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PREFACE

Welcome to Reinforcement Learning and Decision Making 2022!

Over the last few decades, reinforcement learning and decision making have been the focus of an incredible wealth of
research in a wide variety of fields including psychology, animal and human neuroscience, artificial intelligence, machine
learning, robotics, operations research, neuroeconomics and ethology. All these fields, despite their differences, share a
common ambition—understanding the information processing that leads to the effective achievement of goals.

Key to many developments has been multidisciplinary sharing of ideas and findings. However, the commonalities are fre-
quently obscured by differences in language and methodology. To remedy this issue, the RLDM meetings were started in
2013 with the explicit goal of fostering multidisciplinary discussion across the fields. RLDM 2022 is the fifth such meeting.

Our primary form of discourse is intended to be cross-disciplinary conversations, with teaching and learning being central
objectives, along with the dissemination of novel theoretical and experimental results. To accommodate the variegated
traditions of the contributing communities, we do not have an official proceedings. Nevertheless, some authors have agreed
to make their extended abstracts available, which can be downloaded from the RLDM website.

We would like to conclude by thanking all past organizers, speakers, authors and members of the program committee. Your
hard work is the bedrock of a successful conference.

We hope you enjoy RLDM2022.

Catherine Hartley and Michael L. Littman, General chairs

Roshan Cools and Peter Stone, Program chairs

Michael M. Frank and George Konidaris, Local chairs

Emma Brunskill, Peter Dayan, Yael Niv, Satinder Singh, Ross Otto and Rich Sutton, Executive committee
Quentin Huys and Marc Bellemare, Area chairs

Michael Browning and Katja Hoffman, Workshop chairs

Marcelo Mattar and Chelsea Finn, Tutorial chairs

Andrew Westbrook, Awards and Spotlights chair
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Expressing Non-Markov Reward to a Markov Agent

David Abel André Barreto Michael Bowling
DeepMind DeepMind DeepMind
London, UK London, UK London, UK
dmabel@deepmind.com andrebarreto@deepmind.com bowlingm@deepmind.com
Will Dabney Steven Hansen Anna Harutyunyan
DeepMind DeepMind DeepMind
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Mark K. Ho Ramana Kumar Michael L. Littman
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Doina Precup Satinder Singh
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doinap@deepmind.com baveja@deepmind.com
Abstract

Markov Decision Processes are the standard model of sequential decision-making problems in reinforcement learning.
However, as noted by Abel et al. [1], for some environments, there exist choices of task that cannot be expressed as
a reward function that is Markovian on the environment’s state space. We here address this limitation by studying a
particular form of state-construction that is designed to systematically enrich the expressivity of reward. Concretely,
we introduce the Split Markov Decision Process, a model of sequential decision-making problems with decoupled
environment-state and reward-state, reminiscent of reward machines [2]. Using this model, we generalize one of the
central questions of Abel et al. [1] regarding the expressivity of reward: given any task and Markovian environment,
does there exist a reward function defined over some reward-state space that can express the task? Our main result
answers this question in the affirmative for one type of case by offering a procedure that builds the realizing reward
structures. We close by exploring basic aspects of reinforcement learning under these realizing reward structures in
small-scale experiments, and call attention to open questions of interest.

Keywords: Reward, Reward Hypothesis, Expressivity, Markov Decision Process,
MDP, Reinforcement Learning.

Acknowledgements

The authors would like to thank Hado van Hasselt, Alex Turner, Jacob Buckman, and Ben Van Roy for helpful
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1 Introduction

Discrete time Markov Decision Processes (MDPs) are the standard model of environments in reinforcement learning
(RL). Naturally, restricting attention to MDPs limits the space of representable RL problems—for instance, we might
instead consider cases in which there is no available description of state, that time is not discrete, or that either the
transition or reward function depend partially on history. Indeed, Abel et al. [1] explore the expressivity of Markov
reward as a possible limitation to the space of tasks we can represent. Given an environment modeled as a Controlled
Markov Process (CMP: Definition 1), Abel et al. [1] suppose that a designer (Alice) forms preferences over the CMP
that she will translate into a reward function to incentivize a learning agent (Bob) to realize the chosen preferences.
Abel et al. [1] then ask: for any choice of such preferences and CMP, will there always exist a Markov reward function
that captures Alice’s preferences?

One of the main results (Theorem 4.1) of Abel et al. [1] illustrates that there are two known types of failure cases
in which the expressivity of Markov reward functions is lacking. The first they call the “steady state type” in which
Alice holds preferences over events that occur with zero probability. For this reason, reward fails to elicit behavior
that captures the given preferences, only because the behavior does not factor into the start-state value (or return) of
the preferred behaviors. The second they call the “entailment type”, in which the value of the desired preferences is
entangled. For example, consider the “always move in the same direction” task in a grid world. Here, the CMP is a grid
world with environment state defined according to a typical (x,y) pair. However, there is no Markov reward function
that can properly incentivize an agent to prefer the four “go the same direction” policies above all alternatives—such
reward functions depend on knowledge of either history or the future.

Results Overview. We here provide one kind of remedy to entailment issues. Our construction also yields a new
and potentially interesting model of sequential decision-making problems we call the Split Markov Decision Process
(Split-MDP) that bears heavy resemblance to reward machines [2]: a Split-MDP follows from the insight that rewards
need not be based on the same notion of state as the environment’s transitions. Concretely, a Split MDP is a CMP
paired with an automaton-like structure we call a reward bundle (Definition 3) that produces reward. We use this
model to provide a simple constructive proof that one aspect of the limited expressivity of Markov reward identified
by Abel et al. [1] can be fixed by augmented state (or, said differently, that non-Markovian rewards do not suffer
from entailment issues when encouraging Markov policies). Lastly, we conduct small-scale experiments that provide
additional support to our findings, and highlight open questions of interest.

1.1 Preliminaries: CMPs, Tasks, and the Split-MDP

We first introduce relevant concepts needed to make our study precise, though we adopt many of the conventions from
Abel et al. [1]. We begin with an environment described by a CMP, defined as follows.

Definition 1. A Controlled Markov Process (CMP) is a model of an environment, E = (S,, A, p,7, sg))), where: S,
is a finite set of environment states, A is a finite set of actions, p : S, X A — A(A) is a transition function, y € [0, 1)

is a discount factor, and sg,o) € S, is the environment start-state.

Then, a designer (Alice) inspects the environment and forms some set of preferences over desired outcomes. Following
Abel et al. [1], we will be initially focused on sets of acceptable policies (SOAPs), defined as follows, though our main
result extends to policy orderings (POs) and trajectory orderings (TOs) defined by Abel et al. [1] as well.

Definition 2. A Set Of Acceptable Policies (SOAP) is a non-empty subset of the deterministic policies, Ilg C I, with
I1 the set of all deterministic mappings from S, to A for a given E.

As discussed, one of the central questions of Abel et al. [1] asks: for a given (E, 1) pair, will there exist a reward
function that is Markov on S, that can capture the given SOAP in E? A reward function captures the SOAP just when
the start-state value induced by the given reward function adheres to the constraints of the SOAP. That is, the good
policies all have strictly higher start-state value than the bad policies (“range” SOAP), or the good policies are all
optimal and have strictly higher start-state value than the bad (“equal” SOAP). We here generalize this question to the
case where Alice can choose not just a reward function, but also a state space for the reward function to operate over.

The Split Markov Decision Process. We next introduce two new structures: (1) A reward bundle (Definition 3): A
collection of structures that produce reward, reminiscent of reward machines [2]; and (2) the Split-MDP (Definition 4):
An MDP formed by a CMP paired with a reward bundle. This model is motivated by the observation that the basic
laws of an environment might depend on different information than the reward function, and thus, we can decouple
environment-state from reward-state. 11
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Definition 3. A reward bundle is a quadruple, # = (S,,r, f, 550))’ where: S, is a finite set of reward states, r :
S, x AX S, — Ris a reward function, f : S, X S, x A — S, is a deterministic reward-state dynamics function, and

sfo) € S, is the reward start-state.

We may combine a CMP with a reward bundle to form a Split-MDP as follows.

Definition 4. A Split Markov Decision Process (Split-MDP) is any MDP formed by pairing a CMP with a reward
bundle, M = (E, %), yielding S = S, X S,, sO = (s(po), sﬁo)), and py : s, X Sy X a v p(sp,a), f(sr, $p, a).

In cases where the reward-state space is unknown or unobservable to a learning algorithm, it might be natural to
suppose an agent interacts with a Split-MDP but only observes the pair (sg), r(s(,’ ). Such a setting induces a specific

kind of partially observable MDP (POMDP) [3] in which the next observation, s(p”l), is predictable from sg) and a®
alone. We call such a model a Split-POMDP, and note that it defines a friendly class of POMDPs; we anticipate there
are many interesting questions to pursue about Split-POMDPs beyond our scope.

2 Results.

First, we inspect whether there is always a reward bundle to realize a given SOAP. As mentioned in the introduction,
we are focused on the “entailment cases”, and set aside “steady state” issues by invoking the following assumption.

Assumption 1. All tasks only contain preferences over outcomes that occur with non-zero probability.
This assumption is just a concise way of limiting our attention to entailment cases, but we note that there are related
arguments that go beyond this assumption that are out of scope for this paper.

Proposition 1. Under Assumption 1, for any choice of CMP E and SOAP Ilg (with policies defined on S),), there
exists a reward bundle Z such that the optimal policies in M = (E, %) are equivalent to those in 1lg.

Proof of Proposition 1.

We are given a finite CMP, E = (S,,, A, p, 7, sg,o)), and a SOAP Il where each r, € Ilg is a mapping from S,

to A. We want to show that there is a reward bundle, Z = (S,, r, f, sﬁo)), such that in the resulting Split-MDP
M = (E, %), the optimal policies, I}, = arg max Vz’{l(s(o)), agree with the SOAP on each s,

(l) ﬂM(sp, Sr) = ﬂg(sp)’ vxp,x,.EprS,.vnMeﬂjwalrgel'lc, (l)
(@) |, = Mgl 2)

We proceed by constructing such a reward bundle:

e Reward state space. Let S, = P (Ilg), where &?(X) denotes the powerset of X.
e Reward start-state. Let s(,o) be I1g.

e Reward state dynamics. We define f to remove any policy from Il that is inconsistent with the
state-action taken, and to repopulate the full SOAP when all policies have been removed:

s\ (s, 8p,a) s/ >0
Il otherwise.

S(srs Sp> a) = { 3)

where I1.(s;, 5, a) is the set of all policies in s, that do not take a in s,,.
e Reward function. Lastly, let r(s"™", a®, s\") = ]I{El,rgs, : ﬂ(sg)) = a(’)}.

There are two key facts about this reward bundle. First, the reward function provides +1 reward to those state
action pairs that agree with one of the acceptable policies. Second, the reward state dynamics function will
remove any policy from the reward state that is inconsistent with an action taken. Thus, at any point in time,
the only policies that remain in the reward state are thgse consistent with every action taken thus far. O
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In some situations, we might imagine that the reward-state is either unknown or unobservable to the learning agent,
thus inducing a Split-POMDP. We next highlight the fact that, by direct consequence of the previous construction,
there will exist optimal policies in the Split-POMDP that only depend on environment-state.

Corollary 1. Consider a Split-MDP constructed from an (E, 1) pair according to the procedure outlined in the proof
of Proposition 1. When viewed as a POMDP with s, the hidden state and s, the observation, there will always exist
an optimal deterministic policy that only depends on environment-state, s,,.

Thus, when the agent only observes environment-state, there is still a representable optimal policy, unlike traditional
POMDPs in which memoryless policies are known to be arbitrarily sub-optimal [6, 4]. We explore this consequence
further in our experiments (subsection 2.1).

Furthermore, we find that the frajectory ordering and the policy ordering cases considered by Abel et al. [1] can be
captured by a similar construction.

Corollary 2. Under Assumption 1, for any choice of Split-CMP E and trajectory ordering L. or policy ordering Ly
(with trajectories and policies defined over S,), there exists a reward bundle Z such that the start-state return of the
trajectories of L.y or start-state value of the ordering Ly adheres to the constraints specified by the given task.

We exclude the full proof due to space constraints, but note that the idea is a straightforward extension of the earlier
proof. In the case of trajectory orderings, we define S, to be the space of length [1 : N] trajectories, and define
r: s, = 1{|s,| = N} x (RMax — rank(s,)) so that end-of-trajectory reward ranks the trajectories from best to worst. In
the case of a policy ordering, let S, = Z(Ly;), and provide reward each time-step proportional to the inverse-rank of
the best policy still consistent with the behavior. Both constructions ensure that each ordering is respected.

2.1 Experiments

We conduct experiments with a simple SOAP and CMP reminiscent of the XOR problem from Abel et al. [1]. The
CMP has three environment-states and two actions, pictured in Figure la. The desired SOAP contains four policies,
each requiring that the agent take different actions across two of the three environment-states. We construct a reward
bundle with four-reward states (pictured in Figure 1b) according to the constructive procedure described by Proposi-
tion 1, and note that, as a consequence, there will exist four optimal policies over just s,. Our experiments are intended
to explore two questions. First, we examine learning curves of a variety of agents interacting with this environment
to study the relationship between the representability of a good policy and its learnability—when viewed as a Split-
POMDP, we know typical learning algorithms can represent each of the policies in the SOAP (by Corollary 1), but
do not know whether learning these policies is also feasible (building on the results in Section 4.2 by McCallum [5]).
Second, we inspect whether the proposed reward bundles can in fact incentivize learning algorithms to discover any
of the acceptable policies, rather than just learn a single desired behavior. For simplicity, we experiment with tabular
Q-learning of two variations: (1) When viewing the problem as an MDP, so (s, s,, r(s,)) are given as input each time
step, and (2) When viewing the problem as a POMDP, so (s, 7(s,)) are given as input each time step. We further vary
the initialization of Q between all zeros and uniform random from the interval [0, 1], as well as different settings of
the exploration parameter (e, no annealing) used in e-greedy action selection. We set the learning rate @ = 0.05 and
discount factor y = 0.95.

(a) Environment (b) Reward Bundle

Figure 1: The XOR-like environment used in the experiments (left), with the reward bundle (right) constructed by
the procedure described in the proof of Proposition 1. The desired SOAP contains all policies that disagree on action
choice across s, and s,,. That is, Il = {n010,7r100,7r011,7rP31}, where 719 denotes {s,, = ag | 5,, = ai | sp, = ap}.
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Figure 2: The first two figures present results from Q-learning interacting with an environment as a Split-MDP (blue)
compared to a Split-POMDP (orange, “PO” prefix), when the rewards are generated from a well-constructed reward
bundle as per Proposition 1. We further contrast performance relative to a randomly initialized Q function in both the
MDP (green) and POMDP (pink, “PO” prefix) variations. The y-axis displays the mean, per-episode reward, averaged
over 100 runs of the experiment with 95% confidence intervals, with optimal performance shown in the grey dashed
line. The third plot illustrates the fraction of the four acceptable policies discovered by each learning algorithm in the
final 50 episodes of learning across all runs of the experiment.

Results are presented in Figure 2. In Figure 2a and Figure 2b, we plot learning curves of all four agent varieties. We
observe that in both zero-initialized and randomly-intialized learning for the standard MDP case (shown in blue and
green, respectively), Q-learning can reliably discover optimal behavior, corroborating Proposition 1. In the POMDP
case (orange and pink), the results suggest that, depending on €, PO Q-learning will either achieve the same level
of performance as its MDP counterpart (as in € = 0.1), or that there is a statistically significant gap separating the
performance of the two (as in € = 0.01). This suggests that learning in a Split-POMDP is sometimes feasible; a natural
direction for future work will further clarify the precise conditions under which effective learning is always possible.
In Figure 2c, we visualize the fraction of time that each agent’s greedy policy at the end of the episode is one of the
SOAP policies (in just the final 50 episodes, averaged over 100 runs of the experiment). These results demonstrate that
all four learning algorithms can reliably recover each one of the acceptable policies during learning, in roughly equal
proportion. These results indicate that well-constructed reward bundles can in fact enhance what is learnable, even
when the agent does not have access to the reward-state. A key direction for future work will identify simple learning
procedures that can automatically construct agent-state to discover any kind of behavior expressible by reward.

2.2 Discussion

This work presents a simple state construction procedure that can enrich the expressivity of reward. Our results patch
one of the holes identified by Abel et al. [1], and show that we can produce reward that is often conducive to learning.
Lastly, we introduce the Split-MDP and Split-POMDP, which we believe may offer useful perspectives for studying
state-construction, learning under partial-observability, and task complexity in RL.
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Abstract

Humans are adept at exploring environments in which rewards are sparse, gathering information pertinent to their
goals even if it cannot be immediately exploited to gain reward. We know very little about the computational basis of
this capacity, since most studies of human exploration focus on tasks with immediate rewards for every choice. With
immediate reward, value exploitation dominates behavior, rendering exploration too rare to examine. We developed a
goal-directed exploration task in which information gathering is independent of value exploitation. We asked what com-
putational principle guides participants in choosing between potential learning experiences, and how choice strategy is
modulated by the computational difficulty of the task. To this end, we compared participants’ choices to three hypoth-
esized strategies, from sophisticated to simplified: (i) maximizing information gain, (ii) choosing the object associated
with the highest current uncertainty, (iii) simply balancing the number of interactions with each object.

We found that current uncertainty was the best predictor of choice. Crucially, exploration was also strongly modu-
lated by participants” overall knowledge of the goal, measured as their total uncertainty for both choice options. When
participants’ total uncertainty was low they chose the more uncertain option, as hypothesized. However, when total
uncertainty was high, they avoided the more uncertain option, thereby slowing down the rate of incoming information.
This strategy is accordant with managing mental effort of decision-making by reducing choice-switching costs. Indeed,
participants preferred to repeat previous choices, and took longer to make choices counteracting this tendency. Alto-
gether, our findings demonstrate that human exploration strategies are tailored to the limited computational capacities
of our minds.

Keywords: exploration, decision making, capacity limitation, rational analy-
sis, multi-armed bandit task
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1 Introduction

Humans inhabit complex environments that are sparse in reward. To achieve most of our goals we have to learn the
structure of the environment without the benefit of experiencing repeated extrinsic reward. Instead, we choose between
potential learning experiences that carry no value per se, accumulating knowledge which may be used later to gain
reward. Thus, before going to the theatre we read reviews and elicit recommendations from friends, rather than actually
watching all running plays. We find out whether our choices were satisfactory only once, at the end of the night.

Most studies of human exploration, however, focus on tasks with immediate rewards for every choice [1-5]. Under such
conditions, behaviour is dominated by the motivation to exploit existing knowledge, constricting the scientist’s ability to
observe and explain exploratory choices made to gain new knowledge. Thus, while much is known about how human
choices are driven by sequential reward during learning, much less is known about how humans explore environments
to gain new knowledge when rewards are not immediately available.

. . a b
To examine human exploration, we devel- Table Decks 6

oped a task allowing participants to learn ]
about the environment through repeated in-
teractions, gathering information but gaining
no immediate reward. Participants had to
maximize their learning in preparation for
a future test, performance on which would
be rewarded. We asked what computational
strategy underlies participants’ choices dur-
ing exploration, and whether this strategy is
modulated by the demands of the task.

Until Response

Until Response

2.4s

2 Task

The task simulated a room with four tables,
with two decks of cards on each table. If a
card was flipped, it was revealed to be either
orange or blue. The proportion of orange vs. Figure 1: Task structure. (a) Participants explored four tables, each contain-
blue cards, 0, differed between the two decks ing two decks with different proportions of blue/orange cards 6. The goal was
on each table. Participants” goal was to learn to learn which deck had the higher (or lower) 6 on each table, that is to learn
s gn( Aai), or which deck had had more orange $ gn(Ab;), the sign of the difference between 6s. (b) On a single exploration trial,
(blue) cards on each table (Fig. 1a). participants chose between two tables, and then sampled a card from one of the
decks on that table, observing its colour.

e [ [ J[a ][~ J[m ][& ][ =

The task began with an exploration phase, fol-

lowed by a test phase. On each trial of the exploration phase participants chose between two tables, and then chose to
reveal one card from a deck on the table they had chosen (Fig. 1b). Participants were instructed that the exploration
phase would be followed by a test phase after a random number of trials (drawn from a geometric distribution with rate
+ to discourage pre-planning). During test, one of the colours was designated as rewarding. Participants were asked
to indicate which deck had more of the rewarding colour on each table. For every correct choice they received $0.25.
Crucially, they received no reward during exploration, and were only rewarded for test performance.

A pre-registered sample of 194 participants played 22 rounds of our task over four online sessions. Each round employed
new tables, decks and colours. We focus our analysis on table choices during exploration, since our candidate hypotheses
do not make differing predictions for deck choices.

3 Hypotheses and models

3.1 Exploration strategy

e To explain how participants choose between tables in the exploration phase, we em-

o o) ployed rational analysis [6, 7] and derived the optimal exploration strategy, and two
Gurrent Uncertainty simpler approximate strategies (Fig. 2). These three strategies serve as benchmark hy-
H (41x0:1)) potheses against which we compare participants” actual choices.
Rrevious/Exposure The optimal strategy, given at the top of Fig. 2, is choosing the table affording maximal
& expected information gain (EIG) [8-10]. EIG is the difference between the uncertainty
Random in the value of the learninpsdesideratum sgn(A6;) given observed cards z¢.;, and the
1

Figure 2: The hierarchy of con-
sidered exploration strategies.
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expected uncertainty after observing the next card on trial ¢ + 1. (We measure uncertainty using the entropy of the
posterior).

Computing the second term in the EIG formula requires averaging over future unseen outcomes, which may be
beyond the ability of participants. Neglecting this term amounts to simply choosing the table with the highest
current uncertainty (Fig. 2, second tier) [5]. This has intuitive appeal: choose the table you know the least about. And
yet, it might be implausible to expect participants to calculate uncertainties. A simpler heuristic is given on the third
tier of Fig. 2: choosing the table with the least prior exposure, measured as the number of already observed cards n,,
(sometimes known as the Upper Confidence Bound algorithm [11]). Lastly, participants may be random, rather than
directed, explorers (e.g. employing e-greedy, softmax, or Thompson sampling algorithms [2, 4, 5]).

To evaluate these three strategies, we derived each of the three quantities from an ideal Bayesian observer model that
formed beliefs about  based on the actual card sequence each participant had observed. We then tested whether the
difference in the hypothesized quantity between the two choice options predicted participants’ choices. We used regu-
larized multilevel logistic regression models to this end.

3.2 Capacity limitations

Computing any of the strategies above may be taxing under limited resources. How do participants adapt to these limita-
tions? One possibility is that when it is difficult to decide what to explore, participants’ choices become more random [5].
In contrast, greater difficulty may prompt participants to adopt systematically biased heuristics that ameliorate the strain
on cognitive resources [12].

Our main index of computational difficulty is the total uncertainty for both choice options. When total uncertainty is
high, little is known about either option, and deciding between them has been empirically shown to be difficult [5]. We
examine choice strategy along the continuum of total uncertainty, testing whether choices become noisier or more biased
under high total uncertainty.

4 Results

4.1 Exploration strategy

Using approximate leave-one-out cross-validation for model comparison, we find that current uncertainty is the best
predictor of participants” exploratory choices (Fig. 3d). Plotting the data confirms this conclusion: Current uncertainty
for the table presented on the right relative to the table presented on the left predicts whether participants chose the table
on the right as opposed to the table on the left (Fig. 3a). EIG provides a poorer fit to choices (Fig. 3b), and exposure was
anti-correlated with choice, in exact opposite to the hypothesized relation (Fig. 3c).

Reaction times (RTs) for table choices further validated the role of current uncertainty as the decision variable [13] par-
ticipants were using to make their choices: RTs were longer when the absolute difference in current uncertainty between

the choice options was smaller b=-6.1x10", 95% posterior interval (PI)=[-11.1x1073,-1.2x107].
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Figure 3: Current uncertainty is the best predictor of choice. (a) Current uncertainty predicts exploration-phase choices. The differ-
ence in uncertainty between the table on the right and the table on the left predicts choices of the table on the right. (b) Using the same
method to plot choices as a function of EIG differences reveals that EIG fits the data less well. (c) The relationship between exposure
and choice is negative, rather than the hypothesized positive correlation. (d) Model comparison shows that of the hypothesized strate-
gies current uncertainty is the best predictor of exploratory choices: approximate leave-one-out cross-validation probability is highest
for current uncertainty. Error bars +1 s.e. 17
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4.2 Capacity limitations

From a normative perspective, exploration strategy should be exactly the same across all levels of total uncertainty:
relative uncertainty should always be positively correlated with choice. Instead, we find a systematic bias in strategy:
When total uncertainty was low or medium, participants chose the most uncertain table, as hypothesized. But when
total uncertainty was high, they chose the least uncertain table, thereby slowing the rate of information-intake (Fig. 4).
We validated this observation using a piecewise-regression model, allowing for the influence of relative uncertainty on
choice to differ below and above a fitted threshold of total uncertainty. We observe a positive relationship between
relative uncertainty and choice below the threshold b=0.24, 95% PI1=[0.20,0.27]. But above the threshold we find that
a significant negative interaction between relative and total uncertainty predicted choices b=-35.25, 95% PI=[-43.43,-
28.31]. The value of the threshold is estimated to be 1.28 nats of total uncertainty (95% PI=[1.27,1.29]; the range of total
uncertainty is 0 to 1.38).

Thus, when total-uncertainty is high, participants avoid

- - \ learning about uncertain tables. Does this strategy hinder

their performance? We examined individual differences

in exploration and test performance to answer this ques-

tion. Pursuing relative uncertainty during the exploration

phase is strongly associated with better test performance

-3 b=0.59, 95% PI=[0.54,0.65]. We do not see a test perfor-

-4 mance decrement for participants exhibiting greater un-

0.00 025 050 075 1.00 125 certainty avoidance under high total-uncertainty. Partic-

Total Uncertainty . . 1. . .

ipants who start avoiding relative uncertainty at a lower

0.60 total uncertainty threshold actually have a weak tendency

I I to do better at test b=-0.06, 95% PI=[-0.10,-0.01]. The mag-

nitude of uncertainty avoidance under high total uncer-

I tainty is not associated with test performance b=0.02, 95%

E { PI=[-0.02,0.07]. Thus, modulating strategy according to
I E{I [ total uncertainty is not maladaptive.
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This modulated strategy can be described as a tendency
¥ to revisit the best-learnt tables when total uncertainty is

high. Indeed, we find a related pattern of choice that
holds independently across all levels of relative or total
uncertainty: Participants prefer to choose again the ta-
) ) ) ble they had last chosen. This tendency to repeat choices
Figure 4: Total uncertainty regulates uncertainty approach vs. (b=0.27, 95% PI=[0.23,0.31]) is also reflected in RTs, which
avoidance. (a) The influence of relative uncertainty on choice as  {, repeat choices are shorter (b=-3. 5x103, 95% PI=[-
a function of total uncertainty. The line marks the median predic- 4.0x102-3.0x10°]) and less d dent 1’ i :
tion from a breakpoint regression model. Dots denote the median >~ s 3 ar:) ess epen_3en on };’e ative uncer
prediction for quantile bins. Ribbon and error bars denote 50% PI. ~ tainty (b=5.0x10", 95% PI=[2.4x10~,0.7x10~]). Hence, re-
Three regions of total uncertainty are marked in beige: low [A], peating a choice seems to be an additional heuristic partic-
medium [B] and high [C]. (b) Choice as a function of relative un- ipants employ to avoid the deliberation involved in choos-
certainty is plotted for the three regions marked in panel a. Under ing according to relative uncertainty.
low total uncertainty [A] participants tend to choose the table they
are most uncertain about, as hypothesized. But that relationship
is broken for medium levels of total uncertainty [B]. For high total
uncertainty [C], participants strongly avoid the table they are most
uncertain about. Error bars £1 s.e.
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5 Discussion

We examined the cognitive computations behind ex-
ploratory choices in a setting allowing for incremental memory-based learning. We find that overall, participants chose
to learn more about the objects they were more uncertain about. However, when total uncertainty was high, participants
chose to avoid objects with high uncertainty, learning instead about the objects they knew more about.

In this experiment, total uncertainty was correlated with the number of cards observed. While our results hold when
trial number is added as a covariate to the regression models, only a version of the task in which total uncertainty and
trial number are orthogonal can disentangle the contribution of each factor to uncertainty avoidance. We plan to employ
such a task in our future work.

Avoiding uncertainty during learning amounts to down-regulating the rate of information intake, an ostensibly subop-
timal strategy. The theory of resource rationality purposes that such deviations from optimality may be explained as
adaptive to managing limited resources [12]. This pattern of behaviour is conceptually similar to confirmation biases in
reasoning [7, 14] and the preference for massed over spaced learning documented in the meta-cognition literature [15].
This variety of phenomena suggests that balancing approaching and avoiding uncertainty is a pervasive principle of
exploration.
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Human exploration is often cast in terms of epistemic knowledge building. In contrast, studies of exploration in animals
often focus on the balance between exploratory and fear-related responses [16, 17]. For example, it has been shown that
rats exploring a novel arena [18, 19] or whisking to identify nearby objects [20] alternate between uncertainty approaching
and safer, uncertainty avoiding strategies. Our findings suggest that the trade-off between exploration and avoidance is
also a useful framework for understanding human behaviour.

References

1. Tversky, A. & Edwards, W. Information versus reward in binary choices. Journal of Experimental Psychology 71. Place:
US Publisher: American Psychological Association, 680—-683. ISSN: 0022-1015 (1966).

2. Daw, N. D., O’doherty, J. P.,, Dayan, P, Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in
humans. Nature 441. Publisher: Nature Publishing Group, 876-879 (2006).

3. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off
between exploitation and exploration. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 933-942.
ISSN: 09628436 (2007).

4. Wilson, R. C,, Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed and random exploration
to solve the explore—exploit dilemma. Journal of Experimental Psychology: General 143, 2074 (2014).

5. Schulz, E. & Gershman, S. ]J. The algorithmic architecture of exploration in the human brain. Current Opinion in
Neurobiology 55, 7-14. 1SSN: 18736882 (2019).

6. Anderson, ]. R. The adaptive character of thought (Psychology Press, 1990).

7. Oaksford, M. & Chater, N. A Rational Analysis of the Selection Task as Optimal Data Selection. Psychological Review
101, 608-631. 1SSN: 0033295X (1994).

8. MacKay, D.]. C. Information-based objective functions for active data selection. Neural computation 4, 590-604 (1992).

9. Gureckis, T. M. & Markant, D. B. Self-directed learning: A cognitive and computational perspective. Perspectives on
Psychological Science 7, 464481 (2012).

10. Yang, S. C. H., Wolpert, D. M. & Lengyel, M. Theoretical perspectives on active sensing. Current Opinion in Behavioral
Sciences 11, 100-108. 1SSN: 23521546 (2016).

11.  Auer, P. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research 3, 397—
422 (2002).

12. Lieder, E & Griffiths, T. L. Resource-rational analysis: Understanding human cognition as the optimal use of limited
computational resources. en. Behavioral and Brain Sciences 43. Publisher: Cambridge University Press. 1SSN: 0140-
525X, 1469-1825 (2020).

13. Shadlen, M. N. & Kiani, R. Decision making as a window on cognition. Neuron 80, 791-806. ISSN: 08966273. http:
//dx.doi.org/10.1016/7.neuron.2013.10.047 (2013).

14. Michel, M. & Peters, M. A. K. Confirmation bias without rhyme or reason. en. Synthese 199, 2757-2772. 1SSN: 1573-
0964. https://doi.org/10.1007/s11229-020-02910-x (2021).

15. Simon, D. A. & Bjork, R. A. Metacognition in motor learning. Journal of Experimental Psychology: Learning, Memory,
and Cognition 27. Publisher: American Psychological Association, 907 (2001).

16. Corey, D. T. The determinants of exploration and neophobia. Neuroscience & Biobehavioral Reviews 2. Publisher: Else-
vier, 235-253 (1978).

17.  Ahmadlou, M. et al. A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking be-
havior. Science 372. Publisher: American Association for the Advancement of Science, eabe9681 (2021).

18. Eilam, D. & Golani, I. Home base behavior of rats (Rattus norvegicus) exploring a novel environment. en. Behavioural
Brain Research 34, 199-211. 1SSN: 0166-4328 (1989).

19. Botta, P. et al. An Amygdala Circuit Mediates Experience-Dependent Momentary Arrests during Exploration. en.
Cell 183, 605-619.e22. 1SSN: 0092-8674 (2020).

20. Gordon, G., Fonio, E. & Ahissar, E. Emergent Exploration via Novelty Management. en. Journal of Neuroscience 34,

12646-12661. 1SSN: 0270-6474, 1529-2401 (2014).

19



RLDM 2022 Camera Ready Papers 20

Modular Policy Composition with Policy Centroids

Sandesh Adhikary Byron Boots
Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
University of Washington University of Washington
adhikary@cs.washington.edu bboots@cs.washington.edu
Abstract

We consider the task of aggregating policies in multi-objective decision making problems where multiple policies are trained
to accomplish potentially conflicting tasks. While policy composition is a crucial component of multi-objective problems,
commonly used techniques are restricted to simple averages that do not adhere to or exploit the structure of policy spaces. We
present a new framework for policy composition viewing the problem as computing centroids in distance spaces where policies
are embedded. These policy centroids not only subsume various existing composition techniques, but also provide a new means
of inducing useful properties in composite policies through judicious choices of embedding spaces and distances. Additionally,
we introduce policy centroids that extend existing compositions to new problem settings. For deterministic policies, we use
distances between state-action value functions to define utility centroids that can be tuned to adjust the intensity of individual
policy preferences. For stochastic policies, we introduce policy centroids based on statistical distances including the maximum
mean discrepancy, which are particularly useful when policies are accessible only through samples. We evaluate our proposed
policy centroids on various illustrative examples that highlight their benefits over existing approaches.

Keywords: policy composition, multi objective reinforcement learning, modular
reinforcement learning
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1 Introduction

As we continue to expand the scale and complexity of automated decision making, it becomes increasingly difficult to quantify all
desired objectives into a single monolithic goal. We are routinely faced with multiple competing objectives with no concrete notion
of a composite goal. Autonomous vehicles must quickly reach their destinations while avoiding crashes; economic policy should
bolster growth but also minimize inequality; financial investments need to maximize returns while maintaining a diverse portfolio.
Even when a composite objective does exist, it may still be difficult to learn a policy to accomplish it. Various works in multi-
objective reinforcement learning have demonstrated the benefit of training separate agents on decompositions of complex reward
signals. In robotics, a complex robot can be decomposed into multiple sub-agents, each reacting to changes in its local environment
[1]. Even when tackling a single objective, we can benefit from training an ensemble of policies using different algorithms [2].

The problem of modular policy composition has been tackled in various fields, with numerous proposed solutions including
sums and products of experts [2], compositions of utilities or potential fields [3], voting based ranking, and so on. The central
idea behind these compositions is to form an average policy from a set of recommendations. However, existing approaches tend
to use fairly limited notions of averages, generally restricted to arithmetic means, geometric means, and extremums. We consider
the task of averaging policies in its full generality as computing centroids over arbitrary distance spaces that minimize distances
to individual policies. This perspective can subsume many existing compositions, and also serve as a principled framework
to design new compositions by picking appropriate embedding spaces and distances. We consider three existing approaches to
policy composition, and show how policy centroids not only generalize them, but can also extend them to new problem settings.

2 Policy Centroids

We tackle policy composition as finding a single-policy solution to multi-objective Markov decision processes (MOMDPs).
A MOMDP is a tuple (S,.A,T,v,R) of state space S, action space A, transition function T': S x A x A — [0,1], discount
factor v € [0,1], and a vector-valued reward function R : S x A x S — RT. The components of the rewards vector r; are the
rewards for the 7" separate objectives. A policy 7 determines the action executed at a given state; a deterministic policy
7(s): S — A returns a single action, and a stochastic policy m(als) : A— [0,1] is a distribution over .A. For a state-action pair
(s.a), Qi(als) =Ex, (> ¥ ([ri]t)|s0=s.,a0 =a) denotes the state-action value function under the policy 7; for the i-th objective.

Policy Centroids Consider a set {r;};—, of T policies, such that each policy 7; has been formulated separately based only
on the i-th component of the reward function. These policies must now be combined into a single composite policy 7, without
assuming access to a composite reward function or a known decomposition of the composite objective into individual objectives.
Let (M;,d;) be distance spaces1 where 7; can be compared with alternatives via distances d;. Policies are mapped onto these
spaces using policy embeddings p;(m). Finally, given a set of optional non-negative weights {w;}~ ; with >, w; = 1, the
composite policy 7 or the policy centroid is defined as follows

T= arg;ninZwidi (pi(mi), pi(m)). @

To design a policy centroid, we pick (1) embeddings 1, that capture important features of policies, and (2) distances d; that
account for meaningful differences between them. The weights w; are linear relative importances of the T" objectives. Such
weights are used in many existing policy compositions as the primary mode of controlling the behavior of the composite policy.
These weights are either set using knowledge of the composite objective or learned with respect to a composite reward; otherwise,
they are set to be uniformly distributed. Policy centroids provide additional means of affecting properties of the composite
policy through the choice of the distance spaces (1/;,d;). In the following sections, we show how various existing compositions
can be interpreted as policy centroids. Moreover, we provide examples where different choices of embeddings y; and distances
d; can lead to composite policies with useful properties, and extend existing compositions to new problem settings.

2.1 Utility Centroids

In value-based reinforcement learning (RL), we often have access Q-values Q(a|s) serving as utility maps over actions a € A
for a given state s, which are natural choices for policy embeddings. Unsurprisingly, averaging Q-values is already a popular
composition strategy known as utility fusion [3], where the arithmetic average of Q-values is treated as the composite Q-value.
We introduce utility centroids that subsume utility fusion. Given an exponent 3> 0, the utility centroid? is defined as

a= argmanwl Qi(as]s)—Qilals)+1). 2

Here task-specific embeddmgs are simply the Q—Values wi(als) = Q;(a|s) and distances are d;(Q;(a1]s),Q:(az|s)) = (|Qi(a1]s) —

Qi(az|s)|+1)” —1. Equation 2 minimizes the average disadvantage or opportunity cost (Q;(a:|s)—Q;(a|s)+1)” of picking a over the
preferred a;=argmax,Q;(als). As illustrated in Figure 1a, the exponent 3 controls the intensity of individual preferences. Setting
B>1 (resp. 8 < 1) magnifies (resp. minimizes) differences in disadvantages leading to sharper (resp. flatter) disadvantage curves.

The exponent S plays a similar role to weights w;; while w; stretch or squeeze distances between policies linearly, 5 magnifies
or minimizes distances between policies exponentially. However, unlike weights w;, we can set the same exponent (3 across
all policies and still affect relative distances. In Figure 1b, filled-circles of the same color correspond to the recommended

! A distance space (M,d) is a set M equipped with a non-negative, symmetric, and reflexive distance function d(z,x") for z,2’ € M.
*The optional offset +1 simply sets the domain of the exponential2d R>1, avoiding the inverse behavior of the exponent for (0,1).
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Figure 2: Utility centroids to prevent the tyranny of the majority and escape attractors. The blue lines are reference markers
for utility fusion, or equivalently utility centroids (5=1)

actions from four policies for a given choice of 5. When =1 (green), the policy recommending action a4 has a slightly lower
disadvantage, pushing the centroid closer to a4. With > 1 (orange) differences in disadvantages are magnified, pushing
the centroid further towards a4. With 5 <1 (purple), the small difference in disadvantages is minimized, and the centroid is
not biased towards any one policies. With 5 =1, Equation 2 reduces to standard utility fusion. Thus, 3 can serve as a useful
hyperparameter, especially in the absence of non-uniform weights w;. As we now discuss, adjusting 5 can alleviate some known
problems with utility fusion in such settings.

Preventing Attractors When the Q-values of multiple policies are trained egocentrically (without taking into account the com-
posite Q-value), utility fusion with uniform weights w; overestimates the value of states where policies disagree on the optimal
action [4]. For large discount factors ~, these states can become attractors where the agent gets stuck; restricting us to myopic sub-
optimal policies with low discount factors. In Equation 2, reducing (3 essentially minimizes disagreement between policies and
can help us escape attractors. To demonstrate, we consider the two examples from [4] illustrating attractors in utility fusion. In the
first example (Figure 1c), we consider a 3 state deterministic MOMDP where the agent in state s, can stay in place with action ay,
or move to one of two terminating goal states s; and s, with actions a; and a5 respectively. We define separate objectives with re-
ward r >0 for reaching s; and s, respectively, and no reward for staying in place. In the second example in Figure 1d, the PacBoy
agent is equidistant from a reward in either of the three directions {,—,—} in a simple deterministic MOMDP; choosing |. keeps
it in place. In both examples, egocentric utility fusion with uniform weights w; gets stuck when v>0.5 [4]. In Figures 2a and 2b,
we plot the combinations of v and /5 for which the policy centroid in Equation 2 is stuck (shaded black) and for which it reaches
one of the two goal states (shaded white). As we decrease 3, we can allow larger discount factors while still avoiding getting
stuck. However, using too small a 8 may also lead to undesirable behavior where the relative preferences of policies are ignored.

Preventing the tyranny of the majority Utility fusion can suffer from a tyranny of the majority, where an objective dominated
by a large number of competing objectives may never be fulfilled. If the minority objective is safety critical, it may be desirable
to forego the other goals to prevent an accident. If the objectives involve human stakeholders, this majority bias can be unfair
— the minority stakeholder may lose confidence in the system if their objectives are consistently ignored in service of the majority.
As an illustration, consider a set of T' objectives {Oi};frzl defined over a MOMDP with two actions {a1,as }; O1 corresponds to
avoiding accidents, while the others correspond to reaching various goals. At some state, O; identifies action as as unsafe with a
disadvantage of d. In contrast, as is slightly favorable over a; for the goal-seeking objectives, assigning disadvantage e <d for a;.
With only two tasks {O1,0,}, utility fusion opts for the safe action a; as it has lower disadvantage. However, as we add other
objectives to the mix, the unsafe action a; is picked when n>d/e. With the utility centroid in Equation 2, we can increase 3 to
intensify individual preferences, leading to a larger threshold. In Figure 2c, we plot various combinations of /3 and n for which the
agent picks the unsafe action a, (shaded black) and the safe action a; (shaded white) when e=0.1d, i.e., each goal-seeking agent
only favors the unsafe action by a small margin of 10%. However, as /5 becomes very large, the minority may exert too much
influence, preventing the agent from ever achieving its other goals. Thus 5 will likely have to be tuned to balance these effects.

2.2 Stochastic Policy Centroids

We now turn to the problem of composing policies represented as probability distributions 7(a|s) over actions, which we refer to
as stochastic policies. Such policies can arise, for instance, due to exploration or as solutions to partially observable MDPs or adver-
sarial games. Two common approaches of composing a set of stochastic policies {; } are through sums and products of experts:

a=h(7(als)) Sum of Experts (SoE): 7o Zm (als)  Product of Experts (PoE): 7o Hm (als). 3)
The function h(-) could be an argmax operation over the composite density 7, or a function drawing samples from it. While

not always described as such, these compositions are equivalent to element-wise arithmetic and geometric means, which are
special cases of generalized f-means, which, in turn, are instarg®s of Fréchet centroids. We can thus formulate policy centroids
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corresponding to generalized-means-of-experts (GMoE) through a monotonic, continuous and invertible function f as follows:
Tocargminy _d*(m;,m) where d(ma’)= |f(n(als)— f('(als)). (4)

This centroid defines the well-known class of generalized f-means. With f(z)=2" (for 5#£0), we get the family of power means,
which includes SoE (arithmetic mean for 5=1) and PoE (geometric mean for 5 — 0), as well as a spectrum of other means.

o
o
o
)

Composing Implicit Stochastic Policies While GMoEs are intuitive and ubiquitous, they may not always be ideal, for instance,
when composing implicit stochastic policies. Implicit policies 7 are distributions without a known density function, but allow
sampling. Such policies can be useful, for instance, to incorporate unknown noise distributions or as a flexible policy class for

complex action distributions [5]. Given sets of actions {a\" ~#;} drawn from a set of implicit policies {#;}, we now wish to gener-
ate new actions {a. } from the composite policy 7. As a concrete example, consider the following SoE composition problem where
we wish to evaluate the expected value of some function g(a) under the distribution of the composite policy. Assuming that both
the function g and individual policies are computationally expensive to query, we seek a good estimate of Ex g(a) with minimal
samples from individual policies as well as the composite policy. SoEs are not directly applicable since they require the policies’
probability densities. We would thus need some form of density estimation, which can be sample intensive for high-dimensional
actions. With policy centroids, we can extend SoEs to this new problem setting. Specifically, we can embed implicit policies onto
reproducing kernel Hilbert spaces, and use the maximum mean discrepency between distributions as our distance function.

MMD Policy Centroids The maximum mean discrepancy (MMD) is an integral probability (pseudo) metric (IPM) between
probability measures that captures the maximal difference between expectations of functions. For a set of functions G, the IPM
between distributions 7 and 7’ is the supremum of the difference in expectations E~(g) —E.(g) over all g€ G. We obtain the MMD
when G is the unit-ball in a reproducing kernel Hilbert space (RKHS) [6]. For any symmetric positive-definite kernel &(-,-) on
a domain A x A, there exists a corresponding RKHS 7{;, and k is the canonical feature mapping to #. Additionally, we can use
the kernel to also map probability distributions 7 defined over .A. These embedded distributions pi. € Hy,, known as kernel mean
embeddings, are defined as p» = [k(a,-)dr(a). The empirical estimates of these embeddings /i~ = %Z?:lk(aj ~,) converge in MMD
to 11 ata rate of O(n~'/?) [6], which is independent of the dimensionality of A (in contrast to the curse of dimensionality for density
estimation). The MMD between two kernel mean embeddings is the H,-norm of their difference: MMD(, ") = || fir — fin ||,
Additionally, if the kernel is characteristic (e.g. Gaussian, Laplace), the MMD is a metric such that MMD(r,n") =0<r=n" [6].

Given a kernel k, we define MMD policy centroids as @~ 7 =argmin, Y, w;MMD(#;,#) = argmin,, >, wi|| 1 — fil|3,, . This objective
is essentially what is optimized by the kernel herding algorithm [7] that draws samples from a kernel mean embedding; here,
the target is instead the weighted sum " ,w;/i;. Using kernel herding, we can draw the ¢-th sample a; from 7 as follows
-1
a;= argminZ—Qwik(agz) a)+1(t>1) Z %k(dm,a) where I(t>1) is the indicator function. ®)
@ 1, m=1
While the first term in the objective encourages a; to be similar to the set of samples {a? ~;}, the second term encourages
it to be dissimilar to samples {a..}’, !, generated in prior iterations. This latter repulsive force improves sample diversity by
inducing negative autocorrelations. For bounded kernels corresponding to finite dimensional #y, the herded super samples
converge in MMD at a rate of O(n™!) to the target distribution — faster than O(n~'/?) for iid sampling from the true distribution
[7]. Even though #;, is generally not finite, we still tend to get fast convergence in practice — even if Equation 5 is only solved
approximately [7]. Thus, MMD centroids are well-suited for our purposes. Firstly, using the herded super samples, we should
require fewer evaluations of g before Ex(g) converges. Secondly, since we bypass an explicit density estimation, we should
need fewer samples from individual policies as well. Moreover, since the convergence rate of the implicit density estimation
fi~ 1 is independent of the dimensions of .A, MMD centroids should scale better to high-dimensional action spaces.

To demonstrate the advantages of MMD centroids, we consider a set of 3 Gaussian policies {m; =N (a;,0.1I)} with mean actions
a; €R?. Assuming uniform policy weights w;, the composite distribution for the true weighted SoE policy is simply 3~, 2 A/(a;,0.11).
Our goal is to generate M samples {a, }m—, from the composite policy (only using samples from ;) and use them to compute
expected values of functions. Here, we fix the target function to be the first moment (mean action) of the composite policy, which
is simply £a;. In Figure 3, we compare estimation errors for traditional SoE, MMD centroids, as well as iid samples from the true
composite policy. For MMD centroids, we use the Gaussian kernel with its bandwidth set using the median-trick heuristic, and
generate samples via kernel herding. Since the true composite policy is generally unknown, we avoid tuning hyperparameters for
the optimization in Equation 5 by opting for a brute force search within a random subset of M action samples drawn from individ-
ual policies. For the SoE composition (Equation 3), we draw sa@ples from the kernel density estimate of the composite policy us-
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ing a Gaussian kernel (with the median-trick bandwidth). In Figure 3, we fix (d=32,M =250), (M =250,N =32) and (d=32,N=
32) respectively, and plot errors with respect to varying N (samples from individual policies), d (dimensionality of actions), and
M (samples from the composite policy). We see that MMD centroids offered better scaling with respect to all three parameters.
2.3 Riemannian Motion Policies
We have thus far focused on two policy compositions often encountered in multi-objective RL. We now turn our attention to a
different setting within the framework of Riemannian motion policies (RMPs) from robotics, designed to combine multiple accel-
eration based policies for cohesive motion generation [1]. As described below, policy centroids share the intuition behind RMP-
composition in using task-specific distance spaces, and can also extend RMP-composition to the setting of stochastic controllers.

RMP Composition While a robot’s complete state is defined on a configuration space Q, its various objectives can be defined
on separate task spaces ;. Configuration space states q are mapped onto task-space states x; via task-maps ¢;: Q — ;. Using
J;, the Jacobians of the task-maps ¢:;, we can also map configuration space velocities and accelerations into their task-space
counterparts as x; =J;q and %, =J;G+J;4. A task-space RMP over J; is a tuple (f;,M;) indicating a recommended force f; =M;%;
given a PSD inertia matrix M;. The general idea behind the RMP framework is to combine task-space RMPs defining desired
accelerations x; into a composite RMP in the configuration space. Given a set of task-space RMPs {(f;,M,)}, the composite
configuration-space RMP (f, M) is computed by pulling-back the task-space forces into the configuration space as pullback(f;) =
JT (£, —M;J;4;) and pullback(M;)=J7M.J;, and then adding up the pulled-back forces f =" pullback(f;) and inertia matrices
M=}",pullback(M;). The composite control or acceleration §=M"f is the solution to the following objective function
1 : 1
argénin izu']iéi'h]iq_ki”%di :argérinin 52”%(01) — i (%) e, (6)
i=1 =1
In the second equality above, we have rewritten the RMP composition objective similar to a policy centroid with y;(§) =J:4+J:q,
where p;(%;) = %;. Each term in this objective can be interpreted as a task-specific distance (defined via M;) between 1;(q)
and desired task-controls %;. Thus, policy centroids share RMP’s underlying idea of employing task-specific mappings
and computing centroids with respect to task-specific distances. However, policy centroids extend this idea beyond
acceleration-based controls to generic settings including, for instance, discrete action spaces. Moreover, as we now discuss,
the policy centroid perspective allows us to extend RMP composition to the case of stochastic controllers.

Wasserstein Policy Centroids The RMP framework assumes deterministic controls X; or f; and is not directly applicable when
these controls are stochastic. Incorporating stochasticity into RMPs can be useful, for instance, when individual controllers are
learned via RL with exploration, or to escape local stationary points where competing controls cancel each other out. To compose
such stochastic RMP controllers, we can collect samples of desired controls from each individual RMP and pull them back
onto the configuration space. As in Equation 6, the composite metric M defines a distance measure for pulled-back acceleration
controls. In the deterministic setting with only one sample per RMP, we would essentially obtain the composite control formed
via the metric-weighted averaging in Equation 6. But in the stochastic setting, we need to perform an average both in the
space of controls (as in deterministic RMPs), but also in terms of probability masses spread across controls. Essentially, we
require some form of stochastic averaging that can take into account the ground distance between controls in the pulled-back
space, while also performing a probabilistic average. The family of Wasserstein distances between distributions is exactly such
a statistical distance. The p-th Wasserstein distance W, (r,';d) between two distributions = and =’ defined with respect to a
ground metric d(-,-) represents the cost of transforming = into =’ by moving probability mass in the ground space of samples; the
cost of moving probability mass is measured using d. Using a Wasserstein distance as our statistical distance between policies,
we can define Wasserstein policy centroids for RMPs with stochastic controllers as the Wasserstein barycenter of the individual
pulled-back control distributions. Similar to how RMP composition computes sums or metric-weighted averages of controls,
the Wasserstein policy centroids would allow us to average entire distributions over controls.

3 Conclusion

We presented a framework for modular policy composition, viewing the problem as computing centroids over distance spaces.
We showed how this framework not only subsumes various existing policy compositions, but also provided examples of how
it can be used to adapt them to new problem settings. In future work, we aim to implement the policy centroids presented
here in large-scale policy composition problems, and also integrate policy centroids into policy learning pipelines.
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Abstract

Curiosity for machine agents has been a focus of intense research. The study of human and animal curiosity, particularly
specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have
not yet been well-explored in machine intelligence. In this work, we introduce three of the most immediate of these
properties—directedness, cessation when satisfied, and voluntary exposure—and show how they may be implemented
together in a proof-of-concept reinforcement learning agent; further, we demonstrate how the properties manifest in
the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations
and induced targets of curiosity. As we would hope, the agent exhibits short-term directed behaviour while updating
long-term preferences to adaptively seek out curiosity-inducing situations. This work therefore presents a novel view
into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-
making agents in complex environments.

Keywords: curiosity, specific curiosity, computational reinforcement learning
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1T Specific Curiosity: An Introduction

Curiosity is in vogue; it is considered socially desirable, relating to a set of behaviours that employers want in their em-
ployees, teachers want in their students, and life coaches encourage in our interpersonal relationships. It should come as
no surprise that machine intelligence researchers have wanted to provide the benefits of curiosity to their computational
creations for decades (Schmidhuber, 1991). Pursuing these benefits, researchers have developed numerous mechanisms.

While these mechanisms are different from each other (Ady & Pilarski, 2017; Linke
et al., 2019), many of them are centred on generating and using special reward-like
signals called intrinsic rewards. Put simply, the learner, or agent, obtains intrinsic
reward for encountering situations with good potential for learning. Researchers
have associated different concepts with “potential for learning” and translated
these concepts into metrics to shape the behaviour of their agen’cs.1 In general,
these metrics are used to determine the amount of intrinsic reward the agent re-
ceives for a given experience. Intrinsic rewards have been shown to be very useful
for increasing exploration in some situations (Pathak et al., 2017).

However, intrinsic rewards produce behaviour that is conceptually unlike curios-
ity. Critically, by rewarding a learner for getting into a particular situation, the
designer is encouraging the learner to return to that same situation, or ones very
like it. This behaviour is missing a conceptual aspect of curiosity.

When humans describe curiosity, they talk about their curiosity being piqued or Figure 1: Turn to pg. 2 to rotate the mug,.
triggered. They take action, not to observe the same situation that piqued their

curiosity, but to observe a different situation that they believe will satisfy their curiosity (see Fig. 1). Humans take
advantage of their learned knowledge of how the world works to learn something specific, answering a question that
the curiosity-piquing situation led them to ask. This is sometimes referred to as specific curiosity.

As amain contribution, we distill from the related literature three key properties of specific curiosity, and argue that these
properties are beneficial to machine learners; specifically, we introduce the appropriateness of a reinforcement learning
approach for designing agents that exhibit these properties. These properties are as follows, and are a subset of five key
properties described and argued for in more detail by Ady et al. (2022).

Directedness: By separating a curiosity-piquing situation from a curiosity-satisfying situation, we can think about the
appropriate behaviour for a learner whose curiosity has been piqued: take a sequence of actions that seems most
likely to take them to a situation that satisfies their curiosity. The tendency for learners experiencing specific
curiosity to undertake directed behaviour has been well-documented in the literature (e.g. Hagtvedt et al. 2019,
p- 2; Berlyne, 1960, p. 297). This view contrasts with many other machine reinforcement learning methods which
rely on injecting randomness into their choices of actions to experience new situations, rather than heading
directly for a situation they know they don’t know.

Cessation when satisfied: Once a learner has found a situation that satisfies their curiosity, they don’t need to experience
the same situation again, so we have no need to incentivize returning to a curiosity-satisfying situation. Examples
documenting the satisfiability of curiosity are prevalent in the literature, including the works of Wiggin et al.
(2019, p. 1194), Buyalskaya & Camerer (2020, p. 141, who refer to it as ‘fulfillment’) and Dan et al. (2020, p. 150,
who refer to curiosity being ‘satiated’).

Voluntary exposure: While the learner does not benefit from returning to a curiosity-satisfying situation (that would
only answer a question for which they have a satisfactory answer!), they do benefit from experiencing curiosity-
inducing situations. A curiosity-inducing situation offers an appropriate jumping-off point for learning, for
metaphorically picking up a puzzle piece fitting into what the learner already knows. Choosing to partake in
activities likely to induce curiosity—for example, picking up puzzles or mysteries or turning on Netflix—has
been called voluntary exposure to curiosity (Loewenstein, 1994, p. 84). This property might be thought of as
developing an increased preference for situations like those that have been curiosity-inducing in the past.

Finally, we provide a case study of an agent demonstrating these three properties together, actively separating curiosity-
piquing situations from curiosity-satisfying situations—a separation which does not exist in the type of behaviour mo-
tivated by intrinsic rewards. This proof-of-concept shows that it is possible to create an agent with attributes of specific
curiosity, but should not be thought of as the way to implement specific curiosity. Rather, we hope it inspires the commu-
nity to build upon our ideas and think up improved machine agents that benefit from knowledge of specific curiosity.

1Examples include confidence (Schmidhuber, 1991), learning progress (Oudeyer et al., 2007, p. 269), surprise (White et al., 2014,
p- 14), interest/interestingness (Gregor & Spalek, 2014, p. 435; Frank et al., 2014, pp. 5-6), novelty (Gregor & Spalek, 2014, p. 435; Singh
et al., 2004, pp. 1, 5), uncertainty (Pathak et al., 2017, pp. 1-2), compression progress (Graziano et al., 2011, p. 44), competence (Oddi et
al., 2020, pp. 2417-2418), and information gain (Bellemare et al., 2016, p. 4; Houthooft et al., 2016, pp. 2-3).

26



RLDM 2022 Camera Ready Papers

27

2 The Appropriateness of a Reinforcement Learning Framework for Specific Curiosity

With the goal to offer the benefits of specific curiosity to a computational learner,
we want to take advantage of an existing learning framework, ideally one that
supports the properties we want to achieve. The properties of directedness and
voluntary exposure require a learner to have some specific capabilities. For direct-
edness, the learner must be able to decide how to act in the world so they can take
the specific actions that they believe will allow them to satisfy their curiosity. For
voluntary exposure, the learner must be able to decide how to act in the world so
they can visit situations that they suspect will result in their curiosity being piqued,
and also learn those enduring preferences for curiosity-inducing situations.

The framework of reinforcement learning supports these requirements, as rein-
forcement learning centres around learners who are able to choose actions that
affect their experiences (Sutton and Barto, 2018, p. 3). Instantiations of compu-
tational reinforcement learning algorithms are often called agents because they
shape their own experience in the world and learn from their actions. This quality

makes the framework well-suited for the design of machine curiosity algorithms. Figure 2: If you were curious about
. . . . . what was written on the mug, you prob-
A reinforcement learning framework is particularly promising for the property of  aply didn’t keep staring at Fig. 1. In-

voluntary exposure, as learners can estimate the value of different situations (for stead, you took action to reach a situa-
more detail, see Sutton & Barto, 2018, p. 58). In this way, a learner may develop a tion that would satisfy your curiosity.
preference (i.e., a higher value) for situations that are more likely to pique curiosity.

This preference aligns with voluntary exposure as observed in humans.

While, to the best of our knowledge, our conceptual separation of curiosity-piquing situations from curiosity-satisfying
situations and our argument for specific properties of specific curiosity are new contributions, computational reinforce-
ment learning researchers have shown strong interest in aspects of these properties in other contexts. In particular, the
property of directedness parallels work done on options (as early as Sutton et al., 1999) and planning. Approaches us-
ing directedness also often exhibit cessation when satisfied. For example, the options framework includes termination
conditions for each option (often naturally defined by goal states; Stolle & Precup, 2002, p. 212).

Prior work has aimed to address the lack of directedness that is a characteristic of intrinsic-reward methods. For example,
the Model-Based Active eXploration algorithm presented by Shyam et al. (2019) focuses on planning behaviour to allow
the agent “to observe novel events” (p. 1). Similarly, the Go-Explore family of algorithms centres on the idea of taking a
direct sequence of actions to move to a specific state for the purpose of exploring from it (Ecoffet et al., 2020).

3 Case Study & Experiments

In this section, we describe how we created a simple agent exhibiting some of the properties of specific curiosity. We
specifically hope to show that, even in a simple and focused setting, using our properties as guidelines allows machine
behaviour to emerge that approximates the specific curiosity of animal learners. This example is not intended as a final
or definitive computational implementation of specific curiosity. The intended purpose of this section is for the reader
to gain insight and motivation to further investigate how to integrate the properties of specific curiosity into different
machine learning frameworks and problem settings.

A complete agent with specific curiosity will require some additional functionality that we have not implemented. A
human can recognize that there is something they do not know, sometimes referred to as an information gap (Loewenstein,
1994) or an inostensible concept (Inan, 2012). Moreover, humans can imagine what they would need to observe to rectify
such a gap, and even suggest actions that might lead to those observations. For example, you could reach out and turn
the mug in Fig. 1, or move your own body to see the mug at a different angle. We do not tackle how agents can recognize
information gaps or how they can predict what will satisfy their resulting curiosity. In our case study, we gave the
agent a module that could recognize a curiosity-inducing situation and a corresponding curiosity-satisfying target. We
hard-coded this module so only a single location in the world piqued curiosity and the targets were randomly selected
locations from a pre-determined subset (see Fig. 3). We envision that the gaps in this architecture can be filled as more
aspects of specific curiosity are understood and become computationally tractable.

Directedness: The first property we explored in the design of our agent was directedness. As we have already suggested,
directedness seems to involve making and following a plan, which, in a reinforcement learning framework, suggested
to us that we might use a model of the world. In computational reinforcement learning, a model-based approach using
dynamic programming or an approximation of dynamic programming can provide a learner with a plan to follow from
one state to another (Sutton & Barto, 2018, Ch. 4), suggesting existing algorithms we could exploit in our pursuit of the
property of directedness.
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Cessation when satisfied: Directedness in the pursuit of satisfying curiosity is temporary and should not persist when
the agent is not in a state of curiosity.> We were inspired by an architecture introduced by Silver et al. in 2008: Dyna-2. We
realized that Dyna-2 has a mechanism (originally used for playing games) that differentiates temporary behaviour from
the long-term preferences of the agent: two value functions. In Silver’s (2009, p. 87) work, a temporary value function
captures unique aspects of the current match of a game, while a persistent value function captures principles of the game
that hold across matches. In our design, we adapt this idea so the learner follows the temporary value function while
curious but uses a separate persistent value function to capture long-term preferences. The temporary value function
can lead the learner directly to a situation they believe will satisfy their curiosity. Since what will satisfy curiosity differs
each time curiosity is piqued, the exact plan to satisfy curiosity can be discarded at satisfaction.

Voluntary exposure: A temporary value function doesn’t have a lasting effect
on the learner’s preferences. However, we want an enduring effect associated
with curiosity: voluntary exposure. Humans develop a preference for curiosity-
inducing situations, so we wanted to experiment with algorithm modifications
that would lead to agents with this property. We came up with a small modifi-
cation to the standard TD learning algorithm (Sutton & Barto, 2018, p. 120) that
would leave an enduring effect of having experienced curiosity on the persistent
value function, V. Our modified temporal difference, , is:

O

0 R+ v V(-'L'l) - [V(ZE) + ‘/curious(x)] (1)

where Vouious refers to the temporary value function. For this modification to
result in the accrual of positive value in the persistent value function, V/, it is nec-

———
1 [}

essary for Viyrious to be non-positive everywhere. Given this modification, we ran
experiments to see if the enduring effect looked like voluntary exposure.

Experiment setup: We ran our experiments in an 11 x 11 grid world shown in
Fig. 3. In this grid world, the learner is located in one of the squares and their
actions let them move to adjacent squares, but they can only take sideward or
upward actions (including diagonals). Any upward action from the top row of the
grid teleports the agent to the middle of the bottom row. The agent never receives
any reward from this domain (R in Eq. 1 is always zero).

As long as the agent is not in a state of curiosity, the temporary value function
is zero and the agent acts e-greedily with respect to its persistent value function.
The centre of the grid is a curiosity-inducing location: when the agent visits it, a
curiosity-satisfying target is generated and the agent is given a non-positive tem-
porary value function (Fig. 4) that guides it directly to that target. The target is
randomly selected with equal probability for each of the non-edge squares in the
second row from the top (highlighted in Fig. 3). When the agent visits the target,
the temporary value function is zeroed out again.

The results reported here reflect 30 trials of 5000 steps. The agent started each trial
in the curiosity-inducing location. We ran further experiments varying the size
and dynamics of the grid world, and the key results we present are representative
of all these experiments.

Results & Discussion: Fig. 5 shows the persistent value function at the end of
5000 steps, averaged over 30 trials. Fig. 6 shows how the values of the curiosity-
inducing location and the curiosity-satisfying locations change over time.

The curiosity-inducing location accrues the most value and the agent learns a trail
of increasing value leading directly to that location. The curiosity-satisfying loca-
tions, on the other hand, do not accumulate much value over time. In effect, our
modification to the learning update results in voluntary exposure while retaining
the property of cessation when satisfied.

Looking at the behaviour of the agent over time (an example video can be viewed
at https://youtu.be/TDUpB70efFc) we can see the agent moves more and
more directly towards the curiosity-inducing location.

il

Figure 3: Domain used for the experi-
ments. The orange boxes are the poten-
tial curiosity-satisfying locations. The
heavily-outlined box is the curiosity-
inducing location. If the agent leaves the
top row, it teleports to the dashed box in
the bottom row.

Figure 4: An example temporary value
function, Veurious. The target has a
heavy dashed outline and a value of
zero. Magnitudes of negative values are
shown using shades of red.

’In the literature, there is a distinction between curiosity as a state experienced temporarily by a learner versus as a trait, or general
propensity of the learner (Loewenstein, 1994, p. 78). Specific curiosity makes the most sense as a form of state curiosity because it only

persists until the specific information of interest is found.
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4 Conclusions

We argue that learners benefit from specific curiosity, something previously not
demonstrated in the computational literature. In particular, specific curiosity has
properties of directedness, cessation when satisfied, and voluntary exposure that
yield important benefits that have been missing from other approaches to machine
curiosity. In this work we developed a case study showing how these properties
might be implemented in a computational reinforcement learning framework.

We appreciate reinforcement learning for its flexibility to express key properties of
specific curiosity. We found, through our case study, that separating persistent and
temporary value functions was a useful mechanism to encode some of the proper-
ties of biological curiosity. This separation gives our agent directed behaviour as
well as learned preferences, which have traditionally been associated with model-
based and model-free approaches to reinforcement learning, respectively. The way
our agent balances these two approaches may offer a new perspective on how we
might balance model-based and model-free learning.

Future directions: While directedness, cessation when satisfied, and voluntary
exposure are the first properties we have explored empirically, our conceptual syn-
thesis of the literature also demonstrates the importance of two more properties:
transience and connection to long-term information search (Ady et al., 2022). While
our agent has begun to exhibit some aspects of specific curiosity, including these
additional properties and continuing to incorporate new ideas from the study of
human curiosity can only strengthen our computationally curious agents.
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Behavior Predictive Representations for Generalization in
Reinforcement Learning
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Abstract

Deep reinforcement learning (RL) agents trained on a few environments, often struggle to generalize on unseen en-
vironments, even when such environments are semantically equivalent to training environments. Such agents learn
representations that overfit the characteristics of the training environments. We posit that generalization can be improved
by assigning similar representations to scenarios with similar sequences of long-term optimal behavior. To do so, we
propose behavior predictive representations (BPR) that capture long-term optimal behavior. BPR trains an agent to predict
latent state representations multiple steps into the future such that these representations can predict the optimal behavior
at the future steps. We demonstrate that BPR provides large gains on a jumping task from pixels, a problem designed to
test generalization.

Keywords: Generalization in Reinforcement Learning, Representation Learn-
ing, Predictive Representations
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1 Introduction

Deep reinforcement learning (RL) agents, even when trained on diverse environments with similar high level goals
but different dynamics and visual appearances, often struggle to generalize on unseen environments, even when such
environments are semantically equivalent to training environments [Farebrother et al., 2018, Cobbe et al., 2020, Agarwal
et al., 2021a, Packer et al., 2018]. Such agents learn state representations from high-dimensional observations that typically
overfit to the peculiarities of training environments [Song et al., 2019, Raileanu and Fergus, 2021] rather than capturing
generalizable skills which can be transferred to unseen environments. Such overfitting hinders the real-world applicability
of RL, making generalization in RL an important challenge.

To improve generalization using better representations, we revisit predictive representations [Littman et al., 2001, Rafols
et al., 2005] that describe the environment in terms of predictions about future observations, such as representations that
encode the underlying environments dynamics. While learning such temporally predictive representations has been
shown to improve sample efficiency [Oord et al., 2018, Schwarzer et al., 2021] within a training environment, it is unclear
whether such representations would improve performance in unseen environments. More recently, Agarwal et al. [2021a]
enhance generalization by learning similar state representations for observations with similar long-term optimal behavior.
Inspired by their findings, we posit that predictive representations that capture long-term optimal behavior might be better
suited for generalization. We expect such behavior predictive representations to generalize as two observations, possibly
across different environments, are assigned similar representations if they exhibit similar sequences of optimal behaviors,
irrespective of their differences in obtained rewards, visual appearances, or even the underlying dynamics.

For learning behavior predictive representations (BPR), we train the agent to predict latent state representations multiple
steps into the future such that these representations can predict the optimal behavior at the future steps (Figure 1). BPR can
be viewed as a representation learning approach where the agent predicts the optimal behavior at future states resulting
from following a sequence of actions from a given state. We show that BPR improves generalization upon existing methods
including PSEs [Agarwal et al., 2021a] and SPR [Schwarzer et al., 2021] on the jumping task on pixels.

2 Preliminaries

We describe an environment as a Markov decision process (MDP) that corresponds to a tuple M = (5, A, P, R, y) where
S is the state space, A is the action space, P : S x A x S — [0,1] is the state transition function, R : S x A — R is
the reward function and v € [0, 1] is the discount factor. A policy 7(-|s) maps a state s € S to a distribution over the
action space A. A trajectory is defined as the sequence of states, actions and corresponding rewards i.e. sg, ag, 71,51, - .
The goal of a reinforcement learning agent is to maximize the cumulative expected return E,)[>, 77 (s¢, a;)] where

p(7) = p(s0) [, p(st41lst, ar)m(aslse).

3 Behavior Predictive Representations

In this work, we aim to learn a policy that can generalize across related environments. Specifically, we train an agent
using a finite number of environments (or tasks) sampled from a distribution of environments. The performance of
this agent is evaluated using unseen environments sampled from the same distribution. For example, consider the
generalization problem in a jumping task from pixels Tachet des Combes et al. [2018], where an agent needs to jump
over an obstacle (Figure 2). Standard deep RL agents trained on a small number of training tasks with different obstacle
positions struggle to generalize to unseen obstacle positions [Agarwal et al., 2021a].

Inspired from the recent success of representation learning to improve generalization [Agarwal et al., 2021a, Raileanu and
Fergus, 2021, Zhang et al., 2020], we also focus on learning better representations to improve generalization. We posit
that learning better representations requires understanding which states are similar in terms of their long-term optimal
behavior. To do so, we aim to learn latent state representations that not only capture the behaviour at the current state but
will also be able to predict the behaviour at future states, which we call behavior predictive representations (BPR). Since BPR
simply uses an auxiliary objective LBP, it can be easily combined with any RL or IL setup, as shown in Figure 1.

To describe the auxiliary loss LBP* for predicting the long-term optimal behavior, we define some notation first. Let s, be
the state at the time step ¢ and z; be the corresponding latent representation learned by the policy network f. The policy =
predicts the action distribution given the latent representation z;. We use an encoder network f to generate these latent
representations from states as, z; = f(s;). A transition function h : §* x A — S* learns the state dynamics and predicts
the representations at the next step, 2,11 = h(s, a;).

We predict the representations for K future steps by iteratively applying the transition function. While such latent
state dynamics are typically learned by minimizing the mean squared loss between 2, and z;,, we instead use these
predicted representations to predict the optimal action distributions in the future steps ¢ + 1 to ¢ + k. To do so, the agent
minimizes the cross entropy between the predicted actiorgdistribution and optimal action distributions at these steps.
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Figure 1: Behavior Predictive Representations. A schematic diagram showing how behavior predictive representations are learned
using an auxiliary task on training environments. Representations z; from the policy network are trained to predict the optimal
behavior using either a reinforcement learning (RL) or imitation learning (IL) loss. These representations z;, in conjunction with actions
at,a¢41,- - ¢+ k—1, are also trained to predicting latent representations 2, via the transition model & such that the 2; . can predict
the optimal behavior 7% (z¢4«) at time step ¢ + k.

Specifically, given access to the optimal policy 7* on training environments, the auxiliary loss LZ”* is given by:

K
LPPR =N "L (" (248), 7 (2e1k), @D
k=1
where LEF (1 (-]s), w2 (-]s)) = — 3,4 T1(als) log w2 (als).

In the general RL setting, where we do not have access to the optimal policy, we propose to use the learned policy for
specifying the future behavior in the objective LBP%. Specifically, the target distribution for the auxiliary cross entropy
loss, LBPR, comes from the same policy network that is being trained (r in Figure 1). To provide some stability from the
continuous changes in the learned policy, we use a separate target policy network that is periodically updated with the
learned policy network parameters, analogous to deep Q-learning [Mnih et al., 2013] and self-supervised learning [Grill
et al., 2020]. So, the target representations Z;j are derived from the learned transition function h while the action

distribution Tearmed (2:+%) comes from the target policy network. For this setting, the auxiliary loss LBPR ig given by,

K
[BPR _ ZLCE(ﬁleamed(Zt+k)a T(Ze+k)) @
k=1

The final training objective is the combination of both of these loss functions. Let L*F be the traditional model-free RL
(or imitaion learning) objective. Then, the combined loss function for learning behavior predictive representations is
L = LRE + A\pprLPTE, where Appr is the weighting coefficient for the auxiliary loss.

4 Experiments

We thoroughly investigate BPR on the jumping task [Tachet des Combes et al., 2018, Agarwal et al., 2021a] that captures
whether agents can learn the correct invariances for generalization directly from image inputs.

4.1 Jumping Task From Pixels

Task Description. The task consists of an agent trying to jump over an obstacle using two actions: right and jump. Different
tasks consist in shifting the floor height and/or the obstacle position (Figure 2). To generalize, the agent needs to be
invariant to the floor height while jump based on the obstacle position.

Problem Setup. Following Agarwal et al. [2021a], we use three different configurations (Figure 3), each consisting of 18
seen (training) and 268 unseen (test) tasks, to test generalization in regimes without and with data augmentation using
RandConv [Lee et al., 2020]. As discussed by Agarwal et al. [2021a], the different grids configurations capture different
types of generalization: the “wide” grid tests generalization via “interpolation”, the “narrow” grid tests out-of-distribution
generalization via “extrapolation”, and the random grid instances evaluate generalization similar to supervised learning
where train and test samples are drawn i.i.d. from the samggdlistribution.
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(a) “Wide” grid (b) “Narrow” grid (c) Random grid
Figure 3: Jumping Task: Visualization of average performance of BPR with data augmentation across different configurations. We plot
the median performance across 25 runs. Each tile in the grid represents a different task (obstacle position/floor height combination). For
each grid configuration, the height varies along the y-axis (11 heights) while the obstacle position varies along the z-axis (26 locations).
The red letter T indicates the training tasks. Random grid depicts only one instance, each run consisted of a different test/train split.
Beige tiles are tasks BPR solved while black tiles are tasks BPR did not solve.

Baselines. We compare the effi-

cacy of our method with a number

of techniques that have been used

to achieve generalization such as
{>-regularization, dropout [Fare- Different
brother et al., 2018] and data aug-  floor heights<
mentation [Lee et al., 2020].

-

Policy Similarity Embeddings Unseen
(PSEs) [Agarwal et al., 2021a] are — — (Test)
the state-of-the-art generalization ~

method on the jumping task. PSEs ) N
form an important baseline for Different obstacle positions
BPR as PSEs also use the future
behaviour as a similarity metric
between states. Specifically, PSEs
learn contrastive metric embed- Figure 2: Generalization on Jumping Task. In this task, the agent needs to jump over an
dings using a policy similarity obstacle. The agent needs to time the jump precisely, at a specific distance from the obstacle,
metric d (Equation 3) that uses otherwise it will eventually hit the obstacle. Training environments consists of different obstacle

positions as well as floor heights. At test time, the agent needs to generalize to environments
with unseen positions and heights. The obstacle can be in 26 different locations while the floor
has 11 different heights, totaling 286 environments.

d(z,y) = DIST (7" (), 7" (y)) + YW1i(d)(pr=(-|2), == (-]y)) 3)

Self-predictive representations (SPR) [Schwarzer et al., 2021] is another relevant baseline which has been shown to improve
sample-efficiency on training environments on the Atari 100k benchmark [Kaiser et al., 2019, Agarwal et al., 2021b].
SPR’s objective is that the agent learns to predict its own latent representations at future steps. Similar to BPR, it uses a
transition function to iteratively generate these latent representations for the future steps. However, while BPR optimizes
the latent representations to predict future behavior, SPR tries to maximize the similarity between the predicted latent
representations 2.1 : 2,k with the true future state representations 21 : 2;+x. To do so, SPR uses a self-supervised
learning objective [Grill et al., 2020] as the auxiliary loss,

SPR(g - g o ar:aris) — — 4(9o(Ze1k)) \T( gm(ze1k)
B sk o) ,;(|q<go<ét+k>>|2) <||gm<zt+k>||2) @

Jumping Task from Pixels

policy to measure the long term
behavior similarity —between
among states.

where g,, g, and g are online projection network, target projection network and prediction networks respectively. SPR
linearly combines the auxiliary objective, L7, with the RL objective.

Results. Table 1 summarizes the performance of BPR and all the baselines with and without data augmentation. Without
data augmentation, with only 18 training environments, BPR generalizes quite well in all the three grid configurations,
significantly outperforming regularization and PSEs by a large margin. These results exhibit that BPR is effective even
without data augmentation.

Data augmentation complements all the methods and boosts generalization performance. Comparing RandConv + BPR to
RandConv, we see that BPR is much more effective on top of RandConv. Moreover, when used in conjunction with data
augmentation, BPR performs comparably to the current state-of-the-art method PSEs. Compared to BPR, SPR degrades
the generalization performance significantly and even performs poorly than simply using RandConv. We hypothesize that
the self-supervised learning objective in SPR might be exacerbating the overfitting in learned representations by trying to
predict the spurious features captured by the learned repreg@ntations on training environments.
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Table T: Percentage (%) of test tasks solved by different methods w/o and w/ data augmentation. The “wide”, “narrow”, and random
grids are described in Figure 2. For methods implemented in this work (BPR and SPR), we report average performance across 25 runs

with different random initializations, with standard deviation between parentheses. Other results are taken from Agarwal et al. [2021a].

Data Grid Configuration (%)
. Method
Augmentation “Wide” “Narrow” Random
Dropout and ¢; reg.  17.8(2.2)  10.2 (4.6) 9.3 (5.4)

No PSEs 33.6 (10.0) 9.3 (5.3) 37.7 (10.4)
BPR 62.4 (18.6) 15.3(6.7)  58.5(20.0)
RandConv 50.7 (24.2) 33.7 (11.8) 71.3(15.6)
Y, RandConv + SPR 233 (11.8) 30.6 (13.3) 64.1 (15.6)
€s RandConv + PSEs  87.0 (10.1) 52.4(5.8)  83.4(10.1)
RandConv + BPR  90.0 (18.6) 52.0(9.4) 82.5(15.1)
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Abstract

In sequential decision making — whether it’s realized with or without the benefit of a model — objectives are often
underspecified or incomplete. This gives discretion to the acting agent to realize the stated objective in ways that may
result in undesirable outcomes, including inadvertently creating an unsafe environment or indirectly impacting the agency
of humans or other agents that typically operate in the environment. In this paper, we explore how to build a reinforcement
learning (RL) agent that contemplates the impact of its actions on the wellbeing and agency of others in the environment,
most notably humans. We endow RL agents with the ability to contemplate such impact by augmenting their reward
based on expectation of future return by others in the environment, providing different criteria for characterizing impact.
We further endow these agents with the ability to differentially factor this impact into their decision making, manifesting
behaviour that ranges from self-centred to self-less, as demonstrated by experiments in gridworld environments.

Keywords: Al Safety, Side Effects, Value Alignment
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1 Introduction

Recent work in Al safety has raised the concern that objectives are often underspecified, neglecting to take into account
potential negative side effects. As Amodei et al. [2] explain, “an objective function that focuses on only one aspect of the
environment may implicitly express indifference over other aspects of the environment.” Stuart Russell gave the example
of a robot, tasked to get coffee from a coffee shop, killing everyone in line to optimize its performance [9]. An example by
Amodei et al. [2] is that of a robot breaking a vase on the optimal path between two points. Recent work, including in RL,
has developed some techniques for avoiding or learning to avoid negative side effects [e.g., 7, 12, 8, 10].

Our concern in this paper is with how an RL agent can learn to act safely in the face of a potentially incomplete specification
of the objective. Amodei et al. observe that “avoiding side effects can be seen as a proxy for the things we really care about:
avoiding negative externalities. If everyone likes a side effect, there’s no need to avoid it.” In the spirit of this observation,
we contend that to act safely an agent should contemplate the impact of its actions on the wellbeing and agency of others in the
environment. Here we consider negative side effects to be those that impede the future wellbeing or agency of other agents.

The setup in this paper is not a multi-agent RL or cooperative Al setup, and this is done by design. We take the pragmatic
stance that in many real world settings, an RL agent will not be able to compel humans to consistently and rationally
cooperate, if they deign to cooperate at all. As such, the problem we address is in a single RL-agent setting in which the
other agents — which may be the humans that operate in the environment — are just part of the environment, operating
with fixed policies, and it is the acting RL agent that is constructing a policy that minimizes its impact on the future
agency of these other (human) agents. An evocative example may be to consider university students who share a kitchen
environment, and we wish our RL agent — the acting agent, with some conception of what others may typically do in the
kitchen — to learn how to act in the kitchen in a manner that is considerate of others who may use the kitchen afterwards.

Here, we endow RL agents with the ability to consider in their learning the future welfare and agency of others in the
environment. We do so by augmenting the RL agent’s reward with an auxiliary reward that reflects different functions of
expected future return of other agents. We contrast this with recent work on side effects that takes into account only how
the agent’s actions will affect its own future abilities [7, 12, 8]. Experiments in gridworld environments illustrate qualitative
and quantitative properties of our proposed approach. The full version of this paper [1] explores some additional variants.

Notation: An MDP is a tuple (S, A, T,r,v) where S is the state set, A is the action set, T'(s¢+1]|s¢,a;) gives transition
probabilities, 7 : S x A x S — R is the reward function, and v is the discount factor. An MDP can also include a designated
initial state sq € S. A terminal state in an MDP is a state s which can never be exited and from which no further reward can
be gained. A value function V (s) gives the expected return of a state (when following some policy).

2 Problem and Approach

To incentivize the acting agent to consider the future wellbeing and agency of others, we augment its reward with an
auxiliary reward that reflects the impact of its choice of actions on others. To reflect the acting agent’s uncertainty about
what is good for others, we make use of a distribution over value functions. In particular, suppose that we have a finite set
V of possible value functions V' : S — R, and a probability distribution P(V') over V. Note that we don’t have to commit
to how many agents there are (or what exactly their actions are). It could be that each V' € V corresponds to a different
agent, that the set reflects all possible value functions of a unique agent, or anything in between. Also, each V' € V could
reflect some aggregation of the value functions of all or some of the agents.

We define the augmented reward

function in Eq. (1), where 7, is the Tvalue (8, a, 8') = {
acting agent’s individual reward func-

tion, and F' is some function. The hyperparameters a; and «», which we call “caring coefficents”, are real numbers that
determine to what extents the individual reward r; and the auxiliary reward F(V, P, s") contribute to the overall reward.
If oy =1 and oy = 0, we just get the original reward function. Note that future activity does not have to start in exactly
the same state at which the acting agent ended. V' can be defined so that V (s’) gives the expected return of future activity
considered over a known distribution of starting states, given that the acting agent ended in s'.

ai -ri(s,a,s") if s’ is not terminal
ay-ri(s,a,8) + v-as- F(V,P,s') if s is terminal

)

We consider three possible different definitions of P(V)- V(s ted fut t o)
F(V,P.s'), given in Egs. (2), (3), and (4). In Eq. (2), Lvey P(V) (S,) expected future return ()
F(V,P,s') is the expected value of ¢/, given the dis- minyey.p(v)>o V(s') ~ worst-case future return  (3)

tribution on value functions. Under some conditions, 37, .\, P(V) -min(V(s’),V(s9)) penalize negative change (4)
this is a generalization of the auxiliary reward de-

fined by Krakovna et al. [8], which assumed that the future value functions were ones of the acting agent (and so depended
on the acting agent’s own abilities). Meanwhile, Eq. (3) considers the value of s’ if the “worst-case” value function from
V is used. Note that those two reward augmentations may incentivize the acting agent to not only avoid negative side
effects, but also to cause “positive side effects” — to help otBér agents (assuming «; > 0). To focus on avoiding negative
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side effects, Krakovna et al. [8] proposed comparing the state the agent ends up in against a reference state, and that is
applicable to our approach as well. In Eq. (4), we use one of the simplest possible reference states, the initial state: the
auxiliary reward is the lower of V (s’) and V(sg), where sq is the initial state. The idea is to decrease the acting agent’s
reward when it decreases the expected future return, but to not increase the acting agent’s reward for increasing that.

A complication with our approach is that for some possible reward functions for the acting agent and future value
functions, the acting agent may have an incentive to avoid terminating states, to avoid or delay the penalty for negative
future return. This incentive would typically be undesirable. However, under some circumstances, the acting agent’s
optimal policy will be terminating. The proposition below and its proof are similar to a result of Illanes et al. [5, Thm. 1].

Proposition 1. Let M = (S, A,T,r1,7) be an MDP where v = 1, the reward function r1 is negative everywhere, and there exists a
terminating policy. Suppose ryaie is the reward function constructed from ry according to Equation 2, using some distribution P(V').
Then any optimal policy for the MDP M’ = (S, A, T, Tvaive, ) With the modified reward will terminate with probability 1.

Proof. Suppose for contradiction that there is an optimal policy 7* for M’ that is non-terminating. Then there is some state
s € S so that the probability of reaching a terminal state from s by following 7* is some value ¢ < 1. Since rewards are
negative everywhere, that means that V™ (s) = —oo. On the other hand, any terminating policy gives a finite value to
each state. Since there is a terminating policy for M there is one for M’, and so 7* cannot be optimal. O

3 Experiments

We present experimental results using the previous section’s formulations of reward functions that allow RL agents to
contemplate the impact of their actions on others. In all the experiments, policies are learned using Q-learning. To aid
exposition, we consider simple distributions over future value functions, in which the acting agent is certain of what the
future value function is (or, in Figure 3, only considers a small number of possibilities). In our first set of experiments, we
compare one of our formulations (Eq. (2)) of a considerate RL agent against two baselines. We illustrate that by considering
others, the acting agent avoids causing negative side effects for them, and in some scenarios, yields positive side effects.
Second, we illustrate the effect of the caring coefficient on the agent’s behaviour and on other agents’ reward. Finally, we
share the results of a qualitative experiment that serves to illustrate how different reward function augmentations lead to
different behaviours. Code is available at https://github.com/praal/beconsiderate.

3.1 The Impact of Considering Others

We explore how our choice of reward augmentation method affects the acting agent and the agent that goes next. We use
a kitchen environment where agents aim to collect different ingredients from the fridge or shelves, and prepare a meal.
Each agent, when it performs any action, gets -1 reward. We designed four different scenarios to illustrate properties of
our approach. The results are shown in Table 1. We use a step difference metric, described in the caption.

Baselines: We compare our method, using Eq. (2) (with oy = as = 1), with two reward augmentation baselines: not
augmenting the reward, and a method based on Krakovna et al. [8]’s approach. The Krakovna-style baseline uses the
same Eq. (2) to augment the rewards, except that the future value functions considered are always possible future value
functions of the acting agent itself (as if it were trying to accomplish the tasks of other agents). So if other agents have
differing abilities, those abilities are ignored in the Krakovna-style model. (Note that this does not incorporate Krakovna
et al.’s notion of a “reference state” and may incentivize positive side effects in some cases, as our own method does.)

The first experiment (Salad) shows a scenario where the acting agent and next agent have the same abilities, and so our
approach and the Krakovna-style baseline both avoid negative side effects and behave identically. The next experiments
(Peanut and Salt) show that our approach, taking into account differing agent abilities, is sometimes more effective at

Table 1: Comparison of reward augmentation methods for acting and subsequent agents. Each row reflects a different
method. Each column depicts results for a different experimental scenario. Each entry pair depicts “step differences”
for the acting agent and the subsequently acting (next) agent. A “step difference” is the difference between the number
of steps the agent required to execute their policy as compared to what they would have required if they had tried to
complete their task from the initial state without considering other agents. co indicates the task was unachievable.

Salad Peanut Salt Cookies
Method acting agent, next acting, next acting, next acting, next
Non-augmented reward 0, 0o 0, oo 0, oo 0,0
Based on Krakovna et al. 1,0 1, 1,1 1,-2
Our approach [Eq. 2] 1,0 ar 2,0 1,0 1,-2
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avoiding negative side effects than either baseline. The last experiment (Cookies) shows how our approach (and the
Krakovna-style baseline) can cause positive side effects for the next agent. Each experiment is described more below.

In Salad, the acting agent needs to collect the ingredients from the fridge. If it doesn’t consider side effects, it doesn’t close
the fridge and ruins all the remaining ingredients, preventing the next agent from completing its task. By considering
future tasks (whether another agent’s or its own), the acting agent learns to take an extra step to close the fridge. In Peanut,
preparing food contaminates the environment, and for the next agent to cook requires that the environment first be cleaned
(taking one step), or disinfected (taking two steps) if the next agent has allergies. Only our approach takes the two extra
steps to disinfect the kitchen because it considers that the other agent (unlike itself) has allergies. In Salt, if the acting agent
does not put the salt shaker back on the shelves, the next agent can’t complete its task. By considering future agents (in
the Krakovna-style baseline and our approach) this side effect is avoided. However, the acting agent is tall and may put
the salt on the top shelf (making it take longer for the next, shorter, agent to get it) if it considers that the next agent will be
itself, as in the Krakovna-style baseline. Finally, in Cookies, the next agent’s task is to bake cookies in the oven. Two steps
are required to preheat the oven (turning on the oven and waiting). By considering the future task of the next agent, the
acting agent (who was not using the oven) can turn on the oven to start preheating it, and save the next agent two steps.

3.2 Varying the Caring Coefficient 1 K 2| Symbol  Meaning
] Door
We investigated the effect of choosing different caring coefficients («; and o) K KeyStorage
. i i o Factory
in Eq. (2? by moTrll\itf)rmg the average reward. collected by each of the agents = P
in the Minecraft'“-inspired Craft-World Environment (Figure 1). . e o
Agents in this environment use tools and materials to construct artifacts such s i P Ky
as boxes. Tools are stored in a toolshed in the upper right corner of the grid.
Agents enter and exit the environment through doors in the upper left and Figure 1: Craft-World Environment

lower right. They must collect materials and bring them to the factory for

assembly. The factory requires a key for entry, and there is only one key, which can only be stored in one of two locations
(marked with K). When considering other agents, the acting agent may elect to place the key in a position that is convenient
for others, or may help other agents by anticipating their need for tools or resources and collecting them on their behalf.

In the experiment, agents enter at the top left door, tasked with making a box.
The first agent learns a policy following Eq. (2). The second, subsequently
acting, agent follows a fixed policy designed to optimize its own reward. e

Figure 2 shows the reward that each agent gets (after training) as we vary
the caring coefficient a. It also shows their average. When ay = 0, the first
agent is oblivious to others and exits the environment without returning the
key, precluding the second agent from making a box. When o, > 0, the agent
becomes more considerate and returns the key on its way to the exit. As _

we increase the value of s, the first agent is incentivized to help the second ™1 T ceom agent
agent, eventually (to its detriment) carrying extra materials to the factory for oL il
the second agent, garnering negative reward for this hard work and also,
interestingly, lowering the average reward of the two agents.

Average Reward
bbb
v 8 B

0 1 2 3 4 5 6 7
Caring Coefficient (a2, =1)

Figure 2: Effect of caring coefficients in

3.3 Optimal Behaviours under Different Reward Augmentations the Craft-World environment.
Figure 3 illustrates the difference between Egs. (2), (3), (4), and the Krakovna- @(33
style baseline. In this experiment, the goal of the agents is to play with the

doll and leave it somewhere in the environment for the next agent, and then

exit the environment from their entry point; the agents get -1 reward for each [Ea.2{,
step. There are six agents (circles 1-6 in Figure 3) in the environment with the st 2
same goal. They are shown at their individual entry points. Agents enter the @ g__,
environment separately; the acting agent is agent 1. In this scenario, a; = 1, L Fa-3

and ap = 10. If we augment the acting agent’s reward according to Eq. (2) }1—4/ /

(where the distribution of value functions is a uniform distribution over the

optimal value function for each agent w.r.t. the goal of playing with the doll), - krallovna-stlie

the optimal policy is to place the doll as close as possible to the majority of the @

agents. If we use Eq. (3) the optimal policy is to place the doll so as to minimize

the distance to the furthest agent. Finally, if we use Eq. (4) the optimal policy Figure 3: Each arrow points to where an
is to leave the doll where it is, because moving it causes negative side effects optimal policy could leave the doll when
for agent 6. However if we use the approach based on Krakovna et al., the Agent 1 receives auxiliary reward accord-
optimal policy is to leave the doll at agent 1’s exit/entry poid8, so that the doll ing to the approach labelling the arrow.
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would be conveniently located for agent 1 if it were to re-enter. Furthermore, if we use non-augmented reward the agent
does not have an incentive to place the doll in the environment and leaves with the doll (not shown in figure).

4 Related Work

We consider the relation of our work to Krakovna et al. [8] before briefly reviewing some other related work.

Krakovna et al. proposed modifying the agent’s reward function to add an auxiliary reward based on its own ability to
complete possible future tasks. A “task” corresponds to a reward function which gives reward of 1 for reaching a certain
goal state, and 0 otherwise. In their simplest definition (not incorporating a baseline), the modified reward function is

given by Eq (5), where r; is the original ) ri(s,a,8) + B(1—~) S, F(i)Vi*(s') if §' is not terminal
ri(s,a,s") = . ' ©)

reward function, F'is a distribution over ST o .
tasks, V;* is the optimal value function ri(s,a,8") + B35 FO)V(s) if s is terminal
)

for task ¢ (when completed by the single agent itself), and § is a hyperparameter which determines the how much weight
is given to future tasks. They interpret 1 — v (where 7 is the discount factor) as the probability the agent will terminate
its current task and switch to working on the future task, which leads to the (1 — «) factor in the case where s’ is not
terminal. Their formulation is similar to (and inspired) our approach, though for rx the value functions are restricted to
be possible value functions for the agent itself (and so depend on what actions the agent itself can perform). In contrast, in
our approach, we consider value functions that may belong to different agents with different abilities. Additionally, they
assume the value functions are optimal. Below we show how under some conditions, our approach generalizes theirs.

In the case where ~ (the discount factor) is 1, rx simplifies so that rx (s, a, s') = r1(s, a, s’) if s’ is not terminal. Our Eq. (2)
(substituted into Eq. (1)), in the case where v = 1, can be rewritten as Eq. (6). Observe thatif y =1, a1 =1, s = 5, and
P(V) = S{F() | Vi = V} then

TK = Tvalue- S0 in the undiscounted Tvalue (8, @, ") = { (6)
setting r is a special case of 7yalye.

oy -11(s,a,8") if s’ is not terminal
ay-ri(s,a,8") +as ), P(V)-V(s') if s is terminal

Moving on, Turner et al.’s [12] Attainable Utility Preservation is an approach to avoiding side effects similar to Krakovna
et al.’s. The agent’s reward is modified, given a set R of other reward functions, to penalize actions that change the agent’s
own ability to optimize for the functions in R. Considering other agents’ abilities when avoiding side effects was informally
discussed by Turner [11], and we have also investigated it in the context of symbolic planning [6]. Bussmann et al. [3]
proposed “Empathetic Q-learning”, an RL algorithm which learns not just the agent’s Q-function, but an additional
Q-function, @ ¢y, which gives a weighted sum of the agent’s value from taking an action, and the value that another
agent will get. The value the other agent will get is approximated by considering what reward the first agent would get, if
their positions were swapped. Finally, Du et al. [4] considered the problem of having an Al assist a human in achieving a
goal. They proposed an auxiliary reward based on (an estimate of) the human’s empowerment in a state. Empowerment is
an information-theoretic quantity that measures ability to control the state (which could be influenced by the presence of
irrelevant features that humans aren’t interested in controlling).
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Abstract

Upside down reinforcement learning (UDRL) flips the conventional use of the return in the objective function in RL
upside down, by taking returns as input and predicting actions. UDRL is based purely on supervised learning, and
bypasses some prominent issues in RL: bootstrapping, off-policy corrections, and discount factors. While previous work
with UDRL demonstrated it in a traditional online RL setting, here we show that this single algorithm can also work
in the imitation learning and offline RL settings, be extended to the goal-conditioned RL setting, and even the meta-RL
setting. With a general agent architecture, a single UDRL agent can learn across all paradigms.
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1 Introduction

Over time, the field of Al has exhibited significant convergence, with the increasing popularity of artificial neural net-
works (NNs) trained on large amounts of data resulting in improved performance across many benchmarks. While many
earlier successes were based on supervised learning (SL), NNs have also revolutionised reinforcement learning (RL).

We begin by noting two further significant convergences in recent years. The first pertains to NN architectures. While
convolutional NNs (CNNs) and recurrent NNs (RNNs) have for decades been applied to images and text, respectively,
a new general-purpose architecture has emerged [16]. Originally applied to text, the Transformer architecture [34] has
been successfully extended to images [6], as well as other structured input/outputs [16]. The advantage of such models
is the ability to operate over sets, allowing a single, modular model to reuse knowledge over a dynamic set of inputs.

The second development is the rise of self-supervised learning (SSL) across different domains [36]: the use of “pretext
tasks”, constructing labels from unlabelled data in order to imitate SL training, has resulted in models that rival those
trained with SL. SSL benefits from rich “supervisory signals”, with models learning to predict transformations, f, of their
inputs, z; loosely speaking, p(f(x)|z), versus SL's p(y|x), where y is a label. In a single domain, a variety of tasks can
enable a model to gain complementary knowledge over different facets of the world.

We propose uniting these directions to create general learning agents, with the position that RL can itself be framed as
an SL problem. This is not a novel proposition [25, 31, 32, 20, 12, 3, 17, 8, 11], but in contrast to prior works, we provide a
general framework that includes online RL, goal-conditioned RL (GCRL) [28], imitation learning (IL) [26], offline RL [9],
and meta-RL [29], as well as other paradigms contained within partially observed Markov decision processes (POMDPs)
[23]. We build upon the proposal of upside down RL (UDRL) by Schmidhuber [31], the implementation of Srivastava
et al. [32], and sequence modelling via Decision Transformers [3, 17]. We examine current implementations, discuss a
generalisation of the framework, and then demonstrate a single algorithm and architecture on a standard control problem.

2 Upside Down RL

The core of UDRL is the policy, 7, conditioned on “commands”, ¢ [31]. Given a dataset D of trajectories (states, s, actions,
a, and rewards, ), the policy, parameterised by 0, is trained using an SL loss, £, to map states and commands to actions:

argmginIEs,a,,.ND[,C(a,7T(a|s,0;0))]. 1)

In the initial implementation [32], ¢ = [d¥, d¥], where d¥ is the desired (future) time horizon, t; — t1, and d¥ is the (time-
bounded) return-to-go, Ziitl r¢. In a similar fashion to hindsight experience replay' [19, 1], the agent can be trained on

data sampled from D, calculating d” and d% directly from the data. Trained thus, the agent can then achieve a desired
return by sampling actions from its stochastic command-conditioned policy. Unlike typical RL agents, UDRL agents are
capable of achieving low returns, medium returns, or high returns, based on the choice of arf [32].

There are two key elements to the efficacy of UDRL—the first being the dataset (and its use) [27]. In the online RL setting,
a UDRL agent can learn to perform reward maximisation in a manner akin to expectation maximisation: collect data
using the policy, then train on the most rewarding data. This can be achieved by weighting the data [25], or controlling
data storage/sampling [32]. Given an existing dataset of demonstrations, the agent can be trained in the offline RL setting
[20, 17, 3]. D can be used for auxiliary tasks to improve learning/generalisation, such as via learning a world model [17].

The second key element is the use of commands. ¢ can be any computable predicate that is consistent with the data
[31]. In the initial implementation, the agent is trained to map observed actions a; to the corresponding states s; and
[df, d®], where the latter is calculated from ¢ to the terminal timestep T, allowing the agent to perform (undiscounted)
credit assignment across the entire episode. During exploration in the environment (which generates more data for the
agent), d is set to the mean of the most rewarding episodes in D, and d” is sampled uniformly from values between the
mean of the most rewarding episodes’ returns, and the mean plus one standard deviation (encouraging optimism). After
every environment interaction, d” is decremented by 1 and d is decremented by r. If ¢ is simplified to only contain
the desired return, we recover reward-conditioned policies [20], and if ¢ = (), we recover behavioural cloning (BC) [26],
which is the simplest IL algorithm. Conversely, the trivial augmentation of ¢ with a goal vector g extends UDRL to the
GCRL setting [31, 12, 17], with zero-shot generalisation enabled via appropriate goal spaces (e.g., language [18]).

As the agent is trained using SL on observed data, UDRL bypasses several commmon issues in RL: bootstrapping
(temporal-difference updates), off-policy corrections, and discount factors. This allows us to more easily focus on stan-
dard points in ML: the agent’s ability to generalise to novel states and commands is based on the data available, the class
of policies, and the optimisation process [8]. Srivastava et al.[32] trained fully-connected-/CNN-based UDRL agents
using stochastic gradient descent on the cross-entropy loss, but replacing the architecture (e.g., with Transformers [17, 3])

'But without specific environment settings, e.g., symbolic statelgpaces or a distance-based goal-conditional reward functions.
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or the optimisation (e.g., with evolutionary algorithms) are valid alternatives. While the move to sequence modelling al-
lows the agent to benefit from greater contexts [17, 3], in general, a stateful agent is needed in order to deal with POMDPs,
as well as more general computable predicates [31].

3 Generalised Upside Down RL in POMDPs

While many realistic problems cannot be captured by MDPs, they can be reasonably modelled by POMDPs, in which
the agent only receives a partial observation o of the true state s. A principled approach to solving POMDDPs is to keep
a “belief” over the state, which can be achieved implicitly by training an RNN agent, which updates a hidden state
vector h [37]. POMDPs encompass many other problems, such as hidden parameter MDPs [5], which consider related
tasks, and even the general meta-RL setting (where h is typically augmented with previous action, reward and terminal
indicator, Lerminal [7, 35]). POMDPs can also be related to generalisation in RL and the robust RL [22] setting, which
considers worst-case performance. While various specialised algorithms exist for these different problem settings, recent
results from Ni et al. [23] have shown that simple recurrent model-free RL agents are can perform well across the board.
Motivated by this (and further related arguments by Schmidhuber [31]), we proceed by treating every environment as a
POMDP, in which an agent attempts to learn using a general algorithmic framework.

A final ingredient enables a single agent to deal with all RL problem settings (plus IL) with one model — an architecture
that can deal with arbitrary structured inputs and outputs (e.g., Perceiver 1O [16]). Such a model allows c to be dynamic
as needed: being null in the pure IL setting (where UDRL reduces to BC), being [d¥, d*, g] in the GCRL setting, and
extending further beyond to incorporate SSL tasks. This alleviates the problem of using unlabelled demonstrations to
bootstrap an RL agent, as the agent does not need to model the rewards achieved. Furthermore, the ability to adapt to
different observation and action spaces allows such an agent to use third-person data for representation learning.

Given this, we present a generalised algorithm for UDRL (Algorithm 1). Although nearly all RL problems consider
the episodic setting (in which a terminal indicator is given before the environment resets), the following algorithm is
applicable in both episodic and non-episodic MDPs, making it capable of continual/lifelong learning.

Algorithm 1 Generalised Upside Down RL

Require: E > POMDP environment
Require: 7(alo,c, h) > Command-conditioned recurrent policy
Require: D > Experience replay memory; existing data optional unless performing IL/offline RL
function RESET(F, 7, D)
Reset environment F and 7’s hidden state h > h also contains the previous action, reward, and terminal indicator
Get initial observation and goal (o, g) from E
Sample c based on D and (o, g) > Requires a procedure for sampling an initial command c based on observed data
Train 7 on batches from D > Data can be non-uniformly/adaptively sampled from D; auxiliary objectives can be used

if performing IL or offline RL without environment interaction then return

RESET(E, 7, D)
while true do
Actwith a, h ~ 7(alo, ¢, h)

Observe (0,7, g’, Lierminal) from environment transition > ¢’ given for goal-conditioned RL, Lierminal for an episodic MDP
Update D with (o0, a, 7, g, Lerminal) > D may prioritise updates/remove old data
Update h (to contain a and ) and ¢ > Requires a procedure for updating c, e.g., include g, decrement d”

Train 7 on batches from D
if Lierminal then RESET(E, w, D)

4 Experiments

For our experiments, we use the classic CartPole control problem [2], where the agent receives a +1 reward for every
timestep the pole is balanced, with a time limit of 500 timesteps. We adapt this environment to demonstrate how a single
architecture can be used in the following settings: online RL, IL, offline RL, GCRL, and meta-RL. For the IL setting,
we train the agent on 5 episodes with the maximum return of 500, collected from an online RL agent, and disable the
reward and desired return inputs. For the offline setting, we train the agent on the worst 1000 trajectories from the online
agent, with an average return of 162 £ 195. In the GCRL setting, at the beginning of each episode the agent is given an
z goal position uniformly sampled from [—1, 1], with the reward function set to e~1*~9I. In the meta-RL setting, several
environment parameters are randomly sampled at the beginning of each episode [21]. In the GCRL and meta-RL settings,
during testing the agent is evaluated on a cross product of a uniform spread over goals/environment parameters.

?Correspondences between the agent and third party’s observation/action spaces would be needed for true third-person IL [33].
To maintain such flexibility, the previous action and reward can bd2ncluded in a dynamic c structure, instead of within h.
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Figure 1: Generalised UDRL agent trained under the (a) online RL (b) IL (c) offline RL (d) GCRL and (e) meta-RL
settings in the CartPole environment. Results averaged over 10 test episodes per evaluation x 20 random seeds. The
dashed line in (c) represents the distribution of returns in D. The different colours in (d) and (e) represent different
goals/environment parameters, respectively.

As the observation and action spaces are constant, we use a simple base policy that consists of a linear layer, a sigmoid-
gated linear layer, an LSTM [14], and a final linear layer to predict the logits of a categorical distribution. Each command
(d" and df), the goal, previous action, reward, and terminal indicator, are all embedded and concatenated with a learn-
able encoding vector, before being processed by a Transformer encoder layer [34]; the resulting vectors are aggregated
using the max function and then used in the gated linear layer before the LSTM. For simplicity, all settings use the same
architecture and hyperparameters; the code is available at https: //github.com/Kaixhin/GUDRL.

As shown in Figure 1, the generalised UDRL agent is able to learn under all settings. While its performance may not
match more specialised RL algorithms, it demonstrates that a single SL objective is sufficient for a variety of sequential
decision making problems. Whilst it is possible to tune hyperparameters for individual tasks, a more compelling avenue
for improving the performance of such agents is to incorporate further commands/tasks that relate to the environment’s
structure. This can include learning world models, SSL tasks [36], and more general computable predicates [31].

5 Discussion

Given the increased interest in the RL-as-SL paradigm, this work aims to construct a more general purpose
agent/learning algorithm, but with more concrete implementation details and links to existing RL concepts than prior
work [31]. A major question is whether such an idea can scale? As mentioned previously, optimisation and function ap-
proximation are key limiters. Other experiments with tabular representations have yielded UDRL agents that can learn
more complex commands [31]; and in further experiments, the act of resetting weights has been useful for more complex
agents. With less of the confounding problems of other RL algorithms, UDRL lays bare the problem of continual learning
(and proactive interference, in particular) [10, 15].

Another discussion point UDRL introduces is the method by which (value) credit assignment can occur. While other
agents typically consider the (discounted) episodic return, UDRL agents can incorporate a desired horizon. As such,
UDRL might lend itself better to hierarchical RL [13]. In the current formulation, desired returns and goals are almost
interchangeable in the command structure, but a more powerful formulation is to consider these as being variables that
can be inferred themselves, i.e., a joint model (o0, a,d%, g). In the same way that inverse models can complement forward
models, the joint distribution can interchange Q-functions, Q(d%|o, a, g) and return-conditioned policies, 7(alo, d%, g),
utilising whichever is better for the situation (acting, or learning, in a data-dependent manner). Being able to infer the
desired goal becomes particularly important when it comes to generalisation in the IL setting [4], and could even allow
the use of “suboptimal” data [8]. Looking even further forward, with both hierarchy and a more intelligent command
selection strategy, UDRL agents could be powerful vessels for implementing open-ended, goal-driven curiosity [24, 30].
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Abstract

The quintessential model-based reinforcement-learning agent iteratively refines its estimates or prior beliefs
about the true underlying model of the environment. Recent empirical successes in model-based reinforce-
ment learning with function approximation, however, eschew the true model in favor of a surrogate that,
while ignoring various facets of the environment, still facilitates effective planning over behaviors. Re-
cently formalized as the value equivalence principle, this algorithmic technique is perhaps unavoidable
as real-world reinforcement learning demands consideration of a simple, computationally-bounded agent
interacting with an overwhelmingly complex environment. In this work, we entertain an extreme scenario
wherein some combination of immense environment complexity and limited agent capacity entirely pre-
cludes identifying an exactly value-equivalent model. In light of this, we embrace a notion of approximate
value equivalence and introduce an algorithm for incrementally synthesizing simple and useful approxi-
mations of the environment from which an agent might still recover near-optimal behavior. Crucially, we
recognize the information-theoretic nature of this lossy environment compression problem and use the ap-
propriate tools of rate-distortion theory to make mathematically precise how value equivalence can lend
tractability to otherwise intractable sequential decision-making problems.

Keywords: Bayesian reinforcement learning, Information theory, Model-
based reinforcement learning, Efficient exploration
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1 Problem Formulation

We formulate a sequential decision-making problem as an episodic, finite-horizon Markov Decision Process
(MDP) [4, 14] defined by M = (S, A, R, T, 3, H). S denotes a set of states, A is a set of actions, R : S x A —
[0,1] is a deterministic reward function providing evaluative feedback signals (in the unit interval) to the
agent, 7 : S x A — A(S) is a transition function prescribing distributions over next states, 5 € A(S) is an
initial state distribution, and H € N is the maximum episode length or horizon.

Let (Q2, 7, P) be a probability space. As is standard in Bayesian reinforcement learning, both the transition
function and reward function are not known to the agent and are consequently treated as random variables.
With all other MDP components known a priori, the randomness in the model fully accounts for the ran-
domness in the MDP, which is also a random variable. We denote by M* the true MDP with model (R*, 7*)
that the agent interacts with and attempts to solve over the course of K episodes. Within each episode, the
agent acts for exactly H steps beginning with an initial state s; ~ . For each h € [H], the agent observes
the current state s, € S, selects action a, ~ m,(- | sp) € A, enjoys a reward r;, = R(sp,ar) € [0,1], and
transitions to the next state sp11 ~ T (- | sp,an) € S.

A stationary, stochastic policy for timestep h € [H], 7, : S — A(A), encodes a pattern of behavior mapping
individual states to distributions over possible actions. Letting {S — A(A)} denote the class of all station-
ary, stochastic policies, a non-stationary policy 7 = (71,...,mg) € {S — A(A)}¥ is a collection of exactly
H stationary, stochastic policies whose overall performance in any MDP M at timestep h € [H| when start-
ing at state s € S and taking action a € A is assessed by its associated action-value function Q7 ,(s,a) =

H
E| > R(sp,ap) | sp, = s,an = a|, where the expectation integrates over randomness in the action selec-
h'=h

tions and transition dynamics. Taking the value function as V{ ;,(s) = Eqr,(.1s) {QWM n(s, a)} , we define
the optimal policy 7* = (7}, 75, ..., 7};) as achieving supremal value V{, , (s) = sup Viin(s) for
’ re{SsAYE T
alls € §, h € [H]. Welet 7, = (sék)7 agk), r%k), A s(;), ag), r%c), sgll) be a random variable denoting the
trajectory experienced by the agent in the kth episode. Meanwhile, Hy, = {7, 7o,...,Tx—1} € Hj is a ran-
dom variable representing the entire history of the agent’s interaction within the environment at the start
of the kth episode. Abstractly, a reinforcement-learning algorithm is a sequence of non-stationary policies
(7). .., 7)) where, for each episode k € [K], 7¥) : H; — {S — A(A)} is a function of the current his-
tory Hj,. We note that no further restrictions on the state-action space S x A, such as finiteness, have been
made; notably, through our use of information theory, our algorithm may operate on any finite-horizon,
episodic MDP although we leave the question of how to practically instantiate our algorithm for concrete
settings of interest to future work.

2 Rate-Distortion Theory

We here provide a brief, high-level overview of rate-distortion theory [17] and encourage readers to consult
[7] for more details. A lossy compression problem consumes as input a fixed information source P(X € -)
and a distortion function d : X x Z — R>q which quantifies the loss of fidelity by using a compression Z in
place of the original X. Then, for any distortion threshold D € R, the rate-distortion function quantifies
the fundamental limit of lossy compression as

R(D) = inf I(X:2) £ it E[Di(P(X €] 2) |[B(X € )] A2{Z:Q— Z|E[d(X,2)] <D},

where I(X; Z) denotes the mutual information and the infimum is taken over all random variables Z that
incur bounded expected distortion, E [d(X, Z)] < D. Naturally, R(D) represents the minimum number of
bits of information that must be retained from X in order to achieve this bounded expected loss of fidelity.
In keeping with the previous problem formulation, which does not assume discrete random variables, we
note that the rate-distortion function is well-defined for information source and channel output random
variables taking values on abstract alphabets [8]. Moreover, the problem of computing the rate-distortion
function along with the channel that achieves its infimum is well-studied and solved by the classic Blahut-
Arimoto algorithm [6, 1], which is computationally feasible for discrete channel outputs.
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Just as in past work that studies satisficing in multi-armed bandit problems [15, 2, 3], we use rate-distortion

theory to formalize and identify a simplified MDP M, that the agent will attempt to learn over the course
of each episode k € [K]. The episode dependence arises from utilizing the agent’s current beliefs over the
true MDP P(M* € - | Hy) as an information source to be lossily compressed.

3 The Value Equivalence Principle

As outlined in the previous section, the second input for a well-specified lossy-compression problem is
a distortion function prescribing non-negative real values to realizations of the information source and

channel output random variables (M*, M) that quantify the loss of fidelity incurred by using M in lieu of
M*. To define this function, we will leverage an approximate notion of value equivalence [10, 11]. For any
arbitrary MDP M with model (R, 7") and any stationary, stochastic policy 7 : S — A(.A), define the Bellman
operator B}, : {S — R} — {S — R} as follows: B5,V(s) £ Eyr(.|s) [R(s,a) + Ego7(.js.0) [V (s)] . The
Bellman operator is a foundational tool in dynamic-programming approaches to reinforcement learning [5]
and gives rise to the classic Bellman equation: for any MDP M = (S, A, R, T, 8, H) and any non-stationary
policy © = (w1, ..., 7x), the value functions induced by  satisfy VT ,(s) = BV ;,41(s), forall h € [H]
and with Vi ;. ,(s) =0,Vs € S.

For any two MDPs M = (S, A, R, 7,3, H) and M = (S, A, R, T, 8, H), Grimm et al. [10] define a notion of
equivalence between them despite their differing models. For any policy class I C {S — A(A)} and value
function class V C {S — R}, M and M are value equivalent with respect to IT and V if and only if B}, V =

T V,Vr eI,V € V. In words, two different models are deemed value equivalent if they induce identical
Bellman updates under any pair of policy and value function from II x V. Grimm et al. [10] prove that
whenII = {§ — A(A)} and V = {S — R}, the set of all exactly value-equivalent models is a singleton set
containing only the true model of the environment. The key insight behind value equivalence, however, is
that practical model-based reinforcement-learning algorithms need not be concerned with modeling every
granular detail of the underlying environment and may, in fact, stand to benefit by optimizing an alternative
criterion besides the traditional maximum-likelihood objective [18, 12, 16]. Indeed, by restricting focus to
decreasing subsets of policies II € {S — A(A)} and value functions V C {S — R}, the space of exactly
value-equivalent models is monotonically increasing.

For brevity, let R £ {S x A — [0,1]} and T = {S x A — A(S)} denote the classes of all reward functions
and transition functions, respectively. Recall that, with all uncertainty in M* entirely driven by its model,

we may think of the support of M* as 9 £ R x T. We define a distortion function on pairs of MDPs
d:MxM— Rsp forany II C {S — A(A)},V C{S — R} as

2

d M) = sup ||BR,V — BLV|72, = BiV(s)— B=V :

my (M, M) = sup [[BLV = Bg Vil = sup (gleag MV (s) = B (S)I)
vey vey

In words, dp,y is the supremal squared Bellman error between MDPs M and M across all states s € S with
respect to the policy class II and value function class V.

4 Value-Equivalent Sampling for Reinforcement Learning

By virtue of the previous two sections, we are now in a position to define the lossy compression problem

that characterizes a MDP M, that the agent will endeavor to learn in each episode k € [K] instead of the
true MDP M*. Forany II C {S — A(A)}; ¥V C {S — R}; k € [K]; and D > 0, we define the rate-distortion
function

RIV(D) = inf LM M) 2 inf E|[Dir(POM” € - | M, Hy) [|PM* €| H)) | He], ()
MeA MeA

where A 2 {M : Q — 9 | E[dny(M*, M) | Hy] < D}. This rate-distortion function characterizes the
fundamental limit of lossy MDP compression under our chosen distortion measure resulting in a channel
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that retains the minimum amount of information from the true MDP M* while yielding an approximately
value-equivalent MDP in expectation. Observe that this distortion constraint is a notion of approximate
value equivalence which collapses to the exact value equivalence of Grimm et al. [10] as D — 0. Meanwhile,
as D — oo, we accommodate a more aggressive compression of the true MDP M* resulting in less faithful
Bellman updates.

Algorithm 1 Posterior Sampling for Rein- Algorithm 2 Value-equivalent Sampling for Reinforcement

forcement Learning (PSRL) [19] Learning (VSRL)
Input: Prior distribution P(M* € - | Hy) Input: Prior distribution P(M* € - | Hy), Distortion thresh-
fork € [K] do old D € R, Distortion function drr,y : 9 x MM — Rxg
Sample MDP M}, ~ P(M* € - | Hy) for k € [K] do
Compute optimal policy 7(*) = T, Compute channel IED(MV k € - | M*) achieving RE’V(D)
Execute 7(*) and observe trajectory 74 limit (Equation 1)
Update history Hy1 = Hy U Ty Sample MDP M* ~ P(M* € - | Hk)N
Induce posterior P(M* € - | Hy41) Sample compressed MDP My, ~ P(My, € - | M* = M*)
end for Compute optimal policy 7% = 7},

Execute (%) and observe trajectory 7

Update history Hp41 = Hi U g

Induce posterior P(M* € - | Hp41)
end for

A standard algorithm for our problem setting is widely known as Posterior Sampling for Reinforcement
Learning (PSRL) [19, 13], which we present as Algorithm 1, while our Value-equivalent Sampling for Re-
inforcement Learning (VSRL) is given as Algorithm 2. The key distinction between them is that, at each
episode k € [K], the latter takes the posterior sample M* ~ P(M* € - | Hy) and passes it through the chan-
nel that achieves the rate-distortion limit (Equation 1) at this episode to get the A/}, whose optimal policy is
executed in the environment.

5 Discussion

Example 1 (A Multi-Resolution MDP). For a large but finite N € N, consider a sequence of MDPs, { My, }ncny,
which all share a common action space A but vary in state space (Sy,), reward function, and transition function.
Moreover, for each n € [N, the rewards of the nth MDP are bounded in the interval [0, 2]. An agent is confronted
with the resulting product MDP, M, defined on the state space Sy x . . . x Sy with action space A and rewards summed
across the N constituent reward functions. The transition function is defined such that each action a € A is executed
across all N MIDPs simultaneously and the resulting individual transitions are composed to make a transition of M.

For any value of N, PSRL will persistently act to identify the transition and reward structure of all { My },.c[n)-

Example 1 presents a scenario where, as N 1 oo, a complex environment retains a wealth of information,
and yet, only a subset of that information may be within the agent’s reach or even necessary for producing
reasonably competent behavior. VSRL implicitly identifies a M < N such that learning the subsequence of
MDPs { M, } e[ is sufficient for achieving a desired degree of sub-optimality.

The core impetus for this work is to recognize that, for complex environments, pursuit of the exact MDP
M* may be an entirely infeasible goal. Consider a MDP that represents control of a real-world, physical
system; learning a transition function of the associated environment, at some level, demands that the agent
internalize laws of physics and motion to a reasonable degree of accuracy. More formally, take the random
variable M; ~ P(M* € - | H;) reflecting the agent’s prior beliefs over M*. Denoting H(-) as the entropy
of a random variable, observe that identifying M* requires that a PSRL agent obtain exactly H(M;) bits of
information from the environment which, under an uninformative prior, may either be prohibitively large
and exceed the agent’s capacity constraints or simply be impractical under time and resource constraints.

6 Conclusion

In this work, we embrace the idea of satisficing [15, 2, 3]; as succinctly stated by Herbert A. Simon during
his 1978 Nobel Memorial Lecture, “decision makers can satisfice either by finding optimum solutions for
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a simplified world, or by finding satisfactory solutions for a more realistic world.” Rather than spend an
inordinate amount of time trying to recover an optimum solution to the true environment, VSRL pursues
optimum solutions for a sequence of simplified environments. Future work will develop a complementary
regret analysis that demonstrates how finding such optimum solutions for simplified worlds ultimately
acts as a mechanism for achieving a satisfactory solution for the realistic, complex world. Naturally, the
loss of fidelity between the simplified and true environments translates into a fixed amount of regret that
an agent designer consciously and willingly accepts for two reasons: (1) they expect a reduction in the
amount of time, data, and bits of information needed to identify the simplified environment and (2) in
tasks where the environment encodes irrelevant information and exact knowledge isn’t needed to achieve
optimal behavior [9, 10, 11], a VSRL agent may still identify the optimal policy while maintaining greater
sample efficiency than traditional PSRL.
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Abstract

Lately, there has been a resurgence of interest in using supervised learning to solve reinforcement learning problems.
Recent work in this area has largely focused on learning command-conditioned policies. We investigate the potential
of one such method—upside-down reinforcement learning—to work with commands that specify a desired relationship
between some scalar value and the observed return. We show that upside-down reinforcement learning can learn to
carry out such commands online in a tabular bandit setting and in CartPole with non-linear function approximation.
By doing so, we demonstrate the power of this family of methods and open the way for their practical use under more
complicated command structures.
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1 Introduction

Artificial neural networks in their current incarnation are better suited to solving supervised learning problems than they
are for solving reinforcement learning problems. Recently, a family of techniques based on upside-down reinforcement
learning (Schmidhuber, 2019; Srivastava et al., 2019) has been proposed, which solve RL problems by framing them
as supervised learning problems. These techniques all focus on directly learning a command-conditioned policy; they
explicitly learn a mapping from states and commands to actions. Already, these methods have had remarkable success
in solving offline RL problems (Chen et al., 2021; Janner et al., 2021; Kumar et al., 2019), but still struggle to achieve
competitive results in online reinforcement learning problems.

This work investigates the learnability of morethan commands: commands that specify a goal in the form of a scalar value,
a horizon, and the desired relation between the given scalar and the observed return under the given horizon. Here we
show that these commands are learnable online with traditional UDRL in simple settings. By doing so, we demonstrate
the practical potential of the flexibility of commands offered by the UDRL framework. We hope that this flexibility can
be leveraged in the future to empower these methods to render them competitive in complicated online and continual
learning problems.

2 Related Work

The idea of leveraging iterated supervised learning to solve reinforcement learning dates back to at least the work on
reward-weighted regression by Peters and Schaal (2007), who brought the earlier work of Dayan and Hinton (1997)
to the domain of operational space control and RL. However, Peters and Schaal (2007) only looked at the immediate-
reward RL setting. This was extended to the episodic setting separately by Wierstra et al. (2008a) and then by Kober and
Peters (2011). Wierstra et al. (2008a) went even further and also extended RWR to partially observable Markov decision
processes, whereas Kober and Peters (2011) applied it to motor learning in robotics. Separately, Wierstra et al. (2008b)
extended RWR to perform fitness maximization for evolutionary methods. Hachiya et al. (2009) and Hachiya et al. (2011)
later found a way of reusing old samples to improve RWR’s sample complexity. Much later, Peng et al. (2019) modified
RWR to produce an algorithm for off-policy RL, using deep neural networks as function approximators.

Upside-down reinforcement learning as a command-conditioned method of using SL for RL emerged in Schmidhuber
(2019) and Srivastava et al. (2019), with Ghosh et al. (2021) afterwards introducing a similar idea in a multi-goal context.
Kumar et al. (2019) applied UDRL to offline RL and sometime later Chen et al. (2021) and then Janner et al. (2021) showed
the potential of the UDRL framework to be competitive in this context when paired with the Transformer architecture of
Vaswani et al. (2017). Furuta et al. (2021) generalized this Transformer variant to solve a broader class of problems.

3 Background

Reinforcement learning considers an agent receiving rewards through interacting with an environment. RL is usually
modeled as a Markov decision process where, at eac