such that V̂

(
D(K);Θ

)
is maximized. Here, we assume factorized policy representation

p(~mk
0:τ |~h1:τ ,Θ) =

∏N
n=1 p(m

k
n,τ |hkn,τ ,Θn) to accommodate decentralized policy execution.

3 MacDec-POMDP Policy Learning by Expectation Maximization

Direct maximization of V̂
(
D(K); Θ

)
is difficult; instead, we maximize the lower bound of the logarithm of V̂

(
D(K); Θ

)
. To this end,

we apply Jensen’s inequality to obtain obtain a lower bound of ln V̂
(
D(K); Θ

)
augmented by node sequences {~zkt }:

ln V̂
(
D(K); Θ

)
=ln
∑
k,t,~zk0:t

r̃kt q
k
t (~zk0:t|Θ̃)
K

p(~mk0:t,~z
k
0:t|~o1:t,Θ)

qkt (~zk0:t|Θ̃)
≥
∑
k,t,~zkt

qkt (~zk0:t|Θ̃)
K ln

r̃kt p(~m
k
0:t,~z

k
0:t|~ok1:t,Θ)

qkt (~zk0:t|Θ̃)

def.
= lb(Θ|Θ̃), (1)

where r̃kt = γtrkt /
∏t
τ=0 p

Ψ(~mk
τ |hkτ ),∀t, k are reweighted rewards, and {q(~zk0:t|Θ̃) ≥ 0} satisfy the normalization constraint∑K

k=1

∑Tk
t=0

∑
~zk0:t

qkt (~zk0:t|Θ̃) = K with Θ̃ the most recent estimate of Θ.

Theorem 2. Define F =
{

Θ = {Θn}Nn=1 with Θn = (µn, πn,Wn) :
∑|Zn|
un=1 µ

un
n = 1,

∑|Mn|
mn=1 π

mn,on
n,un = 1,

∑|Zn|
un=1W

vn,un
n,on =

1, vn = 1 · · · |Zn|, mn = 1 · · · |Mn|, on = 1 · · · |On|
}

, and Θ(m) be a sequence produced by the iterative update Θ(m+1) =

arg maxΘ∈F lb(Θ|Θ(m)), where Θ(0) is an arbitrary initialization, then {Θ(m)}m≥0 monotonically increases (1), until convergence
to a maxima.

Algorithm 1 POEM

Require: Episodes D(K) and the number of agents n,
1: while ∆lb < ε do
2: for k = 1 to K, n = 1 to N do
3: Compute action selection prob. p(mk

n,0:t|okn,1:t, Θ̃),∀t,
and forward-backward variables αn,k and βn,k

4: end for
5: Compute lb using V̂

(
D(K); Θ̃

)
= 1

K

∑K
k=1

∑Tk
t=1 σ

k
t

(
Θ̃
)

6: for n = 1 to N do
7: Compute the ξ and φ variables, update Θn using (2)
8: end for
9: end while

10: return Parameters of the MacDec-POMDP policy, {Θn}Nn=1

Given the empirical value function in Definition 1 and its lower
bound (1), the POEM algorithm is derived to learn the macro-
action FSCs. The POEM algorithm is guaranteed to monotoni-
cally increase the empirical value function over successive itera-
tions and converges to a local maximum. The convergence prop-
erty is summarized by theorem 2. The proof for Theorem. 2 is
an extension of the single agent case [9], which is omitted here
because of space limitations. Algorithmically, the main steps of
POEM involve alternating between computing the lower bound
of the log empirical value function (E-step) and parameter es-
timation (M-step). The complete algorithm is summarized in
Algorithm 1, and computational details are discussed next.

Computation of Lower Bounds (E-step) Theorem 2 and in-
equality (1) yield the lower bound lb

(
Θ|Θ̃

)
≥ ln V̂

(
D(K);Θ̃

)
,

where V̂
(
D(K);Θ̃

)
is the value of the policy parameterized by

Θ̃ (computed on line 5 in Algorithm 1). Computing V̂
(
D(K);Θ̃

)
is equivalent to policy-evaluation, which uses all available episodes

with the rewards are reweighted by the action selection probability p(mk
n,0:t|hko,0:t, Θ̃) to reflect the improved value of the new policy

updated in the previous M-step. Note that lb(Θ|Θ̃) in (1) is maximized when qkt (~zk0:t|Θ̃) = r̃kt p(~m
k
0:t, ~z

k
0:t|~ok1:t, Θ̃)/V̂ (D(K); Θ̃),

which is equal to r̃kt p(~a
k
0:t|~ok1:t, Θ̃)p(~zk0:t|~mk

0:t, ~o
k
1:t, Θ̃)/V̂

(
D(K); Θ̃

)
where p(~zk0:t|~mk

0:t, ~o
k
1:t, Θ̃) is the joint distribution of controller

nodes for all agents, and σkt (Θ̃)
def.
= r̃kt p

(
~mk

0:t|~ok1:t, Θ̃
)
=ΠN

n=1r̃
k
t p
(
mk
n,0:t|okn,1:t, Θ̃

)
is a reweighted reward.

Update of Policy Parameters (M-step) After computing the reweighted rewards {σkt } and the posterior distribution of con-
troller nodes p(~zk0:t|~mk

0:t, ~o
k
1:t, Θ̃),∀t,∀k, the policy parameters is updated by Θ = arg maxΘ∈F lb(Θ|Θ̃), subject to normal-

ization constraints. Specifically, let ξt,τn,k(un, vn)
def.
= p(zkn,τ = un, z

k
n,τ+1 = vn|mk

n,0:t, o
k
n,1:t, Θ̃n) and φt,τn,k(un)

def.
= p(zkn,τ =

un|mk
n,0:t, o

k
n,1:t, Θ̃n). Expanding the lower bound of ln V̂

(
D(K); Θ

)
and keeping the terms related to Θ, we have

lb
(
Θ|Θ̃

)
∝∑k,tσ

k
t (Θ̃)

∑N
n=1

{∑|Zn|
un=1φ

t,0
n,k(un) lnµunn +

∑t
τ=0

[∑|Zn|
vn=1φ

n,k
t,τ (un) lnπ

akn,τ ,o
k
n,τ

n,un +
∑|Zn|
un,vn=1ξ

t,τ
n,k(un, vn)lnWun,vn

n,okn,τ+1

]}
.

2
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Therefore, an analytic solution to problem Θ = arg maxΘ∈F lb(Θ|Θ̃) can be obtained as

Wun,vn
n,on ∝∑K

k=1

∑Tk
t=0

∑t
τ=0 σ

k
t ξ
t,τ
n,k(un, vn)I(okn,τ+1 = on),∀n ∈ N , un, vn ∈ Zn, an ∈ An, on ∈ On. (2)

where is I(·) is the indicator function. π, µ are updated in similar ways. These updates constitute a policy-improvement step where
the reweighted rewards are used to further improve policies.

Both the above steps require ξt,τn,k(un, vn), which are computed based on ατn,k = p
(
zkn,τ |m k

n,0:τ , o
k
n,1:τ , Θ̃n

)
and βt,τn,k =

p(a kn,τ+1:t|z kn,τ ,o kn,τ+1:t,Θ̃n)
∏t
τ′=τ p(m

k
τ |h kn,τ′ ,Θ̃n)

, ∀n, k, t, τ . The (α, β) are forward-backward messages.

4 Experiments

We evaluate the performance of Algorithm 1 on both a benchmark domain of robot navigation and a large domain motivated by SAR.

4.1 A Navigation Among Movable Obstacles (NAMO) Problem

Figure 1: A 6×6 NAMO problem.

We first consider the NAMO problem, introduced in [4]. Here as shown in Figure 1, both
agents are trying to reach a goal location “G” and have to move obstacles in the way. The
primitive actions for each robot include move in four directions (up, down, left and right)
and a “push” action to attempt to move a box to a specific location. The push action fails and
the robot stays in place when the robot is not in front of the box. The small boxes (b1 and b2)
can be moved by a single robot, and the large box (b3) requires two robots to push together.
Observations are an agent’s own location and whether the large box or the same numbered
box has been moved. There is noise in both navigation and in box movement: movement
is successful with probability 0.9 and pushing the small and large boxes is successful with
probability 0.9 and 0.8, respectively. To encourage the robots to reach the goal as quickly as
possible, there is a negative reward (-1) when any agent is not in the goal region.

There were four macro-actions (option) defined for each agent, including 1) moving to a
designated location to push the big box, 2) attempting to push the large box, 3) pushing
the designated small box to the corner square, and 4) moving to the goal. The option of moving to the goal is only valid when at
least one box has been moved and movement of any box is only valid if the large box and agent’s designed box has not yet been
moved. Movement options and pushing options terminate with the box successfully or unsuccessfully moved. These options provide
high-level choices for the agents to coordinate on this problem, while abstracting away the navigation tasks to option execution.
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Figure 2: The performance of Algo-
rithm 1 as a function of η% of data gen-
erated from an optimal policy.

Here, we want to examine the effect of the behavior policy Π on Algorithm 1’s perfor-
mance. A semi-random policy is applied to collect samples. Specifically, the learning agent
is allowed access to episodes collected by taking actions according to a MaDec-POMDP
algorithm (Option-based dynamic programming (O-DP)) [4]. Let η% be the probability
that the agents follow the O-DP policy and 1 − η be the probability that the agents take
random actions. The use of an O-DP policy is similar to the meta-queries used in [6],
where a meta-query consults a domain expert for the optimal action at a particular time
step. For each run of algorithm 1, K = 100 episodes of 10 steps are used to learn the
FSCs with |Zn| = 20,∀n ∈ N , and the learned policies are evaluated by the discounted
(γ = 0.9) accumulated reward averaged over 100 test episodes of 1000 steps. The results
with η = [0, 25, 50, 75, 100] are reported in Figure 2, which shows that with a small amount
of expert knowledge (η ≥ 25%), our algorithm is able to recover the optimal policy.

4.2 A Search and Rescue (SAR) Problem

To further demonstrate the scalability and learning efficiency of the proposed algorithm, we designed a SAR problem involving
four heterogeneous agents: an unmanned aerial vehicle (UAV) and three unmanned ground vehicles (UGVs). These agents op-
erate in a 20 × 10 gridworld (shown in figure 3 (a)), where there are 6 rescue sites with different distance to the muster, which
is the assembly area for the SAR agents. There are six victims, each of which is located in a different rescue site. There is a
set of initial health states for each victim (not equal to each other) which do not change, though the initial position of each vic-
tim does change. Health trajectories are linear. There is a 5% noise in the observations, communication, and UAV’s path. The
speed of UAV is three times faster than UGV. However, only the UGVs can pick-up victims. The agents receive a positive re-
ward (+1), if a victim transported to the muster is still alive (i.e., has health greater than zero), and receive a negative reward (-1)
when one victim dies. For a UGV, there are 1120 observations encoded by the set ΩUGV = SL × SS × SV × OL × OV ,
where SL = {site 1,..., site 6, muster} is a set of self location; SS = {holding victim, not holding victim} is a set of self states;
SV = {has victims needing help, no victims needing help, unknown, critical victims} is the set of states of the victim at an agent’s
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Figure 3: (a) A SAR domain (diamonds represent victims with colors indicate health, circles and cross represent UGV and UAV respectively); (b)
A heuristic policy finite state machine for UGV constructed by domain experts; (c) Testing performance using different number of training sample
K and percentage of hand-coded policies η; (d) Testing performance of policies with different FSC sizes.

current location; OV is the state of the victim at OL, the other location (from communication), and there are 8 macro-actions, in-
cluding {m1, · · · ,m6}: go to one of the six sites, m7: retrieve a victim at one site (retrieve) and m8: go to muster and drop off
victim (muster). For the UAV, there are 560 observations (assuming the UAV cannot hold victims) and 7 macro-actions, including go
to muster and go to one of the six sites. All vehicles begin in the muster.

Given the large problem size, unknown POMDP model and the stochasticity in observations and communication, it is difficult to
generate an optimal policy with existing solvers. Instead, a domain expert’s knowledge is used to create a heuristic controller for
exploration. Figure 3(b) provides a visualization of the graph describing the heuristic policy finite state machine. This is the policy
for one ground vehicle, where sites A, B, and C represent a subset of the possible sites. The agent-to-site mappings include: a) agent
1: A=6, B=5, C=4; b) agent 2: A=3, B=1, C=2; c) agent 3: A=2, B=1, C=3. The policy for the air vehicle is to cycle linearly through
the following sequence: site 1, site 2, muster, site 3, site 4, site 5, site 6, muster. The value of hand-coded policy is estimated based
on 1000 runs with randomly placed victims and the mean reward is 4.22 (pink dotted line in Figure 3(c)).

To evaluate POEM’s performance on the SAR domain, we test η = [0, 25, 50, 75, 80, 85, 90, 95, 100]. For each setting of η, 2000
training trajectories (with horizon upper bound set to 200) are generated. When setting |Zn| = 20 and K = 1000, the training
time is less than 15min on average. The corresponding testing results are plotted in figure 3(c), from which we can see, a) POEM is
able to achieve policy improvement with a sufficient amount of samples (K > 100); b) By using 1000 trajectories generated from
heuristic policy, POEM is able to achieve a mean value greater than 5, which is higher than the value of hand-coded policy; c) Adding
a small amount of noise (5%) to the heuristic policy can help getting a slightly better performance than purely using handed coded
policy. Hence the experiments demonstrate POEM can achieve policy improvement and is scalable to large problems. In addition,
nine settings of |Zn| are used to investigate the influence of the controller size on policy quality. As shown in Figure 3(d), the FSCs
learned by POEM render much higher value than the hand-coded policies (with x-axis labeled with H) over a wide range of choices
for |Zn| (from 5 to 50), indicating robustness of POEM to the size of controller nodes. However, when |Zn| is too small, POEM
cannot accommodate a good policy. Automatic inference of the necessary size of controllers can be performed using nonparametric
methods, such as the hierarchical Dirichlet process [11] and stick-breaking processes [10], which is left for future work.

5 Conclusions

This paper presents an RL method for learning to coordinate multiple agents in macro-action level Dec-POMDPs, an important
problem that has not been adequately addressed before. Our method uses previously executed macro-action, observation histories
and rewards to improve future decision making without explicitly requiring mission models. An algorithm called POEM is presented
for batch learning with convergence guarantee (local optimal). Theoretical analysis and empirical results show the proposed method
is a promising tool for solving RL in MacDec-POMDPs.
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Abstract

We consider the problem of learning and planning in Markov decision processes with temporally extended actions rep-
resented in the options framework. We propose to use predictions about the duration of extended actions to represent
the state and show that this leads to a compact predictive state representation model independent of the set of primitive
actions. Then we develop a consistent and efficient spectral learning algorithm for such models. Using just the timing
information to represent states allows for faster improvement in the planning performance. We illustrate our approach
with experiments in both synthetic and robot navigation domains.
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1 Introduction

Modelling the dynamics of an agent embedded in a large, complex environment is key to building good planning algo-
rithms for such agents. In most practical applications, models are carefully designed by hand, and the agent’s “state” is
given by measurements which are understandable by the designer of the system (such as spatial location and velocity,
in the case of a robot). However, learning dynamical models for such states from data, as well as planning with them
can be quite tricky. An alternative idea is to use models that are “subjective”, centered on the agent’s own perception
and action capabilities. For example, affordances [Gibson, 1977] describe “state” through the courses of action that are
enabled. Similarly, in robotics, subjective representations have been used to model dynamics, e.g. [Bowling et al., 2005;
Stober et al., 2011]. Such models are appealing from a psychological point of view, but run into computational problems
in very large observation spaces.

In this paper, we focus on a special class of subjective models, timing models, which arise from restricting the observations
available to the agent to just information about the duration of certain courses of action. Timing of events is understood
to be crucial to animal learning [Machado et al., 2009]. The goal of this paper, however, is not learning of the timing
of external events, but rather to learn the duration of courses of action that an agent might take. The ensemble of such
durations will constitute the agent’s state, which will be maintained as new data is received. We use the framework
of options [Sutton et al., 1999] to model extended courses of actions, and we present an approach for learning option
durations.

Our models over durations can be viewed as affordances if we consider an option to be available if its estimated duration
is within some reasonable bounds. Note that these models are much simpler than full option models, which provide
joint information on the timing as well as the state or observation in which the option will terminate, e.g. [Wolfe and
Singh, 2006]. Our approach can also be interpreted as a computationally and statistically efficient way of exploiting prior
information about useful courses of action provided in the form of options. As a consequence, the size of our models
is independent of the number of possible primitive actions in the underlying system. Another interesting feature of our
approach is that we are able to learn feature representations for states using timing information only; this means our
method can be applied to observable settings with high-dimensional observations and to partially observable settings as
well.

Of course, the utility of such timing models depends strongly on the nature of the task to be solved by the agent, as
well as on the “quality” of the options available to the agent. The simplest example in which option duration models
are beneficial is that of minimum time to goal problems, in which an agent receives a fixed penalty per time step until
its task is completed. In this case, knowing the duration of an option immediately gives us the reward model, so the
option duration model has direct value for a planner. More generally, option duration models are beneficial as a form
of localization. If you imagine a robot that has models for options that move radially out from the current position, this
would allow localizing with respect to all neighboring walls. Finally, consider a problem in which a financial agent is
holding stocks, and options which hold a particular stock while it is above a certain value, and sell under that value. In
this case, timing models tell us exactly when stocks would be crossing certain barriers. It is clear in this case that, even
though we are estimating only durations, these encode important state information (because of the way in which the
options are defined).

In this paper we analyze the capacity of option duration models to represent states in a Markov Decision Process (MDP).
We propose a spectral algorithm for learning option duration models which builds on existing work for learning trans-
formed predictive state representations [Rosencrantz et al., 2004a]. Finally we evaluate the quality of learning and plan-
ning with our model in experiments with discrete MDPs.

1.1 Markov Decision Processes and Temporally Extended Actions

A Markov decision process (MDP) is a tuple M = 〈S,A, P,R〉 where S is the state space, A is the action set, P : S × A →
(S → [0, 1]) defines a probability distribution over next states, and R : S × A → R is the expected reward function (see
[Puterman, 1994] for a review). We refer to probability distributions on S by α, but sometimes use α to stress that we
view them as vectors in RS . Suppose α is a distribution over S and π : S ×A→ [0, 1] is a stochastic action policy which,
given state s, chooses action a with probability π(s, a). The environment then returns a state sampled from P ; and the
resulting state distribution α′ is given by:

α′(s′) =
∑

s∈S
α(s)

∑

a∈A
π(s, a)P (s, a)(s′) . (1)

Temporal abstraction in MDPs has been used as a tool to speed up learning and planning algorithms. We adopt the
framework of options [Sutton et al., 1999], with the goal of learning state representations based on option timing models.
An option is a tuple ω = 〈Iω, πω, βω〉 where Iω ⊆ S is the set of initial states, πω : S × A → [0, 1] is the option’s stochastic
action policy, and βω : S → [0, 1] is the option termination probability for each state.
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1.2 Predictive State Representations

A predictive state representation is a model of a dynamical system where the current state is represented as a set of predic-
tions about the future behavior of the system [Littman et al., 2002; Singh et al., 2004]. We use a particular instantiation
of this general idea, the so-called transformed linear predictive state representation [Rosencrantz et al., 2004b], which we
abbreviate for simplicity as PSR.

A PSR with observations in a finite set Σ is a tuple A = 〈αλ,α∞, {Aσ}σ∈Σ〉 where αλ,α∞ ∈ Rn are the initial and final
weights respectively, and Aσ ∈ Rn×n are the transition weights. The dimension n of these vectors and matrices is the
number of states of the PSR. The function fA : Σ? → R computed byA assigns a number to each string x = x1x2 · · ·xt ∈ Σ?

as follows:
fA(x) = α>λAx1Ax2 · · ·Axtα∞ = α>λAxα∞ . (2)

The behavior of a stochastic dynamical system producing observations in a finite set Σ can be entirely characterized by
the function f : Σ? → R giving the probability f(x) of observing each possible sequence of observations x. A convenient
algebraic way to summarize all the information conveyed by f is its Hankel matrix, a bi-infinite matrix Hf ∈ RΣ?×Σ?

with
rows and columns indexed by strings in Σ?. In particular, a well-known result states that Hf has rank at most n if and
only if there exists a PSR Awith n states satisfying fA = f [Carlyle and Paz, 1971; Fliess, 1974]. The Hankel matrix Hf is
tightly related to the system dynamics matrix (SDM) of the stochastic process described by f [Singh et al., 2004], but while
the entries of the Hankel matrix represent joint probabilities over prefixes and suffixes, the corresponding entry in the
SDM is the conditional probability of observing a suffix given the prefix. An empirical estimate of the Hankel matrix can
be obtained given a finite set of prefixes and suffixes. The singular value decomposition can then be used to recover a
PSR (see [Boots et al., 2011] for details).

2 Option Duration Models

We are interested in the dynamics of an agent interacting with an MDP M via a set of options Ω. Recall that in this
setting the agent is not allowed to perform primitive actions, and options must be executed until termination. We are
interested in considering situations where the duration of an option constitutes an informative statistic about the state of
the MDP. Hence, the history of the agent’s interaction with an MPD will be given by a trajectory consisting of option-
duration pairs: (ω1, d1)(ω2, d2) · · · (ωt, dt), with ωi ∈ Ω, di ∈ N = {1, 2, . . .}. Focusing on the sequence of options and
termination/continuation events, we have a discrete dynamical system with observations from Ω × {],⊥}, where ]
(sharp) denotes continuation and ⊥ (bottom) denotes termination. The previous trajectory in this new dynamical system
looks as follows:

(ω1, ], . . . , ω1, ], ω1,⊥, ω2, ], . . . , ω2, ], ω2,⊥, . . .) = (ω1, ])
d1−1(ω1,⊥)(ω2, ])

d2−1(ω2,⊥) . . .

Formally, we are mapping a dynamical process with trajectories in (S × A)? (representing the interaction of the agent
with the MDP), to a process with trajectories in (Ω×{],⊥})? representing the duration of option execution. This mapping
induces a new dynamical system, whose properties might be useful for planning with options in the original system.

We now show that the probability distributions over the duration of options can be compactly represented in the form
of a PSR. Let s0 ∈ S, ω = 〈I, π, β〉, and d > 0 be an integer. We write δ(s0, ω) for the random variable representing the
duration until termination of option ω from state s0. We are interested in the following quantity:

P[δ(s0, ω) = d] =
∑

s̄∈Sd

∑

ā∈Ad

P[s0, a0, s1, a1, · · · , ad−1, ad−1, sd,⊥] , (3)

where s̄ = s1 · · · sd is the sequence of states traversed by ω, ā = a0 · · · ad−1 is the sequence of actions performed by by ω,
and ⊥ denotes the option termination. With some algebra, it can be shown that summing this expression over s̄ and ā
yields:

P[δ(s0, ω) = d] = e>s0A
d−1
ω,] Aω,⊥1 , (4)

where we have used the following definitions: es0 ∈ RS is an indicator vector with es0(s) = I[s = s0], Aω,] ∈
RS×S is a matrix with Aω,](s, s

′) =
∑
a∈A π(s, a)P (s, a, s′)(1 − β(s′)), Aω,⊥ ∈ RS×S is a matrix with Aω,⊥(s, s′) =∑

a∈A π(s, a)P (s, a, s′)β(s′), and 1 ∈ RS is a vector of ones. More generally, we can prove the following:

Theorem 1. Let M be an MDP with n states, Ω a set of options, and Σ = Ω × {],⊥}. For every distribution α over the states of
M , there exists a PSR A = 〈α,1, {Aσ}〉 with at most n states that computes the distributions over durations of options executed
from a state sampled according to α.

We will call any PSR computing distributions over durations of options an option duration model (ODM).
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3 Experiments

We first assess the learnability of our model in practice using a gridworld environment. We use a 4-connected grid
with four actions representing the cardinal directions (NEWS). Unless the current state is a “wall” each action moves the
agent one step in the specified direction with probability 0.9, and remains in the current state with probability 0.1. We
also define one option for each cardinal direction. These options take as many steps as possible in the specified direction
until they hit a wall, at which point the option terminates. A uniform random exploration policy is used for sampling
10000 episodes in which five options are executed up to termination. We also collected a test set consisting of 10000
trajectories of eight options sequences. We evaluate the prediction accuracy by computing the relative error over the
estimated remaining number of steps in the currently executing option. For each test trajectory, we picked a time index
uniformly at random and conditioned the learned ODM on the history up to this point. These random split points were
then kept fixed throughout all evaluations. Figure 1a shows that the prediction accuracy increases as the dimension of
the ODM gets larger. More samples also allow for better predictions. Note that since the prediction task is inherently
stochastic, even the true ODM cannot achieve zero relative error.

3.1 Planning

We use the Fitted-Q iteration (FQI) algorithm of Ernst et al. [2005] for planning over a learned ODM. We make state
directly over the ODM state vector updated at each step with the corresponding operator (continuation or termination)
according to the linear form in (2). A gridworld environment with obstacles is used for evaluation and once again, any
of the four actions can fail with probability 0.1 in every state. An immediate reward of 100 is obtained at the goal and
collisions with the walls are penalized by -10. Taking a primitive step does not incur an immediate cost but the length
of the trajectories affect the cumulative reward through a discount factor of 0.9. A dataset of 1000 trajectories of eight
options sequences was collected with a discrete uniform policy over options. For each curve shown in 1b, we use our
dataset to learn an ODM and plan over it. We evaluate the performance of the greedy policy by taking 100 Monte-Carlo
estimates in the simulated environment. Given the true underlying MDP and a set of options, we can compute the
resulting Semi-Markov Decision Process (SMDP) (see p. 26 of Sutton et al. [1999]) and solve it using value iteration. The
expected discounted cumulative return in the SMDP serves as our baseline. Figure 1b shows that an optimal policy can
be obtained using 1000 trajectories and one step of FQI. Interestingly, it seems that even when using an imperfect model
(such as the one built with 100 trajectories in fig. 1b), we can still recover a near-optimal policy.
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