


RLDM 2022 Camera Ready Papers 2

CONTENTS

Preface 3

Abel et al.: Expressing Non-Markov Reward to a Markov Agent 4

Abir et al.: Human exploration balances approaching and avoiding uncertainty 9

Adhikary et al.: Modular Policy Composition with Policy Centroids 14

Ady et al.: Prototyping three key properties of specific curiosity in computational reinforcement learning 19

Agarwal et al.: Behavior Predictive Representations for Generalization in Reinforcement Learning 24

Alizadeh et al.: Be Considerate: Avoiding Negative Side Effects in Reinforcement Learning (Extended Abstract) 29

Arulkumaran et al.: All You Need Is Supervised Learning: From Imitation Learning to Meta-RL With Upside Down
RL 34

Arumugam et al.: Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning 39

Ashley et al.: Learning Relative Return Policies With Upside-Down Reinforcement Learning 44

Avila et al.: General and Scalable Hierarchical Reinforcement Learning 49

Bailey et al.: Predecessor Features 54

Baisero et al.: Asymmetric DQN for Partially Observable Reinforcement Learning 59

Banavar et al.: Decision difficulty modulates the re-use of computations across trials in non-sequential decision
tasks. 64

Barker et al.: Accelerating Reinforcement Learning using Frequently Used Transition Pathways 69

Barnett et al.: PARSR: Priority-Adjusted Replay for Successor Representations 74

Basu et al.: PAE-POMDP: POMDP with Prolonged Action Effects 80

Bera et al.: Likelihood Approximation Networks enable fast estimation of generalized sequential sampling models
as the choice rule in RL 85

Beukman et al.: Adaptive Online Value Function Approximation with Wavelets 91

2



RLDM 2022 Camera Ready Papers 3

Bill et al.: Hierarchical structure learning for perceptual decision making in visual motion perception 96

Booth et al.: Graduate Student Descent Considered Harmful? A Proposal for Studying Overfitting in Reward
Functions 101

Brand et al.: Object-Factored Models with Partially Observable State 111
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PREFACE

Welcome to Reinforcement Learning and Decision Making 2022!

Over the last few decades, reinforcement learning and decision making have been the focus of an incredible wealth of
research in a wide variety of fields including psychology, animal and human neuroscience, artificial intelligence, machine
learning, robotics, operations research, neuroeconomics and ethology. All these fields, despite their differences, share a
common ambition—understanding the information processing that leads to the effective achievement of goals.

Key to many developments has been multidisciplinary sharing of ideas and findings. However, the commonalities are fre-
quently obscured by differences in language and methodology. To remedy this issue, the RLDM meetings were started in
2013 with the explicit goal of fostering multidisciplinary discussion across the fields. RLDM 2022 is the fifth such meeting.

Our primary form of discourse is intended to be cross-disciplinary conversations, with teaching and learning being central
objectives, along with the dissemination of novel theoretical and experimental results. To accommodate the variegated
traditions of the contributing communities, we do not have an official proceedings. Nevertheless, some authors have agreed
to make their extended abstracts available, which can be downloaded from the RLDM website.

We would like to conclude by thanking all past organizers, speakers, authors and members of the program committee. Your
hard work is the bedrock of a successful conference.

We hope you enjoy RLDM2022.

Catherine Hartley and Michael L. Littman, General chairs
Roshan Cools and Peter Stone, Program chairs
Michael M. Frank and George Konidaris, Local chairs
Emma Brunskill, Peter Dayan, Yael Niv, Satinder Singh, Ross Otto and Rich Sutton, Executive committee
Quentin Huys and Marc Bellemare, Area chairs
Michael Browning and Katja Hoffman, Workshop chairs
Marcelo Mattar and Chelsea Finn, Tutorial chairs
Andrew Westbrook, Awards and Spotlights chair

9



Expressing Non-Markov Reward to a Markov Agent

David Abel
DeepMind

London, UK
dmabel@deepmind.com
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Abstract
Markov Decision Processes are the standard model of sequential decision-making problems in reinforcement learning.
However, as noted by Abel et al. [1], for some environments, there exist choices of task that cannot be expressed as
a reward function that is Markovian on the environment’s state space. We here address this limitation by studying a
particular form of state-construction that is designed to systematically enrich the expressivity of reward. Concretely,
we introduce the Split Markov Decision Process, a model of sequential decision-making problems with decoupled
environment-state and reward-state, reminiscent of reward machines [2]. Using this model, we generalize one of the
central questions of Abel et al. [1] regarding the expressivity of reward: given any task and Markovian environment,
does there exist a reward function defined over some reward-state space that can express the task? Our main result
answers this question in the affirmative for one type of case by offering a procedure that builds the realizing reward
structures. We close by exploring basic aspects of reinforcement learning under these realizing reward structures in
small-scale experiments, and call attention to open questions of interest.

Keywords: Reward, Reward Hypothesis, Expressivity, Markov Decision Process,
MDP, Reinforcement Learning.
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1 Introduction

Discrete time Markov Decision Processes (MDPs) are the standard model of environments in reinforcement learning
(RL). Naturally, restricting attention to MDPs limits the space of representable RL problems—for instance, we might
instead consider cases in which there is no available description of state, that time is not discrete, or that either the
transition or reward function depend partially on history. Indeed, Abel et al. [1] explore the expressivity of Markov
reward as a possible limitation to the space of tasks we can represent. Given an environment modeled as a Controlled
Markov Process (CMP: Definition 1), Abel et al. [1] suppose that a designer (Alice) forms preferences over the CMP
that she will translate into a reward function to incentivize a learning agent (Bob) to realize the chosen preferences.
Abel et al. [1] then ask: for any choice of such preferences and CMP, will there always exist a Markov reward function
that captures Alice’s preferences?

One of the main results (Theorem 4.1) of Abel et al. [1] illustrates that there are two known types of failure cases
in which the expressivity of Markov reward functions is lacking. The first they call the “steady state type” in which
Alice holds preferences over events that occur with zero probability. For this reason, reward fails to elicit behavior
that captures the given preferences, only because the behavior does not factor into the start-state value (or return) of
the preferred behaviors. The second they call the “entailment type”, in which the value of the desired preferences is
entangled. For example, consider the “always move in the same direction” task in a grid world. Here, the CMP is a grid
world with environment state defined according to a typical (x, y) pair. However, there is no Markov reward function
that can properly incentivize an agent to prefer the four “go the same direction” policies above all alternatives—such
reward functions depend on knowledge of either history or the future.

Results Overview. We here provide one kind of remedy to entailment issues. Our construction also yields a new
and potentially interesting model of sequential decision-making problems we call the Split Markov Decision Process
(Split-MDP) that bears heavy resemblance to reward machines [2]: a Split-MDP follows from the insight that rewards
need not be based on the same notion of state as the environment’s transitions. Concretely, a Split MDP is a CMP
paired with an automaton-like structure we call a reward bundle (Definition 3) that produces reward. We use this
model to provide a simple constructive proof that one aspect of the limited expressivity of Markov reward identified
by Abel et al. [1] can be fixed by augmented state (or, said differently, that non-Markovian rewards do not suffer
from entailment issues when encouraging Markov policies). Lastly, we conduct small-scale experiments that provide
additional support to our findings, and highlight open questions of interest.

1.1 Preliminaries: CMPs, Tasks, and the Split-MDP

We first introduce relevant concepts needed to make our study precise, though we adopt many of the conventions from
Abel et al. [1]. We begin with an environment described by a CMP, defined as follows.

Definition 1. A Controlled Markov Process (CMP) is a model of an environment, E = (Sp,A, p, γ, s(0)
p ), where: Sp

is a finite set of environment states,A is a finite set of actions, p : Sp × A → ∆(A) is a transition function, γ ∈ [0, 1)
is a discount factor, and s(0)

p ∈ Sp is the environment start-state.

Then, a designer (Alice) inspects the environment and forms some set of preferences over desired outcomes. Following
Abel et al. [1], we will be initially focused on sets of acceptable policies (SOAPs), defined as follows, though our main
result extends to policy orderings (POs) and trajectory orderings (TOs) defined by Abel et al. [1] as well.
Definition 2. A Set Of Acceptable Policies (SOAP) is a non-empty subset of the deterministic policies, ΠG ⊆ Π, with
Π the set of all deterministic mappings from Sp toA for a given E.

As discussed, one of the central questions of Abel et al. [1] asks: for a given (E,ΠG) pair, will there exist a reward
function that is Markov on Sp that can capture the given SOAP in E? A reward function captures the SOAP just when
the start-state value induced by the given reward function adheres to the constraints of the SOAP. That is, the good
policies all have strictly higher start-state value than the bad policies (“range” SOAP), or the good policies are all
optimal and have strictly higher start-state value than the bad (“equal” SOAP). We here generalize this question to the
case where Alice can choose not just a reward function, but also a state space for the reward function to operate over.

The Split Markov Decision Process. We next introduce two new structures: (1) A reward bundle (Definition 3): A
collection of structures that produce reward, reminiscent of reward machines [2]; and (2) the Split-MDP (Definition 4):
An MDP formed by a CMP paired with a reward bundle. This model is motivated by the observation that the basic
laws of an environment might depend on different information than the reward function, and thus, we can decouple
environment-state from reward-state.

1
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Definition 3. A reward bundle is a quadruple, R = (Sr, r, f , s(0)
r ), where: Sr is a finite set of reward states, r :

Sr ×A × Sr → R is a reward function, f : Sr × Sp ×A → Sr is a deterministic reward-state dynamics function, and
s(0)

r ∈ Sr is the reward start-state.

We may combine a CMP with a reward bundle to form a Split-MDP as follows.

Definition 4. A Split Markov Decision Process (Split-MDP) is any MDP formed by pairing a CMP with a reward
bundle, M = (E,R), yielding S = Sp × Sr, s(0) = (s(0)

p , s
(0)
r ), and pM : sp × sr × a 7→ p(sp, a), f (sr, sp, a).

In cases where the reward-state space is unknown or unobservable to a learning algorithm, it might be natural to
suppose an agent interacts with a Split-MDP but only observes the pair (s(t)

p , r(s(t)
r )). Such a setting induces a specific

kind of partially observable MDP (POMDP) [3] in which the next observation, s(t+1)
p , is predictable from s(t)

p and a(t)

alone. We call such a model a Split-POMDP, and note that it defines a friendly class of POMDPs; we anticipate there
are many interesting questions to pursue about Split-POMDPs beyond our scope.

2 Results.

First, we inspect whether there is always a reward bundle to realize a given SOAP. As mentioned in the introduction,
we are focused on the “entailment cases”, and set aside “steady state” issues by invoking the following assumption.

Assumption 1. All tasks only contain preferences over outcomes that occur with non-zero probability.

This assumption is just a concise way of limiting our attention to entailment cases, but we note that there are related
arguments that go beyond this assumption that are out of scope for this paper.

Proposition 1. Under Assumption 1, for any choice of CMP E and SOAP ΠG (with policies defined on Sp), there
exists a reward bundle R such that the optimal policies in M = (E,R) are equivalent to those in ΠG.

Proof of Proposition 1.

We are given a finite CMP, E = (Sp,A, p, γ, s(0)
p ), and a SOAP ΠG where each πg ∈ ΠG is a mapping from Sp

to A. We want to show that there is a reward bundle, R = (Sr, r, f , s(0)
r ), such that in the resulting Split-MDP

M = (E,R), the optimal policies, Π∗M = arg maxπ∈Π Vπ
M(s(0)), agree with the SOAP on each sp,

(i) πM(sp, sr) = πg(sp), ∀sp,sr∈Sp×Sr∀πM∈Π∗M∃πg∈ΠG , (1)

(ii) |Π∗M | = |ΠG |. (2)

We proceed by constructing such a reward bundle:

• Reward state space. Let Sr = P(ΠG), where P(X) denotes the powerset of X.

• Reward start-state. Let s(0)
r be ΠG.

• Reward state dynamics. We define f to remove any policy from ΠG that is inconsistent with the
state-action taken, and to repopulate the full SOAP when all policies have been removed:

f (sr, sp, a) =

{
sr \ Π,(sr, sp, a) |sr | > 0
ΠG otherwise.

(3)

where Π,(sr, sp, a) is the set of all policies in sr that do not take a in sp.

• Reward function. Lastly, let r(s(t−1)
r , a(t), s(t)

r ) = I
{
∃π∈sr : π(s(t)

p ) = a(t)
}
.

There are two key facts about this reward bundle. First, the reward function provides +1 reward to those state
action pairs that agree with one of the acceptable policies. Second, the reward state dynamics function will
remove any policy from the reward state that is inconsistent with an action taken. Thus, at any point in time,
the only policies that remain in the reward state are those consistent with every action taken thus far. �

2
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In some situations, we might imagine that the reward-state is either unknown or unobservable to the learning agent,
thus inducing a Split-POMDP. We next highlight the fact that, by direct consequence of the previous construction,
there will exist optimal policies in the Split-POMDP that only depend on environment-state.

Corollary 1. Consider a Split-MDP constructed from an (E,ΠG) pair according to the procedure outlined in the proof
of Proposition 1. When viewed as a POMDP with sr the hidden state and sp the observation, there will always exist
an optimal deterministic policy that only depends on environment-state, sp.

Thus, when the agent only observes environment-state, there is still a representable optimal policy, unlike traditional
POMDPs in which memoryless policies are known to be arbitrarily sub-optimal [6, 4]. We explore this consequence
further in our experiments (subsection 2.1).

Furthermore, we find that the trajectory ordering and the policy ordering cases considered by Abel et al. [1] can be
captured by a similar construction.

Corollary 2. Under Assumption 1, for any choice of Split-CMP E and trajectory ordering Lτ,N or policy ordering LΠ

(with trajectories and policies defined over Sp), there exists a reward bundle R such that the start-state return of the
trajectories of Lτ,N or start-state value of the ordering LΠ adheres to the constraints specified by the given task.

We exclude the full proof due to space constraints, but note that the idea is a straightforward extension of the earlier
proof. In the case of trajectory orderings, we define Sr to be the space of length [1 : N] trajectories, and define
r : sr 7→ 1{|sr | = N} × (RMax− rank(sr)) so that end-of-trajectory reward ranks the trajectories from best to worst. In
the case of a policy ordering, let Sr = P(LΠ), and provide reward each time-step proportional to the inverse-rank of
the best policy still consistent with the behavior. Both constructions ensure that each ordering is respected.

2.1 Experiments

We conduct experiments with a simple SOAP and CMP reminiscent of the XOR problem from Abel et al. [1]. The
CMP has three environment-states and two actions, pictured in Figure 1a. The desired SOAP contains four policies,
each requiring that the agent take different actions across two of the three environment-states. We construct a reward
bundle with four-reward states (pictured in Figure 1b) according to the constructive procedure described by Proposi-
tion 1, and note that, as a consequence, there will exist four optimal policies over just sp. Our experiments are intended
to explore two questions. First, we examine learning curves of a variety of agents interacting with this environment
to study the relationship between the representability of a good policy and its learnability—when viewed as a Split-
POMDP, we know typical learning algorithms can represent each of the policies in the SOAP (by Corollary 1), but
do not know whether learning these policies is also feasible (building on the results in Section 4.2 by McCallum [5]).
Second, we inspect whether the proposed reward bundles can in fact incentivize learning algorithms to discover any
of the acceptable policies, rather than just learn a single desired behavior. For simplicity, we experiment with tabular
Q-learning of two variations: (1) When viewing the problem as an MDP, so (sp, sr, r(sr)) are given as input each time
step, and (2) When viewing the problem as a POMDP, so (sp, r(sr)) are given as input each time step. We further vary
the initialization of Q between all zeros and uniform random from the interval [0, 1], as well as different settings of
the exploration parameter (ε, no annealing) used in ε-greedy action selection. We set the learning rate α = 0.05 and
discount factor γ = 0.95.
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(b) Reward Bundle

Figure 1: The XOR-like environment used in the experiments (left), with the reward bundle (right) constructed by
the procedure described in the proof of Proposition 1. The desired SOAP contains all policies that disagree on action
choice across sp0 and sp1 . That is, ΠG = {π010, π100, π011, π011}, where π010 denotes {sp0 7→ a0 | sp1 7→ a1 | sp2 7→ a0}.
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Figure 2: The first two figures present results from Q-learning interacting with an environment as a Split-MDP (blue)
compared to a Split-POMDP (orange, “PO” prefix), when the rewards are generated from a well-constructed reward
bundle as per Proposition 1. We further contrast performance relative to a randomly initialized Q function in both the
MDP (green) and POMDP (pink, “PO” prefix) variations. The y-axis displays the mean, per-episode reward, averaged
over 100 runs of the experiment with 95% confidence intervals, with optimal performance shown in the grey dashed
line. The third plot illustrates the fraction of the four acceptable policies discovered by each learning algorithm in the
final 50 episodes of learning across all runs of the experiment.

Results are presented in Figure 2. In Figure 2a and Figure 2b, we plot learning curves of all four agent varieties. We
observe that in both zero-initialized and randomly-intialized learning for the standard MDP case (shown in blue and
green, respectively), Q-learning can reliably discover optimal behavior, corroborating Proposition 1. In the POMDP
case (orange and pink), the results suggest that, depending on ε, PO Q-learning will either achieve the same level
of performance as its MDP counterpart (as in ε = 0.1), or that there is a statistically significant gap separating the
performance of the two (as in ε = 0.01). This suggests that learning in a Split-POMDP is sometimes feasible; a natural
direction for future work will further clarify the precise conditions under which effective learning is always possible.
In Figure 2c, we visualize the fraction of time that each agent’s greedy policy at the end of the episode is one of the
SOAP policies (in just the final 50 episodes, averaged over 100 runs of the experiment). These results demonstrate that
all four learning algorithms can reliably recover each one of the acceptable policies during learning, in roughly equal
proportion. These results indicate that well-constructed reward bundles can in fact enhance what is learnable, even
when the agent does not have access to the reward-state. A key direction for future work will identify simple learning
procedures that can automatically construct agent-state to discover any kind of behavior expressible by reward.

2.2 Discussion

This work presents a simple state construction procedure that can enrich the expressivity of reward. Our results patch
one of the holes identified by Abel et al. [1], and show that we can produce reward that is often conducive to learning.
Lastly, we introduce the Split-MDP and Split-POMDP, which we believe may offer useful perspectives for studying
state-construction, learning under partial-observability, and task complexity in RL.
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Abstract

Humans are adept at exploring environments in which rewards are sparse, gathering information pertinent to their
goals even if it cannot be immediately exploited to gain reward. We know very little about the computational basis of
this capacity, since most studies of human exploration focus on tasks with immediate rewards for every choice. With
immediate reward, value exploitation dominates behavior, rendering exploration too rare to examine. We developed a
goal-directed exploration task in which information gathering is independent of value exploitation. We asked what com-
putational principle guides participants in choosing between potential learning experiences, and how choice strategy is
modulated by the computational difficulty of the task. To this end, we compared participants’ choices to three hypoth-
esized strategies, from sophisticated to simplified: (i) maximizing information gain, (ii) choosing the object associated
with the highest current uncertainty, (iii) simply balancing the number of interactions with each object.

We found that current uncertainty was the best predictor of choice. Crucially, exploration was also strongly modu-
lated by participants’ overall knowledge of the goal, measured as their total uncertainty for both choice options. When
participants’ total uncertainty was low they chose the more uncertain option, as hypothesized. However, when total
uncertainty was high, they avoided the more uncertain option, thereby slowing down the rate of incoming information.
This strategy is accordant with managing mental effort of decision-making by reducing choice-switching costs. Indeed,
participants preferred to repeat previous choices, and took longer to make choices counteracting this tendency. Alto-
gether, our findings demonstrate that human exploration strategies are tailored to the limited computational capacities
of our minds.

Keywords: exploration, decision making, capacity limitation, rational analy-
sis, multi-armed bandit task
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1 Introduction

Humans inhabit complex environments that are sparse in reward. To achieve most of our goals we have to learn the
structure of the environment without the benefit of experiencing repeated extrinsic reward. Instead, we choose between
potential learning experiences that carry no value per se, accumulating knowledge which may be used later to gain
reward. Thus, before going to the theatre we read reviews and elicit recommendations from friends, rather than actually
watching all running plays. We find out whether our choices were satisfactory only once, at the end of the night.

Most studies of human exploration, however, focus on tasks with immediate rewards for every choice [1–5]. Under such
conditions, behaviour is dominated by the motivation to exploit existing knowledge, constricting the scientist’s ability to
observe and explain exploratory choices made to gain new knowledge. Thus, while much is known about how human
choices are driven by sequential reward during learning, much less is known about how humans explore environments
to gain new knowledge when rewards are not immediately available.

Table Decks θ

Until Response

Until Response

2.4s

ba

Figure 1: Task structure. (a) Participants explored four tables, each contain-
ing two decks with different proportions of blue/orange cards θ. The goal was
to learn which deck had the higher (or lower) θ on each table, that is to learn
sgn(∆θi), the sign of the difference between θs. (b) On a single exploration trial,
participants chose between two tables, and then sampled a card from one of the
decks on that table, observing its colour.

To examine human exploration, we devel-
oped a task allowing participants to learn
about the environment through repeated in-
teractions, gathering information but gaining
no immediate reward. Participants had to
maximize their learning in preparation for
a future test, performance on which would
be rewarded. We asked what computational
strategy underlies participants’ choices dur-
ing exploration, and whether this strategy is
modulated by the demands of the task.

2 Task

The task simulated a room with four tables,
with two decks of cards on each table. If a
card was flipped, it was revealed to be either
orange or blue. The proportion of orange vs.
blue cards, θ, differed between the two decks
on each table. Participants’ goal was to learn
sgn(∆θi), or which deck had had more orange
(blue) cards on each table (Fig. 1a).

The task began with an exploration phase, fol-
lowed by a test phase. On each trial of the exploration phase participants chose between two tables, and then chose to
reveal one card from a deck on the table they had chosen (Fig. 1b). Participants were instructed that the exploration
phase would be followed by a test phase after a random number of trials (drawn from a geometric distribution with rate
1
45 to discourage pre-planning). During test, one of the colours was designated as rewarding. Participants were asked
to indicate which deck had more of the rewarding colour on each table. For every correct choice they received $0.25.
Crucially, they received no reward during exploration, and were only rewarded for test performance.

A pre-registered sample of 194 participants played 22 rounds of our task over four online sessions. Each round employed
new tables, decks and colours. We focus our analysis on table choices during exploration, since our candidate hypotheses
do not make differing predictions for deck choices.

3 Hypotheses and models

3.1 Exploration strategy

H (Δθ | x0:t )) − ⟨H ( Δθ | x0:t+1)⟩
Expected Information Gain

Current Uncertainty

Previous Exposure

Random

H ( Δθ | x0:t ))

nx

Figure 2: The hierarchy of con-
sidered exploration strategies.

To explain how participants choose between tables in the exploration phase, we em-
ployed rational analysis [6, 7] and derived the optimal exploration strategy, and two
simpler approximate strategies (Fig. 2). These three strategies serve as benchmark hy-
potheses against which we compare participants’ actual choices.

The optimal strategy, given at the top of Fig. 2, is choosing the table affording maximal
expected information gain (EIG) [8–10]. EIG is the difference between the uncertainty
in the value of the learning desideratum sgn(∆θi) given observed cards x0:t, and the

1
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expected uncertainty after observing the next card on trial t + 1. (We measure uncertainty using the entropy of the
posterior).

Computing the second term in the EIG formula requires averaging over future unseen outcomes, which may be
beyond the ability of participants. Neglecting this term amounts to simply choosing the table with the highest
current uncertainty (Fig. 2, second tier) [5]. This has intuitive appeal: choose the table you know the least about. And
yet, it might be implausible to expect participants to calculate uncertainties. A simpler heuristic is given on the third
tier of Fig. 2: choosing the table with the least prior exposure, measured as the number of already observed cards nx
(sometimes known as the Upper Confidence Bound algorithm [11]). Lastly, participants may be random, rather than
directed, explorers (e.g. employing ϵ-greedy, softmax, or Thompson sampling algorithms [2, 4, 5]).

To evaluate these three strategies, we derived each of the three quantities from an ideal Bayesian observer model that
formed beliefs about θ based on the actual card sequence each participant had observed. We then tested whether the
difference in the hypothesized quantity between the two choice options predicted participants’ choices. We used regu-
larized multilevel logistic regression models to this end.

3.2 Capacity limitations

Computing any of the strategies above may be taxing under limited resources. How do participants adapt to these limita-
tions? One possibility is that when it is difficult to decide what to explore, participants’ choices become more random [5].
In contrast, greater difficulty may prompt participants to adopt systematically biased heuristics that ameliorate the strain
on cognitive resources [12].

Our main index of computational difficulty is the total uncertainty for both choice options. When total uncertainty is
high, little is known about either option, and deciding between them has been empirically shown to be difficult [5]. We
examine choice strategy along the continuum of total uncertainty, testing whether choices become noisier or more biased
under high total uncertainty.

4 Results

4.1 Exploration strategy

Using approximate leave-one-out cross-validation for model comparison, we find that current uncertainty is the best
predictor of participants’ exploratory choices (Fig. 3d). Plotting the data confirms this conclusion: Current uncertainty
for the table presented on the right relative to the table presented on the left predicts whether participants chose the table
on the right as opposed to the table on the left (Fig. 3a). EIG provides a poorer fit to choices (Fig. 3b), and exposure was
anti-correlated with choice, in exact opposite to the hypothesized relation (Fig. 3c).

Reaction times (RTs) for table choices further validated the role of current uncertainty as the decision variable [13] par-
ticipants were using to make their choices: RTs were longer when the absolute difference in current uncertainty between
the choice options was smaller b=-6.1×10-3, 95% posterior interval (PI)=[-11.1×10-3,-1.2×10-3].
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Figure 3: Current uncertainty is the best predictor of choice. (a) Current uncertainty predicts exploration-phase choices. The differ-
ence in uncertainty between the table on the right and the table on the left predicts choices of the table on the right. (b) Using the same
method to plot choices as a function of EIG differences reveals that EIG fits the data less well. (c) The relationship between exposure
and choice is negative, rather than the hypothesized positive correlation. (d) Model comparison shows that of the hypothesized strate-
gies current uncertainty is the best predictor of exploratory choices: approximate leave-one-out cross-validation probability is highest
for current uncertainty. Error bars ±1 s.e.
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4.2 Capacity limitations

From a normative perspective, exploration strategy should be exactly the same across all levels of total uncertainty:
relative uncertainty should always be positively correlated with choice. Instead, we find a systematic bias in strategy:
When total uncertainty was low or medium, participants chose the most uncertain table, as hypothesized. But when
total uncertainty was high, they chose the least uncertain table, thereby slowing the rate of information-intake (Fig. 4).
We validated this observation using a piecewise-regression model, allowing for the influence of relative uncertainty on
choice to differ below and above a fitted threshold of total uncertainty. We observe a positive relationship between
relative uncertainty and choice below the threshold b=0.24, 95% PI=[0.20,0.27]. But above the threshold we find that
a significant negative interaction between relative and total uncertainty predicted choices b=-35.25, 95% PI=[-43.43,-
28.31]. The value of the threshold is estimated to be 1.28 nats of total uncertainty (95% PI=[1.27,1.29]; the range of total
uncertainty is 0 to 1.38).
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Figure 4: Total uncertainty regulates uncertainty approach vs.
avoidance. (a) The influence of relative uncertainty on choice as
a function of total uncertainty. The line marks the median predic-
tion from a breakpoint regression model. Dots denote the median
prediction for quantile bins. Ribbon and error bars denote 50% PI.
Three regions of total uncertainty are marked in beige: low [A],
medium [B] and high [C]. (b) Choice as a function of relative un-
certainty is plotted for the three regions marked in panel a. Under
low total uncertainty [A] participants tend to choose the table they
are most uncertain about, as hypothesized. But that relationship
is broken for medium levels of total uncertainty [B]. For high total
uncertainty [C], participants strongly avoid the table they are most
uncertain about. Error bars ±1 s.e.

Thus, when total-uncertainty is high, participants avoid
learning about uncertain tables. Does this strategy hinder
their performance? We examined individual differences
in exploration and test performance to answer this ques-
tion. Pursuing relative uncertainty during the exploration
phase is strongly associated with better test performance
b=0.59, 95% PI=[0.54,0.65]. We do not see a test perfor-
mance decrement for participants exhibiting greater un-
certainty avoidance under high total-uncertainty. Partic-
ipants who start avoiding relative uncertainty at a lower
total uncertainty threshold actually have a weak tendency
to do better at test b=-0.06, 95% PI=[-0.10,-0.01]. The mag-
nitude of uncertainty avoidance under high total uncer-
tainty is not associated with test performance b=0.02, 95%
PI=[-0.02,0.07]. Thus, modulating strategy according to
total uncertainty is not maladaptive.

This modulated strategy can be described as a tendency
to revisit the best-learnt tables when total uncertainty is
high. Indeed, we find a related pattern of choice that
holds independently across all levels of relative or total
uncertainty: Participants prefer to choose again the ta-
ble they had last chosen. This tendency to repeat choices
(b=0.27, 95% PI=[0.23,0.31]) is also reflected in RTs, which
for repeat choices are shorter (b=-3.5×10-3, 95% PI=[-
4.0×10-3,-3.0×10-3]) and less dependent on relative uncer-
tainty (b=5.0×10-3, 95% PI=[2.4×10-3,0.7×10-3]). Hence, re-
peating a choice seems to be an additional heuristic partic-
ipants employ to avoid the deliberation involved in choos-
ing according to relative uncertainty.

5 Discussion

We examined the cognitive computations behind ex-
ploratory choices in a setting allowing for incremental memory-based learning. We find that overall, participants chose
to learn more about the objects they were more uncertain about. However, when total uncertainty was high, participants
chose to avoid objects with high uncertainty, learning instead about the objects they knew more about.

In this experiment, total uncertainty was correlated with the number of cards observed. While our results hold when
trial number is added as a covariate to the regression models, only a version of the task in which total uncertainty and
trial number are orthogonal can disentangle the contribution of each factor to uncertainty avoidance. We plan to employ
such a task in our future work.

Avoiding uncertainty during learning amounts to down-regulating the rate of information intake, an ostensibly subop-
timal strategy. The theory of resource rationality purposes that such deviations from optimality may be explained as
adaptive to managing limited resources [12]. This pattern of behaviour is conceptually similar to confirmation biases in
reasoning [7, 14] and the preference for massed over spaced learning documented in the meta-cognition literature [15].
This variety of phenomena suggests that balancing approaching and avoiding uncertainty is a pervasive principle of
exploration.
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Human exploration is often cast in terms of epistemic knowledge building. In contrast, studies of exploration in animals
often focus on the balance between exploratory and fear-related responses [16, 17]. For example, it has been shown that
rats exploring a novel arena [18, 19] or whisking to identify nearby objects [20] alternate between uncertainty approaching
and safer, uncertainty avoiding strategies. Our findings suggest that the trade-off between exploration and avoidance is
also a useful framework for understanding human behaviour.
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Abstract

We consider the task of aggregating policies in multi-objective decision making problems where multiple policies are trained
to accomplish potentially conflicting tasks. While policy composition is a crucial component of multi-objective problems,
commonly used techniques are restricted to simple averages that do not adhere to or exploit the structure of policy spaces. We
present a new framework for policy composition viewing the problem as computing centroids in distance spaces where policies
are embedded. These policy centroids not only subsume various existing composition techniques, but also provide a new means
of inducing useful properties in composite policies through judicious choices of embedding spaces and distances. Additionally,
we introduce policy centroids that extend existing compositions to new problem settings. For deterministic policies, we use
distances between state-action value functions to define utility centroids that can be tuned to adjust the intensity of individual
policy preferences. For stochastic policies, we introduce policy centroids based on statistical distances including the maximum
mean discrepancy, which are particularly useful when policies are accessible only through samples. We evaluate our proposed
policy centroids on various illustrative examples that highlight their benefits over existing approaches.

Keywords: policy composition, multi objective reinforcement learning, modular
reinforcement learning
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1 Introduction
As we continue to expand the scale and complexity of automated decision making, it becomes increasingly difficult to quantify all
desired objectives into a single monolithic goal. We are routinely faced with multiple competing objectives with no concrete notion
of a composite goal. Autonomous vehicles must quickly reach their destinations while avoiding crashes; economic policy should
bolster growth but also minimize inequality; financial investments need to maximize returns while maintaining a diverse portfolio.
Even when a composite objective does exist, it may still be difficult to learn a policy to accomplish it. Various works in multi-
objective reinforcement learning have demonstrated the benefit of training separate agents on decompositions of complex reward
signals. In robotics, a complex robot can be decomposed into multiple sub-agents, each reacting to changes in its local environment
[1]. Even when tackling a single objective, we can benefit from training an ensemble of policies using different algorithms [2].

The problem of modular policy composition has been tackled in various fields, with numerous proposed solutions including
sums and products of experts [2], compositions of utilities or potential fields [3], voting based ranking, and so on. The central
idea behind these compositions is to form an average policy from a set of recommendations. However, existing approaches tend
to use fairly limited notions of averages, generally restricted to arithmetic means, geometric means, and extremums. We consider
the task of averaging policies in its full generality as computing centroids over arbitrary distance spaces that minimize distances
to individual policies. This perspective can subsume many existing compositions, and also serve as a principled framework
to design new compositions by picking appropriate embedding spaces and distances. We consider three existing approaches to
policy composition, and show how policy centroids not only generalize them, but can also extend them to new problem settings.

2 Policy Centroids
We tackle policy composition as finding a single-policy solution to multi-objective Markov decision processes (MOMDPs).
A MOMDP is a tuple (S,A,T,γ,R) of state space S, action space A, transition function T : S ×A×A → [0,1], discount
factor γ ∈ [0,1], and a vector-valued reward function R : S×A×S→ RT . The components of the rewards vector ri are the
rewards for the T separate objectives. A policy π determines the action executed at a given state; a deterministic policy
π(s) :S→A returns a single action, and a stochastic policy π(a|s) :A→ [0,1] is a distribution over A. For a state-action pair
(s,a),Qi(a|s)=Eπi(

∑∞
t=0γ

t([ri]t)|s0=s,a0=a) denotes the state-action value function under the policy πi for the i-th objective.

Policy Centroids Consider a set {πi}Ti=1 of T policies, such that each policy πi has been formulated separately based only
on the i-th component of the reward function. These policies must now be combined into a single composite policy π̄, without
assuming access to a composite reward function or a known decomposition of the composite objective into individual objectives.
Let (Mi,di) be distance spaces1 where πi can be compared with alternatives via distances di. Policies are mapped onto these
spaces using policy embeddings µi(π). Finally, given a set of optional non-negative weights {wi}Ti=1 with

∑
iwi = 1, the

composite policy π̄ or the policy centroid is defined as follows

π̄=argmin
π

∑

i

widi(µi(πi), µi(π)). (1)

To design a policy centroid, we pick (1) embeddings µi that capture important features of policies, and (2) distances di that
account for meaningful differences between them. The weights wi are linear relative importances of the T objectives. Such
weights are used in many existing policy compositions as the primary mode of controlling the behavior of the composite policy.
These weights are either set using knowledge of the composite objective or learned with respect to a composite reward; otherwise,
they are set to be uniformly distributed. Policy centroids provide additional means of affecting properties of the composite
policy through the choice of the distance spaces (Mi,di). In the following sections, we show how various existing compositions
can be interpreted as policy centroids. Moreover, we provide examples where different choices of embeddings µi and distances
di can lead to composite policies with useful properties, and extend existing compositions to new problem settings.

2.1 Utility Centroids
In value-based reinforcement learning (RL), we often have access Q-values Q(a|s) serving as utility maps over actions a∈A
for a given state s, which are natural choices for policy embeddings. Unsurprisingly, averaging Q-values is already a popular
composition strategy known as utility fusion [3], where the arithmetic average of Q-values is treated as the composite Q-value.
We introduce utility centroids that subsume utility fusion. Given an exponent β>0, the utility centroid2 is defined as

ā=argmin
a

∑

i

wi(Qi(ai|s)−Qi(a|s)+1)β. (2)

Here, task-specific embeddings are simply the Q-values µi(a|s)=Qi(a|s) and distances are di(Qi(a1|s),Qi(a2|s))= (|Qi(a1|s)−
Qi(a2|s)|+1)β−1. Equation 2 minimizes the average disadvantage or opportunity cost (Qi(ai|s)−Qi(a|s)+1)β of picking a over the
preferred ai=argmaxaQi(a|s). As illustrated in Figure 1a, the exponent β controls the intensity of individual preferences. Setting
β>1 (resp. β<1) magnifies (resp. minimizes) differences in disadvantages leading to sharper (resp. flatter) disadvantage curves.

The exponent β plays a similar role to weights wi; while wi stretch or squeeze distances between policies linearly, β magnifies
or minimizes distances between policies exponentially. However, unlike weights wi, we can set the same exponent β across
all policies and still affect relative distances. In Figure 1b, filled-circles of the same color correspond to the recommended

1A distance space (M,d) is a set M equipped with a non-negative, symmetric, and reflexive distance function d(x,x′) for x,x′∈M .
2The optional offset +1 simply sets the domain of the exponential to R≥1, avoiding the inverse behavior of the exponent for (0,1).
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(a) (b) (c) (d)

Figure 1: (a-b) Varying β in utility centroids in Equation 2 (c-d) Illustrations of MDPs with attractor states.

(a) Attractors: 3 state MDP (b) Attractors: PacBoy (c) Tyranny of the majority

Figure 2: Utility centroids to prevent the tyranny of the majority and escape attractors. The blue lines are reference markers
for utility fusion, or equivalently utility centroids (β=1)

actions from four policies for a given choice of β. When β=1 (green), the policy recommending action a4 has a slightly lower
disadvantage, pushing the centroid closer to a4. With β > 1 (orange) differences in disadvantages are magnified, pushing
the centroid further towards a4. With β<1 (purple), the small difference in disadvantages is minimized, and the centroid is
not biased towards any one policies. With β=1, Equation 2 reduces to standard utility fusion. Thus, β can serve as a useful
hyperparameter, especially in the absence of non-uniform weightswi. As we now discuss, adjusting β can alleviate some known
problems with utility fusion in such settings.

Preventing Attractors When the Q-values of multiple policies are trained egocentrically (without taking into account the com-
posite Q-value), utility fusion with uniform weights wi overestimates the value of states where policies disagree on the optimal
action [4]. For large discount factors γ, these states can become attractors where the agent gets stuck; restricting us to myopic sub-
optimal policies with low discount factors. In Equation 2, reducing β essentially minimizes disagreement between policies and
can help us escape attractors. To demonstrate, we consider the two examples from [4] illustrating attractors in utility fusion. In the
first example (Figure 1c), we consider a 3 state deterministic MOMDP where the agent in state s0 can stay in place with action a0,
or move to one of two terminating goal states s1 and s2 with actions a1 and a2 respectively. We define separate objectives with re-
ward r>0 for reaching s1 and s2 respectively, and no reward for staying in place. In the second example in Figure 1d, the PacBoy
agent is equidistant from a reward in either of the three directions {↑,←,→} in a simple deterministic MOMDP; choosing ↓ keeps
it in place. In both examples, egocentric utility fusion with uniform weights wi gets stuck when γ>0.5 [4]. In Figures 2a and 2b,
we plot the combinations of γ and β for which the policy centroid in Equation 2 is stuck (shaded black) and for which it reaches
one of the two goal states (shaded white). As we decrease β, we can allow larger discount factors while still avoiding getting
stuck. However, using too small a β may also lead to undesirable behavior where the relative preferences of policies are ignored.

Preventing the tyranny of the majority Utility fusion can suffer from a tyranny of the majority, where an objective dominated
by a large number of competing objectives may never be fulfilled. If the minority objective is safety critical, it may be desirable
to forego the other goals to prevent an accident. If the objectives involve human stakeholders, this majority bias can be unfair
– the minority stakeholder may lose confidence in the system if their objectives are consistently ignored in service of the majority.
As an illustration, consider a set of T objectives {Oi}Ti=1 defined over a MOMDP with two actions {a1,a2};O1 corresponds to
avoiding accidents, while the others correspond to reaching various goals. At some state,O1 identifies action a2 as unsafe with a
disadvantage of d. In contrast, a2 is slightly favorable over a1 for the goal-seeking objectives, assigning disadvantage ϵ<d for a1.
With only two tasks {O1,O2}, utility fusion opts for the safe action a1 as it has lower disadvantage. However, as we add other
objectives to the mix, the unsafe action a2 is picked when n>d/ϵ. With the utility centroid in Equation 2, we can increase β to
intensify individual preferences, leading to a larger threshold. In Figure 2c, we plot various combinations of β and n for which the
agent picks the unsafe action a2 (shaded black) and the safe action a1 (shaded white) when ϵ=0.1d, i.e., each goal-seeking agent
only favors the unsafe action by a small margin of 10%. However, as β becomes very large, the minority may exert too much
influence, preventing the agent from ever achieving its other goals. Thus β will likely have to be tuned to balance these effects.

2.2 Stochastic Policy Centroids
We now turn to the problem of composing policies represented as probability distributions π(a|s) over actions, which we refer to
as stochastic policies. Such policies can arise, for instance, due to exploration or as solutions to partially observable MDPs or adver-
sarial games. Two common approaches of composing a set of stochastic policies {πi} are through sums and products of experts:

ā=h(π̄(a|s)) Sum of Experts (SoE): π̄∝
∑

i

πi(a|s) Product of Experts (PoE): π̄∝
∏

i

πi(a|s). (3)

The function h(·) could be an argmax operation over the composite density π̄, or a function drawing samples from it. While
not always described as such, these compositions are equivalent to element-wise arithmetic and geometric means, which are
special cases of generalized f-means, which, in turn, are instances of Fréchet centroids. We can thus formulate policy centroids

2

RLDM 2022 Camera Ready Papers 22

22



Figure 3: Errors for MMD centroids and SoE composition as a function of (left) samples from individual policies (middle)
dimensionality ofA and (right) samples from the composite policy. Error bars are standard deviations across 3 random seeds
corresponding to generalized-means-of-experts (GMoE) through a monotonic, continuous and invertible function f as follows:

π̄∝argmin
π

∑

i

d2(πi,π) where d2(π,π′)=
∑

a

|f(π(a|s))−f(π′(a|s))|2. (4)

This centroid defines the well-known class of generalized f-means. With f(x)=xβ (for β≠0), we get the family of power means,
which includes SoE (arithmetic mean for β=1) and PoE (geometric mean for β→0), as well as a spectrum of other means.
Composing Implicit Stochastic Policies While GMoEs are intuitive and ubiquitous, they may not always be ideal, for instance,
when composing implicit stochastic policies. Implicit policies π̂ are distributions without a known density function, but allow
sampling. Such policies can be useful, for instance, to incorporate unknown noise distributions or as a flexible policy class for
complex action distributions [5]. Given sets of actions {a(i)j ∼ π̂i} drawn from a set of implicit policies {π̂i}, we now wish to gener-
ate new actions {ām} from the composite policy π̄. As a concrete example, consider the following SoE composition problem where
we wish to evaluate the expected value of some function g(a) under the distribution of the composite policy. Assuming that both
the function g and individual policies are computationally expensive to query, we seek a good estimate of Eπ̄ g(a) with minimal
samples from individual policies as well as the composite policy. SoEs are not directly applicable since they require the policies’
probability densities. We would thus need some form of density estimation, which can be sample intensive for high-dimensional
actions. With policy centroids, we can extend SoEs to this new problem setting. Specifically, we can embed implicit policies onto
reproducing kernel Hilbert spaces, and use the maximum mean discrepency between distributions as our distance function.
MMD Policy Centroids The maximum mean discrepancy (MMD) is an integral probability (pseudo) metric (IPM) between
probability measures that captures the maximal difference between expectations of functions. For a set of functions G, the IPM
between distributions π and π′ is the supremum of the difference in expectations Eπ(g)−Eπ′(g) over all g∈G. We obtain the MMD
when G is the unit-ball in a reproducing kernel Hilbert space (RKHS) [6]. For any symmetric positive-definite kernel k(·,·) on
a domainA×A, there exists a corresponding RKHSHk and k is the canonical feature mapping toHk. Additionally, we can use
the kernel to also map probability distributions π defined overA. These embedded distributions µπ∈Hk, known as kernel mean
embeddings, are defined asµπ=

∫
k(a,·)dπ(a). The empirical estimates of these embeddings µ̂π=

1
n

∑n
j=1k(aj∼π,·) converge in MMD

toµπ at a rate ofO(n−1/2) [6], which is independent of the dimensionality ofA (in contrast to the curse of dimensionality for density
estimation). The MMD between two kernel mean embeddings is theHk-norm of their difference: MMD(π̂,π̂′)= || µ̂π−µ̂π′ ||Hk
Additionally, if the kernel is characteristic (e.g. Gaussian, Laplace), the MMD is a metric such that MMD(π,π′)=0⇔π=π′ [6].

Given a kernel k, we define MMD policy centroids as ā∼ π̄=argminπ̂

∑
iwiMMD(π̂i,π̂)=argminµ̂

∑
iwi||µ̂i−µ̂||2Hk . This objective

is essentially what is optimized by the kernel herding algorithm [7] that draws samples from a kernel mean embedding; here,
the target is instead the weighted sum

∑
iwiµ̂i. Using kernel herding, we can draw the t-th sample āt from π̄ as follows

āt=argmin
a

∑

i,j

−2wik(a(i)j ,a)+I(t>1)
t−1∑

m=1

1

t
k(ām,a) where I(t>1) is the indicator function. (5)

While the first term in the objective encourages āt to be similar to the set of samples {a(i)j ∼ π̂i}, the second term encourages
it to be dissimilar to samples {ām}t−1

m=1 generated in prior iterations. This latter repulsive force improves sample diversity by
inducing negative autocorrelations. For bounded kernels corresponding to finite dimensionalHk, the herded super samples
converge in MMD at a rate ofO(n−1) to the target distribution – faster thanO(n−1/2) for iid sampling from the true distribution
[7]. Even thoughHk is generally not finite, we still tend to get fast convergence in practice – even if Equation 5 is only solved
approximately [7]. Thus, MMD centroids are well-suited for our purposes. Firstly, using the herded super samples, we should
require fewer evaluations of g before Eπ̄(g) converges. Secondly, since we bypass an explicit density estimation, we should
need fewer samples from individual policies as well. Moreover, since the convergence rate of the implicit density estimation
µ̂≈µ is independent of the dimensions ofA, MMD centroids should scale better to high-dimensional action spaces.

To demonstrate the advantages of MMD centroids, we consider a set of 3 Gaussian policies {πi=N (ai,0.1I)}with mean actions
ai∈Rd. Assuming uniform policy weightswi, the composite distribution for the true weighted SoE policy is simply

∑
i
1
3
N (ai,0.1I).

Our goal is to generateM samples {ām}Mm=1 from the composite policy (only using samples from πi) and use them to compute
expected values of functions. Here, we fix the target function to be the first moment (mean action) of the composite policy, which
is simply 1

3ai. In Figure 3, we compare estimation errors for traditional SoE, MMD centroids, as well as iid samples from the true
composite policy. For MMD centroids, we use the Gaussian kernel with its bandwidth set using the median-trick heuristic, and
generate samples via kernel herding. Since the true composite policy is generally unknown, we avoid tuning hyperparameters for
the optimization in Equation 5 by opting for a brute force search within a random subset ofM action samples drawn from individ-
ual policies. For the SoE composition (Equation 3), we draw samples from the kernel density estimate of the composite policy us-
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ing a Gaussian kernel (with the median-trick bandwidth). In Figure 3, we fix (d=32,M=250), (M=250,N=32) and (d=32,N=
32) respectively, and plot errors with respect to varyingN (samples from individual policies), d (dimensionality of actions), and
M (samples from the composite policy). We see that MMD centroids offered better scaling with respect to all three parameters.
2.3 Riemannian Motion Policies
We have thus far focused on two policy compositions often encountered in multi-objective RL. We now turn our attention to a
different setting within the framework of Riemannian motion policies (RMPs) from robotics, designed to combine multiple accel-
eration based policies for cohesive motion generation [1]. As described below, policy centroids share the intuition behind RMP-
composition in using task-specific distance spaces, and can also extend RMP-composition to the setting of stochastic controllers.
RMP Composition While a robot’s complete state is defined on a configuration spaceQ, its various objectives can be defined
on separate task spacesXi. Configuration space states q are mapped onto task-space states xi via task-maps ϕi :Q→Xi. Using
Ji, the Jacobians of the task-maps ϕi, we can also map configuration space velocities and accelerations into their task-space
counterparts as ẋi=Jiq̇ and ẍi=Jiq̈+J̇iq̇. A task-space RMP overXi is a tuple (fi,Mi) indicating a recommended force fi=Miẍi

given a PSD inertia matrix Mi. The general idea behind the RMP framework is to combine task-space RMPs defining desired
accelerations ẍi into a composite RMP in the configuration space. Given a set of task-space RMPs {(fi,Mi)}, the composite
configuration-space RMP (f,M) is computed by pulling-back the task-space forces into the configuration space as pullback(fi)=
JT
i (fi−MiJ̇iq̇i) and pullback(Mi)=JT

i MiJi, and then adding up the pulled-back forces f=
∑T

i pullback(fi) and inertia matrices
M=

∑
ipullback(Mi). The composite control or acceleration q̈=M+f is the solution to the following objective function

argmin
q̈

1

2

T∑

i=1

∥Jiq̈+J̇iq̇−ẍi∥2Mi
=argmin

q̈

1

2

T∑

i=1

∥µi(q̈)−µi(ẍi)∥2Mi
. (6)

In the second equality above, we have rewritten the RMP composition objective similar to a policy centroid with µi(q̈)=Jiq̈+J̇iq̇,
where µi(ẍi) = ẍi. Each term in this objective can be interpreted as a task-specific distance (defined via Mi) between µi(q̈)
and desired task-controls ẍi. Thus, policy centroids share RMP’s underlying idea of employing task-specific mappings
and computing centroids with respect to task-specific distances. However, policy centroids extend this idea beyond
acceleration-based controls to generic settings including, for instance, discrete action spaces. Moreover, as we now discuss,
the policy centroid perspective allows us to extend RMP composition to the case of stochastic controllers.
Wasserstein Policy Centroids The RMP framework assumes deterministic controls ẍi or fi and is not directly applicable when
these controls are stochastic. Incorporating stochasticity into RMPs can be useful, for instance, when individual controllers are
learned via RL with exploration, or to escape local stationary points where competing controls cancel each other out. To compose
such stochastic RMP controllers, we can collect samples of desired controls from each individual RMP and pull them back
onto the configuration space. As in Equation 6, the composite metric M defines a distance measure for pulled-back acceleration
controls. In the deterministic setting with only one sample per RMP, we would essentially obtain the composite control formed
via the metric-weighted averaging in Equation 6. But in the stochastic setting, we need to perform an average both in the
space of controls (as in deterministic RMPs), but also in terms of probability masses spread across controls. Essentially, we
require some form of stochastic averaging that can take into account the ground distance between controls in the pulled-back
space, while also performing a probabilistic average. The family of Wasserstein distances between distributions is exactly such
a statistical distance. The p-th Wasserstein distanceWp(π,π

′;d) between two distributions π and π′ defined with respect to a
ground metric d(·,·) represents the cost of transforming π into π′ by moving probability mass in the ground space of samples; the
cost of moving probability mass is measured using d. Using a Wasserstein distance as our statistical distance between policies,
we can define Wasserstein policy centroids for RMPs with stochastic controllers as the Wasserstein barycenter of the individual
pulled-back control distributions. Similar to how RMP composition computes sums or metric-weighted averages of controls,
the Wasserstein policy centroids would allow us to average entire distributions over controls.
3 Conclusion
We presented a framework for modular policy composition, viewing the problem as computing centroids over distance spaces.
We showed how this framework not only subsumes various existing policy compositions, but also provided examples of how
it can be used to adapt them to new problem settings. In future work, we aim to implement the policy centroids presented
here in large-scale policy composition problems, and also integrate policy centroids into policy learning pipelines.
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Abstract

Curiosity for machine agents has been a focus of intense research. The study of human and animal curiosity, particularly
specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have
not yet been well-explored in machine intelligence. In this work, we introduce three of the most immediate of these
properties—directedness, cessation when satisfied, and voluntary exposure—and show how they may be implemented
together in a proof-of-concept reinforcement learning agent; further, we demonstrate how the properties manifest in
the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations
and induced targets of curiosity. As we would hope, the agent exhibits short-term directed behaviour while updating
long-term preferences to adaptively seek out curiosity-inducing situations. This work therefore presents a novel view
into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-
making agents in complex environments.

Keywords: curiosity, specific curiosity, computational reinforcement learning
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1 Specific Curiosity: An Introduction

Curiosity is in vogue; it is considered socially desirable, relating to a set of behaviours that employers want in their em-
ployees, teachers want in their students, and life coaches encourage in our interpersonal relationships. It should come as
no surprise that machine intelligence researchers have wanted to provide the benefits of curiosity to their computational
creations for decades (Schmidhuber, 1991). Pursuing these benefits, researchers have developed numerous mechanisms.

Figure 1: Turn to pg. 2 to rotate the mug.

While these mechanisms are different from each other (Ady & Pilarski, 2017; Linke
et al., 2019), many of them are centred on generating and using special reward-like
signals called intrinsic rewards. Put simply, the learner, or agent, obtains intrinsic
reward for encountering situations with good potential for learning. Researchers
have associated different concepts with “potential for learning” and translated
these concepts into metrics to shape the behaviour of their agents.1 In general,
these metrics are used to determine the amount of intrinsic reward the agent re-
ceives for a given experience. Intrinsic rewards have been shown to be very useful
for increasing exploration in some situations (Pathak et al., 2017).

However, intrinsic rewards produce behaviour that is conceptually unlike curios-
ity. Critically, by rewarding a learner for getting into a particular situation, the
designer is encouraging the learner to return to that same situation, or ones very
like it. This behaviour is missing a conceptual aspect of curiosity.

When humans describe curiosity, they talk about their curiosity being piqued or
triggered. They take action, not to observe the same situation that piqued their
curiosity, but to observe a different situation that they believe will satisfy their curiosity (see Fig. 1). Humans take
advantage of their learned knowledge of how the world works to learn something specific, answering a question that
the curiosity-piquing situation led them to ask. This is sometimes referred to as specific curiosity.

As a main contribution, we distill from the related literature three key properties of specific curiosity, and argue that these
properties are beneficial to machine learners; specifically, we introduce the appropriateness of a reinforcement learning
approach for designing agents that exhibit these properties. These properties are as follows, and are a subset of five key
properties described and argued for in more detail by Ady et al. (2022).

Directedness: By separating a curiosity-piquing situation from a curiosity-satisfying situation, we can think about the
appropriate behaviour for a learner whose curiosity has been piqued: take a sequence of actions that seems most
likely to take them to a situation that satisfies their curiosity. The tendency for learners experiencing specific
curiosity to undertake directed behaviour has been well-documented in the literature (e.g. Hagtvedt et al. 2019,
p. 2; Berlyne, 1960, p. 297). This view contrasts with many other machine reinforcement learning methods which
rely on injecting randomness into their choices of actions to experience new situations, rather than heading
directly for a situation they know they don’t know.

Cessation when satisfied: Once a learner has found a situation that satisfies their curiosity, they don’t need to experience
the same situation again, so we have no need to incentivize returning to a curiosity-satisfying situation. Examples
documenting the satisfiability of curiosity are prevalent in the literature, including the works of Wiggin et al.
(2019, p. 1194), Buyalskaya & Camerer (2020, p. 141, who refer to it as ‘fulfillment’) and Dan et al. (2020, p. 150,
who refer to curiosity being ‘satiated’).

Voluntary exposure: While the learner does not benefit from returning to a curiosity-satisfying situation (that would
only answer a question for which they have a satisfactory answer!), they do benefit from experiencing curiosity-
inducing situations. A curiosity-inducing situation offers an appropriate jumping-off point for learning, for
metaphorically picking up a puzzle piece fitting into what the learner already knows. Choosing to partake in
activities likely to induce curiosity—for example, picking up puzzles or mysteries or turning on Netflix—has
been called voluntary exposure to curiosity (Loewenstein, 1994, p. 84). This property might be thought of as
developing an increased preference for situations like those that have been curiosity-inducing in the past.

Finally, we provide a case study of an agent demonstrating these three properties together, actively separating curiosity-
piquing situations from curiosity-satisfying situations—a separation which does not exist in the type of behaviour mo-
tivated by intrinsic rewards. This proof-of-concept shows that it is possible to create an agent with attributes of specific
curiosity, but should not be thought of as the way to implement specific curiosity. Rather, we hope it inspires the commu-
nity to build upon our ideas and think up improved machine agents that benefit from knowledge of specific curiosity.

1Examples include confidence (Schmidhuber, 1991), learning progress (Oudeyer et al., 2007, p. 269), surprise (White et al., 2014,
p. 14), interest/interestingness (Gregor & Spalek, 2014, p. 435; Frank et al., 2014, pp. 5-6), novelty (Gregor & Spalek, 2014, p. 435; Singh
et al., 2004, pp. 1, 5), uncertainty (Pathak et al., 2017, pp. 1-2), compression progress (Graziano et al., 2011, p. 44), competence (Oddi et
al., 2020, pp. 2417-2418), and information gain (Bellemare et al., 2016, p. 4; Houthooft et al., 2016, pp. 2-3).
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2 The Appropriateness of a Reinforcement Learning Framework for Specific Curiosity

Figure 2: If you were curious about
what was written on the mug, you prob-
ably didn’t keep staring at Fig. 1. In-
stead, you took action to reach a situa-
tion that would satisfy your curiosity.

With the goal to offer the benefits of specific curiosity to a computational learner,
we want to take advantage of an existing learning framework, ideally one that
supports the properties we want to achieve. The properties of directedness and
voluntary exposure require a learner to have some specific capabilities. For direct-
edness, the learner must be able to decide how to act in the world so they can take
the specific actions that they believe will allow them to satisfy their curiosity. For
voluntary exposure, the learner must be able to decide how to act in the world so
they can visit situations that they suspect will result in their curiosity being piqued,
and also learn those enduring preferences for curiosity-inducing situations.

The framework of reinforcement learning supports these requirements, as rein-
forcement learning centres around learners who are able to choose actions that
affect their experiences (Sutton and Barto, 2018, p. 3). Instantiations of compu-
tational reinforcement learning algorithms are often called agents because they
shape their own experience in the world and learn from their actions. This quality
makes the framework well-suited for the design of machine curiosity algorithms.

A reinforcement learning framework is particularly promising for the property of
voluntary exposure, as learners can estimate the value of different situations (for
more detail, see Sutton & Barto, 2018, p. 58). In this way, a learner may develop a
preference (i.e., a higher value) for situations that are more likely to pique curiosity.
This preference aligns with voluntary exposure as observed in humans.

While, to the best of our knowledge, our conceptual separation of curiosity-piquing situations from curiosity-satisfying
situations and our argument for specific properties of specific curiosity are new contributions, computational reinforce-
ment learning researchers have shown strong interest in aspects of these properties in other contexts. In particular, the
property of directedness parallels work done on options (as early as Sutton et al., 1999) and planning. Approaches us-
ing directedness also often exhibit cessation when satisfied. For example, the options framework includes termination
conditions for each option (often naturally defined by goal states; Stolle & Precup, 2002, p. 212).

Prior work has aimed to address the lack of directedness that is a characteristic of intrinsic-reward methods. For example,
the Model-Based Active eXploration algorithm presented by Shyam et al. (2019) focuses on planning behaviour to allow
the agent “to observe novel events” (p. 1). Similarly, the Go-Explore family of algorithms centres on the idea of taking a
direct sequence of actions to move to a specific state for the purpose of exploring from it (Ecoffet et al., 2020).

3 Case Study & Experiments

In this section, we describe how we created a simple agent exhibiting some of the properties of specific curiosity. We
specifically hope to show that, even in a simple and focused setting, using our properties as guidelines allows machine
behaviour to emerge that approximates the specific curiosity of animal learners. This example is not intended as a final
or definitive computational implementation of specific curiosity. The intended purpose of this section is for the reader
to gain insight and motivation to further investigate how to integrate the properties of specific curiosity into different
machine learning frameworks and problem settings.

A complete agent with specific curiosity will require some additional functionality that we have not implemented. A
human can recognize that there is something they do not know, sometimes referred to as an information gap (Loewenstein,
1994) or an inostensible concept (Inan, 2012). Moreover, humans can imagine what they would need to observe to rectify
such a gap, and even suggest actions that might lead to those observations. For example, you could reach out and turn
the mug in Fig. 1, or move your own body to see the mug at a different angle. We do not tackle how agents can recognize
information gaps or how they can predict what will satisfy their resulting curiosity. In our case study, we gave the
agent a module that could recognize a curiosity-inducing situation and a corresponding curiosity-satisfying target. We
hard-coded this module so only a single location in the world piqued curiosity and the targets were randomly selected
locations from a pre-determined subset (see Fig. 3). We envision that the gaps in this architecture can be filled as more
aspects of specific curiosity are understood and become computationally tractable.

Directedness: The first property we explored in the design of our agent was directedness. As we have already suggested,
directedness seems to involve making and following a plan, which, in a reinforcement learning framework, suggested
to us that we might use a model of the world. In computational reinforcement learning, a model-based approach using
dynamic programming or an approximation of dynamic programming can provide a learner with a plan to follow from
one state to another (Sutton & Barto, 2018, Ch. 4), suggesting existing algorithms we could exploit in our pursuit of the
property of directedness.
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Cessation when satisfied: Directedness in the pursuit of satisfying curiosity is temporary and should not persist when
the agent is not in a state of curiosity.2 We were inspired by an architecture introduced by Silver et al. in 2008: Dyna-2. We
realized that Dyna-2 has a mechanism (originally used for playing games) that differentiates temporary behaviour from
the long-term preferences of the agent: two value functions. In Silver’s (2009, p. 87) work, a temporary value function
captures unique aspects of the current match of a game, while a persistent value function captures principles of the game
that hold across matches. In our design, we adapt this idea so the learner follows the temporary value function while
curious but uses a separate persistent value function to capture long-term preferences. The temporary value function
can lead the learner directly to a situation they believe will satisfy their curiosity. Since what will satisfy curiosity differs
each time curiosity is piqued, the exact plan to satisfy curiosity can be discarded at satisfaction.

Figure 3: Domain used for the experi-
ments. The orange boxes are the poten-
tial curiosity-satisfying locations. The
heavily-outlined box is the curiosity-
inducing location. If the agent leaves the
top row, it teleports to the dashed box in
the bottom row.

Figure 4: An example temporary value
function, Vcurious. The target has a
heavy dashed outline and a value of
zero. Magnitudes of negative values are
shown using shades of red.

Voluntary exposure: A temporary value function doesn’t have a lasting effect
on the learner’s preferences. However, we want an enduring effect associated
with curiosity: voluntary exposure. Humans develop a preference for curiosity-
inducing situations, so we wanted to experiment with algorithm modifications
that would lead to agents with this property. We came up with a small modifi-
cation to the standard TD learning algorithm (Sutton & Barto, 2018, p. 120) that
would leave an enduring effect of having experienced curiosity on the persistent
value function, V . Our modified temporal difference, δ, is:

δ ← R+ γ · V (x′)− [V (x) + Vcurious(x)] (1)

where Vcurious refers to the temporary value function. For this modification to
result in the accrual of positive value in the persistent value function, V , it is nec-
essary for Vcurious to be non-positive everywhere. Given this modification, we ran
experiments to see if the enduring effect looked like voluntary exposure.

Experiment setup: We ran our experiments in an 11 × 11 grid world shown in
Fig. 3. In this grid world, the learner is located in one of the squares and their
actions let them move to adjacent squares, but they can only take sideward or
upward actions (including diagonals). Any upward action from the top row of the
grid teleports the agent to the middle of the bottom row. The agent never receives
any reward from this domain (R in Eq. 1 is always zero).

As long as the agent is not in a state of curiosity, the temporary value function
is zero and the agent acts ϵ-greedily with respect to its persistent value function.
The centre of the grid is a curiosity-inducing location: when the agent visits it, a
curiosity-satisfying target is generated and the agent is given a non-positive tem-
porary value function (Fig. 4) that guides it directly to that target. The target is
randomly selected with equal probability for each of the non-edge squares in the
second row from the top (highlighted in Fig. 3). When the agent visits the target,
the temporary value function is zeroed out again.

The results reported here reflect 30 trials of 5000 steps. The agent started each trial
in the curiosity-inducing location. We ran further experiments varying the size
and dynamics of the grid world, and the key results we present are representative
of all these experiments.

Results & Discussion: Fig. 5 shows the persistent value function at the end of
5000 steps, averaged over 30 trials. Fig. 6 shows how the values of the curiosity-
inducing location and the curiosity-satisfying locations change over time.

The curiosity-inducing location accrues the most value and the agent learns a trail
of increasing value leading directly to that location. The curiosity-satisfying loca-
tions, on the other hand, do not accumulate much value over time. In effect, our
modification to the learning update results in voluntary exposure while retaining
the property of cessation when satisfied.

Looking at the behaviour of the agent over time (an example video can be viewed
at https://youtu.be/TDUpB7OefFc) we can see the agent moves more and
more directly towards the curiosity-inducing location.

2In the literature, there is a distinction between curiosity as a state experienced temporarily by a learner versus as a trait, or general
propensity of the learner (Loewenstein, 1994, p. 78). Specific curiosity makes the most sense as a form of state curiosity because it only
persists until the specific information of interest is found.
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4 Conclusions

Figure 5: Persistent value function, V ,
learned by the end of 5000 steps, aver-
aged over 30 trials. White squares have
zero value. More positive values are
shown in deeper shades of blue.

Curiosity-inducing
location

Curiosity-satisfying
locations

Figure 6: Persistent value of the
curiosity-inducing location is in blue
while the average persistent value of all
of the curiosity-satisfying locations is in
orange. The lines are the average over
30 trials while the shaded area shows
the standard deviation.

We argue that learners benefit from specific curiosity, something previously not
demonstrated in the computational literature. In particular, specific curiosity has
properties of directedness, cessation when satisfied, and voluntary exposure that
yield important benefits that have been missing from other approaches to machine
curiosity. In this work we developed a case study showing how these properties
might be implemented in a computational reinforcement learning framework.

We appreciate reinforcement learning for its flexibility to express key properties of
specific curiosity. We found, through our case study, that separating persistent and
temporary value functions was a useful mechanism to encode some of the proper-
ties of biological curiosity. This separation gives our agent directed behaviour as
well as learned preferences, which have traditionally been associated with model-
based and model-free approaches to reinforcement learning, respectively. The way
our agent balances these two approaches may offer a new perspective on how we
might balance model-based and model-free learning.

Future directions: While directedness, cessation when satisfied, and voluntary
exposure are the first properties we have explored empirically, our conceptual syn-
thesis of the literature also demonstrates the importance of two more properties:
transience and connection to long-term information search (Ady et al., 2022). While
our agent has begun to exhibit some aspects of specific curiosity, including these
additional properties and continuing to incorporate new ideas from the study of
human curiosity can only strengthen our computationally curious agents.
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Abstract

Deep reinforcement learning (RL) agents trained on a few environments, often struggle to generalize on unseen en-
vironments, even when such environments are semantically equivalent to training environments. Such agents learn
representations that overfit the characteristics of the training environments. We posit that generalization can be improved
by assigning similar representations to scenarios with similar sequences of long-term optimal behavior. To do so, we
propose behavior predictive representations (BPR) that capture long-term optimal behavior. BPR trains an agent to predict
latent state representations multiple steps into the future such that these representations can predict the optimal behavior
at the future steps. We demonstrate that BPR provides large gains on a jumping task from pixels, a problem designed to
test generalization.

Keywords: Generalization in Reinforcement Learning, Representation Learn-
ing, Predictive Representations
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1 Introduction

Deep reinforcement learning (RL) agents, even when trained on diverse environments with similar high level goals
but different dynamics and visual appearances, often struggle to generalize on unseen environments, even when such
environments are semantically equivalent to training environments [Farebrother et al., 2018, Cobbe et al., 2020, Agarwal
et al., 2021a, Packer et al., 2018]. Such agents learn state representations from high-dimensional observations that typically
overfit to the peculiarities of training environments [Song et al., 2019, Raileanu and Fergus, 2021] rather than capturing
generalizable skills which can be transferred to unseen environments. Such overfitting hinders the real-world applicability
of RL, making generalization in RL an important challenge.

To improve generalization using better representations, we revisit predictive representations [Littman et al., 2001, Rafols
et al., 2005] that describe the environment in terms of predictions about future observations, such as representations that
encode the underlying environments dynamics. While learning such temporally predictive representations has been
shown to improve sample efficiency [Oord et al., 2018, Schwarzer et al., 2021] within a training environment, it is unclear
whether such representations would improve performance in unseen environments. More recently, Agarwal et al. [2021a]
enhance generalization by learning similar state representations for observations with similar long-term optimal behavior.
Inspired by their findings, we posit that predictive representations that capture long-term optimal behavior might be better
suited for generalization. We expect such behavior predictive representations to generalize as two observations, possibly
across different environments, are assigned similar representations if they exhibit similar sequences of optimal behaviors,
irrespective of their differences in obtained rewards, visual appearances, or even the underlying dynamics.

For learning behavior predictive representations (BPR), we train the agent to predict latent state representations multiple
steps into the future such that these representations can predict the optimal behavior at the future steps (Figure 1). BPR can
be viewed as a representation learning approach where the agent predicts the optimal behavior at future states resulting
from following a sequence of actions from a given state. We show that BPR improves generalization upon existing methods
including PSEs [Agarwal et al., 2021a] and SPR [Schwarzer et al., 2021] on the jumping task on pixels.

2 Preliminaries

We describe an environment as a Markov decision process (MDP) that corresponds to a tupleM = (S,A, P,R, γ) where
S is the state space, A is the action space, P : S × A × S → [0, 1] is the state transition function, R : S × A → R is
the reward function and γ ∈ [0, 1] is the discount factor. A policy π(·|s) maps a state s ∈ S to a distribution over the
action space A. A trajectory is defined as the sequence of states, actions and corresponding rewards i.e. s0, a0, r1, s1, · · · .
The goal of a reinforcement learning agent is to maximize the cumulative expected return Ep(τ)[

∑
t γ

tr(st, at)] where
p(τ) = p(s0)

∏
t p(st+1|st, at)π(at|st).

3 Behavior Predictive Representations

In this work, we aim to learn a policy that can generalize across related environments. Specifically, we train an agent
using a finite number of environments (or tasks) sampled from a distribution of environments. The performance of
this agent is evaluated using unseen environments sampled from the same distribution. For example, consider the
generalization problem in a jumping task from pixels Tachet des Combes et al. [2018], where an agent needs to jump
over an obstacle (Figure 2). Standard deep RL agents trained on a small number of training tasks with different obstacle
positions struggle to generalize to unseen obstacle positions [Agarwal et al., 2021a].

Inspired from the recent success of representation learning to improve generalization [Agarwal et al., 2021a, Raileanu and
Fergus, 2021, Zhang et al., 2020], we also focus on learning better representations to improve generalization. We posit
that learning better representations requires understanding which states are similar in terms of their long-term optimal
behavior. To do so, we aim to learn latent state representations that not only capture the behaviour at the current state but
will also be able to predict the behaviour at future states, which we call behavior predictive representations (BPR). Since BPR
simply uses an auxiliary objective LBPR, it can be easily combined with any RL or IL setup, as shown in Figure 1.

To describe the auxiliary loss LBPR for predicting the long-term optimal behavior, we define some notation first. Let st be
the state at the time step t and zt be the corresponding latent representation learned by the policy network f . The policy π
predicts the action distribution given the latent representation zt. We use an encoder network f to generate these latent
representations from states as, zt = f(st). A transition function h : S∗ ×A→ S∗ learns the state dynamics and predicts
the representations at the next step, ẑt+1 = h(st, at).

We predict the representations for K future steps by iteratively applying the transition function. While such latent
state dynamics are typically learned by minimizing the mean squared loss between ẑt+k and zt+k, we instead use these
predicted representations to predict the optimal action distributions in the future steps t+ 1 to t+ k. To do so, the agent
minimizes the cross entropy between the predicted action distribution and optimal action distributions at these steps.
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Figure 1: Behavior Predictive Representations. A schematic diagram showing how behavior predictive representations are learned
using an auxiliary task on training environments. Representations zt from the policy network are trained to predict the optimal
behavior using either a reinforcement learning (RL) or imitation learning (IL) loss. These representations zt, in conjunction with actions
at, at+1, · · · , at+k−1, are also trained to predicting latent representations ẑt+k via the transition model h such that the ẑt+k can predict
the optimal behavior π∗(zt+k) at time step t+ k.

Specifically, given access to the optimal policy π∗ on training environments, the auxiliary loss LBPR is given by:

LBPR =
K∑

k=1

LCE(π∗(zt+k), π(ẑt+k)), (1)

where LCE(π1(·|s), π2(·|s)) = −
∑
a∈A π1(a|s) log π2(a|s).

In the general RL setting, where we do not have access to the optimal policy, we propose to use the learned policy for
specifying the future behavior in the objective LBPR. Specifically, the target distribution for the auxiliary cross entropy
loss, LBPR, comes from the same policy network that is being trained (π in Figure 1). To provide some stability from the
continuous changes in the learned policy, we use a separate target policy network that is periodically updated with the
learned policy network parameters, analogous to deep Q-learning [Mnih et al., 2013] and self-supervised learning [Grill
et al., 2020]. So, the target representations ẑt+k are derived from the learned transition function h while the action
distribution πlearned(zt+k) comes from the target policy network. For this setting, the auxiliary loss L̂BPR is given by,

L̂BPR =
K∑

k=1

LCE(πlearned(zt+k), π(ẑt+k)) (2)

The final training objective is the combination of both of these loss functions. Let LRL be the traditional model-free RL
(or imitaion learning) objective. Then, the combined loss function for learning behavior predictive representations is
L = LRL + λBPRL

BPR, where λBPR is the weighting coefficient for the auxiliary loss.

4 Experiments

We thoroughly investigate BPR on the jumping task [Tachet des Combes et al., 2018, Agarwal et al., 2021a] that captures
whether agents can learn the correct invariances for generalization directly from image inputs.

4.1 Jumping Task From Pixels

Task Description. The task consists of an agent trying to jump over an obstacle using two actions: right and jump. Different
tasks consist in shifting the floor height and/or the obstacle position (Figure 2). To generalize, the agent needs to be
invariant to the floor height while jump based on the obstacle position.

Problem Setup. Following Agarwal et al. [2021a], we use three different configurations (Figure 3), each consisting of 18
seen (training) and 268 unseen (test) tasks, to test generalization in regimes without and with data augmentation using
RandConv [Lee et al., 2020]. As discussed by Agarwal et al. [2021a], the different grids configurations capture different
types of generalization: the “wide” grid tests generalization via “interpolation”, the “narrow” grid tests out-of-distribution
generalization via “extrapolation”, and the random grid instances evaluate generalization similar to supervised learning
where train and test samples are drawn i.i.d. from the same distribution.
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(a) “Wide” grid (b) “Narrow” grid (c) Random grid

Figure 3: Jumping Task: Visualization of average performance of BPR with data augmentation across different configurations. We plot
the median performance across 25 runs. Each tile in the grid represents a different task (obstacle position/floor height combination). For
each grid configuration, the height varies along the y-axis (11 heights) while the obstacle position varies along the x-axis (26 locations).
The red letter ⊤ indicates the training tasks. Random grid depicts only one instance, each run consisted of a different test/train split.
Beige tiles are tasks BPR solved while black tiles are tasks BPR did not solve.

Figure 2: Generalization on Jumping Task. In this task, the agent needs to jump over an
obstacle. The agent needs to time the jump precisely, at a specific distance from the obstacle,
otherwise it will eventually hit the obstacle. Training environments consists of different obstacle
positions as well as floor heights. At test time, the agent needs to generalize to environments
with unseen positions and heights. The obstacle can be in 26 different locations while the floor
has 11 different heights, totaling 286 environments.

Baselines. We compare the effi-
cacy of our method with a number
of techniques that have been used
to achieve generalization such as
ℓ2-regularization, dropout [Fare-
brother et al., 2018] and data aug-
mentation [Lee et al., 2020].

Policy Similarity Embeddings
(PSEs) [Agarwal et al., 2021a] are
the state-of-the-art generalization
method on the jumping task. PSEs
form an important baseline for
BPR as PSEs also use the future
behaviour as a similarity metric
between states. Specifically, PSEs
learn contrastive metric embed-
dings using a policy similarity
metric d (Equation 3) that uses
policy to measure the long term
behavior similarity between
among states.

d(x, y) = DIST (π∗(x), π∗(y)) + γW1(d)(pπ∗(·|x), pπ∗(·|y)) (3)

Self-predictive representations (SPR) [Schwarzer et al., 2021] is another relevant baseline which has been shown to improve
sample-efficiency on training environments on the Atari 100k benchmark [Kaiser et al., 2019, Agarwal et al., 2021b].
SPR’s objective is that the agent learns to predict its own latent representations at future steps. Similar to BPR, it uses a
transition function to iteratively generate these latent representations for the future steps. However, while BPR optimizes
the latent representations to predict future behavior, SPR tries to maximize the similarity between the predicted latent
representations ẑt+1 : ẑt+K with the true future state representations zt+1 : zt+K . To do so, SPR uses a self-supervised
learning objective [Grill et al., 2020] as the auxiliary loss,

LSPR(st : st+k, at : at+k) = −
K∑

k=1

( q(go(ẑt+k))

||q(go(ẑt+k))||2

)T( gm(zt+k)

||gm(zt+k)||2

)
(4)

where go, gm and q are online projection network, target projection network and prediction networks respectively. SPR
linearly combines the auxiliary objective, LSPR, with the RL objective.

Results. Table 1 summarizes the performance of BPR and all the baselines with and without data augmentation. Without
data augmentation, with only 18 training environments, BPR generalizes quite well in all the three grid configurations,
significantly outperforming regularization and PSEs by a large margin. These results exhibit that BPR is effective even
without data augmentation.

Data augmentation complements all the methods and boosts generalization performance. Comparing RandConv + BPR to
RandConv, we see that BPR is much more effective on top of RandConv. Moreover, when used in conjunction with data
augmentation, BPR performs comparably to the current state-of-the-art method PSEs. Compared to BPR, SPR degrades
the generalization performance significantly and even performs poorly than simply using RandConv. We hypothesize that
the self-supervised learning objective in SPR might be exacerbating the overfitting in learned representations by trying to
predict the spurious features captured by the learned representations on training environments.
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Table 1: Percentage (%) of test tasks solved by different methods w/o and w/ data augmentation. The “wide”, “narrow”, and random
grids are described in Figure 2. For methods implemented in this work (BPR and SPR), we report average performance across 25 runs
with different random initializations, with standard deviation between parentheses. Other results are taken from Agarwal et al. [2021a].

Data
Augmentation Method Grid Configuration (%)

“Wide” “Narrow” Random

No
Dropout and ℓ2 reg. 17.8 (2.2) 10.2 (4.6) 9.3 (5.4)

PSEs 33.6 (10.0) 9.3 (5.3) 37.7 (10.4)
BPR 62.4 (18.6) 15.3 (6.7) 58.5 (20.0)

Yes
RandConv 50.7 (24.2) 33.7 (11.8) 71.3 (15.6)

RandConv + SPR 23.3 (11.8) 30.6 (13.3) 64.1 (15.6)
RandConv + PSEs 87.0 (10.1) 52.4 (5.8) 83.4 (10.1)
RandConv + BPR 90.0 (18.6) 52.0 (9.4) 82.5 (15.1)
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Abstract

In sequential decision making – whether it’s realized with or without the benefit of a model – objectives are often
underspecified or incomplete. This gives discretion to the acting agent to realize the stated objective in ways that may
result in undesirable outcomes, including inadvertently creating an unsafe environment or indirectly impacting the agency
of humans or other agents that typically operate in the environment. In this paper, we explore how to build a reinforcement
learning (RL) agent that contemplates the impact of its actions on the wellbeing and agency of others in the environment,
most notably humans. We endow RL agents with the ability to contemplate such impact by augmenting their reward
based on expectation of future return by others in the environment, providing different criteria for characterizing impact.
We further endow these agents with the ability to differentially factor this impact into their decision making, manifesting
behaviour that ranges from self-centred to self-less, as demonstrated by experiments in gridworld environments.
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1 Introduction

Recent work in AI safety has raised the concern that objectives are often underspecified, neglecting to take into account
potential negative side effects. As Amodei et al. [2] explain, “an objective function that focuses on only one aspect of the
environment may implicitly express indifference over other aspects of the environment.” Stuart Russell gave the example
of a robot, tasked to get coffee from a coffee shop, killing everyone in line to optimize its performance [9]. An example by
Amodei et al. [2] is that of a robot breaking a vase on the optimal path between two points. Recent work, including in RL,
has developed some techniques for avoiding or learning to avoid negative side effects [e.g., 7, 12, 8, 10].

Our concern in this paper is with how an RL agent can learn to act safely in the face of a potentially incomplete specification
of the objective. Amodei et al. observe that “avoiding side effects can be seen as a proxy for the things we really care about:
avoiding negative externalities. If everyone likes a side effect, there’s no need to avoid it.” In the spirit of this observation,
we contend that to act safely an agent should contemplate the impact of its actions on the wellbeing and agency of others in the
environment. Here we consider negative side effects to be those that impede the future wellbeing or agency of other agents.

The setup in this paper is not a multi-agent RL or cooperative AI setup, and this is done by design. We take the pragmatic
stance that in many real world settings, an RL agent will not be able to compel humans to consistently and rationally
cooperate, if they deign to cooperate at all. As such, the problem we address is in a single RL-agent setting in which the
other agents — which may be the humans that operate in the environment — are just part of the environment, operating
with fixed policies, and it is the acting RL agent that is constructing a policy that minimizes its impact on the future
agency of these other (human) agents. An evocative example may be to consider university students who share a kitchen
environment, and we wish our RL agent – the acting agent, with some conception of what others may typically do in the
kitchen — to learn how to act in the kitchen in a manner that is considerate of others who may use the kitchen afterwards.

Here, we endow RL agents with the ability to consider in their learning the future welfare and agency of others in the
environment. We do so by augmenting the RL agent’s reward with an auxiliary reward that reflects different functions of
expected future return of other agents. We contrast this with recent work on side effects that takes into account only how
the agent’s actions will affect its own future abilities [7, 12, 8]. Experiments in gridworld environments illustrate qualitative
and quantitative properties of our proposed approach. The full version of this paper [1] explores some additional variants.

Notation: An MDP is a tuple ⟨S,A, T, r, γ⟩ where S is the state set, A is the action set, T (st+1|st, at) gives transition
probabilities, r : S×A×S → R is the reward function, and γ is the discount factor. An MDP can also include a designated
initial state s0 ∈ S. A terminal state in an MDP is a state s which can never be exited and from which no further reward can
be gained. A value function V (s) gives the expected return of a state (when following some policy).

2 Problem and Approach

To incentivize the acting agent to consider the future wellbeing and agency of others, we augment its reward with an
auxiliary reward that reflects the impact of its choice of actions on others. To reflect the acting agent’s uncertainty about
what is good for others, we make use of a distribution over value functions. In particular, suppose that we have a finite set
V of possible value functions V : S → R, and a probability distribution P(V ) over V . Note that we don’t have to commit
to how many agents there are (or what exactly their actions are). It could be that each V ∈ V corresponds to a different
agent, that the set reflects all possible value functions of a unique agent, or anything in between. Also, each V ∈ V could
reflect some aggregation of the value functions of all or some of the agents.

rvalue(s, a, s
′) =

{
α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + γ · α2 · F (V,P, s′) if s′ is terminal

(1)
We define the augmented reward
function in Eq. (1), where r1 is the
acting agent’s individual reward func-
tion, and F is some function. The hyperparameters α1 and α2, which we call “caring coefficents”, are real numbers that
determine to what extents the individual reward r1 and the auxiliary reward F (V,P, s′) contribute to the overall reward.
If α1 = 1 and α2 = 0, we just get the original reward function. Note that future activity does not have to start in exactly
the same state at which the acting agent ended. V can be defined so that V (s′) gives the expected return of future activity
considered over a known distribution of starting states, given that the acting agent ended in s′.

∑
V ∈V P(V ) · V (s′) expected future return (2)

minV ∈V:P(V )>0 V (s′) worst-case future return (3)
∑
V ∈V P(V ) ·min(V (s′), V (s0)) penalize negative change (4)

We consider three possible different definitions of
F (V,P, s′), given in Eqs. (2), (3), and (4). In Eq. (2),
F (V,P, s′) is the expected value of s′, given the dis-
tribution on value functions. Under some conditions,
this is a generalization of the auxiliary reward de-
fined by Krakovna et al. [8], which assumed that the future value functions were ones of the acting agent (and so depended
on the acting agent’s own abilities). Meanwhile, Eq. (3) considers the value of s′ if the “worst-case” value function from
V is used. Note that those two reward augmentations may incentivize the acting agent to not only avoid negative side
effects, but also to cause “positive side effects” – to help other agents (assuming α2 > 0). To focus on avoiding negative
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side effects, Krakovna et al. [8] proposed comparing the state the agent ends up in against a reference state, and that is
applicable to our approach as well. In Eq. (4), we use one of the simplest possible reference states, the initial state: the
auxiliary reward is the lower of V (s′) and V (s0), where s0 is the initial state. The idea is to decrease the acting agent’s
reward when it decreases the expected future return, but to not increase the acting agent’s reward for increasing that.

A complication with our approach is that for some possible reward functions for the acting agent and future value
functions, the acting agent may have an incentive to avoid terminating states, to avoid or delay the penalty for negative
future return. This incentive would typically be undesirable. However, under some circumstances, the acting agent’s
optimal policy will be terminating. The proposition below and its proof are similar to a result of Illanes et al. [5, Thm. 1].
Proposition 1. Let M = ⟨S,A, T, r1, γ⟩ be an MDP where γ = 1, the reward function r1 is negative everywhere, and there exists a
terminating policy. Suppose rvalue is the reward function constructed from r1 according to Equation 2, using some distribution P(V ).
Then any optimal policy for the MDP M ′ = ⟨S,A, T, rvalue, γ⟩ with the modified reward will terminate with probability 1.

Proof. Suppose for contradiction that there is an optimal policy π∗ for M ′ that is non-terminating. Then there is some state
s ∈ S so that the probability of reaching a terminal state from s by following π∗ is some value c < 1. Since rewards are
negative everywhere, that means that V π

∗
(s) = −∞. On the other hand, any terminating policy gives a finite value to

each state. Since there is a terminating policy for M there is one for M ′, and so π∗ cannot be optimal.

3 Experiments

We present experimental results using the previous section’s formulations of reward functions that allow RL agents to
contemplate the impact of their actions on others. In all the experiments, policies are learned using Q-learning. To aid
exposition, we consider simple distributions over future value functions, in which the acting agent is certain of what the
future value function is (or, in Figure 3, only considers a small number of possibilities). In our first set of experiments, we
compare one of our formulations (Eq. (2)) of a considerate RL agent against two baselines. We illustrate that by considering
others, the acting agent avoids causing negative side effects for them, and in some scenarios, yields positive side effects.
Second, we illustrate the effect of the caring coefficient on the agent’s behaviour and on other agents’ reward. Finally, we
share the results of a qualitative experiment that serves to illustrate how different reward function augmentations lead to
different behaviours. Code is available at https://github.com/praal/beconsiderate.

3.1 The Impact of Considering Others

We explore how our choice of reward augmentation method affects the acting agent and the agent that goes next. We use
a kitchen environment where agents aim to collect different ingredients from the fridge or shelves, and prepare a meal.
Each agent, when it performs any action, gets -1 reward. We designed four different scenarios to illustrate properties of
our approach. The results are shown in Table 1. We use a step difference metric, described in the caption.

Baselines: We compare our method, using Eq. (2) (with α1 = α2 = 1), with two reward augmentation baselines: not
augmenting the reward, and a method based on Krakovna et al. [8]’s approach. The Krakovna-style baseline uses the
same Eq. (2) to augment the rewards, except that the future value functions considered are always possible future value
functions of the acting agent itself (as if it were trying to accomplish the tasks of other agents). So if other agents have
differing abilities, those abilities are ignored in the Krakovna-style model. (Note that this does not incorporate Krakovna
et al.’s notion of a “reference state” and may incentivize positive side effects in some cases, as our own method does.)

The first experiment (Salad) shows a scenario where the acting agent and next agent have the same abilities, and so our
approach and the Krakovna-style baseline both avoid negative side effects and behave identically. The next experiments
(Peanut and Salt) show that our approach, taking into account differing agent abilities, is sometimes more effective at

Table 1: Comparison of reward augmentation methods for acting and subsequent agents. Each row reflects a different
method. Each column depicts results for a different experimental scenario. Each entry pair depicts “step differences”
for the acting agent and the subsequently acting (next) agent. A “step difference” is the difference between the number
of steps the agent required to execute their policy as compared to what they would have required if they had tried to
complete their task from the initial state without considering other agents. ∞ indicates the task was unachievable.

Salad Peanut Salt Cookies
Method acting agent, next acting, next acting, next acting, next

Non-augmented reward 0,∞ 0,∞ 0,∞ 0, 0
Based on Krakovna et al. 1, 0 1,∞ 1, 1 1, -2

Our approach [Eq. 2] 1, 0 2, 0 1, 0 1, -2
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avoiding negative side effects than either baseline. The last experiment (Cookies) shows how our approach (and the
Krakovna-style baseline) can cause positive side effects for the next agent. Each experiment is described more below.

In Salad, the acting agent needs to collect the ingredients from the fridge. If it doesn’t consider side effects, it doesn’t close
the fridge and ruins all the remaining ingredients, preventing the next agent from completing its task. By considering
future tasks (whether another agent’s or its own), the acting agent learns to take an extra step to close the fridge. In Peanut,
preparing food contaminates the environment, and for the next agent to cook requires that the environment first be cleaned
(taking one step), or disinfected (taking two steps) if the next agent has allergies. Only our approach takes the two extra
steps to disinfect the kitchen because it considers that the other agent (unlike itself) has allergies. In Salt, if the acting agent
does not put the salt shaker back on the shelves, the next agent can’t complete its task. By considering future agents (in
the Krakovna-style baseline and our approach) this side effect is avoided. However, the acting agent is tall and may put
the salt on the top shelf (making it take longer for the next, shorter, agent to get it) if it considers that the next agent will be
itself, as in the Krakovna-style baseline. Finally, in Cookies, the next agent’s task is to bake cookies in the oven. Two steps
are required to preheat the oven (turning on the oven and waiting). By considering the future task of the next agent, the
acting agent (who was not using the oven) can turn on the oven to start preheating it, and save the next agent two steps.

3.2 Varying the Caring Coefficient

K

K

Door

Key Storage

Factory

Toolshed

Materials shop

Key

Symbol Meaning

K

Figure 1: Craft-World Environment

We investigated the effect of choosing different caring coefficients (α1 and α2)
in Eq. (2) by monitoring the average reward collected by each of the agents
in the MinecraftTM-inspired Craft-World Environment (Figure 1).

Agents in this environment use tools and materials to construct artifacts such
as boxes. Tools are stored in a toolshed in the upper right corner of the grid.
Agents enter and exit the environment through doors in the upper left and
lower right. They must collect materials and bring them to the factory for
assembly. The factory requires a key for entry, and there is only one key, which can only be stored in one of two locations
(marked with K). When considering other agents, the acting agent may elect to place the key in a position that is convenient
for others, or may help other agents by anticipating their need for tools or resources and collecting them on their behalf.

Caring Coefficient 

A
ve

ra
ge

 R
ew

ar
d

Figure 2: Effect of caring coefficients in
the Craft-World environment.

In the experiment, agents enter at the top left door, tasked with making a box.
The first agent learns a policy following Eq. (2). The second, subsequently
acting, agent follows a fixed policy designed to optimize its own reward.

Figure 2 shows the reward that each agent gets (after training) as we vary
the caring coefficient α2. It also shows their average. When α2 = 0, the first
agent is oblivious to others and exits the environment without returning the
key, precluding the second agent from making a box. When α2 > 0, the agent
becomes more considerate and returns the key on its way to the exit. As
we increase the value of α2, the first agent is incentivized to help the second
agent, eventually (to its detriment) carrying extra materials to the factory for
the second agent, garnering negative reward for this hard work and also,
interestingly, lowering the average reward of the two agents.

3.3 Optimal Behaviours under Different Reward Augmentations

2 3

4

5

6

1

Eq. 2

Eq. 3

Eq. 4

Krakovna-style 

Figure 3: Each arrow points to where an
optimal policy could leave the doll when
Agent 1 receives auxiliary reward accord-
ing to the approach labelling the arrow.

Figure 3 illustrates the difference between Eqs. (2), (3), (4), and the Krakovna-
style baseline. In this experiment, the goal of the agents is to play with the
doll and leave it somewhere in the environment for the next agent, and then
exit the environment from their entry point; the agents get -1 reward for each
step. There are six agents (circles 1-6 in Figure 3) in the environment with the
same goal. They are shown at their individual entry points. Agents enter the
environment separately; the acting agent is agent 1. In this scenario, α1 = 1,
and α2 = 10. If we augment the acting agent’s reward according to Eq. (2)
(where the distribution of value functions is a uniform distribution over the
optimal value function for each agent w.r.t. the goal of playing with the doll),
the optimal policy is to place the doll as close as possible to the majority of the
agents. If we use Eq. (3) the optimal policy is to place the doll so as to minimize
the distance to the furthest agent. Finally, if we use Eq. (4) the optimal policy
is to leave the doll where it is, because moving it causes negative side effects
for agent 6. However if we use the approach based on Krakovna et al., the
optimal policy is to leave the doll at agent 1’s exit/entry point, so that the doll
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would be conveniently located for agent 1 if it were to re-enter. Furthermore, if we use non-augmented reward the agent
does not have an incentive to place the doll in the environment and leaves with the doll (not shown in figure).

4 Related Work

We consider the relation of our work to Krakovna et al. [8] before briefly reviewing some other related work.

Krakovna et al. proposed modifying the agent’s reward function to add an auxiliary reward based on its own ability to
complete possible future tasks. A “task” corresponds to a reward function which gives reward of 1 for reaching a certain
goal state, and 0 otherwise. In their simplest definition (not incorporating a baseline), the modified reward function is

rK(s, a, s′) =

{
r1(s, a, s

′) + β(1− γ)∑i F (i)V
∗
i (s
′) if s′ is not terminal

r1(s, a, s
′) + β

∑
i F (i)V

∗
i (s
′) if s′ is terminal

(5)
given by Eq (5), where r1 is the original
reward function, F is a distribution over
tasks, V ∗i is the optimal value function
for task i (when completed by the single agent itself), and β is a hyperparameter which determines the how much weight
is given to future tasks. They interpret 1− γ (where γ is the discount factor) as the probability the agent will terminate
its current task and switch to working on the future task, which leads to the (1 − γ) factor in the case where s′ is not
terminal. Their formulation is similar to (and inspired) our approach, though for rK the value functions are restricted to
be possible value functions for the agent itself (and so depend on what actions the agent itself can perform). In contrast, in
our approach, we consider value functions that may belong to different agents with different abilities. Additionally, they
assume the value functions are optimal. Below we show how under some conditions, our approach generalizes theirs.

In the case where γ (the discount factor) is 1, rK simplifies so that rK(s, a, s′) = r1(s, a, s
′) if s′ is not terminal. Our Eq. (2)

(substituted into Eq. (1)), in the case where γ = 1, can be rewritten as Eq. (6). Observe that if γ = 1, α1 = 1, α2 = β, and

rvalue(s, a, s
′) =

{
α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + α2

∑
V ∈V P(V ) · V (s′) if s′ is terminal

(6)
P(V ) =

∑{F (i) | V ∗i = V } then
rK = rvalue. So in the undiscounted
setting rK is a special case of rvalue.

Moving on, Turner et al.’s [12] Attainable Utility Preservation is an approach to avoiding side effects similar to Krakovna
et al.’s. The agent’s reward is modified, given a setR of other reward functions, to penalize actions that change the agent’s
own ability to optimize for the functions inR. Considering other agents’ abilities when avoiding side effects was informally
discussed by Turner [11], and we have also investigated it in the context of symbolic planning [6]. Bussmann et al. [3]
proposed “Empathetic Q-learning”, an RL algorithm which learns not just the agent’s Q-function, but an additional
Q-function, Qemp , which gives a weighted sum of the agent’s value from taking an action, and the value that another
agent will get. The value the other agent will get is approximated by considering what reward the first agent would get, if
their positions were swapped. Finally, Du et al. [4] considered the problem of having an AI assist a human in achieving a
goal. They proposed an auxiliary reward based on (an estimate of) the human’s empowerment in a state. Empowerment is
an information-theoretic quantity that measures ability to control the state (which could be influenced by the presence of
irrelevant features that humans aren’t interested in controlling).
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Abstract

Upside down reinforcement learning (UDRL) flips the conventional use of the return in the objective function in RL
upside down, by taking returns as input and predicting actions. UDRL is based purely on supervised learning, and
bypasses some prominent issues in RL: bootstrapping, off-policy corrections, and discount factors. While previous work
with UDRL demonstrated it in a traditional online RL setting, here we show that this single algorithm can also work
in the imitation learning and offline RL settings, be extended to the goal-conditioned RL setting, and even the meta-RL
setting. With a general agent architecture, a single UDRL agent can learn across all paradigms.
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1 Introduction

Over time, the field of AI has exhibited significant convergence, with the increasing popularity of artificial neural net-
works (NNs) trained on large amounts of data resulting in improved performance across many benchmarks. While many
earlier successes were based on supervised learning (SL), NNs have also revolutionised reinforcement learning (RL).

We begin by noting two further significant convergences in recent years. The first pertains to NN architectures. While
convolutional NNs (CNNs) and recurrent NNs (RNNs) have for decades been applied to images and text, respectively,
a new general-purpose architecture has emerged [16]. Originally applied to text, the Transformer architecture [34] has
been successfully extended to images [6], as well as other structured input/outputs [16]. The advantage of such models
is the ability to operate over sets, allowing a single, modular model to reuse knowledge over a dynamic set of inputs.

The second development is the rise of self-supervised learning (SSL) across different domains [36]: the use of “pretext
tasks”, constructing labels from unlabelled data in order to imitate SL training, has resulted in models that rival those
trained with SL. SSL benefits from rich “supervisory signals”, with models learning to predict transformations, f , of their
inputs, x; loosely speaking, p(f(x)|x), versus SL’s p(y|x), where y is a label. In a single domain, a variety of tasks can
enable a model to gain complementary knowledge over different facets of the world.

We propose uniting these directions to create general learning agents, with the position that RL can itself be framed as
an SL problem. This is not a novel proposition [25, 31, 32, 20, 12, 3, 17, 8, 11], but in contrast to prior works, we provide a
general framework that includes online RL, goal-conditioned RL (GCRL) [28], imitation learning (IL) [26], offline RL [9],
and meta-RL [29], as well as other paradigms contained within partially observed Markov decision processes (POMDPs)
[23]. We build upon the proposal of upside down RL (UDRL) by Schmidhuber [31], the implementation of Srivastava
et al. [32], and sequence modelling via Decision Transformers [3, 17]. We examine current implementations, discuss a
generalisation of the framework, and then demonstrate a single algorithm and architecture on a standard control problem.

2 Upside Down RL

The core of UDRL is the policy, π, conditioned on “commands”, c [31]. Given a dataset D of trajectories (states, s, actions,
a, and rewards, r), the policy, parameterised by θ, is trained using an SL loss, L, to map states and commands to actions:

argmin
θ

Es,a,r∼D[L(a, π(a|s, c; θ))]. (1)

In the initial implementation [32], c = [dH , dR], where dH is the desired (future) time horizon, t2− t1, and dR is the (time-
bounded) return-to-go,

∑t2
t=t1

rt. In a similar fashion to hindsight experience replay1 [19, 1], the agent can be trained on
data sampled from D, calculating dH and dR directly from the data. Trained thus, the agent can then achieve a desired
return by sampling actions from its stochastic command-conditioned policy. Unlike typical RL agents, UDRL agents are
capable of achieving low returns, medium returns, or high returns, based on the choice of dR [32].

There are two key elements to the efficacy of UDRL—the first being the dataset (and its use) [27]. In the online RL setting,
a UDRL agent can learn to perform reward maximisation in a manner akin to expectation maximisation: collect data
using the policy, then train on the most rewarding data. This can be achieved by weighting the data [25], or controlling
data storage/sampling [32]. Given an existing dataset of demonstrations, the agent can be trained in the offline RL setting
[20, 17, 3]. D can be used for auxiliary tasks to improve learning/generalisation, such as via learning a world model [17].

The second key element is the use of commands. c can be any computable predicate that is consistent with the data
[31]. In the initial implementation, the agent is trained to map observed actions at to the corresponding states st and
[dH , dR], where the latter is calculated from t to the terminal timestep T , allowing the agent to perform (undiscounted)
credit assignment across the entire episode. During exploration in the environment (which generates more data for the
agent), dH is set to the mean of the most rewarding episodes in D, and dR is sampled uniformly from values between the
mean of the most rewarding episodes’ returns, and the mean plus one standard deviation (encouraging optimism). After
every environment interaction, dH is decremented by 1 and dR is decremented by r. If c is simplified to only contain
the desired return, we recover reward-conditioned policies [20], and if c = ∅, we recover behavioural cloning (BC) [26],
which is the simplest IL algorithm. Conversely, the trivial augmentation of c with a goal vector g extends UDRL to the
GCRL setting [31, 12, 17], with zero-shot generalisation enabled via appropriate goal spaces (e.g., language [18]).

As the agent is trained using SL on observed data, UDRL bypasses several commmon issues in RL: bootstrapping
(temporal-difference updates), off-policy corrections, and discount factors. This allows us to more easily focus on stan-
dard points in ML: the agent’s ability to generalise to novel states and commands is based on the data available, the class
of policies, and the optimisation process [8]. Srivastava et al. [32] trained fully-connected-/CNN-based UDRL agents
using stochastic gradient descent on the cross-entropy loss, but replacing the architecture (e.g., with Transformers [17, 3])

1But without specific environment settings, e.g., symbolic state spaces or a distance-based goal-conditional reward functions.
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or the optimisation (e.g., with evolutionary algorithms) are valid alternatives. While the move to sequence modelling al-
lows the agent to benefit from greater contexts [17, 3], in general, a stateful agent is needed in order to deal with POMDPs,
as well as more general computable predicates [31].

3 Generalised Upside Down RL in POMDPs
While many realistic problems cannot be captured by MDPs, they can be reasonably modelled by POMDPs, in which
the agent only receives a partial observation o of the true state s. A principled approach to solving POMDPs is to keep
a “belief” over the state, which can be achieved implicitly by training an RNN agent, which updates a hidden state
vector h [37]. POMDPs encompass many other problems, such as hidden parameter MDPs [5], which consider related
tasks, and even the general meta-RL setting (where h is typically augmented with previous action, reward and terminal
indicator, 1terminal [7, 35]). POMDPs can also be related to generalisation in RL and the robust RL [22] setting, which
considers worst-case performance. While various specialised algorithms exist for these different problem settings, recent
results from Ni et al. [23] have shown that simple recurrent model-free RL agents are can perform well across the board.
Motivated by this (and further related arguments by Schmidhuber [31]), we proceed by treating every environment as a
POMDP, in which an agent attempts to learn using a general algorithmic framework.

A final ingredient enables a single agent to deal with all RL problem settings (plus IL) with one model — an architecture
that can deal with arbitrary structured inputs and outputs (e.g., Perceiver IO [16]). Such a model allows c to be dynamic
as needed: being null in the pure IL setting (where UDRL reduces to BC), being [dH , dR, g] in the GCRL setting, and
extending further beyond to incorporate SSL tasks. This alleviates the problem of using unlabelled demonstrations to
bootstrap an RL agent, as the agent does not need to model the rewards achieved. Furthermore, the ability to adapt to
different observation and action spaces allows such an agent to use third-person data for representation learning.2

Given this, we present a generalised algorithm for UDRL (Algorithm 1). Although nearly all RL problems consider
the episodic setting (in which a terminal indicator is given before the environment resets), the following algorithm is
applicable in both episodic and non-episodic MDPs, making it capable of continual/lifelong learning.

Algorithm 1 Generalised Upside Down RL
Require: E . POMDP environment
Require: π(a|o, c, h) . Command-conditioned recurrent policy
Require: D . Experience replay memory; existing data optional unless performing IL/offline RL

function RESET(E, π,D)
Reset environment E and π’s hidden state h . h also contains the previous action, reward, and terminal indicator
Get initial observation and goal (o, g) from E
Sample c based on D and (o, g) . Requires a procedure for sampling an initial command c based on observed data

Train π on batches from D . Data can be non-uniformly/adaptively sampled from D; auxiliary objectives can be used
if performing IL or offline RL without environment interaction then return

RESET(E, π,D)
while true do

Act with a, h ∼ π(a|o, c, h)
Observe (o′, r, g′,1terminal) from environment transition . g′ given for goal-conditioned RL, 1terminal for an episodic MDP
Update D with (o, a, r, g,1terminal) . D may prioritise updates/remove old data
Update h (to contain a and r) and c . Requires a procedure for updating c, e.g., include g, decrement dH

Train π on batches from D
if 1terminal then RESET(E, π,D)

4 Experiments
For our experiments, we use the classic CartPole control problem [2], where the agent receives a +1 reward for every
timestep the pole is balanced, with a time limit of 500 timesteps. We adapt this environment to demonstrate how a single
architecture can be used in the following settings: online RL, IL, offline RL, GCRL, and meta-RL. For the IL setting,
we train the agent on 5 episodes with the maximum return of 500, collected from an online RL agent, and disable the
reward and desired return inputs. For the offline setting, we train the agent on the worst 1000 trajectories from the online
agent, with an average return of 162 ± 195. In the GCRL setting, at the beginning of each episode the agent is given an
x goal position uniformly sampled from [−1, 1], with the reward function set to e−|x−g|. In the meta-RL setting, several
environment parameters are randomly sampled at the beginning of each episode [21]. In the GCRL and meta-RL settings,
during testing the agent is evaluated on a cross product of a uniform spread over goals/environment parameters.

2Correspondences between the agent and third party’s observation/action spaces would be needed for true third-person IL [33].
To maintain such flexibility, the previous action and reward can be included in a dynamic c structure, instead of within h.
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(a) Online RL (b) IL (c) Offline RL (d) GCRL (e) Meta-RL

Figure 1: Generalised UDRL agent trained under the (a) online RL (b) IL (c) offline RL (d) GCRL and (e) meta-RL
settings in the CartPole environment. Results averaged over 10 test episodes per evaluation × 20 random seeds. The
dashed line in (c) represents the distribution of returns in D. The different colours in (d) and (e) represent different
goals/environment parameters, respectively.

As the observation and action spaces are constant, we use a simple base policy that consists of a linear layer, a sigmoid-
gated linear layer, an LSTM [14], and a final linear layer to predict the logits of a categorical distribution. Each command
(dH and dR), the goal, previous action, reward, and terminal indicator, are all embedded and concatenated with a learn-
able encoding vector, before being processed by a Transformer encoder layer [34]; the resulting vectors are aggregated
using the max function and then used in the gated linear layer before the LSTM. For simplicity, all settings use the same
architecture and hyperparameters; the code is available at https://github.com/Kaixhin/GUDRL.

As shown in Figure 1, the generalised UDRL agent is able to learn under all settings. While its performance may not
match more specialised RL algorithms, it demonstrates that a single SL objective is sufficient for a variety of sequential
decision making problems. Whilst it is possible to tune hyperparameters for individual tasks, a more compelling avenue
for improving the performance of such agents is to incorporate further commands/tasks that relate to the environment’s
structure. This can include learning world models, SSL tasks [36], and more general computable predicates [31].

5 Discussion

Given the increased interest in the RL-as-SL paradigm, this work aims to construct a more general purpose
agent/learning algorithm, but with more concrete implementation details and links to existing RL concepts than prior
work [31]. A major question is whether such an idea can scale? As mentioned previously, optimisation and function ap-
proximation are key limiters. Other experiments with tabular representations have yielded UDRL agents that can learn
more complex commands [31]; and in further experiments, the act of resetting weights has been useful for more complex
agents. With less of the confounding problems of other RL algorithms, UDRL lays bare the problem of continual learning
(and proactive interference, in particular) [10, 15].

Another discussion point UDRL introduces is the method by which (value) credit assignment can occur. While other
agents typically consider the (discounted) episodic return, UDRL agents can incorporate a desired horizon. As such,
UDRL might lend itself better to hierarchical RL [13]. In the current formulation, desired returns and goals are almost
interchangeable in the command structure, but a more powerful formulation is to consider these as being variables that
can be inferred themselves, i.e., a joint model (o, a, dR, g). In the same way that inverse models can complement forward
models, the joint distribution can interchange Q-functions, Q(dR|o, a, g) and return-conditioned policies, π(a|o, dR, g),
utilising whichever is better for the situation (acting, or learning, in a data-dependent manner). Being able to infer the
desired goal becomes particularly important when it comes to generalisation in the IL setting [4], and could even allow
the use of “suboptimal” data [8]. Looking even further forward, with both hierarchy and a more intelligent command
selection strategy, UDRL agents could be powerful vessels for implementing open-ended, goal-driven curiosity [24, 30].
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Abstract

The quintessential model-based reinforcement-learning agent iteratively refines its estimates or prior beliefs
about the true underlying model of the environment. Recent empirical successes in model-based reinforce-
ment learning with function approximation, however, eschew the true model in favor of a surrogate that,
while ignoring various facets of the environment, still facilitates effective planning over behaviors. Re-
cently formalized as the value equivalence principle, this algorithmic technique is perhaps unavoidable
as real-world reinforcement learning demands consideration of a simple, computationally-bounded agent
interacting with an overwhelmingly complex environment. In this work, we entertain an extreme scenario
wherein some combination of immense environment complexity and limited agent capacity entirely pre-
cludes identifying an exactly value-equivalent model. In light of this, we embrace a notion of approximate
value equivalence and introduce an algorithm for incrementally synthesizing simple and useful approxi-
mations of the environment from which an agent might still recover near-optimal behavior. Crucially, we
recognize the information-theoretic nature of this lossy environment compression problem and use the ap-
propriate tools of rate-distortion theory to make mathematically precise how value equivalence can lend
tractability to otherwise intractable sequential decision-making problems.

Keywords: Bayesian reinforcement learning, Information theory, Model-
based reinforcement learning, Efficient exploration

Acknowledgements

The authors gratefully acknowledge Christopher Grimm for initial discussions that provided an impetus
for this work. Financial support from Army Research Office (ARO) grant W911NF2010055 is gratefully
acknowledged.

RLDM 2022 Camera Ready Papers 45

45



1 Problem Formulation

We formulate a sequential decision-making problem as an episodic, finite-horizon Markov Decision Process
(MDP) [4, 14] defined byM = ⟨S,A,R, T , β,H⟩. S denotes a set of states,A is a set of actions,R : S ×A →
[0, 1] is a deterministic reward function providing evaluative feedback signals (in the unit interval) to the
agent, T : S × A → ∆(S) is a transition function prescribing distributions over next states, β ∈ ∆(S) is an
initial state distribution, and H ∈ N is the maximum episode length or horizon.

Let (Ω,F ,P) be a probability space. As is standard in Bayesian reinforcement learning, both the transition
function and reward function are not known to the agent and are consequently treated as random variables.
With all other MDP components known a priori, the randomness in the model fully accounts for the ran-
domness in the MDP, which is also a random variable. We denote byM⋆ the true MDP with model (R⋆, T ⋆)
that the agent interacts with and attempts to solve over the course of K episodes. Within each episode, the
agent acts for exactly H steps beginning with an initial state s1 ∼ β. For each h ∈ [H], the agent observes
the current state sh ∈ S, selects action ah ∼ πh(· | sh) ∈ A, enjoys a reward rh = R(sh, ah) ∈ [0, 1], and
transitions to the next state sh+1 ∼ T (· | sh, ah) ∈ S.

A stationary, stochastic policy for timestep h ∈ [H], πh : S → ∆(A), encodes a pattern of behavior mapping
individual states to distributions over possible actions. Letting {S → ∆(A)} denote the class of all station-
ary, stochastic policies, a non-stationary policy π = (π1, . . . , πH) ∈ {S → ∆(A)}H is a collection of exactly
H stationary, stochastic policies whose overall performance in any MDPM at timestep h ∈ [H] when start-
ing at state s ∈ S and taking action a ∈ A is assessed by its associated action-value function QπM,h(s, a) =

E
[

H∑
h′=h
R(sh′ , ah′)

∣∣ sh = s, ah = a

]
, where the expectation integrates over randomness in the action selec-

tions and transition dynamics. Taking the value function as V πM,h(s) = Ea∼πh(·|s)
[
QπM,h(s, a)

]
, we define

the optimal policy π⋆ = (π⋆1 , π
⋆
2 , . . . , π

⋆
H) as achieving supremal value V ⋆M,h(s) = sup

π∈{S→∆(A)}H
V πM,h(s) for

all s ∈ S , h ∈ [H]. We let τk = (s
(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) be a random variable denoting the

trajectory experienced by the agent in the kth episode. Meanwhile, Hk = {τ1, τ2, . . . , τk−1} ∈ Hk is a ran-
dom variable representing the entire history of the agent’s interaction within the environment at the start
of the kth episode. Abstractly, a reinforcement-learning algorithm is a sequence of non-stationary policies
(π(1), . . . , π(K)) where, for each episode k ∈ [K], π(k) : Hk → {S → ∆(A)} is a function of the current his-
tory Hk. We note that no further restrictions on the state-action space S × A, such as finiteness, have been
made; notably, through our use of information theory, our algorithm may operate on any finite-horizon,
episodic MDP although we leave the question of how to practically instantiate our algorithm for concrete
settings of interest to future work.

2 Rate-Distortion Theory

We here provide a brief, high-level overview of rate-distortion theory [17] and encourage readers to consult
[7] for more details. A lossy compression problem consumes as input a fixed information source P(X ∈ ·)
and a distortion function d : X ×Z → R≥0 which quantifies the loss of fidelity by using a compression Z in
place of the original X . Then, for any distortion threshold D ∈ R≥0, the rate-distortion function quantifies
the fundamental limit of lossy compression as

R(D) = inf
Z∈Λ

I(X;Z) ≜ inf
Z∈Λ

E [DKL(P (X ∈ · | Z) || P(X ∈ ·))] Λ ≜ {Z : Ω→ Z | E [d(X,Z)] ≤ D},

where I(X;Z) denotes the mutual information and the infimum is taken over all random variables Z that
incur bounded expected distortion, E [d(X,Z)] ≤ D. Naturally, R(D) represents the minimum number of
bits of information that must be retained from X in order to achieve this bounded expected loss of fidelity.
In keeping with the previous problem formulation, which does not assume discrete random variables, we
note that the rate-distortion function is well-defined for information source and channel output random
variables taking values on abstract alphabets [8]. Moreover, the problem of computing the rate-distortion
function along with the channel that achieves its infimum is well-studied and solved by the classic Blahut-
Arimoto algorithm [6, 1], which is computationally feasible for discrete channel outputs.
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Just as in past work that studies satisficing in multi-armed bandit problems [15, 2, 3], we use rate-distortion
theory to formalize and identify a simplified MDP M̃k that the agent will attempt to learn over the course
of each episode k ∈ [K]. The episode dependence arises from utilizing the agent’s current beliefs over the
true MDP P(M⋆ ∈ · | Hk) as an information source to be lossily compressed.

3 The Value Equivalence Principle

As outlined in the previous section, the second input for a well-specified lossy-compression problem is
a distortion function prescribing non-negative real values to realizations of the information source and
channel output random variables (M⋆,M̃) that quantify the loss of fidelity incurred by using M̃ in lieu of
M⋆. To define this function, we will leverage an approximate notion of value equivalence [10, 11]. For any
arbitrary MDPMwith model (R, T ) and any stationary, stochastic policy π : S → ∆(A), define the Bellman
operator BπM : {S → R} → {S → R} as follows: BπMV (s) ≜ Ea∼π(·|s)

[
R(s, a) + Es′∼T (·|s,a) [V (s′)]

]
. The

Bellman operator is a foundational tool in dynamic-programming approaches to reinforcement learning [5]
and gives rise to the classic Bellman equation: for any MDPM = ⟨S,A,R, T , β,H⟩ and any non-stationary
policy π = (π1, . . . , πH), the value functions induced by π satisfy V πM,h(s) = BπhMV πM,h+1(s), for all h ∈ [H]

and with V πM,H+1(s) = 0, ∀s ∈ S.

For any two MDPsM = ⟨S,A,R, T , β,H⟩ and M̂ = ⟨S,A, R̂, T̂ , β,H⟩, Grimm et al. [10] define a notion of
equivalence between them despite their differing models. For any policy class Π ⊆ {S → ∆(A)} and value
function class V ⊆ {S → R},M and M̂ are value equivalent with respect to Π and V if and only if BπMV =
BπM̂V , ∀π ∈ Π, V ∈ V. In words, two different models are deemed value equivalent if they induce identical
Bellman updates under any pair of policy and value function from Π × V . Grimm et al. [10] prove that
when Π = {S → ∆(A)} and V = {S → R}, the set of all exactly value-equivalent models is a singleton set
containing only the true model of the environment. The key insight behind value equivalence, however, is
that practical model-based reinforcement-learning algorithms need not be concerned with modeling every
granular detail of the underlying environment and may, in fact, stand to benefit by optimizing an alternative
criterion besides the traditional maximum-likelihood objective [18, 12, 16]. Indeed, by restricting focus to
decreasing subsets of policies Π ⊂ {S → ∆(A)} and value functions V ⊂ {S → R}, the space of exactly
value-equivalent models is monotonically increasing.

For brevity, let R ≜ {S × A → [0, 1]} and T ≜ {S × A → ∆(S)} denote the classes of all reward functions
and transition functions, respectively. Recall that, with all uncertainty inM⋆ entirely driven by its model,
we may think of the support of M⋆ as M ≜ R × T. We define a distortion function on pairs of MDPs
d : M×M→ R≥0 for any Π ⊆ {S → ∆(A)}, V ⊆ {S → R} as

dΠ,V(M,M̂) = sup
π∈Π
V ∈V

||BπMV − BπM̂V ||
2
∞ = sup

π∈Π
V ∈V

(
max
s∈S
|BπMV (s)− BπM̂V (s)|

)2

.

In words, dΠ,V is the supremal squared Bellman error between MDPsM and M̂ across all states s ∈ S with
respect to the policy class Π and value function class V .

4 Value-Equivalent Sampling for Reinforcement Learning

By virtue of the previous two sections, we are now in a position to define the lossy compression problem
that characterizes a MDP M̃k that the agent will endeavor to learn in each episode k ∈ [K] instead of the
true MDPM⋆. For any Π ⊆ {S → ∆(A)}; V ⊆ {S → R}; k ∈ [K]; and D ≥ 0, we define the rate-distortion
function

RΠ,V
k (D) = inf

M̃∈Λ
Ik(M⋆;M̃) ≜ inf

M̃∈Λ
E
[
DKL(P(M⋆ ∈ · | M̃, Hk) || P(M⋆ ∈ · | Hk)) | Hk

]
, (1)

where Λ ≜
{
M̃ : Ω → M | E[dΠ,V(M⋆,M̃) | Hk] ≤ D

}
. This rate-distortion function characterizes the

fundamental limit of lossy MDP compression under our chosen distortion measure resulting in a channel
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that retains the minimum amount of information from the true MDPM⋆ while yielding an approximately
value-equivalent MDP in expectation. Observe that this distortion constraint is a notion of approximate
value equivalence which collapses to the exact value equivalence of Grimm et al. [10] asD → 0. Meanwhile,
as D →∞, we accommodate a more aggressive compression of the true MDPM⋆ resulting in less faithful
Bellman updates.

Algorithm 1 Posterior Sampling for Rein-
forcement Learning (PSRL) [19]

Input: Prior distribution P(M⋆ ∈ · | H1)
for k ∈ [K] do

Sample MDP Mk ∼ P(M⋆ ∈ · | Hk)

Compute optimal policy π(k) = π⋆Mk

Execute π(k) and observe trajectory τk
Update history Hk+1 = Hk ∪ τk
Induce posterior P(M⋆ ∈ · | Hk+1)

end for

Algorithm 2 Value-equivalent Sampling for Reinforcement
Learning (VSRL)

Input: Prior distribution P(M⋆ ∈ · | H1), Distortion thresh-
old D ∈ R≥0, Distortion function dΠ,V : M×M→ R≥0
for k ∈ [K] do

Compute channel P(M̃k ∈ · | M⋆) achieving RΠ,V
k (D)

limit (Equation 1)
Sample MDP M⋆ ∼ P(M⋆ ∈ · | Hk)

Sample compressed MDP Mk ∼ P(M̃k ∈ · | M⋆ =M⋆)

Compute optimal policy π(k) = π⋆Mk

Execute π(k) and observe trajectory τk
Update history Hk+1 = Hk ∪ τk
Induce posterior P(M⋆ ∈ · | Hk+1)

end for

A standard algorithm for our problem setting is widely known as Posterior Sampling for Reinforcement
Learning (PSRL) [19, 13], which we present as Algorithm 1, while our Value-equivalent Sampling for Re-
inforcement Learning (VSRL) is given as Algorithm 2. The key distinction between them is that, at each
episode k ∈ [K], the latter takes the posterior sample M⋆ ∼ P(M⋆ ∈ · | Hk) and passes it through the chan-
nel that achieves the rate-distortion limit (Equation 1) at this episode to get the Mk whose optimal policy is
executed in the environment.

5 Discussion
Example 1 (A Multi-Resolution MDP). For a large but finite N ∈ N, consider a sequence of MDPs, {Mn}n∈[N ],
which all share a common action space A but vary in state space (Sn), reward function, and transition function.
Moreover, for each n ∈ [N ], the rewards of the nth MDP are bounded in the interval [0, 1

n ]. An agent is confronted
with the resulting product MDP,M, defined on the state space S1×. . .×SN with action spaceA and rewards summed
across the N constituent reward functions. The transition function is defined such that each action a ∈ A is executed
across all N MDPs simultaneously and the resulting individual transitions are composed to make a transition ofM.
For any value of N , PSRL will persistently act to identify the transition and reward structure of all {Mn}n∈[N ].

Example 1 presents a scenario where, as N ↑ ∞, a complex environment retains a wealth of information,
and yet, only a subset of that information may be within the agent’s reach or even necessary for producing
reasonably competent behavior. VSRL implicitly identifies a M ≪ N such that learning the subsequence of
MDPs {Mn}n∈[M ] is sufficient for achieving a desired degree of sub-optimality.

The core impetus for this work is to recognize that, for complex environments, pursuit of the exact MDP
M⋆ may be an entirely infeasible goal. Consider a MDP that represents control of a real-world, physical
system; learning a transition function of the associated environment, at some level, demands that the agent
internalize laws of physics and motion to a reasonable degree of accuracy. More formally, take the random
variable M1 ∼ P(M⋆ ∈ · | H1) reflecting the agent’s prior beliefs overM⋆. Denoting H(·) as the entropy
of a random variable, observe that identifyingM⋆ requires that a PSRL agent obtain exactly H(M1) bits of
information from the environment which, under an uninformative prior, may either be prohibitively large
and exceed the agent’s capacity constraints or simply be impractical under time and resource constraints.

6 Conclusion

In this work, we embrace the idea of satisficing [15, 2, 3]; as succinctly stated by Herbert A. Simon during
his 1978 Nobel Memorial Lecture, “decision makers can satisfice either by finding optimum solutions for
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a simplified world, or by finding satisfactory solutions for a more realistic world.” Rather than spend an
inordinate amount of time trying to recover an optimum solution to the true environment, VSRL pursues
optimum solutions for a sequence of simplified environments. Future work will develop a complementary
regret analysis that demonstrates how finding such optimum solutions for simplified worlds ultimately
acts as a mechanism for achieving a satisfactory solution for the realistic, complex world. Naturally, the
loss of fidelity between the simplified and true environments translates into a fixed amount of regret that
an agent designer consciously and willingly accepts for two reasons: (1) they expect a reduction in the
amount of time, data, and bits of information needed to identify the simplified environment and (2) in
tasks where the environment encodes irrelevant information and exact knowledge isn’t needed to achieve
optimal behavior [9, 10, 11], a VSRL agent may still identify the optimal policy while maintaining greater
sample efficiency than traditional PSRL.
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Abstract

Lately, there has been a resurgence of interest in using supervised learning to solve reinforcement learning problems.
Recent work in this area has largely focused on learning command-conditioned policies. We investigate the potential
of one such method—upside-down reinforcement learning—to work with commands that specify a desired relationship
between some scalar value and the observed return. We show that upside-down reinforcement learning can learn to
carry out such commands online in a tabular bandit setting and in CartPole with non-linear function approximation.
By doing so, we demonstrate the power of this family of methods and open the way for their practical use under more
complicated command structures.
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1 Introduction

Artificial neural networks in their current incarnation are better suited to solving supervised learning problems than they
are for solving reinforcement learning problems. Recently, a family of techniques based on upside-down reinforcement
learning (Schmidhuber, 2019; Srivastava et al., 2019) has been proposed, which solve RL problems by framing them
as supervised learning problems. These techniques all focus on directly learning a command-conditioned policy; they
explicitly learn a mapping from states and commands to actions. Already, these methods have had remarkable success
in solving offline RL problems (Chen et al., 2021; Janner et al., 2021; Kumar et al., 2019), but still struggle to achieve
competitive results in online reinforcement learning problems.

This work investigates the learnability of morethan commands: commands that specify a goal in the form of a scalar value,
a horizon, and the desired relation between the given scalar and the observed return under the given horizon. Here we
show that these commands are learnable online with traditional UDRL in simple settings. By doing so, we demonstrate
the practical potential of the flexibility of commands offered by the UDRL framework. We hope that this flexibility can
be leveraged in the future to empower these methods to render them competitive in complicated online and continual
learning problems.

2 Related Work

The idea of leveraging iterated supervised learning to solve reinforcement learning dates back to at least the work on
reward-weighted regression by Peters and Schaal (2007), who brought the earlier work of Dayan and Hinton (1997)
to the domain of operational space control and RL. However, Peters and Schaal (2007) only looked at the immediate-
reward RL setting. This was extended to the episodic setting separately by Wierstra et al. (2008a) and then by Kober and
Peters (2011). Wierstra et al. (2008a) went even further and also extended RWR to partially observable Markov decision
processes, whereas Kober and Peters (2011) applied it to motor learning in robotics. Separately, Wierstra et al. (2008b)
extended RWR to perform fitness maximization for evolutionary methods. Hachiya et al. (2009) and Hachiya et al. (2011)
later found a way of reusing old samples to improve RWR’s sample complexity. Much later, Peng et al. (2019) modified
RWR to produce an algorithm for off-policy RL, using deep neural networks as function approximators.

Upside-down reinforcement learning as a command-conditioned method of using SL for RL emerged in Schmidhuber
(2019) and Srivastava et al. (2019), with Ghosh et al. (2021) afterwards introducing a similar idea in a multi-goal context.
Kumar et al. (2019) applied UDRL to offline RL and sometime later Chen et al. (2021) and then Janner et al. (2021) showed
the potential of the UDRL framework to be competitive in this context when paired with the Transformer architecture of
Vaswani et al. (2017). Furuta et al. (2021) generalized this Transformer variant to solve a broader class of problems.

3 Background

Reinforcement learning considers an agent receiving rewards through interacting with an environment. RL is usually
modeled as a Markov decision process where, at each step t, the agent observes the current state of the environment st ∈ S ,
selects an action at ∈ A, and consequently receives a reward rt+1 ∈ R. We say that the rule an agent follows to select
actions is its policy, which we write as π : S ×A→ R where π(s, a) is the probability of the agent taking action awhen the
environment is in state s. The objective is typically to find a policy that maximizes the sum of the temporally-discounted
rewards—known as the return.

Upside-down reinforcement learning breaks the RL problem in two, using commands as an intermediary. Specifically,
it divides the agent into two sub-agents: a sub-agent that interacts with the environment in an attempt to carry out
a command, i.e., a worker; and a sub-agent that issues commands to the worker that maximize the expected value of
the return, i.e., a manager. The problem of learning an optimal policy then becomes the problem of having both sub-
agents learn to carry out their respective roles optimally. The key benefit of this formulation is that the worker solves
a supervised learning problem which allows us to bring a portion of the RL problem’s complexity into the domain of
supervised learning, which—as we previously remarked—is the principal domain of ANNs.

Traditionally, commands in UDRL are given as desire-horizon pairs, i.e., (d, h) with d ∈ R and h ∈ N. Semantically, these
commands direct the agent to achieve a return equal to d in the next h steps. Training in UDRL is done with the hindsight
method wherein the agent is trained to predict what action it took given the current state and command (g, h) where g
is the actual return observed. For UDRL to solve online RL reward-maximization problems, the commands being issued
by the manager should demand higher and higher returns as time goes on.

Morethan units—as first described in Schmidhuber (2019)—act as an additional element of the command. They serve
to denote the relation between the true desired return and d. In their simplest form, morethan units capture a boolean
relationship, i.e., “get a return larger than this value”. However, the concept of morethan units is flexible enough to
instead encode a ternary, additive, multiplicate, or more complicated relationship.
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4 Experimental Setup

We experiment with two reinforcement learning settings here: a simple six-armed bandit and the well-known CartPole
domain (Barto et al., 1983). Our toy bandit domain is intended to give us a deep look at how upside-down reinforcement
learning operates with the morethan unit in a basic deterministic tabular setting. With our CartPole domain, we hope
to evaluate the learnability of commands with morethan units when working with non-linear function approximation in
more mainstream reinforcement learning domains.

In our six-armed bandit domain, pulling the i-th arm always results in a reward of exactly i. If the agent wanted to
maximize the return, it should thus always pull the 6-th arm. Since we are working with UDRL, though, in both domains,
we issue commands to the agent in the form (d, h,m) where d is the desired return, h is a horizon, and m is the morethan
unit: a ternary digit which denotes the desired relation between d and h. If m is set to −1, then the agent is commanded
to obtain a return of less than d in the next h steps; if m is set to 0, then the agent should obtain a return of exactly d in
the next h steps; and, finally, if m is set to 1, then the agent should obtain a return greater than d in the next h steps.

Our implementation of UDRL follows the one used by Srivastava et al. (2019) with some domain-specific adaptations.
For the bandit setting, we exploit the single-step episodes by learning a two-layered policy network that uses a one-hot
encoding of the command as input. Here our network uses ReLU activation and orthogonal initialization and is trained
using SGD under a step size of 0.01.

When acting in the bandit setting, we always issue a command with m set to 1. We record the results of these actions in
a 100-episode experienced replay buffer. To train the policy network with this buffer, we sample a batch of 16 episodes
and generate a permutation to pair each episode in the sample to another random episode in the sample. Recall that each
of these samples will be in the form bi = ((di, hi,mi, gi), ai), where di is a desired return, hi is a horizon (here always 1),
mi is the morethan unit (again here always 1), gi is an observed return, and ai is an action. For two samples bi and bj ,
we train the network to predict ai given an input (gi, hi,m) where m set to 1 if gj > gi, 0 if gj = gi, and −1 if gj < gi.
This novel sampling strategy is critical here as it provides us with a non-parametric way of providing in-distribution
samples to the network. For the bandit setting, we train once using a randomly permuted batch and once with the batch
permuted such that each bi is matched with itself. We add 16 exploratory episodes to the buffer and repeat this training
process 16 times for each iteration of the UDRL algorithm. We report the results of 10 runs of this with 25 000 steps each
in Section 5.

Our network in the CartPole setting has a single hidden layer of 32 gated fast weights with Tanh activation and orthog-
onal initialization. We use Adam (Kingma and Ba, 2014) to train this network under a step-size of 0.0008 and with the
other hyperparameters set as recommended in Kingma and Ba (2014).

For the CartPole setting, we use a similar training regimen as in the bandit setting but use an unbounded buffer to which
we add 5 episodes in each iteration. Here, in each iteration, we train with 800 batches of size 256 for which we generate
seven rather than two independent permutations (one of which matches samples to themselves as in the bandit setting).
Note that the ability to generate exponentially more samples here is a key advantage of training with morethan units.
We report the results of 30 runs of the above with 500 000 steps each in Section 5.

5 Results

To evaluate learning with morethan units in the bandit setting, we look at how the action probability density of the final
learned command-conditioned policy changes as a function of d and m. The mean of these densities over the 10 runs
is shown in Figure 1. Of crucial importance here, the learned action probabilities density is concentrated in the correct
regions for each setting of the morethan unit. For example, when the morethan unit is set to 0, the action probability
density is highly concentrated in the i-th action for each i desired return. Interestingly, when the morethan unit is set
to −1, the action probability density clusters around the (i − 1)-th action for each of the i desired returns, but when the
morethan unit is set to 1, the action probability density is clustered around the most-rewarding action.

To evaluate learning with morethan units in the CartPole domain, we compare the observed return as a function of d
and m when acting under the final learned command-conditioned policy. The results of this over the 30 runs is given
in Figure 2. A similar but somewhat inverted relation appears here compared to the bandit results. When the morethan
bit is set to 0, the observed returns roughly correspond to the desired returns and only start to taper off slightly as the
desired return reaches the higher end of the spectrum. Likewise, when the morethan bit is set to 1, the observed return is
consistently only marginally higher than the desired return for most of the values tested. However, when the morethan
bit is set to −1, the observed returns are always drastically smaller than d.
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Figure 1: The mean action probabilities of the learned command-conditioned policy in the bandit setting. Note how the
probability densities seem to cluster around the highest-valued valid action.
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Figure 2: The desired return versus the observed return under the learned command-conditioned policy in the CartPole
setting. Standard deviation is shown with shading. Note how the observed returns center around the lower-end of the
valid returns.

6 Discussion

This work aimed to show that morethan units were a learnable concept in the context of upside-down reinforcement
learning. The results presented in Section 5 clearly demonstrate that this is the case. Importantly, these results show
that morethan units can be used with non-linear function approximation in mainstream online reinforcement learning
domains and thus have the potential to be usable in some of the more advanced applications of reinforcement learning.

In our bandit experiments, the emphasis of the learned policy on maximal valid rewards throughout was unexpected.
We hypothesize that this is due to the restrictive buffer size mixed with the training regimen whereby we perpetually
demand increasingly large returns. This change in demand means that an experience replay buffer will be increasingly
filled by large returns causing UDRL to increasingly oversamples large returns when training its policy network. The
consequence of this is that UDRL will be prone to a specific form of forgetting. We hypothesize that this may be part of
the reason that the UDRL paradigm has achieved its greatest successes primarily in the offline RL setting.

An initial inspection of the results of the CartPole experiment seems to produce something inconsistent with the above
hypothesis. However, recall here that the buffer size is unbounded. This means that even though the buffer is increas-
ingly filled with large values, the probability of a training sample having the morethan unit set to −1 grows as training
progresses. Conversely, the probability of a training sample having the morethan unit set to 1 shrinks as training pro-
gresses. Together with our previous hypothesis, this suggests that the distribution of training samples drastically affects
the exact nature of the learned policy here, even when not otherwise affecting its validity.

3

RLDM 2022 Camera Ready Papers 53

53



7 Conclusion and Future Work

In this work, we set out to demonstrate the flexibility afforded by the use of commands in upside-down reinforcement
learning. We accomplished this by experimenting with commands in the form (d, h,m), where d is a return, h is a horizon,
and m is a morethan unit which denotes whether the agent is being directed to receive a return greater than, less than,
or equal to d in the next h steps. We showed that commands of this form are learnable in two reinforcement learning
environments: a six-armed bandit and the well-known CartPole environment. Through doing this, we hope to pave the
way for later work to leverage advanced command structures in the hopes of successfully applying UDRL and related
methods to challenging online RL problems.

Future work will look at other advanced command structures. We also plan to experiment with the morethan unit under
more complicated neural network architectures—such as the Transformer architecture. This would, in turn, allow us to
understand better the utility of morethan units in significantly more challenging applications.

We note that the challenges faced by the worker portion of the upside-down reinforcement learning agent are similar to
the challenges faced by continual learning agents. Future work will investigate how this relationship can be leveraged
to specify good command structures for UDRL and related algorithms.

References
Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult learning

control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 834–846. https://doi.org/10.1109/
TSMC.1983.6313077

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., & Mordatch, I. (2021). Decision
transformer: Reinforcement learning via sequence modeling. arXiv. https://arxiv.org/abs/2106.01345

Dayan, P., & Hinton, G. E. (1997). Using expectation-maximization for reinforcement learning. Neural Computation, 9(2),
271–278. https://doi.org/10.1162/neco.1997.9.2.271

Furuta, H., Matsuo, Y., & Gu, S. S. (2021). Generalized decision transformer for offline hindsight information matching. arXiv.
https://arxiv.org/abs/2111.10364

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M., Eysenbach, B., & Levine, S. (2021). Learning to reach goals via
iterated supervised learning. Proceedings of the International Conference on Learning Representations. https : / /
openreview.net/forum?id=rALA0Xo6yNJ

Hachiya, H., Peters, J., & Sugiyama, M. (2009). Efficient sample reuse in em-based policy search. Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 5781, 469–484. https://doi.org/10.
1007/978-3-642-04180-8\ 48

Hachiya, H., Peters, J., & Sugiyama, M. (2011). Reward-weighted regression with sample reuse for direct policy search in
reinforcement learning. Neural Computation, 23(11), 2798–2832. https://doi.org/10.1162/NECO\ a\ 00199

Janner, M., Li, Q., & Levine, S. (2021). Reinforcement learning as one big sequence modeling problem. arXiv. https://arxiv.org/
abs/2106.02039

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. https://arxiv.org/abs/1412.6980
Kober, J., & Peters, J. (2011). Policy search for motor primitives in robotics. Machine Learning, 84(1-2), 171–203. https :

//doi.org/10.1007/s10994-010-5223-6
Kumar, A., Peng, X. B., & Levine, S. (2019). Reward-conditioned policies. arXiv. https://arxiv.org/abs/1912.13465
Peng, X. B., Kumar, A., Zhang, G., & Levine, S. (2019). Advantage-weighted regression: Simple and scalable off-policy reinforce-

ment learning. arXiv. https://arxiv.org/abs/1910.00177
Peters, J., & Schaal, S. (2007). Reinforcement learning by reward-weighted regression for operational space control. Pro-

ceedings of the 24th International Conference on Machine Learning, 227, 745–750. https://doi.org/10.1145/1273496.
1273590

Schmidhuber, J. (2019). Reinforcement learning upside down: Don’t predict rewards - just map them to actions. arXiv. https:
//arxiv.org/abs/1912.02875

Srivastava, R. K., Shyam, P., Mutz, F., Jaskowski, W., & Schmidhuber, J. (2019). Training agents using upside-down reinforce-
ment learning. arXiv. https://arxiv.org/pdf/1912.02877.pdf

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention
is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008. http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008a). Episodic reinforcement learning by logistic reward-weighted
regression. Proceedings of the 18th International Conference on Artificial Neural Networks, 5163, 407–416. https://doi.
org/10.1007/978-3-540-87536-9\ 42

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008b). Fitness expectation maximization. Proceedings of the 10th
International Conference on Parallel Problem Solving from Nature, 5199, 337–346. https://doi.org/10.1007/978-3-
540-87700-4\ 34

4

RLDM 2022 Camera Ready Papers 54

54



General and Scalable Hierarchical Reinforcement Learning

Bernardo Avila Pires*∗

DeepMind
bavilapires@deepmind.com

Feryal Behbahani*

DeepMind
feryal@deepmind.com

Hubert Soyer*

DeepMind
soyer@deepmind.com

Kyriacos Nikiforou*

DeepMind
knikiforou@deepmind.com

Thomas Keck*

DeepMind
thomaskeck@deepmind.com

Zhengdong Wang
DeepMind

zhengdong@deepmind.com

Satinder Singh
DeepMind

baveja@deepmind.com

Abstract

Hierarchical Reinforcement Learning provides a framework for building agents with abstract, temporally extended be-
haviours that can be useful and generalise across tasks and timescales. In spite of these advantages, developing effective
hierarchical agents has remained a challenge in visually complex, partially observable 3D environments. This work de-
tails a path towards a hierarchical agent with an explicit focus on scale and the long-term goal of zero-shot generalisation
to tasks unseen during training. The guiding principles of scale and generalisation are reflected in the agent’s design.

The agent features a goal conditioned low level controller which acts in the underlying environment based on grounded
goals set by a high level controller. Given a trajectory of experience, the low level controller is trained to achieve future
states chosen in hindsight. It has no notion of externally defined reward, and it has minimal assumptions about the
origin and quality of its training data. The high level controller is trained to maximise extrinsic reward by setting goals
for the low level controller to achieve. It can therefore act at a lower temporal resolution. This explicit separation of high
and low level training objectives gives rise to scaling advantages in terms of data, task complexity and compute.

We highlight design choices, trade-offs and challenges for future research, and present results with a concrete implemen-
tation on the Hard Eight tasks, a set of challenging, visually complex and partially observable embodied 3D tasks. We
demonstrate that our proof-of-concept implementation can learn temporal and behavioural abstractions from data, and
use these abstractions as part of the solution to more complex tasks. Furthermore, our results show the flexibility of our
approach to make use of pre-collected and uncurated data to boost performance, but also to be effective when the data
for learning behavioural abstractions must be generated by the agent itself.

Keywords: hierarchical reinforcement learning, scalable reinforcement learn-
ing, generalisation
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1 Introduction

While temporal and behavioural abstractions arising from Hierarchical Reinforcement Learning (HRL, Dayan and Hin-
ton, 1992; Sutton et al., 1999) are appealing advantages, successfully training HRL agents to solve complex tasks in
visually rich and partially observable 3D environments has remained challenging. This work details a path towards a hi-
erarchical agent with a focus on scaling to such environments. We highlight design choices, trade-offs and challenges for
future research and present an empirical evaluation of a proof-of-concept implementation in such complex procedurally
generated, partially observable 3D tasks.

The agent design is based on two main principles

• Scalability

– in terms of the environment, observation space and dynamics, as well as the agent
– in terms of its architecture, model size and the data it can consume.

• Generalisation

– with a focus on zero-shot generalisation to tasks unseen during training.

We believe that hierarchical reinforcement learning can be a prime ingredient in advancing both scalability and general-
ization to tasks unseen during training.

2 Agent Design Choices

The guiding principles of scalability and generalization are reflected in our agent’s design. Similar to Dayan and Hinton
(1992), we enforce a separation of the agent into a goal conditioned Low Level Controller (LLC) which directly acts in
the environment, and a High Level Controller (HLC) which observes the environment at a lower temporal resolution and
provides high level goals for the LLC to achieve. This separation of the two components is explicit, no gradients flow
between them and they are trained using separate objectives. We refer to the high level actions that are communicated
from high to low level controller as goals or options, and the actions available to the low level controller as primitive actions
(Sutton et al., 1999).

The low level controller is a goal-conditioned policy trained in hindsight to reach a future state or observation
(Andrychowicz et al., 2017). Given a trajectory of experience, a randomly selected future observation is encoded with a
neural network and used as a goal that the policy is trained to reach. The space of goals is therefore continuous, rich,
and grounded. For this reason, there is also no need to choose a fixed number of options a priori. The goal space can in
principle express all possible behaviours and therefore lends itself naturally to continual learning.

The high level controller does not interact with the environment directly. Instead, it issues goals to the low level con-
troller and waits for the low level controller to execute. Once the low level controller completes its execution, it sends a
compressed version of what it has experienced to the high level controller, which then picks the next goal. Due to this
temporal abstraction, episodes that are hundreds of low-level transitions long only require a handful of decisions from
the high level controller. The low level controller with which the high level controller interacts can either be pre-trained
or trained in tandem with the high-level controller, based on data generated by the agent itself. Due to the offline/online
nature of training we call our agent Hierarchical Hybrid Offline-Online or H2O2 for short.

Communication from the high to the low level is not limited to only goals. We grant the high level controller additional
control by allowing it to modulate low level behaviour by e.g. manipulating the low level controller’s policy entropy,
setting a threshold for when the low level controller should stop, or bypassing the low level controller entirely and
executing non-hierarchical, primitive actions in the environment directly. Similarly, we can also enrich the information
that is communicated from the low to the high level. This ranges from simply the observation at the time the goal is
reached, to compressed histories of what has been seen and additional information about e.g. option termination (time-
out, goal reached, goal unachievable).

3 Consequences of Design Choices

The design choices introduced above have a number of implications on scalability and generalization to unseen tasks.
The hierarchical structure opens up opportunities for better exploration using the temporarily extended options, efficient
long term credit assignment, abstract reasoning about solutions in a semantically meaningful space, and may allow more
efficient planning over much longer-horizons.

Explicitly separating the training objectives of the high and low level controller gives rise to scaling advantages:
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• The low-level controller can be trained with various types of experience (e.g. pre-recorded in a dataset, human
generated, collected from the high level controller’s experience or exploratory policies)

• Training of the two components can run at a different rate and with different resources. Not being bound to experi-
ence produced at a certain rate allows scaling up the model.

• The high level can truly act and learn at a lower frequency than the low level. There is no gradient flowing between
the two, data/goals are the only interface.

• Additional auxiliary predictors like affordance, transition and value models are learned alongside the LLC and could
be leveraged by the HLC as components e.g. for exploration and planning.

The design choices also open up opportunities for better zero-shot generalisation to novel tasks:

• Low level policies are short horizon and as such, each behaviour will appear in a variety of situations, and be in-
distribution even for novel and unseen tasks.

• How the HLC perceives the world and the space in which it takes decisions are determined by the output and
goal space of the low level controller. Incorporating appropriate abstractions in these spaces can advance zero-shot
generalisation or simplify learning dynamics models.

• The high level controller can compose options in novel ways to act, explore and plan in a temporally extended and
structured manner. Jumpy planning is a particularly exciting direction to improve zero-shot generalization.

And finally, an explicit, grounded interface between low and high level controllers naturally provides a starting point for
behaviour analysis.

4 Core Research Challenges

While this design brings many advantages, we have also identified core research challenges:

• State and perceptual abstractions. How the HLC perceives the environment may strongly impact the data efficiency
and final performance of the agent.

• Goal abstraction. What is and is not represented in a goal has large implications on the agent’s ability to re-use,
model and re-combine its skills.

• Goal coverage. Grounding goals by defining them in hindsight during LLC training offloads the question of what
behaviours/goals are covered onto the data distribution the LLC is trained on. Training the LLC on pre-collected
data allows explicit control over this distribution but limits the data to a static set. On the other hand, training the
LLC on data collected by the agent itself can lead to a lack of diversity.

• HLC data efficiency. Since the HLC takes only few steps per episode, it has to learn efficiently from a much smaller
number of transitions than a non-hierarchical agent.

• Learning and using models. Learning models with temporal abstraction and doing jumpy planning is challenging,
especially in partially observable environments.

5 Proof-of-Concept Implementation

We implemented a proof-of-concept H2O2 to demonstrate the merit of our approach, and as a first step in the direction
of our vision. We built an agent that can learn options and then use them effectively to solve tasks it is trained on, in a
complex, partially observable 3D environment.

Figure 1 shows a diagram of our implementation, and how its components interact with each other, with the dataset and
the environment. The diagram also indicates what components are trained in offline and online fashion. The stream of
online experience to feed back into the dataset is optional.

To train the LLC, we used offline V-Trace (Mathieu et al., 2021), a state-of-the-art offline RL method and hindsight ex-
perience replay (Lynch et al., 2020). We made as few assumptions as possible about quality and origin of the data, and
made it a responsibility of the offline RL algorithm to handle the training data correctly. The high level controller is
implemented using the state-of-the-art Muesli RL algorithm (Hessel et al., 2021).

We considered two regimes for training the agent:

• (from dataset) First the LLC is trained offline on a pre-collected dataset, and then the HLC is trained with a fixed
LLC. The experience is collected by a trained agent acting in a large number of levels that share the same physics and
general principles as the levels we train our agent on. We note that the data-collecting agent performs very poorly
on tasks from the Hard Eight suite (Gulcehre et al., 2019).
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Figure 1: Proof of concept H2O2 implementation diagram.

• (from scratch) The LLC is trained in offline fashion, but in tandem with the HLC. The data used to train the LLC is
generated by the H2O2 agent itself.

We evaluated H2O2 in the Hard Eight suite (Gulcehre et al., 2019). These are procedurally generated, partially observable
3D tasks that require exploration and complex behaviour to solve. Gulcehre et al. (2019) made some progress using
human demonstrations. We found that a non-hierarchical Muesli agent (Hessel et al., 2021) can make progress in some
of these tasks without requiring access to demonstrations, and we use it as a baseline for comparison.
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(a) H2O2 and non-hierarchical Muesli average return trained multitask on Hard Eight.
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(b) H2O2’s frequency of using temporally extended options rather than primitive actions, throughout training.
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(c) Average H2O2 option duration (excluding primitive actions) throughout training. Each step corresponds to four environment
frames (where the same action is repeated).

Figure 2: Main results summary on six out of eight tasks in the Hard Eight suite (Gulcehre et al., 2019). No agent made
progress in the remaining two tasks Remember Sensor and Throw Across.
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Figure 2a shows the agents’ average returns throughout training in six of the Hard Eight tasks. Neither agent could make
meaningful progress on the other two, so they have been omitted. Figure 2b shows how often on average H2O2 used
primitive actions in each of the tasks throughout training, and fig. 2c shows the average option duration per task.

These are the main takeaways about H2O2’s performance in the Hard Eight suite:

Strengths

• Effective Options. The LLC learns complex temporally extended behaviour and the HLC learns to use it. Figure 2a
shows competitive performance across tasks, and fig. 2c shows that options last for several steps on average. The
average option duration also varies across tasks.

• Options do not collapse. The HLC uses a mix of primitive actions and temporally extended options, cf. fig. 2b. The
frequency of primitive action use varies across tasks.

• Robustness to uncurated data. The agent that generates the pre-collected dataset has poor (near-zero or negative)
average return in the Hard Eight tasks. Despite this, the LLC trained on this dataset allows H2O2 to reach competi-
tive performance.

• No strict need for a pre-collected dataset. Even when running fully online, training the LLC based on data the agent
itself generates, H2O2 achieves competitive performance while learning and using options.

Limitations

• Data inefficiency. The HLC in this implementation learns at a much lower temporal frequency and does not see all
data generated during LLC execution. Every high level transition the HLC is trained on translates, on average, to
more than forty transitions in the underlying environment. As a result, the HLC requires many more environment
frames than the baseline to reach peak performance.

• Matching baseline final performance, weak on three tasks. Our H2O2 implementation has competitive average
return after training, versus a non-hierarchical Muesli baseline, in the Hard Eight tasks. Of the six tasks where
performance matches, in three tasks neither agent can make meaningful progress.

6 Conclusion

This work provides a new perspective on the contributions of goal-conditioned hierarchical RL to tackle challenging
tasks in visually complex, partially observable procedural 3D environments. Throughout this research, we made the
conscious choice of not including any domain specific knowledge or custom architectural choices. While we note that
our analysis has been focused on the limited set of tasks reported in this work, we believe that many of our findings can
be extended to other partially observable procedurally generated domains.
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Abstract

Any reinforcement learning system must be able to identify which past events contributed to observed outcomes, a
problem known as credit assignment. A common solution to this problem is to use an eligibility trace to assign credit
to recency-weighted set of experienced events. However, in many realistic tasks, the set of recently experienced events
are only one of the many possible action events that could have preceded the current outcome. This suggests that
reinforcement learning can be made more efficient by allowing credit assignment to any viable preceding state, rather
than only those most recently experienced. Accordingly, we propose “Predecessor Features”, an algorithm that achieves
this richer form of credit assignment. By maintaining a representation that approximates the expected sum of past
occupancies, our algorithm allows temporal difference (TD) errors to be propagated accurately to a larger number of
predecessor states than conventional methods, greatly improving learning speed. Our algorithm can also be naturally
extended from tabular state representation to feature representations allowing for increased performance on a wide
range of environments. We demonstrate several use cases for Predecessor Features and contrast its performance with
other similar approaches.

Keywords: Reinforcement Learning, TD-Learning, Eligibility Traces, Succes-
sor Representation

Acknowledgements

We would like to thank the Cognitive Science Department of the University of California San Diego.

RLDM 2022 Camera Ready Papers 60

60



1 Introduction

At the core of Reinforcement Learning (RL) is the problem of credit assignment: identifying which of the previously
chosen events (actions and states) are causally related to an observed outcome. In the temporal difference (TD) learn-
ing algorithm, a cornerstone of RL, recently experienced events receive credit for the prediction errors encountered at
each present moment. Thus, to distribute credit appropriately, a temporary record of recently experienced events – an
eligibility trace – is maintained and updated continuously.

The assumption underlying algorithms based on eligibility traces is that only recent events can receive credit for an
outcome. However, in many realistic tasks, the set of recently experienced events are only one of the many possible
action events that could have preceded the current outcome. This suggests that reinforcement learning can be made
more efficient by allowing credit to be assigned to any viable preceding state, rather than only those most recently
experienced. But how to identify the correct set of preceding states in this richer form of credit assignment? To help
answer this question we consider first the Successor Representation (SR), which quantifies, from each state, the expected
(discounted) future occupancy of every other state [2]. This representation can be leveraged to compute values from
rewards through a simple linear operation, and can be learned efficiently in the setting of linear function approximation
[1]. We propose that this representation can also express, from each state, the set of all possible (discounted) preceding
states, yielding a quantity analogous to an eligibility trace.

Here, we formalize precisely the relationship between the SR and the (expectation of) eligibility traces. We then propose
a variant of temporal difference learning that uses this richer form of eligibility traces, an algorithm we call Predecessor
Representation. To extend this method to the setting of function approximation, we describe an approach to learn the
predecessors directly, giving rise to a second algorithm called Predecessor Features. In both cases, we demonstrate a
few simulations showing that this learned quantity is helpful for credit assignment as it acts as an improved way of
propagating error to relevant features than previous algorithms.

2 Formalism

The central task in Reinforcement Learning is to predict returns of future discounted rewards: Gt:T =
∑T
i=1 γ

(i−1)
t+i Rt+i

where T is the time the current episode terminates or T = ∞ for continuous tasks. The value vπ(s) = Eπ [Gt:T | St = s]
of state s is the expected return for a policy π when starting from state s. This value is approximated by the function
vw(s) ≈ vπ(s), parameterized by a weight vector w ∈ Rd. The value function can be specified as a table with each entry
corresponding to a state, as a linear function of some defined input features, or as a non-linear function. The weight
vector w is learned iteratively through the update rule wt+1 = wt +∆wt such that vw approaches the true vπ .

There are multiple methods for computing ∆wt. The Monte Carlo algorithm defines ∆wt ≡
α (Rt+1 + γt+1Gt+1:T − vw (St))∇wvw (St) and is able to succeed in the task of value function approximation, but
does so with high variance. An alternative approach that estimates the value function with lower variance is TD learn-
ing. TD learning ‘learns a guess from a guess’ and replaces the return with the current expectation v (St+1) ≈ Gt+1:T ,
where ∆wt ≡ α (Rt+1 + γt+1vw (St+1)− vw (St))∇wvw (St).

Algorithms that employ a ‘forward’ looking approach, like the MC algorithm, use returns that depend on future trajec-
tories and need to wait many time steps or until the end of an episode to create their updates. Alternatively, algorithms
that employ a ‘backward view’ will look back on past experiences during an episode to update current estimates. For
example, a classic backward-looking algorithm, TD(λ), defines ∆wt ≡ αδtet where et = γtλet−1 + ∇wvw (St) is
referred to as eligibility trace, and δt = Rt+1+γt+1vw (St+1)− vw (St) is referred to as the temporal difference (TD) error.

TD(λ) generalizes Monte Carlo and Temporal Difference methods, with TD(1) corresponding to an online implementa-
tion of the MC algorithm and TD(0) corresponding to a regular one-step TD update.

3 Predecessor Representation

We first offer a generalization of the concept of eligibility traces in the tabular case, leading to an algorithm called “Tem-
poral differences – Predecessor Representation”, or TD-PR. In the original TD(λ) algorithm, the main way of propagating
value updates to relevant states is by keeping an eligibility trace. In the tabular TD(λ), the eligibility trace is defined by

et(s) =

{
γλet−1(s) if s ̸= st
γλet−1(s) + 1 if s = st

where on each step the eligibility traces for all states decay by γλ, and the eligibility

trace for the one state visited on the step is incremented by 1. The eligibility trace defines the extent to which each state
is ‘eligble’ for undergoing learning changes. The corresponding TD-error is δt = Rt+1 + γVt (St+1) − Vt (St) and value
function update ∆Vt(s) = αδtet(s), for all s ∈ S.
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Our starting point to generalize the concept of eligibility traces is the Successor Representation (SR) [2]. Given a stream of
experience, the SR maitrx M represents a given state in terms of discounted occupancy to other states. The SR is defined
as M = (I−γP)−1, where P is a transition matrix with entries corresponding to probabilities of transitioning from states
(or state action pairs) to other states. Thus, if Mij represents the expected (discounted) number of visitations from i to
j, the ith row of M represents the expected (discounted) number of visitations from i to every state. Accordingly, the
jth column of M represents the expected (discounted) number of visitations to state j, starting from every state. Indeed,
while a row of M is “forward-looking”, a column of M is “backward-looking”. If we set the discount factor to γλ:

Mij = E

[ ∞∑

p=0

(γλ)p1s{n+p+1=j} | sn = i

]
=
∞∑

p=0

(γλ)pP (sn+p+1 = j | sn = i) =
P(s = j)

P(s = i)
E

[ ∞∑

p=0

(γλ)p1{sn−p−1=i} | sn = j

]

=
P(s = j)

P(s = i)

∞∑

p=0

(γλ)pP (sn−p−1 = i | sn = j) =
P(s = j)

P(s = i)
E

[ ∞∑

p=0

(γλ)p1{sn−p−1=i} | sn = j

]
=
P(s = j)

P(s = i)
E [en−1(i) | sn = j]

In other words, the column of the SR is directly related to the expectation of the eligibility traces (see also van Hasselt et
al [3], Pitis et al [5]). In contrast to a sample of the eligibility traces, the expected trace has the advantage that is contains
all possible predecessor states, and thus can give rise to a more efficient TD algorithm.

Below we describe TD-PR, an example of such algorithm.

Algorithm 1 Tabular TD-PR

1: procedure TD-PR(episodes, γ, λ, α, β)
2: v← 0
3: M← 0 (|S| × |S| identity matrix)
4: for episode in 1 . . . n do (Note: sk is one-hot vector with 1 at index k)
5: e← 0 (eligibilty trace)
6: for pair (si, sj) and reward r in episode do
7: e(si)← e(si) + 1
8: M←M+ βes⊺j + βγes⊺jM− βes⊺iM
9: v← v + αM·i(r + γvj − vi)

10: e← γλe
11: end for
12: end for
13: return v,M

Note that TD-PR learns the SR using temporal differences. At the end of the first episode, a column of the SR (predecessor
representation) corresponds exactly to the usual eligibility trace. At the second episode and beyond, however, the two
representations diverge. This is seen clearly in Figures 1b and 1c.

TD(λ)

Trial #1

Trial #2

Eligibility Trace

(a)

TD-PR

Trial #1


Trial #2


PR


(b)

Figure 1: Illustrated is the first two trials where the ball hits the reward. Displayed from left to right is the path the ball
took, the credit assignment vector (shown as a 6 × 6 matrix) used in each algorithm, and the value function at the end
of the trial. It becomes apparent that the key difference between the two algorithms is TD-PR uses a credit assignment
method that keeps a memory of past trial’s state visits and updates all state values accordingly.
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4 Predecessor Features

We now offer a generalization of the concept of eligibility traces in the general, function approximation case, leading to
an algorithm called “Temporal differences – Predecessor Features”, or TD-PF. We first define an expected eligibility trace
as: z(s) ≡ E [et | St = s]

This expected eligibility trace tries to approximate the sum of discounted predecessor features:

z(s) = E

[ ∞∑

n=0

(λγ)
n
x(St−n) | St = s

]

λ ̸= 1 should be included if a partial predecessor feature representation is desired. In TD-PF we try to learn approxima-
tions zθ (St) ≈ z (St) with parameters θ ∈ Rd. In doing so we will be using supervised learning techniques to minimize
the empirical loss L (y, zθ (St)). Where y is the target for each collected transition (s, a, r, s′).

y =

{∇wvw (St) if St is an initial state
∇wvw (St) + λγzθ (St−1) otherwise

Here x(St) is a feature vector of St. In this case, we will be using a TD like update of zθ (St). The learned representation
will be map from a current feature vector to a vector of predecessor features. If we use a squared loss function, then

L (y, zθ (St)) = E
[
∥y − zθ (St)∥2

]

∆θ ← ∇θ ∥∇wvw (St) + λγzθ(St−1)− zθ(St)∥22
For simplicity we will use a linear approximation of zθ such that zθ (St) = Ψx(St) where Ψ is a square matrix. Note
that any approximation method could be used here (i.e. a neural network). Computing the gradient of the squared loss
function with respect to Ψ and performing gradient descent we get an update rule similar to linear TD-learning:

Ψt+1 = Ψt − β
(
zθ (St)− ys,a,r,s′

)
x(St)

⊺

Note that Lehnert and Littman showed a similar learning rule for an approximation of Successor Features [4]. This TD-
inspired update of the expected trace parameters differs from the Monte Carlo like update defined in van Hasselt et al[3];
where instead of updating towards a sampled eligibility trace we update towards this new representation added to the
gradient of the value function of the current state. Simulations show that the Ψ matrix when using a tabular feature
vector for each state approximately learns the SR matrix and gives similar performance to TD-PR.

Algorithm 2 Linear TD-PF

1: procedure LINEAR TD-PF(episodes,w,Ψ, α, β)
2: initialize w,Ψ
3: for episode in 1 . . . n do
4: St ← initial state of episode
5: y← x(St)

6: Ψt+1 = Ψt − β (zθ (St)− y)x (St)
⊤ (Note: zθ (St) = Ψx(St) )

7: for pair (St, St+1) and reward r in episode do
8: δ ← r + γvw (St+1)− vw(St)
9: y← x(St+1) + λγzθ (St)

10: Ψt+1 = Ψt − β (zθ (St+1)− y)x (St+1)
⊤

11: w← w + αδzθ(St)
12: end for
13: end for
14: return w,Ψ

5 Experiments

The task we studied the methods of TD-PR on is the Japanese gambling game Pachinko (aka Plinko). Plinko is a 6 × 6
grid where a ball is placed with 1/6 probability into one of the top slots. A ball will go down a row and to the left with
probability 1/2 and down a row and to the right with probability 1/2, unless the ball is at a state at the edge of the grid.
In this case, the ball will go down a row and away from the edge by one state with probability 1 on each time step. A
reward of 0 was received on each time step for every state unless the ball landed in the fourth state from the left on the
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Figure 2: (a) Comparison of convergence to true value function for TD-PR (in orange) and TD(λ) (in blue). Each row refers
to changing a different parameter of each function. Alpha-v and Alpha-m are the learning rates for the value function
and SR matrix, respectively. Aside from the changing variable all other parameters were set to equivalent default values
of (alpha-v = 0.01, alpha-m=0.1, λ = 0.9, γ = 1). (b) The “Predecessor Features” algorithm marginally outperforms the
“ExpectedTrace” algorithm using a deep neural network approximation for the value function. There is only a slight
difference between the two algorithms, however it leads to a difference in performance. The y axis is returns on each
episode and the x-axis is the number of episodes the agent has experienced.

bottom row where a reward of 1 was received. Once the ball reached the final row, the episode was terminated. Every
episode lasted 6 time steps and restarted from the top row. The state space had 36 elements (|S| = 36), meaning the size
of the SR matrix was 36× 36. A column of the SR matrix was a 36× 1 sized vector and could be nicely reformatted to fit
the size of the Plinko board of size 6× 6.

In TD-PR applied to Plinko for value function approximation, after each step of each episode, the sample SR matrix is
updated and a column of the sample SR is used to propagate the TD-error to qualifying states. In convergence to the
true value function Figure 2 shows TD-PR outperforms TD(λ) for all parameter values. Note that the only parameter
value where TD(λ) initially outperforms TD-PR is when alpha-m, representing the learning rate for the sample SR, is
quite small (0.01), however it does converge to the optimal value function ahead of TD(λ). When applying the idea of
Predecessor Features and Expected Traces [3] to Deep RL in the Cartpole task (Figure 2b), the minor difference in our
algorithm shows slight improvements in learning.

6 Discussion

We propose a new method, based on the SR, for assigning credit to preceding states. We show that this method can also
be implemented by learning the expected sum of discounted preceding states (or features) directly. This helps learning
performance of the value function in both accuracy and speed, and relates to the predictive representations hypothesis[6].
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Abstract

Offline training and online execution is a reinforcement learning framework in which agents are first trained offline in a
simulated environment, and then become operational online in the real environment. Offline training allows the learning
agents to exploit privileged state information through a mechanism known as asymmetry, which is commonly associ-
ated with actor-critic methods, and has the potential to greatly improve the learning performance of partially observable
agents if used appropriately. However, current research in asymmetric reinforcement learning is often heuristic in na-
ture, and verified through empirical evaluations rather than theoretical analysis. In this work, we develop the theory of
asymmetric policy improvement, and showcase a series of theoretically grounded value-based algorithms that are able
to exploit privileged state information in a principled fashion, and often with formal convergence guarantees. These
algorithms range from Asymmetric Policy Iteration and Asymmetric Action-Value Iteration, two exact model-based
dynamic programming solution methods; to Asymmetric Q-Learning, a model-free reinforcement learning algorithm
which introduces stochastic incremental updates; to Asymmetric DQN, a very practical state-of-the-art model-free deep
reinforcement learning algorithm. We complement our theoretical analysis with an empirical evaluation performed on
environments specifically selected to exhibit significant partial observability, which require both information-gathering
strategies and memorization of the past, and which could not be solved by reactive agents, or without learning appro-
priate representations of the past. The results confirm the strength of our proposed Asymmetric DQN algorithm, which
achieves better performances and/or converges faster than other related baselines, and further confirms issues associated
with other common forms of asymmetry.

Keywords: Reinforcement Learning, Partial Observability, Offline Training,
Privileged Information, Asymmetry, DQN.
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1 Introduction

Offline training and online execution (OTOE) is a modern reinforcement learning (RL) paradigm in which a learning
agent is trained offline (i.e., in simulation) before becoming operational online (i.e., in the “real” environment). Advan-
tages of OTOE are broad and include operational safety guarantees, training speed, flexibility, and access to privileged
information, which is the focus of this work. OTOE has even become the paradigm of preference in some research cliques,
such as that of multi-agent RL, where it is often called centralized training and decentralized execution (CTDE).

Privileged information is data which is accessible during offline training, but not during standard online training and
execution. This can take different forms depending on the type of control problem that is being addressed, e.g., other
agents’ actions and observations in multi-agent RL, or the system’s state in partially observable RL (PORL). In OTOE,
access to this information is a temporary privilege, available only during the offline phase due to access of the simula-
tion’s internal state. Despite being not available during online execution, such information has the potential (when used
appropriately) to improve the agent’s overall training performance and, therefore, its future online performance.

In PORL, OTOE and privileged information is most commonly associated with actor-critic methods through a mecha-
nism called asymmetry. In actor-critic methods, two separate models are being trained: a policy model (representing the
agent’s behavior) and a critic model. Standard actor-critic can be said to be symmetric in the sense that both models re-
ceive the same information as input—in PORL, the agent’s history. In asymmetric actor-critic, this symmetry is broken by
providing the critic with privileged information, which is possible because the critic is exclusively a training construct.

On the other hand, asymmetry has yet to make the leap towards value-based methods, which typically involve training
a single value model Q̂ to estimate the optimal value function Q∗. Not only do value-based methods lack the duality of
actor-critic (i.e., two separate models through which to apply asymmetry), but the value model itself is also restricted by
the control problem to execute exclusively without access to privileged information. In this work, we first develop the
theory of Asymmetric Policy Iteration (API), and then incorporate elements of stochastic training and non-linear function
approximation which ultimately result in Asymmetric DQN (ADQN), the first theory-driven asymmetric value-based
OTOE algorithm that is able to exploit privileged information.

2 Background

POMDPs A partially observable Markov decision process (POMDP) is a discrete-time control problem represented by
tuple 〈S,A,O, b0, T,O,R, γ〉, where (a) S, A, and O are state, action, and observation spaces, (b) b0 ∈ ∆S is an initial
state distribution, (c) T : S × A → ∆S is a stochastic state transition function, (d) O : S × A × S → ∆O is a stochastic
observation emission function, (e) R : S ×A → R is a reward function, and (f) γ ∈ [0, 1) is a discount factor.

PORL Partially observable RL (PORL) is based on observable histories h ∈ H .
= (A × O)∗. Policies are ranked

based on how well they maximize the expected return E [
∑
t γ

tR(st, at)] and, without loss of generality, we focus
on deterministic policies. The action-value function Qπ is the solution to the Bellman equation Qπ(h, a) = R(h, a) +
γ Eo|h,a [Qπ(hao, π(hao))], and the optimal action-value function Q∗ is the solution to the Bellman optimality equation,
Q∗(h, a) = R(h, a) + γ Eo|h,a [maxa′ Q

∗(hao, a′)]. We define the general space of Q functions asQ .
= {Q | Q : H×A → R},

and use g(Q) to denote the policy which acts greedily on Q, i.e., π = g(Q) =⇒ π(h) = argmaxaQ(h, a).

History-State Value Functions Recent work in asymmetric actor-critic has employed the notion of a history-state action-
value function Uπ(h, s, a) [1, 2], which is the solution to the history-state Bellman equation Uπ(h, s, a) = R(s, a) +
γ Es′,o|s,a [Uπ(hao, s′, π(hao))] and is related to Qπ via Qπ(h, a) = Es|h [Uπ(h, s, a)]; also, U∗ denotes the value func-
tion associated with the optimal policy. Note that, while Uπ uses state context to represent more informed values, the
policy remains partially observable. We define the general space of U functions as U .

= {Q | Q : H×A → R}.
Operators We use operator notation, and avoid introducing different symbols for similar operators on Q and U by
overloading the respective symbols; the distinction remains clear from context, i.e., from the operator input/output.
Bπ : Q → Q, s.t. BπQ(h, a)

.
= R(h, a) + γ Eo|h,a [Q(hao, π(hao))] is the Bellman contraction with fixed point Qπ .

B : Q → Q, s.t. BQ(h, a)
.
= R(h, a) + γ Eo|h,a [maxa′ Q(hao, a′)] is the Bellman optimality contraction with fixed point Q∗.

Bπ : U → U , s.t. BπU(h, s, a)
.
= R(s, a) + γ Es′,o|s,a [U(hao, s′, π(hao))] is the Bellman contraction with fixed point Uπ .

E : U → Q, s.t. EU(h, a)
.
= Es|h [U(h, s, a)] is the expectation operator which converts a U function to a Q function.

Definition 2.1 (Mutual Consistency). We say that functions Q and U are mutually consistent iff Q = EU holds.

3 Asymmetric Value-Based PORL

Two fundamental issues make the use of states in value-based methods not directly possible: (a) action-value model
Q̂ may not access state information online; and (b) there is typically no other model for the purpose of offline training
which may access privileged information (akin to the critic in actor-critic methods). As such, value-based methods seem
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fundamentally incompatible with the notion of asymmetry and the use of privileged information. We resolve both issues
by employing an auxiliary history-state model Û used exclusively as a training construct through which to implement
asymmetry. Our ultimate goal is to train Û and Q̂ jointly so as to converge to the optimal value functions U∗ and Q∗.

3.1 Asymmetric Policy Iteration

Consider Asymmetric Policy Iteration (API), an iterative process which implements asymmetry by employing both history-
state and history values. API starts from arbitrary initial values and policy U0, Q0, and π0, and then uses the following
update rules to generate sequences Uk, Qk, and πk,

Uk+1 ← lim
n→∞

BnπkUk , (U-evaluation) (1)

Qk+1 ← EUk+1 , (Q-evaluation) (2)
πk+1 ← g(Qk+1) . (improvement) (3)

Theorem 3.1 (API Optimality). The sequences Uk, Qk, and πk generated by API converge to U∗, Q∗, and π∗ (proof omitted.)

Limitations While API is formally guaranteed to converge optimally, it also has significant practical limitations: (a) API
is a solution method which requires a model of the environment, as well as efficient and accurate methods to compute
the expectations in the U-evaluation and the Q-evaluation steps. (b) A practical approximation of the limit operator in
the U-evaluation step might itself require multiple iterations to achieve an adequate precision. (c) API requires tabular
modelsU andQ, which is not only impractical given that the space of histories grows exponentially with episode lengths,
but also makes it not applicable to control problems which have continuous observations or states. (d) Perhaps most
importantly, API does not offer any practical advantage compared to its non-asymmetric counterpart Policy Iteration
(PI) [3]. Ultimately, both API and PI converge to the same optimal value function Q∗; if anything, API requires more
memory and computation to achieve the same goal, resulting in a less practical solution method.

Why API? In light of the above limitations, what is then the purpose of API? We argue that API plays two crucial roles:
(a) To show that privileged state information can be properly integrated into a value-based solution process while main-
taining formal optimality guarantees. This theoretical aspect is often overlooked in modern asymmetric RL research and,
to the best of our knowledge, API represents the first theoretical guarantee of this kind for value-based PORL. (b) To serve
as a basis for other algorithms—such as the ones discussed next—that do provide practical advantages compared to their
non-asymmetric counterparts. Next, we sequentially relax various aspects of API and develop asymmetric value-based
algorithms that address each of API’s limitations.

3.2 Asymmetric Action-Value Iteration

The first limitation of API which we address is the presence of the limiting operator in its U-step, which makes practical
implementations inefficient and/or approximate. To this end, consider Asymmetric Action-Value Iteration (AAVI), an eager
variant of API which uses the following update rules,

Uk+1 ← Bg(Qk)Uk , (U-evaluation) (4)
Qk+1 ← EUk+1 . (Q-evaluation) (5)

Compared to API, the improvement step has been folded in the U-evaluation step, also removing the need for an explicit
policy representation. Further, the U-evaluation step has been simplified to apply operator Bg(Qk) a single time.
Theorem 3.2 (AAVI Optimality). The sequences Uk and Qk generated by AAVI converge to U∗ and Q∗ (proof omitted.)

3.3 Asymmetric Q-Learning

Like all dynamic programming methods, API and AAVI require an exact model of the POMDP environment. To bypass
this often unrealistic requirement, we consider incremental stochastic updates based on sample transitions. We define
Asymmetric Q-Learning (AQL) according to the following updates, where αk ∈ [0, 1] is a sequence of stepsizes,

Uk+1 ← (1− αk)Uk + αk(Bg(Qk)Uk + wk), (6)
Qk+1 ← (1− αk)Qk + αk(EBg(Qk)Uk + vk). (7)

Here, wk ∈ U and vk ∈ Q are zero-mean noise processes that represent the randomness in the environment and action se-
lection at iteration k. These processes are not statistically independent since they are computed using shared transitions,
and are actually related by the identity vk = Ewk. We note that AQL (as presented above) utilizes synchronous updates;
at each iteration k, the values associated with all tuples (h, s, a) are updated at the same time, each using an independent
transition (r, s′, o) ∼ Pr(r, s′, o | h, s, a). However, an asynchronous variant can also be formulated which updates a single
element of Uk and Qk, has the same optimality guarantees, and more closely resembles Q-Learning [4].
Theorem 3.3 (AQL Optimality). Assuming step sizes αk which satisfy

∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞, and mutually

consistent Q0 = EU0, then the sequences Uk and Qk generated by AQL converge to Q∗ and U∗ with probability 1 (proof omitted.)
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3.4 Asymmetric DQN

Our main algorithmic contribution is Asymmetric DQN (ADQN), an asymmetric variant of DQN [5] derived by introduc-
ing value function approximation to AQL. We first replace the tabular-lookup models U and Q of AQL with parametric
differentiable models Û and Q̂. In practice, these are implemented as deep neural networks whose architectures are cho-
sen on a case-by-case basis according to the structure of the states and observations emitted by the POMDP. To facilitate
the substitution, we must reformulate the update rules of AQL as squared-error losses to be minimized. Given a single
environment interaction (h, s, a, r, s′, o), the corresponding losses can be defined as

LÛ =
1

2

(
r + γ stop

[
Û(hao, s′, argmax

a′
Q̂(hao, a′))

]
− Û(h, s, a)

)2

, (8)

LQ̂ =
1

2

(
r + γ stop

[
Û(hao, s′, argmax

a′
Q̂(hao, a′))

]
− Q̂(h, a)

)2

, (9)

where stop is the stop-gradient function, which indicates that gradient calculation should not consider the enclosed terms.
The total loss LÛ + LQ̂ can be minimized with respect to the main parameters by a single backpropagation procedure.

When the function approximators are nonlinear (as is often the case for neural networks), training will fail if the gradient
updates are conducted on sequentially collected POMDP transitions, since the data are not i.i.d. [5]. The second critical
modification to AQL is therefore the adoption of experience replay [6] in order to decorrelate training experiences. Rather
than training on a sample immediately when it is collected, each POMDP transition (h, s, a, r, s′, o) is deferred to a first-in
first-out replay memory. Periodically, when it is time to train the networks, a minibatch of several experiences is sampled
at random from the replay memory; gradients for these samples are computed and averaged together to estimate the true
gradient of the joint loss LÛ + LQ̂, which in turn is used to improve the parameters.

Why ADQN? Having finally addressed the practical disadvantages of API, it is worthwhile to reconsider the “why“
question again, this time focusing on why one would prefer to use ADQN compared to DQN. Ultimately, the purpose
of both algorithms is to compute Q∗ through which optimal control can be executed, and both algorithms should in
theory converge to the same Q∗. Then, what is the advantage of ADQN over DQN? Similarly to the asymmetric actor-
critic case [1], the advantage is a practical one associated with the difficulties of learning an appropriate representation
of history φ(h), which is one of the major learning bottlenecks in PORL. History representations are sequence models
which require lots of data and computation. To make matters worse, the quality of the data used to train the history
representation in PORL is directly related to the quality of Q̂, which depends on the history representation itself, and it is
quite hard to bootstrap the training of a history representation when starting from a poor history representation. On the
other hand, learning an appropriate state representation φ(s) is much simpler due to the non-sequential nature of states.
Therefore, we expect Û to learn meaningful values faster in ADQN, without having to wait for a meaningful history
representation. In turn, because Û is a major component of the target for Q̂, we expect Q̂ to also learn faster.

3.5 State-Only Asymmetric DQN

Prior work in asymmetric PORL has sometimes adopted heuristic forms of asymmetry which uses state-only (i.e., history-
less) forms of value functions and critics which have been recently shown to be linked to fundamental theoretical and
practical issues [1]. These issues are inherently related to partial observability, include (but are not limited to) the in-
troduction of bias into the learning process, and may severely compromise the learning performance. Nonetheless, we
formulate a state-only variant of ADQN where Û is redefined to ignore histories, and the losses are redefined as

LÛ =
1

2

(
r + γ stop

[
Û(s′, argmax

a′
Q̂(hao, a′))

]
− Û(s, a)

)2

, (10)

LQ̂ =
1

2

(
r + γ stop

[
Û(s′, argmax

a′
Q̂(hao, a′))

]
− Q̂(h, a)

)2

. (11)

This state-only ADQN variant allows us to both confirm once again the issues generally associated with state-only value
functions, and to demonstrate the theoretical validity and practical advantages of our proposed history-state ADQN.

4 Evaluation

We compare the performances of DQN, ADQN, and ADQN-state in four partially observable navigation tasks which
exhibit significant levels partial observability and require both information-gathering strategies and memorization of
the past: Heaven-Hell-3 and Heaven-Hell-4 [7], Car-Flag [8], and Cleaner [9]. For each environment and algorithm,
we perform an independent grid-search over some hyper-parameters of interest, and select the combination of hyper-
parameters which results in the best final performance and learning stability (prioritizing final performance if necessary).
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Figure 1: Performance curves showing episodic returns averaged over the last 100 completed episodes, with statistics
computed over 5 independent runs. The shaded areas represent one standard error around the mean.

The results shown in Figure 1 confirm the theoretical analysis for both ADQN and ADQN-state. In all control problems,
ADQN is superior to DQN and ADQN-state in final performance and/or convergence speed. In Figures 1a and 1b
the contrast is particularly noteworthy, as only ADQN is able to solve the control problems at all, and is able to do so
optimally. In Figures 1c and 1d, DQN is also able to eventually solve the control problem, albeit converging slower than
ADQN. Finally, ADQN-state is suboptimal and performs worse than ADQN and/or DQN in all the control problems.

5 Conclusions

OTOE is a RL framework where agents are trained offline in a simulated environment, which allows for the possibility
of accessing privileged information which would otherwise be unavailable, like the partially observable environment’s
state. Asymmetry is a mechanism through which such privileged information is used during training, but is otherwise
unnecessary during online execution, and has the potential to greatly boost learning performance and efficiency, when
executed correctly. However, modern work in asymmetric RL tends to focus on unproven heuristics which lack a the-
oretical justification. In this work, we bridge this gap and develop the theory of asymmetric value-based RL. We first
derive the guiding principle of asymmetric policy improvement through API, a theoretical solution method with strict
optimal convergence guarantees. Then, we apply a series of relaxations to API which ultimately lead to ADQN, a prac-
tical and competitive deep RL algorithm. We perform an empirical evaluation of ADQN in a series of environments
which specifically selected to exhibit high levels of partial observability, which require memorization of the past, and
in which specific information-gathering strategies need to be executed. In these environments, ADQN achieves better
performances and/or faster than other baselines. Future work may focus on extending ADQN to the multi-agent control
case, which poses further learning challenges, and on finding applications where state-only ADQN may thrive.
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Abstract

Decision making under uncertainty necessitates complex computations which are traded-off with the need for efficiency.
This is particularly relevant in the context of experiments where individuals make a sequence of choices and previous
computations may be leveraged to support efficiency. However, it is an open question as to whether humans do indeed
reference the recent past, especially in complex environments where it is task-incongruent to do so (e.g. non-sequential
experiments). In behavioral economic experiments with randomized or unstructured choice sets, trial-level sequential
dependencies are generally assumed to be present only in motor or perceptual operations. Here, we explicitly model
trial-property-driven sequential effects in response time data in two data sets: intertemporal choice and risky and am-
biguous choice. We find evidence for widespread sequential effects. These effects are modulated by decision difficulty
and trial-level uncertainty in both tasks. Our results add to the growing literature demonstrating trial-level sequential
dependencies in higher-order cognition.

Keywords: sequential decision making; economics; Bayesian cognitive mod-
els; response time analysis

Acknowledgements

We thank Catherine A. Hartley for providing the intertemporal choice data. We also thank Michael D. Lee and Joachim
Vandekerckhove for helpful discussions.

RLDM 2022 Camera Ready Papers 70

70



1 Introduction and Background

When making decisions under uncertainty and with limited time, humans and animals must balance efficiency with
completeness. We have previously shown that humans exhibit ’spillover’ between adjacent trials in non-sequential deci-
sion tasks[1]. Here, we examine whether this effect is modulated by the relative properties of the decision computations
required on successive trials. Such effects could be the result of rational computational approaches – for instance if people
are showing sequential effects in nonsequential environments, it could be because they are trying to infer the underlying
Markov Decision Process (MDP) [4, 14]. While this idea has been studied extensively in lower-order decision making, it
is a major open question whether individuals reference recent history in higher-order non-sequential decision tasks [2].
This is conceptually distinct from notions of motor or perceptual perseveration, which may themselves also be present
during complex choice [1].

We therefore consider economic decision making in two non-sequential tasks: intertemporal choice (ITC) – decision
making under temporal uncertainty – and risky and ambiguous choice (RAC) – choice under immediate known (risk)
or unknown (ambiguous) uncertainty. A common method of measuring these constructs in behavioral economics is
through experiments: typically, individuals make a sequence of choices in a randomized choice set and are explicitly
instructed to treat each decision independently [8, 11]. The data is then analyzed as if each choice was indeed made
independently and not in sequence. Our previous work suggests that this may be a flawed assumption [1].

First we consider the cognitive processes involved in making decisions about immediate or temporal uncertainty. Popu-
lar theories of intertemporal choice suggest that decisions are in part informed by the deliberative simulation of potential
future outcomes [12]. These sorts of computations and simulations are expensive and time-consuming, so when succes-
sive decisions are made under time pressure and involve similar future dates and values it may be inefficient to construct
preferences anew on each trial [3]. We may further expect such re-using of computations or, more broadly, reference to
the past, as recent work suggests that neurons that code for value do so relatively (i.e. what has changed now com-
pared to what was seen before) [16]. Thus, taken together, individuals may act as though there are structured temporal
dependencies during decisions made in a sequence – even if those decisions are not explicitly related to each other.

The mechanisms that generate, or propagate these sequential effects are an open question even in perceptual and visual
working memory, where such task in-congruent sequential behavior has been studied extensively [5, 9]. Candidate
mechanisms include serial biases in attention [5] and efficient coding influences on working memory representations [9].

However, it remains unknown whether such ’spillover’ effects apply to choice behavior more broadly and, if so, whether
they are mediated by a general inclination to optimize speed/accuracy tradeoff in behavior, or by local uncertainty
about task demands. To address this question, we leverage our previously introduced methodology to test and account
for trial properties-driven sequential effects in such environments [1]. In our previous analysis, we observed that some
sequential effects were driven by decision difficulty: they were present when the current trial was more difficult than
the preceding. In particular, we found that a subset of subjects were sensitive to relative changes in Expected Value (i.e.
when the previous trial had a large difference in Expected Value - “easy” - and the current trial had a small difference
in Expected Value - “hard”). However, decision difficulty in ITC tasks, for example, is potentially conflated with the
inherent uncertainty in receipt of future reward outcomes [7]. Here, we further extend our previous framework by re-
parameterizing the stimulus space (all potential trial properties) in a simpler fashion and present a re-analysis of the
intertemporal choice data in [1]. Then, we apply this approach to a newly collected risky and ambiguous choice task to
test directly whether relative changes in decision difficulty or uncertainty more generally drive sequential effects. Across
these datasets, we find evidence in favor of sequential effects, and in the RAC task, specifically that these effects are being
driven by a tradeoff against choice difficulty, rather than by a need to resolve contextual uncertainty.

2 Methods

2.1 Experiments and Data

Figure 1: An example ambiguous
trial from the RAC task, where the
subject has 3 seconds from stimulus
onset to make a choice between a
certain reward of $8 and a chance to
win $8.7 by playing the lottery.

Intertemporal Choice (ITC). We model n = 482 adult subjects who made a se-
quence of 102 binary choices between a same-day monetary reward (SS: “smaller
sooner”, range: $1 − $85) and a larger delayed reward (LL: “larger later”, range:
$10−$95; delay range: 4−180 days). All data were collected previously (for details,
see [8]). The experiment was fully randomized, with no experimentally-designed
trial-level dependencies. All stimuli were displayed numerically and counterbal-
anced so that the SS and LL options occurred equally often on either side of the
computer screen. Subjects had 6s after stimulus onset to make a choice.

Risky and Ambiguous Choice (RAC). We model n = 98 adult subjects who made
a sequence of 196 binary choices between a certain reward (range: $3 − $9.5) and
a lottery (range: $5 − $24), in 4 blocks (Figure 1). The amount a subject could win by choosing the lottery was almost
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always larger than the certain reward, except during 16 catch trials. All data were collected on Amazon Mechanical Turk.
Lotteries were either risky (1/7) where the full probability distribution was presented graphically (win probabilities: 25%,
50%, 75%) or ambiguous (6/7) where partial information was presented (ambiguity levels: 15%, 40%, 60%, 85%). While
we did not design any trial-level dependencies, we ensured that 50% of successive trials increased in ambiguity, and
50% decreased. A risk trial followed by an ambiguous trial is considered as an increase in ambiguity, as risky trials are
unambiguous with respect to the probability of reward. Likewise, an ambiguous trial followed by a risk trial would be
considered a decrease in ambiguity. Further, we controlled for median risk/ambiguity levels, lottery reward, and fixed
reward across blocks. As with ITC, the stimulus options occurred equally often on either side of the computer screen.
Subjects had 3s after stimulus onset to make a choice.

No outcomes were realized over the course of either experiment (i.e no feedback after each choice other than a confir-
mation of the subject’s selection). However, the experiments were incentive compatible and a single trial was selected
at random, realized, and paid out at the end of the experiment as a bonus. For the RAC experiment, participants on
Amazon MTurk were paid 10% of their winnings to be consistent with pay rates on the platform.

We exclude any responses that were made in less than 300ms. We also exclude any missed trials and the trial immediately
after them from the following analyses.

2.2 Model

2.2.1 Baseline Models

We implement a hierarchical Bayesian drift diffusion model (DDM) to model response times using the Wiener module
[15] in JAGS [13]. That is, for subject i and trial j, we model observed response time as Wiener first passage time (wfpt)
distributed:

RTij ∼ wfpt(αi, τi, βi, δij)

Here, αi represents the subject-level threshold or boundary separation, τi is the subject-level non-decision time (processes
unrelated to the value-based decision process), βi is the subject-level bias (βi < 0.5 : bias towards immediate option in ITC
and towards the fixed option in RAC), and δij is the subject-and-trial-level drift rate (the rate of evidence accumulation).
We model all these parameters as hierarchical Normals in order to better capture individual differences [10]. For αi, τi,
and βi, we use the same prior and hyperprior specifications for both tasks, referencing [15] for mean hyperpriors and
using ’noninformative’ priors for the standard deviation:

µα ∼ Uniform(0.001, 3) µτ ∼ Uniform(0, 0.6) µβ ∼ Uniform(0.01, 0.99) σα, στ , σβ ∼ Uniform(0.001, 4)

We take a cognitive psychometrics approach to modeling the drift rate by allowing it to be driven by (combinations of)
trial properties. We keep the broad functional relationship between trial properties as dictated by behavioral economic
models of choice behavior (e.g. allowing an inverse relationship between the drift rate and delay for ITC). We also
normalize all stimulus properties such that they fall between 0 and 1. Then, for subject i and trial j:

δITC,ij = β0,i + β1,i · (valueLL,ij − valueSS,ij) + β2,i · delay−1ij (1)

δRAC,ij = β0,i + β1,i · (Expected ValueLottery,ij − Expected ValueFixed,ij) + β2,i ·Aij (2)

In Equation 2, the Expected Value of a choice option is given by EV = p · v, where p is the probability of reward and v
is the monetary value. For a risky trial, p is the percentage chance of winning reward. For an ambiguous trial, p = 0.5
as in [11]. A represents the degree of ambiguity of a given lottery. On ambiguous trials, this is the fraction of the lottery
that is occluded by the grey bar as seen in Figure 1. On risky trials, A = 0. Finally, we allow all drift rate decomposition
parameters (β0, β1, β2) to be hierarchical Standard Normals.

2.2.2 Sequential Effects

We build stimulus-driven sequential effects into each of the β terms on the drift rate decomposition and on the bias.
Specifically, as we only consider influence of recent history that is transient (1-trial-back), we incorporate relative changes
in stimulus values between the previous and current trial. For the ITC task, we consider successive trials that increase
or decrease in (objective) value difference, delay difference, and value x delay difference. For the RAC task, we similarly
consider value differences, ambiguity difference, and value x ambiguity difference. We use Indicator Variables to sub-
set sequences of trials that follow any of the above specified patterns, resulting in a 8-fold tiling of stimulus space for
both experiments. We then augment our baseline models by allowing these stimulus properties to exert linear additive
influences on the parameters of interest. For example, if we consider trials that increase in value from trial j− 1 to trial j:

β′0,ij = β0,i + γi · 1([Va,j − Vb,j ] > [Va,j−1 − Vb,j−1]) (3)
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We allow all sequential effect parameters to be hierarchical Standard Normals. We simultaneously assess the influence
of relative stimulus properties on all drift rate decomposition and bias parameters. Thus, in Equation 3, β0,i becomes
the sequential-effect-adjusted drift rate regression intercept for individual i and the indicator variable is 1 if there is
an increase in value difference from trial j − 1 to trial j. To answer our core question of interest, we test whether the
sequential effect parameters (e.g. γi) is non-zero using the Savage-Dickey ratio to approximate the Bayes Factor (BF). We
interpret any BF > 3 as evidence in favor of sequential effects.

3 Results

3.1 Drift Rate Decompositions

ITC Mean(CI) RAC Mean(CI)
β0 −0.66(−1.26,−0.06) β0 −0.72(−2.99, 0.37)
β1 3.45(1.19, 5.70) β1 0.84(−0.87, 6.14)
β2 2.34(−2.15, 6.84) β2 −0.02(−0.72, 0.67)

α 2.47(1.70, 3.24) α 1.87(0.97, 2.47)
τ 0.76(0.36, 1.16) τ 0.40(0.19, 1.14)
bias 0.51(0.39, 0.63) bias 0.50(0.38, 0.59)

Figure 2: Aggregate posterior means (95% Credible Inter-
vals) for Drift Rate decompositions and other DDM param-
eters. Note that these values represent the spread across in-
dividuals.

We fit a variety of different drift rate decompositions and
present DIC differences in two model comparisons be-
tween the decompositions presented in the Methods sec-
tion (Equations 1 and 2) that may be of particular interest
to the reader. For ITC, we report that our drift rate decom-
position that allows an inverse relationship between delay
and value, as generally given in economic models of tem-
poral discounting, outperforms the decomposition that
where both value and delay have directly proportional
relationships with drift rate (DIC

ITC,Inverse = 116886,
DIC

ITC,Direct = 11875). In RAC task, we report that the drift rate that only includes the Expected Value differ-
ence weight (β1) performs more poorly than the drift rate that incorporates all trial properties DIC

RAC,All = 21824,
DIC

RAC,EV Only = 22134).

We find that for the ITC task, subjects tend to accumulate evidence more quickly when the value difference increases
(β1), all else held constant. Similarly, subjects tend to accumulate evidence more quickly when the delay decreases (β2),
all held constant. Both make sense, as larger value differences might push individuals towards selecting the LL option,
and delayed rewards offered in the far future may not be worth the wait.

As in the ITC task, subjects appear to be sensitive to all trial properties in the RAC task. All else held constant, the
average subject’s drift rate increases as the Expected Value difference between choice options increase (β1). Subjects are
also sensitive to the degree of ambiguity, with drift rate decreasing with increasing ambiguity (β2) (all else held constant).
However, we highlight the credible interval ranges and note that there are considerable individual differences.

3.2 Sequential Effects
ITC Proportion RAC Proportion

value ↑ 1 value ↑ 0.80
value ↓ 0.998 value ↓ 0.93
delay ↑ 1 amb ↑ 0.05
delay ↓ 1 amb ↓ 0.01
v. ↑ d. ↑ 1 v. ↑ a. ↑ 0
v. ↑ d. ↓ 1 v ↑ a. ↓ 0.18
v. ↓ d. ↑ 1 v. ↓ a. ↑ 0
v. ↓ d. ↓ 0.84 v. ↓ a. ↓ 0.57

Figure 3: Proportion of subjects that demonstrated sequen-
tial effects (BF > 3) on any one of the drift rate decompo-
sition parameters or bias. Each row represents specific suc-
cessive trial properties (e.g. value ↑ subsets successive tri-
als that increased in value difference as noted in Equation
3). The top four rows can be thought of as “main effects” of
specific trial properties and the bottom four “interactions.”

We observed reliable trial-property-driven sequential ef-
fects on almost all sequences, regardless of task. Indeed,
for almost every possible combination of stimulus se-
quences, 100% of subjects showed evidence of sensitivity
to previous stimuli in the ITC task. Consistent with our
hypothesis, effects in the RAC task are more specific to
the combination of trial properties considered – in partic-
ular, most individuals show sequential effects when there
are relative increases and decreases in value.

In Figure 5, we list the posterior group-level means and
standard deviations of the sequential effect parameters
themselves for the RAC task only, omitting ITC results
due to space constraints. We find broad individual vari-
ability in terms of which parameters seem to be most sen-
sitive to sequential trial properties: while one subject may
manifest this sensitivity on the drift rate intercept parameter, another may see the same on multiple parameters.

We show this more concretely in the ribbon plots Figure 4. Indeed, we find variability in the magnitude and directionality
of sequential effects even when considering related sequences (value difference ↓ vs. value difference ↓ and amb. ↓ ).
For subjects that showed non zero sequential effects on successive trials that increased or decreased in value difference
regardless of ambiguity, we recovered these effects only on β1, the Expected Value difference parameter on the drift rate.
This serves as a sanity check of sorts, as reward value is explicitly weighted by β1 through Expected Value. Similarly,
for the handful of subjects that were only sensitive to relative differences in cross-trial ambiguity, we only recovered
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Figure 4: Sorted posterior 95% Credible Intervals of sequential effects on the drift rate Expected Value term (β1) when
successive trials (a) increase in value difference, (b) decrease in value difference, (c) decrease in ambiguity, and (d) de-
crease in both value difference and ambiguity difference. (Equation 2, RAC task).

effects on β2, the weight of ambiguity on the drift rate. For decrease in value difference and decreases in both value and
ambiguity difference, inferred Bayes Factors were near threshold (BFv = 2.97, BFva = 2.9).

4 Conclusion Properties β0 β1 β2 bias
value ↑ H0 −0.38(0.12) H0 H0

value ↓ NEE 0.45(0.11) NEE H0

amb ↑ H0 NEE −0.29(0.07) H0

amb ↓ H0 H0 0.32(0.09) H0

v. ↑ a. ↑ H0 NEE H0 H0

v ↑ a. ↓ H0 NEE 0.59(0.13) H0

v. ↓ a. ↑ H0 NEE NEE H0

v. ↓ a. ↓ NEE 0.5(0.16) H0 H0

Figure 5: Posterior sequential effect group means (γi) for
Risk and Ambiguity Choice Task. All numerical means and
standard deviations presented in a cell (mean (standard devi-
ation)) have a BF > 3 that they are non-zero. If instead there
is a H0 then we find evidence (BF > 3) in favor of the null.
Finally, if a cell contains “NEE” then the data does not con-
tain enough evidence to favor either the null or alternative
hypothesis (NEE: Not enough evidence).

Using a generative model and a simple parameterization
of trial properties, we have demonstrated that individu-
als are influenced by recent history during economic de-
cision making, even when it is task-incongruent to do so.
We do not argue that this influence is a conscious one, but
more specifically that these sorts of sequential influences
are fundamental to human cognition and information pro-
cessing, and thus ought to be explicitly accounted for. We
find near-ubiquitous evidence of sequential effects in the
ITC task. Our results from the RAC task showed more
specific sequential effects and suggest that these effects are
driven by relative differences in difficulty, and not neces-
sarily uncertainty (ambiguity). We further show that in
this task, explicitly incorporating trial properties into re-
sponse time modeling via drift rates is fundamental to re-
covering these sequential effects (Figure 5).

We also note the value of simple parametrizations of trial properties: by explicitly modeling only relative increases or
decreases, we were able to recover substantially more individuals who were sensitive to sequential effects. Thus, we
have found strong evidence of effects that are likely widespread and therefore should be explicitly accounted for in all
measures (Figure 3). Indeed, this could be one reason why task measures do not seem to correlate with each other or
have as good test-retest reliability as other measures like surveys [6].
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Abstract

An important challenge in current reinforcement learning research is finding ways to enable agents to learn more-quickly,
to help mitigate the need for large amounts of training. We introduce a novel technique to accelerate the rate at which
a reinforcement learning algorithm can learn a value function (VF) approximation. The technique involves keeping a
dynamic list of a relatively small collection of pathways through the state-action space. This list is periodically updated.
Pathways are selected for inclusion based on the frequency with which they are traversed by the agent as it learns.
Whenever the agent follows one of these pathways, as soon as it exits the pathway, a full backup of the VF estimates
along the pathway is performed. This means that state-action pairs which sit on these pathways have VF estimates
which rapidly lose any initial bias. The compute cost of doing these full backups is constrained by maintaining, at each
state-action pair on a stored pathway, an estimate of the value of leaving the pathway at that point.

We provide a theoretical analysis which demonstrates that our technique can, under appropriate conditions, significantly
accelerate learning compared to classical temporal difference methods, whilst creating only modest additional computa-
tional overhead. We also provide preliminary experimental results which corroborate our theoretical analysis. We posit
that the technique is effective because learning the approximate frequency with which transitions through the state-action
space are occurring is relatively quick and easy, compared to learning the VF itself. Once learned, however, information
regarding transition frequencies can be exploited in such a way that it is possible to more efficiently construct an accurate
VF estimate. The technique is most effective when an agent tends to favour certain regions of the state-action space,
although these favoured regions can change over time and do not need to be known in advance.

Keywords: Reinforcement learning, SARSA, Learning rate, Model-based
learning, Trajectory sampling
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1 Introduction

Whilst reinforcement learning techniques have recently shown considerable success on a range of complex problems
[5, 7], many of the most note-worthy successes have come about, in part, as a result of providing agents with enormous
numbers of samples on which to train. As a result, researchers are currently interested in identifying ways to enable
algorithms to learn more efficiently, and to make better use of training samples [3].

In this paper we propose a new and simple technique designed to increase learning efficiency. We introduce the tech-
nique as an extension to tabular SARSA, however (as discussed below) the technique can be extended to cases where
value function (VF) approximation is used. We will: (a) introduce an algorithm, SAR-σ, which formally implements
our technique; (b) provide theoretical results which demonstrate that SAR-σ has only modest computational complexity
compared to SARSA, and that it will, given a fixed policy, converge to an accurate VF estimate considerably faster than
SARSA under appropriate conditions; and (c) provide preliminary experimental results to corroborate our theoretical
results. We also provide a motivational discussion where we explain the intuition behind our proposed technique, and
compare it to related techniques in the literature.

The technique assumes that an agent will store a list of frequently-traversed pathways through the state-action space.
This list will be periodically updated. Whenever an agent begins to traverse one of these pathways, it delays updating
the VF estimate until it leaves the pathway, at which point it performs a full backup of the VF along the pathway it
has just traversed. These full backups have the effect of circumventing the often inefficient bootstrapping which occurs
when using temporal differences, allowing a more-rapid decay of the bias in the VF estimate along these pathways. The
technique has connections to a number of existing techniques in the literature, however it is arguably most closely related
to trajectory sampling [6] for model-based learning of a VF. Our method differs in that it tightly constrains the manner
in which full backups are performed, allowing us to provide guarantees around computational cost, and allowing easier
integration with function approximation methods. A key feature of our method is its reliance on measuring the frequency
of transitions to guide the manner in which full backups are performed. This heavy reliance on “visit frequency” makes
our method conceptually quite closely aligned with the class of methods which use visit frequency to guide how to
construct a VF approximation architecture in the case of large state or action spaces [2].

Let us use p(X) to denote the set of probability distributions over some set X . Formally, we define a Markov Decision
Process as a tuple (S,A,R,P , γ), where S and A are finite sets of states and actions respectively (generalisation to the
continuous case is possible but beyond our current scope), R : S × A → p(R) is a reward function, P : S × A → p(S) is a
transition function, and γ ∈ [0, 1] is a discount factor. A policy is a mapping π : S → p(A). We have a sequence of iterations
t ∈ {1, 2, . . .}. At each t an agent is in a particular state st ∈ S. The agent samples an action at from the distribution
π(st) for some policy π. The agent then transitions to a new state st+1 sampled from P (st, at), and a reward rt sampled
from R(st, at) is generated. Our overarching formal objective is to design an algorithm which will find a policy which,
assuming s0 is sampled from some predefined element of p(S), maximizes expected discounted reward.

2 The SAR-σ algorithm

Transition diagram, fixed π
Width of each arrow corresponds

to estimated probability of transition-pairs

Set of transition-pairs in V
Those transition-pairs with largest probabilities are

added to V (in blue, V = 3), avoiding cycles

Possible pathway and update rules
Update rules depend on whether the agent is in,

outside, or leaving the set V

s1

s2

s3

a1 a2 a3

Figure 1: Example of construction by SAR-σ of frequently visited pathways, |S| = 3 and |A| = 3.

In this section we outline a new algorithm, SAR-σ, to formally implement our proposed technique. SAR-σ is equivalent
to tabular SARSA, however with some additions. In implementing our technique, we do not explicitly store a list of
frequently-traversed pathways. We instead store a list V , of fixed size V , of the most frequently-occurring transition-pairs,
defined as state-action-state-action 4-tuples. Exploiting the Markov property, our list of “frequently-traversed pathways”
will be implicit, and will be taken to be any pathway which can be constructed from elements of the list V of transition-
pairs (we do not need to explicitly construct the implicit list of frequently-traversed pathways at any point). We apply
a constraint so that the list V cannot include any set of transition-pairs which would result in a cyclical pathway. This
ensures that any individual implied pathway will not exceed length V . After every ν iterations, where ν is a parameter
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Figure 2: (a) Mean squared error over 50 independent runs with a fixed policy, (b) Average reward over 50 independent
runs with an ε-greedy policy. Shaded regions, for V = 0 and V = 100, indicate one standard deviation.

which is typically large, we replace V with the V transition-pairs with the highest estimated probability under the current
policy. An estimate P̂ of P can be constructed in a number of ways, however in this paper we have used an |S|×|A|×|S|
array to estimate P (keeping a count of each transition, suitably normalised, and with greater weighting given to recent
transitions). This array, in combination with π, provides an estimate for every transition-pair probability.

Algorithm 1 The SAR-σ algorithm. Called at each iteration t. Initialise L as empty and V arbitrarily. We use Π to
represent an estimate of the probability of some state-action-state-action sequence. It can be calculated using π and P̂ .

1: Select at according to some policy π (e.g. ε-greedy)
2: if t mod n = 0 then
3: Clear V
4: while |V| < V do
5: Find v = (s, a, s′, a′) /∈ V satisfying:
6: v has maximum probability ∀ (s, a, s′, a′) /∈ V
7: v, if added to V , will not create a cycle
8: Add v to V
9: ~Q(s′, a′)← Q̌(s′, a′)−

10:
∑

(s′′,a′′)∈S×AΠ(s′, a′, s′′, a′′)Q̂(s′′, a′′)
11: end while
12: end if
13: Ř(st−1, at−1)← Ř(st−1, at−1) +
14: η(R(st−1, at−1)− Ř(st−1, at−1))
15: vt ← (st−1, at−1, st, at)
16: if vt−1 /∈ V and vt /∈ V then
17: Q̌(st−1, at−1)← Q̌(st−1, at−1) +

18: η(γQ̌(st, at)− Q̌(st−1, at−1))
19: else if vt ∈ V then
20: Add (st, at) to front of L
21: ~Q(st−1, at−1)← ~Q(st−1, at−1)− ηQ̌(st−1, at−1)
22: else . Implies vt−1 ∈ V and vt /∈ V
23: while |L| > 0 do
24: l← pair at front of L
25: Q̌(l)← ~Q(l) +

26:
∑

(s′,a′):(l1,l2,s′,a′)∈V Π(l1, l2, s′, a′)Q̂(s′, a′)
27: Remove l from front of L
28: end while
29: ~Q(st−1, at−1)← ~Q(st−1, at−1) +

30: η(Q̂(st, at)− Q̌(st−1, at−1))
31: end if
32: Q̂(st, at)← Q̌(st, at) + Ř(st, at)

33: Update P̂ (e.g. using a count of transitions)

Like SARSA, SAR-σ uses a fixed step size η. The SAR-σ algorithm also maintains, for each state-action pair (s, a), a value
estimate Q̂, much like SARSA. However SAR-σ stores Q̂ separated into two terms, Ř and Q̌, where Ř(s, a) estimates
expected reward and Q̌(s, a) estimates the expected discounted value of the next state-action pair, so Q̂ = Ř + Q̌. For
each pair (s′, a′) such that (s, a, s′, a′) ∈ V , we also maintain an estimate ~Q. The value ~Q represents the state-action value
conditional upon the agent’s next transition being outside the set V . Storing this value is instrumental in curtailing the
computational cost of doing full backups, as it forms a temporary estimate of the value of “leaving” a particular pathway.
Details of how each of these values are updated is in Algorithm 1 (see also Figure 1).

3 Theoretical results

We make some comments on algorithm complexity. The time complexity of SAR-σ in each iteration will be O(V ) due to
the backup process described in (C) above, compared to O(1) for SARSA. However this very much represents a “worst-
case”. Provided that the pathways implied by V do not branch heavily, which is the situation we would expect to observe
more commonly in practice, the computational demands of SAR-σ will be close to SARSA. The more-complex operations
regarding the formation of V occur infrequently and so will not significantly impact processing time. If, to estimate P , we
store a separate value for every state-action-state sequence, then space complexity for SAR-σ will be O(S2A), compared
toO(SA) for SARSA. However this relatively large space complexity can be avoided by using function approximation as
well as more efficient techniques to identify high probability transitions (see below). The next result explores the increase
in learning speed realisable by using SAR-σ as opposed to SARSA. For simplicity we assume that P is available and note
that, in environments of sufficient complexity, an accurate estimate, P̂ , for P can be generated quickly compared to Q̂.
At iteration t we say that the agent is in V if (st−1, at−1, st, at) ∈ V , otherwise the agent is not in V .

2

(a) (b)
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Theorem 1. Suppose that π is a fixed policy and that ζ is the proportion of the time the agent is in V when following π. For
both SARSA and SAR-σ define J :=

∑
s∈S,a∈A Pr(s, a)(Q̂(s, a) − Qπ(s, a))2, where Pr(s, a) is the stationary distribution

induced by π. Suppose that P is available. Define τ0 and τσ as the number of iterations required such that J is less than
ε1 with probability at least 1 − ε2 for SARSA and SAR-σ respectively. Then, provided min{|Q̂(s, a) − Qπ(s, a)| : (s, a) ∈
S ×A} > 0 there exists ε2 > 0 such that τσ/τ0 ∈ O(1− ζ) as ε1 → 0.

Sketch of proof. The following captures the main ideas although omits several details. The proof relies on the fact that
(on average, and provided the agent tends to stay within V) bootstrapping will occur over longer sequences of states
and actions when using SAR-σ compared to SARSA. For SARSA, we can use continuous time ODEs to approximate the
behaviour of Q̂. Denote as Q̂t a continuous time analogue of Q̂ for t ∈ R+:

Q̂t(sτ , aτ ) =
∞∑

i=1




γiE (Rτ+i) +

E
(
Q̂0(sτ+i, aτ+i)−

∑∞
j=0 γ

jRτ+i+j

)
(γηt)i

(i− 1)!eηt︸ ︷︷ ︸
Error term





where Rτ := R(sτ , aτ ). (1)

This formula can be derived, for example, by starting with the ODE for an “episode” of length one:

dQ̂t(s, a)

dt
= η(E(R(s, a))−Q̂t(s, a)) to which the solution is Q̂t(s, a) =

(
Q̂0(s, a)− E(R(s, a))

)
e−ηt+E(R(s, a)) (2)

and extending this formula recursively to episodes of increasing length. We now examine the total error, J , which is
given by the sum over the second term in the right hand side of the above equation. We have:

J =
∑

s∈S,a∈A
Pr(s, a)



∞∑

i=1

E
(
Q̂0(sτ+i, aτ+i)−

∑∞
j=0 γ

jRτ+i+j

)
(γηt)i

(i− 1)!eηt




2

≥ C
( ∞∑

i=1

(γηt)i

(i− 1)!eηt

)2

=: J ′, (3)

where C denotes some constant. The series inside the brackets is the same as the expectation over a Poisson random
variable with parameter ηt, with a weighting (governed by γ) which has a value of one at the origin and decays geo-
metrically. Consider SARSA. In order for J to be small, ηt must be large (so the the mean of the corresponding Poisson
distribution is shifted a long way from the origin, and hence from larger weightings). Since ηt will large, and the major-
ity of the probability mass of the Poisson distribution will be for large values of i we can approximate the error using a
normal distribution with mean ηt and variance ηt. Accordingly:

J ′ ≈ C
(∫ ∞

0

e−γx
1√

2πηt
e−

(x−ηt)2
2ηt dx

)2

. (4)

Now consider SAR-σ. Define ρ := 1/(1 − ζ), the average number of iterations which pass before a single backup by
SAR-σ. If we assume that the number of states frequently visited is much smaller than 1/(1 − γ) and that ηt is large,
we can obtain an inequality for SAR-σ the same as that in equation (3) but with each coefficient γi replaced by a new
coefficient γρi, the inequality reversed, and a new constant c replacingC. In effect, we have scaled the weighting function
by a factor of ρ. It is then apparent that we have a bound on comparative error for SAR-σ and SARSA if, for SAR-σ, we
transform ηt so that ηt→ ηtρ = ηt/(1− ζ). This is the result for the underlying ODE. By assuming that η is small, we can
rely on Theorem 1.1 in Chapter 10.1 from [4] to ensure that the value of Q̂ will remain in a small region of the value of the
ODE for all t, a region defined by a normal distribution with variance a function of η. From this the result follows.

The result means that, as ζ approaches one (that is, the agent spends most of its time in V), then the samples required by
SAR-σ to converge becomes small compared to SARSA. Since V cannot contain transition-pairs forming a cycle we avoid
the degenerate case where ζ = 1. In fact the learning rate increase has an upper bound of O(V ). Note, of course, that in
many problem settings, reducing training iterations is a more critical concern than reducing compute time per iteration.

4 Experimental results

We have run preliminary experiments to provide some initial validation of our ideas.1 We define U as a uniform random
variable over the range [−1, 1]. The problem we examine here is a randomly generated environment with deterministic
transitions and with |S| = 1000 and |A| = 2. We assign R(s, a) = 1 + U for 20 randomly chosen state-action pairs and
R(s, a) = U for the remaining pairs. We set γ = 0.99, ν = 104, and initialised Q̂ uniformly randomly over the range
[−1, 1]. We have run two sets of experiments. In the first experiment we held π fixed, with π such that action 1 is selected
with 0.99 probability and otherwise action 2 is selected, and set η = 0.001. As Figure 2(a) illustrates, SAR-σ makes a
marked difference to rate at which VF error drops (SARSA is equivalent to V = 0). As expected, as V is increased, the

1All associated code and experimental data is available here: https://github.com/edwbarker/RLDM2022
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impact increases. In the second experiment we set η = 0.01 and applied an ε-greedy policy (ε = 0.01). As Figure 2(a)
illustrates, SAR-σ also improves performance. This is presumably because, if V > 0, the agent will have, as its policy
evolves, more rapid access to accurate VF estimates. This will aid the agent in selecting appropriate actions. The average
compute time per iteration, excluding the periodic updates to V , was approximately equivalent for all values of V .

5 Discussion and related methods

SAR-σ exploits the fact that state-action pairs which are visited with high frequency will contribute more to total error (as
measured, for example, by J) than state-action pairs which are visited infrequently. It learns which transition-pairs occur
most frequently, which is much easier to learn than the VF itself since it does not depend on multiple complex pathways
through the state-action space. By performing full backups on pathways composed from these transition-pairs, SAR-σ
can generate accurate estimates on these pathways with far fewer samples. Conversely, by performing full backups on
only these pathways, and using ~Q to summarise the effect of leaving a pathway, SAR-σ avoids the computational cost
associated with doing full backups. The selection of V is important. If V is too large, then the backups will become
computationally expensive, and if V is too small, then the full backups may confer little advantage. As Theorem 1 makes
clear, the technique is better suited to situations where an agent tends to spend the majority of its time in a relatively
limited region of the state-action space, though this region can change, and does not need to be known in advance.

SAR-σ bears similarities with some other techniques from the literature. Insofar as SAR-σ performs updates over path-
ways, as opposed to relying purely on single-step bootstrapping, it bears a superficial similarity to SARSA(λ) and n-step
SARSA. These latter methods, however, use individual samples of the aggregate reward over pathways, and as such,
whilst they side-step the inefficiency involved in bootstrapping, the samples they collect may be subject to large vari-
ance, which may need to be compensated for by smaller step sizes. SAR-σ is arguably most closely related to the set
of model-based methods which seek to learn an estimate for P and then perform backups using this estimate [6]. What
differentiates SAR-σ from existing model-based methods (for example prioritised sweeping or trajectory sampling), how-
ever, is that SAR-σ uses transition probabilities in a strictly targeted way. In particular, transition probabilities are only
used to construct common transition pathways for the purpose of backups over small sets of state-action pairs. As such
one of the central challenges associated with model-based learning, which is the cost of doing backups, is addressed.
Since SAR-σ constructs, albeit implicitly, sequences of state-action pairs, and concentrates its learning on the behaviour
of the VF on these sequences, some connections can also be drawn to the concept of options [1]. However options must
either be pre-defined, or else are learned by using VF error as direct feedback, which is conceptually quite distinct from
the dependence of SAR-σ on transition probabilities.

SAR-σ can be generalised beyond the tabular case. For example, SAR-σ can be adapted to operate with aggregations of
states and actions, instead of individual states and actions, including where these aggregations are dynamically updated
[2]. When this is done, we can use SAR-σ to accelerate learning, even when the state and action spaces are very large.
In fact, starting from coarse state representations, estimates of visit frequency can be used to guide the creation of more
precise state representations, more precise representations of state-action pairs, and finally sequences of state-action pairs
(as with SAR-σ), all within the same linear, and therefore stable, approximation framework. It is not immediately clear,
however, how easily the technique could be applied to complex non-linear approximation architectures, such as deep
neural networks, although this would be an interesting direction for further research.
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Abstract

Intelligent agents are capable of transfer and generalization. This flexibility in adapting to new tasks and environments
often relies on representation learning and replay. Among these algorithms, successor representation learning and mem-
ory replay offer biologically plausible solutions. However, replay prioritization algorithms remain largely limited to
prediction errors. Here we propose PARSR (pronounced PARS-er), Priority-Adjusted Replay for Successor Representa-
tions, to address this caveat. Decoupling learning of the environment dynamics and rewards, PARSR can use prediction
errors from either representation learning or rewards to prioritize memory replay. We compare PARSR to prioritized
sweeping, Dyna, and a number of state of the art algorithms using replay and successor representations in cognitive
neuroscience.
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1 Introduction

Intelligent agents are capable of transfer and generalization. Imagine driving to a coffee shop to meet a friend. If we
encounter a blocked road, we are able to quickly adapt in choosing a new route that will get us there. Or if we decide
that a different coffee shop might be preferable, we can just as easily change course.

To accommodate this flexibility to changes in the environment, contemporary reinforcement learning algorithms often
rely on representation learning and replay [1, 2, 3, 4]. Learning flexible yet compact representations of the environment
allows us to adapt to changes in its rewards, and replay enables us to adapt to changes in transition structures without
the need for significant amounts of further real experience.

One such algorithm proposes a biologically plausible solution [5], combining successor representation (SR) [6, 7] for rep-
resentation learning supplemented by memory replay (inspired by Dyna architectures [8]). This algorithm, Dyna-SR for
short, captures human behavioral accuracy and reaction times across a number of tabular tasks. A key advantage of the
Dyna-SR algorithm is that it is almost as flexible a model-based RL algorithm, while at decision time it is almost as inex-
pensive as model-free RL. By caching multi-step trajectories of states offline, Dyna-SR remains more flexible than MFRL
and SR alone, while avoiding MBRL’s high cost of rolling out entire state-action-state-reward trajectories at decision time.

As a caveat, the replay prioritization in current implementations of Dyna-SR focus on more recent memories for effi-
ciency. While this heuristic may capture certain aspects of human memory recall [9], previous work in cognitive neuro-
science suggest human-like replay may be better modelled by an error-based replay prioritization [10]. Thus, here we
extend the scope of algorithms combining representation and replay, using both reward-based and representation-
based errors for replay prioritization. While current approaches remain largely limited to tagging memories with re-
ward prediction errors (PE) for priority [11, 12, 13, 14, 15], our proposed algorithm is inspired by Dyna-SR but can
prioritize replay using either reward PE and successor PE.

We propose PARSR (pronounced PARS-er), Priority-Adjusted Replay for Successor Representations, which improves on
Dyna-SR offering more human-like replay prioritization with no effective increase in hyperparameters. As an SR-based
algorithm, PARSR learns a representation of the transition structure (i.e., the environment dynamics) and the reward
structure separately, allowing either to be quickly relearned for greater generalization. Critically, by decoupling reward
and transition representations, PARSR can use the prediction errors from either to prioritize memory replay.

We propose two variants of PARSR based on the choice of prediction error: M-PARSR (prioritizes memories using suc-
cessor PE) and Q-PARSR (prioritizes memories using value PE). This prioritization for memory selection distinguishes
PARSR from Dyna-SR [5], which performs replay-enhanced SR learning with random memory selection with a recency
bias.

We test how well PARSR captures human behavior in small tabular experiments (with 6 states) [1] as well as a scaled
version of the experiments (with 121 states). We compare PARSR to a number of state of the art algorithms using replay
on simple benchmark transfer learning (or revaluation) tasks in cognitive neuroscience (Figs. 1a, 1b, 1c) and a scaled up
version of these tasks (Figs.1d, 1e, 1f). We find that PARSR matches human-like behavior as well as other algorithms’
efficiency in learning speed of the prioritization-based algorithms. To clarify differences among the solutions different
replay heuristics provide, we visualize which experiences are prioritized as more important to recall by different pri-
oritization algorithms (Fig. 1e). The code for implementing the algorithm and benchmark experiments is available at
https://github.com/s-a-barnett/PrioritizedSR.

1.1 Related work

Experience replay has been incorporated as a core part of many reinforcement learning algorithms, both in the tabular
setting [8, 16], and in deep reinforcement learning [17]. The use of prioritization based on prediction error as a heuristic
for faster learning has also been explored in both settings [11, 12, 13, 14, 15].

The successor representation was first introduced in [6], forming the basis for a number of algorithms in both tabular
and function approximation settings [1, 5, 18, 4]. It has also been studied for its neuroscientific plausibility in [7]. For
comprehensive overviews of the successor representation and its properties, refer to [19] and [2].

2 Algorithms

We focus on RL algorithms that integrate the advantages of both model-based planning (flexibility) and model-free
learning methods (speed). For a full treatment on the RL setting, we refer to the classic text by Sutton and Barto [20], in
particular Chapter 8. We use as baselines the Dyna-Q algorithm [8, 20] and prioritized sweeping (PS) algorithm [12, 11,
20], which interleave learning from real experience with learning from simulated experience, or replay, sampled from a
model learned from previous interactions with the environment. In the deterministic setting considered in this paper,
this model is a dictionary whose entries are state-action pairs, and whose values are the next state and received reward.
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While Dyna-Q and prioritized sweeping both exploit replay to integrate new experiences into their Q function more ef-
ficiently, they differ in their selection mechanisms: Dyna-Q samples past experiences uniformly from its model, whereas
PS selects experiences based on a queue ordered according to the magnitude of the temporal difference (TD) error on the
Q function that was recorded when the state was most recently encountered. This is then propagated through to states
that precede the replayed state, allowing the largest changes to flow backwards through the model. This approach is
consistent with human studies suggesting that larger prediction errors are followed by more offline replay, and offline
replay of predecessors of states tagged with prediction error is correlated with future revaluation behavior [10].

Algorithm 1 PARSR

1: Hyperparameters: Number of replay cycles n, explo-
ration parameter ε, SR learning rate αM , reward weights
learning rate αw, prioritization type PriType.

2: Initialize M(a, s, s′), w(s), Model(s, a) for all s, a and
PQueue to empty.

3: while True do
4: s← current (nonterminal) state.
5: Q← w(:)>M(a, s, :).
6: a← ε-greedy(s,Q).
7: Take action a; observe reward, r, and state, s′.
8: Model(s, a)← r, s′.
9: Q← w(:)>M(a, s, :).

10: a′ ← argmaxa′′(Q(s′, a′′)).
11: δM ←

[
1s + γM(a′, s′, :)−M(a, s, :)

]
. . SR (M )

prediction error.
12: M(a, s, :)←M(a, s, :) + αMδM .
13: w(s)← w(s) + αw

[
r −w(s)

]
.

14: if PriType is M-PARSR then
15: p← ‖δM‖
16: else if PriType is Q-PARSR then
17: p← δQ ≡ δ>Mw −w(s) + r . Q prediction error.
18: Insert s, a into PQueue with priority p.
19: loop n times
20: if PQueue is not empty then
21: s, a← first(PQueue).
22: else
23: s← random previously observed state.
24: a← random action previously taken in s.
25: r, s′ ←Model(s, a).
26: Q← w(:)>M(a, s, :).
27: a′ ← argmaxa′′(Q(s′, a′′)).
28: δM ←

[
1s + γM(a′, s′, :)−M(a, s, :)

]
.

29: M(a, s, :)←M(a, s, :) + αMδM .

Though replay alone improves an agent’s ability to relearn
local aspects of the task at hand, the representation of this
task (namely, the Q function) is inflexible inasmuch as it
can obscure the different kinds of changes that might take
place. This can lead to slower learning, and does not cor-
respond to the representations of such tasks used by bio-
logical agents [21, 19, 2]. To provide further flexibility, we
define the successor representation (SR) as the discounted
sum over expected future state visitations:

M(a, s, s′) = E
[ ∞∑

t=T

γt−T1(st = s′) | sT = s, aT = a

]
. (1)

The Q function can now be expressed as a linear combina-
tion of the SR and the rewards of each state, w(s′):1

Q(s, a) =
∑

s′

M(a, s, s′)w(s′). (2)

The SR is learned with its own TD update (algorithm 1,
line 11), and the weights are learned using a direct update
(algorithm 1, line 13).

In SR-based RL algorithms each experience simultane-
ously updates both the SR and reward weights, enabling
flexibility to changes in rewards (reward transfer). How-
ever, transition transfer requires updating SR for states
with reevaluated transitions, via real or replayed experi-
ence. Thus, combining the representational flexibility of
the SR with efficient forms of planning through replay
achieves both reward and transition transfer.

The Dyna-SR algorithm [5] is such a hybrid, sampling ex-
periences randomly with a recency-weighted bias in order
to update SR. However, we hypothesized that sampling
past experiences according to a prioritization schema,
similar to prioritized sweeping, could further improve
performance while still capturing human-like behavior.

We call this novel algorithm PARSR: Priority-Adjusted Replay for Successor Representations (algorithm 1 and Fig. 2,
changes from Dyna-SR in blue).

Unlike prioritized sweeping, which only relies on reward prediction errors (PE), PARSR can prioritize replay using PE
for either the SR or reward weights. When using the latter priority measure for PARSR we call this variant Q-PARSR, and
when using successor prediction errors (‖δM‖), we refer to the variant as M-PARSR. Each algorithm represents different
choices about what kinds of experience to prioritize, potentially leading to different behavior and training times.

3 Experiments

We evaluate the performance of both variants of the PARSR algorithm in comparison to other SR-based and
replay-based RL algorithms on revaluation tasks on different scales. Each experiment is evaluated over 10 seeds
with ε ∈ {0.1, 0.3, 0.5, 1.0}. The Six States (resp. Six Rooms) experiment is performed for 100 (resp. 10) runs per seed, with
10 (resp. 1000) replay cycles per timestep for each algorithm. Note that PARSR has the same number of hyperparameters
as other algorithms, so any improvement in human-like performance is not due to increased model complexity.

1We can extend this analysis to rewards defined on state-action pairs, w(s′, a′), and define our SR on 4-tuples as M(a, s, a′, s′).
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(a) Six States design.
(b) Six States human results.

(c) Six States model results (10 replay cycles).

(d) Six Rooms (121 states)
design.

(e) Six Rooms priority visualization, phase 2 of tran-
sition revaluation. (f) Six Rooms model results (1000 replay cycles).

Figure 1: Top row: structure and results for the Six States experiment, reproduced from Experiment 2 in [1]. In (a), numbered
circles denote different states, and arrows denote the unidirectional actions available at each state. For a given phase of a given
condition, trials begin only in the earliest-stage states that are displayed in the figure for that condition and phase. (b) shows the
proportion of participants in the human experiment (n = 88) who changed preference following the re-learning phase for each
condition. Participants show greater ability to transfer in the case of reward revaluation than they do for the transition or policy
conditions, though they are also capable of performing those tasks in some proportion. (c) reproduces these results for different
algorithms. Bottom row: results for the Six Rooms experiment. (d) shows the map of the Six Rooms environment, with white arrows
denoting “trapdoors” between rooms. (f) shows the revaluation scores for each model: all algorithms with the exception of PS attain
results that are analogous to those achieved by human participants in Experiment 2 of [1] (Six States). (e) shows the relative frequency
of the states prioritized during replay for the transition revaluation condition during phase 2. M-PARSR has a much narrower focus on
the bottlenecks between the rooms at which the revaluation is taking place, whereas Q-PARSR has a more uniform distribution over the prioritized
states despite nonetheless employing a priority queue. Both achieve similar performance in these tasks in spite of these differences.

3.1 Six States

We first reproduce and extend the results of Experiment 2 of [1], which we refer to as the “Six States” experiment. In this
decision-making task (in which, unlike Experiment 1, the participant takes actions at every step), participants complete
four games, each corresponding to a different experimental condition (Fig. 1a). The six states of the environment are
structured as a unidirectional, three-stage decision tree, where two actions are available at the first two stages and a
scalar reward is received at the terminal states in the final stage.

Each task is divided into three phases: one must pass each phase three times consecutively in order to progress to the
next phase. In phase 1, participants are trained on a specific reward and transition structure. In phase 2, a change in
either the reward or transition structure is changed, and participants learn about the changed structure without revisiting
the starting state. Hence, participants do not get to experience these new contingencies following an action taken from the
first stage. In phase 3, participants perform a single test trial beginning from the starting state, with the revaluation score
corresponding to the probability (over multiple experimental runs) that the participant changes their action in state 1
between the end of phase 1 and the single trial in phase 3. Results from a human study in [1] show a greater revaluation
score for the reward condition than transition or policy conditions, and no significant difference in revaluation between
the latter two. Revaluation in the control condition is significantly lower than all of these.

For both Experiments 1 and 2, we find that both variants of PARSR are able to capture the human revaluation behavior
in the task equally as well as Dyna-SR.
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3.2 Six Rooms

We wanted to investigate whether the findings from the Six States experiment scaled to tasks with larger state spaces.
To test this, we designed Six Rooms, a gridworld analog with 121 states. In this environment, the states in the Six
States experiment correspond to the centers of the six rooms, laid out in a similar structure to the smaller environment.
Unidirectionality is enforced through one-way corridors between each room, in order to retain the solution structure of
the smaller environment. Each of the conditions and phases of the Six States experiment can be defined analogously for
the Six Rooms domain.

Despite their similar latent structure, the Six Rooms environment represents a greater challenge for the agents since mov-
ing between the rooms requires a sequence of several actions, thus requiring more updates to the agents’ representations.
To successfully pass each phase, therefore, requires not only that the agent navigates to the correct state given its starting
state, but moreover that it do so using the shortest path. During phase 2, agents are initialized in the center states of the
second-stage rooms and are required to navigate to center states of the correct final rooms using the quickest path. This
matches the difficulty of the exclusion criteria across the four conditions.

Fig. 1f shows the results of the experiment for each algorithm. We observe that the revaluation scores for these tasks
match that of the human performance on the Six States experiment for all but Priortized Sweeping and most faithfully
by PARSR. This suggests that PARSR’s performance scales to more complex tasks with a similar latent structure. This
further offers the testable prediction that human behavior in the Six Rooms experiment should scale accordingly.

In Fig. 1e, we visualize the relative frequencies at which each state was prioritized by each algorithm during transition
revaluation (phase 2). We observe a difference between the two PARSR variants in their prioritization strategies:
while M-PARSR prioritizes replaying bottleneck states at which the revaluation is occurring, Q-PARSR’s prioritiza-
tion focus is more diffuse. Future work is required to test which conditions and tasks are best served by each priori-
tization scheme. For instance, adding meta-learning to PARSR could control which type of prioritization is appropriate
depending on the task at hand.

4 Discussion and Future Work

We have introduced PARSR: an algorithm that combines successor representation based learning with novel and neurally
plausible replay prioritization heuristics. PARSR’s two variants prioritize experience replay using either representation-
based or reward-based prediction errors. Both PARSR variants show human-like behavior on benchmark tasks with 6
states (Figs. 1a, 1b 1c) as well as as scaled tasks (the Six Rooms environment) with 121 states (Figs.1d, 1e, 1f). The latter
offers novel predictions for human behavior in scaled experiments.

In future work we will extend PARSR beyond tabular environments, as a deep RL algorithm with function approxima-
tion, similar to that of Prioritized Experience Replay [13]. In addition to extending PARSR to deep learning and more
complex environments, future work would investigate further the nature of the two prioritization signals in PARSR vari-
ants, e.g. to investigate sequence memory activations at given moments in the task [18]. Moreover, we have visualized
how error signals determine the relative frequency of prioritized experiences (Fig. 1e). Future work is required to inves-
tigate which problems are better served by which prioritization schemes. One solution is a novel algorithm combining
PARSR with meta-learning of a control parameter learned across tasks and environments that, given the problem at hand,
determines which PE signal is appropriate for efficient replay prioritization.
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arXiv: 2010.03934 [cs.LG].

[16] Long-Ji Lin. “Self-improving reactive agents based on reinforcement learning, planning
and teaching”. In: Machine Learning 8.3 (1992), pp. 293–321.

[17] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602 (2013).

[18] Marcelo G Mattar and Nathaniel D Daw. “Prioritized memory access explains planning
and hippocampal replay”. In: Nature Neuroscience 21.11 (2018), pp. 1609–1617.

[19] Samuel J Gershman. “The successor representation: its computational logic and neural
substrates”. In: Journal of Neuroscience 38.33 (2018), pp. 7193–7200.

[20] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, 2018.

[21] Edward C Tolman. “Cognitive maps in rats and men”. In: Psychological Review 55.4
(1948), pp. 189–208.

4

RLDM 2022 Camera Ready Papers 84

84



5 Appendix
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(a) M-PARSR
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Figure 2: Flowcharts for both variants of the PARSR algorithm. Components of the agent are in blue. Real experience (s, a, r, s′) is fed
into the priority queue, and used to update the reward weights w(s′) and successor representationM(a, s, s′) via temporal difference
learning. The priority queue returns simulated experiences (s, a, r, s′), which are used to provide further updates to the successor
representation. M-PARSR (a) prioritizes according to the successor representation prediction error (SR PE), whereas Q-PARSR (b)
prioritizes according to the reward prediction error (Reward PE). The reward weights and successor representation determine the
state-action value function Q(s, a) =

∑
s′ M(a, s, s′)w(s′), which in turn determines the policy for acting in the environment.
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Abstract

In this paper, we identify PAE-POMDP, a subclass of Partially Observable Markov Decision Processes (POMDPs) in
which the Markov assumption is broken due to the fact that actions have prolonged effects, often proportional to action
amplitude. This occurs in many practical scenarios involving homeostatic control, such as regulating blood glucose levels
by administering insulin. In this case, for example, the effect of administering a dose of medication is felt over several
hours.

We propose a simple approach to converting PAE-POMDPs into MDPs, enabling the use of existing RL algorithms to
solve such problems, without the need for explicit recurrence in the function approximation. We designed a simple toy
environment which allows us to define prolonged action effects for discrete and continuous action spaces. We demon-
strate the performance of our approach on this toy environment.
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1 Introduction

The formal paradigm for sequential decision making using Reinforcement Learning (RL) is the Markov Decision Pro-
cess (MDP), which assumes that the agent’s observations contain sufficient information to model both the immediate
rewards and the transition distribution to the next state. Real life problems frequently violate this assumption, due to
some sources of information being unavailable, or past information being relevant, resulting in partial observability.
In this setting, observations indirectly provide information about the state. Such problems are formalized as Partially
Observable Markov Decision Processes (POMDPs). Partial observability can be due to incomplete state information,
temporarily available information, perceptual aliasing and noise [1, 6].

A general model-free approach to solving POMDPs, regardless of the nature of partial observability, is to learn a policy
represented by a recurrent network [6]. While this approach handles the non-Markovian nature of the environment,
training the hidden state representation has its own challenges, especially in environments in which trajectories are very
long. An alternative approach is to use domain information in order to capture relevant information from the history in
hand-crafted features, eliminating the need for computationally expensive training of a recurrent policy. For example,
stacking frames from videos can capture information such as object velocity, which is not readily available in single
frames [2].

In this paper, we define a special type of POMDP, in which the process of defining good features and training can be
systematic and also less onerous computationally than in the general case. In particular, we study the case in which the
Markovian property is lost specifically because actions have a prolonged effect on the environment, beyond the time step
at which they were taken. We call this POMDP subclass Prolonged Action Effect POMDP (PAE-POMDP).

An example of PAE-POMDP is blood glucose regulation with injections of insulin. Once insulin is released in the blood-
stream, it will have a lasting effect on blood glucose until it is degraded. The magnitude and duration of the effect of a
fixed amount of insulin depends on idiosyncratic differences in individual metabolism (for example, insulin sensitivity
or degradation rate). In this setting, the insulin to be administered at the next step should be not only a function of the
current blood glucose, but also of the unobserved concentration of active insulin in the bloodstream. Note that the entire
insulin history is not relevant, only the residual active insulin.

While the problem of controlling a PAE-POMDP could be solved by usual POMDP means, more efficient solution meth-
ods can be used if we are willing to make some assumptions on the duration of action effects and their interaction. We
show that for the framework that we define, a PAE-POMDP can be converted into an MDP with a modified state space,
so all standard RL solution methods are applicable (instead of requiring recurrent networks).

In order to study this class of problems and associated solution methods in a clean setting, we define a small environment,
which is a PAE-POMDP and can be instantiated with both discrete and continuous actions. We show that our approach
of converting the problem into an MDP and then solving it is successful in this toy environment. The environment itself
should be a useful benchmark for future work in this area.

2 Related Work

Non-Markovian processes are commonplace in real-world applications of RL. A promising research approach for dealing
with this problem in the model-free RL has been to learn a flexible representation of the full observed history, which can
both account for deviations from the Markovian property and be beneficial under partial observability. The vast majority
of methods use recurrent networks to learn feature representation from a history of the observed state and/or actions.
The policy and/or value functions are then defined on top of these features. For example, the Deep Recurrent Q-Network
(DRQN) uses a Long Short-Term Memory (LSTM) architecture to integrate arbitrarily long histories of observations, in
order to estimate a policy robust to partial observability in the setting where Deep Q-learning would be used other-
wise [4]. One improvement over this model, described by Zhu et al. [10], is to include previous actions, in addition to the
observations, in the LSTM that serves as input to the Q-Network. Extensions to actor-critic algorithms have also been
proposed. For instance, the Deterministic Policy Gradient (DPG) algorithm has been augmented with LSTMs of previous
states and actions to yield Recurrent DPG [1]. Further work building on the DPG framework addresses the overestima-
tion problem in actor-critic methods by using Twin Delayed Deep DPG [5]. In summary, most methods to address partial
observability in deep model-free RL have included recurrent networks with memory to represent the observation and
action history. Here, we will use a complementary, memoryless and computationally simpler approach focusing on the
specific case where actions have a prolonged effect on the environment. This is similar to the memoryless approach taken
by Jonker et al. [9] to handle control delay in real systems. They showed that a memoryless algorithm designed using
knowledge of the source of partial observability (the delay) and its length outperforms SARSA(λ) without adding any
further computational complexity.
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3 Background

The typical formal framework for reinforcement learning (RL) is the Markov Decision Process (MDP). A MDP is a 5-
tuple (S,A, r,P, γ), where S is a (finite) set of states, A is a (finite) set of actions, P is the state transition probability
P(st+1 = s′|st = s, at = a), r : S × A × S → R is the reward function and γ ∈ [0, 1] is the discount factor. As the name
suggests, an MDP obeys the Markov assumption that future is in independent of the past given the present, which means
that transitions and rewards depend only on the current state and action and not on the past history.

A Partially Observable Markov Decision Process (POMDP) is a 7-tuple (S,A, r,P,Ω,O, γ), where Ω is the set of observa-
tions, O is the set of conditional observation probabilities, O(ω|s), also known as the emission function, and the rest of
the elements are the same as in an MDP. In a POMDP, the agent does not have direct access to the identity of the states,
instead needing to infer them through the observations.

While in a MDP, an agent which aims to act optimally with respect to the expected long-term return only needs to
consider Markovian policies, π : S × A → [0, 1], in a POMDP, policies need to either rely on the entire history of action
and observations, or to infer the hidden state from this history. In recent work, recurrent networks have become the
standard for implementing such policies. We call recurrent policy a mapping π : T × A → [0, 1] where T is the space of
trajectories τ = {(ot, at, rt)}Tt=0 of up to T time steps.

4 PAE-POMDP

In this section we introduce PAE-POMDP, a subclass of POMDPs in which an action’s effect lasts more than one time
step. This statement is a kind of forward view. From a backward view perspective, the state at a time step t is constructed
by super-imposing the effects of the actions from several preceding time steps. From the perspective of the agent, this
means that it needs to keep track of the history of actions over a preceding period of time. Note that action effects that
are simply delayed by a certain amount of time [9, 8] are a special case of this setup .

In general, this problem is no simpler than a regular POMDP, as an agent that keeps track of its history may need to
remember all the actions taken since the beginning of time. However, we are going to consider a more circumscribed
problem formulation which is relevant for situations such as administering medications. Specifically, we are going to
use a decay assumption inspired from the rate laws in chemical kinetics [7]. The rate law is a formal expression defining
the relationship between the forward rate of a chemical reaction and the initial concentration of the compounds. The
integrated rate law for a first order reaction depending on the concentration of a single reactant is defined as:

ln[A] = −kt+ ln[A]0

where [A]0 is the initial concentration, [A] is the concentration at time t and k is the rate constant. This type of law governs
for example insulin concentration which can be used to control diabetes [3]. This kind of natural phenomenon is common
in natural dynamical systems (e.g. heat dissipation or radioactive decay). If we consider the initial concentration as an
action, this equation can be viewed as describing the evolution of this action’s effect over time. By exponentiating both
sides, we can see that the future effect of an action is proportional to its initial magnitude, and it decays exponentially
over time. Hence, we will define a PAE-POMDP using these modelling assumptions.

One further specification relates to the way in which action effects compose with each other. For simplicity, we will
assume that action effects are additive and independent of each other, which means that we do not need to model
interactions.

More precisely, suppose the action at taken at time step t continues to change the future states of the environment for
κ ∈ Z+ time steps. The value of κ is environment specific and also depends on the amplitude of the action at. We will
also assume that the initial action effect will decay at a constant rate λ, which is specific to the environment. Formally, we
assume that a>t = λat. Note κ could e.g. be defined as the time interval necessary for at’s effect to fall below a threshold.
Here we implicitly assume that in such a case, the action’s effects can safely be ignored thereafter.

The observation of the agent at a particular time step can therefore be defined conditional on the current state and all
the past actions: ot+1 ∼ O(.|st, a<t). Note that although this is a generalized notation, not all the actions a<t that occurs
before t have an effect on ot+1 (only those within a κ window). Moreover, note that if action effects are additive, this
conditional probability distribution could be modelled as a sum of effects due to the actions. This assumption is less
important but lead to further computational gains (which we would like to investigate in future work).

5 Transforming PAE-POMDP into an MDP

If the amplitude of an action decays by a factor of λ for each of the κ time steps when it stays active, then at any timestep
t, the environment state is a function of a subsequence of the previous actions {a≤t}. We call this the effective action aE ,
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which is given by::

atE =

{
0 if t = 0

λa(t−1)E + at−1 otherwise
(1)

If we augment the state space of the original problemM with the effective actions, such that stE = (st, atE ), the Markov
assumption is once again restored and the revised MDPME = (SE ,A, r,P, γ) can be solved as a proxy of the original
MDP M. Note that ME and M only differ in the state space. Since we have access to ME we can use traditional RL
algorithms to solve it, including Q-learning, actor-critic etc.

In the experiments below, we will use Q-learning on the constructed MDP as a simple, memory-less baseline for solving
PAE-POMDP. We call this the effective baseline, a simple yet valuable way to compute a policy that avoids computationally
costly alternatives.

6 Experiments

6.1 Environment

Figure 1: Prolonged and Additive Action Effect. Prolonged Effect: Position (observed variable) does not change initially
in the absence of force (action). Unit force is exerted at t=3 followed by no force till t=40. But since velocity (unobserved
variable) keeps on changing under the previously exerted force until friction brings it to zero, position keeps on changing
too in the absence of any further force. Additive Effect: Forces exerted at t=41 and t=57 exhibit additive nature.

Although we were motivated in defining PAE-POMDP by the control system of glucose regulation with insulin injec-
tions, that problem has other complexities and sources of partial observability hampering the assessment of our ap-
proach. Hence, we created a toy environment, MoveBlock, where the only violation of Markovian property comes from
the prolonged effect of actions (Figure 1). The task is to move a block from its initial position to a final position on a slip-
pery surface with minimum possible effort. The only control available is force along the horizontal axis in the direction
of the goal. Due to the slippery nature of the floor, an exerted force will cause the object to move until it is stopped by
friction, prolonging the effect of actions over multiple timesteps. The reward system is similar to the Mountain Car envi-
ronment, where there is a penalty for every action proportional to its amplitude and a high positive reward for reaching
the destination. The discrete action space version has 11 action choices between [0, 10]. The observation is the position
(continuous) while the velocity remains unobserved to the agent. While a random policy will solve the task, the optimal
policy depends on the action history. An example of the action effects is depicted in Fig. 1.

6.2 Results and Discussion

We discretized the continuous position values and clipped the effective action value to the max action value. A tabular
Q-learning agent trained with ϵ-greedy exploration on this discrete domain serves as a baseline. As shown in figure 2a,
an effective baseline outperforming the Q-learning agent suggests it might be comparable to a recurrent baseline, even if
not at par. In figure 2b, we compared a DQN agent with an ADRQN [4] agent and an Effective-DQN agent. In addition to
the current state information, ADRQN takes into account the action history of a specific length. All the agents follow the
same state, action representation and Q-network architecture of a single hidden layer. In ADRQN, the fully connected
layer is replaced by an LSTM unit. Our results show that all the agents solve the task equally well. This performance is
justified given the history based policy only needed a history of length 1 to solve it. So, this experiment only concludes
that despite the presence of prolonged action effect, deep RL methods are capable of solving easy PAE-POMDP tasks
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(a) Tabular results (b) Function Approximation results

Figure 2: Performance on MoveBlock. (a) Move block for upto 50 units of distance. Tabular Q learning and our algorithm
combined with Q learning. Mean and std deviation of performance over 10 seeds. Performance is smoothed with a
window of size 1000. (b)Move block for upto 500 units of distance. Performance comparison of DQN, Effective-DQN
and recurrent baseline ADRQN. Solid line is mean and shaded region is standard deviation over 5 seeds. All curves
smoothed with a window of 100.

leveraging the representational capacity of neural networks. We need to compare the methods on a more difficult task,
such as the glucose control environment to be able to comment on the competency of the method.

7 Conclusion and Future Work

We have identified the PAE-POMDP subclass, and shown that an effective baseline can be devised to solve it. Tabular
results show that our approach is better than a Q-learning agent. However, we were unable to make any conclusion in
the function approximation setting when compared against a recurrent baseline. Adding a diverse set of environments of
varying difficulty level, such as a glucose controller, thermostat etc. where the actions are prolonged but the decay models
are different would also be useful, especially as it would allow us to evaluate how well the stated decay assumption
approximates real cases.
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Abstract

Sequential sampling models (SSM) are a powerful class of models used to summarize cognitive process dynamics un-
derlying decision-making in various task settings. In reinforcement learning (RL), while researchers typically assume a
simple softmax choice rule, more recently, studies have used the drift diffusion model (DDM), a popular SSM to jointly
model choice and response time distributions during learning (Pedersen, Frank, & Biele, 2017; Pedersen & Frank, 2020;
Fontanesi, Gluth, Spektor, & Rieskamp, 2019). Such an approach allows researchers to study not only the across-trial
dynamics of learning but the within-trial dynamics of choice processes, using a single model.

However, a practical problem in parameter estimation is the lack of closed-form likelihoods for a large class of models.
Such intractable likelihoods render typical Bayesian inference methods infeasible. Alternative likelihood-free inference
methods need to be invoked, which often tend to incur enormous computational costs, thereby limiting their applica-
tion. To enable Bayesian estimation for a broad class of RL-SSM models, we leverage the recently developed Likelihood
Approximation Networks (LAN) (Fengler, Govindarajan, Chen, & Frank, 2021). The LAN approach involves training
neural networks that learn approximate likelihoods for arbitrary generative models, allowing fast posterior sampling
with only a one-off cost for model simulations that are amortized for future inference. Once amortized, the approximate
likelihoods can be used for tractable inference via MCMC across arbitrary experiment designs, while allowing a much
larger class of SSMs to serve as the behavior generating mechanisms of reinforcement learning agents.

Using synthetic datasets, we show here, a proof of concept that this method can be utilized to estimate the true posterior
parameter distributions for the RL-DDM. Furthermore, we show accurate parameter recovery in hierarchical settings.
We conclude by proposing a LAN-based reinforcement learning extension to the widely used HDDM Python toolbox
(Wiecki, Sofer, & Frank, 2013), which would allow us to leverage LANs for arbitrary RL-SSM models.

Keywords: Sequential Sampling Models, Reinforcement Learning, Parameter
Estimation, Approximate Bayesian Computation
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1 Introduction

Hybrid computational models, combining the conceptual ideas of sequential sampling of evidence with reinforcement
learning models have greatly expanded the cognitive modeller’s toolbox in recent years (Pedersen et al., 2017; Fontanesi
et al., 2019). The main idea behind these models is to allow a reinforcement learning (RL) process to drive the trial-by-
trial parameters of a sequential sampling model (SSM) such as the basic drift diffusion model (DDM) (Ratcliff & McKoon,
2008), to jointly capture reaction time and choice behavior in complex tasks which involve learning from feedback (see
Figure 1). As a result, RL-SSM is a much more powerful and expressive class of models. It naturally lends itself for
use in computational modeling of numerous cognitive tasks where the ’learning process’ informs the ’decision-making
process’.

The combination of these two classes of models however inherits a shortcoming which plagues the world of sequential
sampling models to begin with. Great interest in model variants, such as models which move beyond 2-choice scenarios,
models which exchange the noise distribution (Wieschen, Voss, & Radev, 2020) in the diffusion, models which include
attractor dynamics (Usher & McClelland, 2001) as well as models which deal with non-constant evidence criteria (Cisek,
Puskas, & El-Murr, 2009), is contrasted with empirical data analysis being mostly limited to basic versions of the drift
diffusion model, which uses evidence criteria that are constant over time as well as a linear accumulation process per-
turbed by Gaussian noise. This state of affairs falls out of the simple analytic convenience provided by the basic DDM,
for which fast-to-compute likelihood functions (Navarro & Fuss, 2009) exist to make inference tractable, while no such
closed-form likelihood functions exist for most variations of interest.

Hence, while recent work has enabled the development of easy to use software to combine the DDM and RL (Pedersen &
Frank, 2020; Fontanesi, 2021), the natural extension to a combination of RL with a larger class of SSMs has been hampered
by the lack of easy to compute likelihoods. The main bottleneck is formed by the need for expensive model simulations
during inference, making statistical inference for such models intractable for anyone but highly computationally sophis-
ticated experts.

Recent advances in the field of likelihood-free inference (Papamakarios & Murray, 2016; Gutmann, Dutta, Kaski, &
Corander, 2018; Papamakarios, Nalisnick, Rezende, Mohamed, & Lakshminarayanan, 2019; Papamakarios, Sterratt, &
Murray, 2019; Lueckmann, Bassetto, Karaletsos, & Macke, 2019; Radev, Mertens, Voss, & Köthe, 2020; Fengler et al.,
2021), provide a suite of new tools that utilize the power of deep learning to improve the computational efficiency of
statistical inference in models which are accessible only via simulations (but lack a analytical likelihood function).

We leverage here one such tool, likelihood approximation networks (LANs) (Fengler et al., 2021), to bridge the gap
towards the application of a wider class of SSMs conjointly with RL. In this preliminary work, we provide a proof of
concept that LANs can be used fruitfully for this type of modelling.

In the ‘Methods’ section, we provide a brief description of the specific LAN that we employed and how it was trained.
The next subsection outlines the test bed which we use to generate the synthetic dataset and run parameter recovery.
The ‘Results’ section shows proof-of-concept parameter recovery and the results of our approach when applied to hier-
archical settings. We conclude by highlighting the significance/benefits of the proposed method and outlining the future
directions.

2 Method

2.1 Likelihood Approximation Network

We trained a multilayer perceptron with three layers to approximate the likelihoods, as per the procedures outlined in the
LAN reference paper (Fengler et al., 2021). The resulting network takes the data and model parameters (features during
training) as input and outputs trial-wise (approximate) log-likelihood values (labels, based on kernel density estimates of
empirical likelihood functions). The specific network used in this article was trained on 3× 105 parameter combinations
(with 2× 105 simulations of each run) of the drift-diffusion model using Pytorch (Paszke et al., 2019).

2.2 Test Bed

We test our method on synthetic datasets of the multi-armed bandit task. The experiment is a two-armed bandit task
with binary outcomes. The model employed a simple delta learning rule (Rescorla, 1972) to update the action values

qaction(t+ 1) = qaction(t) + α ∗ [r(t)− qaction(t)],
where qaction(t) denotes expected reward (Q-value) for the chosen action at time t, r(t) denotes reward obtained at time
t and α denotes the learning rate. As an initial benchmark to compare with analytical solution, we began with using a
LAN for the vanilla two-choice drift-diffusion model with three parameters - boundary seperation (a), non-decision time
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Figure 1: RLSSM - combining reinforcement learning and sequential sampling models.

(t) and drift rate (v). The trial-by-trial drift rate depends on the expected reward value learned by the RL rule. The drift
rate is therefore a function of Q-value updates, and is computed by the following linking function

v = (qaction1 − qaction2) ∗ s,
where s is a scaling factor of the difference in Q-values. In other words, the scaler s is the drift rate when the difference
between the Q-values of both the actions is exactly one.

Figure 2: Parameter recovery on synthetic datasets. The true group mean parameter values (used to generate the datasets)
are plotted on the x-axis. The recovered group mean parameter values are plotted on the y-axis. a is boundary separation,
t is non-decision time, alpha is the learning rate and v is the scaling factor for drift rate.
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3 Results

Figure 3: Hierarchical parameter recovery. Posterior distributions (denoted by caterpillar plots) of recovered parameters
of a dataset with 20 subjects. The black line corresponds to 90% highest density interval. The ground truth parameter
values are denoted by red crosses. Group mean and standard deviation are also plotted (for ex. see a and a std).

3.1 Parameter Recovery

For parameter recovery experiments, 50 synthetic datasets were generated using the RL-DDM model. Each dataset
contained 20 subjects with 500 simulated trials per subject. The mean and standard deviation of group parameters were
sampled from a uniform distribution over a reasonable range of parameters. The subject means were sampled from
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a truncated normal distribution, which was parameterized by group mean and standard deviation. The probabilities
of reward for choosing the action corresponding to the upper and lower boundary were 0.8 and 0.2, respectively. To
generate samples from the respective posterior distributions, we employed MCMC, specifically coordinate-wise slice
sampling (Neal, 2003) as implemented in the HDDM toolbox (Wiecki et al., 2013). Figure 2 shows parameter recovery on
the generated datasets.

3.2 Application to Hierarchical Settings

Figure 3 shows hierarchical parameter recovery on a sample dataset. We show that the inference method can be general-
ized to simultaneously estimate reinforcement learning parameters and decision parameters within a fully hierarchical
Bayesian estimation framework. The LAN-based inference was able to accurately recover individual and group level
parameters.

3.3 Posterior Predictive Checks

An important step in computational modeling is validating the model at hand. We check for model validity using
posterior predictive checks, which involves simulating data using estimated parameters and comparing observed and
simulated results. The simulated dataset was obtained by repeating the simulation process 500 times for each subject
in a sample dataset. To evaluate the choice proportion for best option across learning for observed and simulated data,
we bin the trials and plot 90% highest density intervals of the mean responses. Figure 4 shows mean response rate and
reaction time densities in simulated and observed datasets.

Figure 4: Posterior predictive checks. (A) Rate of choosing the best option across learning. Uncertainty in the generated
data is captured by the 90% highest density interval of the means across simulated datasets. (B) Density plots of observed
and predicted reaction time across conditions. RTs for lower boundary choices (i.e. worst option choices) are set to be
negative (0-RT) to be able to separate upper and lower bound responses

4 Conclusion and Future Directions

The present work serves as a basic proof of concept for the joint application of LANs for the estimation of RL-SSM models.
Given the encouraging results we plan on a number of extensions. Firstly, we incorporated LAN-based RL-SSM into the
widely used HDDM python toolbox (Wiecki et al., 2013), a step towards easy community access. This addition to HDDM
is also user-augmentable, so that researchers can test and ultimately share their own versions of RL-SSM models with the
community through HDDM. And as a next step, it also naturally lends itself to testing hypotheses regarding how neural
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dynamics correlate with learning or decision parameters, via HDDMnnRegression (Fengler et al., 2021). Second, we plan
to test our approach on a much larger bank of models ourselves. In the context of RL-SSM, we can e.g. test n-choice
multi-armed bandits, SSMs with dynamic decision bounds, SSMs with non-gaussian noise, opening the possibility for
richer tests of theoretical models that can be informed by neural dynamics. Lastly, on the RL side, we will also expand the
learning rules that can be immediately combined with SSMs, one goal being to determine how these improve or hinder
parameter identifiability for various combinations of RL and SSM agents.
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Abstract

Using function approximation to represent a value function is necessary for continuous and high-dimensional state spaces.
Linear function approximation has desirable theoretical guarantees and often requires less compute and samples than
neural networks, but most approaches suffer from an exponential growth in the number of functions as the dimensionality
of the state space increases. In this work, we introduce the wavelet basis for reinforcement learning. Wavelets can
effectively be used as a fixed basis and additionally provide the ability to adaptively refine the basis set as learning
progresses, making it feasible to start with a minimal basis set. This adaptive method can either increase the granularity of
the approximation at a point in state space, or add in interactions between different dimensions as necessary. We prove
that wavelets are both necessary and sufficient if we wish to construct a function approximator that can be adaptively
refined without loss of precision. We further demonstrate that a fixed wavelet basis set performs comparably against
the high-performing Fourier basis on Mountain Car and Acrobot, and that the adaptive methods provide a convenient
approach to addressing an oversized initial basis set, while demonstrating performance comparable to, or greater than,
the fixed wavelet basis. To aid in reproducibility, we publicly release our source code.1

Keywords: reinforcement learning, value function, wavelets, linear function
approximation
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1 Introduction

Representing a value function in reinforcement learning (RL) in continuous state spaces requires function approximation.
One approach is non-linear function approximation, where a neural network is trained to learn useful features from raw
observations. However, this class of methods requires many samples, large amounts of computation [1], and does not
possess theoretical or convergence guarantees [2]. Another common scheme is linear function approximation, where the
value function is approximated by a weighted sum of non-learnable basis functions. This results in simple algorithms and
an error surface convex in the weights, but still allows for the representation of complex value functions because the basis
functions themselves can be arbitrarily complex. The obvious question is then: which basis functions should one use?

Several fixed basis schemes have been introduced (e.g., [3–5]), all with the inherent disadvantage of a combinatorial
explosion that makes them unsuited to high-dimensional domains. Consequently, research has focused on either
constructing basis functions from data in both discrete and continuous state spaces, or selecting an appropriate set
from a fixed dictionary of candidate basis functions with the aim of producing basis function sets that are subexponential
in the number of dimensions. A third approach is adaptive methods (e.g., [6–9]), which are a hybrid of the above. Adaptive
methods create new basis functions that complement or replace an existing set of basis functions on which learning is
performed. They have the advantage in that they are online, which reduces the sample and computational complexity,
and do not require a large dictionary of candidate functions, since they add representation complexity incrementally.

We extend existing adaptive methods to basis functions based on wavelets, which are able to approximate functions
at various scales and locations, and which can be refined to build a more accurate representation where such detail is
necessary. We further prove that wavelets are both necessary and sufficient for function splitting approaches. We present
an algorithm for value function approximation that begins with a minimal set of basis functions, and only adds interactions
between different dimensions as required. We test our approach on Mountain Car and Acrobot and our results show that
a fixed wavelet basis is competitive with the high-performing Fourier basis [4]. Furthermore, the adaptive techniques
perform comparably to the fixed basis, while not starting out with a complete basis set.

2 Value Function Approximation

The reinforcement learning problem in continuous domains is typically modelled as a Markov Decision Process and
described by a tuple (S,A, P,R, γ), where S ⊆ Rd is a d-dimensional state space, A is a set of actions, P (s′|s, a) describes
the probability of transitioning to state s′ after having performed action a in state s, R(s, a) describes the reward received
for executing such a transition, and γ is the discount factor. The agent is required to learn a policy π mapping states to
actions that maximises the return (discounted future sum of rewards) at time t: Gt =

∑∞
i=0 γ

iR(st+i, at+i) [2]. Given a
policy π, RL algorithms often estimate a value function: V π(s) = Eπ

[∑∞
i=0 γ

iR(si, ai)|s0 = s
]
, where action a is selected

according to policy π. Linear value function approximation represents V π as weighted sum of n basis function Φ:
V π(s) ≈ w ·Φ =

∑n
i=1 wiϕi(s). This approximation is linear in the components of the parameter (or weight) vector, w,

which results in simple update rules and a quadratic error surface.

Basis Functions In function approximation, a basis is a set of orthonormal functions spanning a function space, such that
anything within that function space can be exactly reconstructed using a unique weighted sum of the basis functions.
Typically, we are interested in orthonormal bases for L2(R), the space of all finite square-integrable functions. In Euclidean
spaces, f(x) ∈ L2(R) implies

∫∞
−∞ f2(x)dx is finite, a property satisfied by all value functions with finite return. Formally,

if a basis is overcomplete (i.e. not all functions are orthogonal), then it is known as a frame.

A simple choice of basis function is tile coding [5], where the state space is discretised into tile basis functions that evaluate
to 1 within a fixed region, and 0 elsewhere. Although tile coding forms a basis, it restricts the value function to be piecewise
constant. Another approach is the polynomial basis [10], which sets ϕi(s) = Πdj=1s

ci,j
j , where each ci,j ∈ [0, . . . , n] and n

denotes the order of the basis. While orthonormal polynomials exist, simple ones are not, and may lead to redundancies in
their representations. A more common scheme is radial basis functions (RBFs) [3], where each function is a Gaussian with a
given mean and variance. RBFs have local support and are therefore well-suited to representing value functions with local
discontinuities. The Fourier basis [4] uses Fourier series terms as basis functions, setting ϕi(s) = cos(πci · s) where for order
n, ci = [c1, . . . , cd] is a vector of coefficients between 0 and n. The Fourier basis requires choosing just a single parameter
(the order) and in practice outperforms RBFs and polynomials on some common low-dimensional benchmarks [4].

The main shortcoming of these fixed-basis approaches is that the number of basis functions grows exponentially with the
dimension of the state space. This has led to feature selection approaches that use a fixed basis as a feature dictionary,
but only select a small subset of terms to compactly represent the value function. Ideally, such methods would allow
the function approximator to represent extra detail where necessary and handle local discontinuities. However, the
above basis function schemes are poorly suited to this: tile coding requires careful discretisation and can only represent
piecewise-constant functions, RBFs lack an obvious way of setting their centres and variances, and the Fourier and
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Figure 1: B-Spline wavelets of different (a) orders, (b) scales and (c) translations. In (d), the original function (purple) can
be represented as a weighted sum of its “children” functions. For clarity, these functions are not normalised.

polynomial bases produce functions with global support. We therefore require a new basis scheme suitable for general
function approximation that allows us to add spatially local basis functions to incrementally add detail to the value
function representation.

3 Wavelets

Through the use of a Fourier transform, we can represent any periodic function as an integral of sines and cosines with
varying frequencies. However, since sines and cosines have global support, the Fourier transform becomes cumbersome
when representing transient or local phenomena [11]. To deal with this issue, we can instead consider wavelets. Wavelets
are simply functions ϕ : R→ R, some families of which are compactly supported [12] (nonzero in a finite interval) allowing
us to model local phenomena. There are many types of wavelets but we focus on B-Spline father wavelets here, the first
three orders of which are given by:

ϕ0(x) =

{
1 0 ≤ x ≤ 1
0 otherwise ϕ1(x) =

{
x 0 ≤ x ≤ 1
2− x 1 ≤ x ≤ 2
0 otherwise

ϕ2(x) =





0.5x2 0 ≤ x ≤ 1
0.75− (x− 1.5)2 1 ≤ x ≤ 2
0.5(x− 3)3 2 ≤ x ≤ 3
0 otherwise

(1)

In practice, these functions are normalised to satisfy
∫∞
−∞(ϕ(x))2dx = 1. We note that the zeroth order B-Spline function is

also referred to as a Haar wavelet [13], and can produce functions equivalent to disjoint tile coding. We can scale (dilate)
an arbitrary wavelet of order n by multiplying the input x ∈ R by 2j to obtain ϕnj (x) = ϕn(2jx). We can further translate it
by k ∈ Z to obtain ϕnj,k(x) = ϕn(2jx− k). Some examples are shown in Figure 1. One appealing property of wavelets is
that they are refinable, meaning that they can be replaced with a weighed sum of smaller copies of themselves at regular
intervals. Concretely, as shown in Figure 1d, they satisfy the refinability equation:

ϕ(x) =
∑

k

wkϕ(mx− k) with m > 1, k ∈ Z (2)

We now prove that wavelets are both necessary and sufficient as a basis that obeys this equation.
Theorem 1. If one wishes to split a basis function ϕ(x) ∈ L2(R) (that is, the basis function is finite square-integrable) into a finite
number of smaller copies of itself such that the value function remains unchanged, using Equation 2 where m > 1 and k ∈ Z, with a
finite number of wk nonzero, it is necessary and sufficient to use a compactly supported father wavelet as ϕ.
Proof. The above conditions define a father wavelet function [14]. Further, Equation 2 is obeyed by all father wavelet
functions with refinement mask m [12]. If a father wavelet has compact support, it will have a finite dilation series.

3.1 Wavelets as a basis for linear function approximation in reinforcement learning

To construct the wavelet basis for RL, given a state space S ⊆ [0, 1]d, we choose a specific order n and scale j. For each
dimension of the state space, we create wavelets with scale j, order n and translations −n ≤ k < 2j . The full basis then
consists of all combinations (products) of d of these functions, such that each term has a unique dimension. This is a fixed
basis, providing a drop-in replacement for the methods described above. As an example, with d = 2, n = 1, j = 0, we have
state [s1, s2] and the atomic functions are {ϕ(s1 − 0), ϕ(s1 + 1), ϕ(s2 − 0), ϕ(s2 + 1)}. All pairwise products with distinct
dimensions yield Φ = [ϕ(s1 − 0)ϕ(s2 − 0), ϕ(s1 − 0)ϕ(s2 + 1), ϕ(s1 + 1)ϕ(s2 − 0), ϕ(s1 + 1)ϕ(s2 + 1)].

Adaptive Methods: This still has an exponential number of terms, however. To remedy this, we can start with a minimal
basis set and add extra resolution as and when necessary. This can be done using two atomic operations: splitting and

2
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combining. The former takes a feature ϕ and replaces it with its children, redistributing its weight among the children,
such that the value function remains unchanged. This allows each child’s weight to be updated individually, adding
more representational capacity. In the above example, if we were to refine Φ1 in dimension 1, we obtain the children of
ϕ(s1): ϕ(2s1), ϕ(2s1 − 1), ϕ(2s1 − 2) and multiply each child with ϕ(s2) to obtain 3 new functions, which would replace
Φ1. The second operation, combining, adds in products between different dimensions dynamically, instead of starting
with a full combination. Intuitively, this allows us to start with a decoupled basis set (with (n+ 2j)d terms as opposed to
(n+ 2j)d for a fully coupled basis), where interactions between different state variables are ignored, and only added in
when doing so would improve our approximation of the value function. For example, the initial basis set would simply be
Φ = [ϕ(s1), ϕ(s1 + 1), ϕ(s2), ϕ(s2 + 1)], and conjunctions could be subsequently added.

However, this raises a new question: how do we choose which functions to split and which to combine? One solution is to
estimate the usefulness or relevance of a candidate function as we learn the value function. We first define H(ϕ,E) =
T−1
T ||Ω||(1 − ϵ)

∑T
t=0 ϵ

(T−t)E(st)ϕ(st) where T is the sample count of ϕ (the number of times that ϕ was nonzero for a
given state), ||Ω|| is the size of the domain in which ϕ is nonzero and ϵ is a hyperparameter which controls how much
weight in the moving average is put on recent samples. We then extend the relevance measure of Geramifard et al. [8]
to obtain the relevance ρ(ϕ) = H(ϕ,E(st) = δ(st)) and the observed error O(ϕ) = H(ϕ,E(st) = |δ(st)|), where δt is the TD
error δt = R(st, at) + γV (st+1)− V (st). These quantities are estimates of the inner products ⟨ϕ, δ⟩ and ⟨ϕ, |δ|⟩, respectively.
Intuitively, functions with high relevances will be frequently nonzero in the presence of error and will thus reduce this
error when added to the basis set. Finally, we define C(ϕ)=̇O(ϕ)− ρ(ϕ) for convenience.

Using the above ideas of splitting, combining and relevance, we first present AWR (Algorithm 1), in which we start
with a full basis set at some scale and adaptively increase the scale for functions that have the highest C above some
tolerance. This is similar to the method proposed by Li and Zhu [9] (who used Haar wavelets, although the theoretical
analysis is more generally applicable), but we split based on the function relevance instead of using the coefficient
magnitudes. The next algorithm is IBFDD (Algorithm 2), which starts with a decoupled basis set and adds in interactions
(i.e. products) of different basis functions as the method progresses. Finally, we combine these two to obtain the
Multiscale Adaptive Wavelet Basis (MAWB), which simply starts with a decoupled basis set, and alternates between
IBFDD and AWR as learning progresses—either increasing the detail in a local region or adding in useful interactions.

Algorithm 1 AWR: Adaptive Wavelet Refinement
Require: Basis set F, s, δt, ρ(ϕ), T (ϕ), splitting tolerance τs.

for all Functions ϕ activated by state (s, a) do
Update ρ(ϕ), O(ϕ), T (ϕ) & ρ(ϕc), T (ϕc) ∀ children ϕc of ϕ.

end for
if C(ϕ) ≥ τs and C(ϕ) = maxk(C(ϕk)) then

Replace ϕ with its children in dimension d, ϕd
j,k, where d

maximises the average relevance of the children of ϕ.
end if

Algorithm 2 IBFDD: Incremental Basis Function Depen-
dency Discovery
Require: Basis set F, s, δt, ρ(ϕ), T (ϕ), combination tolerance τc.

for all ϕf = ϕgϕh s.t. ϕg, ϕh ∈ F, ϕf /∈ F and ϕf (s) ̸= 0 do
Update ρ(ϕf ), T (ϕf )

end for
if |ρ(ϕf )| ≥ τc and |ρ(ϕf )| = maxk |ρ(ϕk)| then

F← F ∪ {ϕf}
end if

3.2 Preliminary Experiments

In Figure 2 we demonstrate the performance of the wavelet basis on two tasks using Sarsa(λ). We see that, for Mountain
Car, the fixed B-spline basis with 36 terms in total is competitive with the Fourier basis with 36 terms. For Acrobot, most
methods do well, and again, the B-Spline basis is competitive with the Fourier basis. The adaptive methods generally
perform comparably to the fixed ones, while not needing to start with an exponentially sized basis set. We do note,
however, that using a decoupled basis (which is equivalent to MAWB with τc, τs =∞) often outperformed a coupled one,
motivating the need to investigate more complex environments. Finally, we show example value functions in Figure 3.

4 Conclusion

We introduced a linear function approximation scheme whose features are wavelet functions. We proved that the use
of wavelets is both necessary and sufficient to obtain a refinable basis of L2(R) that can perform multi-scale function
approximation. Preliminary experimental results demonstrate that wavelets are competitive with other fixed-basis
function approximation schemes.
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Figure 2: The performance of different basis functions on (a) Mountain Car and (b) Acrobot. α was chosen for each
basis function based on a small grid search to maximise the mean reward over the last 100 episodes. We use Sarsa(λ)
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Abstract

Successful behavior in the real world critically depends on discovering the latent structure behind the volatile inputs
reaching our sensory system. Our brains face the online task of discovering structure at multiple timescales ranging
from short-lived correlations, to the structure underlying a scene, to life-time learning of causal relations. Little is known
about the mental and neural computations driving the brain’s ability of online, multi-timescale structure inference. We
studied these computations by the example of visual motion perception owing to the importance of structured motion
for behavior. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve
multi-timescale structure inference. We derive an online Expectation-Maximization algorithm that continually updates an
estimate of a visual scene’s underlying structure while using this inferred structure to organize incoming noisy velocity
observations into meaningful, stable percepts. We show that the algorithm explains human percepts qualitatively and
quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and
illusory motion displays. It explains experimental results of human motion structure classification with higher fidelity
than a previous ideal observer-based model, and provides normative explanations for the origin of biased perception in
motion direction repulsion experiments. To identify a scene’s structure the algorithm recruits motion components from
a set of frequently occurring features, such as global translation or grouping of stimuli. We demonstrate in computer
simulations how these features can be learned online from experience. Finally, the algorithm affords a neural network
implementation which shares properties with motion-sensitive cortical areas MT and MSTd and motivates a novel class of
neuroscientific experiments to reveal the neural representations of latent structure.

Keywords: hierarchical structure, online learning, Bayesian inference, visual
perception, biological neural network
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Figure 1: Explaining perception of structured motion as online hierarchical inference. (a – e) Generative model of structured
motion. Our online algorithm inverts the generative model to simultaneously identify the underlying structure and to decompose
observed velocities into (latent) motion sources. See main text for details. (f – h) Demonstration of the algorithm by the example of
the Duncker wheel. (f) The Duncker wheel is a rolling wheel with only two visible point lights at the hub and rim. (g) Like humans,
the algorithm discovers a shared component for both lights (pink) and an individual component for the rim light (dark green). (h)
The lights’ velocities are decomposed into joint rightward motion and rim light-rotation. Brightness = time. (i – l) Classification task
of ambiguous motion scenes, analyzing behavioral data from [9]. (i) Human confusion matrix when classifying ambiguous motion
scenes as Independent, Global, Clustered, and Hierarchically nested motion. (j) Confusion matrix of the algorithm on the same trials
as [9]. The algorithm quantitatively explains human percepts and even captures the fine-structure in the confusion matrix. (k) For
this, we fed the value of λt at trial end into a logistic regression classifier (trained on the ground truth, not human responses), and
fitted the same choice model as [9], who had employed the ideal posterior on the full input trajectory. (l) Log-likelihood of human
responses under both models. Our algorithm explains human responses better for every participant. The results in panels (j) and (l)
are cross-validated.

Introduction

Real-world scenes feature rich spatial and temporal structure. Understanding this structure allows humans and animals
to make sense of their environment by organizing complex and often ambiguous sensory input streams into stable,
meaningful percepts. The emerging compressed representations benefit goal-directed actions and decision making. While
machine learning algorithms have been developed to infer the structure of large datasets offline [1], an understanding of
how biological agents discover structure online is only beginning to emerge [2].

We studied online structure inference across multiple timescales by the example of visual motion perception. Motion
structure, that is, statistical relations in velocities, carries essential information about the spatial and temporal evolution of
the environment. For instance, the features composing an object typically move coherently, or self-motion adds optic flow
to all observable velocities in a scene. To benefit behaviors such as navigation, tracking, prediction, and pursuit, the visual
system must decompose observable velocities, vt, (see Fig. 1a) into their putative latent origins, e.g., the observer’s self-,
shared flock-, and each bird’s individual motion (Fig. 1b).

Bayesian inference has provided a successful normative framework for understanding human visual motion perception in
spatially constrained (local) patches [3, 4] and for simple structures [5, 6]. For structured motion spanning multiple objects,
larger areas of the visual field, and longer timescales, however, a comprehensive theoretical description is only beginning
to emerge. Recent work [7] has introduced tree structures for the mental organization of observed velocities into nested
hierarchies, yet the inference process over structures had to be performed by a biologically unrealistic offline sampling
algorithm. Theory-driven experiments have revealed that the human visual system makes use of hierarchical structure
when solving visual tasks [8], and that aspects of motion structure perception can be explained by Bayesian structural
inference [9], yet the algorithms underlying the structure discovery remained elusive.

We address the questions of how the visual system solves the chicken-and-egg problem of parsing motion in a scene in real
time while simultaneously inferring the scene’s underlying structure, and how the involved probabilistic computations
can be performed by neural circuits. We propose an online Expectation-Maximization (EM) algorithm which leverages the
fact that instantaneous motion (e.g., the speed and direction of flocking birds) and a scene’s structure (e.g., the presence of
a flock) evolve on different timescales. We demonstrate that the derived algorithm replicates a range of psychophysics
experiments both qualitatively and quantitatively. Further, we present an implementation of the algorithm by recurrent
neural networks, which feature connection and response properties of cortical areas implicated in visual motion processing,
and propose a targeted experiment to test model predictions in neural recordings. Finally, we explore how the set of
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typical motion components, such as shared motion or grouping, which the algorithm draws upon when explaining the
structure of a scene, could be learned from experience on long timescales, rather than being given to it as a parameter.

Part of this work has been posted as a pre-print, https://www.biorxiv.org/content/10.1101/2021.10.21.
465346v1, which presents the derivations and results in detail. The simulation results on online learning of the motion
components are a new contribution.

Online hierarchical inference in a generative model of structured motion.

We build on the generative model of structured motion from [8] in which observable velocities, vt, are generated from
latent causes, st. The so-called motion sources, st, can have volatile speed and direction, and usually respect a temporally
more robust, tree-shaped motion structure: in Fig. 1c, graph connectivity defines how sources (nodes in the graph) affect
observable objects (black object outlines), and vertical edge length, called motion strength, λm, indicates the long-term
average speed of the associated source, sm. Sources are a-priori assumed to evolve as Ornstein-Uhlenbeck processes
in each spatial dimension (Fig. 1d, only 1 dim. shown) leading to stationary distributions, sm∼N

(
0, τs2 λ

2
m

)
. Observed

velocities, vt, are noisy versions of the sum of all ancestral sources in the graph with graph connectivity represented by
the component matrix, C (see Fig. 1d & e for illustration of 3 flocking birds). For most of the following, we assume that the
component matrix, C, is given and fixed, e.g., because it has been learned from experience.

We derived an online EM algorithm for simultaneously inferring estimates of the sources, st, and of the underlying
structure, λt, from a stream of observations, vt (assuming that time-constants and observation noise are fixed parameters).
Note that, with the component matrix, C, given, the motion structure is fully defined by λ. The derivation exploits
the different timescales of typical changes in st (volatile, E-step) and λ (stable, M-step). With mild approximations, we
obtained:

∂tλ
2
t = − 1

τλ
λ2
t +α⊙

(
µ2
t + fΣ(λ

2
t )
)
+ β with fΣ(λ

2
m) =

σ2
obs

τs ∥cm∥2
(
−1 +

√
1 + τs2 ∥cm∥2

σ2
obs

λ2m

)
, (1)

∂tµt = − 1
τs
µt + fΣ(λ

2
t )⊙CT ϵt with prediction error ϵt =

vt
σ2

obs
− C µt

σ2
obs

. (2)

Here, µ and fΣ are the posterior parameters of p( st |v0:t ) =N
(
µt, diag

[
fΣ(λ

2
t )
])

, ⊙ denotes elementwise multiplication,
α and β stem from a sparsity-inducing prior on λ2, ∥cm∥2 is the norm of C’s mth column, and we require that τλ > τs.
As common for online EM, eqn. (1) + (2) define a coupled dynamical system. Intuitively, the algorithm measures the
range in which the motion sources vary, ⟨s2t ⟩, to estimate the structure parameters, λ2

t , during the M-step in eqn. (1). At
the same time, during the E-step in eqn. (2), the system’s expected input, Cµt, leads to prediction errors, ϵt, which are
projected into the domain of sources, CT ϵt, and gated by fΣ(λ2

t ) for credit assignment. The E-step performs the velocity
decomposition conditioned on the scene’s structure which is inferred during the M-step. This is, to our knowledge, the first
online inference model of Bayesian motion structure perception.
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Figure 2: The model captures human motion direction repulsion and supports a neural implementation. (a – e) Simulations
of motion direction repulsion. (a) Motion direction repulsion is a systematic bias in the perceived angle between the motion of two
groups of dots moving linearly in an aperture. (b) We endowed the model with self-, shared and group motion (yellow, pink, and
green), as well as a noisy vestibular input signaling the observer’s stationarity. (c) The algorithm replicates the biphasic opening
angle-dependence of the bias measured by [10]. (d & e) We further make testable predictions for varying contrast (d) and speed (e)
of the 2nd dot group. (f) Recurrent network model implementing the online algorithm. (g) Proposed experiment to measure neural
representations of latent structure. Moving dots in several apertures follow our generative model (top). Different trials use different
fractions of shared and individual motion (bottom). (h) The model predicts that the fraction of shared motion in the stimulus can be
read out by a linear regression model (red points) which was only trained on a subset of trials (blue points).

2

RLDM 2022 Camera Ready Papers 104

104



a

1 3 5 7 9
Motion component m

1

3

5

7

Ve
loc

ity
 k

b Ideal C for presented data

1 3 5 7 9 11
Motion component m

1

3

5

7

Ve
loc

ity
 k

c Learned C at t = 100000 s

4

0

4

Co
mp

on
en

t C
km

0 100Time [1000 s]
4

0

4

C k
m

m=1d m=2 m=3 m=4 m=5 m=6

m=7 m=8 m=9 m=10 m=11 m=12

Figure 3: Learning of motion compo-
nents from experience. (a) Full structure
of presented velocities. From the available
features (global motion, counter-rotation, 8
individual motions) only a random subset is
presented at any time. (b) Theoretically opti-
mal C-matrix for this stimulus. (c) Learned
C-matrix. All components have qualita-
tively been identified (note that the sign and
m-order play no role). We gave the algo-
rithm two more components in C than re-
quired. These extra components have, as
expected, been left unused by the learning al-
gorithm. (d) Time evolution of all 12 motion
components during learning (one panel per
component m; one line per velocity k).

The algorithm explains experiments of human motion perception

Due to limited space, we here only present results on the Duncker wheel (Fig. 1f – h), motion structure classification of
ambiguous scenes (Fig. 1i – l; data from [9]), and biased perception known as motion direction repulsion (Fig. 2a – e; data
from [10]). How the algorithm replicates and explains these experiments is detailed in the figure captions.

Neural network model and proposed neuroscience experiment

Eqs. (1) and (2) rely on only linear and quadratic operations (by adding ϵt as a represented auxiliary variable). Following a
derivation similar to [11], who showed how up-to-quadratic dynamics of computational variables can be implemented by
recurrent rate-based networks, we devised a network model with biologically realistic neural interactions to implement
the inference algorithm. The network architecture is shown in Fig. 2f. The network represents (inferred) motion strengths,
λ2
t , and motion source means, µt, in a linear population code. The only variable not fitting into this framework is the

square-root function in fΣ which is thus represented by a dedicated neural population. The full derivation of the model
and a demonstration of its ability to implement the inference algorithm are provided in the bioRxiv preprint.

Motivated from the network model, we propose a new class of theory-driven neuroscience experiments to probe the
neural representations of latent structure. In each trial, moving dots, which follow the generative model from Fig. 1d&e,
are presented in several apertures, see Fig. 2g (top). Different trials use different fractions of shared and individual
motion, such that the expected dot speed, ⟨v2⟩∝λ2shared+λ

2
ind, is held constant across trials, see Fig. 2g (bottom). The

network model encodes λ2
t linearly in its neural activity, and thus predicts that the fraction of shared motion, defined

as λ2shared / (λ
2
shared+λ

2
ind), can be read out by a linear regression model. As shown in Fig. 3h, a linear regression model

trained on two fractions (blue points) correctly reads out also other fractions (red points).

Learning of common motion components on long timescales

Could the motion components, C, be learned from observations in an unsupervised manner? We derived a learning rule
for the matrix elements, Ckm, through gradient-based online EM. Since learning of the motion components, C, aims to
maximize the data likelihood beyond what could be explained by the sources, st, and the scenes’ structures, λt, learning
of C must evolve on long timescales. We think of it as lifetime learning of a set of features which commonly occur in
natural scenes. To keep the emerging components sparse and interpretable, we further have the freedom to impose a
regularizing prior, p(C), during learning. The full learning rule reads:

∂tC = ηC

[
1

σ2
obs

(
vt µ

T
t −C

(
µt µ

T
t +Σt

))
+

1

NC
∇C log p(C)

]
. (3)

This rule establishes the intuition to compare the observed covariance between inputs and inferred motion sources against
their expected covariance. Here, ηC is a small learning rate, NC weights the prior vs. the likelihood, and Σt=diag

[
fΣ(λ

2
t )
]

is the variance of the s-posterior.

In Fig. 3, we demonstrate, for the first time, online learning of hierarchically nested motion relations in a computer
simulation. Observed velocities are generated according to the model in Fig. 1d & e, with the nested graph structure
shown in Fig. 3a. The corresponding ground truth-component matrix is shown in Fig. 3b. At any time, a random subset
of the available components from Fig. 3b is present (average: 3 active components), and a new random structure is
drawn every 20 s. For the learning system, the component matrix is initially empty, i.e., C(t=0) = 0, and we provide two
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additional (empty) components to this matrix to test whether the algorithm finds a sparse, minimal solution. The system
evolves according to eqn. (1)–(3) for 100,000 s using the following regularizing prior:

log p(C) ∝ − 1

2l2

M∑

m=1

(
K∑

k=1

|Ckm|
)2

− 1

l1

M∑

m=1

K∑

k=1

|Ckm| . (4)

This prior facilitates motion components to remain small (L2 regularization of full components), and individual matrix
elements to be sparse (L1 regularization of Ckm). Furthermore, we add small, zero-mean exploration noise in every time
step during learning.

At the end of the simulation, all components were correctly identified, see Fig. 3c. The time evolution during learning is
shown in Fig. 3d for all M=12 components. The orange lines denote the K=8 velocities (k=1: darkest). A horizontal gray
line marks Ckm=0 (if visible). Global motion (m=1) and counter-rotation (m=7) are discovered quickly. The individual
components take more time.

Interaction of priors across timescales

All dynamic variables, that is, s, λ, and C, are softly constrained by prior distributions. We briefly discuss the modeling
assumptions arising from those priors as well as how the priors interact with another. On the fasted timescale of the
generative model, the motion sources, st, obey a Gaussian prior, p(sm) = N

(
0, τs2 λ

2
m

)
, which favors slow velocities and

is supported for modeling visual motion perception by experimental work [3]. On an intermediate timescale, motion
strengths, λ, are governed by priors from the family of scaled inverse chi-squared distributions leading to the constants
α and β in eqn. (1). For this work, we employed two members of this family: for all allocentric motion of objects,
that is, every λm except self-motion, we chose the scale-free Jeffreys prior, p(λ2m) ∝ λ−2m . This prior induces sparsity of
inferred motion structures by preferring vanishing motion components (λ2m=0) and interacts with p(sm) by setting its
variance. For self-motion, we chose a uniform distribution, p(λ2self) = const., capturing that frequent saccades and other
eye movements give rise to fast retinal velocities for all observables, vt. On the longest timescale, motion components, C,
follow the regularizing prior of eqn. (4) which has been discussed earlier. Notably, in interaction with p(λ2), this prior
resolves an invariance in the generative model: multiplying C with any constant can be fully compensated by dividing λ
by the same constant, thereby leaving p(v |λ, C ) unchanged. It is the exponential penalty on large components in p(C)
that counteracts the preference of λ for small values, thereby leading to the (now unique) equilibria observed in Fig. 3d.

Conclusion

We have proposed a comprehensive theory of online hierarchical inference for structured visual motion perception. The
derived algorithm decomposes an incoming stream of retinal velocities into latent motion components which in turn are
organized in a nested, tree-like structure. A scene’s inferred structure provides the visual system with a temporally robust
scaffold to organize its percepts and to resolve momentary ambiguities in the input stream. Applying the theory to human
visual motion perception, we replicated diverse phenomena from psychophysics and made concrete predictions for new
experiments. The algorithm afforded a recurrent neural network model motivating targeted neuroscience experiments to
reveal the neural representations of latent structure. Finally, we demonstrated in a computer simulation that also the set of
motion components could be learned online from experience.
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Abstract

For better or for worse, reward functions are typically designed through an ad-hoc process involving extensive trial and
error, in which an engineer tries different reward functions and observes how RL agents perform in their task. Trial-
and-error reward design is known to facilitate unsafe reward shaping [1, 2], wherein a shaped reward function changes
the optimal solution for the task with respect to the “true” reward function. Still, unsafely-shaped reward functions are
sometimes useful or even necessary since formulating an application as an RL problem remains non-trivial.

We put forth a proposal for studying a related question: can reward functions that have been designed by trial-and-
error be overfit to RL algorithms and hyperparameters? We define a reward function to be overfit when the function
is optimized (perhaps imperfectly) with respect to some distribution of learning algorithms, hyperparameters for those
algorithms, or environments, but is likely to be used or tested with a different distribution, resulting in a relative perfor-
mance drop compared to learning with other possible reward functions on this different distribution.

We propose two studies for assessing overfitting in trial-and-error reward design. First, we propose a computational
study to assess the risk and frequency of overfitting; second, we propose a user study which tests overfitting in ad-hoc
reward design with imperfect optimizers (humans!). Through these studies, we can explore whether reward functions
risk overfitting to the choice of RL algorithm (e.g., Q-learning, PPO, DDQN, or A2C), hyperparameters (e.g., learning
rate(s), number of episodes), or environment (e.g., discount factor, state distributions). We report some early results
wherein we provide evidence that the best-performing reward functions can vary with the discount factor (γ) and with
the choice of RL algorithm (between PPO, DDQN, and A2C).

It is notoriously difficult to assess RL contributions due to stochasticity in environments and intrinsic variance in the
algorithms and code [3, 4]. Overfitting in reward functions is equally a concern for RL reproducibility, as it can lead
to false comparisons between RL algorithms or to suboptimal performance. Reward functions are often defined once
through a trial-and-error process and subsequently reused by the community at large; if these reward functions are
overfit to the distribution at design time, future comparisons may be structurally disadvantaged. Ultimately, the work
proposed in this extended abstract aims to contribute to the RL reproduciblity literature by studying how the choice of
reward function complicates the assessment and comparison of RL methods.

Keywords: Reward Function Design; Evaluation; Overfitting
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1 Introduction

Reward functions are notoriously hard to design. In their quintessential introductory text on RL, Sutton and Barto
assert: “The reward signal is your way of communicating to the agent what you want achieved, not how you want
it achieved” [5]. Nonetheless, the practice of reward design almost never adheres to this adage.1 Sutton and Barto’s
statement implies that reward functions should often be sparse; in practice, this is rarely the case, since it can be hard to
learn from sparse signals. Instead, reward functions are typically designed through an ad-hoc process of trial and error.

One of the known, common problems with ad-hoc reward design is reward shaping. In reward shaping, the reward
function is overloaded to both communicate the underlying performance metric and guide an agent’s learning toward a
desired policy. However, ad-hoc reward shaping is known to be typically unsafe—meaning that a shaped reward function
is likely to change the optimal solution to a given reinforcement learning task [1, 2].

But, unsafe reward shaping is not the only concern when employing trial-and-error reward design. Using a series of com-
putational experiments and user studies, we plan to assess whether trial-and-error reward design also induces overfitting
of reward functions. We define a reward function to be overfit when the function is optimized (perhaps imperfectly) with
respect to some distribution D1 of learning algorithms, hyperparameters for those algorithms, or environments, but is
likely to be used or tested with a different distribution D2, resulting in a relative performance drop compared to learning
with other possible reward functions.

We propose a computational study to assess overfitting of reward functions by testing whether different reward functions
perform best for different instantiations of RL algorithms, hyperparameters, and environments. We have conducted a
preliminary study and have found evidence that reward function overfitting can occur when varying the discount factor
or algorithm. While this proposed study can assess the potential, risk, and frequency of overfitting in reward function
design, it uses a computationally-expensive grid search over reward functions and, as such, is rarely applicable to RL
practice. Instead, most reward functions are manually crafted through an ad-hoc trial-and-error design process.

As such, we also propose conducting a user study which assesses whether overfitting of reward functions is also a
concern in the presence of imperfect optimizers: humans. For this user study, participants should be given an RL task
where their goal is to train the best agent they can. The user must choose between different deep RL algorithms (A2C,
PPO, DDQN) and hyperparameters (e.g., the discount factor, learning rate(s), number of episodes, etc.), and must design
their own reward function. Analyzing the reward functions participants design will allow us to assess whether a different
choice of algorithm and hyperparameters can lead to relative underperformance. We have conducted a pilot study and
have found preliminary evidence of reward function overfitting in this setting.

From these studies, we will gain new insights into how reward functions affect the assessment and comparison of RL
methods. This abstract presents a blueprint of our planned studies and early results; we invite feedback and discussion.

2 Domain

Figure 1: The Hungry Thirsty gridworld domain.

We consider the Hungry Thirsty domain [6]: a 6×6 gridworld in
which an agent exists for a fixed time horizon of n steps. Food is
available in one randomly-chosen grid corner; water in another.
Some movement transitions are blocked by “walls” in the grid
(red lines in Fig. 1). At each timestep, the agent can choose one
of six actions: move (left, right, up, down), eat, or drink.

The agent’s goal is to have sated hunger for as many timesteps
as possible. If the agent has not eaten in the last timestep, it be-
comes hungry. However, the agent can only eat if it is not thirsty;
and, if the agent has not drunk in the last timestep, it becomes
thirsty with 10% probability. In this domain, the ‘true reward
function’ or score consists of non-zero reward for each timestep
when the agent is not hungry, e.g.,

∑n
t=0 1(¬H ∈ st), where st is

the agent’s state at time t, n is the length of the episode, and H is
a boolean predicate corresponding to hunger.

When the agent is thirsty, under the optimal policy the agent
navigates to the water or, if the agent is co-located with the water
tile, the agent drinks. When the agent is not thirsty, the agent
should either navigate to the cell containing the food or eat if
the agent is co-located with the food tile. A key property of this

1Even within this text, Sutton and Barto disregard this advice when designing a Dyna-Q+ agent. To encourage exploration, they
replace the reward function r with r + κ

√
τ , where κ is a hyperparameter and τ is the number of steps the agent has taken [5, p. 168].
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domain is that with just the true reward function, it is computationally challenging for many RL algorithms to find this
optimal policy due to the reward’s sparseness and the domain’s high stochasticity. However, shaping functions (i.e., by
rewarding the agent for learning to drink) let many RL algorithms solve this domain relatively easily.

3 Proposed Computational Study

rtrue(s) =





1.0 s = ¬H ∧ ¬T
1.0 s = ¬H ∧ T
0.0 s = H ∧ ¬T
0.0 s = H ∧ T

roptimal(s) =





1.0 s = ¬H ∧ ¬T
0.5 s = ¬H ∧ T
−0.01 s = H ∧ ¬T
−0.05 s = H ∧ T

Singh et al. [6] introduced the notion of an ‘optimal reward function’ as the
reward function that maximizes the true reward over a tested distribution
of environments. Given an input distribution, they conducted a grid search
over possible reward functions and assessed the performance of each pos-
sible function against the true reward function. In Hungry Thirsty, they
searched over reward functions that consist of four values corresponding
to possible states: not hungry and not thirsty (¬H ∧ ¬T), hungry and thirsty
(H∧T), etc. They then compare the performance of agents trained with these
reward functions by assessing their undiscounted cumulative true reward.

To determine the optimal reward function, they average the agent’s performance over N randomly-sampled environ-
ments. In their study, the agent uses Q-learning with a fixed learning rate α, an ϵ-greedy action selection with fixed
random action probability, ϵ, and a fixed discount factor γ.

Since the true reward function for Hungry Thirsty is sparse, this signal can be hard to learn from. In contrast, the optimal
reward function incentivizes the agent to learn to drink as a subgoal. With this reward, drinking is preferred to not doing
so since the reward is greater; this subgoal is described as a form of intrinsic motivation.

We plan to reapply this framework to instead assess overfitting in reward functions. We hypothesize that the optimal
reward function defined above will be sub-optimal for a different learning algorithm or hyperparameter instantiation.
Specifically, we propose running this optimal reward function search with varied Q-learning hyperparameters: γ (the
environment discount factor) and α (the learning rate). We additionally propose studying whether the reward functions
are overfit to the learning algorithm itself by comparing the optimal reward function for a Q-learning agent to those for
several deep RL alternatives: A2C [7], DDQN [8], and PPO [9]. For this study, we propose the following hypotheses:

• Hypothesis 1: Given an ‘optimal‘ reward function selected with respect to a distribution D1, a different reward func-
tion will be ‘optimal‘ if selected with respect to a different distribution, D2.
This is the weakest hypothesis: it looks only for the existence of an alternative optimal reward function for a different
RL algorithm or hyperparameter instantiation. While the distributions can be chosen adversarially (e.g., by choosing
an inappropriate learning algorithm), we assume both distributions include support for learning appropriately if
given a viable reward function. This assumption can be formulated as a sanity test.

• Hypothesis 2: If the reward functions are ranked according to the true reward function for each distribution (e.g.,
ri > rj > rk > ... for D1), the ranked reward functions from D1 will not be correlated with the ranked reward
functions from D2. We propose computing Kendall’s tau rank correlation to assess this; Kendall’s tau measures the
strength and direction of the monotonic association between rankings. One limitation of this statistical test is that it
does not take the difference in magnitude of the reward function performance into consideration.

3.1 Preliminary Results

We first study the role of the discount factor, γ, in reward function design for Hungry Thirsty. We use a Q-learning agent
which learns over 75, 000 timesteps with learning rate α = 0.05. We take γ = 0.99 for D1 and γ = 0.5 for D2, and we
average over 100 environments and Q-table instantiations to account for variance. We conduct a grid search over 2401
reward functions, where r(s) ∈ [−1,−0.5,−0.1, 0, 0.1, 0.5, 1.0]. Of these reward functions, the vast majority do not lead
to substantive learning; only 184 reward functions achieve scores of > 1000 points over 75, 000 steps for either value of γ.

• Hypothesis 1: In support of hypothesis 1, we find the ‘optimal’ reward functions do indeed differ for γ = 0.99 and
γ = 0.5. While both of these reward functions perform quite well for both experiment conditions (i.e., in the top≈ 25%
of reward functions for both conditions), this is not true of the second best reward function for γ = 0.99; this reward
function fails to support learning for γ = 0.5. See Fig. 2a.

• Hypothesis 2: In support of hypothesis 2, we find the ranked lists of reward functions for each distribution (γ = 0.99
and γ = 0.5) are uncorrelated, as assessed by Kendall’s tau (ρτ (184) = 0.047, p = 0.341).

We next study the role of the algorithm choice in determining the best reward function. For this experiment, we modify
the Hungry Thirsty environment to be episodic, with 200 steps per episode. A grid search over deep RL algorithms is
exceedingly expensive; as such, as a first study, we select four reward functions with different properties for comparison.
We choose two sparse reward functions (rtrue and 0.1× rtrue) and two shaped reward functions (including roptimal). From
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(a) A parallel coordinate plot comparing reward function perfor-
mance for γ = 0.99 and γ = 0.5, where each line is a different
reward function. Several of the best reward functions for γ = 0.99
yield learning failures for γ = 0.5. Sparse reward functions,
where increased reward is only received in response to the agent
being not hungry, perform better when γ = 0.5. The second best
performing reward function for γ = 0.99 (H ∧ T : − 1,H ∧ ¬T : −
0.5,¬H ∧ T : 0.5,¬H ∧ ¬T : 1.0), fails when γ = 0.5. The nine col-
ored lines correspond to reward functions which had the largest
change in absolute performance between the two conditions.
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(b) We select 4 reward functions: the true sparse reward function
(rtrue), a smaller magnitude sparse reward function (0.1 × rtrue),
and two shaped reward functions (one of which is roptimal). For
each reward function, we train an A2C agent, a PPO agent, and
a DDQN agent using standard hyperparameters, and we average
performance over 5 training runs. For the first reward function
(rtrue), only PPO and A2C learn effectively. For the second reward
function (0.1× rtrue), only PPO learns. For the third reward func-
tion, only DDQN learns. For the last reward function (roptimal),
both DDQN and PPO learn, while A2C does not.

Figure 2: Computational Study of Reward Function Performance

this preliminary study, we find evidence in support of our hypotheses; namely, that the ranking of reward function
performance differs when compared across different learning algorithm. Of these four reward functions, we find A2C
is only successful in learning on the larger magnitude sparse reward function. In contrast, DDQN fails to learn for both
sparse reward functions, but is the best performing algorithm for the shaped reward functions. See Fig. 2b.

4 Proposed User Study

In practice, reward functions are typically designed manually, guided by a combination of engineer intuition and trial-
and-error experimentation. In a survey of 24 RL practitioners from the University of Texas at Austin, SonyAI, and MIT,
22/24 reported using a trial-and-error process to design their most recent reward function; of these, 17 reported using
domain knowledge or intuition to guide their initial reward design. We thus propose a complementary user study to
assess whether overfitting of reward functions also occurs in naturalistic settings.

For this user study, we will ask participants to design the best-performing Hungry Thirsty agents they can. Every partic-
ipant will be compensated at a base rate of $40 USD/hour, and the 5 participants who design the top-performing agents
will be awarded an additional $10 USD bonus. Participants will be required to have completed a class in reinforcement
learning, but have not previously used the Hungry Thirsty domain. This protocol has received IRB approval.

Participants will be presented with an interface which asks them to instantiate a reward function for Hungry Thirsty.
Their reward functions are constrained to weights in the range [−1, 1] for each of four logical state instantiations: not
hungry and not thirsty, hungry and thirsty, etc. In addition, the participant is asked to select a deep RL algorithm
from a choice of A2C, PPO, and DDQN, as well as learning hyperparameters for their selected learning algorithm and
environment. A demonstration of the study is shown in Appendix A.

Since human participants are imperfect optimizers and are likely to only perform trial-and-error assessments with a
small number of reward functions, the question of overfitting in this user study context is complicated. If the par-
ticipant’s selected reward function is sub-optimal relative to some other plausible reward function, can their selected
function be overfit? Since we define overfitting in terms of relative and not absolute performance, this indeed consti-
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tutes overfitting—i.e., if the participant’s reward function is biased by their algorithm and hyperparameter selection
such that it underperforms on a different algorithm or hyperparameter selection, their selected reward function is overfit
regardless of whether it is the singular best-performing reward function for their tested distribution.

Similarly, it is unfair to compare a participant’s selected reward function to the space of all possible reward functions,
since the participant will likely select a reward function which is sub-optimal for both their test distribution and for a
target distribution. We thus restrict the set of reward functions to consist of only the reward functions used during the
participant’s search. We introduce a hypothesis accounting for this inherent sub-optimality:

• Hypothesis 3: If a participant tries the set of reward functions r1, r2, ..., rn using a distribution D1, and selects the
reward function ri from this set, this reward function is overfit if, for some alternate distributionD2, a reward function
rj in the set outperforms ri according to the true reward (where rj ̸= ri).

4.1 Preliminary Results

We conducted two pilot user studies. User #1 trained 7 RL agents with 4 reward function (3 of which are shaped),
different algorithms (DDQN and A2C), and different hyperparameters for every trial. Their selected ‘best’ agent used
a sparse reward function (r(H ∈ s) = −1; r(¬H ∈ s) = 1) with DDQN. However, we found that one of their earlier
overlooked reward functions (r(H ∧ T) = −1; r(H ∧ ¬T) = −0.5; r(¬H ∧ T) = 0.5; r(¬H ∧ ¬T) = 0.6) performs equally
well with their final DDQN hyperparameter selection (i.e., over 5 trials, the performance of both functions is within the
standard deviation of the other). While this pilot does not definitively confirm overfitting in trial and error reward design
according to our hypothesis, it shows how viable reward functions can be passed over.

User #2 trained 3 RL agents, using a consistent shaped reward function and algorithm (PPO), instead varying hyperpa-
rameters (specifically, the update step frequency, number of episodes, and actor network learning rate).

5 Discussion
In this extended abstract, we have introduced two proposed studies for assessing overfitting in reward function design.
Through a preliminary investigation, we find evidence of reward function overfitting. One limitation of this proposal is
its focus on a single domain; to better understand the risk of reward function overfitting more generally, we must analyze
multiple domains. In addition, the computational study we propose is costly; as such, this method of reward function
design is rare (though has been done [10]). But, user studies are inherently constrained to lab settings, which may not
mimic real-world practices. An additional study could assess overfitting in the reward functions used in RL applications.

This problem of reward function overfitting has, to our knowledge, not previously been discussed. Since overfitting
impacts the assessment and comparison of RL methods, this is an important avenue for improving RL reproducibility.
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A User Study Protocol

Hungry-Thirsty Domain
The goal of the hungry-thirsty domain is to teach an agent to eat as much as possible.

There's a catch, though: the agent can only eat when it's not thirsty. 

Thus, the agent cannot
just “hang out” at the food location and keep eating because at
some point it will become thirsty and eating will fail.

The agent always exists for 200 timesteps.
The grid is 6x6. Food is located in one randomly-selected corner, while water is located in a different (random) corner.
At each timestep, the agent may take one of the following actions: move (up, down, left, right), eat, or drink. But actions can fail:

The drink action fails if the agent is not at the water location.
The eat action fails if the agent is thirsty, or if the agent is not at the food location.
The move action fails if the agent tries to move through one of the red barriers (depicted below).

If the agent eats, it becomes not-hungry for one timestep.

If the agent drinks, it becomes not-thirsty.

When the agent is not-thirsty, it becomes thirsty again with 10% probability on each timestep.

See an example of the game below.

In [1]:

Your Study ID
Replace the YOUR_NAME string with your full name to generate a unique, privacy-preserving study ID.

In [2]:

Your Task
We haven't specified the reward function, learning algorithm, or algorithm hyperparameters; you'll need to fill in these details using the code cells below.

In [3]:

Design your Reward Function and Select Your RL Algorithm
For your reward function, you need to assign a value r(s) to each state. The state is composed of the thirst and hunger status of the agent. You must
assign a value for each state:

r(Hungry AND Thirsty) = ???; r(Hungry AND Not Thirsty) = ???; r(Not Hungry AND Thirsty) = ???; r(Not Hungry AND Not Thirsty) = ???

For your RL algorithm, you will need to choose your algorithm. Your options are:

Out[1]:

To preserve privacy, your study ID is:  85f5b220c4c9521a21ee9ecd967795ea


from IPython.display import Image

Image("../Assets/h-t.gif", width=300)

YOUR_NAME = "YOUR_NAME"

import hashlib

study_id = hashlib.md5(YOUR_NAME.encode()).hexdigest()

print ("To preserve privacy, your study ID is: ", study_id)

# import notebooks; do not edit

%run setup_reward_and_learning_alg.ipynb

%run training_and_model_eval.ipynb
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A2C, DQN, PPO

After choosing your RL algorithm, you will need to select the hyperparameters. If you change your learning algorithm, you may need to re-run the
hyperparamater selection (below).

In [4]:

Hyperparameters
!!! If you change your learning algorithm selection, you may need to rerun the following hyperparameter selection cell as well. !!!

Shared Hyperparameters:
Gamma: the discount factor for the environment. A small Gamma means the agent prioritizes only immediate rewards, while a larger Gamma
means the agent tends to also consider future rewards.
Num_Episodes: the number of episodes to train for. A smaller number means the experiments are faster, but contain less experience to learn
from.
Learning Rates: for DQN, there is only one learning rate, the Q-network learning rate (q_net_lr). For both A2C and PPO, there are two
learning rates, one for the actor network (actor_lr) and one for the critic network (critic_lr). Smaller learning rates make smaller updates to the
network weights (and hence optimization is slower), while larger learning rates make larger updates.
Update_Steps: Only applicable to PPO and DQN, this is the frequency with which to perform updates. A smaller number means more frequent
updates, which is slower but more information dense.

DQN:
Epsilon_Min: DQN uses an epsilon-greedy strategy. Epsilon decreases over time to encourage initial exploration (starting at epsilon=1).
epsilon_min corresponds to the floor for the epsilon value. A larger epsilon_min means more exploration, less exploitation. A smaller epsilon
min means less exploration, more exploitation.
Epsilon_Decay: Over time, epsilon decreases from 1 to epsilon_min. Every time step, epsilon decreases by 1/epsilon_decay.
Batch_Size: The number of samples to take from the experience replay buffer from which to calculate the loss and update the deep Q
Network. A smaller number is faster to run but contains less experience.

PPO:
Eps_Clip: In PPO, the estimated advantage function is clipped to handle variance. If the probability ratio between the new policy and the old
policy falls outside the range (1 — ε) and (1 + ε), the advantage function is clipped. A smaller eps_clip value is more permissive; a larger
eps_clip value is more restrictive and allows for less substantial policy changes.

In [14]:

Run the cell below to confirm your choice of parameters and algorithm!

Training Time!
For evaluating our reward functions, algorithm selection, and hyperparameters, we plot training performance according to fitness and undiscounted
return.

Algorithm Choice DQN

Reward for state: hungry AND thirsty -0.50

Reward for state: hungry AND not thirsty -0.25

Reward for state: not hungry AND thirsty 0.25

Reward for state: not hungry AND not thirsty 1.00

gamma 0.99

num_episodes 5000

q_net_lr 0.001

update_steps 64

batch_size 64

epsilon_min 0.15

epsilon_decay 10000

# select the learning algorithm and reward function parameters 

selectors = reward_and_alg_selector()

selectors

# select the learning algorithm hyperparameters

# !!! If you change the algorithm choice, you will need to re-run this !!! 

alg = get_params(widget_ref=selectors)["Algorithm Choice"]

select_learning_alg_params = construct_hyperparam_selector(alg_name = alg)

select_learning_alg_params
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Each episode consists of a trajectory .

Fitness is computed as the sum of states in which the agent is not hungry:

Fitness  (s[is_hungry] == False)

Undiscounted return is computed using the reward function you specified:

Undiscounted Return  r(s)

You may wish to go back and change one or more of your reward function, learning algorithm, or learning algorithm parameters.

𝜏 = [( , , ), ( , , ), . . . ]𝑠0 𝑎0 𝑠1 𝑠1 𝑎1 𝑠2

:= Σ(𝑠,𝑎, )∈𝜏𝑠
′ 𝟙

:= Σ(𝑠,𝑎, )∈𝜏𝑠
′

In [15]:

Figure 1

100%|███████████████████████████████████████| 5000/5000 [02:19<00:00, 35.90it/s]

Total updates:  62496


FINISHED TRAINING




     

%matplotlib notebook

 

train_agent(alg_and_reward_params=get_params(widget_ref=selectors), 

            hyper_params=get_params(widget_ref=select_learning_alg_params),

            study_id=study_id)
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In [17]:

Trial 0-----------------------------------------


    Algorithm : A2C


    Reward Function:


         r(hungry and thirsty): -1.00


         r(hungry and not thirsty): -0.40


         r(not hungry and thirsty): 0.45


         r(not hungry and not thirsty): 1.00


    Hyper-parameters:


         gamma     : 0.99000


         num_episodes: 10000.00000


         lr        : 0.00100


------------------------------------------------


Trial 1-----------------------------------------


    Algorithm : A2C


    Reward Function:


         r(hungry and thirsty): -0.25


         r(hungry and not thirsty): 0.00


         r(not hungry and thirsty): 0.25


         r(not hungry and not thirsty): 1.00


    Hyper-parameters:


         gamma     : 0.99000


         num_episodes: 5000.00000


         lr        : 0.00100


------------------------------------------------


Trial 2-----------------------------------------


    Algorithm : DQN


    Reward Function:


         r(hungry and thirsty): -0.50


         r(hungry and not thirsty): -0.25


         r(not hungry and thirsty): 0.25


         r(not hungry and not thirsty): 1.00


    Hyper-parameters:


         gamma     : 0.99000


         num_episodes: 5000.00000


         q_net_lr  : 0.00100


         update_steps: 64.00000


         batch_size: 64.00000


         epsilon_min: 0.15000


         epsilon_decay: 10000.00000


------------------------------------------------


view_training_runs()

In [9]:

Final Submission
When you are finished training your agent(s) and choosing which agent is best, run this cell and make your selection.

If the agent you submit is a top-10 performer in this user study, we will award you a $15 bonus.

Select trial: Trial: 0; Alg: A2C See Trial Metrics

x=9.87e+03 y=−102.2

Figure 2

Trial 0-----------------------------------------


     Algorithm : A2C


     Reward Function:


          r(hungry and thirsty): -1.00


          r(hungry and not thirsty): -0.40


          r(not hungry and thirsty): 0.45


          r(not hungry and not thirsty): 1.00


     Hyper-parameters:


          gamma     : 0.99000


          num_episodes: 10000.00000


          lr        : 0.00100


------------------------------------------------










     

review_past_run()
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In [18]:

You selected trial: 2


Trial 2-----------------------------------------


    Algorithm : DQN


    Reward Function:


         r(hungry and thirsty): -0.50


         r(hungry and not thirsty): -0.25


         r(not hungry and thirsty): 0.25


         r(not hungry and not thirsty): 1.00


    Hyper-parameters:


         gamma     : 0.99000


         num_episodes: 5000.00000


         q_net_lr  : 0.00100


         update_steps: 64.00000


         batch_size: 64.00000


         epsilon_min: 0.15000


         epsilon_decay: 10000.00000


------------------------------------------------


Select trial: Trial: 2; Alg: DQN Submit

submit_agent() 
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Abstract

In a typical robot manipulation setting, the physical laws that govern object dynamics never change, but the set of objects
the robot interacts with does change. To complicate matters, objects may have intrinsic properties that are not directly
observable (e.g., center of mass or friction coefficients). In order to successfully manipulate previously unseen objects,
the robot must efficiently adapt to their object-specific properties. In this work, we introduce a latent-variable model of
object-factored dynamics. The model represents uncertainty about the dynamics using deep ensembles while capturing
uncertainty about each object’s intrinsic properties using object-specific latent variables. We show that this model allows
a robot to rapidly generalize to new objects by using information theoretic active learning. Additionally, we highlight
the benefits of the deep ensemble for robust performance in downstream tasks.

Keywords: Partial Observability, Latent Variable Models, Deep Ensembles,
Robotic Manipulation
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relating to the ideas presented. We also thank the reviewers for their helpful feedback. This research was generously
sponsored by the Honda Research Institute.

∗Equal contribution.

RLDM 2022 Camera Ready Papers 117

117



1 Introduction

Predictive models are indispensable in the roboticist’s toolkit. The ability to predict the outcome of an action allows a
robot to plan robustly in a task-agnostic manner [3, 8]. For such models to be useful, they need to accurately capture
the nuances of each object the robot interacts with. This is challenging due to the vast diversity of objects present in
the world. Previous work has shown that factoring models to decouple object state from the global dynamics leads to
effective generalization when these properties are fully observable [5, 8]. However, the assumption that object state is
fully-observed does not generally hold; many objects have intrinsic properties that influence how they behave and that
are not visually observable. For example, an object’s center of mass will influence how it can be stacked, and a ball’s rolling
resistance will influence how far it rolls. When interacting with novel objects, we generally do not have labels for these
properties (even at training time, these labels can be laborious to collect).

The key question we are interested in is: how do we learn predictive models that support quick adaptation to objects with
unobserved properties? To do so, we propose to use an object-factored latent variable model that explicitly captures un-
certainty about the object’s unobserved properties and the global dynamics. The object-specific latent variables support
information theoretic data acquisition in the learned latent space, allowing for rapid adaptation. The forward model,
or dynamics function, is represented using a deep ensemble, allowing the model to capture uncertainty about complex
dynamics. Both types of uncertainty can be incorporated when performing downstream tasks, leading to more robust
uncertainty-aware planning.

We evaluate the proposed model in two domains: stacking blocks with unobserved centers of mass and throwing balls
with unobserved rolling resistance. We demonstrate the utility of representing uncertainity at both the object and global
levels. At the object level, the robot can use the learned latent space to quickly adapt to novel objects. At the dynamics
level, the deep ensemble leads to more robust task performance when compared to a model that does not use ensembles.

2 Learning Phases for Object Manipulation

We consider a robot operating in a domain with K objects from the same class. Each object’s state can be divided into
observed and unobserved properties. The observed state,Xt = {x(k)t }Kk=1, can be time-varying, whereas the unobservable
state, Z = {z(k)}Kk=1, is assumed to be static. This factorization covers a wide range of object properties including
friction coefficients, mass, and coefficient of restitution. Our objective is to learn a model that predicts some aspect of the
environment, yt, which we will refer to as the outcome, that can be useful for downstream tasks. Concretely, the goal is to
estimate p(yt|Xt,Z, at), where at ∈ A is the action space of the robot.

We assume the robot’s operation is divided into three distinct phases: training, adaptation, and testing (see Figure 1). In the
training phase, the set of objects is fixed, and the robot has some finite amount of time to act in the environment without
any task descriptions. In the adaptation phase, the robot is given a new object and a short amount of time to experiment
and adapt. Finally, there is a testing phase, in which a robot is supplied with an external reward function, and interacts
with the objects in order to maximize that reward. Sampling-based methods are used to find reward-maximizing actions
and no further adaptation or learning is performed in this phase.

3 Object-Factored Latent Variable Model

We represent the predictive model using the probabilistic graphical model shown in Figure 1. The outcome, yt, is gen-
erated via a stochastic process governed by global parameters, θ, unobserved object parameters, Z , the current state, Xt,
and action, at. Due to the complexity of object dynamics, we represent θ using an ensemble [2] of domain-dependent
neural network architectures. We also include a prior over object-specific latent variables, p(Z). In the training phase,
the primary goal is to learn about the global parameters, θ, that will generalize to the downstream adaptation and testing
phases. Then, in the adaptation phase, we only need to infer the unobserved properties of novel objects, Z .

3.1 Inference in Factored-Object Models

In the training and adaptation phases, the robot will have a collection of transitions: D = {(Xt, at, yt)i}Ni=1. With this
dataset, we would like to estimate a posterior distribution over the unobserved parameters: p(Z, θ | D) during the
training phase and p(Z | D) during the adaptation phase. A posterior that accurately represents epistemic uncertainty will
allow us to gather data more efficiently and plan more robustly with models resulting from limited data. In the training
phase, we assume the robot has access to a dataset, while in the adaptation phase, it must gather its own.

In general, computing the true posterior is intractable, so we take a Variational Inference (VI) approach, and compute an
approximate posterior distribution, q(Z, θ) = qz(Z)qθ(θ). We represent each q(z(k)) as a diagonal Gaussian distribution.

1
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Figure 1: Left. Following a training phase to learn the global parameters, θ, the robot is given new objects (purple) in the
adaptation phase before being evaluated in the testing phase. Right. We model this process using a probabilistic graphical
model where the outcome of an action, yt, depends on the state, Xt = {x(k)t }, action, at, dynamics, θ, and each object’s
unobservable static properties, Z = {z(k)}.

Although VI in theory can apply to bothZ and θ, recent work has proposed representing uncertainty over neural network
parameters implicitly using an ensemble of M networks: θ = θ1, . . . , θM [7].

We propose an inference algorithm for generative models that uses ensembles to represent the uncertainty of the dynam-
ics parameters while using VI for inference of the latent variables. The algorithm alternates between optimizing Z with
respect to the ELBO and updating each model in the ensemble to maximize the likelihood of the data.

Optimizing Z : To optimize the parameters of qz(Z), we maximize the ELBO with respect to the variational distribution
parameters, while fixing the ensemble parameters.

We derive a batch-loss which we minimize via gradient descent on the parameters of qz ,

Lz(B) =
N

|B|
∑

t∈B
Eq[− log p(yt | Xt, at,Z, θ)] +

1

|B|DKL(qz(z) ∥ p(z)). (1)

Optimizing θ: Unlike for Z , we do not explicitly place a prior on θ. Instead, we can view the prior as being implicitly
defined by the weight-initialization and stochasticity in SGD. Each ensemble model receives batches in a different order
to further encourage ensemble diversity.

Lθi(B) =
N

|B|
∑

t∈B
Eq[− log p(yt | Xt, at,Z, θi)]. (2)

During the adaptation phase, we only fit qz(Z) and freeze θ. This can be done using VI or by particle filtering methods.

3.2 Experimental Design

When presented with a new object, a robot will need to adapt its model in a self-supervised manner. Because data
collection on a robotic platform is expensive, it is important to be efficient. Random exploration is unlikely to lead
to transitions that elicit the effects of the unobservable object properties, so we employ an information-theoretic active
learning strategy. The robot iteratively performs an experiment and uses the resulting label to update the posterior.
Specifically, during the adaptation phase, we choose actions that maximize the information gain between the label and
the object-specific latent variable: I(Z; yt|at,Xt,D). We compute the information gain in label space Houlsby et al. [6]
and marginalize over the uncertainity in the ensemble when selecting actions. The resulting acquisition function is,

argmax
at

H(yt | Xt, at,D)− EZ∼q [H(yt | Xt, at,Z,D)] . (3)

4 Experimental Domains

To evaluate the effectiveness of our approach, we analyze and ablate components of our model in two domains where
the objects have unobserved properties that affect their dynamics: stacking and throwing. In each domain, the agent first

2
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Figure 3: Task performance on each domain comparing adaptation strategies. Shaded areas are performance quartiles
across 20 adaptation/testing runs. Left. Regret for the tower domain. Right. RMSE for the throwing domain.

fits the model parameters using a fixed dataset in the training phase, and is then given a novel object to adapt to before
its performance is evaluated in the testing phase.

Stacking Domain In the stacking domain, a simulated robot arm learns to build towers out of adversarially weighted
blocks. The observed state, Xt is the shape and color of each block. The object-level latent variables, Z , will need to
represent the mass and center of mass of each block which are not visually observable. The robot’s action space consists
of parameterized pick-and-place actions where the parameters include which block to pick and its final position. The
outcome is a Bernoulli random variable, yt, which describes whether the robot actually ends up in the state expected by
the action or not (this is the notion of feasibility described in [8]). In our case, this corresponds to predicting if a tower is
stable. The global model, θ, is represented using the same graph neural network architecture as in Noseworthy et al. [8].
The training phase uses 50 blocks and 2500 total towers.

To investigate how well the learned latent space captures center of mass, we design a downstream task that requires
detailed knowledge of this property: maximum overhang. The robot must place the novel block on top of another block
such that the distance between the base of the bottom block and the farthest edge of the top block is maximized. We
disincentivize the robot from building unstable towers by giving the robot a large negative reward of −1m if the tower
falls. Thus, given our model which predicts stability, the expected reward, R, is,

R = −1 ∗ (1− Ez∼qz, θ∼qθ [p(yt|Xt, at,Z, θ)]) + r ∗ Ez∼qz, θ∼qθ [p(yt|Xt, at,Z, θ)] ,
where r is the reward the robot would receive if the tower is stable. The robot is only tested on towers with two blocks
as this most clearly elicits the effects of the latent space (the model is trained on towers with 2− 5 blocks).

Throwing Domain In the throwing domain, a simulated robot arm learns to throw a variety of balls with an obstacle
present. Each ball varies in its radius and rolling resistance. However, both these properties are not observed, and
the model will need to use the object-level latent space, Z , to represent them. The action space of the robot consists
of a throwing primitive parameterized by the release angle and angular velocity of the ball. The outcomes, yt ∈ R,
capture how far the balls comes to rest along the x-axis. The dynamics function is represented as a standard multilayer
perceptron. In the testing phase, the robot’s goal is throw the ball such that it comes to rest at a desired distance. We
report the RMSE averaged over many different goal distances.

5 Evaluation on Downstream Tasks

Figure 2: Task performance in the stacking domain
when using a single neural network as opposed to a
full ensemble.

We now evaluate the robot’s ability to rapidly generalize to new
objects and its performance robustness in downstream tasks.

Rapid Adaptation To measure how quickly different methods
can adapt to novel objects, we plot task performance after each
data point was collected with a given acquisition method (see
Figure 3). In the stacking domain (left), information-theoretic
data acquisition consistently outperforms the random strategy,
successfully adapting after only 5 placements. This is because
figuring out the center of mass accurately requires several con-
secutive and carefully planned placements. On the other hand,
in the throwing domain, both random and active achieve sim-
ilar good performance. We believe this is due to the smoother
relationship between the actions, latents, and outcome, mean-
ing most throws are going to be similarly informative about the

3
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latents. In both domains, we also compare to a baseline where we adapt a deep ensemble without latent variables at test
time. Concretely, the baseline is a deep ensemble with the same network architecture as the dynamics ensemble in our
object factored model. During the adaptation phase, active learning using ensembles is applied to generate experiments
with the new object [2, 8]. The baseline fails to adapt quickly in each domain.

Ensemble Robustness The proposed model represents uncertainty at two levels: at the object level through Z and at
the global level through θ. We show that the ensemble is important for having robust performance in noisy domains
by ablating the ensemble and using a single network for θ in the stacking domain (see Figure 2). Without the ensemble,
the model does not consistently perform well, often receiving a regret of 1 (indicating the tower fell over). On the other
hand, the ensemble leads to consistently good performance, showing the utility of the uncertainty-aware representation
for planning in downstream tasks.

6 Related Works

Several previous works have introduced Bayesian models for rapid adaptation. For example, Doshi-Velez and Konidaris
[4] and Sæmundsson et al. [11] both use latent variables to parameterize a task and use Gaussian processes as the
global dynamics. Closely related to our model, Perez et al. [9] and Belkhale et al. [1] use both deep ensembles and
low-dimensional latent variables within their models. We extend this framework to show that learned latent space can
be used for active learning and analyze the importance of the ensemble. Other work has focused on learning object
dynamics with unobservable intrinsic object properties. In some works, the authors assume the global dynamics are
known a priori which can inform the values of the object-specific properties [12]. Related work which does not assume
the dynamics are known often rely on either a fixed dataset [13, 14] at adaption time or a task definition in order to infer
the latent properties [4, 10, 11]. Instead, we propose to use active learning with respect to the model output which can be
beneficial when the task is not yet known. Our approach can yield zero-shot performance on a new task, because all the
experimentation was performed in a task-agnostic adaptation phase.
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Abstract

Teaching involves a mixture of instruction, self-studying in the absence of a teacher and assessment that provides cor-
rective feedback. Despite the mixture of supervised and unsupervised learning in the real-world, the literature on hu-
man learning has traditionally focused on one or the other, or reinforcement learning. By contrast, literature on semi-
supervised learning is surprisingly recent, conflicting and sparse. Reports about the benefit of unsupervised information
in category learning conflict across experimental designs, leading researchers to conclude that its effects on learning may
be minimal at best. Here, we adopt a machine teaching approach to create a targeted test of the effects of unsupervised
information in a simple categorization task. Taking two paradigmatic models of semi-supervised category learning (pro-
totype and exemplar models), we infer that the sequential difficulty of the unsupervised items affects learning in the
models due to self-reinforcement of beliefs. Critically, the models make opposite predictions as to whether unsupervised
items should optimally be ordered from easy-to-hard or hard-to-easy, setting the stage for an empirical test. We find that
hard-to-easy ordering leads to better task performance, consistent with the predictions of the prototype model. However,
additional analyses show that the model predicts this result for reasons that are not consistent with human data, as it
underestimates performance drops in the face of hard items. In sum, our machine teaching approach revealed novel
evidence that ordering of unsupervised information affects category learning and highlighted shortcomings of existing
semi-supervised categorization models. Future work will help understand semi-supervised learning principles and their
connections with results on supervised easy-to-hard schedules and training set idealization. This has the potential to help
improve teaching curricula.

Keywords: category learning, semi-supervised learning, machine teaching,
computational modeling, online behavioural experiment
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1 Central Question

We investigate whether unsupervised trials can help or harm category learning. Specifically, we test which semi-
supervised sequences are optimally suited to help human learners acquire categories in a one-dimensional task.

2 Approach

To study how humans can be taught on semi-supervised inputs such that they optimally learn categorizations, we em-
ployed a machine teaching approach. Three semi-supervised category models have been proposed and evaluated against
human data [Zhu et al., 2010]. Here, we employed exemplar and prototype models as candidate models for human learn-
ing because only they make appropriate conceptual assumptions for our task. To understand which semi-supervised
sequences each model predicts to be most helpful to human learning, we optimized the order of presentation of unsu-
pervised trials in training sequences using a simple genetic algorithm. This revealed opposite predictions as to whether
learning is most helped if unsupervised trials are ordered from easy-to-hard (exemplar, Fig.2a) or hard-to-easy (proto-
type, Fig.2c) when interspersed with supervised trials. We then performed an empirical study on Amazon Mechanical
Turk to test whether humans indeed conform to one of the models and improve their performance when trained on one
of these ordered sequences. For this, we employed three experimental conditions in which unsupervised trials were
ordered from easy-to-hard, hard-to-easy or were uniformly distributed (Fig.1c).

Our approach makes two important contributions: (a) The model-based approach to the design of optimal training
schedules increases the chances of observing interpretable group differences – these are notoriously elusive in semi-
supervised studies. (b) Computational models are put to a more comprehensive test via a range of extreme (best case
and worst case) rather than just random input sequences.

3 Models

We predicted optimal training sequences under two category learning models that belong to well-studied model classes
that make different assumptions about how category information is represented, manipulated and stored. Exemplar
models assume that all items are stored individually and all contribute to category decisions. Prototype models assume
that the information available in the observations is compressed and retained only as a representation of prototypical av-
erages for each category. In their semi-supervised formulations proposed by Zhu et al. [2010], the traditionally supervised
learning mechanism in the models is augmented with self-training by which models learn from their own predictions, in
lieu of actual labels, when no supervision is available. In addition, models were simplified and reformulated in terms of
machine classification algorithms. Most notably, the prototype model was formulated as a Bayesian Mixture of Gaussian
model tracking not only prototype means but also their variance. The interplay of the specific model features leads to
the different predictions about optimal orderings of unsupervised trials. Learning in the exemplar model is most helped
if unsupervised trials are ordered from easy-to-hard (Fig.2a) while the prototype model prefers an ordering from hard-
to-easy (Fig.2c). Important model features that contribute to these predictions are the inability of the exemplar model
to correct wrongly predicted category labels committed to memory and the estimation of variances in the (Bayesian)
prototype model.

4 Methods and Materials

A total number of 510 subjects completed the experiment via Amazon Mechanical Turk. Subjects were randomly as-
signed to one of the three experimental conditions. After automatic exclusion 309 subjects were analyzed (easy-to-hard:
103, uniform: 102, hard-to-easy: 104). Subjects completed a total of 154 trials in which they learned to categorize one-
dimensional visual stimuli into two categories whilst only occasionally receiving corrective feedback (Fig.1 a and b). The
experiment contained five different phases that were unsignalled to subjects: supervised initialization, unsupervised
initialization, pre-test, main phase, and post-test (Fig.1 c). All phases, apart from the main phase, were identical between
conditions. Stimulus sequences were randomly sampled for every individual subject.

5 Results

5.1 Empirical results

Our empirical results show that subjects in the hard-to-easy condition performed better on the post-test than in the easy-
to-hard condition (p = 0.022; see Fig.2e). Further, we observed different performance trajectories between conditions
over the course of the training phase. This was evident in subjects’ change in accuracy between the main phase and
post-test, which was significantly lower for the easy-to-hard condition than for the hard-to-easy and uniform condition
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Figure 1: (a) Subjects performed a one-dimensional visual categorization task. Stimuli were 3D objects that varied in
inflatedness. We define the 50% of items furthest away from the category boundary as easy items and the 50% of items
closest to the boundary as hard items (only a subset of these items is shown here). (b) On each trial, subjects were pre-
sented with a stimulus to which they responded with a key press to indicate their categorization choice. On supervised
trials, subjects then received corrective feedback. On unsupervised trials, they instead moved to the next trial directly. (c)
The experiment consisted of five consecutive phases in which subjects received different amounts of corrective feedback:
supervised and unsupervised initialization phases to anchor both categories on easy items far from the boundary were
followed by a pre-test, the main semi-supervised training phase and a post-test. Subjects were also asked for one overall
confidence rating at the end. The three experimental conditions involved exactly the same items and differed only in the
ordering of easy and hard unsupervised trials (purple) which were randomly interspersed with supervised trials of all
difficulties (orange) during the main training phase.

(p = 0.001 and p = 0.034 respectively). Performance change on easy and hard items was also qualitatively different
between groups (Fig.2f). In particular, it can be seen that improvement or worsening on easy and hard items is of similar
magnitude within each condition. This suggests that sequence ordering affected performance across all levels of item
difficulty rather than just the steepness of the category decision curve.

Additional analyses of performance change over the course of the main phase provide a measure of evidence that these
signatures may be due to recency effects of exposure to hard trials, which appear to negatively affect performance on
all item difficulties: at the beginning of the second half of the main phase, the easy-to-hard condition demonstrates a
significant effect of learning, evident as higher performance on the same items that the hard-to-easy condition viewed
earlier in learning (easy items: p = 0.03; hard items: p = 0.007). However, this learning effect vanishes in the face
of increasingly many hard items towards the end of the main phase (p > 0.15 for both easy and hard items). That
performance on easy and hard items appears to be equally affected suggests that the overall decline in performance in
the easy-to-hard condition may be due to some form of confusion (for example because of noisy memory retrieval) rather
than a pure learning effect.Furthermore, we find no evidence for motivational effects to have caused group differences:
Neither subjects’ self-assessment of their overall confidence in their performance (all p > 0.1) nor drop out rates (all
p > 0.3) was significantly different between groups.

5.2 Modelling results

Comparing the empirical results to the theoretical predictions of the models (Fig.2a-d), it is clear that only the prototype
model, but not the exemplar model, predicted the superior performance in the hard-to-easy condition at test. However,
closer investigation of the prototype model’s predictions about performance change revealed qualitative patterns at odds
with those observed in the data. For example, the data shows that subjects improved or worsened equally on easy and
hard items in each condition (Fig.2f). By contrast, the model predicts that subjects in the easy-to-hard condition improve
significantly more on easy than on hard items (Fig. 2d). That is, the model could not account for the overall performance
drop between main phase and post-test in the easy-to-hard condition which appears to have been introduced by the hard
items at the end of training.
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Figure 2: (a) The exemplar model predicts that subjects should perform best on the post-test in the easy-to-hard condition
and worst in the hard-to-easy condition. (b) The exemplar model predicts that subjects’ performance should drop from
the main phase to post-test in all but the hard-to-easy condition. (c) The prototype model predicts the opposite post-
test pattern compared to the exemplar model. (d) The prototype model predicts that subjects’ performance should
increase from the main phase to post-test (especially on easy items). (e) Subjects in the hard-to-easy condition performed
significantly better on the post-test than the easy-to-hard condition. (f) Subjects’ average change in accuracy between
the main phase and post-test was significantly lower for the easy-to-hard condition than for the other two conditions.
Qualitatively, the improvement or worsening on easy and hard items appears concurrent across conditions.

6 Conclusion

We employed a model-based study design that used machine teaching to generate empirical insights into the optimal
teaching of human learners. We provide novel evidence that unsupervised exposure does affect category learning and
that this can be caused by the ordering of unsupervised input alone. These insights are significant since previous work
on semi-supervised category learning primarily focussed on distributional aspects of the input and reported conflicting
results as to whether humans can learn from unsupervised trials at all. Our data also challenges existing semi-supervised
learning models which were unable to account for behavioural signatures revealed in the human data. Thus, future
modeling work will be needed to capture learning more accurately. This may also reveal important connections to
supervised studies on easy-to-hard ordering and training set idealization which may account for the various results
reported. Our approach at the intersection of machine and human teaching appears to be a promising direction that can
help understand the underlying principles of semi-supervised learning better and can thus also help to improve teaching
and learning in educational settings in the future.
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Amazon Web Services

Jonas Mueller
Amazon Web Services

Taesup Kim
Amazon Web Services

Laurent Charlin
Mila - Quebec AI Institute

HEC Montréal
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Abstract

We study task-agnostic continual reinforcement learning (TACRL) in which standard RL challenges are compounded
with partial observability stemming from task agnosticism, as well as additional difficulties of continual learning (CL), i.e.,
learning on a non-stationary sequence of tasks. Here we compare TACRL methods with their soft upper bounds pre-
scribed by previous literature: multi-task learning (MTL) methods which do not have to deal with non-stationary data
distributions, as well as task-aware methods, which are allowed to operate under full observability. We consider a previ-
ously unexplored and straightforward baseline for TACRL, replay-based recurrent RL (3RL), in which we augment an
RL algorithm with recurrent mechanisms to address partial observability and experience replay mechanisms to address
catastrophic forgetting in CL.

Studying empirical performance in a sequence of RL tasks, we find surprising occurrences of 3RL matching and over-
coming the MTL and task-aware soft upper bounds. We lay out hypotheses that could explain this inflection point of
continual and task-agnostic learning research. Our hypotheses are empirically tested in continuous control tasks via a
large-scale study of the popular multi-task and continual learning benchmark Meta-World. By analyzing different train-
ing statistics including gradient conflict, we find evidence that 3RL’s outperformance stems from its ability to quickly
infer how new tasks relate with the previous ones, enabling forward transfer.

1 Introduction

Continual learning (CL) creates models and agents that can learn from a sequence of tasks. Continual learning agents
promise to solve multiple tasks and adapt to new tasks without forgetting the previous one(s), a major limitation of
standard learning agents [16, 50, 37, 30]. In many studies, the performance of CL agents is compared against multi-task
(MTL) agents that are jointly trained on all available tasks. During learning and evaluation, these multi-task agents are
typically provided with the identity of the current task (e.g. each datum is coupled with its task ID). The performance
of multi-task agents is thought to provide a soft upper bound on the performance of continual learning agents since the
latter are restricted to learn from tasks in a given sequential order that introduces new challenges, in particular catastrophic
forgetting [37]. Moreover, continual-learning agents are often trained without knowing the task ID, a challenging setting
motivated by practical constraints and known as task-agnostic CL [65, 20, 5, 4].

This paper considers continual learning agents that learn using reinforcement learning (RL), i.e. the setting of continual
reinforcement learning (CRL) or lifelong reinforcement learning [23, 45, 46, 2]. We study the task-agnostic continual
reinforcement learning (TACRL) setting in challenging robotic manipulation tasks from Meta-World (see top of Fig. 4).

We find two observations challenging common beliefs in CL. First, we surprisingly discover that TACRL agents endowed
with a recurrent memory can outperform task-aware agents. We refer to this methodology as replay-based recurrent rein-
forcement learning (3RL) (see bottom of Fig. 4 for a visualization of its representations).
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We report a second surprising discovery in which 3RL reaches the performance of its multi-task upper bound (as well
as other multi-task RL methods), despite only being exposed to the tasks in a sequential fashion. Conducting a large-
scale empirical study1 in which many RL methods are compared in different regimes, we explore several hypotheses to
understand the factors underlying these results. Our study indicates that 3RL: 1) quickly infers how new tasks relate to
the previous ones, enabling forward transfer as well as 2) learns representations of the underlying MDPs that reduce task
interference, i.e., when the gradients of different tasks are in conflict [63].

These findings question the need for forgetting-alleviating and task-inference tools when we bring CL closer to some of its
real-world applications, i.e., TACRL on a diverse sequence of challenging and inter-related tasks. While it is conventional
to assume that task-agnostic continual RL is strictly more difficult than task-aware multi-task RL, this may not actually
be the case for representative multi-task RL benchmarks like Meta-World. Despite being far more broadly applicable,
TACRL methods may nonetheless be just as performant as their task-aware and multi-task counterparts. Note that the
current manuscript is a shortened version of a longer one. We have placed the complete sections in the Appendix and
have summarized them here.

2 Background Task-agnostic Continual Reinforcement Learning

TACRL agents operate in a POMDP special case, explained next, designed to study the catastrophic forgetting that plagues
neural networks [37] when they learn on non-stationary data distributions, as well as forward transfer [58], i.e., a method’s
ability to leverage previously acquired knowledge to improve the learning of new tasks [35]. First, TACRL’s environ-
ments assume that the agent does not have a causal effect on sh. This assumption increases the tractability of the problem.
It is referred to as an hidden-mode MDP (HM-MDP) [9]. Table 1 provides its mathematical description.

The following assumptions helps narrow down on the forgetting problem and knowledge accumulation abilities of neu-
ral networks. TACRL’s assumes that sh follows a non-backtracking chain. Specifically, the hidden states are locally sta-
tionary and are never revisited. Finally, TACRL’s canonical evaluation reports the anytime performance of the methods
on all tasks, which we will refer to as global return. In this manner, we can tell precisely which algorithm has accumulated
the most knowledge about all hidden states at the end of its life. The hidden state is often referred to as context, but more
importantly in CRL literature, it represents a task. As each context can be reformulated as a specific MDP, we treat tasks
and MDP as interchangeable.

For the full section, including a review of MDP, POMDP, as well as the task-awareness and multi-task soft upper bounds,
see App. A.

3 Methods

In this section, we explain how an RNN can be used for task-agnostic recurrent modeling as well as Experience Replay,
CL’s most durable basline. We then describe the baseline at the center of this work, replay-based recurrent RL (3RL).

Task-agnostic recurrent modeling (RNN). Recurrent neural networks are able to encode the history of past data [33,
56, 3, 14, 40]. Their encoding can implicitly identify different tasks (or MDP). Thus, we introduce RNNs as a history
encoder where history is defined by {(si, ai, ri)}Ni and we utilize the hidden states z as additional input data for the
actor πφ(a|s, z) and critic Qθ(s, a, z) networks. This allows us to train models without any explicit task information, and
therefore we use this modeling especially for task-agnostic continual learning. More details about the RNN are provided
at the end of the next subsection.

Experience Replay (ER) accumulates data from previous tasks in a buffer for retraining purposes, thus slowing down
forgetting [46, 1, 8, 28]. Although simple, it is often a worthy adversary for CL methods. One limitation of replay is that,
to approximate the data distribution of all tasks, its compute requirements scale linearly with the number of tasks. To
alleviate this problem, we use a strategy that caps replay by oversampling the current task from the buffer explained in
Alg. 1 L8-9.

Replay-based Recurrent RL (3RL) A general approach to TACRL is to combine ER—one of CL’s most versatile
baseline—with an RNN, one of RL’s most straightforward approach to handling partial observability. We refer to this
baseline as replay-based reccurent RL (3RL). As an episode unfolds, 3RL’s RNN representations zt = RNN({(si, ai, ri)}t−1

i=1)
should predict the task with increasing accuracy, thus helping the actor πθ(a|s, z) and critic Qφ(s, a, z) in their respective
approximations. We will see in Sec. 4, however, that the RNN delivers more than expected: it enables forward transfer
by decomposing new tasks and placing them in the context of previous ones. We provide pseudocode for 3RL in Alg. 1,

1The codebase to reproduce the results will be made available upon publication.
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Figure 1: 3RL outperforms all baselines in both CW10 (left) and MW20 (right). Furthermore, 3RL reaches the performance of its
multi-task analog (right). The horizontal line (left) is the reference performance of training independent models on all tasks. The
dotted lines (right) represent the methods’ analogous multi-task baselines. 3RL not only improves on its task-awareness soft upper
bound, it also reaches its multi-task one.

which we kept agnostic to the base algorithm and not tied to episodic RL. Note that in our implementation, the actor and
critics enjoy their own RNNs, as in [14, 40]: they are thus parameterize by θ and φ, respectively.

For the full section including a review of the base algorithm (soft-actor critic) and details about other baselines employed
in the experiments, see App. B.

4 Empirical Findings

We now investigate some alluring behaviours we have come upon, namely that replay-based recurrent reinforcement
learning (3RL), a task-agnostic continual reinforcement learning (TACRL) baseline, can outperform other task-agnostic
but more importantly task-aware baselines, as well as match its MTL soft upper bound. Details about the benchmarks
and experiments ares provided in App. E.

Task Agnosticism overcomes Task Awareness Our first experiments are conducted on CW10 and MW20 and are reported
in Fig. 1. Interestingly, 3RL outperforms all other methods in both benchmarks. This is surprising for two reasons. First,
at training time, the task-aware methods learn task-specific parameters to adapt to each individual task. Hence, they
suffer less or no forgetting (in general). Second, at test time, the task-agnostic method has to first infer the task through
exploration, at the expense of exploitation (see bottom of Fig. 4 for a visualization).

Continual Learning can Match Multi-Task Learning Multi-task learning is often used as a soft upper bound in eval-
uating CL methods in both supervised [1, 35] and reinforcement learning [46, 52, 58]. The main reason is that in the
absence of additional constraints, multi-task learning (jointly training with data from all tasks in a stationary manner)
does not suffer from the catastrophic forgetting that typically plagues neural networks trained on non-stationary data
distributions.

3RL can reach this multi-task learning upper bound. In Fig. 1 we report, the results of the MW20 experiments, but this
time we focus the performance of each method’s multi-task analog, i.e. their soft-upper bound (dotted line of the same
color). 3RL, is the only approach that matches the performance of its MTRL equivalent. We believe it is the first time that
a specific method achieves the same performance in a non-stationary task regime compared to the stationary one, amidst
the introduced challenges like catastrophic forgetting.

For the remainder of the section, we investigate some hypotheses that might explain 3RL’s alluring behavior. We first
hypothesise that the RNN boosts performance because it is simply better at learning a single MDP (Hypothesis #1). This
hypothesis is falsified in App. E. Next, we investigate the hypothesis that 3RL reduces parameter movement, as it is often
a characteristic of successful continual-learning methods (Hypothesis #2). Similarly, this hypothesis is falsified in App. E.
We then explore the hypothesis that the RNN correctly places the new tasks in the context of previous ones (Hypothesis
#3). We discuss one last hypothesis in App. M.

Hypothesis #3: RNN correctly places the new tasks in the context of previous ones, enabling forward transfer and
improving optimization As in real robotic use-cases, MW tasks share a set of low-level reward components like grasp-
ing, pushing, placing, and reaching, as well as set of object with varying joints, shapes, and connectivity. As the agent
experiences a new task, the RNN could quickly infer how the new data distribution relates with the previous ones and
provide to the actor and critics a useful representation. Assume the following toy example: task one’s goal is to grasp
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Figure 2: 3RL is the fastest learner. Current success
rate on CW10. The Independent method, which trains on
each task individually, is still the best approach to max-
imise single-task performance. However, on the task
that the continual-learning methods succeed at, 3RL is
the fastest learner. In these cases, its outperformance
over Independent and Independent RNN indicates that
forward transfer is achieved.

Figure 3: 3RL decreases gradient conflict leading to an increase in
training stability and performance. The global success and gradient as
measured by the variance of the gradients are shown are plotted against
each other. Training instability as measured by the variance of the Q-
values throughout learning is represented by the markers’ size, in a log-
scale. Transparent markers depict seeds, whereas the opaque one the
means. We observe a negative correlation between performance and
gradient conflict (-0.75) as well as performance and training stability (-
0.81), both significant under a 5% significance threshold. The hypothesis
is that 3RL improves performance by reducing gradient conflict via dy-
namic task representations.

a door handle, and task two’s to open a door. The RNN could infer from the state-action-reward trajectory that the sec-
ond task is composed of two subtasks: the first one as well as a novel pulling one. Doing so would increase the policy
learning’s speed, or analogously enable forward transfer.

Now consider a third task in which the agent has to close a door. Again, the first part of the task consists in grasping
the door handle. However, now the agent needs to subsequently push and not pull, has was required in task two. In
this situation, task interference [63] would occur. Once more, if the RNN could dynamically infer from the context when
pushing or pulling is required, it could modulate the actor and critics to have different behaviors in each tasks thus
reducing the interference. Note that a similar task interference reduction should be achieved by task-aware methods.
E.g., a multi-head component can enable a method to take different actions in similar states depending on the tasks, thus
reducing the task interference.

Observing and quantifying that 3RL learns a representation space in which the new tasks are correctly decomposed and
placed within the previous ones is challenging. Our initial strategy is to look for effects that should arise if this hypothesis
was true (so observing the effect would confirm the hypothesis).

First, we take a look at the time required to adapt to new tasks: if 3RL correctly infers how new tasks relate to previ-
ous ones, it might be able to learn faster by re-purposing learned behaviors. Fig. 8 depicts the current performance of
different methods throughout the learning of CW10. For reference, we provide the results of training separate models,
which we refer to as Independent and Independent RNN. The challenges of Meta-World v2 compounded with the ones
from learning multiple policies in a shared network, and handling an extra level of non-stationary, i.e. in the task dis-
tribution, leaves the continual learners only learning task 0, 2, 5, and 8. On those tasks (except the first one in which
no forward transfer can be achieved) 3RL is the fastest continual learner. Interestingly, 3RL showcases some forward
transfer by learning faster than the Independent methods on those tasks. This outperformance is more impressive when
we remember that 3RL is spending most of its compute replaying old tasks, and supports Hypothesis #3.

Second, simultaneously optimizing for multiple tasks can lead to conflicting gradients or task interference [63]. To test
for this effect, we use the variance of the gradients on the mini-batch throughout the training as a proxy of gradient
conflict (see App. L for a discussion on why the gradient’s variance is superior to the gradients’ angle as a proxy for
gradient conflict). In Fig. 9 we show the normalized global success metric plotted against the gradient variance. In line
with our intuition, we do find that the RNN increases gradient agreement over baselines. As expected, adding a multi-
head scheme can also help, to a lesser extent. We find a significant negative correlation of -0.75 between performance
and gradient conflict. fig:stability also reports training stability, as measured by the standard deviation of Q-values
throughout training (not to be confused with the parameter stability, at the center of Hypothesis #2, which measures
how much the parameters move around during training). We find 3RL enjoys more stable training as well as a the
significant negative correlation of -0.81 between performance and training stability.
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We wrap up the hypothesis with some qualitative support for it. fig:fig1 showcases the RNN representations as training
unfolds. If the RNN was merely performing task inference, we would observe the trajectories getting further from each
other, not intersecting, and collapsing once the task is inferred. Contrarily, the different task trajectories constantly evolve
and seem to intersect in particular ways. Although only qualitative, this observation supports the current hypothesis. A
related work and conclusion are provided in App. N and App. O, respectively.
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Figure 4: The Continual-World2benchmark (top) as well as evolving RNN representations (bottom).
Continual World consists of 10 robotic manipulation environments (four of which are shown above) within the same state space and
built on a common reward structure composed of shared components, i.e, reaching, grasping, placing and pushing. We explore the
task-agnostic setting in which agents need a full trajectory (rather than a single state) for task identification. We performed a PCA
analysis of 3RL’s RNN representations at different stages of training. One episode is shown per task, and the initial task representation
(at t = 0) is represented by a star. As training progresses, the model learns i) a task-invariant initialization, drawing the initial
states closer together, and ii) richer, more diverse representations. Furthermore, the representations constantly evolve throughout the
episodes, suggesting the RNN performs more than task inference: it provides useful local information to the policy and critic (see
Hypothesis #3 in Sec. 4).

Appendix: Task-Agnostic Continual Reinforcement Learning: In
Praise of a Simple Baseline

A Background & Task-agnostic Continual Reinforcement Learning

Here we formally define task-agnostic continual reinforcement learning (TACRL), and contrast it against multi-task RL
as well as task-aware settings.

MDP. The RL problem is often formulated using a Markov decision process (MDP) [43]. An MDP is defined by the
five-tuple 〈S,A, T , r, γ〉 with S the state space, A the action space, T (s′|s, a) the transition probabilities, r(s, a) ∈ R the
reward obtained by taking action a ∈ A in state s ∈ S , and γ ∈ [0, 1) a scalar constant that discounts future rewards. In
RL, the transition probabilities and the rewards are typically unknown and the objective is to learn a policy, π(a|s) that
maximizes the sum of discounted rewardsRπt =

∑∞
i=t γ

i−tri =
∑∞
i=t γ

i−tr(si, ai) generated by taking a series of actions
at ∼ π(·|st). The Q-value Qπ(s, a) corresponding to policy π, is defined as the expected return starting at state s, taking
a, and acting according to π thereafter:

Qπ(s, a) = E
π

[ ∞∑

t=0

γtrt

]
= r(s, a) + γ E

s′,a′

[
Qπ(s′, a′)

]

POMDP. In most real world applications, if not all, the full information about an environment or a task is not always
available to the agent due to various factors such as limited and/or noisy sensors, different states with identical obser-
vations, object occlusion, etc. [34, 15]. For this class of problems in which environment states are not fully observable by
the agent, partially-observable Markov decision processes (POMDPs) [22] are used to model the problem. A POMDP is
defined by a seven-tuple 〈S,A, T ,X ,O, r, γ〉 that can be interpreted as an MDP augmented with an observation space X
and a observation-emission functionO(x′|s). In a POMDP, an agent cannot directly infer the current state of the environ-
ment st from the current observation xt. We split the state space into two distinct parts: the one that can can be directly
unveiled from the observation xt, which we refer to as sot , and the remainder as the hidden state sht , similarly to [40]. To in-
fer the correct hidden state, the agent has to take its history into account: the policy thus becomes π(at|so1:t, a1:t−1, r1:t−1).

2The figures depict the rendering of Meta-World, and not what the agent observes. The agent’s observation space is mainly com-
posed of object, targets and gripper position. Because of the randomness of those positions, the agents needs more than one observa-
tion to properly infer the hidden state.
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An obvious choice to parameterize such a policy is with a recurrent neural network [33, 56, 3, 14, 40], as described in
Sec. 3. Like MDPs, the objective in POMDP is to learn a policy that maximizes the expected return E

sh

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]
.

Task-agnostic Continual Reinforcement Learning (TACRL). TACRL agents operate in a POMDP special case, ex-
plained next, designed to study the catastrophic forgetting that plagues neural networks [37] when they learn on non-
stationary data distributions, as well as forward transfer [58], i.e., a method’s ability to leverage previously acquired
knowledge to improve the learning of new tasks [35]. First, TACRL’s environments assume that the agent does not have
a causal effect on sh. This assumption increases the tractability of the problem. It is referred to as an hidden-mode MDP
(HM-MDP) [9]. Table 1 provides its mathematical description.

The following assumptions helps narrow down on the forgetting problem and knowledge accumulation abilities of neu-
ral networks. TACRL’s assumes that sh follows a non-backtracking chain. Specifically, the hidden states are locally sta-
tionary and are never revisited. Finally, TACRL’s canonical evaluation reports the anytime performance of the methods
on all tasks, which we will refer to as global return. In this manner, we can tell precisely which algorithm has accumulated
the most knowledge about all hidden states at the end of its life. The hidden state is often referred to as context, but more
importantly in CRL literature, it represents a task. As each context can be reformulated as a specific MDP, we treat tasks
and MDP as interchangeable.

Awareness of the Task Being Faced In practical scenarios, deployed agents cannot always assume full observability,
i.e. to have access to a task label or ID indicating which task they are solving or analogously which hidden state they
are in. They might not even have the luxury of being “told” when the task changes (task boundary): agents might
have to infer it themselves in a data-driven way. We call this characteristic task agnosticism [65]. Although impractical,
CL research often treats task-aware methods, which observe the task label, as a soft upper bound to their task-agnostic
counterpart [53, 65]. Augmented with task labels, the POMDP becomes fully observable, collapsing to an MDP problem.

Multi-task Learning (MTL) For neural network agents, catastrophic forgetting can be simply explained by the station-
ary data distribution assumption of stochastic gradient descent being violated, such that the network parameters become
specific to data from the most recent task. Thus it is generally preferable to train on data from all tasks jointly as in MTL
[66]. However this may not be possible in many settings, and thus CL is typically viewed as a more broadly applicable
methodology that is expected to perform worse than MTL [46, 7].

For RL specifically, multi-task RL (MTRL) often refers to scenarios with families of similar tasks (i.e. MDPs) where the
goal is to learn a policy (which can be contextualized on each task’s ID) that maximizes returns across all the tasks [62, 6,
26]. While seemingly similar to CRL, the key difference is that MTRL assumes data from all tasks are readily available
during training and each task can be visited as often as needed. These are often impractical requirements, which CRL
methods are not limited by. Table 1 summarizes the settings we have discussed in this section.

T π Objective Evaluation

MDP [49] p(st+1|st, at) π(at|st) E
π

[∑∞
t=0 γ

trt
]

-

POMDP [22] p(sht+1, s
o
t+1|sht , sot , at) π(at|so1:t, a1:t−1, r1:t−1) E

sh

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

-

HM-MDP [9] p(sot+1|sht+1, s
o
t , at)p(s

h
t+1|sht ) π(at|so1:t, a1:t−1, r1:t−1) E

sh

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

-

Task-agnostic CRL p(sot+1|sht+1, s
o
t , at)p(s

h
t+1|sht ) π(at|so1:t, a1:t−1, r1:t−1) E

sh

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

E
s̃h

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

Task-Aware CRL p(sot+1|sht+1, s
o
t , at)p(s

h
t+1|sht ) π(at|sht , sot ) E

sh

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

E
s̃h

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

Multi-task RL p(sot+1|sht+1, s
o
t , at)p(s

h
t+1) π(at|sht , sot ) E

s̃h

[
E
π

[∑∞
t=0 γ

trt
]
|sh
]

-

Table 1: Summarizing table of the settings relevant to TACRL. For readability purposes, s̃h denotes the stationary distribution of sh.
The Evaluation column if left blank when it is equivalent to the Objective one.

B Methods

In this section, we detail the base algorithm and different model architectures used for assembling different continual
and multi-task learning baselines.

B.1 Algorithms

We use off-policy RL approaches which have two advantages for (task-agnostic) continual learning. First, they are more
sample efficient than online-policy ones [17, 13]. Learning from lower-data regimes is important for CRL as a task is
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likely to only be seen once as data comes in stream. Second, task-agnostic CRL most likely requires some sort of replay
function [52, 31]. This is in contrast to task-aware methods which can, at the expense of computational efficiency, freeze-
and-grow, e.g. PackNet [36], to incur no forgetting. Off-policy methods, by decoupling the learning policy from the acting
policy, support replaying of past data. In short, off-policy learning is the approach of choice in CRL.3

Base algorithm The Soft Actor-Critic (SAC) [18] is an off-policy actor-critic algorithm for continuous actions. SAC
adopts a maximum entropy framework that learns a stochastic policy which maximizes the expected return and also
encourages the policy to contain some randomness. To accomplish this, SAC utilizes an actor/policy network πφ and
critic/Q network Qθ, parameterized by φ and θ respectively. Q-values are learnt by minimizing one-step temporal
difference (TD) error by sampling previously collected data from the replay buffer [32]. For more details on SAC, please
look at App. C.

B.2 Models

We consider various architectures to handle multi-task learning (MTL) as well as continual learning (CL) in both task-
aware and task-agnostic setting.

Task ID modeling (TaskID). We assume that a model such as SAC can become task adaptive by providing task infor-
mation to the networks. Task information such as task ID (e.g. one-hot representation), can be fed into the critics and
actor networks as an additional input: Qθ(s, a, k) and πφ(a|s, k) where k is the task ID. We refer to this baseline as Task
ID modeling (TaskID)This method is applicable to both multi-task learning and continual learning.

Multi-head modeling (MH). For multi-task learning (which is always task-aware), the standard SAC is typically
extended to have multiple heads [62, 64, 59, 63], where each head is responsible for a single distinctive task, i.e.
QΘ = {Qθk}Kk and πΦ = {πφk}Kk where K denotes total number of tasks. MH is also applicable to all reinforcement
learning algorithms. That way, the networks can be split into 2 parts: (1) a shared state representation network (feature
extractor) and (2) multiple prediction networks (heads). This architecture can also be used for task-aware CL, where a
new head is newly attached (initialized) when an unseen task is detected during learning.

We also use this architecture in task-agnostic setting for both MTL and CL. Specifically, the number of heads is fixed a
priori (we fix it to the number of total tasks) and the most confident actor head, w.r.t. the entropy of the policy, and most
optimistic critic head are chosen. Task-agnostic multi-head (TAMH) can help us fraction the potential MH gains over the
base algorithm: if MH and TAMH can improve performance, some of MH gains can be explained by its extra capacity
instead of the additional task information.

Task-agnostic recurrent modeling (RNN). Recurrent neural networks are able to encode the history of past data [33,
56, 3, 14, 40]. Their encoding can implicitly identify different tasks (or MDP). Thus, we introduce RNNs as a history
encoder where history is defined by {(si, ai, ri)}Ni and we utilize the hidden states z as additional input data for the
actor πφ(a|s, z) and critic Qθ(s, a, z) networks. This allows us to train models without any explicit task information, and
therefore we use this modeling especially for task-agnostic continual learning. More details about the RNN are provided
at the end of the next subsection.

B.3 Baselines

FineTuning is a simple approach to a CL problem. It learns each incoming task without any mechanism to prevent
forgetting. Its performance on past tasks indicates how much forgetting is incurred in a specific CL scenario.

Experience Replay (ER) accumulates data from previous tasks in a buffer for retraining purposes, thus slowing down
forgetting [46, 1, 8, 28]. Although simple, it is often a worthy adversary for CL methods. One limitation of replay is that,
to approximate the data distribution of all tasks, its compute requirements scale linearly with the number of tasks. To
alleviate this problem, we use a strategy that caps replay by oversampling the current task from the buffer explained in
Alg. 1 L8-9.

Multi-task (MTL) trains on all tasks simultaneously and so it does not suffer from the challenges arising from learning
on a non-stationary task distribution. It serves as a soft upper bound for CL methods.

Independent learns a set of separate models for each task whereby eliminating the CL challenges as well as the MTL
ones, e.g., learning with conflicting gradients [63].

3Note that the findings of this paper are not limited to off-policy methods, in fact our 3RL model can be extended to any on-policy
method as long as it utilizes a replay buffer [13] Having the capability to support a replay buffer is more important than being on-policy
or off-policy.
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The aforementioned baselines are mixed-and-matched with the architectural choices to form different baselines, e.g.
MTL with TaskID (MTL-TaskID) or FineTuning with MH (FineTuning-MH). At the core of this work lies a particular
combination, explained next.

Replay-based Recurrent RL (3RL) A general approach to TACRL is to combine ER—one of CL’s most versatile
baseline—with an RNN, one of RL’s most straightforward approach to handling partial observability. We refer to this
baseline as replay-based reccurent RL (3RL). As an episode unfolds, 3RL’s RNN representations zt = RNN({(si, ai, ri)}t−1

i=1)
should predict the task with increasing accuracy, thus helping the actor πθ(a|s, z) and critic Qφ(s, a, z) in their respective
approximations. We will see in Sec. 4, however, that the RNN delivers more than expected: it enables forward transfer
by decomposing new tasks and placing them in the context of previous ones. We provide pseudocode for 3RL in Alg. 1,
which we kept agnostic to the base algorithm and not tied to episodic RL. Note that in our implementation, the actor and
critics enjoy their own RNNs, as in [14, 40]: they are thus parameterize by θ and φ, respectively.

Algorithm 1: 3RL in TACRL
Environment: a set of K MPDs, allowed timesteps T
Input: initial parameters θ, empty FIFO replay buffers {Di}Ki , replay cap β, batch size b, history length h

1 for task k in K do
2 set environment to nth MDP
3 for times-steps t in T do

/* Sampling stage */

4 compute dynamic task representation zt = RNNθ({(si, ai, ri)}t−1
i=t−h−1)

5 observe state st and execute action at ∼ πθ(·|st, zt)
6 observe reward rt and next state st+1

7 store (st, at, rt, st+1) in buffer Dk
/* Updating stage */

8 sample a batch B of b×min( 1
n
, 1− β) trajectories from the current replay buffer Dk

9 append to B a batch of b×min(n− 1

n
, β) trajectories from the previous buffers {Di}k−1

i

10 Compute loss on B and accordingly update parameters θ with one step of gradient descent

C Soft-Actor Critic

The Soft Actor-Critic (SAC) [18] is an off-policy actor-critic algorithm for continuous actions. SAC adopts a maximum
entropy framework that learns a stochastic policy which not only maximizes the expected return but also encourages
the policy to contain some randomness. To accomplish this, SAC utilizes an actor/policy network (i.e. πφ) and critic/Q
network (i.e. Qθ), parameterized by φ and θ respectively. Q-values are learnt by minimizing one-step temporal difference
(TD) error by sampling previously collected data from the replay buffer [32] denoted by D.

JQ(θ) = E
s,a

[(
Qθ(s, a)− y(s, a)

)2]
, a′ ∼ πφ(·|s′) (1)

where y(s, a) is defined as follows:

y(s, a) = r(s, a) + γ E
s′,a′

[
Qθ̂(s

′, a′)− α log(a′|s′)
]

And then, the policy is updated by maximizing the likelihood of actions with higher Q-values:

Jπ(φ) = E
s,â

[
Qθ(s, â)− α log πφ(â|s)

]
, â ∼ πφ(·|s) (2)

where (s, a, s′) ∼ D (in both (1) and (2)) and α is entropy coefficient. Note that although SAC is used in this paper, other
off-policy methods for continuous control can be equally utilized for CRL. SAC is selected here as it has a straightforward
implementation and few hyper-parameters.

D Baselines Definitions

FineTuning-MH is FineTuning with task-specific heads. For each new task, it spawns and attaches an additional output
head to the actor and critics. Since each head is trained on a single task, this baseline allows to decompose forgetting
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happening in the representation of the model (trunk) compared to forgetting in the last prediction layer (head). It is a
task-aware method.

ER-TaskID is a variant of ER that is provided with task labels as inputs (i.e. each observation also contains a task label).
It is a task-aware method that has the ability to learn a task representation in the first layer(s) of the model.

ER-MH is ER strategy which spawns tasks-specific heads [58], similar to FineTuning-MH. ER-MH is often the hardest
to beat task-aware baseline []. ER-TaskID and ER-MH use two different strategies for modelling task labels. Whereas,
MH uses |h| × |A| task-specific parameters (head) taskID only uses |h|, with |h| the size of the network’s hidden space
(assuming the hidden spaces at each layer have the same size) and |A| the number of actions available to the agent.

ER-TAMH (task-agnostic multi-head) is similar to ER-MH, but the task-specific prediction heads are chosen in a task-
agnostic way. Specifically, the number of heads is fixed a priori (in the experiments we fix it to the number of total tasks)
and the most confident actor head, w.r.t. the entropy of the policy, and most optimistic critic head are chosen. ER-TAMH
has the potential to outperform ER, another task-agnostic baseline, if it can correctly infer the tasks from the observations.

MTL is our backbone algorithm, namely SAC, trained via multi-task learning. It is the analog of ER.

MTL-TaskID is MTL, but the task label is provided to the actor and critic. It is the analog of ER-TaskID and is a standard
method, e.g. [17].

MTL-MH is MTL with a task-specific prediction network. It is the analog of ER-MH and is also standard, e.g. [63, 17, 64].

MTL-TAMH is similar to MTL-MH, but the task-specific prediction heads are chosen in the same way as in ER-TAMH.

MTL-RNN is similar to MTL, but the actor and critic are mounted with an RNN. It is the analog of 3RL.

E Empirical Findings

We now investigate some alluring behaviours we have come upon, namely that replay-based recurrent reinforcement
learning (3RL), a task-agnostic continual reinforcement learning (TACRL) baseline, can outperform other task-agnostic
but more importantly task-aware baselines, as well as match its MTL soft upper bound.

Benchmarks The benchmark at the center of our empirical study is Meta-World [64], which has become the canonical
evaluation protocol for multi-task reinforcement learning (MTRL) [63, 62, 27, 47]. Meta-World offers a suite of 50 dis-
tinct robotic manipulation environments. What differentiates Meta-World from previous MTRL and meta-reinforcement
learning benchmarks [44] is the broadness of its task distribution. Specifically, the different manipulation tasks are in-
stantiated in the same state and action space4 and share a reward structure, i.e., the reward functions are combinations of
reaching, grasping, and pushing different objects with varying shapes, joints and connectivity. Meta-World is thus fertile
ground for algorithms to transfer skills across tasks, while representing the types of tasks likely relevant for real-world
RL applications (see Fig. 4 for a rendering of some of the environments). Consequently, its adoption in CRL is rapidly
increasing [58, 38, 4].

In this work, we study CW10, a benchmark introduced in [58] with a particular focus on forward transfer, namely, by
comparing a method’s ability to outperform one trained from scratch on new tasks. CW10 is composed of a particular
subset of Meta-World conductive for forward transfer and prescribes 1M steps per task, where a step corresponds to a
sample collection and an update.

We also study a new benchmark composed of the 20 first alphabetical tasks of Meta-World which we will use to explore
more challenging regime: the task sequence is twice as long and data and compute are constrained to half, i.e., 500k steps
are allowed per task. We refer to this benchmark as MW20.

In terms of metrics, the reported global and current success are the average success on all tasks and average success on
the task that the agent is currently learning, respectively.

Experimental Details We use the hyperparameters prescribed by Meta-World for their Multi-task SAC (MTL-SAC)
method. We ensured the performance of our SAC implementation on the MT10, one of Meta-World’s prescribed MTRL
benchmark, matches theirs (see App. G). For more details on the hyperparameters and training, see App. F. We test the
methods using 8 seeds and report 90% confidence intervals as the shaded area of the figures.

As explained in Alg. 1, we have employed an scheme that oversamples recently gathered data scheme. Whenever we
mention oversampling, we mean that the ER algorithm never spends more than 80% of its compute budget replaying
old tasks. Without this feature, an ER algorithm would, for example, spend 90% of its compute budget when learning
the 10th task.

4the fixed action space is an important distinction with traditional incremental supervised learning
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Figure 5: 3RL outperforms all baselines in both CW10 (left) and MW20 (right). The horizontal line is the reference performance of
training independent models on all tasks. The dotted lines (right plot) represent the methods’ performance when they oversample
recently collected data. 3RL outperforms all other task-agnostic and more interestingly task-aware baselines. As a side note, ER is
high variance as it attempts to solve the POMDP directly without having any explicit or implicit mechanism to do so.

Task Agnosticism overcomes Task Awareness Our first experiments are conducted on CW10 and MW20 and are reported
in Fig. 5. Interestingly, 3RL outperforms all other methods in both benchmarks. This is surprising for two reasons. First,
at training time, the task-aware methods learn task-specific parameters to adapt to each individual task. Hence, they
suffer less or no forgetting (in general). Second, at test time, the task-agnostic method has to first infer the task through
exploration, at the expense of exploitation (see bottom of Fig. 4 for a visualization).

Of course, one could add an RNN to a task-aware method. We intend to compare the effect of learning task-specific
parameters compared to learning a common task inference network (the RNN). Nevertheless, a combination of the RNN
with ER-MH which was unfruitful (see App. I).

To ensure that these results are not a consequence of the methods having different number of parameters, we learned the
CW10 benchmark with bigger networks and found the performance to drop across all methods (see App. J). Further, in
our experiments ER-MH is the method with the most parameters and it is outperformed by 3RL.

Continual Learning can Match Multi-Task Learning Multi-task learning is often used as a soft upper bound in eval-
uating CL methods in both supervised [1, 35, 11] and reinforcement learning [46, 52, 58]. The main reason is that in the
absence of additional constraints, multi-task learning (jointly training with data from all tasks in a stationary manner)
does not suffer from the catastrophic forgetting that typically plagues neural networks trained on non-stationary data
distributions.

3RL can reach this multi-task learning upper bound. In Fig. 6 we report, for the second time, the results of the MW20
experiments. This time, we focus on methods that oversample the current task and more importantly, we report the
performance of each method’s multi-task analog, i.e. their soft-upper bound (dashed line of the same color). 3RL, is the
only approach that matches the performance of its MTRL equivalent. We believe it is the first time that a specific method
achieves the same performance in a non-stationary task regime compared to the stationary one, amidst the introduced
challenges like catastrophic forgetting.

For the remainder of the section, we investigate some hypotheses that might explain 3RL’s alluring behavior. We first
hypothesise that the RNN boosts performance because it is simply better at learning a single MDP (Hypothesis #1).
Next, we investigate the hypothesis that 3RL reduces parameter movement, as it is often a characteristic of successful
continual-learning methods (Hypothesis #2). We then explore the hypothesis that the RNN correctly places the new tasks
in the context of previous ones (Hypothesis #3). We discuss one last hypothesis in App. M.

Hypothesis #1: RNN individually improves the single-task performance A simple explanation is that the RNN en-
hances SAC’s ability to learn each task independently, perhaps providing a different inductive bias beneficial to each
individual task. To test this hypothesis, we run the CW10 benchmark this time with each task learned separately, which
we refer to as the Independent baselines. Note that this hypothesis is unlikely since the agent observes the complete
state which is enough to act optimally (i.e. the environments are MDPs not POMDPs). Unsurprisingly, the RNN does
not appear to improve performance in STL settings and we discard this hypothesis. Appendix H provides a complete
analysis of STL results.

Hypothesis #2: RNN increases parameter stability, thus decreasing forgetting The plasticity-stability tradeoff is at
the heart of continual learning: plasticity eases the learning of new tasks. Naive learning methods assume stationary
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Figure 6: 3RL reaches its MTRL soft-upper bound. MW20 in solid
lines vs MTRL-MW20 in dotted lines. 3RL methods matches its soft-
upper bound MTL analog as well as the other MTRL baselines. In
contrast, other baselines’ performance are drastically hindered by the
non-stationary task distribution.

Figure 7: 3RL doesn’t achieve superior continual learn-
ing performance through increased parameter stability.
We show the evolution of the methods’ entropy in the pa-
rameters updates. We include MTL-RNN (dotted line) as
a ref. We do not observe an increase in parameter stabil-
ity: on the contrary, all methods, increasingly update more
weights as new tasks (or data) come in.

data and so are too plastic in non-stationary regimes leading to catastrophic forgetting. To increase stability, multiple
methods enforce [36] or regularize for [25] parameter stability, i.e., the tendency of a parameter to stay within its initial
value while new knowledge is incorporated. Carefully tuned task-aware methods, e.g. PackNet [36] in [58], have the
ability to prevent forgetting.5

Considering the above, we ask: could 3RL implicitly increase parameter stability? To test this hypothesis we measure the
entropy of the weight changes throughout an epoch of learning defined by all updates in between an episode collection.
Details about this experiment are found in App. K.

Fig. 7 shows the entropy of 3RL, ER, and ER-MH. We use these baselines since the gap between ER and its upper bound
is the largest and the ER-MH gap is in between ER’s and 3RL’s. We find strong evidence to reject our hypothesis. After
an initial increase in parameter stability, weight movement increases as training proceeds across all methods and even
spikes when a new task is introduced (every 500K steps). MTL-RNN follows the same general pattern as the ER methods.

Hypothesis #3: RNN correctly places the new tasks in the context of previous ones, enabling forward transfer and
improving optimization As in real robotic use-cases, MW tasks share a set of low-level reward components like grasp-
ing, pushing, placing, and reaching, as well as set of object with varying joints, shapes, and connectivity. As the agent
experiences a new task, the RNN could quickly infer how the new data distribution relates with the previous ones and
provide to the actor and critics a useful representation. Assume the following toy example: task one’s goal is to grasp
a door handle, and task two’s to open a door. The RNN could infer from the state-action-reward trajectory that the sec-
ond task is composed of two subtasks: the first one as well as a novel pulling one. Doing so would increase the policy
learning’s speed, or analogously enable forward transfer.

Now consider a third task in which the agent has to close a door. Again, the first part of the task consists in grasping
the door handle. However, now the agent needs to subsequently push and not pull, has was required in task two. In
this situation, task interference [63] would occur. Once more, if the RNN could dynamically infer from the context when
pushing or pulling is required, it could modulate the actor and critics to have different behaviors in each tasks thus
reducing the interference. Note that a similar task interference reduction should be achieved by task-aware methods.
E.g., a multi-head component can enable a method to take different actions in similar states depending on the tasks, thus
reducing the task interference.

Observing and quantifying that 3RL learns a representation space in which the new tasks are correctly decomposed and
placed within the previous ones is challenging. Our initial strategy is to look for effects that should arise if this hypothesis
was true (so observing the effect would confirm the hypothesis).

First, we take a look at the time required to adapt to new tasks: if 3RL correctly infers how new tasks relate to previous
ones, it might be able to learn faster by re-purposing learned behaviors. Fig. 8 depicts the current performance of different
methods throughout the learning of CW10. For reference, we provide the results of training separate models, which we
refer to as Independent and Independent RNN.

5The observation that PackNet outperforms an MTRL baseline in [58] is different from our stronger observation that a single method,
namely 3RL, achieves the same performance in CRL than in MTRL
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Figure 8: 3RL is the fastest learner. Current success
rate on CW10. The Independent method, which trains on
each task individually, is still the best approach to max-
imise single-task performance. However, on the task
that the continual-learning methods succeed at, 3RL is
the fastest learner. In these cases, its outperformance
over Independent and Independent RNN indicates that
forward transfer is achieved.

Figure 9: 3RL decreases gradient conflict leading to an increase in
training stability and performance. The global success and gradient as
measured by the variance of the gradients are shown are plotted against
each other. Training instability as measured by the variance of the Q-
values throughout learning is represented by the markers’ size, in a log-
scale. Transparent markers depict seeds, whereas the opaque one the
means. We observe a negative correlation between performance and
gradient conflict (-0.75) as well as performance and training stability (-
0.81), both significant under a 5% significance threshold. The hypothesis
is that 3RL improves performance by reducing gradient conflict via dy-
namic task representations.

The challenges of Meta-World v2 compounded with the ones from learning multiple policies in a shared network, and
handling an extra level of non-stationary, i.e. in the task distribution, leaves the continual learners only learning task 0,
2, 5, and 8. On those tasks (except the first one in which no forward transfer can be achieved) 3RL is the fastest continual
learner. Interestingly, 3RL showcases some forward transfer by learning faster than the Independent methods on those
tasks. This outperformance is more impressive when we remember that 3RL is spending most of its compute replaying
old tasks. We thus find some support for Hypothesis #3.

Second, simultaneously optimizing for multiple tasks can lead to conflicting gradients or task interference [63]. To test for
this effect, we use the variance of the gradients on the mini-batch throughout the training as a proxy of gradient conflict
(see App. L for a discussion on why the gradient’s variance is superior to the gradients’ angle as a proxy for gradient
conflict). In Fig. 9 we show the normalized global success metric plotted against the gradient variance. In line with
our intuition, we do find that the RNN increases gradient agreement over baselines. As expected, adding a multi-head
scheme can also help, to a lesser extent. We find a significant negative correlation of -0.75 between performance and
gradient conflict. Fig. 9 also reports training stability, as measured by the standard deviation of Q-values throughout
training (not to be confused with the parameter stability, at the center of Hypothesis #2, which measures how much the
parameters move around during training). We find 3RL enjoys more stable training as well as a the significant negative
correlation of -0.81 between performance and training stability. Note that The plausibility of Hypothesis #3 is thus further
increased.

We wrap up the hypothesis with some qualitative support for it. Fig. 4 showcases the RNN representations as training
unfolds. If the RNN was merely performing task inference, we would observe the trajectories getting further from each
other, not intersecting, and collapsing once the task is inferred. Contrarily, the different task trajectories constantly evolve
and seem to intersect in particular ways. Although only qualitative, this observation supports the current hypothesis.

F Experimental Details

We’ve used the SAC hyperparameters prescribed by Meta-World [64]. Specifically, we used a learning rate of 1 × 10−3;
mini-batch size of 1028; actor and critics are 2-layer MLPs with hidden sizes of [400, 400]; episode length of 500 (except
200 in CW10; ReLU activation function, soft target interpolation parameter of 5× 10−3.
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We used automatic entropy tuning except in the MTRL experiments, where we found it to be detrimental. Because their
MT-SAC implementation learns a task-specific entropy term, we think this is the reason why they do not observe the
same behavior.

As prescribed, we use a minimum buffer batch size of 1500 when doing 10 tasks and 7500 when doing more. We also use
a burn in period of 10,000 time-steps, now prescribed by Continual World [59].

Finally, after struggling with some deadly triad [54] problems in CRL and MTRL, we decided to clip the gradients’ norm
at 1, which turned out an effective solution.

F.1 Computing Resources

All experiments were performed on Amazon EC2’s P2 instances which incorporates up to 16 NVIDIA Tesla K80 Accel-
erators and is equipped with Intel Xeon 2.30GHz cpu family.

All experiments included in the paper can be reproduced by running 43 method/setting configurations with 8 seeds,
each running for 4.2 days on average.

F.2 Software and Libraries

In the codebase we’ve used to run the experiments, we have leverage some important libraries and software. We used
Mujoco [51] and Meta-World [64] to run the benchmarks. We used Sequoia [41] to assemble the particular CRL bench-
marks, including CW10. We used Pytorch [42] to design the neural networks.

G Validating our SAC implementation on MT10

In Fig. 10 we validate our SAC implementation on Meta-World v2’s MT10.

Figure 10: MT10 experiment. We repeat the popular MT10 benchmark with our MT-MH implementation. After 20M
time-steps, the algorithm reaches a success rate of 58%. This is in line with Meta-World reported results. In Figure 15
of their Appendix, their MT-SAC is trained for 200M time-steps the first 20M time-steps are aligned with our curve. We
further note that our CW10 result might seem weak vis à vis the reported ones in [59]. This is explained by [59] using
Meta-World-v1 instead of the more recent Meta-World-v2.
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H Extended CW10 Single-task results

Results for single-task experiments are shown in Fig. 11 and Fig. 12.

Figure 11: Single-task learning CW10 experiments. Average success on all task trained independently. In this regime,
the RNN doesn’t help.

Figure 12: Single-task learning CW10 experiments without gradient clipping. We enstored gradient clipping in CRL
and MTRL to alleviate the deadly triad problem, a problem we did not find in single-task learning (STL). For complete-
ness, we reran the STL experiments without gradient clipping. We found the performance of the RNN to dramatically
increase. Note that this is not the same algorithms used in the CRL and MTRL experiments because of the gradient
clipping discrepancy.

I Task-aware meets task-agnostic

In Fig. 13 we show that combining the RNN with MH is not a good proposition in CW10.

J Larger networks don’t improve performance

In Fig. 14 we report that increasing the neural net capacity doesn’t increase performance.

K Gradient Entropy Experiment

To assess parameter stability, we look at the entropy of the parameters for each epochs. Because the episode are of size
500, the epoch corresponds to 500 updates. To remove the effect of ADAM [24], our optimizer, we approximate the
parameters’ movement by summing up their absolute gradients throughout the epoch. To approximate the sparsity of
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Figure 13: CW10 experiment combining the RNN and MH. Combining the best task-agnostic (3RL) and task-aware
(ER-MH) CRL methods did not prove useful. Note that this experiment was ran before we enstored gradient clipping,
which explains why the performance is lower than previously reported.

Figure 14: CW10 experiment with larger neural networks.. We repeated the CW10 experiment, this time with larger
neural networks. Specifically, we added a third layer to the actor and critics. Its size is the same as the previous two, i.e.
400. The extra parameters have hindered the performance of all baselines.

the updates, we report the entropy of the absolute gradient sum. For example, a maximum entropy would indicate all
parameters are moving equally. If the entropy drops, it means the algorithm is applying sparser updates to the model,
similarly to PackNet.

L Gradient conflict through time

One might ask why we use the gradients’ variance as a proxy for gradient conflict. Indeed, [63] measures the conflict
between two tasks via the angle between their gradients: the tasks conflict if the angle is obtuse. However, we argue that
this thinking is inadequate because it does not consider the magnitude of the gradients.

Assume a 1D optimization problem. In case 1, assume that the first task’s gradient is 0.01 and the second’s -0.01. In case
2, assume the gradients are now 0.01 and 0.5. Measuring the conflict via the angle would lead us to think that the tasks
are in conflict in case 1 and are not in case 2. This is, however, not the case. The agreement is much higher in case 1: both
tasks agree that they should not move too far from the current parameter. In case 2, although the two tasks agree on the
direction of the step, they do not agree about the curvature of the loss landscape. The update step will thus be too small
and too big for the two tasks. We thus think standard deviation is a better proxy for gradient conflict. We have updated
the manuscript to defend our position better.
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We’ve included the evolution of gradient conflict in the actor and critics in Fig. 15.

Figure 15: Gradient variance analysis on CW20. Comparison of the normalized standard deviation of the gradients for
the actor (left) and critics (right) in for different CRL methods. For reference, we included MTL-RNN as the dotted line.
The gradient alignment’s rank is perfectly correlated with the performance rank.

M Hypothesis #4: we are operating in regimes where additional task-specific parameter can
hurt performance

The task-aware methods learn task-specific parameters which might require more training data. In Figure 5 we compare
the relative performance the methods as we increase compute and data from 500k time-steps to 1M. We observe that
increasing the data/compute narrows the gap between the 3RL and ER-MH. This increases the plausibility of hypothesis
#4.

However, some observations suggest we should look elsewhere. First, in CW10 (Figure Fig. 5) another, another high-
data regime, the task-aware methods do not shine. Second, ER-TaskID, which has fewer extra parameters compared to
ER-MH, does not work as well in general, and doesn’t improve when data/compute is increased two-fold.

Figure 16: Increased data/compute experiment. We show the methods’ performance on MW20 with 500k steps (left) and
1M steps (right). Hypothesis #4 is inconclusive.

N Related Work

To study CRL in realistic settings, [59] introduce the Continual World benchmark and discover that many CRL methods
that reduce forgetting lose their transfer capabilities in the process, i.e. that policies learned from scratch generally learn
new tasks faster than continual learners. Previous works study CL and compare task-agnostic methods to their upper
bounds [65, 53] as well as CL methods compare to their multi-task upper bound [45, 46, 2]. Refer to [23] for an in-depth
review of continual RL as well as [29, 19] for a CL in general.
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RNN were used in the context of continual supervised learning in the context of language modeling [60, 61] as well as in
audio [12, 55]. We refer to [10] for a in-depth review of RNN in continual supervised learning.

As in our work, RNN models have been effectively used as policy networks for reinforcement learning, especially in
POMDPs where they can effectively aggregate information about states encountered over time [57, 14, 40, 21]. RNN
were used in the context of MTRL [39]. Closer to our work, [48] leverages RNN in a task-aware way to tackle a continual
RL problem. To the best of our knowledge, RNN have not been employed within TACRL nor combined with Experience
Replay in the context of CRL.

O Conclusion

We have shown that adding a recurrent memory to task-agnostic continual reinforcement learning allows TACRL meth-
ods like 3RL to match their multi-task upper bound and even outperform similar task-aware methods. Our large experi-
ments suggest that 3RL manages to decompose the given task distribution into finer-grained subtasks that recur between
different tasks, and that 3RL learns representations of the underlying MDP that reduce task interference.

Our findings question the conventional assumption that TACRL is strictly more difficult than task-aware multi-task RL.
Despite being far more broadly applicable, TACRL methods like 3RL may nonetheless be just as performant as their
task-aware and multi-task counterparts. The need for the forgetting-alleviating and task-inference tools developed by
the CL community is now questioned, at least in CRL.
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Abstract

From birth, humans constantly make decisions about what to look at and for how long. Yet the mechanism behind
such decision-making remains poorly understood. Here we present the Rational Action, Noisy Choice for Habituation
(RANCH) model. RANCH is a rational learning model that takes noisy perceptual samples from stimuli and makes sam-
pling decisions based on Expected Information Gain (EIG). The model captures key patterns of looking time documented
in develop- mental research: habituation and dishabituation. We evaluated the model with adult looking time collected
from a paradigm analogous to the infant habituation paradigm. We compared RANCH with baseline models (no learn-
ing model, no perceptual noise model) and models with alternative linking hypotheses (surprisal, KL divergence). We
showed that 1) learning and perceptual noise are critical assumptions of the model, and 2) Surprisal and KL are good
proxies for EIG under the current learning context.

Keywords: decision making; learning; bayesian modeling; cognitive develop-
ment

RLDM 2022 Camera Ready Papers 146

146



1 Introduction

From trying to find our way through a busy street to swiping through TikTok, people are constantly making the decision
of whether to keep looking or to look at something else. Even the youngest infants decide whether to keep looking at
what is in front of them or move on. How can we explain this decision-making process? Our goal in the current paper is
to provide a model of the basic decision: whether to keep looking at a stimulus. To do so, we model looking as rational
active selection of noisy perceptual samples for learning.

Developmental researchers have long capitalized on infants’ ability to control their attention, making inferences about
learning and mental representations from changes in looking duration (e.g. Baillargeon, Spelke, & Wasserman, 1985). In
a typical experiment, infants decrease their looking duration upon seeing the same stimulus repeatedly (habituation) but
recover interest when seeing a novel stimulus (dishabituation). While these phenomena are well-documented, the mech-
anisms underlying them remain poorly understood, even though assumptions about habituation and dishabituation
underpin many other claims about infants’ cognitive repertoire (Carey, 2009).

Here we attempt to provide a model of looking behaviors as arising from optimal decision-making over noisy perceptual
representations (Callaway, Rangel, & Griffiths, 2021). We present the Rational Action, Noisy Choice for Habituation
(RANCH) model. RANCH works by accumulating noisy samples and choosing at each moment whether to continue to
look at the current stimulus or to look away to the rest of the environment. The architecture of the RANCH model allows
us to investigate different information-theoretic linking hypotheses as informing choice, including EIG, surprisal, and
KL. We make a preliminary evaluation of the RANCH model using adult looking time data collected from a self-paced
habituation paradigm that captures habituation, dishabituation, and how these phenomena are modified by stimulus
complexity. We begin by presenting our experiment, since it frames the learning task for our model.

2 Experiment

To reproduce the key looking time patterns from infant habituation experiments in adult participants, we chose a learning
context in which participants learn about the stimuli as they look at visually presented exemplars for as long as they like,
with no explicit task. Our initial data come from adults for two reasons. First, adult data are suitable for establishing
quantitative links between models and human behaviors, since infants’ looking time data tend to have small sample
sizes and are therefore limited in their quantitative details (Frank et al., 2017). Second, adult data allow us to test the
hypothesis that similar rational choice processes underlie infant and adult behavior under similar learning contexts.

2.1 Methods

The experiment was a web-based, self-paced visual presentation task. Participants were instructed to look at a sequence
of animated creatures (created with Spore, a game developed by Maxis in 2008) at their own pace and answer some
questions throughout. On each trial, an animated creature showed up on the screen. Participants could press the down
arrow to go to the next trial whenever they wanted to, after a minimum viewing time of 500 ms.

Each block consisted of six trials. Unbeknownst to the participants, each trial within the block was either a background
trial or a deviant trial. One creature was assigned to be the ‘background’ for each block, and was presented five or six
times. If the block contained a deviant trial, then a new, unique, creature was presented on that trial. The deviant trial
could appear at either the second, the fourth, or the sixth trial in the block, or not at all. The creatures presented in the
deviant trials and background trials were matched for complexity. Each participant saw eight blocks in total, four with
simple creatures and four with complex creatures, in random order across participants.

We recruited 449 participants on Prolific. To test whether behavior was related to task demands, participants
were randomly assigned to one of three attention check conditions, differing in the questions asked following each
block.Participants were excluded if they showed irregular reaction times or their responses in the attention check tasks
indicated low engagement with the experiment. The final sample included 380 participants.

2.2 Results

There were no task effects so we averaged all results across three conditions. We ran a linear mixed effects model with
maximal random effect structure. The predictors included in the model were a three-way interaction term between the
trial number (modeled as an exponential decay; Kail, 1991), the type of trial (background vs. deviant) and the complexity
of the stimuli (simple vs. complex). The model failed to converge, so we pruned the model following the pre-registered
procedure. The final model included per-subject random intercepts. All predictors except for the three-way interac-
tion were significant in the model (all p < .001), providing a quantitative confirmation that our paradigm successfully
captured the key looking time patterns: habituation, dishabituation, and complexity.
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3 Model

We next tested whether we could capture these behavioral results using the RANCH model. RANCH treats the learn-
ing problem that participants face in our experiment as a form of Bayesian concept learning (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008). In this setting, multiple noisy samples inform the learner’s hypothesis about a probabilistic
concept represented by a set of binary features.

3.1 Model definition

In our setting, the goal is to learn a concept θ, which is a set of probabilities over independent binary features θ1,2,..,n,
where n is the number of features. θ in turn generates exemplars y: instantiations of θ̄, where each feature y1,2,..,n
is present or absent. The weights on each feature θi are sampled from a Beta prior, and individual exemplars yi are
distributed as a binomial with parameter θi, forming a conjugate Beta-Bernoulli distribution. Since the features are
independent, this relationship holds for the entire concept θ.

To model the timecourse of attention, RANCH does not observe exemplars directly. Instead, it can observe repeated noisy
samples z̄ from each exemplar. For any sample z from an exemplar y there is a small probability ϵ that the observation is
flipped and the feature is seen to be present when it was actually absent or vice versa. ϵ is assumed to be unknown but
to have a Beta prior; in practice, we integrate over all possible values of ϵ. Therefore, by making noisy observations z̄,
RANCH obtains information about the true identity of the exemplar y, and by extension, about the concept θ̄. By Bayes’
rule:

P (θ|z̄) = p(z̄|y)p(y|θ)p(θ)/p(z̄) (1)

To compute approximate posterior probability distributions during inference, we used a discrete grid approximation
with a step size of .001 over both θ and ϵ.

Upon observing a sample, RANCH then decides whether to keep sampling or not. We chose EIG from the next sample
as the main linking hypothesis between the learned posterior and sampling choice.

RANCH computes EIG by iterating through each possible next observation and weighing the information gain from
each observation by its posterior predictive probability p(z|θ). We defined information gain as the KL between the
hypothetical posterior after observing a future sample zt+1 and the current posterior (Baldi & Itti, 2010):

EIG(zt+1) =
∑

zt+1∈[0,1]
p(zt+1|θt) ∗DKL(θt+1||p(θt)) (2)

Finally, to get actual sampling behavior from the model, it has to convert EIG into a binary decision about whether to
continue looking at the current sample, or to advance to the next trial. The model does so via a Luce choice between the
EIG from the next sample and a constant “environmental EIG” that is assumed to be the amount of information to be
gained via looking away from the stimulus.

p(lookaway) =
EIG(env)

EIG(zt+1) + EIG(env)
(3)

3.2 Alternative models

We are also interested in what aspects of the model are necessary to produce the phenomena. Specifically, we tested two
assumptions of the model: 1) the model makes decision based on learning, and 2) perception is noisy. We implemented
two lesioned baseline models. The No Learning model made random sampling decisions by drawing p(lookaway) from
a uniform distribution between 0 and 1 at every time step. The No Noise model omitted the noisy sampling aspect of
RANCH.

We also studied the behavior of RANCH using two other linking hypotheses, surprisal, and KL divergence. We im-
plemented these by replacing EIG(zt + 1) in Equation 2 with either surprisal or KL. Both have been used in previous
attempts to model infant looking behavior (Kidd, Piantadosi, & Aslin, 2012; Poli, Serino, Mars, & Hunnius, 2020), and to
approximate EIG in the reinforcement learning literature (Kim, Sano, De Freitas, Haber, & Yamins, 2020).

3.3 Simulations

To model the behavioral experiment, we first represented the stimuli as binary-valued vectors indicating the presence
(1) or absence (0) of each feature. All stimulus vectors were chosen to be length 6 to provide sufficient representational

2

RLDM 2022 Camera Ready Papers 148

148



No Deviant Deviant at 2nd Trial Deviant at 4th Trial Deviant at Last Trial

B
ehavioral7.50

7.75
8.00
8.25

E
IG

N
o Learning

N
o N

oise
S

urprisal
K

L

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

7.5
8.0
8.5

7.5
8.0
8.5

7.5
8.0
8.5

7.5
8.0
8.5

7.5
8.0
8.5

Trial Number

Trial Complexity Complex Simple

Figure 1: For comparison, all model results were linearly scaled to match the behavioral data. All results were log-
transformed.

flexibility. Complex stimuli were represented as having three 1s and simple stimuli were represented as having one
1, with the rest of the features set to 0. Individual stimuli were then assembled into sequences to reflect the stimuli
sequences in the behavioral experiment. For a particular sequence, we constructed the deviant stimulus based on the
background stimulus to make sure that they were always maximally different and had the same number of features
present.

Since the model makes stochastic choices about how many samples to take from each stimulus, behavior varies substan-
tially across runs. Thus, we conducted 500 runs for each stimuli sequence and parameter value to obtain a reasonably
precise estimate of the model’s behavior.

3.4 Parameter estimation

We performed an iterative grid search in parameter space. We constrained our parameter space on the beta priors over
features to have shape parameters αθ > βθ, which describe the prior beliefs as “more likely to see the absence of a feature
than the presence of a feature.” We then searched for the priors over the concept (θ), the noise parameter that decides
how likely a feature would be misperceived (ϵ), and the constant EIG from the environment (EIG(env)). The prior over
the noise parameter was fixed for all searches (αϵ = 1;βϵ = 10). We selected the parameters that achieved the highest
correlation with the behavioral data averaged across participants and blocks (αθ = 1, βθ = 4, ϵ = 0.065, EIG(env) = 0.01).
No parameter regimes showed qualitatively different patterns, though the magnitude of dishabituation was strongly
dependent on the priors over θ; a test of the generality of these specific parameter values is left for future work.

3.5 Results

The simulation results are summarised in Figure 1. RANCH exhibited the main phenomena of interest, showing habit-
uation, dishabituation, and complexity effects. We also quantitatively explored the model by fitting the model results to
the behavioral data. Overall RANCH achieved a good fit across the three linking hypotheses (EIG: Pearson’s r: = 0.92
[0.84, 0.96], RMSE = 0.19 [0.16, 0.24]; Surprisal: Pearson’s r = 0.92 [0.85, 0.95], RMSE = 0.13 [0.11, 0.16]; KL: Pearson’s r
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= 0.93 [0.88, 0.96], RMSE = 0.12 [0.1, 0.15]), but in contrast, the No Learning (Pearson’s r = 0.21 [-0.09, 0.46]; RMSE: 0.27
[0.23, 0.34]) and No Noise model (Pearson’s r = 0.5 [0.36, 0.65]; RMSE: 0.25 [0.21, 0.31]) fit the data poorly.

4 General discussion

The current work aims to provide a computational model that can explain key phenomena observed in typical infant
looking time paradigms: habituation, dishabituation, and how these are modified by stimulus complexity. RANCH
assumes a rational learner that takes noisy perceptual samples from stimuli and makes sampling decisions based on EIG.
We evaluated the model with adult looking time data collected from a paradigm that mirrors classic infant looking time
paradigms, in which participants are learning about multi-feature concepts, and found that RANCH could successfully
reproduce the patterns observed in behavioral data. By contrasting the model results with our baseline models, we
showed that habituation, dishabituation, and complexity effects only arise in a learning model that takes into account
the noisy nature of perception. Moreover, we found that, in the current learning context, other information theoretic
quantities (surprisal and KL) are good proxies for the optimal linking hypothesis, EIG.

The similarity between model fits among models with different linking hypotheses highlights the significance of learning
contexts. Our results should not be interpreted as evidence showing that the three linking hypotheses are indistinguish-
able across all learning contexts. Previous work has shown that adopting surprisal as learning policy can lead to unde-
sirable behaviors in artificial agents (e.g. “the white noise problem,” Oudeyer, Kaplan, & Hafner, 2007). Moreover, the
two alternative linking hypotheses are backward-looking metrics that utilize heuristics about the past to make decisions.
This characteristic could constrain their application to situations in which the environment is stable and the cost of sam-
pling is low. Since adult exploration is sensitive to environmental complexity, a forward-looking metric like EIG might
be particularly suitable to predict behaviors in a more dynamic learning context (Dubey & Griffiths, 2020; Vogelstein et
al., 2022).

Our ultimate goal is to provide a rational learner model that can account for information-seeking behaviors reflected in
infants’ looking time. Here we have shown that a simple model of learning from sampling can reproduce habituation,
dishabituation, and complexity effects. Moving forward, we aim to capture and explain more contentious phenomena
documented in the infant looking time literature such as familiarity preferences and age effects (Hunter & Ames, 1988).
Our ongoing work with infants will eventually enable us to evaluate our model with developmental data. When com-
bined with adult results, the data and model will provide insights into the general mechanisms through which learners
decide what to look at, and when to stop looking.
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Abstract

Open-ended learning, an important research area of developmental robotics and machine learning, aims to build robots
and machines able to incrementally and autonomously learn knowledge and skills based on intrinsic motivations and
goal self-generation. In this work, we first highlight the challenges posed by the benchmark ‘REAL’, a robot competition
fostering the development and comparison of robot architectures for truly open-ended learning. The benchmark requires
to control a simulated camera-arm robot that undergoes two phases: (a) in the ‘intrinsic phase’: the robot autonomously
interacts with some objects for a long time to acquire knowledge and skills; (b) in the ‘extrinsic phase’: the robot is tested
with a set of goals unknown in the intrinsic phase to measure the quality of the autonomously acquired knowledge. The
benchmark involves a number of challenges that are commonly faced in isolation, in particular the decision of which
actions to use for exploration, the learning of the very concept of object based on pixels, the autonomous generation of
tasks/goals, the generalisation to new conditions, and the autonomous learning of sensorimotor skills. The main contri-
bution is the presentation of a set of robot architectures, called ‘REAL-X’, that are able to solve the different challenges
posed by the benchmark and that are introduced progressively by releasing initial simplifications. The tests of the ar-
chitectures show that the REAL benchmark is a useful means to clarify and face the challenges posed by open-ended
learning in their hardest form. The REAL-X architectures succeed to achieve a good performance in the demanding con-
ditions posed by the benchmark by using an intrinsic-motivation mechanism to foster the selection of actions during the
intrinsic phase, and a novel mechanism that dynamically increases the level of abstraction used for planning during the
extrinsic phase.

Keywords: Autonomous robot, simulation, open-ended learning, competi-
tion, benchmark, intrinsic motivation, planning.
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(a) REAL Environment (b) Examples of extrinsic goals (c) REAL-X architecture

1 Introduction

Learning processes of humans and other animals with a sophisticated cognition are driven not only by biological and
social needs but also by drives, such as intrinsic motivations, directed to the acquisition of knowledge and skills only later
expressing a biological or social utility [6, 1]. Several algorithms have been proposed to reproduce intrinsically moti-
vated learning in artificial intelligent machines and robots undergoing open-ended learning – the autonomous cumulative
acquisition of knowledge and skills without relying on pre-wired reward functions, tasks, or goals [2, 11, 8]. Open-ended
learning has been studied within the field of developmental robotics [12, 7], that has proposed various architectures for
robot open-ended learning based on intrinsic motivations (e.g., [5, 15, 13, 16, 14]). More recently, also machine learning
has entered the field, in particular by building on reinforcement learning algorithms [17, 4]. Notwithstanding recent ad-
vancements, we still do not have robots able to undergo a truly open-ended learning process as the learning progress of
the current systems stops beyond a certain extent. One way to promote the development of such systems is the proposal
of benchmarks and competitions that facilitate the comparison of alternative approaches and models. For this reason,
we have proposed a competition called (REAL 2021 – Robot open-Ended Autonomous Learning1) now at its third edition.
The competition pivots on a benchmark encompassing the major challenges of robotic open-ended learning [10]). The
competition is based on two phases [10, 3]. A first intrinsic phase involves a very long period of learning where the robot
has to acquire knowledge and skills and in which no external guidance is available (no supervision, rewards, tasks, goals,
etc.. In a second extrinsic phase the robot has to accomplish a number of extrinsic goals unknown during the first phase
and its average performance is measured. This is the central element of the benchmark as it allows an objective measure of
the quality of the knowledge that the robot acquired autonomously in the intrinsic phase, independently of the algorithm used in
such phase. This is important as it furnishes a standard to compare different autonomous learning algorithms used in the
intrinsic phase. The benchmark poses extremely hard challenges, as revealed by the previous editions of the competition
[10]. The first challenge is that the robot perceives only pixels, joint angles, and touch-sensor readings and so needs to
autonomously understand from scratch the very concept of object. Second, the robot does not have any information on
how to control its several degrees of freedom to produce ‘relevant’ effects on the environment. Moreover, these chal-
lenges are made particularly hard as they are strongly interdependent but they have to be faced at the same time. In
this work, we propose a set of architectures, called REAL-X, that encompass a number of solutions to face the different
challenges posed by the REAL benchmark. The ‘X’ in the name refers to the fact that the architecture has been developed
in different versions, as we first faced simplified versions of the REAL challenge with a basic version of the architecture,
and then we progressively removed the simplifications and faced them by endowing the architecture with enhanced
components. In future work, we plan to use the REAL benchmark and the architecture to further develop these solutions
and compare and integrate them with other relevant models and mechanisms from the literature.

2 Methods

Scenario of the open-ended learning benchmark The competition scenario is inspired by an assistant-robot scenario
where the robot should help to tidy up a kitchen (‘kitchen scenario’, see Figure 1a). The robot is a 7-DoF Kuka arm
coupled with a 2 DoF gripper. It stands in front of a table, which has a shelf and 1 to 3 objects: a cube, a tomato can,
and a mustard bottle. The perceptual space comprises the images from a fixed top-view camera, the proprioception of
joint angles, and the gripper touch sensors; in a simplified version of the benchmark the robot directly perceives the
positions of the objects. In the REAL-X architectures discussed below, the touch sensors will not be used. In a first
intrinsic phase, the robot autonomously interacts with the environment for a long time (about 20 hours of simulated time)
during which it should acquire as much knowledge and skills as possible to best solve the tasks in a second ‘extrinsic
phase’. During the extrinsic phase, the acquired knowledge and skills are evaluated with tasks (here ‘goals’, intended
as desired world states) unknown by the robot during the intrinsic phase. Each goal has to be reached within a short

1https://eval.ai/web/challenges/challenge-page/1134/overview
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Figure 2: Dynamic abstraction functioning. Yellow circles: states (x-y object position or latent variables) experienced
during the intrinsic phase. Red circle: current state. Blue circle: goal state. Arrows: experienced actions connecting
states. Dashed ovals: boundary within which a certain state is considered as the same as the other states within the
boundary. Bold circles and arrows: plan portion that the algorithms managed to find up to a certain level of abstraction.

timeframe (50 seconds of simulated time). Each goal features a different desired object configuration and also a different
starting configuration involving one or more objects, positioned along the table or on the shelf. Figure 1b shows some
examples of extrinsic goals. Crucially, in the extrinsic test the robot can still learn, but this is of little help given the
limited time available to solve each task, so the performance in the extrinsic phase can be considered an objective measure of the
system’s capacity to autonomously acquire knowledge during the intrinsic phase. The extrinsic-phase performance is scored as
the average performance on all 50 goals, with each goal being scored as a function of how much distant was each object
final position compared to the goal position (1 if the object is exactly there, less if it is more distant - see also [9]).

Objective function of the open-ended learning benchmark The overall objective of the robot participating in the com-
petition is to find, during the intrinsic phase, the parameter vector θ∗ that maximizes the expected reward collected during
the extrinsic phase: θ∗ = argmaxθ Eg∼τ(g)

(
Eπ(a|s,g,θ)R(g)

)
whereR(g) are the total rewards obtained for goal g used in the

extrinsic phase to evaluate the system, g ∼ τ(g) is the distribution of possible tasks that can be posed in the environment,
π(a|s, g, θ) is the control policy, dependent on parameters θ, that the robot uses to select actions a in response to state
s and the currently pursued goal g. The crucial feature of the benchmark is that the parameters θ must be learned during the
intrinsic phase but are tested with goals g during the extrinsic phase, and these goals are unknown during the intrinsic phase.

Simplifications We designed different REAL-X architectures to face different versions of the benchmark. These versions
feature different simplifications that were progressively released to move towards the full hard challenge. Perception A
first simplification gave the robot the x, y, z positions of the objects. When this simplification was removed, the robot
instead received a raw camera image of 320x240 RGB pixels. Motor control This simplification gave the robot a parame-
terised macro-action to act on the objects. The macro-action first moved the (closed) end effector close to the table plane,
then along a segment trajectory parallel to the plane, and then back to a home position. The parameters of the macro-
actions were the two (x, y) and final (x′, y′) extremes of the movement segment on the plane. The use of the macro-action
greatly facilitated hitting/pushing the objects during exploration. When this simplification was removed, the robot was
directly controlled in the joint space. Number of objects We currently report only results with 1 object.

REAL-X architectures. We first describe the simpler architecture, REAL-D, then introduce two reduced architectures
used for comparison (REAL-R, REAL-T) and finally the architectures enhanced with components to face the more com-
plex benchmark conditions (REAL-LD, REAL-ILD; see Table 1). These conditions are called REAL X for ease of refer-
ence (note in place of −). REAL-D is formed by three main components (Figure 1c). Explorer. This component guides
exploration during the intrinsic phase and aims to maximise the acquisition of motor skills. Each action lasts 1000 steps
and starts and ends in a ‘home’ position involving the arm and gripper straight upward. The explorer produces different
actions by randomly generating their parameters. For each executed action the component stores the acquired knowl-
edge as an action triplet (s, a, s′) containing: (a) the action precondition state s, encoding either the image or the objects’
positions; (b) the action parameters a; (c) the action outcome state s′. Abstractor. We introduced a ‘Dynamic Abstraction’
(DA) mechanism, sketched in Figure 2 that defines a number of abstraction levels starting from the (s, a, s′) triplets ex-
perienced. To define when a certain state si can be considered equivalent to an s or s′ state of a triplet, we define a
series of increasing thresholds that define different abstraction levels. The output of the DA is an L × V matrix, where
L is the number of desired abstraction levels (here 200), and V is the number of state variables to consider (e.g. the x-y
position of an object; or the latent variables of an auto-encoder used to abstract images). For each level of abstraction, the
DA gives V thresholds, one for each variable. This L × V matrix is used later by the planner to decide which states are
considered equivalent to each other, or different, at a given level of the abstraction.To compute the levels of abstraction,
the absolute differences |s − s′| of each action triplet are first computed and then ranked, independently for each vari-
able. From these ranked differences, 200 differences, one for each abstraction level, are then selected for each variable,
starting from the lowest rank up to the maximum rank, at equal intervals. The lowest level of abstraction thus involves
V thresholds representing the minimum differences found, for each state variable, between all the starting-outcome state
couples of the triplets; the maximum level of abstraction uses instead the largest differences found. This process allows
the DA to work in an unsupervised fashion for any domain and requires only a single parameter establishing how many
abstraction levels are desired. Planner. The planning used was A* with a maximum depth of 10 actions and a heuristic
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based on the outcome-goal distance computed as the L-1 norm. The planner searches a plan by starting from the lowest
abstraction level from the DA and then raises it in case of failure until success. If the planner reaches the maximum level
of abstraction without finding a plan the goal is deemed non reachable. REAL-T: Threshold To test the utility of the DA
we also tested a version of the system, REAL-T, where we manually set a fixed abstraction threshold. REAL-R: Random
We also compared all systems with REAL-R, a system facing the extrinsic goals by producing random actions, to have
a baseline performance in all conditions. REAL-LD: Latent variables and Dynamic abstractor. REAL-LD was used to
face the conditions with raw RGB images. The Abstractor was enhanced with an additional abstraction process: the pre-
condition and outcome images were processed with a background filtering algorithm and then transformed into latent
variables using a Variational Autoencoder (VAE). The latent variables were then used as the input for the subsequent DA
and Planning processes. REAL-LD was tested in the REAL OM and REAL IJ conditions involving not only raw pixels
but also the direct control of joints. To face this condition, the macro-action was substituted with an action composed
by random via-points in the joints space. REAL-ILD: Intrinsic motivation exploration, Latent variables, Dynamic ab-
stractor REAL-ILD worked as REAL-LD but its Exploration component was enhanced with a mechanism increasing the
likelihood that the actions generated for exploration touched the objects. The mechanism is based on a neural-network
predictor that takes as input the current state (latent variables) and a planned action, and predicts if the action will lead
to a significant change of the state, for example because an object has been moved. The predictor is trained periodically
during exploration based on the information acquired that far. Before each action performance in the intrinsic phase, the
system generates up to 1,000 actions and evaluates them with the predictor; it then performs the first action predicted to
cause a change or a random one if no such action is found.

3 Results

REAL-X REAL X benchmark conditions
models REAL OM REAL IM REAL IJ
REAL-R 0.021± .002 0.021± .002 0.038± .002
REAL-T 0.212± .006*
REAL-D 0.216± .004 NA
REAL-LD 0.222± .005 0.139± .007
REAL-ILD 0.234± .007 0.149± .006

Table 1: Performance of the different architecture configu-
rations, named REAL-X, in different conditions, named as
REAL X. OM: object positions, macro actions. IM: raw Im-
ages, macro actions. IJ raw Images, joint control. *: Best re-
sult after running with different thresholds. NA: the Planner
was not able to return a plan before running out of memory.

Table 1 reports the scores of all REAL-X architectures
tested with increasingly difficult benchmark conditions.
A video of the performance of REAL-LD is avail-
able on https://youtu.be/kl26SyGAy_M (REAL IM
condition) and on https://youtu.be/nriO73Sftq0
(REAL IJ condition).

REAL-D vs. REAL-R and REAL-T: test in the REAL OM
condition REAL-D, tested in the REAL OM condition,
achieves a score of 0.216 while the random model REAL-R
achieves a performance of 0.021. The role of the Dynamic
abstractor for such result can be seen by comparing it with
the performance of REAL-T. We tried different values of
the REAL-T threshold, and only the best one led to a per-
formance similar to REAL-D, 0.212. This shows that the
DA is able to automatically find a good level of abstrac-
tion. To investigate how the DA works, Figure 3 shows the number of effective actions available to the Planner (A*)
for each level of abstraction. We consider an action to be ‘effective’ if its precondition is considered different from the
outcome at the given abstraction level. At level 0, all actions are different, so the planner has 15,000 actions available
(all those found in the intrinsic phase). At abstraction level 0, the Planner usually cannot find an action to start from or
an action that brings to a a state as the goal state. As the abstraction level is increased to higher levels, the minimum
distance to consider two states as different rises, so an increasing number of actions become non effective. We can see
that up to about the abstraction level 171 the distance is very small, less than 1 cm: the actions with such a short distance
are only due to the noise of the perceived object position and the object was not actually moved. In the simulations, the
Planner quickly filters out all these first abstraction levels where no solution is found and then starts to find workable
solutions at the abstraction level 170 or higher. The combination of the Planner with the DA thus succeed to find the
right abstraction level with which to plan without needing preset thresholds.

REAL-LD: test in the REAL IM condition REAL-LD in the REAL IM condition achieves an average score of 0.222, even
slightly higher than the score of REAL-D in the simpler REAL OM condition (0.216). This confirms that converting the
images into a latent space with the VAE, and then planning within it, performs as well as when using object positions.
REAL-LD: test in the REAL IJ condition REAL-LD was tested in the REAL IJ condition to evaluate its ability to handle
more general actions defined by an arbitrary sequence of joint via points. These joint actions produce non-coordinated
arm movements, which are however still able to hit and move the object. REAL-LD is capable of extracting from these
non-coordinated actions the effective ones to reach its goals, with a performance of 0.139 that is lower than REAL OM
and REAL IM conditions but still higher than the random model (0.038). These tests thus showed that the REAL-X
architecture can be used without predefined macro-actions. REAL-ILD: test in the REAL IM and REAL IJ condition
Figure 3 shows the effectiveness of the change predictor during the intrinsic phase. In the previous architectures, random
action sampling led to hitting the object with only 1 out of 6 actions. REAL-ILD gradually filters out the ineffective
actions before executing them, so the chances to actually hit the object rise through the phase up to about 273 hits every

3

RLDM 2022 Camera Ready Papers 154

154



Figure 3: Left: REAL-D ‘effective’ actions at different abstraction levels; Right: REAL-ILD progressive increase of suc-
cessful actions through exploration

500 actions – about half of the times. As shown in Table 1, in the REAL IM condition the higher number of actions
discovered allows REAL-ILD to achieve a higher performance than REAL-LD, 0.234 vs. 0.222. In the REAL IJ condition,
these figures become 0.149 vs. 0.139. This performance is only marginally higher so we investigated how the REAL-X
performance scales with the number of actions. We found that the performance of REAL-LD is not really limited by
the number of experienced actions as it already reaches a plateau with an 8ML-step intrinsic phase (8,000 actions), with
most of the performance acquired during the first 2,000 actions. These results suggest that to improve the performance
exploration should not simply provide ‘more actions’ but rather finding actions that have a higher precision and actions
to bring the object onto the shelf. On the other hand, the change predictor can still be very useful when the performance
is limited by the small number of actions collected as it improved the speed of finding effective actions up to three-fold.
This can be especially relevant when using real robots for which exploration can be very time consuming.

4 Conclusions

Open-ended learning has still not produced robots able of truly open-ended learning. The REAL competition represents
a benchmark usable to overcome this challenge as it allows a rigorous comparison of different intrinsically motivated
learning models. This is done by measuring how the models perform with a set of representative goals drawn in the
environment. In this work we presented several versions of a robot architecture, REAL-X, that can be used to face
increasingly complex versions of the benchmark. The architecture solves the benchmark challenges by abstracting the
images to identify objects, by selecting promising actions for exploration, and by dynamically abstracting over state
representations to support planning. The performance of the architecture variants was well above the chance level both
when some simplifications were kept and in the most challenging conditions. However, the performance was still far
from the maximum, thus indicating that the REAL benchmark still presents interesting open challenges to be solved.
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Abstract

Reinforcement learning methods for robotics are increasingly successful due to the constant development of better policy
gradient techniques. A precise (low variance) and accurate (low bias) gradient estimator is crucial to face increasingly
complex tasks. Traditional policy gradient algorithms use the likelihood-ratio trick, which is known to produce unbiased
but high variance estimates. More modern approaches exploit the reparametrization trick, which gives lower variance
gradient estimates but requires differentiable value function approximators. In this work, we study a different type of
stochastic gradient estimator - the Measure-Valued Derivative. This estimator is unbiased, has low variance, and can
be used with differentiable and non-differentiable function approximators. We empirically evaluate this estimator in
the actor-critic policy gradient setting and show that it can reach comparable performance with methods based on the
likelihood-ratio or reparametrization tricks, both in low and high-dimensional action spaces. With this work, we want to
show that the Measure-Valued Derivative estimator can be a useful alternative to other policy gradient estimators.

Keywords: Reinforcement Learning, Policy Gradients,
Measure-Valued Derivatives

An extended version of this work can be found at https://arxiv.org/pdf/2107.09359.pdf.
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1 Introduction

Complex robotics tasks, such as locomotion and manipulation, can be formulated as Reinforcement Learning (RL) prob-
lems in continuous state and action spaces [1]. In these settings, the RL objective is commonly an expectation dependent
on a parameterized policy, whose parameters are optimized via gradient ascent with the policy gradient theorem [2]. As
this gradient cannot always be obtained in closed-form, there are three main approaches to obtain an unbiased estimate:
the likelihood-ratio, also called Score-function (SF); the Pathwise Derivative, commonly known as the Reparametrization
trick (Rep-trick); and the Measure-Valued Derivative (MVD) [3]. The SF has been use extensively in policy gradients, but
is known to produce high-variance estimates. REINFORCE is an example of a SF based method [4]. Generally, the Rep-
trick [5] is a low variance gradient estimator, but it requires the optimized function to be differentiable, which excludes
non-differentiable approximators, such as regression trees . Soft Actor-Critic (SAC) [6] is an example of an algorithm that
uses this estimator. MVD is a third method to compute unbiased gradient estimates, which is not commonly used in the
Machine Learning (ML) community. It generally has low variance and unlike the SF avoids computing an extra baseline
for variance reduction. Few works have studied its application to RL [7, 8]. In this work, we analyze the properties of
MVDs in actor-critic policy gradient algorithms in the Linear-Quadratic Regulator (LQR) problem, for which we know
the true policy gradient, and with an off-policy algorithm for complex environments with high-dimensional spaces. The
results suggest that this estimator can be an alternative to compute policy gradients in continuous action spaces.

2 Background

2.1 Reinforcement Learning and Policy Gradients

Let a Markov Decision Process (MDP) be defined as a tupleM = (S,A,R,P, γ, µ0), where S is a continuous state space
s ∈ S,A is a continuous action space a ∈ A, P : S×A×S → R is a transition probability function, withP(s′|s,a) the den-
sity of transitioning to state s′ when taking action a in state s,R : S ×A → R is a reward function, γ ∈ [0, 1) is a discount
factor, and µ0 : S → R the initial state distribution. A policy π defines a (stochastic) mapping from states to actions. The
discounted state distribution under a policy π is given by dπγ (s) = (1 − γ)∑∞t=0 γ

tP (st = s|s0, π), where s0 is the initial
state, and P : S → R the probability of being in state s at time step t. The state-action value function is the discounted sum
of rewards collected from a state-action pair following the policy π, Qπ(s,a) = Eπ,P [

∑∞
t=0 γ

tr(st,at)|s0 = s,a0 = a],
and the state value function is its expectation w.r.t. the policy V π(s) = Ea∼π [Qπ(s,a)]. The advantage function is the
difference between the two Aπ(s,a) = Qπ(s,a) − V π(s). The goal of a RL agent is to maximize the expected sum of
discounted rewards from any initial state J(π) = Es0∼µ0 [V

π(s0)]. In continuous action spaces, it is common to optimize
J using gradient ascent with the policy gradient theorem [2]∇θJ(πθ) = Es∼µπγ

[∫
∇θπ(a|s;θ)Qπ(s,a) da

]
. Note that the

integral over the action space is not an expectation.

2.2 Monte Carlo Gradient Estimators

The objective function of several problems in ML, e.g. Variational Inference (VI), is often posed as an expectation of a
function f w.r.t. a distribution p parameterized by ω, J(ω) = Ep(x;ω) [f(x)] =

∫
p(x;ω)f(x) dx, where f : Rn → R is

an arbitrary function of x ∈ Rn, p : Rn × Rm → R is the distribution of x, and ω ∈ Rm are the parameters encoding
the distribution - also known as distributional parameters. For instance, in amortized VI [5] , f is the Evidence Lower
Bound (ELBO), and if p is a multivariate Gaussian that approximates the posterior distribution, ω aggregates the mean
and covariance. A gradient ascent algorithm is a common choice to find the parameters that maximize J(ω), for which
we need to compute∇ωJ(ω) =

∫
∇ωp(x;ω)f(x) dx. Since the derivative of a distribution is in general not a distribution

itself, the integral is not an expectation and thus not solvable directly by Monte Carlo (MC) sampling. If f also depends on
ω, the product rule is applied. Let a MC estimation of the gradient be obtained as ∇̂ωJ(ω) ≈ 1/M

∑M
i=1 ĝi, with ĝi ∈ Rm

an unbiased gradient estimate. There are three known ways to build an unbiased estimator of ∇ωJ(ω) - Rep-trick, SF
and MVD. Due to space constraints, we refer the reader to [3] for more details on the Rep-trick and SF estimators.

Measure-Valued Derivative (MVD) [9] Even though in general the derivative of a distribution w.r.t. its param-
eters is not a distribution, it is a difference between two distributions up to a normalizing constant [9]. The
main idea behind MVD is to write the derivative w.r.t. a single distributional parameter ωk ∈ R as a differ-
ence between two distributions, i.e. ∇ωkp(x;ω) = cωk

(
p+ωk(x;ω)− p−ωk(x;ω)

)
, where cωk is a normalizing con-

stant that can depend on ωk, and p+ωk and p−ωk are two distributions referred as the positive and negative com-
ponents, respectively. The MVD is the triplet

(
cωk , p

+
ωk
(x;ω), p−ωk(x;ω)

)
. For common distributions, such as the

Gaussian, Poisson, or Gamma, decompositions have been analytically derived [3]. The MVD decomposition gives
∇ωkJ(ω) =

∫
cωk

(
p+ωk(x;ω)− p−ωk(x;ω)

)
f(x) dx. I.e., the derivative is the difference of two expectations scaled

with the normalization constant. For example, to compute the derivative of a one-dimensional Gaussian N (x;µ, σ)
w.r.t. σ, we can sample the positive part from a Double-sided Maxwell and the negative one from a Gaussian.
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Figure 1: Sample run of
the unbiased gradient es-
timators in test functions.
Lines show the means of
the distributions, and el-
lipses one standard devia-
tion at the beginning (dia-
mond) and end (circle).

The gradient w.r.t. all parameters is the concatenation of the derivatives w.r.t. all individ-
ual parameters ωk, which results in O(2|ω|) queries to f to compute the full gradient.
In contrast, the SF and Rep-trick have O(1) complexity. The variance of this estimator
is Vp(x;ω)

[
ĝMVD
k

]
= Vp+ωk (x;ω) [f(x)] + Vp−ωk (x;ω) [f(x)] − 2Covp+ωk (x;ω)p−ωk (x

′;ω) [f(x), f(x
′)]

[3], which depends on the chosen decomposition and how correlated are the func-
tion evaluations at the positive and negative samples. If p is a multivariate distri-
bution with independent dimensions it factorizes as p(x;ω) =

∏n
i=1 p(xi; ξi), with

xi ∈ R and ξi a subset of ω (if p(x;ω) is a Gaussian with diagonal covariance, then
ξi = {µi, σi}). The derivative w.r.t. one parameter ωk ∈ ξk is given by ∂/∂ωkp(x;ω) =
cωk

(
p+ωk(xk; ξk)− p−ωk(xk; ξk)

)∏n
i=1,i6=k p(xi; ξi) = cωk

(
p+ωk(x;ω)− p−ωk(x;ω)

)
, where

p+ωk(x;ω) is the original multivariate distribution with the k-th component replaced by the
positive part of the decomposition of the univariate marginal p(xk; ξk) w.r.t. ωk (the negative
component is analogous).

Illustrative Example Fig. 1 shows the optimization of the expectation of common test
functions w.r.t. a 2-dimensional Gaussian distribution with diagonal covariance, using gra-
dient ascent. All estimators use 8 MC samples per gradient update. The SF uses an optimal
baseline for variance reduction. Rep-trick and MVD consistently move towards the global
maximum, while the SF shows unstable behaviors.

3 Actor-Critic Policy Gradients with Measure-Valued Derivatives

Given the properties of MVDs, especially its low variance, we propose to analyze them in
actor-critic policy gradients, which can be seen as computing an unbiased stochastic gra-
dient estimate of the expected return. Let π(a|s;ω = g(s;θ)) be a stochastic policy, where
ω are distributional parameters resulting from applying g with parameters θ to the state s,
e.g. neural networks that output the mean and covariance of a Gaussian distribution. Since
the gradient of g w.r.t. θ can be easily computed if g is a continuous deterministic function,
we only consider the gradient w.r.t. ω. In Table 1 we write the policy gradient theorem for a single parameter ωk with
the three different estimators. The MVD formulation of the policy gradient shows that to compute the gradient of one
distributional parameter we can sample from the discounted state distribution by interacting with the environment, and
then evaluate the Q-function at actions sampled from the positive and negative components of the policy decomposition
conditioned on the sampled states, π+

ωk
(·|s;ω) and π−ωk(·|s;ω), respectively. Importantly, the Q-function estimate is the

one from π and not from π+ or π−. The function approximator forQ can be a differentiable one, such as a neural network,
or a non-differentiable one, such as a regression tree . For the SF estimator, the Q-function is replaced by the advantage
function , which keeps the estimator unbiased but has lower variance.

The MVD formulation assumes we can query the Q-function for the same state with multiple actions. While previous
work [7] assumed access to a simulator that can estimate the return for different actions starting from the same state, e.g.
with MC rollouts, this scenario is not generally applicable to RL, where the agent cannot easily reset to an arbitrary state,
especially in real-world environments. Hence, we assume a critic approximator is available, e.g. fitted from samples.

Score-Function ∇ωkJ(ω) = Es∼µπγ , a∼π(·|s;ω) [∇ωk log π(a|s;ω)Qπ(s,a)]
Reparametrization Trick ∇ωkJ(ω) = Es∼µπγ , ε∼pε [∇aQπ(s,a = h(s, ε;ω))∇ωkh(s, ε;ω)]
Measure-Valued Derivative ∇ωkJ(ω) = Es∼µπγ

[
cωk

(
Ea∼π+

ωk
(·|s;ω) [Q

π(s,a)]− Ea∼π−ωk (·|s;ω) [Q
π(s,a)]

)]

Table 1: Policy gradient theorem with the different unbiased stochastic gradient estimators.

3.1 Gradient Analysis in the Linear Quadratic Regulator

We consider a discounted infinite-horizon discrete-time LQR with a linear Gaussian stochastic policy π(a|s) =

N (a| −Ks,Σ), where K ∈ R|A|×|S| is a learnable feedback gain matrix, and Σ ∈ R|A|×|A| a fixed covariance. Since
the value function is known and can be computed by numerically solving the Algebraic Riccati Equation, as well as the
gradient w.r.t. K, the LQR is a good baseline for policy gradient algorithms. We construct an LQR with |S| = 2 states
and |A| = 1 action, with dynamics such that the uncontrolled system is unstable, and select randomly a suboptimal
initial gain Kinit such that the closed-loop is stable. The initial state is uniformly drawn and fixed for all rollouts. We
compare the policy gradient of the expected return w.r.t. Kinit with the estimators from Table 1. For the SF, we replace
the Q-function with the advantage function for variance reduction. The expectation of the discounted on-policy state
distribution is sampled by interaction with the environment, but the expectation over actions uses the LQR’s true critics
Q and V , to represent an idealized scenario.
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Figure 2: Gradient analysis for a LQR with 2 states and 1 action. a) Gradient errors in magnitude and direction for
1 and 10 trajectories (rows) and sampled actions. b) Gradient errors with increasing error noise and frequency. The
different linestyles correspond to different error amplitudes α. The results are estimated using 10 trajectories and 20|A|
actions per state. c) Learning curves for different error amplitudes (rows) and frequencies. The gradients are estimated
using 1 trajectory and 2|A| actions per state. Some configurations lead to indistinguishable results, and thus plots appear
superposed. The solid lines depict the mean and the shaded area the 95% confidence interval of 25 random seeds.

We study two sources of errors - the relative absolute error (|‖ĝ‖ − ‖g‖|) /‖g‖ that relates the magnitude of the estimated
ĝ and true gradient g, and the cosine distance 1 − ĝᵀg/(‖ĝ‖‖g‖) that is the direction error. An ideal estimator has both
errors close to zero. The errors are analyzed along two dimensions – the number of trajectories and the number of
actions sampled to solve the action expectations. The results from Fig. 2a show that, as expected, with the number of
trajectories fixed, increasing the number of sampled actions decreases the estimators’ errors. The Rep-trick achieves the
best results in both magnitude and direction in all environments, and the MVD is slightly better than the SF. In our
experiments we observed this holds for higher dimensions as well. This reveals that even though the SF complexity
is O(1), in practice we need roughly the same number of samples as MVD to obtain a low error gradient estimate.
Knowing that the Q-function is quadratic in the action space, the results are in line with the example from Fig. 1a where
a quadratic function was optimized and all estimators performed equally well. Next, we consider a scenario where the
true Q-function has to be estimated. For that we model the approximator with a local approximation error on top of
the true value as Q̂(s,a) = Q(s,a) + αQ(s,a) cos(2πfpᵀa + φ), i.e. we add noise proportional to the true estimate,
where α represents the fraction of the true Q amplitude, f is the error frequency, p is a random vector sampled from a
symmetric Dirichlet distribution, and φ ∼ U [0, 2π] a phase shift. p and φ introduce randomness to remove correlation
between action dimensions. Fig. 2b shows the gradient errors in magnitude and direction as a function of the error
frequency and amplitude. The error frequency does not affect the gradient estimation of SF or MVD, as can be seen by
the horizontal blue and green lines. On the contrary the Rep-trick is heavily affected by both. This result is in line with
the theory, since under a Gaussian distribution the variance of the Rep-trick is upper-bounded by the Lipschitz constant
of the derivative of Q [3]. Fig. 2c shows the expected discounted return per steps taken in the environment with different
amplitudes and frequencies of errors. The SF and MVD do not suffer from errors in the estimation and converge towards
the optimal policy even in the presence of high-frequency error terms. The Rep-trick on the other hand either shows
slower convergence or fails to converge due to the poor gradient estimates. From these experiments we observe that
even though the Rep-trick provides the most precise and accurate gradient under a true value function, this does not
always hold for approximated functions, especially when there is an action correlated error.

3.2 MVDs in Off-Policy Policy Gradient for Deep Reinforcement Learning

Next we illustrate how MVDs can be used in a deep RL algorithm such as SAC, whose surrogate objective is
Jπ(ω) = Es∼dβ ,a∼π(·|s;ω) [Q

π(s,a;φ)− α log π(a|s;ω)] = Es∼dβ ,a∼π(·|s;ω) [f(s,a;φ,ω)], where dβ is an off-policy state
distribution, Q is a neural network parameterized by φ, α weighs the entropy regularization term, and ω are the
distributional parameters of π. SAC estimates the gradient w.r.t. ω using the Rep-trick. Instead we propose to
compute it using MVD and name this modification as SAC-MVD, whose gradient w.r.t. a single parameter ωk becomes
∇ωkJπ(ω) = Es∼dβ

[
cωk

(
Ea∼π+

ωk
(·|s;ω) [f(s,a;φ,ω)]− Ea∼π−ωk (·|s;ω) [f(s,a;φ,ω)]

)
− Ea∼π(·|s;ω) [∇ωα log π(a|s;ω)]

]
,

where π+
ωk

and π−ωk are the positive and negative components of the MVD decomposition.

We benchmark SAC with the different gradient estimators in high-dimensional continuous control tasks from the PyBul-
let simulator with: SAC-MVD with one MC sample; SAC-SF - a version of SAC using the SF; SAC-SF-extra-samples -
same as SAC-SF but with the same number of queries as SAC-MVD per gradient estimate; SAC-extra-samples - same as
SAC but with the same number of gradient estimates as SAC-SF-extra-samples; DDPG [10] and TD3 [11] - two off-policy
algorithms. The average reward curves obtained during training are shown in Fig. 3. SAC with Rep-trick and SAC-MVD
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Figure 3: Policy evaluation results during training on different tasks in deep RL. The lines depict the mean of the average
reward per samples collected and the shaded area the 95% confidence interval of 25 random seeds.

show similar performance, and increasing the number of MC samples does not improve the overall results (SAC-extra-
samples performs equally well). Even though SAC-MVD needs more forward passes of the Q-function, SAC needs to
backpropagate through it, and so we found the computation time to be similar in our implementation. The results of our
experiments reveal that the Rep-trick is not fundamental for the performance of SAC, and suggest that the superior per-
formances of this algorithm depend on other aspects, such as the entropy regularization, the state-dependent covariance
and the squashed Gaussian policy. Additionally, it is worth noticing that MVDs are applicable to function classes where
the Rep-trick is not, which allows to explore other approximator classes while using the benefits of SAC.

4 Conclusion

We presented MVDs as an alternative to the SF and Rep-trick estimators for actor-critic policy gradient algorithms. The
empirical results showed that methods based on the MVD are a viable alternative to the other two, and differently
from [7], we avoided resetting the environment to a specific state, showing how MVDs are applicable to the general
RL framework. In the simple LQR environment and with an oracle critic, the MVD performs better than the SF and
worse than the Rep-trick. However, with an action dependent error, the MVD and SF estimates are not affected by the
error frequency, while the Rep-trick is sensitive to it. In tasks with high-dimensional action spaces we obtain comparable
results with the Rep-trick using only one gradient estimate, which shows that it is not crucial for the SAC algorithm.
Furthermore, unlike in SAC, MVDs do not require a differentiableQ-function, allowing the use of other types of function
approximators. In future work we will investigate how to reduce the computational complexity of MVDs by computing
derivatives along important dimensions and using a convex combination the estimators, which still remains unbiased [3].
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Abstract 

The two-step task has classically been used to distinguish between model-free and model-based learning 

and decision-making. Here, we designed a two-step task for rats that amended the original design to more 

faithfully detect model-based behavior, should it arise. We find that rats are overwhelmingly model-free in 

their choice behavior. The best-fitting model was a combination of simple response rules that do not require 

the computation of intermediate variables like value or probability. Rats also experienced optogenetic 

inhibition in the dorsomedial and dorsolateral striatum during a subset of trials at the onset of two epochs: 

the second step state immediately following choice execution, and during the time of trial outcome. 

Research is ongoing, but for now the effect of optogenetic inhibition is confined to the former epoch—

experiencing laser stimulation in the dorsolateral striatum during a common state-action transition 

increased the probability of repeating the action that led to that transition. 

 

Keywords: rat, model-free, model-based, striatum 
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1 Introduction 

There is a degree to which decisions are based on the detailed anticipation of future consequences versus 

cached values that reflect a summary of past experience. These differing decision-making strategies can be 

quantified in the computations of model-based and model-free reinforcement learning, respectively. In 

humans, there is a rich literature probing the determining conditions of these learning and decision-making 

strategies using the classic two-step task1. The use of the two-step task is vastly more limited in rodents, 

with mixed findings. In rats, behavior is either dominated by model-based learning or a combination of 

model-based and model-free learning2,3. In mice, behavior was initially reported as a mix of model-based 

and model-free learning strategies4, but with more careful analysis was shown to be best explained by 

simple state-action rules that tend to produce behavior that appears model-based, but is actually model-

free5. This latter finding comes from a study where the researchers introduced specific contingency reversals 

in the state transition structure of the task—something that has not been tried with rats. This change in the 

task structure is based on the recognition that simple state-action rules can flourish under the original 

implementation of the two-step task—giving rise to behavior that appears model-based when it truly is not6. 

It is, therefore, important to understand how this specific change in the task structure alters the tendency of 

rats to engage in model-based planning. 

Model-based and model-free learning are thought to rely on separate parts of the brain. Specifically, the 

dorsomedial and dorsolateral striatum (DMS and DLS), when lesioned or pharmacologically inactivated, 

are necessary for behaviors analogous to model-based and model-free decision-making, respectively7,8. 

These findings come from studies in which rodents are trained to perform an action on loosely structured 

free-operant schedules and then tested following reward devaluation via satiety. However, no study to date 

has investigated whether the DMS and DLS also serve similar roles in the more structured two-step task. 

We therefore sought to quantify rat behavior on the updated two-step task while optogenetically inhibiting 

neural activity in the DMS and DLS within the same subjects during specific portions of task performance.  

2 Methods 

Male and female rats (n = 8) were trained in a two-step task. Rats were water restricted and trained in a 

sound-proof operant chamber. On the north wall was a reward magazine flanked by two levers, and on the 

south wall was a center magazine flanked by two nose ports (Figure 1A). Rats were gradually shaped to 

perform the task in six phased. First, rats were trained to collect reward (.1 ml of 10% sucrose in tap water) 

delivered randomly into the reward magazine. Second, rats were subsequently trained to lever press on a 

fixed-ratio 1 schedule until they earned 100 total rewards. Third, rats were trained to poke in the center 

magazine on the south wall to trigger lever insertion on the north wall, which allowed for a single press for 

one reward. Fourth, a simplified two-step task was initiated. Trials began with illumination of the south 

wall center magazine. Upon entry into this magazine, one of the side nose ports illuminated and required 

the rat to nose-poke (first-step choice). Once the rat did this, a tone began to play with the pitch indicating 

the side of lever insertion (second-step state). One nose port was always more commonly associated with 

one lever, and the specific mapping between a specific nose port and a given lever followed static 0.8/0.2 

transition probabilities. After pressing the lever, the reward was delivered with 100% certainty. A clicker 

sound accompanied the reward. Fifth, the reward probabilities associated with two levers were probabilistic 

drawn from the set [0.8, 0.2] and reversed after 20-35 trials (Figure 1B). If no reward was delivered, a 1s 

white noise was presented. Sixth, and lastly, we introduced reversals into the transition matrix which map 

the first step choice to second-step state. These reversals occurred every 80-100 trials, and the two types of 

reversal were be separated by at least 20 trials (Figure 1C). Rats were trained on the final stage of the task 

for 30 daily sessions. We collected last 15 sessions for data analysis.   
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Figure 1. (A) Diagram of apparatus. L, left; R, right; NP, nose port. (B) The 

diagram outlines the transitions probabilities between action, state, and 

outcomes for one of four possible block types. (C) Example session. Red 

line represents the exponential moving averaged choices (red line; tau = 5 

trials). Top raster shows choice on left and bottom raster showed choice on 

right. Rewarded choices are labeled in blue, otherwise in black. (D,E) Pre-

reversal correct choice probability around state transition probability reversal 

(D) and reward probability reversal (E). Blue line is averaged probability 

across all subject and all sessions. Shaded area indicates SEM. (F) Reaction 

time from first step choice (nose poke) to second step response (lever press) 

with common and rare transitions. The gray dots represent individual 

subjects. Error bars show cross-subject SEM. n = 8 for D-F. 

 

 

 

 

Next, a virally encoded inhibitory opsin was unilaterally infused into different hemisphere of the DMS and 

the DLS within the same rats. Optical fibers (300 m, NA 0.37) were implanted into the DMS and the DLS 

accordingly. After surgery, rats continued to train for another 6 weeks (~30 sessions) to allow viral 

expression in striatal neurons. We conducted brief (20Hz, 500 ms) and probabilistic (10% of trials) optical 

inhibition via green laser activation aligned with the time immediately after the first-step choice.  

3  Results 

On each trial, we defined the “correct choice” as the first step choice leading to a common transition and 

high reward probability. Rats tracked the correct choice and adapted their choice after reversal (Figure 1D, 

1E). Reaction times to reach and press the second-step lever were slightly slower with rare transition but not 

significantly different compared to those with common transitions (Figure 1F).  

We next analyzed how trial outcome and state transition affected choice behavior. Stay probability 

resembled typical model-free behavior, with rats choosing to repeat the first-step action that led to reward 

on the previous trial and avoid the action which led to reward omission, regardless of state transition 

(Figure 2A). This result was confirmed using two types of logistic regression. First, choice probability was 

modeled as a function of the previous trial’s transition (common vs. rare), outcome (reward vs. omission), 

and their interaction (Figure 2B). The outcome and transition variables served as the only predictors with 

significantly positive loadings. Second, choice probability was modeled as a function of four different trial 

types (reward-common, reward-rare, omission-common, omission-rare) up to five trials back (Figure 2C).  
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Figure 2. (A) Stay probability analysis showing the probability of repeating the same choice given that the last trial was 

rewarded (R) or not (O) and the transition was common (C) or rare (R). Gray dots represent individual subjects. (B) 

Logistic regression predicting choice as a function of last trial transition, outcome, and the interaction between them. 

Gray dots represent individual subjects. One-sample t test. **p<0.01,***p<0.001. (C) Five-trials back logistic regression 

predicts the probability of a right choice as a function of previous outcome type and transition type. One-sample t test. 

*p<0.05, **p<0.01, ***p<0.001. (D) Model-based (MB) and model-free (MF) indices computed from (C). Each dot 

represents an individual rat. (E) RL model comparison on the behavioral dataset using AIC scores. The winning model 

is highlighted in red. From left to right the models include model-based (MB), Q1, Q0, reward-as-cue (RAC), Inference, 

Q1 + MB, Q0+MB, RAC+MB, RAC+Q1, RAC+Q0, RAC+Inference, win-stay-lose-shift, random selection with motor 

bias. Error bars show cross-subject SEM for A-C. n = 8 for A-E. 

 

Choice was mainly a function of the previous trial’s outcome. To quantify the degree of model-free versus 

model-based behavior per rat, we computed indices according to the following equations using the five 

trials-back regression coefficients (β): 

𝑀𝐹 =  ∑[𝛽𝑅𝐶(𝜏) + 𝛽𝑅𝑅(𝜏)] − 

5

𝜏=1

∑[𝛽𝑂𝐶(𝜏) + 𝛽𝑂𝑅(𝜏)] 

5

𝜏=1

 

𝑀𝐵 =  ∑[𝛽𝑅𝐶(𝜏) −  𝛽𝑅𝑅(𝜏)] − 

5

𝜏=1

∑[𝛽𝑂𝐶(𝜏) −  𝛽𝑂𝑅(𝜏)] 

5

𝜏=1

 

All rats were MF dominant (Figure 2D). Given that there are many varieties of model-free learning 

strategies, we fit various models to behavior using maximum likelihood. The model that best fit choice data 

was a mixture of reward-as-cue (RAC) and inference (Figure 2F). RAC involves using the identity of the 

previous trial’s outcome and second-step state to update the value of the first-step actions, much like a 

stimulus-response mapping. Inference involves inferring a latent state representing which second-step lever 

is better or worse in terms of reward probability, and then choosing the first-step action based on the belief 

that the rat is in that latent state. This hybrid model was the winning model. RAC received, on average, a 

higher weight compared to inference at a mixture of 86.2% and 13.8%, respectively.  

Optogenetic inhibition was applied to the DLS and DMS via 

green laser stimulation in separate sessions immediately 

after the first-step choice and simultaneous with the onset of 

the second-step state or outcome time (Figure 3A, 3B). We 

added laser stimulation as a regressor in addition to 

transition and outcome to predict nose poke choices. The 

effect of stimulation and its interaction with transition, 

outcome, and both transition and outcome did not reach 

significance except in one case—the transition x stimulation 

interaction was significant when targeting the DLS during 

the onset of the second step state (Figure 3C, left). Trials with 

a common transition and stimulation increased the stay 

probability compared to no stimulation (p < .05). There was 

no effect of stimulation on choice following rare transitions 

(p > .05). 
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Figure 3. (A) Coronal section showing locations of laser stimulation for optogenetic inhibition. (B) Stimulation 

epochs. Data is presented only from epoch 4. (C, D) Regression coefficients quantifying the effect of previous trial 

transition, outcome, stimulation, and their interactions on subsequent trial choice in epoch 4 (C) or epoch 5 (D), and 

their interactions (T:O, T:S, O:S, and T:O:S) on subsequent trial choice. One-sample t test. *p<0.05, **p<0.01, ***p < 

0.001. n = 7 for C and 8 for D. 

 

4  Discussion 

Rats were trained to choose between two actions that probabilistically led to one of two states to earn 

probabilistic rewards. Unlike the classic two-step task, the probabilities governing the transitions between 

the first-step actions and second-step states switched occasionally over the course of a single session. We 

found that rats were overwhelmingly model-free in their choice behavior. We identified the reinforcement 

learning model that best fit behavior as a mixture between reward-as-cue and latent state inference. This 

hybrid model is the same model that also best fit mouse data using a similar task structure4. We wish to note 

that these models are simple rules that do not require representation of intermediate variables like values or 

probabilities.  

Why did rats fail to use a model-based strategy? Previous research has shown that offering a single action 

instead of a choice at the second step incentivizes model-based planning in terms of proportion of trials 

rewarded9. However, given the added complexity of adding reversals in the action-state transitions, the 

time to engage in model-based computation may decrease the number of rewards per unit time. This is a 

difficult tradeoff. On the one hand, it has been argued that adding in this contingency reversal is what 

allows the detection of true model-based planning5. On the other hand, these reversals could tax subjects’ 

cognition to the point of degrading the worth of model-based planning. To test this idea, we plan to remove 

this contingency reversal after the optogenetic portion of the experiment is complete. We also plan to 

complete more optogenetic manipulations by expanding the number of stimulation epochs (see Figure 3B). 
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Abstract

Though backpropagation underlies nearly all deep learning algorithms, it is generally regarded as being biologically
implausible. An alternative way of training an artificial neural network is through making each unit stochastic and
treating each unit as a reinforcement learning agent, and thus the network is considered as a team of agents. As such, all
units can learn via REINFORCE, a local learning rule modulated by a global reward signal that is more consistent with
biologically observed forms of synaptic plasticity. However, this learning method suffers from high variance and thus
the slow learning. The high variance stems from the lack of effective structural credit assignment. This paper reviews
two recently proposed algorithms to facilitate structural credit assignment when all units learn via REINFORCE, namely
MAP Propagation and Weight Maximization. In MAP Propagation an energy function of the network is minimized before
applying REINFORCE, such that the activities of hidden units are more consistent with the activities of output units.
In Weight Maximization the global reward signal to each hidden unit is replaced with the change in the squared L2

norm of the vector of the unit’s outgoing weights, such that each hidden unit is trying to maximize the norm of its
outgoing weights instead of the external reward. Experiments show that both algorithms can learn significantly faster
than a network of units learning via REINFORCE, and have a comparable speed to backpropagation when applied
in standard reinforcement learning tasks. In contrast to backpropagation, both algorithms retain certain biologically
plausible properties of REINFORCE, such as having local learning rules and the ability to be computed asynchronously.
Therefore these algorithms may offer insights for understanding possible mechanisms of structural credit assignment in
biological neural systems.

Keywords: backpropagation, synaptic plasticity, structural credit assignment,
multi-agent reinforcement learning, hierarchical reinforcement
learning
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Overview

The error backpropagation algorithm (backprop) efficiently computes the gradient of an objective function with respect to
parameters by iterating backward from the last layer of a multi-layer artificial neural network (ANN). However, back-
prop is generally regarded as being biologically implausible [1]. First, the learning rule given by backprop is non-local,
as it relies on a feedback signal backpropagating from the downstream units, while biologically-observed synaptic plas-
ticity depends mostly on local information (e.g. spike-timing-dependent plasticity (STDP) [2]) and possibly some global
signals, e.g. reward-modulated spike-timing-dependent plasticity (R-STDP) [2]. Second, to compute the feedback signal,
backprop requires synaptic symmetry in the forward and backward paths, which has not been observed in biological
systems. Third, backprop cannot be implemented asynchronously across units since it requires the network to alternate
precisely between the feedforward and feedback phase, and the feedback signal has to be backpropagated layer-by-layer.
Nonetheless, recent work has shown that these issues may be overcome. For example, the feedback signal in backprop
may be approximated locally by the difference in neural activities across time [3], and synaptic symmetry may not be
necessary for backprop due to the ‘feedback alignment’ phenomenon [4], but asynchronous computation remains a major
obstacle to biological plausibility.

Alternatively, each unit in an ANN can be made stochastic (i.e. each unit’s activation value is sampled from some distri-
butions instead of being computed deterministically) and learn via the REINFORCE learning rule [5], a special case of
the associative reward-penalty (AR−λP ) algorithm [6] that preceded REINFORCE. This learning method has also been
called ‘node perturbation’ [3], and is generally considered more biologically plausible than backprop. REINFORCE,
when applied to Bernoulli-logistic units, gives a three-factor learning rule which depends on a reward signal in addition
to a unit’s input and output signals. This three-factor learning rule is closely related to R-STDP, which depends on pre-
synaptic and post-synaptic activity plus a neuromodulatory input [7]. Since the only non-local information required by
the REINFORCE learning rule is the globally broadcasted reward signal, the three aforementioned issues of backprop
regarding biological plausibility do not exist when all units learn via REINFORCE.

Another interpretation of training all units by REINFORCE relates to viewing each unit as a reinforcement learning (RL)
agent, with each agent trying to maximize the same reward signal from the environment. We can thus view an ANN as
a team of agents playing a cooperative game, a scenario where all agents receive the same reward; agents here refer to RL
agents [8]. Such a team of agents is also known as coagent network [9]. The idea of solving a task by a team of agents has a
long history, and we refer readers to [8, Chapter 15] for the related work. However, due to the weak correlation between
the team’s reward signal and the action of an agent in the team, this learning method is associated with high variance
and thus the slow learning. The high variance stems from the lack of effective structural credit assignment.

This paper reviews two recently proposed algorithms, namely MAP Propagation [10] and Weight Maximization [11], that
facilitate structural credit assignment when training all units by REINFORCE. MAP propagation replaces the hidden
units’ outputs with their maximum a posteriori (MAP) estimates conditioned on the state and the selected action, or
equivalently, minimizes an energy function of the network, before each unit applies REINFORCE. For a network of
normally distributed units (that is, an ANN with i.i.d Gaussian noise added to the activation value of each unit), by
minimizing the energy function of the network, the parameter update given by REINFORCE and backprop with the
reparametrization trick become the same, thus establishing a connection between REINFORCE and backprop. In Weight
Maximization we replace the global reward signal to each hidden unit with the change in the squared L2 norm of its
outgoing weight, which is defined as the vector of the weights by which the unit’s outputs influence other units in the
network. With the replaced reward signals, each hidden unit in the network is trying to maximize the norm of its
outgoing weight. We prove that Weight Maximization approximately follows the gradient of reward in expectation,
showing that every hidden unit maximizing the norm of its outgoing weight also approximately maximizes the external
reward.

Our experiments show that ANNs trained with MAP Propagation or Weight Maximization can learn much faster than
REINFORCE, such that the learning speed is comparable to backprop on standard RL tasks1. The experimental results
are shown in Fig 1. It is worth noting that both MAP Propagation and Weight Maximization only assume a scalar
reward signal from the environment, so they are more suitable for RL tasks instead of supervised learning (SL) tasks. It
remains to be investigated how to best incorporate the knowledge of optimal network outputs into both algorithms for
competitive performance in SL tasks.

MAP Propagation and Weight Maximization retain certain properties relevant to biological plausibility of REINFORCE,
but neither algorithms can be implemented asynchronously. Alternative versions of MAP Propagation and Weight Max-
imization that allow asynchronous computation have been proposed. In asynchronous MAP Propagation (to be published)
the feedforward phase is merged with the energy minimization phase to remove the requirement of alternating be-
tween phases. In Weight Maximization with traces [11] eligibility traces are employed to remove the need of waiting for
downstream units to finish updating. A comparison of different biologically inspired algorithms according to biological

1To be precise, REINFORCE here refers to the case of all units implementing the REINFORCE learning rule, and backprop here
refers to the case of output units implementing the REINFORCE learning rule and hidden units implementing backprop.

1
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Figure 1: Episode returns in different RL tasks. Results are averaged over 10 independent runs, and shaded areas repre-
sent standard deviation over the runs. Curves are smoothed with a running average of 100 episodes. All networks have
64 and 32 units on the first and the second hidden layer respectively. REINFORCE, Weight Max and straight-through
estimator (STE) backprop [12] use Bernoulli-logistic units; MAP Prop uses normally distributed units, and backprop uses
Rectified Linear Units (ReLU). Hyper-parameters are selected based on manual tuning to optimize the average episode
returns.

Algorithm Type Local learning rule
No symmetric

feedback
connections

Asynchronous
computation
across units

REINFORCE [5] RL ✓ ✓ ✓
MAP Propagation [10] RL ✓ ✗ ✗
Asy. MAP Propagation RL ✓ ✗ ✓
Weight Max. [11] RL ✓ ✓ ✗
Weight Max. with traces [11] RL ✓ ✓ ✓
Backprop SL ✗ ✗ ✗
Equilibrium Propagation [13] SL ✓ ✗ ✗
Target Propagation [14] SL ✓ ✓ ✗

Table 1: Comparison of biologically inspired algorithms on properties relevant to biological plausibility. Algorithm
type: RL (Reinforcement Learning) - the algorithm only assumes the knowledge of a scalar reward signal from the
environment; SL (Supervised Learning) - the algorithm assumes the knowledge of optimal network outputs from the
environment. We call a learning rule local if it only depends on local variables (incoming weights, outgoing weights,
activation values of the unit, incoming units, and outgoing units) and possibly a global scalar variable (e.g. reward
signal in R-STDP). Backprop requires an error signal propagating from the outgoing units, so it is not local. Note that
backprop can be combined with REINFORCE to train hidden units in RL tasks as in most deep RL algorithms.

plausibility properties is summarized in Table 1. Nonetheless, other properties relevant to biological plausibility of these
algorithms remain to be investigated. For example, it is not yet clear if there exists a mechanism that allows changes in
the efficacies of a neuron’s outgoing synapses to influence changes in its incoming synapses.

From the computational perspective, MAP Propagation and Weight Maximization offer different advantages and disad-
vantages compared to backprop. Experiments showed that an ANN trained with MAP Propagation is less likely than
bcakprop to become stuck in local optima in the MountainCar task [10], suggesting that stochastic activities of all units
may lead to more effective exploration. However, each iteration of MAP Propagation is computationally more costly
compared to each iteration of backprop due to the energy minimization phase. For Weight Maximization, experiments
showed that it performs well when applied to discrete units such as Bernoulli-logistic units but performs poorly when
applied on continuous units. Nonetheless, the ability to efficiently train discrete units and to localize optimization to
each network unit may open the door to other RL methods for training ANNs.

Algorithms

For simplicity, we consider an MDP with only immediate reward2 or, equivalently, the contextual bandit problem, de-
fined by a tuple (S,A, R, d0), where S is the set of states, A is the set of action, R : S × A → R is the reward function,

2The algorithms in this paper can be applied in general MDPs by replacing the reward with the sum of discounted reward (i.e.
return) or TD error, and can be applied in supervised learning tasks by replacing the reward with the negative loss.

2
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and d0 : S → [0, 1] is the initial state distribution. Denoting the state, action, and reward by S, A, and R respectively,
Pr(S = s) = d0(s) and E[R|S = s,A = a] = R(s, a). We are interested in learning the policy π : S × A → [0, 1] such that
selecting actions according to Pr(A = a|S = s) = π(s, a) maximizes the expected reward E[R|π].
Here we restrict attention to policies computed by a multi-layer ANN consisting of L layers of stochastic units. Let H l

denote the vector of activation values of layer l. To simplify notation, we also letH0 := S andHL := A. For all 1 ≤ l ≤ L,
the distribution of H l conditional on H l−1 is given by Pr(H l

t = hl|H l−1
t = hl−1;W l) = πl(h

l−1, hl;W l), where W l is the
parameter of layer l. We further assume3 W l is a matrix and πl(hl−1, hl;W l) =

∏
i f(h

l
i,W

l
:,i ·hl−1) for some differentiable

function f , where · denotes the dot product and W l
:,i denotes the ith column of matrix W l. Note that H l can be discrete-

valued or continuously-valued depending on the choice of πl or the MDP. To sample an action A from the network, we
iteratively sample H l ∼ πl(H l−1, ·;W l) from l = 1 to L.

The gradient of reward with respect to W l (where l ∈ {1, 2, ..., L} in all discussion below unless stated otherwise) can be
estimated by REINFORCE [5] :

∇W l E[R|π] = E[R∇W l log π(S,A)|π] = E[R∇W l log πl(H
l−1, H l;W l)|π]. (1)

Therefore, to perform gradient ascent on the reward, we can update parameters by adding αR∇W l log π(S,A) to W l,
where α is the step size. ∇W l log π(S,A) can be computed by backprop for deterministic and differentiable ANNs,
or backprop with the reparametrization trick for some stochastic and continuous ANNs (e.g. a network of normally
distributed units). For stochastic and discrete ANNs (e.g. a network of Bernoulli-logistic units), ∇W l log π(S,A) cannot
be computed by backprop or backprop with the reparametrization trick. But the second equality tells us that we can also
update parameters by applying REINFORCE locally to all units:

W l ←W l + αR∇W l log πl(H
l−1, H l;W l). (2)

This learning rule can applied in any stochastic ANNs. However, the parameter update in this learning rule has a large
variance since a single reward R is used to evaluate the collective actions of all units. In the following we discuss two
algorithms that help reduce this variance.

MAP Propagation - Let define an energy function by E(h1, h2, ..., hL; s) := − logPr(H1 = h1, H2 = h2, ...,HL = hL|S =
s). That is, the energy function measures the lack of compatibility between hidden units and output units. MAP Propaga-
tion minimizes the energy function of the network w.r.t. activation values of hidden units, before applying REINFORCE:

W l ←W l + αR∇W l log πl(ĥ
l−1, ĥl;W l), (3)

where ĥ1, ĥ2, ..., ĥL−1 = argminh1,h2,...,hL−1 E(h1, h2, ..., hL−1, HL;S) and ĥL = HL. In other words, we try to make
the activation values of hidden units to be more compatible with the selected action before applying REINFORCE. This
energy minimization is equivalent to replacing the activation values of hidden units by their most probable activation
values conditioned on the state and the selected action (i.e. MAP inference).

The remaining question is how to minimize the energy function. For continuous-valued units, we can perform gradient
descent on the energy function w.r.t. activation values of hidden units, and the update rule can be shown to be local
(since ∇hlE(h1, h2, ..., hL; s) does not depend on hk for any k < l − 1 or k > l + 1). In other words, MAP Propagation
only requires units on adjacent layers to communicate via their activation values instead of separate error signals as in
backprop. For discrete-valued units, we can use hill climbing methods or iteratively compute the minima for each unit.

Weight Maximization - Let define the outgoing weight of hidden unit i on layer l by the vector W l+1
i,: (the ith row of

matrix W l+1), i.e. the weights connecting from that unit to units on the next layer. Weight Maximization uses a different
approach from MAP Propagation. In learning rule (2), all units receive the same reward signal R. It is natural to ask
whether there exists a more specific signal that evaluates the activation value of each unit, such that a more precise
structural credit assignment is possible. Inspired by this idea, Weight Maximization replaces the external reward signal
R to each hidden unit by the change in the squared L2 norm of its outgoing weight. The motivation of using the change
in the norm of a unit’s outgoing weight as a reward signal is based on the idea that the norm of a unit’s outgoing weight
roughly reflects the contribution of the unit in the network. For example, if the hidden unit is useful in guiding action,
then the output unit will learn a large weight associated with it. Conversely, if the hidden unit is outputting random
noise, then the output unit will learn a zero weight associated with it.

Assuming that the next layer is also learning, the outgoing weight W l+1
i,: changes on every step, and we denote this

change (before multiplying the step size α) by ∆W l+1
i,: . Thus, the change in the squared L2 norm of the outgoing weight

3This assumption says that each unit adds the activation values of all units in a layer below multiplied by some weights to determine
the distribution of its activation values. Note that this assumption is not necessary for MAP Propagation.
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can be expressed as (· denotes the dot product):

||W l+1
i,: + α∆W l+1

i,: ||22 − ||W l+1
i,: ||22 = 2α∆W l+1

i,: ·W l+1
i,: +O(α2). (4)

We propose to ignore O(α2) since the step size is usually very small, and thus we define the reward signal to unit i on
layer l by:

Rli :=

{
2α∆W l+1

i,: ·W l+1
i,: for l ∈ {1, 2, ..., L− 1},

R for l = L.
(5)

The learning rule is the same as (2) but with the new reward signal (W l
:,i denotes the ith column of matrix W l):

W l ←W l + α∆W l,where ∆W l
:,i = Rli∇W l

:,i
log πl(H

l−1, H l;W l). (6)

(5) and (6) together defines the learning rule for all units in Weight Maximization. It can be proved that the update rule
is still approximately following the gradient of rewards in expectation.

However, (5) and (6) require iterating backward from the top layer since units need to wait for the upper layer to finish
learning to compute the reward Rli. To remove this iteration requirement, we consider the case where all units are
learning at the same time step. Then, it can be seen that the reward signal to a unit on layer l is delayed by L − l time
steps as there are L − l upper layers and each layer requires one time step to update. The problem of delayed reward is
well studied in RL, and one prominent and biologically plausible solution is eligibility traces. By using eligibility traces,
the algorithm can be implemented in parallel for all layers, and there are no distinct feedforward and feedback phases
for the whole network (see paper [11] for details of Weight Maximization with eligibility traces).

Conclusion

It has long been proposed that ANNs can be trained via each unit implementing an RL algorithm and learning from
the same global reward signal. We review two algorithms that improve the learning speed of this learning method. By
showing the possibility of efficient structural credit assignment, we hope this work reinvigorates interest in developing
new learning methods for ANNs that employ RL, and that are both biologically plausible and fast enough to be useful
in ANN applications.
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Abstract

Reinforcement learning algorithms based on Q-learning are driving Deep Reinforcement Learning (DRL) research towards
solving complex problems and achieving super-human performance on many of them. Nevertheless, Q-Learning is
known to be positively biased since it learns by using the maximum over noisy estimates of expected values. Systematic
overestimation of the action values coupled with the inherently high variance of DRL methods can lead to incrementally
accumulate errors, causing learning algorithms to diverge. Ideally, we would like DRL agents to take into account their
own uncertainty about the optimality of each action, and be able to exploit it to make more informed estimations of the
expected return. In this regard, Weighted Q-Learning (WQL) effectively reduces bias and shows remarkable results in
stochastic environments. WQL uses a weighted sum of the estimated action values, where the weights correspond to the
probability of each action value being the maximum; however, the computation of these probabilities is only practical in
the tabular setting. In this work, we provide methodological advances to benefit from the WQL properties in DRL, by
using neural networks trained with Dropout as an effective approximation of deep Gaussian processes. In particular, we
adopt the Concrete Dropout variant to obtain calibrated estimates of epistemic uncertainty in DRL. The estimator, then,
is obtained by taking several stochastic forward passes through the action-value network and computing the weights
in a Monte Carlo fashion. Such weights are Bayesian estimates of the probability of each action value corresponding to
the maximum w.r.t. a posterior probability distribution estimated by Dropout. We show how our novel Deep Weighted
Q-Learning algorithm reduces the bias w.r.t. relevant baselines and provides empirical evidence of its advantages on
representative benchmarks.

Keywords: Deep Reinforcement Learning, Q-learning, Overestimation bias,
Maximum expected value
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1 Introduction

Temporal difference (TD) and off-policy learning are the constitutional elements of modern Reinforcement Learning (RL).
TD allows agents to bootstrap their current knowledge to learn from a new observation as soon as it is available. Off-policy
learning gives the means for exploration and enables experience replay. Q-Learning [18] implements both paradigms.
Overestimation of the maximum action value is a well-known problem that hinders Q-Learning performance, leading to
suboptimal policies and unstable learning. This overoptimism can be particularly harmful in stochastic environments and
when using function approximation [14], notably also in the Deep Reinforcement Learning (DRL) settings [17]. Among
possible solutions, the Double Q-Learning [15] algorithm and its DRL variant – Double DQN – tackle the overestimation
problem by disentangling the choice of the target action and its evaluation. The resulting estimator, while achieving
superior performance in many problems, is negatively biased. In fact, overly pessimistic estimates might undervalue
a good course of action and are thus problematic in their own way. In this regard, Weighted Q-Learning (WQL) [4] is
among several methods to reduce the bias and shows remarkable empirical results. WQL is based upon the Weighted
Estimator (WE), which weights each estimate of the action values, based on an estimated probability of each particular
action value being the maximum. However, doing so in high-dimensional environments is not trivial due to the additional
challenges imposed by using function approximation. Our objective is, then, to devise an approach to scale WQL to the
DRL settings. We do so by using neural networks trained with Dropout as an effective, computationally cheap, Bayesian
inference technique [5]. We combine, in a novel way, the dropout uncertainty estimates with the Weighted Q-Learning
algorithm, extending it to the DRL settings. The proposed Deep Weighted Q-Learning algorithm, or Weighted DQN (WDQN),
leverages an approximated posterior distribution on Q-networks to reduce the bias of deep Q-learning. WDQN bias is
neither always positive, nor negative, but depends on the state and the problem at hand. WDQN only requires minor
modifications to the baseline algorithm, and its computational overhead is negligible on specialized hardware. In Section 2,
we define the problem settings and discuss some related works, then, in Section 3 we present our approach. We present
empirical results in Section 4 and draw our conclusions in Section 5.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple ⟨S,A,P,R, γ⟩ where S is a state space, A is an action space, P : S ×A → S
is a Markovian transition function,R : S ×A → R is a reward function, and γ ∈ [0, 1] is a discount factor. A sequential
decision maker ought to estimate, for each state s, the optimal value Q∗(s, a) of each action a, i.e., the expected cumulative
discounted reward obtained by taking action a in s and following the optimal policy π∗ afterwards.

(Deep) Q-Learning A classical approach for solving finite MDPs is the Q-Learning algorithm, an off-policy value-based
RL algorithm, based on TD. The popular Deep Q-Network algorithm (DQN) [10] is a variant of Q-Learning designed
to stabilize off-policy learning with deep neural networks in high-dimensional state spaces. The two most relevant
architectural changes to standard Q-Learning introduced by DQN are the adoption of a replay memory, to learn offline
from experience, and the use of a target network, to reduce correlation between the current model estimate and the
bootstrapped target value. In practice, a DQN agent interacts with the environment, stores in the replay buffer performed
actions and corresponding observations, and learns the Q-values online, training a neural network. The network, with
parameters θ, is trained by sampling mini-batches from the memory and using a target network whose parameters θ− are
updated to match those of the online model every C steps. The model is trained to minimize the loss

L(θ) = E
⟨si,ai,ri,s′i⟩∼m

[(
yDQNi −Q(si, ai;θ)

)2]
, yDQNi = ri + γmax

a
Q(s′i, a;θ

−), (1)

where m is a uniform distribution over the transitions stored in the replay buffer and yDQNi is the DQN target. Among
the many studied improvements and extensions of the baseline DQN algorithm, Double DQN (DDQN) [17] reduces
the overestimation bias of DQN with a simple modification of the minimized loss. In particular, DDQN uses the target
network to decouple action selection and evaluation, and estimates the target value as

yDDQNi = ri + γQ(s′i, argmax
a

Q
(
s′i, a;θ);θ

−) .

DDQN improves on DQN, converging to a more accurate approximation of the value function, while maintaining the
same model complexity and adding minimal computational overhead.

Estimation biases in Q-Learning Choosing a target value for the Q-Learning update rule can be seen as an instance of
the Maximum Expected Value (MEV) estimation problem for a set of random variables, here the action values. Q-Learning
uses the Maximum Estimator (ME) to estimate the maximum expected return and exploits it for policy improvement. It
is well known that ME is a positively biased estimator of MEV [16]. Double Q-Learning [15], on the other hand, learns
two value functions in parallel and uses an update scheme based on the Double Estimator (DE). It is shown that DE is a
negatively biased estimator of MEV, which helps to avoid catastrophic overestimates of the Q-values. In practice, as also
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shown by Lan et al. [8], the overestimation bias of Q-Learning is not always harmful and may also be convenient when
the action values are significantly different among each other. Conversely, the underestimation of Double Q-Learning is
effective when all the action values are very similar. Unfortunately, prior knowledge about the environment is not always
available, and it would be desirable to have an estimator which is not always positively or negatively polarized. Clearly,
besides Double Q-Learning several other methods exist to mitigate the overestimation problem (e.g., [9, 1, 8]), here we
mainly focus on Weighted Q-learning and on the two most used algorithms, namely standard Q-Learning and its DE
variant.

Weighted Q-Learning D’Eramo et al. [4] propose the Weighted Q-Learning (WQL) algorithm, a variant of Q-Learning
based on therein introduced Weighted Estimator (WE). WE estimates MEV as the weighted sum of the random variables
sample means, weighted according to their probability of corresponding to the maximum. Intuitively, the amount of
uncertainty, i.e., the entropy of the WE weights, will depend on the nature of the problem, the number of samples and the
variance of the mean estimator (critical when using function approximation). WE bias is bounded by the biases of ME and
DE [4]. The target value of WQL can be computed as

yWQL
t = rt + γ

∑

a∈A
wst+1
a Q(st+1, a) wsa = P

(
a = argmax

a′
Q(s, a′)

)
. (2)

where wst+1
a are the WE weights and correspond to the probability of each action value being the maximum. The weights

of WQL are estimated in the tabular setting, assuming the sample means to be normally distributed.

3 Deep Weighted Q-Learning

Algorithm 1 Weighted DQN

Input: Q-network parameters θ, dropout rates p1, . . . , pL, a policy π, replay memory D
θ− ← θ
Initialize memory D.
for step t = 0, . . . do

Select an action ai according to some policy π given the distribution over action-value functions Q(s, · ;θ,ω)
Execute at and add ⟨st, at, rt, st+i⟩ to D
Sample a mini-batch of transitions {⟨si, ai, ri, s′i⟩, i = 1, . . . ,M} from D
for i = 1, . . . ,M do ▷ can be done in parallel

Take K samples from Q(si, · ;θ−,ω) by performing K stochastic forward passes
Use the samples to compute the WDQN weights (Eq. 6) and targets (Eq. 7)

end for
Perform an SGD step using yWDQN as the target value.
Eventually update θ−

end for

A natural way to extend the WQL algorithm to the DRL settings is to consider the uncertainty over the model parameters
by using a Bayesian approach. Dropout [13] is a regularization technique used to train large neural networks by randomly
dropping units during learning. In recent years, dropout has been analyzed from a Bayesian perspective [5], and
interpreted as a variational approximation of a posterior distribution over the parameters of the neural network. In
particular, Gal and Ghahramani [5] show how a neural network trained with dropout and weight decay can be seen
as an approximation of a deep Gaussian process. A single stochastic forward pass through a neural network trained
with Dropout can, in fact, be interpreted as taking a sample from the model’s predictive distribution. This inference
technique, known as Monte Carlo dropout, can be efficiently parallelized on modern GPUs. This approach has found
several applications in RL, e.g., as a practical approach to perform Thompson Sampling [5] and to estimate uncertainty
in model-based RL [6]. Here we focus on the problem of action evaluation, and we show how to use approximate
Bayesian inference to evaluate WE by introducing a novel approach to exploit uncertainty estimates in DRL. Our method
is grounded in theory and simple to implement.

Weighted DQN Let Q( · , · ;θ,ω) be a neural network with weights θ trained with a Gaussian prior and Dropout
Variational Inference to learn the optimal action-value function of a certain MDP. We indicate with ω the set of random
variables that represents the dropout masks, with ωi the i-th realization of the random variables and with Ω their joint
distribution:

ω = {ωlk : l = 1, . . . , L, k = 1, . . . ,Kl}, ωlk ∼ Bernoulli(pl), ωi ∼ Ω(p1, . . . , pL), (3)

where L is the number of weight layers of the network and Kl is the number of units in layer l. Consider a sample q(s, a)
of the MDP return, obtained taking action a in s and following the optimal policy afterwards. Following the Gaussian
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process interpretation of Dropout of Gal and Ghahramani [5], we can approximate the likelihood of this observation as a
Gaussian such that

q(s, a) ∼ N
(
Q(s, a;θ,ω); τ−1

)
, (4)

where τ is the model precision. We can approximate the predictive mean of the process, and the expectation over the
posterior distribution of the Q-value estimates, as the average of T stochastic forward passes through the network:

E [Q(s, a;θ,ω)] ≈ Q̂T (s, a;θ) =
1

T

T∑

t=1

Q(s, a;θ,ωt). (5)

Q̂T (s, a;θ) is the estimate of the action values associated with state s and action a. We can estimate the probability
required to calculate WE similarly, by again exploiting a Monte Carlo estimator. Given an action a, the probability that
a corresponds to the maximum expected action value can be approximated as the number of times in which, given T
samples, the sampled action value of a is the maximum over the number of samples

wsa(θ) = P

(
a = argmax

a′
Q(s, a′;θ,ω)

)
≈ 1

T

T∑

t=1

s
a = argmax

a′
Q(s, a′;θ,ωt)

{
, (6)

where J. . .K are the Iverson brackets (JP K is 1 if P is true, 0 otherwise). The weights can be efficiently inferred in parallel
with no impact in computational time. We can define the WE target given the target Q-network estimates by using the
obtained weights as:

yWDQN
i = ri + γ

∑

a∈A
w
s′i
a (θ−)Q̂T (s

′
i, a;θ

−). (7)

For completeness, the complete WDQN algorithm is reported in Algorithm 1. Dropout probabilities are variational
parameters and influence the quality of the approximation. Ideally, they should be tuned to maximize the log-likelihood
of the observations using a validation method. This is clearly not possible in RL where the available samples and the
underlying distribution generating them, change as the policy improves. In fact, using dropout with a fixed probability
might lead to poor uncertainty estimates [11, 12, 7]. Concrete Dropout [7] mitigates this problem by using a differentiable
continuous relaxation of the Bernoulli distribution and learning the dropout rate from data. In practice, then, we substitute
the standard Dropout with its Concrete variant in our WDQN implementation.

4 Experiments
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Figure 1: Learning curves on Atari games. The curves on the left of each subfigure show the evaluation scores. The curves
on the right, conversely, report the estimate of the expected return w.r.t. the starting screen of the game; the dashed curves
indicate the real discounted return for each agent. Each epoch corresponds to 1M frames. The results shown here are the
average of 10 independent runs and the shaded areas represent 95% confidence intervals. The curves are smoothed using
a moving average of 10 epochs to improve readability.

In this section, we compare WDQN against the standard DQN algorithm and its Double DQN variant in the Arcade
Learning Environment (ALE) [2]. In particular, we choose environments where DQN is known to overestimate action
values and exhibit unstable learning [17]. We use the same neural network and hyperparameters of Mnih et al. [10], for
WDQN we use Concrete Dropout only in the fully connected layer after the convolutional block. We found WDQN to
be robust to the number of dropout samples used to compute the WE (e.g., T ≥ 30), while being more sensitive to the
Concrete Dropout regularization coefficient. For more in-depth results and discussion, we refer to our journal paper [3].

Figure 1 shows the result of the comparison in terms of the average reward and prediction accuracy of WDQN against
DQN and DDQN. Here, WDQN stabilizes learning in both scenarios, but it also outperforms DDQN. Conversely, DDQN
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manages to stabilize the learning performance in Asterix, but, in our setting, is not able to yield satisfactory performance
in Wizard of Wor differently from what observed by Van Hasselt et al. [17], probably due to minor implementation
differences. However, it is worth mentioning that DDQN would most likely improve in this scenario by reducing the
frequency of updating the target network’s parameters. WDQN, on the other hand, manages to control the bias and the
learning instability in both cases, achieving a comparable performance and prediction accuracy w.r.t. DDQN in Asterix
and outperforming the other two baselines on Wizard of Wor. Again, we refer to the journal paper for additional results.

5 Conclusion and future works

We present WDQN, a new value-based Deep Reinforcement Learning algorithm that extends the Weighted Q-Learning
algorithm to work in environments with a high-dimensional state representation. WDQN is a principled and robust
method to exploit uncertainty in DRL to accurately estimate the maximum action value in a given state. Our results
corroborate the findings of previous works [5, 7], confirming that dropout can be used successfully for approximate
Bayesian inference in DRL. Future works may explore the combination of WDQN with other orthogonal DQN extensions
and may attempt to adapt the WDQN approach to other techniques modeling uncertainty in deep neural networks.
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Abstract

Current conceptualizations of the anterior cingulate cortex (ACC) alternatively emphasize its distributed or hierarchical
characteristics, but it is not clear how these characteristics can be integrated into a unified account. We explore this issue
by taking a modeling approach that builds off of prior work by incorporating aspects of both hierarchical and distributed
representations into a single model. Using representational similarity analysis, we compare task representations in the
brains of human subjects with those obtained from recurrent neural network models trained via supervised learning,
when both complete the same task. We introduce hierarchy first by means of explicit goal units, and second by inducing
a gradient of abstraction (from action representations to goal representations) in the hidden layer of the neural network.
Both of these hierarchical models capture more rostral areas of ACC compared to a model devoid of hierarchical features,
and the abstraction gradient of the second model appears to mirror an abstraction gradient in ACC. These results suggest
that the ACC represents tasks in a distributed manner, along a rostro-caudal hierarchical gradient, such that caudal
areas close to the pre-supplementary motor area represent actions, and rostral areas represent goals. These results are
consistent with the ACC playing a key role in hierarchical decision-making by way of distributed yet hierarchically
organized representations.

Keywords: Anterior cingulate cortex, hierarchy, fMRI, representational simi-
larity analysis
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1 Background: Anterior Cingulate Cortex and Hierarchy

The function of the anterior cingulate cortex (ACC) remains mysterious. It is involved in a wide range of different
processes including conflict monitoring, attention, reward prediction and prediction errors, self-control, and strategic
decisions; lesions of the ACC can trigger both apathy and impulsiveness, whereas stimulation can cause subjects to ex-
perience a “will to persevere” [5]. We have proposed that the ACC is involved in hierarchical decision making [9], lever-
aging principles of modularity [12] and compositionality [10]. This is supported by imaging evidence of a rostro-caudal
gradient of abstraction in the dorso-lateral prefrontal cortex (DLPFC) [1], mirroring a parallel topographical hierarchical
organization in the ACC of rats [7] and humans [15]. Yet hierarchical models often make use of discrete representa-
tions of goals or options, whereas ACC appears to encode representations of behavior across ensemble activity using a
distributed code [13, 14].

To investigate task representations in ACC, in previous work [8] we asked participants to complete an adapted “activity
of daily living” task while undergoing fMRI. Separately, we trained a recurrent neural network (RNN) model on the
same task. Using representational similarity analysis (RSA), activation patterns in the hidden layer of the RNN were
compared to activation patterns in the brain of the participants. Neural representations of participants resembled those
of the model most closely within the ACC, consistent with the hypothesis that ACC encodes distributed, goal-directed
representations of action-sequences. However, crucially, that RNN did not incorporate hierarchical features, even though
hierarchy is central to current thinking about prefrontal cortex and ACC in particular. To address this open question, we
revisited this study by extending the model with goal units and enforcing an “abstraction gradient” along the hidden
layer of the model. We predicted that this would enable the model to simulate more rostral areas of the ACC.

2 Methods

2.1 The tea-coffee task

Figure 1: Correct sequences for the tea-coffee task.

Participants were told that they were baristas preparing tea or coffee
for customers. While lying in an MRI scanner, they were instructed to
choose randomly which beverage to prepare on each trial, “as if flip-
ping a coin”. The preparation of a beverage always took six action
steps. During each step they saw three images (e.g., during step 1:
coffee beans, tea leaves, or pepper) from which they should select one
according to specific rules (see Figure 1). For example, if they selected
‘coffee’ at step 1 and ‘cream’ at step 2, then they should select ‘water’
at step 4, and ‘serve coffee’ at step 6. After preparing the beverage
correctly (resp. incorrectly) they would see as feedback a happy (resp.
sad) smiley representing the customer. Since participants always saw
the same three images during each action step, they needed to remem-
ber contextual information. For example: were they preparing coffee
or tea, and which ingredient was added first?

The task included had 4 sequences of 6 action-steps each. The three
images displayed during each action step were shown to participants
for 1s, followed by a black screen for 3.5 +/- 1s (with 7 possible jitters
at .33s increments). If no response was given before the three images
of the next step appeared, the words “too slow” appeared and the
trial was rendered incorrect. Feedback (happy/sad smiley) was also
shown for 1s, followed by a 3s inter-trial interval. Full details of the
task are given in [8].

2.2 Neural Network Modeling

We extended our original RNN model of sequential task execution in two steps that gradually increased the degree
of hierarchy incorporated in it; the progressive impact of these changes on ACC representations was examined using
representational dissimilarity matrices (RDMs) produced from these models. An RDM reflects how dissimilar activity
patterns are for – in this case – each pair of the 24 unique steps of the coffee-tea task. For instance, the activity patterns
across a specific group of artificial neurons during a ‘stir’ action may be more similar to the activity patterns for a different
‘stir’ action than to those for an ‘add water’ action. RDMs are built using one specific source of data (e.g., activation
values of the units in the hidden layer in an RNN) but can be compared to another, qualitatively different source of data
(e.g., fMRI voxels in the brain). Strong correlations between RDMs indicate similar representations.
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The one-hot input1 at each time-step corresponded to the previous action output, modeling short-term memory of ac-
tions. 100 instances of each model were trained by stochastic gradient descent using backpropagation through time, at a
learning rate of 0.1, for 5000 iterations. An RDM was then constructed, per network, by extracting the vector of activa-
tions of the hidden layer at each action-step, and computing the 1 - Spearman rank-order correlation between each pair
of these vectors. For each model, the final RDM was the mean of the RDMs from the 100 trained instances of that model.

Figure 2: Elman network (black)
and goal network additions (blue),
inspired by [2] and [4] respectively.
Layers linked by a plain arrow are
fully connected.

Model 1: Elman Network. In Elman networks [6] (Figure 2) the hidden layer
is copied to a “context” layer, whose units serve as fully connected inputs to the
hidden layer on the next time-step. This model replicates [8] with a minor change
in implementation (we use cross-entropy instead of mean squared error for the
loss function). The 15 units of the hidden layer used a sigmoid activation function,
whereas the output layer used softmax activation, corresponding to a standard
cross-entropy classification loss (L = −∑6

t=1

∑7
a=1 yt,a log(pt,a), where t is the

action-step, a is one of 7 outputs (“add grounds”, “stir”, etc.), yt,a equals 1 if a is
the target action at t and 0 otherwise, and pt,a is the network’s actual output.

Model 2: Goal Network. In a second model, we augmented the Elman network
with two goal units, ‘tea’ and ‘coffee’. This architecture is an extension of model 1
where goal units constitute both an input (after a winner-take-all operation on the
previous output) and an output. The loss was the sum of the cross-entropy losses
for goals and for actions. By training the network to output goals and enabling it
to use these goals to select actions, we forced the hidden layer to represent goal
information. Note that although the complete network model includes explicit
goals, only the activations of the hidden layer are compared to brain activity.

Model 3: Abstraction Gradient Network. Unlike virtual artificial neurons, bio-
logical ones incur wiring costs dependent on the length of axons and the speed
of communication along them. The brain must arbitrate a trade-off between these
costs and cognitive performance [3]. We enforced this in model 3 by way of the
loss function. We assumed that the action units corresponded to premotor cortex and that goal units matched ab-
stract representations in other rostral areas; such that the hidden layer, corresponding to the ACC, spanned the dis-
tance between them. If the wiring costs are proportional to the length and weights of axons, the additional loss is
k(
∑n
i=1

∑n
j=1 |i − j|wij +

∑n
i=1

∑
a=1 iwia +

∑n
i=1

∑
g=1 |n − i|wig), where wi,j denotes the weight of the recurrent con-

nection between the ith and jth units of the hidden layer (out of a total of n units), wi,a (resp. wi,g) denotes the weight
of a connection between the ith unit of the hidden layer and output action unit a (resp. goal g), and k is a constant (here
set to .001). The first term corresponds to the loss incurred by recurrent connections, and the second and third term to
loss incurred by connections to the action and goal outputs respectively. In all other respects, this model was trained like
model 1 and model 2. In order to conduct the RSA, we generated two separate RDMs for the ‘goal’ hidden layer units
(“left” side of the hidden layer) and the ‘action’ units (“right” side).

2.3 fMRI methods and representational similarity analysis (RSA)

This study re-analyzed existing fMRI data from [8]: 18 participants performed 6 practice trials, then 72 trials split over
four runs. The General Linear Model included 24 regressors of interest; one for each unique action step in the task at the
moment a response was given. They were convolved with the canonical hemodynamic response function, while the 6
motion parameters were entered as nuisance regressors. The fMRI time series were high-pass filtered (cut-off 128s) and
a first-order autoregressive model was used to correct for temporal autocorrelation.

To investigate the representational similarity between activity patterns in the brain and activity patterns in the hidden
layer of the three different RNNs, we conducted the RSA using a searchlight approach [11]. We expected to identify
primarily the ACC. For the brain, we created a 27-element vector of BOLD signal activations for each 3×3×3 voxel cube.
This was done for each action-step of the task, such that 24 vectors of activity patterns were extracted per person, per
voxel cube. Then, for each voxel cube an RDM was built by computing the 1 - Spearman rank-order correlation between
the activity patterns across all pairwise combinations of the 24 action steps (i.e., a 24×24 matrix). Thus, for the brain an
RDM was created per voxel cube and per participant, whereas each RNN model only yielded one RDM (or two, in the
case of the abstract gradient network model).

Secondly, the RNN- and brain-related RDMs were correlated with each other. For each participant, we computed the
Spearman correlation between the upper triangle of the RDM of one of the RNNs versus those of the brain per voxel
cube, such that a correlation value was returned for each voxel cube in the brain volume. Each correlation reflects how
similar the activity patterns around this voxel are to that of the tested RNN. Correlation-values were z-transformed

1A one-hot vector has one element equal to 1 and all others to 0.
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within participants, such that larger values indicate stronger correlations to the RNN compared to other voxels cube in
the brain [8]. Furthermore, data were normalized into MNI space. Lastly, a simple t-test was run across participants
per voxel cube, to test which voxel cubes showed a significant correlation with that of the tested RNN. Results were
family-wise error (FWE) cluster-corrected, using a primary voxel-wise threshold of p < .001.

3 Results and discussion

Figure 3: Left: RDMs of the context layer of (A) the Elman network, replicating [8], and (B) the goal network. The RDM of the
goal network shows stronger similarity across coffee steps and across tea steps, separating the RDM in 4 “blocks”. (C) Results of the
searchlight analysis for both models. The inclusion of goal units yields a larger cluster that includes more anterior regions such as
rostral ACC, consistent with a rostral-caudal abstraction gradient.
Right: RDMs of the context layer of the abstraction gradient model, using (D) the ‘action’ units and (E) the ‘goal’ units from the hidden
layer. The RDM based on the goal units visibly separates between coffee and tea more than the RDM based on action units. (F) Results
of the searchlight analysis for the abstraction gradient model. The rostral-caudal abstraction gradient is visible: actions are mostly
represented in the caudal part of the ACC, while goals are mostly represented in the rostral part of the ACC.
All coordinates are given in MNI space, and clusters are displayed using an uncorrected p-value of .001. fMRI visualization done
using xjView toolbox (https://www.alivelearn.net/xjview).

Unsurprisingly, our analysis using model 1 (the Elman network) replicated the results of [8]. Several interpretable pat-
terns can be seen in the neural network RDM (Figure 3A), for example that the “stir” actions (actions 3 and 5 of all
sequences) are represented similarly within and across sequences; an extensive analysis can be found in [8]. When com-
paring the neural network RDM to the fMRI data, the largest identified cluster corresponded to an ACC cluster with
MNI coordinates and a peak t-value that were identical to those found in [8] (see Figure 4a in [8]).

Model 2, the goal network, was based on model 1, but was supplemented by goal units corresponding to “tea” and
“coffee”. As can be seen in Figure 3B, this change caused the network to separate representations of tea sequences from
those of coffee sequences, while nevertheless preserving much of the patterns that were visible in Figure 3A. Comparing
the neural network RDM to the fMRI RDMs in the searchlight analysis, the largest cluster was again clearly the ACC
cluster, and comprised more voxels compared to model 1 (798 instead of 351). More specifically, as Figure 3C indicates,
the cluster identified by the goal network showed partial overlap with that of [8], but extended to ventral and rostral
ACC, consistent with a rostral-caudal abstraction gradient.

Model 3, the abstraction gradient network, simulated wiring costs to produce a gradient of abstraction in the hidden
layer. Thus, in a single neural network, units were increasingly prone to represent goal-level information and to commu-
nicate with other goal-focused units as they were closer to one side of the layer. We produced an action RDM (Figure 3D)
and a goal RDM (Figure 3E). As predicted, the largest identified cluster was found in the ACC for both the action and
goal units (Figure 3F). Further, the action units identified the caudal regions more strongly while the goal units identified
the rostral regions more strongly (including rostral ACC), indicating presence of a rostral-caudal abstraction gradient
that mirrors the hierarchical representations encoded within the RNN model.
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RNN model Brain region x y z Peak Cluster
t-value size

1) Elman network ACC 6 41 32 7.18 351
IFG 42 14 23 5.96 151
anterior insula 48 20 2 6.39 109

2) Goal network ACC/dlPFC/SMA 6 44 23 8.21 798
IFG/insula 42 26 -1 6.19 146
dlPFC/MFG 42 38 26 5.56 90

3) Abstraction gradient
- goal units (r)ACC/aPFC 18 50 17 6.51 224

SMG/FEF 3 29 47 5.93 47
insula/IFG 36 26 -7 5.21 28

- action units (c)ACC/pre-SMA 3 32 41 6.23 271
V1/Par-Occ sulcus 0 -76 29 6.45 136
insula/IFG 42 23 -4 5.46 87

Table 1: Overview of the three largest clusters per model yielded by the searchlight
analysis, using MNI coordinates. All clusters survived family-wise error (FWE) cluster-
correction (pFWE < .05) using a primary voxel-wise threshold of p < .001. ACC =
anterior cingulate cortex; IFG = inferior frontal gyrus; dlPFC = dorsolateral prefrontal
cortex; MFG = middle frontal gyrus; SMA = supplementary motor area; aPFC = anterior
prefrontal cortex; FEF = frontal eye fields; V1 = primary visual cortex.

Table 1 shows an overview of the
three largest neural clusters that were
identified by each of the three RNNs.
We identify some perceptual and mo-
tor areas presumably due to superfi-
cial task features, as well as insula,
which often co-activates with ACC;
but the largest clusters for all models
were located in the ACC, and matched
our topographical predictions. Specif-
ically, the goal network demonstrated
a larger cluster when the network spe-
cialized per goal, including additional
voxels located more rostrally, suggest-
ing that the ACC represents sequential
tasks in a hierarchical manner. Cru-
cial support for this idea comes from
the abstraction gradient network, which
showed a rostral-caudal gradient de-
pending on the level of hierarchy of the
task (i.e., low-level actions being rep-
resented more strongly in the caudal
ACC; high-level goals represented more
strongly in the rostral ACC).

This study replicated and extended the work of [8], finding evidence that the ACC not only tracks the execution of ex-
tended action sequences via distributed patterns of activity that evolve over time, but that these patterns appear to have
a hierarchical component as well. By applying two different artificial RNNs with hierarchical structure, we found that
their hierarchical representations of the coffee-tea task were most similar to how the ACC represented the same task.
Crucially, by explicitly adding goal units (model 2), a larger ACC cluster was identified, that extended more rostrally
compared to the original Elman network. The use of an abstraction gradient and separating goal versus action units
(model 3) resulted in two ACC clusters with action units mostly identifying caudal ACC and goal units mostly identify-
ing rostral ACC. These findings suggest that the ACC encodes extended action sequences in a hierarchical fashion along
a rostral-caudal gradient (as suggested by e.g. [1], [8] and [7], and in line with findings from [15]).

The present work focused on finding evidence of distributed yet hierarchical representations, rather than identifying
their function. In ongoing computational work, we investigate the properties of the models using a more difficult task,
combined with a range of interventions on the model. Preliminary results suggest that our implementation of goal units
offers no benefit for discovering temporally extended behavior patterns; but could constitute a hub for cognitive control,
e.g. representing structured behaviors that deviate from habit, or increasing the robustness of these representations
under stress.
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Abstract

Hierarchical Reinforcement Learning (HRL) allows interactive agents to decompose complex problems into a hierarchy of
sub-tasks. Higher-level tasks can invoke the solutions of lower-level tasks as if they were primitive actions. In this work,
we study the utility of hierarchical decompositions for learning an appropriate way to interact with a complex interface.
Specifically, we train HRL agents that can interface with applications in a simulated Android device. We introduce a
Hierarchical Distributed Deep Reinforcement Learning architecture that learns (1) subtasks corresponding to simple finger
gestures, and (2) how to combine these gestures to solve several Android tasks. Our approach relies on goal conditioning
and can be used more generally to convert any base RL agent into an HRL agent. We use the AndroidEnv environment to
evaluate our approach. For the experiments, the HRL agent uses a distributed version of the popular DQN algorithm
to train different components of the hierarchy. While the native action space is completely intractable for simple DQN
agents, our architecture can be used to establish an effective way to interact with different tasks, significantly improving
the performance of the same DQN agent over different levels of abstraction.

Keywords: Android, Hierarchical Reinforcement Learning,
Generalized Value Functions
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1 Introduction

As we scale up Reinforcement Learning (RL) agents to tackle large varieties of problems in domains that are commonly
controlled by humans, these agents need to consider how to acquire and reuse diverse knowledge about the world [14,
6, 2, 13]. AndroidEnv is an open-sourced domain that poses such a challenge: general purpose agents need to control a
universal touchscreen interface and tackle a wide variety of tasks in Android applications; these are developed for human
users, hence they leverage human abilities to reuse knowledge and and build intuitions through constant interaction with
the platform [19]. Controlling AndroidEnv is purposely designed to match real devices: agents observe screen pixels
and control finger positioning in real-time; the environment runs in its own timeline and does not wait for the agent to
deliberate over its choices; actions are executed asynchronously; agents can interact with any Android application.

One of the main driving principles for Hierarchical Reinforcement Learning (HRL) is the explicit decomposition of RL
problems into a hierarchy of subtasks such that higher-level parent-tasks invoke low-level child tasks as if they were
primitive actions. The space of all possible decompositions is complex and hard to work with, albeit extensive research
shows that proper inductive biases can facilitate the search for useful decompositions (e.g. diffusion models [9], bottleneck
states [10, 17], intrinsic goals [8], language [5], empowerment [15]). We introduce an HRL agent that acquires simple
finger gesture skills and successfully reuses this knowledge in several diverse AndroidEnv tasks. To demonstrate the
generality of the approach, we use the framework of General Value Functions (GVFs) [18] to capture domain knowledge
about gestures for AndroidEnv. GVFs have been proposed in prior work as a way to capture diverse knowledge about the
world in the form of long-term predictions associated with agent experience. GVFs can be learned incrementally using
off-policy methods, and can be used to capture knowledge at different time-scales and levels of abstraction [20, 12].

Our main contribution is a novel Hierarchical Distributed Deep Reinforcement Learning architecture for AndroidEnv. The
architecture first builds a goal-conditioned deep model [16] for GVFs that capture knowledge about simple finger gestures
then it learns how to combine corresponding skills to solve several tasks from Android applications. Instead of using
general RL agents to solve a complex problem directly, the architecture first decomposes it into a three-level hierarchy
of sub-tasks: the lowest level (level 0) interacts with the screen to complete gestures (taps, swipes and flings), the next
level provides the target gesture (e,g. where to tap, direction of a swipe), the final level decides which gesture amongst
the three to execute to maximize per-step rewards. The same general RL agent is then used to solve decision making
processes corresponding to each of the levels in the hierarchy. We demonstrate that even though the native action space is
intractable for the baseline distributed DQN agent [11], the same agent becomes much more efficient when used to solve
sub-tasks and to make abstract choices at higher levels in the hierarchy.

2 The architecture

General Value Functions (GVFs). Sutton et al. [18] introduced a unified way to express long-term predictions for signals
that are independent of task-specific rewards, under policies that are different from the agent’s behavior, and under
flexible state-dependent discounting schemes. GVFs are associated with tuples 〈γ,C, π〉, where γ : S → [0, 1] is known
as a continuation function, defined over all states S of an MDP, C : S × A × S → R is the cumulant function over MDP
transitions, and π : S → D(A) is a policy that generates an action distribution for each MDP state. The corresponding
prediction is denoted by vπ,γ,C and it is the expected cumulant-based return: vπ,γ,C(s) = E[

∑∞
t=0(

∏t
i=1 γ(Si))Ci | S0 =

s,A0:∞ ∼ π]. We use qπ,γ,C(s, a) for predictions that are conditioned both on the initial state S0 = s and action A0 = a.
Discounted expected returns area appealing because they all obey some form of a Bellman equation which greatly facilitates
estimation and are used to derive tractable objective functions for optimization based algorithms, such as gradient descent
over deep networks. For simplicity, we describe below the Bellman equation for the optimal cumulant-based q-value,
q∗γ,C(s, a) =

∑
s′∈S p(s

′|s, a)
[
C(s, a, s′) + γ(s) maxa′ q

∗
γ,C(s′, a′)

]
.

Hierarchy of GVFs. We present a general approach to implement hierarchical decompositions of complex problems into
a multi-layered hierarchy of sub-tasks, where each level is trained to maximize GVFs: given a fixed cumulant-continuation
pair (C, γ), agents maintain estimates for the value of the corresponding optimal policy, i.e. q∗γ,C(s, a) = maxπ qπ,γ,C(s, a).
Instead of solving the problem with a single RL agent operating on the “raw” action space of an environment, we
prioritize modularity and comprehension to build a hierarchy of “problems” that are solved by independent agents,
working at different levels of space and temporal abstraction. A hierarchical decomposition on levels 0 to N works
under the assumption that each level i operates over a set of control GVFs, Ωi := {(Ci, γi)}Mi=1 and, at each timestep, the
corresponding RL agent follows the policy maximizing one of these GVFs. The selection of the active GVF at every timestep
comes as a signal ω = (C, γ) ∈ Ωi from the level i+ 1. For all levels, except for the lowest level 0, the corresponding agent
selects an abstract action ai by maximizing q∗γ,C(s, ai), and propagates it down as a GVF selection for level i− 1. In other
words, the level is always maximizing one of the many signals that it is designed to predict. Lastly, temporal abstraction
can be achieved within this framework by using the continuation function γ of the selected GVF to determine the temporal
extent of its execution. See Figure 1 for the concrete three-level hierarchy we used in our work.
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Figure 1: Gesture Hierarchy. The architecture used for the Android
applications is based on a 3-layer hierarchy: (1) The lowest level
operates over GVFs corresponding to all supported gestures; (2)
The middle layer selects a gesture GVF given the latest pixel image
in AndroidEnv and its agent is trained to maximize the return
associated with the task that the agent is trained on; and (3) The
top layer selects a single gesture class for the task and the agent
is trained to maximize the average per step reward. All levels are
operated by distributed DQN agents.

The main advantage of the hierarchical decomposi-
tion is that RL agents operating at different levels can
be designed in isolation and perhaps can be trained
either at different stages or using completely differ-
ent techniques. For example, one could select among
a finite set of abstract actions in level 1, while a con-
tinuous control agent interacts with an environment
that operates with a continuous (or relatively large)
action space.

Distributed Hierarchies. Distributed computing
architectures for Deep Reinforcement Learning have
been shown to play an important role in scaling
up these algorithms to relatively challenging do-
mains [4, 7]. In particular, these allow for asyn-
chronous learning, and, when working with simu-
lated environments, asynchronous acting. The mod-
ular hierarchical decomposition that we describe in
this section is well suited for distributed architec-
tures, as different levels operate with RL agents that
are potentially independent of each other. Albeit
these levels are tied during the execution of a policy
due to the hierarchical signal processing procedure,
learning is not: each level can maintain its own train-
ing dataset and perform learning updates on sepa-
rate machines. Since AndroidEnv runs in real-time and the underlying simulation cannot be sped up, multiple actors run
in parallel to generate sufficient experience for all learners.

3 Experimental implementation

We present results on a selection of AndroidEnv tasks. For our experiments, we used the Acme framework [3] and
its Distributed TensorFlow implementation of the DQN agent [11], configured for runs on Atari games, available at
Acme’s Github Repository.1 To be able to readily use agents designed for Atari games, we simplified the AndroidEnv
interface by (1) down-sampling the input images to a 120 x 80 resolution, and (2) restricting taps and swipes to 54 locations
on the screen, corresponding to a 9 by 6 discretization of the Android touch-screen. Moreover, the agent’s input has
further knowledge of any completed tap, swipe, or fling operation, as well as the most recent finger touch location. For
more details on implementation, network architecture, and default hyper parameter settings, please refer to the Acme
open-source code. Details on the set of AndroidEnv tasks for which we report results are available on AndroidEnv’s
Github Repository.2 Figures 2 and 3 provide a summary of the observed empirical results. The rest of this section provides
a detailed description of the hierarchy used to obtain these results.

Random DQN Hierarchy Human
Apple Flinger 150 0.0±0.0 1899±276 3000
Blockinger 0.0 0.0±0.0 44414±2369 -
Catch -0.5 -0.72± 0.13 0.96±0.15 1
Classic 2048 1000 1126± 105 1615±161 6000
Dodge 0.0 0.0±0.0 0.3±0.09 1
Floodit Easy 2 0.0±0.0 8.40±0.28 7
Nostalgic Racer 310 196±40 372±41 1000
Vector Pinball 9000 7478±1471 33240±8028 13000

Figure 3: Summary of results at the end of training, compared to
human performance and return under a random policy.

Level 0: gesture execution. The lowest level in the
hierarchy is designed to execute gestures by operat-
ing on a set of GVFs composed of tap, swipe, and
fling gestures. To fully define these GVFs, level
0 maintains a sequence of all touch positions in a
trajectory, denoted by (p0,p1 · · · ,pt), with all pi
either positions on the screen for tap actions or
pi = 0 for lift actions. For example, to capture a
swipe gesture from location q1 to q2 we use a cu-
mulant Cq1,q2

(p0,p1 · · · ,pt) = 1 if ∃i < t such that
[pi,pi+1, . . . ,pt−1,pt] = [0,q1,pi+2, . . . ,pt−2,q2,0]
with pj 6= 0,∀i < j < t, Cq1,q2

= 0 otherwise, and
γq1,q2

= 1 − Cq1,q2
. In all experiments, we use tap

locations and swipe start/end locations based on the
9 by 6 discretization described above, resulting in 54x54 swipe GVFs and 54 tap GVFs. We additionally define 8 fling
GVFs corresponding to N,NE,E, SE, S, SW,W and NW cardinal directions.

1https://github.com/deepmind/acme/tree/master/acme/agents/tf/dqn
2https://github.com/deepmind/android env
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Figure 2: Empirical results. We tested our agents on a number of AndroidEnv tasks of different levels and with varying
complexity in the action interface. We report results on tasks where at least one of the agents was able to improve
its behavior. For tasks such as classic 2048 and nostalgic racer, using any fling or tap gesture, correspond-
ingly, incurs significant changes in the score outcome. On the other hand, for tasks such as apple flinger M 1 1,
blockinger squares, and floodit easy, the agent can only operate by direct interaction with specific buttons or
objects and rewards are very sparse, making all of these tasks intractable for most agents.

As shown in Figure 1, the signal from above fully define individual gestures: ω0 ∈ Ω0 contains both a gesture class and a
gesture parameter, e.g. ω0 = (swipe,q1,q2) for a swipe from q1 to q2. To train the corresponding agent, we concatenate
one-hot encodings for the gesture class, gesture parameters, and the last tap location. Each class of gestures was trained
separately, hence the execution at this level is based on 3 separate networks. Lastly, we also apply Hindsight Experience
Replay (HER) [1] for improved data-efficiency: we always select a single GVF during acting, but we compute cumulants
and continuations for all GVFs as to relabel the training data and use it to train predictions corresponding to all GVFs for
which a cumulant C = 1 is observed. All GVFs were trained with random agents at levels above (explained below) and, in
all, we used approximately 107 actor steps to train this level, a cost that was paid only once, as the same model was reused
by all agents training the higher levels in specific Android applications.

Level 1: gesture GVF selection. The second level in the hierarchy uses pixel input data coming from interaction with
Android apps to select among all gesture GVFs, which in turn is executed by the lowest level. The level uses the pixel
input and reward and the gesture class selection from the upper level to train the corresponding RL agent. The latter
combines these signals to generate a parameter, e.g. tap location, for the GVF that should be executed at the lowest level.
The GVF selection policy is trained using a DQN agent training a joint network for all gesture GVFs. Since the set of
swipe GVFs is quite large, i.e. 54 x 54, the Q-value network is designed to output two sets of value estimates: one for the
selection of the first parameter out of 54, and another one for the selection of the second parameter.

Level 2: gesture class selection. The third level is trained to select among gesture classes {tap, swipe, fling}. The
corresponding agent is trained to maximize the average per step reward over the entire episode. This level receives only
the environment reward as input and returns one of the three gesture classes. We use the same agent as for the other
two layers for training. Since the problem is substantially simpler at this level of abstraction, we used a tabular Q-value
representation for the average reward estimations associated with each gesture class.

4 Discussion

The results we presented provide strong evidence that task-independent knowledge about the Android action interface,
e.g. finger gestures, can be used to derive useful hierarchical decompositions. We introduced a flexible and modular signal
processing distributed architecture that effectively generates streams of training data for separate reinforcement learning
agents, operating at different levels of abstractions, e.g. selecting a class of GVFs, selecting specific GVFs, executing
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GVFs. The architecture was used to convert a simple DQN agent into a hierarchy of similar DQN agents, all operating
on Android applications, but there is no restriction to this particular choice of agent or environment. Moreover, the
hierarchical architecture is not restricted to learning knowledge that is related to finger gestures. In fact, we anticipate even
stronger results when the agent is learning abstractions that correspond to more conceptual knowledge on the AndroidEnv
platform, e.g. predicting and controlling object movement, menu navigation, affordable interactions with other apps
or internet services, discovering common functionalities. Lastly, we believe that the most promising avenue is to allow
agents to discover their own collection of GVFs as well as the most appropriate level of abstraction of the knowledge they
can capture.
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Abstract

As the negative societal consequences of machine learning systems run amok have become increasingly apparent, fair
machine learning methods have seen increased attention for tasks like facial recognition, medical care and diagnosis,
and employment hiring decisions. Despite this positive trend, most attention on the theory side has been focused
on fair supervised and unsupervised settings, whereas second-order impact of machine learning applications, such
as the runaway positive feedback loops in settings like predictive policing, are more naturally posed in the setting
of reinforcement learning. We propose a novel, welfare-centric, fair reinforcement-learning setting, in which the agent
enjoys vector-valued reward from a set of beneficiaries. Given a welfare function W(. . . ), the task is to select a policy
π that is favorable to all beneficiaries, in the sense that it optimizes the welfare of the value of the beneficiaries from
state s0, i.e., argmaxπW

(
V π1 (s0), V π2 (s0), . . . , V πg (s0)

)
. We show that, in this setting, both per-beneficiary exploration and

per-beneficiary policy optimization are insufficient to identify the welfare-optimal policy. Whether an individual action
is a mistake depends on the context of subsequent actions, therefore the standard PAC-MDP framework does not readily
generalize to fair reinforcement learning. Consequently, we develop a stronger learning model, wherein at each timestep
an agent either takes an exploration action or outputs an exploitation policy. We require that each exploitation policy be
ε-welfare optimal, and the number of exploration steps be polynomial in all relevant parameters. We reduce PAC-MDP
learning to this framework, showing that our framework is sufficiently challenging so as to be interesting, and define the
fair E3 learner to operate under this model, thus demonstrating that fair reinforcement learning is tractable.

Keywords: Fairness, Welfare, Vector-Valued MDPs, Learning, Planning
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1 Introduction

Fair machine learning (ML) methods have recently seen increasing attention for tasks like facial recognition [Lohr, 2018]
and employment hiring decisions [Kleinberg et al., 2018]. Despite this positive trend, most attention on the theory side
has been focused on fair supervised [Agarwal et al., 2018] and unsupervised [Chierichetti et al., 2018] ML, whereas
second-order impact of ML models, such as the runaway feedback loops in settings like predictive policing [Ensign et al.,
2018]are more naturally posed in reinforcement learning (RL) settings. We apply ideas from welfare-centric supervised
learning [Cousins, 2021, 2022] to reinforcement learning (RL) settings; in particular, we assume an agent receives a
vector-valued reward signal from a set of beneficiaries, each representing, e.g., different racial, gender, religious groups,
and the task is to learn a single policy that treats beneficiaries fairly.

We argue it is not the role of the algorithm designer to dictate what fairness means in the sense of how to compromise between
beneficiaries, but rather to optimize for a given fairness notion (ideally one agreed upon by society, government, political
philosophers, and other interested parties), as encapsulated by a metric of societal welfare. In supervised learning, doing
so is relatively straightforward, as we generally maximize the welfare of expected per-beneficiary utility, so in RL, we take
utility to be the standard geometrically discounted value function w.r.t. each beneficiary’s reward. In general, optimizing
welfare is referred to as the social planner’s problem, so in a sense our work addresses this problem in the context of RL.

While optimizing the welfare of beneficiary value functions is a well specified goal for a planning algorithm, or when
studying the asymptotic behavior of a learning algorithm, when considering the process of fair learning in an unknown
MDP, it is imperative that we also ask the right questions as to how quickly we can learn and if we can guarantee that our
learning algorithm behaves fairly in all but a finite number of steps. To this end, we generalize the PAC-MDP framework to
a novel adversarial fair MDP learning framework, which represents a substantially more difficult learning task. Nevertheless,
we show that an algorithm inspired by the classic E3 algorithm [Kearns and Singh, 2002], which we call fair E3, is capable
of adversarial fair MDP learning.

In fair learning settings, quantifying whether an action is fair is substantially more difficult than quantifying whether
an action is optimal to a single agent, because fairness depends on the context of how the agent behaves overall (i.e.,
tradeoffs between beneficiaries should be balanced). Consequently, in our model, the agent must output fair policies when
it is capable of doing so. When it is not, the agent can output only exploration actions, and our concept of learnability
requires that the agent with high probability always outputs ε-optimal fair policies, while taking only a bounded number
of exploration actions over its infinite lifetime. We allow an adversary to move the agent arbitrarily after it outputs a
policy. At any step, the adversary is allowed to select a new welfare function, representing changing societal ideals of
how fairness should work, and the agent is expected to output either an exploration action, or a policy optimizing said
welfare function. Of course, the adversary is free to leave the agent’s position and welfare function unchanged with no
degradation in the upper-bounds we prove.

Contributions

1. We frame the traditionally egocentric challenge of reinforcement learning as a social problem, where the actions taken
by an agent impact a set of beneficiaries.
2. Using ideas from vector-valued reinforcement learning, econometrics, and social welfare theory, we establish welfare
optimal policies over the value functions of the set of beneficiaries. We focus on finite-state fully-observable MDPs with
bounded reward and γ-geometric value-discounting, but our philosophy and methodology can be generalized.
3. We introduce a learning framework in which the agent only observes the consequences of its actions during exploration,
and that an adversary can freely move the agent whenever the agent outputs an exploitation policy. During exploitation,
the agent is expected to correctly return a near-welfare optimal policy from the current state with high probability, and
is also expected to exploit in all but a finite number of exploratory steps. This specific decoupling of exploration and
exploitation conditions is particularly conducive to studying the multi-beneficiary RL setting, in which the optimal policy
may in general depend on the starting state.
4. We show that our learning framework, which we refer to as the adversarial fair MDP learning framework, is stronger
(more difficult) than the well-known probably-approximately correct (PAC) MDP reinforcement learning framework.
5. In section 3, we present the fair E3 algorithm, and prove that it is an adversarial fair MDP learner.

2 Illuminating Examples

We first consider a few simple examples (visualized in fig. 1) that illustrate that intuition from the standard scalar-reward
RL setting can be misleading. In these examples, we consider only the relatively straightforward egalitarian welfare (i.e.,
minimum utility,WEgal(a, b) = min(a, b)) function, on stateless (single-state) MDPs with deterministic rewards. Despite
this barren setting, we find that the standard RL algorithms exhibit misbehavior in learning.
Example 1 (Symmetric 2-Arm Bandit; fig. 1a). We first consider a 2-arm bandit, with reward R(a1) = 〈1, 0〉, and R(a2) = 〈0, 1〉.
Here, the unique optimal Markovian policy is π∗W = 〈 12 , 1

2 〉.
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s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

π∗1 = 〈1, 0〉 , π∗2 = 〈0, 1〉
π∗W = 〈 12 , 1

2 〉

(a) Symmetric 2-Arm Bandit

s1

R(s1, a1) = 〈3, 0〉 R(s1, a2) = 〈0, 3〉

R(s1, a3) = 〈2, 2〉

π∗1 = 〈1, 0, 0〉 , π∗2 = 〈0, 1, 0〉
π∗W = 〈0, 0, 1〉

(b) Compromise 3-Arm Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

s2 s3R
(s

2
, ∗)

=
〈α,

0〉 R
(s
3 , ∗)=〈0, α〉

π∗1(s1) = 〈1, 0〉 , π∗2(s1) = 〈0, 1〉
π∗W(s1 from s3)=〈 12−

1−γ
2γ α,

1−γ
2γ α− 1

2 〉 or 〈0, 1〉

(c) Asymmetric Start Bandit MDP

Figure 1: Small MDPs that exhibit surprising behavior under multi-beneficiary objectives.

There are several surprises here:

1. The (unique) optimal policy is stationary, but not deterministic, i.e., it is stochastic.
2. Policy iteration iteratively selects the greedy welfare-optimal policy, i.e., selects the policy

π(i) ← argmax
π

W
(
E
π

[R1(s0, a) + γV π(i−1)

1 (s1)], . . . ,E
π

[Rg(s0, a) + γV π(i−1)

g (s1)]
)
.

This would be optimal under the (false) assumption that the value function remains fixed, and iis convergent for
linear (value) MDP objectives. However, policy iteration for the egalitarian welfare objective, initiated at either
deterministic policy, oscillates between π(s) = 〈1, 0〉 and π(s) = 〈0, 1〉. which leads to repeated overcorrections for
initial policy unfairness, hence the oscillatory behavior.

We now consider an extension, which has a third option, which is not preferable to either beneficiary, but is more effective
as a compromise than any mixture of the first two options.
Example 2 (Compromise 3-Arm Bandit; fig. 1b). We next consider a 3-arm bandit, with reward R(a1) = (3, 0), R(a2) = (0, 3),
and R(a3) = (2, 2). The optimal policies for beneficiary 1, beneficiary 2, and the welfare objective, π1 = 〈1, 0, 0〉, π2 = 〈0, 1, 0〉, and
πW = 〈0, 0, 1〉, respectively.

This is perhaps not hugely surprising, but it is notable nonetheless, as it starkly illustrates just how different a welfare
optimal policy may be from any individual beneficiary’s optimal policy. In particular, despite there being unique optimal
stationary policies π∗1 , π∗2 , and π∗W , clearly, π∗W is not a linear combination of π∗1 and π∗2 . Furthermore, at every state, the
probability of selecting any action never exceeds 0 in more than one of these optimal policies. This also has implications
for how the MDP is explored; for instance if beneficiaries one and two are independently allowed to run a UCB-style
algorithm, neither will even bother to fully explore a3, thus even together they don’t collect enough information for
welfare-optimal planning. We thus conclude that not only the planning, but also the exploration aspect of RL must
explicitly consider welfare objectives.

We now extend the 2-armed bandit example by adding two additional states, which represent disparate starting conditions
for the two beneficiaries.
Example 3 (Symmetric 2-Arm Bandit, with Asymmetric Starting Conditions; fig. 1c). This MDP has three states, but once s1

is reached, it is never left, thus becoming a 2-armed bandit.

From s1, neither beneficiary is privileged, but from s2, beneficiary 1 begins by receiving α utility, and from s3, beneficiary 2
begins by receiving α utility. To make things fair, we need to select π(s1) to benefit the underprivileged group, i.e., starting
from s2, have π(s1) choose action 1 with probability x such that γ

1−γx+ α = γ
1−γ (1− x), thus 2 γ

1−γx = γ
1−γ − α =⇒ x =

1
2 −

1−γ
2γ α. This makes sense: larger α need to subtract a larger privilege correction term from 1

2 , and after a certain point,
negative x (which is of course impossible) would be required to compensate for disparate starting conditions.

3 The Fair E3 Algorithm

We now introduce the fair E3 algorithm and bound its sample complexity, thus showing that it is a adversarial fair
adversarial MDP learner. We provide pseudocode in Algorithm 1. The key to understanding the algorithm is that the state
space is divided into three sets: the unknown set Sunk, the outer-known set Sout, and the inner-known set Sinn. Initially, all
states are unexplored, placed in Sunk. After visiting a state and taking all actions sufficiently many times using balanced
wandering [Kearns and Singh, 2002], it is placed in either Sout if with nonnegligible probability ≥ E it is possible to reach
Sunk in ≤ T steps, or Sinn if it is not possible to reach the unknown set with nonnegligible probability. Note that E and T
will be determined so as to ensure adversarial fair MDP learnability.
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Algorithm 1 Fair E3 and the Adversarial Fair MDP Setting

∼ Fair E3 Agent Code ∼

1: procedure AGENTINIT(M = 〈S,A,R,T , γ〉, ε, δ, Rmax)

2: T ← d 1
1−γ ln 3Rmax

ε(1−γ)e; t← 0 . Init. escape time; timer
3: E ← ε

2TRmax
. Compute escape probability threshold

4: M←




ln

(
|S||A| (2|S| − 2 + g)

δ

)
max

(
1

2β2
,
R2

max

2α2

)


5: ∀s ∈ S, a ∈ A : ms,a ← 0 . Per-(s, a) visitation counters
6: Sunk ← S; Sout ← ∅; Sinn ← ∅ . Init. all states to unknown
7: M̂ = 〈S,A, R̂, T̂ , γ〉 ← 〈S,A, s 7→ 0, s 7→ 1s, γ〉
8: end procedure

9: procedure AGENTSTEP(s,W(·))
10: if s′ ∈ Sunk then . Successful escape
11: t← 0
12: return axpr ← argmin

a∈A
ms,a . Balanced walk step

13: end if
14: if t > 0 then . Ongoing attempt to escape to Sunk

15: t← t− 1
16: return axpr ← πesc(s, t) . Explore a from escape policy π
17: end if
18: if s ∈ Sinn then . Return exploit policy
19: return πxpt ← argmax

π∈ΠM
W
(
V̂ π1 (s), V̂ π2 (s), . . . , V̂ πg (s)

)

20: else . s ∈ Sout, begin escape attempt
21: t← T
22: return axpr ← πesc(s, t)
23: end if
24: end procedure

25: procedure AGENTSARSUPDATE(s, a, r, s′)
26: if s ∈ Sunk then
27: ms,a ← ms,a + 1 . Increment visitation count
28: (Es,a,ms,a,S,Es,a,ms,a,R)← (s′, r) . Add to XP buffer
29: if min

a∈A
ms,a = M then . State s is learned

30: ∀a, s : T̂s,a,s′ ←
1

M

M∑

i=1

1s′(Es,a,i,S)

31: ∀a : R̂s,a ←
1

M

M∑

i=1

(Es,a,i,R)

32: πesc ← argmax
π∈ΠT

∑

s∈S
P
(∨T

i=1si ∈ Sunk

∣∣∣π, s1 = s
)

33: Sunk ← Sunk \ {s}
34: Sout ←

{
s ∈ S\Sunk

∣∣∣∣P
(∨T

i=1si ∈ Sunk

∣∣∣πesc, s1 =s
)
≥E
}

35: Sinn ← S \ (Sunk ∪ Sout)
36: end if
37: end if
38: end procedure

∼ Fair-Adversarial-MDP Interaction Loop ∼
39: procedure AGENTENVIRONMENTINTERACT(M, ε, δ, Rmax)
40: AGENTINIT(M, ε, δ, Rmax)
41: s← ADVERSARY . Adversarially select initial state
42: while True do
43: W(·)← ADVERSARY . Adversarial welfareW(·)
44: z ← AGENTSTEP(s,W(·))
45: if z ∈ A then . Explore Action
46: s′, r ←M(s, z)
47: AGENTSARSUPDATE(s, a, r, s′)
48: s← s′

49: else if z ∈ ΠM then . Exploit Policy
50: s← ADVERSARY . Adversarial subsequent state
51: end if
52: end while
53: end procedure

As in the classic E3 algorithm, within Sinn, if all Chernoff bounds hold simultaneously, the value functions of the empirical
MDP approximate the value functions of the true MDP, and furthermore, due to a Lipschitz assumption on welfare
functions, optimizing welfare in the empirical MDP ε-optimizes welfare in the true MDP. Therefore, at each time step, if
the agent is in Sinn, it outputs a near optimal policy, otherwise if it is in the outer-known set, it begins an escape attempt,
which either proceeds for T steps or until a state in Sunk is reached; if the agent is in Sunk, it executes an action learning
more about the unknown state, possibly moving it into a known set.
Definition 1. Let TVD(x, y) denote the total variation distance between probability distributions x, y. An (α, β) uniform
approximationM′ = 〈S,A, T ′, R′, γ〉 of a vector-reward MDPM = 〈S,A, T,R, γ〉 is an MDP that satisfies:
1. ∀(s, a) TVD

(
T ′(·|s, a), T (·|s, a)

)
≤ α, & 2. ∀(s, a) |R′(s, a)−R(s, a)| ≤ β.

Lemma 1. Suppose MDPM = 〈S,A,R,T , γ〉, & let

m
.
= M(|S| ,|A| , g, Rmax, α, β, δ)

.
=




ln

(
|S||A| (2|S| − 2 + g)

δ

)
max

(
1

2β2
,
R2

max

2α2

)


.

Now if M̂ is estimated from taking each (state, action) pair at least m times, then, with probability at least 1 − δ, M̂ is an α-β
uniform approximation ofM.
Theorem 1. Algorithm 1 ε-δ fair-adversarial-MDP learnsM for all δ ≤ e

2 with sample complexity

mM(. . . ) ≤
⌈
|S||A| ·M(|S| ,|A| , g, Rmax, α,

β
λ ,

δ
2 ) + 3 ln 3

δ

T

⌉
∈ Poly

(
|S| ,|A| , g, Rmax, λ, ε,

1

δ
,

1

γ

)
.
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Essentially, fair E3 differs very little from E3, as it will always seek to explore any state that is reachable with nonnegligible
probability. However, it must explore each state more times than standard E3 to account for learning vector-valued rewards,
and the exploitation aspect changes greatly, as it must output policies that are nearly welfare-optimal, rather than just actions.

4 Discussion

We now note that in sensitive contexts, the decision to learn a policy from scratch is rather radical, and many suboptimal
actions will likely be taken during the learning process. However, this isn’t specific to fairness, but is rather an inherent
problem in reinforcement learning in sensitive settings. In medical contexts, Thomas et al. [2019] learn starting from a
reference policy, and seek to improve the policy while guaranteeing the learned policy is no worse than the reference. While
this is laudable and reasonable in high-risk or sensitive settings, when fairness between groups is a concern, it is inherently a
conservative approach (i.e., one which reinforces the status quo; in some sense comparison to reference is an argumentum
ad traditionem), whereas starting ex-nihilo solely depends on the structure of the MDP and the learning algorithm, rather than
existing societal bias which may be encoded in a reference policy.

Still, we note that suboptimal exploration actions taken during exploration could adversely affect one group or another in
an unfair way, and in practice this is extremely important and should be monitored and controlled for. However, unlike in
some bandit settings, where the cost of exploration may be unfairly borne by one group or another, in our algorithm, the
escape policy and balanced walk actions are both completely independent of the reward structure in the MDP, and are
thus inherently fairness agnostic. We note also that the number of suboptimal actions can be further reduced by a more
careful analysis; for instance the sample complexity of learning transition matrices is much smaller when they are sparse,
admit a factoring, or destination distributions are far from uniform, and the simple complexity of learning rewards is much
smaller when the variance of rewards is also considered, or when per-beneficiary rewards are not-independent. We are
hopeful hopeful that future work will lead to adversarial fair MDP learners that makes fewer suboptimal actions over the
course of learning (i.e., have improved sample complexity).

In Conclusion We motivate and define a welfare-centric concept of fair reinforcement learning. Naïve approaches,
like planning via policy iteration, and turn-based exploration strategies (as in multi-task learning settings) do not yield
successful fair RL agents, even asymptotically. However, we show that under mild regularity conditions on the welfare
function, it is possible to learn in the adversarial fair MDP framework while making polynomially many mistakes
(algorithm 1, theorem 1). Our method adopts the classic E3 algorithm, which is an appropriate fit, as its exploration
strategy is actually independent of the reward function. As a result, the only change we require is attempting each action
more often during exploration to account for the larger number of parameters that must be learned.
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Abstract

Q(σ) is a recently proposed temporal-difference learning method that interpolates between learning from expected back-
ups and sampled backups. It has been shown that intermediate values for the interpolation parameter σ ∈ [0, 1] perform
better in practice, and therefore it is commonly believed that σ functions as a bias-variance trade-off parameter to achieve
these improvements. In our work, we disprove this notion, showing that the choice of σ = 0 minimizes variance with-
out increasing bias. This indicates that σ must have some other effect on learning that is not fully understood. As an
alternative, we hypothesize the existence of a new trade-off: larger σ-values help overcome poor initializations of the
value function, at the expense of higher statistical variance. To automatically balance these considerations, we propose
Adaptive Tree Backup (ATB) methods, whose weighted backups evolve as the agent gains experience. Our experiments
demonstrate that adaptive strategies can be more effective than relying on fixed or time-annealed σ-values.
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1 Introduction
Unifying temporal-difference (TD), dynamic programming (DP), and Monte Carlo (MC) methods has helped illuminate
trade-offs in reinforcement learning and has lead to the development of better algorithms. Much work has focused on
the length of backups as a unifying axis between TD and MC methods, in which these two classes can be understood
as opposite extremes of the TD(λ) algorithm (Sutton, 1988; Sutton and Barto, 1998). In this view, the decay parameter
λ ∈ [0, 1] serves not only as a conceptual link between these distinct methods, but also as a mechanism for managing
the bias-variance trade-off (Kearns and Singh, 2000), where intermediate values of λ often deliver the best empirical
performance (Sutton and Barto, 1998).

Recent research has begun to explore an orthogonal unification between TD and DP methods by varying the width of
backups. This concept was formally introduced by Sutton and Barto (2018) in the Q(σ) algorithm; the method interpolates
linearly, via a parameter σ ∈ [0, 1], between Expected Sarsa (σ = 0) (Sutton and Barto, 1998) and Sarsa (σ = 1) (Rummery
and Niranjan, 1994). As such, Q(σ) can be seen as a spectrum of algorithms whose backup widths lie somewhere between
those of a sample backup and a full (expected) backup. De Asis et al. (2018) conducted further theoretical and empirical
analysis of Q(σ), arriving at two major hypotheses: σ is a bias-variance trade-off parameter, and dynamically adapting σ
can lead to faster convergence. These hypotheses appeared to be corroborated by their experiments, where intermediate
σ-values performed well, and exponentially decaying σ during training performed even better.

In our work, we re-examine these two hypotheses regarding Q(σ), and ultimately show that they are incorrect. In particu-
lar, we prove that the choice of σ = 0 minimizes the variance of Q(σ) without increasing the bias. It follows that the choice
of σ does not constitute a bias-variance trade-off, since both bias and variance can be simultaneously optimized without
competition. Furthermore, we prove that the contraction rate and fixed point of the Q(σ) operator are independent of
σ, suggesting again that the choice of σ = 0 is preferable for its variance-reduction effect. These findings are intriguing
given the empirical results obtained by De Asis et al. (2018), which did not demonstrate a clear superiority of σ = 0. This
apparent discrepancy between theory and practice suggests that other factors are responsible for the observed benefits
of Q(σ), and that our understanding of the algorithm must be revised accordingly.

We therefore advance a new hypothesis to explain the effectiveness of intermediate σ-values: conducting partial backups
(σ ̸= 0) helps escape poor initializations of the value function Q by reducing the chance that previously unvisited state-
action pairs are considered during the backup. The value estimates of these pairs could be arbitrarily incorrect, slowing
initial learning; however, as training progresses and the majority of state-action pairs have been visited, σ = 0 starts to
become more favorable for its variance reduction. This explanation matches the intuition of the time-decayed schedule
utilized by De Asis et al. (2018), in which σ = 1 is desirable early in training and σ = 0 is desirable later.

This new hypothesis suggests that backup width should be adjusted based on the number of visitations to each state-
action pair, with more emphasis placed on frequently sampled pairs. We therefore develop a new family of TD algo-
rithms that we call Adaptive Tree Backup (ATB) methods, which generalizes Tree Backup (Precup et al., 2000) to arbi-
trary weightings of the value estimates. We highlight two instances of ATB methods (Count-Based and Policy-Based) that
we believe to be promising. The proposed methods have the advantage of eliminating the hyperparameter σ, as they
adapt automatically to the data experienced by the agent. Finally, our experiments demonstrate that Policy-Based ATB
outperforms the exponential-decay schedule for σ introduced by De Asis et al. (2018).

2 Background
We model the environment as a Markov Decision Process (MDP) described by the tuple (S,A, P,R): S is a finite set
of environment states, A is a finite set of actions, P is the transition function, and R is the reward function. An agent
interacts with the environment by selecting an action at ∈ A in state st with probability π(at|st), receiving a reward
rt := R(st, at) and changing the state to st+1 with probability P (st+1|st, at). Given the agent’s policy π, the objective is to
estimate the expected discounted return Qπ(st, at) := Eπ[rt+ γrt+1+ γ2rt+2+ . . . ], where γ ∈ [0, 1], since acting greedily
with respect to Qπ is known to produce a better policy (Sutton and Barto, 1998).

Q(σ) (Sutton and Barto, 2018) is a method that iteratively improves its estimated value function Q according to

Q(st, at)← (1− αt)Q(st, at) + αt

(
rt + γ

(
σQ(st+1, at+1) + (1− σ)

∑

a′∈A
π(a′|st+1)Q(st+1, a

′)

))
, (1)

where σ ∈ [0, 1] is a user-specified hyperparameter. This hyperparameter interpolates between the exact on-policy
expectation (Expected Sarsa, σ = 0) and noisy sample estimates of it (Sarsa, σ = 1), and has been hypothesized to serve
as a bias-variance trade-off parameter that improves the contraction rate of the algorithm (De Asis et al., 2018). In the
subsequent section, we analyze the theoretical properties of the Q(σ) update to investigate the validity of this hypothesis.

3 Analysis of Q(σ)
We investigate the effects that σ has on the Q(σ) algorithm in terms of convergence, contraction rate, bias, and variance.
Our analysis dispels two misconceptions about Q(σ): that dynamically adjusting σ can achieve a faster contraction rate,
and that σ functions as a bias-variance trade-off parameter.
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3.1 Convergence and Contraction Rate

For notational conciseness when proving convergence, we represent the Q(σ) update (1) as an operator Tσπ : Rn → Rn,
where n := |S × A|. The Bellman operator Tπ for a policy π is defined as the affine function Q 7→ R + γPπQ, where
(PπQ)(s, a) :=

∑
s′,a′ P (s

′|s, a)π(a′|s′)Q(a′|s′). The Bellman operator is a contraction mapping (when γ < 1) that admits
the unique fixed point Qπ =

∑∞
k=0(γPπ)

kR, the unique solution to TπQ = Q (Bellman, 1966).

For policy evaluation, the operator Tσπ is considered convergent if and only if limk→∞(Tσπ )
kQ = Qπ for every Q ∈ Rn,

where (Tσπ )
kQ := (Tσπ )

k−1(TσπQ). Let w ∈ Rn be zero-mean noise that represents the randomness due to the environment
and policy. Since Q(σ) interpolates linearly between Expected Sarsa and Sarsa, we can express its operator as

TσπQ := (1− σ)TπQ+ σ(TπQ+ w) = TπQ+ σw. (2)

We can therefore write update (1) in vector notation as

Qt+1 = (1− αt)Qt + αt(TπQt + σwt). (3)

Theorem 1. Assume
∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞. For γ < 1, the sequence Qt defined by (3) converges to Qπ almost surely.

Proof. Iteration (3) is already in a form where Proposition 4.4 of Bertsekas and Tsitsiklis (1996) is applicable; Tπ is a
contraction mapping with respect to the maximum norm, and σwt is zero-mean noise. Furthermore, E[(σwt)2] ≤ E[w2

t ]
because σ ∈ [0, 1], and E[w2

t ] is bounded by a constant since S and A are finite sets. Consequently, under the assumed
stepsize conditions, the sequence Qt converges to Qπ (the fixed point of Tπ) almost surely.

From our derived Q(σ) operator (2), we see that σ primarily functions as a noise attenuation parameter; however, it does
not affect the expected update, which is inherently related to the Bellman operator. It follows that the contraction rate
and fixed point of Q(σ) are identical to those of the Bellman operator, and that these properties are independent of σ.

3.2 Variance

Theorem 1 suggests that small values of σ have a beneficial variance-reduction effect, with no detrimental effects on
convergence; however, the abstract noise process wt makes it difficult to quantify this effect. In this section, we derive
the exact variance of Q(σ) by extending existing results for Sarsa and Expected Sarsa from van Seijen et al. (2009).
Theorem 2. Let vt and v̂t be the variances of Expected Sarsa and Sarsa, respectively. The variance of Q(σ) is given by the expression

Var(vt) + σ2(Var(v̂t)−Var(vt)), (4)

and this quantity is minimized when σ = 0.

Proof. From the definition of Q(σ) as a linear interpolation, we can deduce that its variance has the form

σ2 Var(v̂t) + (1− σ)2 Var(vt) + 2σ(1− σ) Cov(v̂t, vt). (5)

The Sarsa and Expected Sarsa updates share the same expected value (van Seijen et al., 2009); let it be denoted by µt. We
show algebraically that Cov(v̂t, vt) = Var(vt) by comparing the exact calculation E[(v̂t − µt)(vt − µt)] to the expression
for Var(vt) derived by van Seijen et al. (2009). Therefore, expression (5) reduces to

σ2 Var(v̂t) + [(1− σ)2 + 2σ(1− σ)] Var(vt) = Var(vt) + σ2(Var(v̂t)−Var(vt)),

which is the desired result in expression (4). From van Seijen et al. (2009), Var(v̂t)−Var(vt) ≥ 0, and hence expression (4)
is minimized when σ = 0.

Theorem 2 shows that the variance of Q(σ) is minimal when σ = 0 and increases monotonically, which is interesting
because it supports the view of σ as a noise attenuation parameter from Theorem 1. Furthermore, since the expected
update is unaffected by the choice of σ, it cannot represent a bias-variance trade-off; the variance can be minimized with
no apparent drawback. Our theory indicates that there must be a different explanation for the empirical success of Q(σ).

4 Adaptive Tree Backup (ATB) Algorithms
Q(σ) does not address the standard bias-variance trade-off for temporal-difference learning, since the choice of σ = 0
minimizes variance without impacting bias. Why, then, did De Asis et al. (2018) observe empirical improvement when
employing an intermediate σ-value? We conjecture that Expected Sarsa (σ = 0) struggles to overcome initialization
error early in training (during which the majority of the state-action space is unexplored). Until every action has been
sampled at least once in a given state, Expected Sarsa mixes one or more nonsensical value estimates into its full backup,
potentially resulting in severe inaccuracies. In contrast, a sample method like Sarsa (σ = 1) is likely to visit previously
taken actions (simply by definition of a probabilistic policy), thereby bootstrapping sooner from more accurate estimates,
but also with additional noise due to sampling. This phenomenon helps explain why the time-decayed schedule for σ
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proposed by De Asis et al. (2018) is effective; excluding incorrect value estimates (σ = 1) is important when most state-
action pairs have not been visited, but minimizing variance (σ = 0) becomes more important once all estimates are
relatively accurate.

If our hypothesis is correct, then methods that dynamically increase the effective backup width based on state-action
pair visitations should generally perform better than Q(σ) with a fixed σ-value or time-annealed schedule. We call
these Adaptive Tree Backup (ATB) methods, as they generalize Tree Backup (Precup et al., 2000) to arbitrary backup
weightings. For a given transition (st, at, rt, st+1, at+1), ATB algorithms can be written in the generic form

Q(st, at)← (1− αt)Q(st, at) + αt

(
rt + γ

∑

a′∈A
ct(st+1, a

′)Q(st+1, a
′)

)
, subject to

∑

a∈A
ct(s, a) = 1,∀ s ∈ S, (6)

where each ct(s, a) is a nonnegative (possibly random) coefficient. Note that if ct(s, a) = (1−σ)π(a|s)+σIa=at+1 , then we
recover Q(σ) exactly. However, the generality of the coefficients ct(s, a) permits myriad possibilities beyond the limited,
one-dimensional spectrum spanned by Q(σ).

The backup associated with update (6) admits the correct fixed point Qπ only if E[ct(s, a)] = π(a|s). Even so, if we ensure
that E[ct(s, a)] → π(a|s) as t → ∞, then the ATB method will eventually converge to Qπ according to Theorem 1. We
subsequently discuss two promising variants that do this.

4.1 Count-Based ATB
To match the intuition that an effective ATB strategy should ignore unvisited state-action pairs, we develop a method
that weights state-action pairs according to their relative frequency of appearance. This can be accomplished by tracking
a count n(s, a) for each state-action pair (s, a) and then normalizing it as a proportion. This variant, which we call
Count-Based ATB, defines the backup coefficients as

ct(s, a) =
n(s, a)∑

a′∈A
n(s, a′)

. (7)

By the law of large numbers, ct(s, a)→ π(a|s) after infinitely many visitations to state s, and Theorem 1 with σ = 0 applies
at the limit. Beyond convergence toQπ , there are several reasons why this particular ATB formulation is appealing. First,
the count-based backup amounts to a maximum-likelihood 1-step estimate of Q(s, a), and in this sense is the “most
reasonable” backup to perform based on previously observed experiences. Furthermore, frequency counts implicitly
emphasize value estimates that are more reliable, while excluding those that have not changed since initialization. This
means that Count-Based ATB automatically transitions from Sarsa to Expected Sarsa, with a different effective rate for
each state, which could not be achieved easily with Q(σ) and does not require a user-specified hyperparameter schedule.

Unfortunately, these benefits are not without some drawbacks. Although the algorithm theoretically converges to Qπ in
the limit, it is extremely unlikely that c(s, a) = π(a|s) after any finite amount of training. This means that Count-Based
ATB may tend towards a fixed point other thanQπ in practice, which is undesirable even if it does represent a maximum-
likelihood estimate according to past experience. Another problem—which is much more significant—occurs when the
agent switches its policy from π to a different policy π′ during training. At this point, all of the previously collected
counts n(s, a) will no longer reflect the correct on-policy distribution. The agent would either need to reset the counts to
zero (thus discarding useful information), or wait many timesteps for the counts to accurately reflect the new policy π′.
Both of these options are inefficient, motivating us to search for a better alternative in the next subsection.

4.2 Policy-Based ATB
We can resolve the issues of Count-Based ATB by directly utilizing knowledge of the policy π, as do Q(σ), Expected
Sarsa, and Tree Backup. If some state-action pair (s, a) is visited for the first time, then we know that the eventual value
of ct(s, a) will be π(a|s) according to Count-Based ATB. We can greatly accelerate convergence by immediately assigning
ct(s, a) = π(a|s) after this first visitation. Let u denote the unit step function such that u(n) = 1 if n > 0 and u(n) = 0
otherwise. The backup coefficients for this new variant, which we call Policy-Based ATB, become

ct(s, a) =
u(n(s, a))∑

a′∈A
u(n(s, a′))

π(a|s). (8)

This definition clearly solves the two problems of Count-Based ATB. Unvisited state-action pairs are still ignored, as
desired, but after each pair has been sampled at least once, the algorithm becomes equivalent to Expected Sarsa and starts
converging to Qπ . This effectively bypasses the infinite-visitation requirement of Count-Based ATB. We can also see that
the weighted backup instantly reflects changes to the policy, thanks to the explicit dependency on π in definition (8).
For these reasons, we expect Policy-Based ATB to learn significantly faster than Count-Based ATB in a tabular setting;
however, Policy-Based ATB may be harder to combine with function approximation in high-dimensional MDPs, where
the need for generalization makes it difficult to determine whether a state should be considered visited or unvisited.
Additionally, the reliance on an explicit policy model π(a|s) may be restrictive in some settings. We therefore foresee
useful roles for both ATB variants.
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5 Experiments and Conclusion
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Figure 1: Comparison of our ATB methods against Q(σ) with fixed σ-
values and the dynamic schedule proposed by De Asis et al. (2018).

To test whether adaptive strategies can out-
perform fixed σ-values and the handcrafted
schedule proposed by De Asis et al. (2018), we
compare our two ATB variants against Q(σ)
in a 19-state deterministic random walk envi-
ronment (Sutton and Barto, 2018) and an 11-
state stochastic gridworld environment (Rus-
sell and Norvig, 2010). For all methods, we fix
αt = 0.4 and γ = 1. We train the agents for
200 episodes and plot the root-mean-square
(RMS) error of the estimated value function Q
relative to Qπ (Figure 1). We plot the error af-
ter each episode, averaging over 50 indepen-
dent trials, where the shaded regions repre-
sent 99% confidence intervals. Policy-Based
ATB performs strongly, learning significantly
faster than all of the methods except Q(0), and
even surpassing the handcrafted, dynamic σ
schedule of De Asis et al. (2018)—an impres-
sive feat for an automatic method. Count-
Based ATB outperforms Q(1), but its asymptotic performance in the deterministic random walk deteriorates due to the
fixed-point bias we discussed earlier; however, this seems to have a less detrimental effect in the stochastic gridworld.
Surprisingly, in contrast to the results of De Asis et al. (2018), we find that σ = 0 is the best choice of fixed σ-value in both
environments.

The empirical success of our adaptive methods—particularly Policy-Based ATB—has important implications. First, it
shows that data-driven adaptive strategies for adjusting the backup width can be more effective than Q(σ) with a fixed
σ-value or a pre-specified schedule for annealing σ. In addition, since both of our methods gradually expand the effective
backup width as new state-action pairs are visited, they further strengthen our hypothesis that initialization error in the
value estimates is an important consideration when determining backup width. This also helps formalize the intuition
of De Asis et al. (2018) that backup width should increase over time. Finally, these results show that σ = 0 is a good
choice in practice, corroborating our theoretical predictions that it minimizes variance without negatively impacting the
bias or contraction rate of Q(σ). Although σ does not represent a bias-variance trade-off in temporal-difference learning,
it is clear that σ does play an important role in learning, and that analyzing methods in terms of how well their backups
can balance initialization error with variance is a promising pathway to further algorithmic improvements.
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Abstract

Value-based methods for control often involve approximate value iteration (e.g.,Q-learning), and behaving greedily with
respect to the resulting value estimates with some degree of entropy to ensure the state-space is sufficiently explored.
Such a greedy policy is an improvement over the policy of which the current values reflect. As learning progresses,
value-iteration may produce value functions that do not correspond with any policy. This is especially relevant with
function-approximation, when the true value function cannot be perfectly represented. This raises questions about what
such inaccurate value functions represent, and whether there exists alternative ways to derive value-based behavior. In
this work, we explore the use of Inverse Policy Evaluation, the process of solving for a likely policy given a value function.
We derive a simple, incremental algorithm for the procedure, analyze how inaccuracies in the value function manifest in
the corresponding policy, and provide empirical results emphasizing key properties of the mapping from value functions
to policies. This sets up a framework for matching proposed returns, as opposed to explicit maximization. Coupling this
procedure with value-iteration, this provides a novel approach for deriving behavior from a value function which also
tends toward an optimal policy, but appears to account for estimation error in the resulting behavior.

Keywords: reinforcement Learning, value-based control, exploration
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1 Value-based Reinforcement Learning

Reinforcement learning (RL) formalizes the sequential decision-making problem with the Markov Decision Process
(MDP) framework [14, 17]. At each discrete time step t, an agent observes the current state St ∈ S , where S is the
set of states in an MDP. Given St, an agent selects action At ∈ A(St), where A(s) is the set of available actions in state s.
The environment then returns a reward Rt+1 ∈ R, and an observation of the next state St+1 ∈, sampled from the envi-
ronment’s transition dynamics: p(s′, r|s, a) = Pr(St+1 = s′, Rt+1 = r|St = s,At = a). An agent selects actions according
to a policy π(a|s) = Pr(At = a|St = s), and its goal is to find an optimal policy π∗ which from each state, maximizes the
expected discounted sum of future rewards with discount factor γ (denoted the expected return).

Value-based methods estimate value functions which quantifies a policy’s performance. In control, an action-value function is
approximated, representing the expected return from starting in state s, taking action a, and following policy π thereafter:

qπ(s, a) = Eπ
[ ∞∑

k=0

γkRt+k+1

∣∣∣St = s,At = a
]

(1)

Computing a policy’s value function is known as policy evaluation. Value-based methods then rely on policy improvement,
where greedifying with respect to another policy’s value function will produce an improved policy. Policy iteration [4]
interleaves policy evaluation and improvement until an optimal policy is found. In contrast, policy gradient methods
explicitly parameterize a policy, and updates the parameters to maximize an objective [18, 17].

Q-learning [22] is a popular value-based method which ties to directly estimate the value function of the optimal policy.
Value functions can be expressed in terms of successor states’ values through their Bellman equations. For qπ , we have:

qπ(s, a) =
∑

s′,r

p(s′, r|s, a)
(
r + γ

∑

a′

π(a′|s′)qπ(s′, a′)
)

(2)

When π is greedy with respect to value estimates, the latter term becomes the maximum action-value in the successor
state, and gives the Bellman optimality equation, the recursive relationship for the optimal action-value function q∗. Repeat
evaluation of the Bellman optimality equation across the state-space is known as value-iteration, and is akin to policy
iteration with partial policy evaluation. Q-learning uses stochastic samples of p to perform approximate value-iteration:

Q(St, At)← Q(St, At) + α
(
Rt+1 + γmax

a′
Q(St+1, a

′)−Q(St, At)
)

(3)

with step size α. Convergence ofQ to q∗ for every state-action pair requires that all state-action pairs are visited infinitely
often [5]. Even if convergence is not guaranteed, as is the case with function approximation [3, 19, 1], it is still necessary
to explore different parts of state-space to obtain a reasonable estimate of q∗ to inform decision making.

This exploration requirement is often satisfied with ε-greedy action selection [11, 17], where an agent behaves greedily
with respect to its current estimates with probability 1−ε, and behaves uniform randomly otherwise. However, there are
practical concerns with ε-greedy behavior: 1) reliance on random exploration is likely inefficient in large state spaces [9];
2) due to estimation error or representational capacities, the greedy action may be a poor choice [7]; 3) needing to specify
ε as a fixed value or an annealing schedule; and 4) the non-smoothness of the behavior policy with respect to changes in
the value function can result in non-convergence [12, 13, 21].

Several alternatives to ε-greedy have been explored, e.g., Boltzmann policies [2], conservative policy iteration [8, 20].
Many of them directly work with the policy that an agent aims to eventually evaluate, i.e., some modification of the
greedy policy. No work to our knowledge has explicitly considered the policy which corresponds with the current value
estimates. Such an approach would preferably take estimation error into account, e.g., due to insufficient exploration or
function approximation errors, rather than assume the current values are accurate. Given Q = q∗, the policy that gives
zero Bellman error is an optimal policy by the uniqueness of the solution of the Bellman optimality equation [5]. Should
Q be inaccurate, the policy should be suboptimal in a way that’s directly related to the errors.

2 Inverse Policy Evaluation

Inverse Policy Evaluation (IPE) aims to derive a behavior policy that is consistent with a value function in the following
sense:

π ∈ argmin
π∈Π

‖Q(s, a)− Es′,a′ [r(s, a) + γQ(s′, a′)]‖ (4)

where s′ ∼ p(·|s, a), a′ ∼ π(a′|s′), r(s, a) giving the expected immediate reward for s, a, and ‖ · ‖ being some fixed norm
over state-action pairs. Let us solidify the intuition that the solution takes function approximation error into account.
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Proposition 1. Assume that we are trying to estimate qπ with Q, for some qπ . Denote the solution of Equation 4 by πIPE , the
Bellman operator of Equation 2 as T , and let ‖ · ‖ denote any norm under which Bellman operators are contraction mappings (e.g.,
infinity norm). We have the following bound.

‖qπ − qπIPE‖ ≤
1

1− γ
(
(1 + γ)‖qπ −Q‖+ ‖T πIPEQ−Q‖

)

The first norm on the right-hand side measures the estimation error of Q, and the second norm on the right-hand side
is exactly the objective in Equation 4. From this, the return generated by πIPE is close to the return generated by π,
proportional to how close Q is to qπ . We now consider how changes in value estimates affect πIPE .

Proposition 2. Suppose Q1, Q2 are two approximate action-value functions. Let πi denote the IPE solution of Qi. Then

‖qπ1
− qπ2

‖ ≤ 1

1− γ ((1 + γ)‖Q1 −Q2‖+ ‖T π1Q1 −Q1‖+ ‖T π2Q2 −Q2‖)

This smoothness result for IPE contrasts ε-greedy policies, which are known to be non-smooth with respect to changes in
action-value estimates [12, 13]. So IPE can produce an estimation-error-aware policy, but how do we compute this? With
the `2 norm and policy πθ smoothly parameterized by θ, we can approach πIPE through the gradient-based update:

δ = Rt+1 + γ
∑

a′

πθ(a
′|St+1)Q(St+1, a

′)−Q(St, At)

θt+1 ← θt − α2δγ
∑

a′

∇θπθ(a′|St+1)Q(St+1, a
′) (5)

where δ is the conventional temporal difference (TD) error [16]. Of note, the update is remarkably similar to the all-actions
policy gradient update [18, 17]. One can interpret Equation 5 as a policy gradient update for matching proposed returns of
an approximate value function Q, with δ changing signs to ensure that the return is matched, rather than maximized.

It may be the case thatQ does not correspond with any policy, relating to delusional bias [6, 10]. Nevertheless, the resulting
policy will still minimize Equation 4, which by Proposition 1 would be close in a sense of achieving similar returns as a
nearby ”valid” value function (i.e., has a corresponding policy).

Should we couple IPE with value-iteration, the proposed returns will tend toward those achieved by the optimal policy,
and IPE will approach an optimal policy. This results in an actor-critic-like procedure, but with less cyclic dependencies.
Actor-critic methods typically perform a cycle of: evaluating the current behavior policy, improving the policy with the
current evaluation. In contrast, value-iteration tries to compute the largest possible returns (and not those of the current
policy), that the remaining dependency is on the distribution of transitions experienced by the current policy.

3 Empirical Evaluation

Here we run some experiments to validate some key intuitions behind IPE.

Figure 1: Resulting πIPE entropy after perturbing q∗ in the Four Rooms domain. Green denotes the goal state.
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3.1 Stochasticity from Estimation Error

Using the Four Rooms domain [15], we look at how estimation error impacts the stochasticity of πIPE . First, we compute
q∗ for the domain, and initialize πIPE to an optimal policy (breaking ties consistently). We then perturb q∗ in select state-
action pairs by samples from ∼ N (0, 0.1), and run IPE to convergence. Averaged over 1000 runs, Figure 1 visualizes the
policy’s entropy in each state of the environment and how they relate to the perturbations in the value function.

It can be seen that the increase in policy entropy is directly related to the perturbed state-action pairs, affecting both the
perturbed areas as well as states immediately transitioning to them. This validates that the policy becomes suboptimal
in a way that’s related to the errors. It further motivates the possible use of IPE to adapt exploration, as the stochasticity
tends to explore areas with larger errors. Viewing the policy entropy as a level of confidence in the accuracy of value
estimates, it may also inform parameter selection, as having the confidence expressed in entropy is convenient for hyper-
parameters with probabilistic interpretations (e.g., λ in TD(λ), ε in ε-greedy). Along these lines, we consider an ε-greedy
Q-learning agent which additionally performs IPE updates on the experienced transitions, and adapts ε to match the
entropy of the estimated πIPE in the current state. We denote this approach ε-IPE.

3.2 Balancing Reward and Estimation Error

s0 s1

-1

1

0

2

Figure 2: The switch-stay MDP. All transitions are deterministic and the agent starts in state s0.

Here we use a simple 2-state MDP detailed in Figure 2. We compare four Q-learning agents, each differing in how
behavior is derived: (1) ε-greedy with fixed ε, (2) ε-greedy with annealing ε, (3) following πIPE , and (4) ε-IPE. We swept
over ε for (1), the number of steps to linearly anneal ε from 1.0 to 0.1 for (2), and the IPE step size, απ , for (3) and (4). Each
setting performed 1000 runs of 500 steps, and Figure 3 shows the average reward over the 500 steps, as well as the final
root-mean-squared error (RMSE) in the approximated optimal value function.

Figure 3: Hyperparameter sensitivities on the switch-stay MDP. 1000 runs of 500 steps were performed for each behavior
policy’s hyperparameter configuration.

In Figure 3,Q-learning with ε-greedy exhibited a negative correlation between the average reward and the value function
RMSE. To attain high average reward, the agent tends to settle for an inaccurate value function, and vice-versa. Such a
relation is what one might intuitively expect from tending toward either extreme of the exploration-exploitation trade-off.

On the other hand, IPE and ε-IPE exhibit a positive correlation between value function accuracy and the average reward
obtained (with respect to the behavior policy’s parameter). Given the large overlap between the regions of high average
reward and low RMSE, there seems to be, without careful parameter tuning, a natural adequate balance of (1) exploration
needed to learn an accurate value function and (2) exploitation of value estimates to achieve a large expected return.
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4 Discussion and Conclusions

Our results suggest that IPE, when combined with value-iteration, provides a novel, viable way to derive a sensible
behavior policy for value-based control. While greedy policies generally lead to (immediate) larger returns [8], we high-
light how such greedification is still present in the use of value-iteration. We further emphasize how stochasticity related
to estimation error can lead to visitation distributions which explore more in regions with larger estimation errors (and
vice-versa), and be a useful metric of confidence in value estimates to inform parameter selection.

A key limitation in this work is the focus on the tabular setting. We expect the intuitions and results surrounding
estimation errors to still be relevant, as examining behavior under inaccurate value functions (or perturbations of the
optimal values) can be seen as simulating the inability to perfectly represent the value function. That said, extensive
evaluation with function approximation (both linear and non-linear) are warranted to assess the approach’s scalability.
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LITIS
Rouen, France

laurent.vercouter@insa-rouen.fr

Abstract

Deep Reinforcement Learning methods require a large amount of data to achieve good performance. This scenario can
be more complex, handling real-world domains with high-dimensional state space. However, historical interactions
with the environment can boost the learning process. Considering this, we propose in this work an imitation learning
strategy that uses previously collected data as a baseline for density-based action selection. Then, we augment the reward
according to the state likelihood under some distribution of states given by the demonstrations. The idea is to avoid
exhaustive exploration by restricting state-action pairs and encourage policy convergence for states that lie in regions
with high density. The adopted scenario is the pump scheduling for a water distribution system where real-world data
and a simulator are available. The empirical results show that our strategy can produce policies that outperform the
behavioral policy and offline methods, and the proposed reward functions lead to competitive performance compared
to the real-world operation.

Keywords: Learning from Demonstrations, Deep Reinforcement Learning,
Pump Scheduling Optimization
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1 Introduction

This work proposes the Safety through Intrinsically Motivated Imitation Learning (SIMIL) strategy that uses the distribution
of historical interactions (demonstrations) as a guideline for action selection. The approach works as follows: given a
current state, action selection depends on choosing the one that occurs most frequently in the most similar states found
in the demonstrations. Later, we augment the immediate reward with an intrinsic motivation [7] according to the state
likelihood under some distribution of states. The underlying idea is to constrain the policy to state-action pairs found
in expert demonstrations using k-Nearest Neighbors (k-NN) to avoid exhaustive exploration. Also, we encourage states
that lie in high-density regions under the demonstrations distribution using Kernel Density Estimation (KDE) [1].

We apply this imitation learning strategy in a scenario of pumping scheduling for water distribution systems (WDS). For
that, it is available a dataset of three years of data collected in timesteps of one minute from a real-world operation. The
pump scheduling is the process to decide when, and in some cases at which speed, the pump(s) should operate regarding
the forecasting of the water demand. Yet, some requirements must be satisfied, including safety constraints of water level
in the tanks and pressure in the network’s nodes. Some works have addressed these questions through several methods,
including linear optimization, evolutionary and branch-and-bound algorithms, and recently Deep RL [8, 9, 10, 11]. This
work uses a Deep Q-Networks (DQN) [2]-based approach to handle the pump scheduling problem. The contributions
presented in this work are the following:

• A formulation of the pumping scheduling problem using Partially Observable Markov Decision Process
(POMDP) is presented, with definitions of system states/observations, actions, and reward function. These
definitions allow the system to operate by achieving the constraints and minimizing the associated costs;

• An imitation learning strategy using real-world/offline data. The empirical results demonstrated that the ob-
tained policies achieved competitive average cumulative rewards compared with fully-offline training.

• To evaluate the proposed scheduling, we compare the results with the real-world water distribution system
regarding the electricity consumed, pumps use distribution and the tank level profile. The results showed that
our approach achieved competitive performance with real-world operation.

2 Modeling the pump scheduling problem

In water distribution systems, pump scheduling is a decision process about when operating pumps to supply water
while limiting electricity consumption. Therefore some constraints must be respected, including a minimum pressure
within the network, safety water level in the tanks, and avoiding frequent switches in pump operation to protect the
assets. To that end, distinct strategies can be used according to the particularities of the system. For instance, pumping
water in off-peak hours when the price of electricity has different tariffs throughout the day or reducing the tank level in
periods of low consumption to preserve the water quality, and so on.

The water distribution system used here is located in Worms, Germany, and supplies water for about 120000 citizens1.
The composition of this system is one station with four pumps (NP1, NP2, NP3, NP4), with distinct settings and fixed
speed (ON/OFF). The flow Q through those pumps is proportional to the electricity consumption kW , being NP1 >
NP2 > NP3 > NP4. In other words, using pump NP1 supplies more water in the network than pump NP2 but also
corresponds to higher electricity consumption. Also, two storage tanks with different capacities are placed and provide
water for the end consumers. Among the constraints and requirements established in the operation settings for this
system are the following:

• It is desirable to avoid frequent switches and distribute pump operations to protect the assets;

• It is imposed a boundary condition of the tank level and, once achieved, the minimum pressure is guaranteed;

• It is desirable to provide water exchange in the tank during one day of operation to keep the water quality.

Figure 1: The tank constraints.

1The dataset has been provided by the IoT.H2O project (IC4WATER JPI funding)
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Figure 1 shows the constraints defined for the tank levels. The tank is located 47m above the pumps and has a 10m
length. Thus, the tank levels considered are in the range of [47, 57]m. We assume only one tank once that the second
has the level stable along with the operation. The specialists consider a safety operation guarantee with at least 3m filled
with water. Besides this, the system does not have sensors measuring the water’s quality. Thus, to ensure the exchange
and preserve the water’s quality, we assume that in one operation day, the level must decrease below half of the total
capacity. Finally, the upper boundary constraint overlaps the physical limit.

As with many real-world tasks, the scenario of pumping scheduling is partially observable. In other words, the agent has
a noisy or incomplete observation of the environment. For example, some state features are noisy since they are collected
by sensors. A POMDP is an extension of MDP that considers uncertainty regarding the current state of the environment.
Formally, the POMDP can be defined as [3]:

POMDP = < S,A, P,R,Ω, O, γ > (1)

The States S and the Observations Ω are interchangeable in the context of this work as adopted in [12] and represented
by:

• The water level in the tank and water consumption;

• The previous action performed (currently being applied);

• The cumulative time that the pumps operated in a horizon length of 24 hours, the month and time t;

• A binary value called water quality indicating whether on the current day of operation the system has reached a
certain minimum in the tank level.

Actions A are defined by the set of binary values that represent if some pump is operating (value 1) or not (value 0) once
the pumps have fixed speed. At each timestep, only one pump is running or none of them.

Finally, two Reward functions are designed to choose the most efficient pump at a given time t, as well respect the
boundary conditions of the tank level, preserve the water quality, and make use of different pumps. The immediate
rewards are defined by the Equations 2 and 3:

rt = e1/(−Qt/kWt) −B ∗ ψ + log(1/(P + ω)) (2)

rt = −e(−1/kWt) −B ∗ ψ + log(1/(P + ω)) (3)

where at the time t, Qt is the flow rate through the active pump, and kWt is the respective electricity consumption; B
is the achievement of lower/upper restrictions of the water level in the tank. These lower/upper values are defined by
specialists in the system and in case of not achievement, B = 1 in case of overflow and B = abs(level of the tankt −
boundary condition) ∈ (0, 1] in case of (near) shortage, being ψ = 10, otherwise B = 0. Also, B has an exception,
being -1 strictly for the timestep when the tank level reaches the water quality condition. P is a penalty that increases
with accumulated pump run time. The penalty P increases +1 at each timestep of cumulative operating time, and for the
Equation 3 it also hold for the action (NOP). In the case of switching to a pump that has already been running throughout
the day, ω equals 30 for the respective timestep of the switch, otherwise 1. If no pumps are running, neither −e(−1/kWt)

nor e1/(−Qt/kWt) are considered.

3 Safety through Intrinsically Motivated Imitation Learning

The imitation learning strategy Safety through Intrinsically Motivated Imitation Learning (SIMIL) present in this work as-
sumes that offline data is available and online data collection is feasible. The underlying idea is to use the offline dataset
distribution as a model to constrain the action selection and enhance sample efficiency while encouraging the policy’s
convergence to states that lie in high-density regions under the same prior distribution.

The imitation learning strategy works as a follows: given a current state st and demonstrations D, select the action a
mostly applied in the k-most similar states to st in D. For that, we make use of k-Nearest Neighbors (k-NN), where
the parameter k can be chosen such that minimizes the distance min

∑
D d(τ, τ

D), regarding trajectories τD ∈ D. The
objective is to keep new transitions tied to the previously collected data, mitigating overestimation facing unseen state-
action pairs. Finally, a reward bonus ρη(st) is added to the immediate reward according to the Kernel Density Estimation
(KDE) for st through Equation 4, being ρ the importance factor for the bonus. Thus, we encourage policy convergence to
states with high density under prior dataset distribution.

2

RLDM 2022 Camera Ready Papers 203

203



η(st) =
1

N

N∑

i=1

K

(
st − sDi

h

)
. (4)

In Equation 4, K(st) ≥ 0 is the kernel that estimates the density for the current state st over the states sD found in the
demonstrations. The parameter h is the bandwidth that trade-off the results between balance and variance. In this work,
we adopt the k-NN based on Manhattan distance once it can provide suitable metric for real-values without parameter
tuning and KDE with a gaussian kernel from Scikit-learn [1]. The Algorithm 1 summarizes the strategy proposed.

Algorithm 1: Safety through Intrinsically Motivated Imitation Learning (SIMIL)

Input: set of Q-Networks with weights θQ, set of Target Q’-Networks with weights θQ
′ ← θQ, replay memory D′,

demonstrations D, frequency which update target net λ, importance factor ρ;
Output: Policy π

1 for t ∈ {1, 2, ...} do
2 Sample state st
3 Select action at using k-NN(st) in D
4 Play (st, at), observe the reward rt and the next state s′t
5 Calculate η(st), sum it to a final reward r′t = rt + ρη(st)
6 Store transition (st, at, r

′
t, s
′
t) into D′

7 st ← s′t
8 end
9 for t ∈ {1, 2, ...} do

10 Sample a mini-batch of n transitions from D′
11 Calculate loss δ(θQ)
12 Perform a gradient descent step to update θQ
13 if t mod λ = 0 then
14 Update the set of weights θQ

′ ← θQ

15 end
16 end

4 Results

In this work, we aim to evaluate if (1) the proposed imitation learning strategy can generate policies that outperform
offline methods baselines; (2) the proposed POMDP can obtain policies that offer a competitive performance relative to
that observed in the real world. To this end, we conducted the experiments using the real-world dataset divided into one
year for the learning process and one year for the evaluation. Both Offline RL methods and SIMIL use the same amount
of data for learning. For accurate comparisons, all samples interact with the simulator for both training and evaluation.
This means that the evaluation of the offline dataset is done through interactions with the simulator. We compare the
policies BCQ [4, 5], REM [6], and SIMIL + REM using 5 models for each reward function due to the stochasticity in the
learning process [13].

To analyze the performance, we call the set of policies obtained using the Equations 2 and 3 by Π1 and Π2 respectively.
We show in Figure 2 the min, max, and average cumulative reward along with the episodes using the 5 policies obtained.
The results show that SIMIL has lower variance and competitive performance relative to cumulative rewards compared
to fully-offline policies. The lower peaks in performance are mainly due to not meeting the tank level safety constraints.

Policy Electricity Consumption (kW)
REM Π1 -1.11 ± 9.78

SIMIL + REM Π1 -4.05 ± 1.97
BCQ Π1 -3.54 ± 2.71
REM Π2 4.08 ± 7.93

SIMIL + REM Π2 -3.33 ± 5.77
BCQ Π2 -1.40 ± 3.33

Table 1: Average electricity consumption (%) ± standard deviation compared to real-world operation.

The three sub-goals: electricity consumption, distribution of pump usage, and tank level are the counterparts of the
policy. Thus, a suitable policy performs with lower electricity consumption/higher efficiency, reduces switches, and
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(a) (b) (c) (d)

Figure 2: (a) and (c) are respectively the min, max, and average cumulative reward for the set of policies Π1 and Π2. (b)
and (d) shows the average of the cumulative rewards along with the episodes for Π1 and Π2.

Policy NOP NP1 NP2 NP3 NP4
Real-world 30.47 8.30 43.42 8.31 9.50

REM π∗1 11.38 4.93 0.87 82.82 0.0
SIMIL + REM π∗1 17.05 0.17 28.54 5.29 48.95

BCQ π∗1 22.87 17.79 8.13 51.09 0.12
REM π∗2 32.64 25.85 0.04 41.47 0.0

SIMIL + REM π∗2 28.08 3.12 36.04 4.89 27.87
BCQ π∗2 37.11 37.48 0.06 25.35 0.0

Table 2: Action distribution (%)

distributes the pump operation while respecting the tank level constraints. Table 1 compares the electricity consumption
for Π regarding real-world operation while Table 2 shows the action distribution for π∗. The results show that SIMIL
policies achieve competitive results with real-world operations considering electricity consumption. Finally, generally,
the policies presented an operation in the safety range of tank levels.
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Abstract

The problem of balancing conflicting needs is fundamental to intelligence. Standard reinforcement learning algorithms
maximize a scalar reward, which requires combining different objective-specific rewards into a single number. Alterna-
tively, different objectives could also be combined at the level of action value, such that specialist modules responsible
for different objectives submit different action suggestions to a decision process, each based on rewards that are inde-
pendent of one another. In this work, we explore the potential benefits of this alternative strategy. We investigate a
biologically relevant multi-objective problem, the continual homeostasis of a set of variables, and compare a monolithic
deep Q-network to a modular network with a dedicated Q-learner for each variable. We find that the modular agent:
a) requires minimal exogenously determined exploration; b) has improved sample efficiency; and c) is more robust to
out-of-domain perturbation.
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1 Introduction

Humans (and other animals) must satisfy a large set of distinct and possibly conflicting objectives. For example, we
must find food, water, shelter, socialize, maintain our temperature, reproduce, etc.. Artificial agents that need to function
autonomously in natural environments may face similar problems (e.g., balancing the need to accomplish a specified goal
with the need to recharge, etc.). Finding a way to balance disparate needs is thus an important challenge for intelligent
agents, and can often be a source of psychological conflict in humans.

In standard reinforcement learning (RL), monolithic agents act in order to maximize a single future discounted re-
ward [1]. The standard way to generalize this to problems with multiple objectives is scalarization. For example, in
homeostatically-regulated reinforcement learning (HRRL), an agent is modelled as having separable homeostatic drives,
and is rewarded based on its ability to maintain all its ”homeostats” at their set points. This is done by combining devia-
tions from all set-points into a single reward which, when maximized, minimizes homeostatic deviations overall [2].

This approach faces several challenges typical to RL. First, to avoid settling on a sub-optimal policy, an agent must
trade-off exploitation of knowledge about its primary objective with some form of exogenous exploration (typically by
acting randomly or according to an exploration-specific bonus). Second, sample inefficiency follows from the “curse of
dimensionality”: as environmental complexity increases, an agent must learn how exponentially more states relate to its
objective. Third, RL agents tend to over-fit their environment, performing poorly out-of-domain (i.e. they are not robust
to distribution shifts). In the broader context of balancing multiple objectives, reward scalarization might be undesirable
if the relative importance of different objectives is unknown or variable [3]. Finally, is not clear that the brain itself uses
a common currency to navigate such trade-offs [4].

What is the alternative? Given that objectives may conflict with each other due to environmental constraints, and that
agents only have one body with which to act, conflict must be resolved at some point between affordance and action. The
monolithic solution resolves conflict at the level of reward (i.e. close to affordance). We suggest resolution could occur
later; a set of modules with separate reward functions could submit action values to a decision process that selects a final
action [5, 6]. This approach has the potential to address the three aforementioned challenges. Exploration might emerge
naturally as a property of the system rather than having to be imposed or regulated as a separate factor, as specialist
modules are “dragged along” by other modules when those have the “upper hand” on action. Modules might also have
smaller sub-sets of relevant features to learn about, improving sample efficiency, and be less sensitive to distribution
shifts in irrelevant features, improving robustness.

Here, we report simulations that provide evidence for benefits of such a modular approach with respect to exploration,
sample efficiency, and robustness using deep RL in the context of homeostatic objectives. We construct a simple but
flexible environment of homeostatic tasks and construct a deep RL implementation of the HRRL reward function. We
then use this framework to quantify differences between monolithic and modular deep Q-agents, finding that modular
agents seem to explore well on their own, achieve homeostasis faster, and better maintain it after distribution shift. To-
gether, these results highlight the potential learning benefits of modular RL, while at the same time offering a framework
through which psychological conflict and resolution might be better understood.

2 Methods

2.1 Environment

To study conflicting needs, we constructed a toy grid-world environment containing multiple different resources. Specif-
ically, each location (x, y) in the environment contained a vector of resources of length N (i.e., there were N overlaid
resource maps). The spatial distribution of each individual resource was specified by a normalized 2D Gaussian with
mean µx, µy and co-variance matrix Σ (see also Figure 1a).

The agent received as perceptual input a 3x3 egocentric slice of the N resource maps (i.e. it could see all the resource
levels at each position in its local vicinity). In addition to the resource landscape, the agent also perceived a vector
Ht = (h1,t, h2,t, ..., hN,t) consisting of N internal variables with each representing the agent’s homeostatic need with
respect to the resource. We refer to these variables as ”internal stats” or just ”stats” (such as osmostat, glucostat, etc.)
which we assume are independent (hi is only affected by acquisition of resource i) and have some desired set-point h∗i
(see Figure 1b). Set-points were fixed at H∗ = (h∗1, h

∗
2, ..., h

∗
N ) and did not change over the course of training.

The agent could move in each of four cardinal directions and, with each step, the individual stats, hi, increased by the
amount of resource i at the agent’s next location. Additionally, each internal stat decayed at a constant rate to represent
the natural depletion of internal resources over time (note: resources in the environment themselves did not deplete).
Thus, if the agent discovered a location with a high level of resource for a single depleted stat, staying at that location
would optimize that stat toward its set-point, however others would progressively deplete. Agents were initialized in
the center of the grid, with internal stats below their set-points, and were trained for 30, 000 steps for a single episode
(i.e. agents had to learn in real time as internal stats depleted). For all experiments, the internal stats started at the same
level and shared the same set-points. Environmental parameters are summarized in Table 1.
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(a) Gridworld environment (b) Overview of monolithic DQN and modular GmQ agents

Figure 1: Environment and model schematics

2.2 Models

Monolithic agent We created a monolithic agent based on the deep Q network (DQN) [7]. The agent’s perceptual
input was a concatenation of all local resource levels along with all internal stat levels at each time step (we used neural
networks as function approximators since stats were continuous variables). It’s output was 4 action logits subsequently
used for ϵ-greedy action selection. We used the HRRL reward function [2] which defined reward at each time-step rt as
drive reduction, where drive D was a convex function of set-point deviations; see equation (1).

rt = D(Ht)−D(Ht+1) where D(Ht) =
m

√√√√
N∑

i=1

|h∗i − hi,t|n (1)

Modular agent We created a modular agent based on greatest-mass Q-learning (GmQ) [5], which consisted of a sep-
arate DQN for each of the 4 resources/stats. Here, each module had the same input as the monolithic model (i.e. the
full egocentric view and all 4 stat levels), but received a separate reward ri,t derived from only a single stat. The reward
function for the ith module was therefore defined as in equation (2), where drive D depended on the ith resource only.

ri,t = D(hi,t)−D(hi,t+1) where D(hi,t) =
m

√
|h∗i − hi,t|n (2)

To select a single action from the suggestions of the multiple modules, we used a simple additive heuristic. We first
summed Q-values for each action across modules, and then performed standard ϵ-greedy action selection on the re-
sult. More specifically, if Qi(a) was the Q-value of action a suggested by module i, greedy actions were selected as
argmax

a

∑
i

Qi(a).

Common features Schematics for both models are shown in Figure 1b. All Q-networks were multi-layered perceptrons
(MLP) with rectified linear nonlinearities trained using a standard temporal difference loss function with experience
replay and target networks [7]. The Adam optimizer was used to perform one gradient update on each step in the
environment. For both models, ϵ was annealed linearly from its initial to final value at the beginning of training at a rate
that was experimentally manipulated as described below. Hyperparameters are summarized in Table 1.

Table 1: Parameter settings for environment and models

Model DQN GmQ Environment
Trainable parameters 1.09e6 1.09e6 # of resources N 4
MLP hidden layer units 1024 500 HRRL exponents (n,m) (4, 2)
Learning rate 1e-3 1e-3 Stat set-points H∗ (5, 5, 5, 5)
Discount factor γ 0.5 0.5 Initial stat levels Ht=0 (0.5, 0.5, 0.5, 0.5)
Memory buffer capacity 30k 30k Resource locations µx, µy {0,10},{0,10}
Target network update frequency 200 200 Resource covariance Σ

(
1 0
0 1

)

Batch size 512 512 Stat depletion per step 0.004
Initial ϵ 1 1
Final ϵ 0.01 0.01
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3 Results
3.1 Optimizing monolithic DQN for homeostasis

We first characterized whether a standard DQN could reliably perform the task of homeostasis in our environment.
Figure 2a summarizes the mean internal stat levels of 10 models averaged over all 4 stats and over the final 1k steps of
training for different desired set-points. The model reliably achieved each set-point by the end of training, indicated by
points tracking the identity line. The slight under-shooting (i.e. points slightly below the diagonal line) may reflect a bias
from stats being initialized far below their set-points.

We then fixed the set-points h∗i = 5 for all stats, and optimized the performance of the DQN baseline by performing a
search over performance-relevant hyper-parameters, such as the discount factor γ. To quantify performance, we calcu-
lated the average homeostatic deviation per step ∆ after the exploration annealing phase (using t1 = 15k and t2 = 30k)
as in equation (3). Lower ∆ indicates better homeostatic performance.

∆ =

t2∑
t=t1

∑
i

|h∗i − hi,t|

t2 − t1
(3)

Baseline DQN performance over a range of discount factors γ is shown in Figure 2b. We selected the best performing
setting of γ = 0.5 and matched this and other parameters (see Table 1) between DQN and GmQ to compare them in the
following two head-to-head experiments.

3.2 Modularity provides an exploration benefit

To investigate the impact of modularity on the need for exploration, we systematically varied the number of steps used
to anneal ϵ in ϵ-greedy exploration from its initial to final value. We varied the ϵ annealing time for both models from 1
(i.e. minimal exploration of ϵ = 0.01 only) to 10k (i.e. annealing from ϵ = 1 to ϵ = 0.01 over 10k steps).

Figure 3a shows the results of varying the amount of exploration annealing for both models. While DQN gains incre-
mental performance benefits from increasing periods of initial exploration, GmQ displays a striking indifference to the
exploration period; with only 1 step of annealing, it performs as well or better than the best DQN models. In other words,
DQN requires careful tuning of an appropriate exploration annealing period, but GmQ achieves good performance with
effectively no exogenously specified exploration.

3.3 Modularity provides robustness in the face of perturbation

Finally, we tested how robust each model was to a perturbation out-of-domain that occurred halfway through training,
i.e. at time-step 15k. At that point, a single internal stat variable (i.e. h4) was clamped to a value of 20 (a value previously
unseen by the network), and did not change (thus contributing no drive reduction and therefore 0 reward). We tested
how well homeostasis was maintained for remaining stats after this perturbation.

Figure 3b shows the time-course of the four stats from the beginning of training, through a perturbation at time-step 15k,
using 5000 ϵ-annealing steps. First, it can be seen that GmQ achieves stable homeostasis first, whereas DQN over-shoots
set-points initially and takes longer to stabilize. Second, when stat 4 is clamped, DQN displays a significant disturbance
to homeostasis of remaining stats, without clear recovery, whereas GmQ is robust in the face of the perturbation.

(a) Homeostasis is achieved for a range of set-points (n = 10) (b) Performance over a range of discount factors ( n = 50)

Figure 2: DQN baseline learnability and performance; Boxplots display inter-quartile range and outliers for n models
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(a) Varying exploration period (n = 50) (b) Stat time-courses (n = 50) perturbed at t = 15k by clamping h4.
Green line shows set-point. Shading reflects s.d. accross models.

Figure 3: Experiments comparing DQN and GmQ with respect to (a) exploration and (b) perturbation

4 Discussion
We have shown that in a grid-world task with competing homeostatic drives, a simple modular agent based on greatest-
mass Q-learning (GmQ) requires less hand-coded exploration, learns faster, and is more robust to environmental pertur-
bations compared to a traditional monolithic deep Q-network (DQN). Our findings in the context of competing drives
complement work showing mixture of expert systems display improved sample efficiency and generalization [8]. We
also believe the exploration benefits we observed are novel. The problem of exploration in RL is fundamental, and exist-
ing solutions make use of noise, explicit exploratory drives/bonuses, and/or other forms of auto-annealing [9, 10]. We
suggest an additional class of strategies, namely, exploration as an added benefit of having multiple independent drives,
since exploitation from the perspective of one module is exploration from the perspective of another. We hypothesize that
the ability of modules to suggest conflicting actions may provide modular agents with an implicit source of exploration.
Future Work Our toy environment has highlighted some initial benefits of modularity (exploration, sample efficiency
and robustness), and we predict that these advantages will be amplified in more complex environments, or as the number
of drives/objectives increases, due to the curse of dimensionality (more states to explore, learn about, or perturb). We
aim to test our agents in rich 3D environments with homeostatic objectives. Next, modular drives immediately pose the
problem of coordination. While we simply summed Q-values, more complex arbitrators (such as an additional RL agent
that dynamically re-weights individual drives) might better exploit the benefits of modularity in the context of multiple
objectives. Finally, humans experience psychological conflict, with various resolution mechanisms long described by
psychodynamic theories [11]. Modular RL, with its implicit conflicts and resolutions, could, for the first time, offer a
formal, computationally-explicit, and normative explanatory framework that could undergird and/or replace elements
of psychodynamic theory for understanding the mechanisms responsible for conflict and resolution in the human brain.
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Abstract

Although Reinforcement Learning (RL) is effective for sequential decision-making problems under uncertainty, it still fails
to thrive in real-world systems where risk or safety is a binding constraint. In this paper, we formulate the RL problem with
safety constraints as a non-zero-sum game. While deployed with maximum entropy RL, this formulation leads to a safe
adversarially guided soft actor-critic framework, called SAAC. In SAAC, the adversary aims to break the safety constraint
while the RL agent aims to maximize the constrained value function given the adversary’s policy. The safety constraint on
the agent’s value function manifests only as a repulsion term between the agent’s and the adversary’s policies. Unlike
previous approaches, SAAC can address different safety criteria such as safe exploration, mean-variance risk sensitivity,
and CVaR-like coherent risk sensitivity. We illustrate the design of the adversary for these constraints. Then, in each of
these variations, we show the agent differentiates itself from the adversary’s unsafe actions in addition to learning to
solve the task. Finally, for challenging continuous control tasks, we demonstrate that SAAC achieves faster convergence,
better efficiency, and fewer failures to satisfy the safety constraints than risk-averse distributional RL and risk-neutral soft
actor-critic algorithms.
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1 Introduction
Designing a Reinforcement Learning (RL) algorithm requires both efficient quantification of uncertainty regarding the
incomplete information and the probabilistic decision making policy, and effective design of a policy that can leverage
these quantifications to achieve optimal performance. Instead of recent success of RL in structured games and simulated
environments, real-world deployment of RL in industrial processes, unmanned vehicles, robotics etc., does not only
require efficiency in terms of performance but also being sensitive to risks involved in decisions [2]. This has propelled
works quantifying risks in RL and designing safe (or robust, or risk-sensitive) RL algorithms [10, 4].

RL Formalization: Markov Decision Process (MDP). We consider the RL problems that can be modelled as a Markov
Decision Process (MDP). An MDP is defined as a tupleM , (S,A,R, T , γ). S ⊆ Rd is the state space. A is the admissible
action space. R : S × A → R is the reward function that quantifies the goodness or badness of a state-action pair (s, a).
T : S ×A → ∆S is the transition kernel that dictates the probability to go to a next state given the present state and action.
Here, γ ∈ (0, 1] is the discount factor that quantifies the effect of the reward at present step to the next one. The goal of
the agent is to compute a policy π : S → ∆A that maximizes the expected value of cumulative rewards obtained by a
time horizon T ∈ N. For a given policy π, the value function or the expected value of discounted cumulative rewards is
Vπ(s) , E

st∼T (st−1,at−1),at∼π(st)

[∑T
t=0 γ

tR(st, at)|s0 = s
]
, EπM[ZTπ (s)]. Here, ZTπ (s) is the return of policy π.

Safe RL: Safe Exploration and Risk Measures. In safe RL, risk-sensitivity or safety is embedded mainly using two
approaches. The first approach is constraining the RL algorithm to converge in a restricted, ‘safe’ region of the state
space [5, 10]. Here, the ‘safe’ region is the part of the state space that obeys some external risk-based constraints, such
as the non-slippery part of the floor for a walker. RL algorithms developed using this approach either try to construct
policies that generate trajectories which stay in this safe region with high probability [5], or to start with a conservative
‘safe’ policy and then to incrementally estimate the maximal safe region [1]. Due to existence of these ‘error’ or ‘unsafe’
states, even a policy with low variance can produce large risks (e.g. falls or accidents) [10].

The other approach is to define a risk-measure on the return ZTπ (s) of a policy π, and then to minimize the corresponding
total risk [7, 9, 3]. A risk-measure is a statistics computed on the cumulative return and it quantifies either the spread of
the return distribution around its mean value or the heaviness of this distribution’s tails. Example of such risk measures
are conditional value-at-risk (CVaR) [3], exponential utility [7], variance [9], etc. At tandem to investigating the risk
quantifiers, researchers aimed to make the safe RL algorithms scalable [3] and to extend to the continuous MDPs [10]. Our
approach is flexible to consider all these risk measures and both discrete and continuous MDP settings.

Our Contributions. In this paper, we unify both of these approaches as a constrained RL problem, and further derive an
equivalent non-zero sum (NZS) stochastic game formulation [11] of it. In our NZS game formulation, risk-sensitive RL
reduces to a game between an agent and an adversary (Sec. 2). The adversary tries to break the safety constraints, i.e. either to
move out of the ‘safe’ region or to increase the risk measures corresponding to a given policy. In contrast, the agent tries
to construct a policy that maximizes its expected long-term return given the adversarial feedback, which is a statistics
computed on adversary’s constraint breaking. Given this formulation, we propose a generic actor-critic framework
where any two compatible actor-critic RL algorithms are employed to enact as the agent and the adversary to ensure
risk-sensitive performance (Sec. 3). In order to instantiate our approach, we propose a specific algorithm, Safe Adversarially
guided Actor-Critic (SAAC), that deploys two Soft Actor-Critics (SAC) [6] as the agent and the adversary. We further derive
the policy gradients for the SACs corresponding to the agent and the adversary, which shows that the risk-sensitivity of
the agent is ensured by a term repulsing it from the adversary in the policy space. Interestingly, this term can also be used
to seek risk and explore more. In Sec. 4, we experimentally verify the risk-sensitive performance of SAAC under safe region,
CVaR, and variance constraints for continuous control tasks from real-world RL suite [2]. We show that SAAC is not only
risk-sensitive but it outperforms the state-of-the-art risk-sensitive RL and distributional RL algorithms.

2 Safe RL as a Non-Zero Sum Game
Safe RL as Constrained MDP (CMDP). Both the safe exploration and risk-measure based approaches can be expressed as
a CMDP that aims to maximize the value function Vπ of a policy π while constraining the total risk ρπ below a threshold δ:

arg max
π

Vπ(s) s.t. ρπ(s) ≤ δ for δ > 0. (1)

If Mean-Standard Deviation (MSD) [9] is the risk measure1, ρπ(s) , E
[
ZTπ (s)|π, s0 = s

]
+ λ
√
V [ZTπ (s)|π, s0 = s] (λ < 0).

If CVaR is the risk measure, ρπ(s) , CVaRλ

[
ZTπ (s)|π, s0 = s

]
for λ ∈ [0, 1). For the constraint of staying in the ‘safe’ or

‘non-error’ states S \E , ρπ(s) , E
[∑T

t=0 1(st+1 ∈ E)|π, s0 = s ∈ S \ E
]

=
∑T
t=0 Pπ[st+1 ∈ E ] such that s0 = s is a non-error

state and E is the set of ‘unsafe’ or ‘error’ states. We refer to this as subspace risk Risk(E ,S) for E ⊆ S.

CMDP as a Non-Zero Sum (NZS) Game. We address the constraint optimization in Eq. (1) by formulating its Lagrangian.

L(π, β) , Vπ(s)− β0ρπ(s), for β0 ≥ 0. (2)
1Variance is not a coherent risk but standard deviation is. Thus, we choose to use Mean-Standard Deviation than Mean-Variance.
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For β0 = 0, this reduces to its risk-neutral counterpart. Instead, as β0 →∞, this reduces to the unconstrained risk-sensitive
approach. Thus, the choice of β0 is important. We automatically tune this trade-off in our proposed method. Now,
the important question is to estimate the risk function ρπ(s). Researchers have either solved an explicit optimization
problem to estimate the parameter or subspace corresponding to the risk measure, or used a stochastic estimator of the risk
gradients. These approaches are poorly scalable and lead to high variance estimates as there is no provably convergent
CVaR estimator in RL settings. In order to circumvent these issues, we aim to sequentially learn and then adapt to these
constraints. Specifically, we deploy an adversary that aims to maximize the cumulative risk ρπ(s) given the same initial
state s and trajectory τ as the agent maximizing Eq. (2) and use it as a proxy for the risk constraint.

θ∗ , arg max
θ

L(θ, β) = Vπθ (s)− β0Vπω (s), ω∗ , arg max
ω

Vπω (s). (3)

Here, we consider that the policies of the agent and the adversary are parameterized by θ and ω respectively. The value
function of the adversary Vπω (s, ·) is designed to estimate the corresponding risk ρπ(s). This is a non-zero sum game (NZS)
as the objectives of the adversary and the agent are not the same and does not sum up to 0. Following this formulation,
any safe RL problem expressed as a CMDP (Eq. (1)), can be reduced to a corresponding agent-adversary non-zero sum
game (Eq. (3)). The adversary tries to maximize the risk, and thus to shrink the feasibility region of the agent’s value
function. The agent tries to maximize the regularized Lagrangian objective in the shrinked feasibility region. We refer to
this duelling game as Risk-sensitive Non-zero Sum (RNS) game.

3 SAAC: Safe Adversarial Soft Actor-Critics

Background: Maximum-Entropy RL. In this paper, we adopt the Maximum-Entropy RL (MaxEnt RL) framework [4], also
known as entropy-regularized RL. In MaxEnt RL, we aim to maximize the sum of value function and the conditional action
entropy, Hπ(a|s), i.e. for a policy π: arg maxπ Vπ(s) +Hπ(a|s) = E

st∼T (st−1,at−1),at∼π(st)

[
ZTπ (s)− log π(at|st) | s0 = s

]
.

Unlike the classical value function maximizing RL that always has a deterministic policy as a solution, MaxEnt RL
tries to learn stochastic policies such that states with multiple near-optimal actions has higher entropy and states with
single optimal action has lower entropy. Solving MaxEnt RL is equivalent to computing a policy π that has minimum
KL-divergence from a target trajectory distribution T ◦ R:

arg max
π

Vπ(s) +Hπ(a|s) = arg min
π

DKL (π(τ) ‖ T ◦ R(τ)) . (4)

Here, τ is a trajectory {(s0, a0), . . . , (sT , aT )}. Target distribution T ◦ R is a softmax or Boltzmann distribution on the
cumulative rewards given the trajectory: T ◦ R(τ) ∝ p0(s)

∏T
t=0 T (st+1|st, at) exp[ZTπ (s)]. Policy distribution is the

distribution of generating trajectory τ given the policy π and MDPM: π(τ) ∝ p0(s)
∏T
t=0 T (st+1|st, at)π(at|st). Thus in

MaxEnt RL, the optimal policy is a softmax or Boltzmann distribution over the expected future return of state-action pairs.

This perspective of MaxEnt RL allows us to design SAAC which transforms the robust RL into an adversarial game in
the softmax policy space. MaxEnt RL is widely used in solving complex RL problems as: it enhances exploration [6], it
transforms the optimal control problem in RL into a probabilistic inference problem [12], and it modifies the optimization
problem by smoothing the value function landscape.

Risk-sensitive Non-zero Sum (RNS) Game with MaxEnt RL. In order to perform the RNS game with MaxEnt RL, we
substitute the Q-values in Eq. (3) with corresponding soft Q-values. Thus, the adversary’s objective is maximizing:

ω∗ = arg max
ω

Eπω [Qω(s, ·)] + α0Hπω (πω(.|s)) = arg min
ω

DKL

(
πω(.|s)

∥∥ exp
(
α−1

0 Qω(s, ·)
)
/Zω(s)

)
. (5)

for πω ∈ Πω , and the agent’s objective is maximizing:

θ∗ = arg max
θ

Eπθ [Qθ(s, ·)] + α0Hπθ (πθ(.|s))−β0(Eπθ [Qω(s, ·)] + α0Hπω (πω(.|s))) (6)

= arg min
θ

DKL

(
πθ(.|s)

∥∥ exp
(
α−1Qθ(s, ·)

)
/Zθ(s)

)
−βDKL (πθ(·|s) ‖ πω∗(·|s)). (7)

for πθ ∈ Πθ. Here, α = α0(1 + β0) and β = α0β0. The last equality holds true as πω∗(.|s) = exp
(
α−1

0 Qω∗(s, ·)
)
/Zω∗(s) for

the adversary’s optimal policy πω∗ , and since the optimization is over θ, adding lnZω(s) does not make a change.

Additionally, for ω 6= ω∗, the relaxed objective −(DKL

(
πθ(.|s)

∥∥ exp
(
α−1Qθ(s, ·)

)
/Zθ(s)

)
− βDKL (πθ(·|s) ‖ πω(·|s))) is a

strict lower bound of the goal of the agent in Eq. (6). Thus, maximizing it is similar to maximizing the lower bound on the
actual objective. This is similar to the general EM algorithms for maximising likelihoods. Thus, not only in asymptotics,
but at every step optimizing the reduced objective allows to maximize the agent’s risk-sensitive soft Q-value.

Following this reduction, we observe that performing the RNS game with MaxEnt RL is equivalent to performing the
traditional MaxEnt RL for adversary with a risk-seeking Q-function Qω, and a modified MaxEnt RL for the agent that
includes the usual soft Q-function and a KL-divergence term repulsing the agent’s policy πθ from the adversary’s policy
πω . This behaviour of RNS game in policy space allows to propose a duelling soft actor-critic algorithm, namely SAAC.
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Figure 1: Constraints: SAAC variants.
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Figure 2: Constraints: SAAC vs. baselines.

Figure 3: In walker-joint-walk.
Method Efficiency (xSAC) # Failures ±σ

SAC ×1 65.88± 17.25
SAAC-Cons ×1.33 48.66± 15.99
SAAC-CVaR ×2.02 54.39± 15.37
SAAC-MSD ×2.21 19.31± 3.02

Figure 4: In quadruped-upright-walk.
Method Efficiency (xSAC) # Failures ±σ

SAC ×1 8443.93± 696.47
TQC ×0.97 8297.63± 697.88

TQC-CVaR ×1.03 6298.33± 1078.50
SAAC-MSD ×1.19 4632.80± 657.35

The SAAC Algorithm. We propose an algorithm SAAC to solve the objectives of the agent (Eq. (6)) and of the adversary
(Eq. (5)). In SAAC, we deploy two soft actor-critics (SACs) to enact the agent and the adversary respectively.

As a building block for SAAC, we deploy the recent version of SAC [6] that uses two soft Q-functions to mitigate positive
bias in the policy improvement step. In the design of SAAC, we introduce two new ideas: an off-policy deep actor-critic
algorithm within the MaxEnt RL framework and a Risk-sensitive Non-zero Sum (RNS) game. SAAC engages the agent in
safer strategies while finding the optimal actions to maximize the expected returns. The role of the adversary is to find
a policy that maximizes the probability of breaking the constraints given by the environment. The adversary is trained
online with off-policy data given by the agent. We denote the parameter of the adversary policy using ω2. For each
sequence of transition from the replay buffer, the adversary should find actions that minimize the following loss:

J(πω) = Est∼D [Eat∼πω [α log (πω (at|st))−Qψ (st, at)]] .

Finally, leveraging the RNS based reduced objective, SAAC makes the agent’s actor minimize J(πθ):

J(πθ) = Est∼D
[
Eat∼πθ

[
α log (πθ (at|st))−Qφ (st, at)−β

(
log πθold(at|st)− log πωold(at|st)

)]]
.

In blue is the repulsion term introduced by SAAC. The method alternates between collecting samples from the environment
with the current agent’s policy and updating the function approximators, namely the adversary’s critic Qψ , the adversary’s
policy πω, the agent’s critic Qφ and the agent’s policy πθ. It performs stochastic gradient descent on corresponding loss
functions with batches sampled from the replay buffer. Now, we provide a few examples of designing the adversary’s
critic Qψ for different safety constraints.

SAAC-Cons: Subspace Risk. At every step, the environment signals whether the constraints have been satisfied or not. We
construct a reward signal based on this information. This constraint reward, denoted as rc, is 1 if all the constraints have
been broken, and 0 otherwise. J(Qψ) is the soft Bellman residual for the critic responsible with constraint satisfaction:

J(Qψ) = E(st,at)∼D
[1

2

(
Qψ (st, at)−

(
rc (st, at) + γEst+1∼ρEat∼πω

[
Qψ̄ (st, at)− α log π (at|st)

] )2]
. (8)

SAAC-MSD: Mean-Standard Deviation (MSD). In this case, we consider optimizing a Mean-Standard Deviation risk [9],
which we estimate using: Qψ(s, a) = Qφ(s, a) + λ

√
V[Qφ(s, a)]. λ < 0 is a hyperparameter that dictates the lower λ− SD

considered to represent the lower tail. In the experiments, we use λ = −1. In practice, we approximate the variance
V[Qφ(s, a)] using the state-action pairs in the current batch of samples. We refer to the associated method as SAAC-MSD.

SAAC-CVaR: CVaR. Given a state-action pair (s, a), the Q-value distribution is approximated by a set of quantile values
at quantile fractions [3]. Let {τi}i=0,...,N denote a set of quantile fractions, which satisfy τ0 = 0, τN = 1, τi < τj ∀i < j,
τi ∈ [0, 1]∀i = 0, . . . , N , and τ̂i = (τi + τi+1) /2. If Zπ : S × A → Z denotes the soft action-value of policy π, Qψ(s, a) =

−∑N−1
i=0 (τi+1 − τi) g′ (τ̂i)Zπθτ̂i (s, a;φ) with g(τ) = min{τ/λ, 1}, where λ ∈ (0, 1). In the experiments, we set λ = 0.25, i.e.

we truncate the right tail of the return distribution by dropping 75% of the topmost atoms.

4 Experimental Analysis

Experimental Setup. To validate the proposed framework, we conduct a set of experiments in the real-world RL
challenge [2], such as realworldrl-walker-joint-walk, and realworldrl-quadruped-upright-walk. Note that for all the experiments,
the agents are trained for 1M timesteps and their performance is evaluated at every 1000-th step. Similar to [6], the
adversary temperature β and the entropy temperature are automatically adjusted.

Comparison between Risk Quantifiers of SAAC. First, we compare the different variants of SAAC allowed by the method’s
framework in the realworldrl-walker-joint-walk task. From Table 3 and Fig. 1 (lines are average performances and shaded
areas represent one standard deviation), we evaluate how our method affects the performance and risk aversion of agents.

2resp. ωold the parameter at the previous iteration.
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Figure 5: Visualization of visited state space at different stages of learning in the realworldrl-walker-joint-walk task.
In addition to the rate at which the maximum average return is reached by each of the methods compared to SAC, we
compare the cumulative number of failures of the agents (the lower the better). Risk-sensitive agents such as SAAC decrease
the probability of breaking safety constraints. Concurrently, they achieve the maximum average return with higher sample
efficiency and SAAC-MSD ahead. Henceforth, we use the SAAC-MSD version of our method to compare with the baselines.

Comparison of SAAC to Baselines. Now, we compare the best performing SAAC variant SAAC-MSD with SAC [6], TQC [8]
and TQC-CVaR, i.e. an extension of TQC with 16% of the topmost atoms dropped (cf. Table 6 in [8, Appendix B]) of
all Q-function atoms. TQC-CVaR leverages distributional RL with risk measure to obtain safer policies. In Table 4 and
Fig. 2, we evaluate SAAC-MSD in realworldrl-quadruped-upright-walk. Table 4 confirms the advantage of using SAAC-MSD as a
risk-averse MaxEnt RL method over the risk-neutral MaxEntRL and risk-averse distributional RL baselines. SAAC allows
the agents to achieve faster convergence, using safer policies during training, better efficiency (∼ 1.19× more than SAC), and less
number of failures to satisfy the safety constraints (∼ 26 to 45% less).

Visualization of Safer State Space Visitation. In this experiment, we choose SAC, SAAC-Cons and SAAC-MSD to train a
relatively wide spectrum of agents using the same experimental protocol as in Sec. 5.2., and on the realworldrl-walker-joint-
walk task. We collect samples of states visited during the evaluation phase in a test environment at different stages of the
training. The state vectors are projected from a 18D space to a 2D space using PCA. We present the results in Fig. 5. At
the beginning of training, there is no clear distinction in terms of explored state regions, as the learning has not begun
yet. On the contrary, during the 200k-600k timesteps, there is a significant difference in terms of state space visitation. In
resonance with the cumulative number of failures shown in Fig. 1, the results suggest that SAC engages in actions leading
to more unsafe states. Conversely, SAAC demonstrates to successfully constraint the agents to the safe regions.
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Abstract

Hierarchical reinforcement learning (HRL) algorithms decompose a task into simpler subtasks that can be independently
solved. This enables tackling complex long-horizon and/or sparse reward tasks more efficiently. In recent years, several
efforts have focused on proposing discrete structures, such as finite-state machines (FSMs), that can be exploited using
HRL and learned from an agent’s experience. In this paper, we introduce a formalism for hierarchically composing
reward machines (RMs). RMs are FSMs where each edge is labeled by (1) a propositional logic formula over a set of
high-level events that capture a task’s landmark/subgoal, and (2) a reward for satisfying the formula. The structure of
an RM is naturally exploited by HRL algorithms by treating each landmark as a subtask and deciding which subtask
to pursue from each RM state. A hierarchy of reward machines (HRM) enables the constituent RMs to call each other,
potentially defining an arbitrary number of increasingly abstract machines. Our formalism guarantees that an HRM can
be converted into an equivalent flat one. We adapt HRL algorithms to HRMs by defining each RM in the hierarchy as
a subtask itself. Given a set of tasks with hierarchical structure, we describe a curriculum-based method to induce an
HRM for each task in the set. Each HRM is induced from a set of traces of high-level events and a set of callable RMs
from lower level tasks. We evaluate our method in two domains with hierarchically composable tasks. We show that
encapsulating each task’s structure within an HRM makes the learning of a multi-level HRM more efficient than that of
a flat HRM since the size of the root machine is potentially much smaller. We also study how efficient it is to use HRMs
from lower levels to drive the search for example traces in higher level tasks.

Keywords: Automaton Learning
Hierarchical Reinforcement Learning
Reward Machines
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Figure 1: A CRAFTWORLD grid (a), a multi-level HRM for BOOK (b) and an equivalent flat HRM (c).

Task Level Description Task Level Description Task Level Description Task Level Description

BATTER 1 ( & ) ; PAPER 1 ; MAP 2 (PAPER & COMPASS) ; CAKE 4 BATTER ; MILKB.SUGAR ;
BUCKET 1 ; QUILL 1 ( & ); MILKBUCKET 2 BUCKET ;
COMPASS 1 ( & ) ; SUGAR 1 ; BOOKQUILL 3 BOOK & QUILL
LEATHER 1 ; BOOK 2 (PAPER & LEATHER) ; MILKB.SUGAR 3 MILKBUCKET & SUGAR

Table 1: List of CRAFTWORLD tasks. Descriptions “x ; y” express sequential order (observe/do x then y), and descriptions
“x & y” express that x and y can be done in any order.

1 Introduction

Reward machines (RMs) [8] are a recent formalism for tackling sparse reward tasks in partially observable environments
by encoding the reward function of a given task. RMs are finite-state machines whose edges are labeled by propositional
logic formulas over a set of high-level events and a reward scalar. RMs capture a task’s subgoals through these formulas,
and thus help to address partial observability by acting as an external memory. These structures are amenable to the use
of hierarchical reinforcement learning (HRL) frameworks, such as options [7], by associating an option to each formula
in the RM. Recent papers have proposed methods for learning RMs [9, 11, 4] and similar kinds of machines [3, 2]. The
primary shortcoming of the RMs considered by previous work is that they cannot be reused within larger RMs, thus the
same policies might be learned multiple times unnecessarily. Besides, methods for learning RMs do not usually scale
well when the RMs consist of several states. In this work, we propose a formalism for hierarchically composing RMs by
allowing calls between them. We introduce a curriculum-based method for inducing these hierarchies given a set of tasks
classified into different levels according to their subtasks. Hierarchies of RMs (HRMs) enable reusability and ease the
machine induction process since the constituent RMs are smaller. Our method successfully learns and exploits HRMs in
environments with hierarchically composable tasks, outperforming the learning of equivalent flat RMs. We empirically
show that using previously learned HRMs to explore allows for a more efficient collection of example traces in new tasks.

Preliminaries An episodic partially observable Markov decision process (POMDP) is a tupleM = 〈S, ST , SG,Σ, A, p,
r, γ, ν〉, where S, A, p, r and γ are defined as for MDPs, ST ⊆ S is a set of terminal states, SG ⊆ ST is a set of goal states,
Σ is a set of observations, and ν : S → ∆(Σ) is a mapping from states to probability distributions over observations. The
POMDP is enhanced with a set of propositions P , and a labeling function L : Σ→ 2P mapping observations into subsets of
propositions (or labels) L ⊆ P . The aim is to find a policy π : (Σ×A)∗×Σ→ A, a mapping from histories of observation-
action pairs to actions, which maximizes the expected sum of discounted rewards (or return), Rt = Eπ[

∑n
k=t γ

k−trt],
where n is the last step of the episode. We assume that the combination of an observation and a history of labels seen
during an episode is sufficient to obtain the Markov property, i.e. a policy can be defined as π : (2P)∗ × Σ→ A.

The interaction between the agent and a POMDP environment is as follows. At time t, the state of the environment is
st ∈ S, and the agent observes a tuple σt = 〈σΣ

t , σ
T
t , σ

G
t 〉, where σΣ

t ∼ ν(·|st) is an observation, and σTt = I[st ∈ ST ] and
σGt = I[st ∈ SG] indicate whether st is a terminal state and a goal state respectively. If the state is non-terminal, the agent
executes action at ∈ A, the environment transitions to state st+1 ∼ p(·|st, at), and the agent observes a new tuple σt+1

and receives reward r(st, at, st+1). At the end of the episode, we will have a trace λ = 〈σ0, a0, r1,σ1, a1, . . . , an−1, rn,σn〉,
which can be of three types: a goal trace if σGn = >, a dead-end trace if σTn = > ∧ σGn = ⊥, and incomplete if σTn = ⊥. A
label trace λL,P can be derived by applying the labeling function L to each observation σΣ

0≤i≤n in the previous trace.

The options framework [7] addresses temporal abstraction in reinforcement learning. An option is a tuple ω =
〈Iω, πω, βω〉, where Iω and βω respectively denote where the option initiates and terminates (e.g., a subset of states),
and πω is the option’s policy describing the behavior of the option between Iω and βω .
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2 Contributions

We propose the CRAFTWORLD domain (cf. Figure 1a) to describe our method. The agent ( ) can move forward or rotate
90◦, staying put if it moves towards a wall. Grid locations are labeled with propositions from P = { , , , , , ,
, , , }. The agent observes propositions that it steps on (e.g., { } in the top-left corner). Table 1 lists several tasks

that consist of observing a sequence of propositions, where the reward is 1 if the goal is achieved and 0 otherwise. A label
L is used as a truth assignment where propositions p ∈ P in L are true, else they are false (e.g., { } satisfies ∧ ¬ ).

Formalism A hierarchy of reward machines (HRM) is a tuple H = 〈A,Ar,P, δH〉, where A = {A0, . . . ,Am−1} ∪ {A>}
is a set of m RMs and a leaf RM A>, Ar ∈ A \ {A>} is the root RM, P is a finite set of propositions shared by all
RMs, and δH : UH × 2P → UH is a hierarchical transition function. The set UH denotes the set of all possible hierarchy
states, each a tuple 〈Ai, u,Γ〉 where Ai ∈ A is an RM, u is a state of Ai, and Γ is a call stack. The call stack determines
the RMs to which control must be returned once a call is completed. Each reward machine (RM) Ai ∈ A is a tuple
Ai = 〈Ui,P, ϕi, ri, u0

i , U
A
i , U

R
i 〉, where Ui is a finite set of states, P is a finite set of propositions, ϕi : Ui×Ui×A → DNFP

is the state transition function, ri : Ui × Ui → R is the reward transition function, u0
i ∈ Ui is the initial state, UAi ⊆ Ui is

the set of accepting states, and URi ⊆ Ui is the set of rejecting states.1,2 The leaf machine A> has a single state, which is
accepting (i.e., U> = UA> = {u0

>}). The expression ϕi(u, u′,Aj) = φ indicates that the transition from u ∈ Ui to u′ ∈ Ui
is associated with a call to RM Aj and DNF formula φ ∈ DNFP , which must be satisfied to start the call (by default,
φ = ⊥). Accepting and rejecting states do not have transitions to other states. Figure 1b shows BOOK’s HRM, which
consists of a root and two RMs for the subtasks PAPER and LEATHER. An edge from state u to u′ of an RM Ai is of the
form Aj | ϕi(u, u′,Aj), double circled states are accepting states, and loop transitions are omitted.

The execution of an HRM starts in the root’s initial state with an empty call stack. Given a hierarchy state and a label
L ⊆ P , the next hierarchy state is determined by the hierarchical transition function δH, which is recursively defined
using the transition functions ϕi of the constituent RMs. Given a hierarchy state 〈Ai, u,Γ〉, δH covers three cases:

1. If u ∈ UAi is accepting and Γ is non-empty, pop the top element of Γ and return control to the previous RM on
the call stack, recursively applying δH in case several accepting states are reached simultaneously.

2. If L satisfies the formula φ of a transition ϕi(u, u′,Aj) = φ, as well as formulas from initial states of recursively
called RMs, push Aj onto Γ and recursively apply δH from its initial state. In Figure 1b, L must satisfy ∧ ¬
to start A1 from the root’s initial state, while it only needs to satisfy if the call is made from state u2.

3. If none of the conditions in previous cases hold, the hierarchy state does not change.

The theorem below captures that the behavior of δH is equivalent to the transition functions of flat RMs in previous works,
specifically those using logic formulas to label the edges [2], so an HRM cannot have circular dependencies and must
behave deterministically (two state transitions cannot be satisfied at once). We omit the proof due to space constraints.
Theorem 1. Every HRMH and associated hierarchical transition function δH corresponds to an equivalent flat RM.

Reinforcement Learning An HRM can be exploited using options, similar to flat finite-state machines [8, 2]. Each tran-
sition ϕi(u, u′,Aj) = φ is associated with a formula option φ ifAj = A>, and a call option 〈Aj , φ〉 ifAj 6= A>. Both types of
options are applicable in RM state u ofAi. A formula option simply attempts to satisfy φ, while a call option additionally
has to satisfy formulas in recursively called RMs. In Figure 1b, the set of formula options is { , ∧ ¬ , , , }, and
option ∧¬ leads the agent to observe label { }. The call options are 〈A1,¬ 〉, 〈A1,>〉 and 〈A2,>〉. Options 〈A1,¬ 〉
and 〈A2,>〉 are applicable in the root’s initial state. In each RM state, a metacontroller chooses an option with the aim of
reaching an RM’s accepting state as soon as possible. The formula option policies and metacontrollers are trained with
Q-learning using a pseudo-reward function tailored to the formula and the RM’s reward transition function, respectively.

An option hierarchy ω manages the options currently executing. Initially, ω is empty. At each step, the agent uses meta-
controllers to add options to ω until a formula option is added. In Figure 1b, the metacontroller in the root’s initial state
may choose option 〈A2,>〉 followed by option , resulting in ω = [〈A2,>〉, ], and actions are then selected according
to option . After each action, formula option policies are updated and the new hierarchy state determines whether any
option in ω has terminated. A formula option terminates if the hierarchy state changes, while a call option terminates if it
does not appear in the call stack of the new hierarchy state. Termination is applied bottom-up starting from the formula
option, and stopped when an option does not terminate. Finally, the metacontrollers are updated for the terminated
options, and call options that appear in the call stack of the new hierarchy state but not in ω are added to ω so that the
corresponding metacontrollers can be updated later. We remark that the agent may not move through the hierarchy as
intended: if the agent observes { }while pursuing , it moves to RM A1 and not to A2 as originally intended.

1We assume reward functions are ri(u, u′) = 1 if u /∈ UA
i and u′ ∈ UA

i , and 0 otherwise for all 0 ≤ i < m.
2These RMs are different from the original ones [8] in that (i) there are calls to other RMs in a hierarchy, (ii) there are explicit

accepting and rejecting states, and (iii) transitions are given by propositional logic formulas over P instead of sets of propositions.
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Learning the Hierarchies An HRM is automatically learned for each task in a set of composable tasks following a
curriculum learning method [6]. Each task is assigned a level depending on its subtasks (e.g., Table 1 shows the levels for
CRAFTWORLD tasks), and learning progresses from lower to higher levels. Initially, level 1 tasks are chosen with equal
probability while higher level tasks cannot be chosen. When task i terminates, its average return Ri is updated using the
last undiscounted return r as Ri ← βRi + (1 − β)r, where β is a hyperparameter. The probability of choosing task i in
the next episode is given by ci/

∑
k ck, where ci = 1−Ri (the maximum return is assumed to be 1). When the minimum

average return of tasks in the current level or lower surpasses a threshold ∆, the current level increases by 1.

Learning an HRM is analogous to previous work for flat machines [2]. Given a set of label traces, a set of propositions, a
set of callable RMs and a number of RM states, an inductive logic programming system, ILASP, learns a state transition
function that correctly recognizes the traces (e.g., goal traces finish in a root’s accepting state). The callable RMs include
all RMs in lower levels, and each RM has one accepting state and one rejecting state. To ease the induction, label traces
are compressed (i.e., consecutive equal labels are merged into a single one), RMs are forced to be acyclic, DNFs consist of
a single disjunct, and a symmetry breaking method is applied. The induction of HRMs is interleaved with policy learning:
a new HRM is learned when an episode’s label trace is not correctly recognized by the current HRM (e.g., a goal trace
does not finish in the root’s accepting state).

The first HRM is learned from a set of κ goal traces collected by exploring, similar to other works [9, 11]. For level 1 tasks,
the agent performs a random walk, while in higher levels the agent uses HRMs (i.e., call options) and formulas (i.e.,
formula options) from lower levels. Enhancing exploration with options allows collecting goal traces faster, especially
when labels are sparse. Finally, the κs shortest traces are used to learn the HRMs in order to reduce the running time.

3 Evaluation and Discussion

We evaluate our method in two domains. CRAFTWORLD is a modification of MiniGrid [1] that adds new object types
(one per proposition) and tasks. The grid is fully observable and can be of three types: an open plan 7 × 7 grid (OP) as
in Figure 1a, an open plan 7 × 7 grid with a lava location (OPL), and a 13 × 13 four rooms (FR) [7]. OPL has an extra
proposition for lava ( ), which must always be avoided. WATERWORLD [8] is a 2D box containing 12 balls of 6 colors (2
per color), moving at constant speed in a fixed direction. The agent ball can change its velocity in any cardinal direction.
Propositions P = {r, g, b, c, y,m} denote ball colors. The agent observes the color of the balls it overlaps with. The
tasks consist in observing specific sequences of colors [8]. Unlike CRAFTWORLD, labels with multiple propositions are
observable in WATERWORLD, motivating the use of propositional formulas as an extra level of abstraction. Both domains
are partially observable since the agent does not know the accomplished subgoals, which are encoded by the HRM.

Each experiment consists of 10 runs on a set of 10 random instances (e.g., by placing objects randomly in CRAFTWORLD).
In CRAFTWORLD, OP and OPL have one object for each proposition, while FR has one or two. All experiments run for
100,000 episodes, each lasting a maximum of 300 steps. The curriculum has parameters β = ∆ = 0.95 and uses returns
from the greedy policies evaluated in each task-instance pair every 100 episodes. ILASP has 2 hours to learn the HRMs
for all tasks. We use κ = 25 for level 1 tasks, κ = 150 for level 2 tasks onwards, and κs = 10 for all tasks.

We define multiple DQNs at different levels of abstraction [5]. Each formula option and each RM is associated with
a DDQN [10]. Metacontrollers provide Q-values for each option in an RM given an observation and an RM state (the
output is masked according to the options available in the input RM state). We adopt ε-greedy exploration: each formula
option and RM state is associated with its own ε, which is linearly annealed. For formula options, ε decreases after each
step performed with that formula, while for metacontrollers ε decreases after having finished an option that started in
that state. Formula option policies and metacontrollers are trained using different discount factors γ. Each RM has its
own experience replay buffer, whereas all formula options share a common buffer (a form of intra-option learning [7]).

Figure 2 shows learning curves for the tasks of each domain, each measuring the undiscounted return obtained by
the greedy policy every 100 episodes. The dotted vertical lines correspond to episodes where an HRM is learned. To
ease visibility, some curves are not displayed for all training episodes. All tasks generalize across instances, and the
curriculum is visible in all domains: when the return for tasks at a level is close to 1, the HRMs and policies in the
next level start to be learned. In CRAFTWORLD, learning in OP is easier than in OPL and FR. OPL is harder than OP
because (1) dead-ends hinder observing goal examples for level 1 tasks using a random policy; (2) the root RMs must
include rejecting states and use an extra proposition, complicating learning; (3) all non-lava policies must avoid the lava;
(4) policies to reach the lava must be learned; and (5) metacontrollers must learn that edges labeled with should not be
chosen. Similar factors make FR harder than OP and OPL. The collection of goal examples in level 1 tasks is challenging
with ε-greedy, especially those with several subgoals (e.g., BATTER) where convergence is delayed relative to those with
fewer subgoals. It is also more difficult to generalize across instances since FR’s grid is bigger. In all cases, we observe
that once level 1 tasks are mastered, learning in higher level tasks is fast owing to the reuse of lower level tasks’ RMs.

The average running times (in seconds) of the HRM learning system across runs are 1257.8 (163.2) for OP, 1706.0 (302.8)
for OPL, and 669.9 (113.1) for FR (standard errors in brackets). Including the lava (OPL) increases the time needed to learn
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Figure 2: Learning curves for CRAFTWORLD (OP, OPL, and FR) and WATERWORLD.

the HRMs due to (1) a bigger hypothesis space caused by the increase in the number of propositions and the inclusion of
rejecting states, and (2) the need to cover more example traces (OPL involves dead-end traces). In the case of FR, despite
the learned HRMs are similar to those in OP, the running time is lower. This may be due to the example traces being
shorter: propositions are sparsely distributed in FR and dense in OP. In all cases, around 90% of the running time is spent
on the HRMs for BOOK, MAP and CAKE. Learning a multi-level HRM is less demanding than learning an equivalent
flat one: the only task out of level 1 whose flat HRM can be learned within 2 hours is MILKBUCKET, which consists of 4
states. The flat HRM for BOOK, which is also a level 2 task, contains twice as many states (see Figure 1c). This shows that
leveraging task compositionality helps learning RMs which could not have been learned in previous work.

The performance of exploration is evaluated by measuring for each task the number of episodes between the activation of
its level and the learning of its first HRM. We compare the performance by using only primitive actions versus using call
and formula options as well. Using only primitive actions leads to a higher number of episodes (i.e., it takes more time
to collect the set of κ examples). While the BOOK task in the OP scenario needs 6957.2 (302.8) episodes using primitive
actions, only 500.3 (9.6) episodes are required if options are also used. Delaying the learning of an HRM incurs a general
delay since it takes longer to switch to higher levels. In the case of FR, observing goal examples is harder and surpassing
level 2 never occurs if primitive actions are exclusively used. In addition, using sets of goal examples is shown to be
convenient: using κ = κs = 1 in OP causes experiments to time out when on level 2 or higher in 9/10 runs. Finally, we
evaluate policy learning alone by comparing the learning curves for handcrafted non-flat and equivalent flat HRMs. We
observe both converge similarly in the simplest tasks, while non-flat HRMs speed up convergence in the hardest ones.

In future work, we plan to modify the curriculum learning component by removing the pre-established levels for each
task, and allowing policies from lower levels to be used without being close to perfect.
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Abstract

Policy gradient (PG) estimators are ineffective in dealing with softmax policies that are sub-optimally saturated, which
refers to the situation when the policy concentrates its probability mass on sub-optimal actions. Sub-optimal policy
saturation may arise from a bad policy initialization or a sudden change, i.e. a non-stationarity, in the environment that
occurs after the policy has already converged. Unfortunately, current softmax PG estimators require a large number of
updates to overcome policy saturation, which causes low sample efficiency and poor adaptability to new situations. To
mitigate this problem, we propose a novel policy gradient estimator, which we call as the alternate estimator, for softmax
policies. This new estimator utilizes the bias in the critic estimate and the noise present in the reward signal to escape the
saturated regions of the policy parameter space. We establish these properties by analyzing this estimator in the tabular
bandit setting, and testing it on non-stationary reinforcement learning environments. Our results demonstrate that the
alternate estimator is significantly more robust to policy saturation compared to the regular variant, and can be readily
adapted to work with different PG algorithms and function approximation schemes.

(The full version of this paper is available at https://arxiv.org/abs/2112.11622.)
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1 Introduction

Policy gradient (PG) algorithms aim to optimize a sequential decision making problem defined on a set of parameterized
policies: the policy parameters are optimized using standard stochastic gradient-based update to maximize the net re-
ward received by the agent. PG methods have been successfully deployed in a variety of real world tasks such as robotics
(Mahmood, et al., 2018) and large scale simulated problems (Berner et al., 2019). For discrete action tasks, policies are
typically represented using a categorical distribution parameterized by a softmax function. However, softmax policies
have some inherent issues. Even with access to the true gradients, they can be slow in responding to non-stationarity and
their performance heavily depends on the initialization of the policy parameters (Mei et al. 2020). Both these problems
arise from an issue, which we call sub-optimal policy saturation.

Sub-optimal policy saturation refers to the situation when the policy places a high probability mass on sub-optimal
actions. An agent with a saturated policy will not be able to explore other actions and may continue to remain in the
sub-optimal region if an appropriate measure is not taken. Sub-optimal policy saturation arises in multiple scenarios: (1)
Non-stationarity: in a constantly changing environment, what was once an optimal strategy may no longer work well.
(2) Pre-training / transfer learning: deep reinforcement learning (RL) systems are often pre-trained on different tasks
before being used on the main task, and the subtle differences in the structure of these tasks might lead to a bad policy
initialization which is sub-optimally saturated. And (3) Stochastic updates: PG updates suffer from high variance and
therefore, it is possible for a policy to become saturated on sub-optimal actions during the course of learning.

PG methods with softmax policies are particularly susceptible to policy saturation. Entropic regularization (Peters et al.,
2010) is a popular approach to mitigate this issue: it works by making the policy more explorative. However, entropic
regularization introduces additional terms in the objective, and therefore the resulting optimal policy can be different
from the original one. We take a different approach to address this issue. Instead of augmenting the optimization
objective with entropy, we introduce a PG estimator that inherently helps to escape the sub-optimally saturated regions.

Our proposed estimator is a simple yet effective approach for dealing with sub-optimally saturated policies thereby
making PG algorithms more robust. The classic likelihood ratio estimator for softmax policies, which we call as the
regular estimator, takes a frustratingly large amount of experience to escape sub-optimally saturated policy regions. The
regular estimator produces near zero gradients at saturation as both its expectation and variance, even with reward noise,
are vanishingly small at those regions. In contrast, our proposed estimator, which we call the alternate estimator, has a non-
zero variance in the same scenario that can be utilized to escape the sub-optimal regions. Further, the alternate estimator
naturally utilizes the bias in the critic estimate to increase the policy’s entropy, thereby encouraging exploration. As the
critic estimate improves, this effect reduces, allowing the policy to saturate towards the optimal actions.

2 Preliminaries

In RL, the decision making task is described using a Markov decision process (MD) M := (S,A,R, µ, p, γ), where S,
A, and R ⊂ R represent the sets of states, actions, and rewards; µ ∈ ∆(S) is the start state distribution; p : S × A →
∆(S ×R) is the transition dynamics; and γ ∈ [0, 1] is the discount factor. (The object ∆(X ) denotes the set of all possible
probability distributions over the set X .) The agent maintains a policy π : S → ∆(A) that describes its interaction with
the environment. This interaction results in the episode {S0, A0, R1, S1, A1, . . . , RT , ST }, where S0 ∼ µ, At ∼ π(·|St), and
St+1, Rt+1 ∼ p(·, ·|St, At) for t ∈ {0, . . . , T −1}with T being the (possibly random) episode termination length. The agent
uses such interactions to learn a policy that maximizes the expected return J = Eπ[

∑T−1
0 γtRt+1]. PG methods provide

one way to accomplish this task. We now describe these methods in two typical settings.

Gradient Bandits: In bandits the agent picks an action At from a discrete action set A at each timestep, and obtains
a reward Rt ∼ p(·|At). The goal is to maximize the expected immediate reward J := Eπ[Rt] =: rπ . Gradient bandit
algorithms maximize J using gradient ascent. Given a softmax policy πθ(a) = eθa/

∑
b∈A e

θb , where θa is the action
preference corresponding to action a, the gradient∇J (Sutton & Barto, 2018) is given by [∇θJπ]i = r(ai)·π(ai)·(1−π(ai)),
where r(a) := E[R|a] is the reward function. However, the agent usually does not have access to r for all actions at the
same time and must resort to using sample based gradient estimators ĝ which satisfy ∇θJπ = EA∼π;R∼p(·|A)[ĝ(A,R)].
And the typical choice is to use what we call the regular estimator

[ĝREG(A,R)]a := (R− b)(I(A = a)− π(a)), (1)

where I is the indicator function and b is the agent’s estimate of the average reward rπ .

Policy Gradient: In an episodic MDP, the PG objective is J = Eπ[
∑T−1

0 γtRt+1], and the policy gradient is given by

∇J =
∑

s∈S
νπ(s)

∑

a∈A
∇π(a|s)qπ(s, a). (2)

where νπ(s) :=
∑∞
k=0 γ

kP(Sk = s) is the state occupancy measure under policy π.
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Figure 1: Policy updates and the variance for PG estimators on 3-armed bandits plotted on the probability simplex. The
policy-update plots were drawn by updating the policy using the corresponding stochastic PG estimator, assuming that
action a0 was taken and a noise of constant magnitude was added to the reward. The blue and grey arrows correspond to
the policy change direction for +ve and −ve reward noises. The variance plots show the heatmap for the zeroth element
of the gradient estimator. Last three plots show policy updates using expectation of the estimators.

3 Warmup: Alternate Gradient Bandits

In this section, we derive the alternate PG estimator for the bandit setting using vector notation. For a k-armed bandit
problem, let π, r ∈ Rk denote the policy and the reward vectors with [π]k = π(ak) and [r]k = r(ak). Using vectors,
the expectations of scalar quantities become vector inner products: Jπ ≡ rπ = Eπ[R] =

∑
a π(a)r(a) = π> r. Further,

the softmax policy can be written as π = eθ/(1>eθ), where the vector eθ ∈ Rk is defined as [eθ]a := eθa . And ∇θ π =

(I−π 1>) diag(π). Hence, the regular policy gradient estimator can be derived as follows:

∇θJ = ∇θ(π> r) = (I−π 1>) diag(π) r = EA∼π[r(A)(eA−π)] = EA∼π,R∼p(·|A)[(R− rπ)(eA−π)], (3)

where gREG(A,R) := (R − rπ)(eA−π) is the regular gradient bandit estimator and eA ∈ Rk represents the basis vector.
The approximate version of it, as given before in Eq. 1, is ĝREG(A,R) = (R − b)(eA−π), where b is an estimate of rπ .
Also note that this approximate estimator remains unbiased, i.e. ∇J = E[ĝREG(A,R)].

The Alternate Gradient Bandit Estimator is derived by using an alternate form of the true gradient:

∇θJ = (I−π 1>) diag(π) r =
(
diag(r)− π r>

)
π = diag(r)π−π> rπ =

(
diag(r)− π> r I

)
π

= EA∼π,R∼p(·|A)[(R− rπ) eA], (4)

where gALT(A,R) := (R − rπ) eA is the alternate gradient bandit estimator. Using a baseline b to estimate the average
reward rπ , gives the following estimator: ĝALT(A,R) = (R− b) eA.

4 Properties of the Alternate Gradient Bandits Estimator

We now discuss how the alternate estimator utilizes the reward noise and the bias in the critic estimate to escape saturated
regions in the policy space.

Alternate Estimator Utilizes Reward Noise: Whenever the policy is saturated, i.e. it places a high probability mass on
some actions, the expected gradient becomes close to zero, and consequently the policy weights are not updated. Further,
for the regular estimator, the variance at these “corners” of the probability simplex is also zero. Therefore, there is neither
any gradient signal nor any noise, and the agent is unable to escape the sub-optimal region. In contrast, the alternate
estimator, despite being zero in expectation, has a non-zero variance and therefore the agent can utilize the reward noise
to escape the sub-optimal region. We illustrate this point with Figure 1 (left and middle) and an accompanying example:

Example 1. Consider a 3-armed bandit with A = {a0, a1, a2}, the expected reward r = [0 0 1]>, and the policy π = [1 0 0]>. The
rewards are perturbed with a normally distributed noise ε ∼ N (0, σ2), so that upon picking action A, the agent receives the reward
r(A) + ε. Since rπ = 0, R− rπ = 0 + ε− 0 = ε. And because the agent samples A = a0 at each timestep, we obtain

gREG(A,R) = (R− rπ)(eA−π) = ε ·
(

[1 0 0]> − [1 0 0]>
)

= [0 0 0]>, and

gALT(A,R) = (R− rπ) eA = ε · [1 0 0]> = [ε 0 0]>.

This example shows that at a sub-optimal corner, the agent with the alternate estimator effectively does a random walk
until it escapes that region and can choose other actions to get a non-zero reward signal. Further, doing a random walk
at the optimal corner is not problematic, since there is an attractive gradient signal as soon as the agent moves away from
this corner. The following propositions formalize these points.

2
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Proposition 1. Define Ic := {a | r(a) = c} for some constant c ∈ R. Assume that ∃c such that Ic 6= ∅ and that the policy is
saturated on the actions in the set Ic:

∑
a∈Ic π(a) = 1. Then the expected policy gradient for softmax policies is zero: ∇θJ =

E[gREG(A,R)] = E[ĝREG(A,R)] = E[gALT(A,R)] = 0.

Proposition 2. Let σ(a)2 := V[R|A = a] be the variance of the reward corresponding to action a. Assume that the policy is
saturated on the action c, i.e., π(c) = 1. Then, the variance of the regular PG estimator (with or without a baseline) is zero:
V[gREG(A)] = V[ĝREG(A,R)] = 0. Whereas, the variance of the alternate PG estimator is non-zero: V[gALT(A,R)] = σ(c)2 ec.

Although, the above example and the propositions require the policy to lie at the boundary of the probability simplex
which is unsatisfiable for softmax policies, using continuity arguments, we can still reason that for the regular estimator,
both the expected gradient and its variance vanish in the proximity of the simplex boundary, whereas the alternate
estimator will have non-zero variance. In addition to this, the stochastic update for the alternate estimator is much
higher than that for the regular estimator. This can be seen from Figure 1 (left): look at the length of the update arrows
near the bottom-right corner on the simplex.

Alternate Estimator Utilizes its Biasedness: The alternate estimator can also utilize the bias in the critic estimate b
to escape saturation. To see this, consider a baseline b 6= rπ . Then the alternate estimator becomes biased: ∇θJ 6=
E[ĝALT(A,R)] = E[(R − b) eA] = π�(r−b1). Interestingly, this biased update E[ĝALT(A,R)] is not the gradient of any
function. Therefore, in order to understand its behavior, we look at its fixed point and under what conditions it acts as an
attractor or a repellor. Figure 1 (right) illustrates this fixed point and its behavior based on how the baseline is initialized
for one specific instance of a bandit problem. We now state a theorem that formalizes this property. Let r1 ≤ r2 ≤ · · · ≤ rk
represent the true rewards for the bandit problem. Let πt = eθ

(t)/
1>eθ

(t)

represent the softmax policy at timestep t. And
let the action preference vector θ(t) be updated using θ(t+1) = θ(t) +αE[ĝALT(A,R)] for α > 0.

Lemma 2.1. Fixed points of the biased gradient bandit update. (1) If there exists an n ∈ {1, 2, . . . , k−1} such that r1 ≤ · · · ≤
rn < b < rn+1 ≤ · · · ≤ rk, then Eπ[ĝALT(A,R)] is never equal to zero. (2) If b = r(a) for at least one action, then Eπ[ĝALT(A,R)] =
0 at any point on the face of the probability simplex given by

∑
a∈Ib π(a) = 1 with Ib := {a|r(a) = b}. (3) If b < r1 or b > rk,

then Eπ[ĝALT(A,R)] = 0 at a point π∗ within the simplex boundary given by π∗(a) = 1
r(a)−b

(∑
c∈A

1
r(c)−b

)−1
, ∀a ∈ A.

Theorem 1. Nature of the fixed point π∗. Assume that πt 6= π∗. If the baseline is pessimistic, i.e. b < r1, then for any α > 0, the
fixed point π∗ acts as a repellor: DKL(π∗‖πt+1) > DKL(π∗‖πt), where DKL is the KL-divergence. And if the baseline is optimistic,
i.e. b > rk, then given a sufficiently small positive stepsize α the fixed point π∗ acts as an attractor: DKL(π∗‖πt+1) < DKL(π∗‖πt).

The above theorem illustrates that with an optimistic baseline, an agent using the alternate estimator is updated towards
a more uniform distribution π∗. Therefore, if the agent were stuck in a sub-optimal corner of the probability simplex, an
optimistic baseline would make its policy more uniform and encourage exploration. (On the flip side, with a pessimisti-
cally initialized baseline, the alternate estimator can pre-maturely saturate towards a sub-optimal corner; see Figure 1
(right).) And even though π∗ is different from the optimal policy, the agent with an alternate estimator can still reach
the optimal policy, because as the agent learns and improves its baseline estimate, the alternate PG estimator becomes
asymptotically unbiased. And hopefully by this time, the agent has already escaped the saturated policy region.

5 Alternate PG Estimator for MDPs

The alternate gradient estimator can be readily extended to MDPs, where it enjoys properties analogous to the bandit
case. For a given state s, let π(·|s) ∈ R|A| be the vector with [π(·|s)]a = π(a|s). Similarly, define the action value vector
[qπ(s, ·)]a = qπ(s, a). The softmax policy for MDPs then becomes π(a|s) = e[θw(s)]a

/∑
b∈A e

[θw(s)]b , where θw : S → RA
denotes the action preference vector, parameterized by w, and [θw(s)]a is its ath element. In practice, θw could be
implemented using, say, a neural network. For brevity, we will drop w, i.e. θ ≡ θw. To obtain the results that follows,
we analytically worked out the gradient of the action likelihood for the softmax policy (similar to what we did for the
bandit case; see Eqs. 3 and 4), which gives us

∇wJπ = E
[
∇w log π(A|S)(qπ(S,A)− vπ(S))︸ ︷︷ ︸

=:gREG(S,A)

]
= E

[
∇w[θ(S)]A(qπ(S,A)− vπ(S))︸ ︷︷ ︸

=:gALT(S,A)

]
. (5)

Note that even though the regular and the alternate PG estimators are equal in expectation, in general they are not equal
for an arbitrary state-action pair: gREG(S,A) 6= gALT(S,A). Further, it is straightforward to adapt the alternate estimator
given in Eq. 5 to work with different PG methods such as REINFORCE, Actor-Critic, TRPO, or PPO.
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Figure 2: Performance of online Actor-Critic on MountainCar (200k timesteps) and Acrobot (400k timesteps). Learning
curves are for the best performing stepsize configurations at the time non-stationarity was introduced and at the final
timestep. Entropy plots show entropy of the policy on the exact states encountered during each episode. The sensitivity
plots show the mean performance during the last 5000 timesteps. All the results were averaged over 50 runs.

6 Experiments on Non-stationary Environments

In this section, we demonstrate that the alternate estimator is able to effectively handle non-stationarity in an environ-
ment, whereas the regular estimator fails to do so. We trained the online Actor-Critic algorithm (Sutton and Barto, 2018)
to solve the MountainCar and the Acrobot control tasks, with linear function approximation (using tile-coding). To
induce non-stationarity in either task, we switched the left and right actions after half-time.

Figure 2 (left) shows the learning curves for the best parameter configuration. For each estimator, we selected two sets
of parameter values: which performed best right before the non-stationarity hit and another which performed best at
the end of the experiment (denoted by a final in the subscript). For MountainCar, the alternate estimator is superior
to the regular estimator for both sets of stepsizes. Remarkably, the best performing parameter set for regular (red curve)
at timestep 100k was unable to recover from the non-stationarity; whereas alternate (blue curve), despite having similar
performance as regular at 100k timestep, was able to recover. On Acrobot, the difference in performance is still there but
relatively smaller. We attribute the superior performance of the alternate estimator to the bias in the critic estimate. For
instance, in MountainCar at 100k timesteps, the critic would have converged to predict a return of about−200. But when
the non-stationarity hit, the agent would have started receiving returns much lower than −200. This means that at that
time, the critic estimate became optimistic and encouraged exploration by pushing the policy towards a more uniform
distribution. Figure 2 (middle) corroborates this point: the policy entropy for alternate (but not for regular) jumps right
around the timestep when the non-stationarity hit. Figure 2 (right) shows the parameter sensitivity plots for these tasks.

7 Conclusions

We proposed an alternate policy gradient estimator for softmax policies that, as we demonstrated theoretically and
empirically, effectively utilizes the reward noise and the bias in the critic to escape sub-optimally saturated regions in
the policy space. Our analysis, conducted on multiple bandit and MDP tasks, suggests that this estimator works well
with different PG algorithms and different function approximation schemes. The alternate estimator makes existing PG
methods more viable for non-stationary problems, and by extension for many practical real-life control tasks.
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(2019). Dota 2 with Large Scale Deep Reinforcement Learning. arXiv preprint arXiv:1912.06680.

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J. (2018). Benchmarking reinforcement learning algorithms on real-
world robots. Conference on Robot Learning.
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Abstract

We develop a method to learn bio-inspired policies for autonomous agents from human behavioral data. The data were
taken from a larger study investigating human foraging behavior and consist of 50 eight-minute trajectories collected
from 5 different participants (10 eight-minute runs per participant). The human participants were virtually immersed
in an open field foraging environment and trained to obtain the highest amount of rewards, in the given time, without
having knowledge of the rewards distribution. We introduce a Markov Decision Process framework to model the human
decision dynamics, incorporating both egocentric and allocentric information in the state. Autonomous agent policies
are designed to map from human decisions to observed states. They are parameterized by a fully connected Neural
Network with a single hidden layer and trained via Imitation Learning (IL) using maximum likelihood estimation. The
results show that passive imitation substantially underperforms human performance. The human-inspired policies are
then refined via on-policy Reinforcement Learning (RL), which shows to be more suitable than off-policy counterparts
when combined with pre-trained networks. We show that the combination of IL and RL can match human performance
and is robust to reward distribution shift. The developed methodology can be used to efficiently learn policies for
unmanned vehicles which have to solve missions in an open field environment.

Keywords: Human Foraging, Imitation Learning, Reinforcement Learning
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Distributional Reward Shaping: Point Estimates Are All You Need
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Abstract

Potential-based reward shaping is a powerful approach for incorporating value-based advice in order to accelerate the
convergence of reinforcement learning algorithms on problems with sparse reward. We propose the idea of distributional
reward shaping, in which the shaping signal is a probability distribution over hypothetical returns in each state-action
pair. A natural setting in which such advice could be useful for transferring knowledge is the distributional reinforcement
learning (DRL), that has recently provided state-of-the-art results on a number of benchmark problems. However, it is
largely unclear how to incorporate distributional advice while maintaining policy invariance guarantees as in standard
RL. To this end, our first contribution is to show that distributional reward shaping maintains policy invariance if the
policy is derived by maximization of the expected return. By drawing on several examples from the literature, our
second contribution is to illustrate that such results do not hold generally in the risk-sensitive RL setting, in which the
agent optimizes a non-linear utility function of the return. However, we show that the utility of the distributional reward
shape could provide a powerful deterministic reward signal, that does not require making independence assumptions
nor limiting the class of utility functions that can be used.

Keywords: reward shaping, transfer learning, distributional reinforcement
learning, risk-sensitive, risk-aware, safety
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1 Introduction

Potential-based reward shaping (PBRS) is a powerful technique for transforming a reinforcement learning problem with a
sparse reward into one with a dense reward without changing the optimal policies [Ng et al., 1999]. Recent literature
has demonstrated its ability and flexibility in transferring knowledge from a variety of sources [Brys et al., 2015a,b,
Suay et al., 2016]. However, none of the existing work has studied the problem of transferring knowledge that occurs
naturally in the form of a probability distribution over hypothetical return outcomes. Such “distributional” advice could
be particularly useful as a means of communicating notions of danger or uncertainty between learning agents, or from
humans to agents, and represents a richer vocabulary for transferring value-based advice than point estimates alone.
One practical setting is the transfer of knowledge between RL agents following the distributional RL (DRL) framework
[Bellemare et al., 2017], which estimates the full distribution of the return rather than its expectation alone. Here, the
learnt value function distribution from one task could be used as input to another agent who later solves a different
(but somewhat related) task, perhaps measuring risk in a different way. In many real-world domains that involve high
risk, such as medical domains for example, a human expert could provide scenarios that might play out following a
particular treatment (e.g. patient dies, patient survives), that could be best modeled as a distribution over returns due to
the stochastic or uncertain nature of the problem.

The goal of this abstract is two-fold. First, we prove that policy invariance with distributional advice holds for DRL agents
that optimize expected returns (Theorem 1). Second, we demonstrate that such results do not generalize directly to the
risk-sensitive setting (Example 1, 2). Instead, the utility of the advice provides a PBRS signal that preserves invariance,
and has favourable mathematical properties (Lemma 1).

2 Preliminaries

2.1 Distributional Reinforcement Learning

Given a Markov decision process (MDP) with state space S, actions A, reward function r, transition function P , and dis-
count factor γ ∈ (0, 1), the goal of DRL is to learn the probability distribution of the discounted return Z∗(s, a) =∑
t≥0 γ

tr(st, at, st+1) following an optimal policy π∗ (in a set of bounded random variables Z) by solving the distribu-
tional Bellman equation (DBE):

Z∗(s, a) = r(s, a, S′) + γZ∗(S′, π∗(S′)), π∗(s′) ∈ argmaxa′EZ∗ [Z∗(s′, a′)].

Bellemare et al. [2017] approximated Z∗(s, a) by a histogram with equidistant points, and learnt a parametric representa-
tion Zθ(s, a) by minimizing the KL-divergence between Zθ(s, a) and the distribution of the single-step Bellman update.
Furthermore, they showed that the DBE operator is a contraction mapping under the p-Wasserstein metric. More re-
cently, Dabney et al. [2018b] proposed QR-DQN to estimate Z(s, a) by discretizing the quantiles of the distribution rather
than the outcomes, and used quantile regression to approximate the quantiles of Z∗(s, a).

Dabney et al. [2018a] extended the framework of QR-DQN to learn risk-sensitive policies. Given a utility function U :
R → R, the goal of risk-aware RL is to learn a policy that optimizes the expected utility of the return associated with the
Bellman equation:

Z∗(s, a) = r(s, a, S′) + γZ∗(S′, π∗(S′)), π∗(s′) ∈ argmaxa′EZ∗ [U(Z∗(s′, a′))].

Their approach, called IQN, restricted U to the class of distortion risk measures, that intuitively can be seen as computing
the expected value of the return under a distorted distribution of Z(s, a). More formally, U is associated with a distortion
function β : [0, 1] → [0, 1], such that EZ [U(Z(s, a))] = Eτ∼U([0,1])[Zβ(τ)(s, a)] where Zτ (s, a) = F−1Z(s,a)(τ) denotes the
quantile function of Z(s, a).

2.2 Utility Function

In our developments, we further abstract the idea of expected utility by considering the general class of concave utility
functions U : Z → R that satisfy [Föllmer and Schied, 2002]:

A1. U [0] = 0

A2. if Z1, Z2 ∈ Z such that P(Z1 ≥ Z2) = 1, then U [Z1] ≥ U [Z2]

A3. if c ∈ R and Z ∈ Z , then U [Z + c] = U [Z] + c

A4. if Z1, Z2 ∈ Z then U [Z1 + Z2] ≥ U [Z1] + U [Z2],

which can be seen as necessary criteria for rational and risk-averse decision-making. We also assume:

1
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A5. if Zt ∈ Z converges in distribution to Z ∈ Z with minZt → minZ and maxZt → maxZ, then U [Zt]→ U [Z],
which ensures that the optimization criterion argmaxa U [Zt(s, a)] remains meaningful as Zt converges to the true return
distribution.

2.3 Reward Shaping

The successful application of a reinforcement learning algorithm – and by extension DRL – depends largely on the quality
of the chosen reward function. Given a reward function r : S × A × S → R and a shaping function F : S × A × S → R,
reward shaping produces an augmented reward function r′(s, a, s′) = r(s, a, s′)+F (s, a, s′). The goal is to devise F such
that the agent converges faster towards the optimal policy using r′ than using r alone. However, care is necessary to
ensure that the set of optimal policies remains invariant with respect to the above change in the reward function [Randløv
and Alstrøm, 1998]. One way to guarantee policy invariance is potential-based reward shaping (PRBS). Specifically, letting
Φ : S → R be any function, PBRS defines the shaping function as F (s, a, s′) = γΦ(s′)− Φ(s). Intuitively, when the agent
transitions from state s to s′, PBRS “replaces” the incentive Φ(s) given in s with a new incentive Φ(s′) in successor state
s′. Ng et al. [1999] showed that PBRS is the only way to ensure policy invariance in general MDPs.

3 Distributional Reward Shaping

In this section, we discuss the distributional setting in which the advice and the agent are both return distributions in Z .

3.1 Distributional Policy Invariance in DRL

To establish a characterization of policy invariance in DRL, we first study the risk-neutral setting U = E, where advice is
given as a probability distribution over hypothetical return.
Theorem 1. Let Φ : S → Z be independent at each evaluation. If U = E, then PBRS leaves the optimal policies unchanged.

Proof. We begin with the Bellman equation for an MDPMwith dynamics P and reward function r,
Zt(s, a) = r(s, a, S′) + γZt+1(S

′, argmax
a′

U [Zt+1(S
′, a′)]) := T Zt+1(s, a),

and subtract Φ(s) from both sides to obtain

Zt(s, a)− Φ(s) = r(s, a, S′) + γΦ(S′)− Φ(s) + γ

(
Zt+1(S

′, argmax
a′

U [Zt+1(S
′, a′)])− Φ(S′)

)
. (1)

Here and throughout, the equality is to be understood as equivalence in distribution. Next, define the random variable
Z ′t(s, a) and r′t(s, a, s′) such that:

Z ′t(s, a) := Zt(s, a)− Φ(s) (2)
r′(s, a, S′) := r(s, a, S′) + γΦ(S′)− Φ(s). (3)

Substituting the last two equations into (1), we obtain
Z ′t(s, a) = r′(s, a, S′) + γZ ′t+1(S

′, argmax
a′

U [Zt+1(S
′, a′)]).

Next, given A3, (2) and linearity of expectation:
πt+1(s

′) ∈ argmax
a′

U [Zt+1(s
′, a′)] = argmax

a′

{
U [Z ′t+1(s

′, a′)] + U [Φ(s′)]
}

= argmax
a′

U [Z ′t+1(s
′, a′)] := π′t+1(s

′),

and hence:
Z ′t(s, a) = r′(s, a, S′) + γZ ′t+1(S

′, argmax
a′

U [Zt+1(S
′, a′)])

= r′(s, a, S′) + γZ ′t+1(S
′, argmax

a′
U [Z ′t+1(S

′, a′)]) := T ′Z ′t+1(s, a),

is the distributional Bellman operator of the MDP with immediate reward function r′. Finally, we observe that the roles
of the two MDPs with reward r and r′ can be interchanged, and so the optimal policies are preserved, as claimed.

Observe that (2) foreshadows a result in Ng et al. [1999], namely that PBRS shifts the return in each state-action pair
down by the value of the potential Φ(s) in each state of the MDP. However, a critical distinction in the DRL setting is that
PBRS leads to a convolution of Zt(s, a) and Φ(s). Also, (3) suggests that immediate rewards r′ can be stochastic even after
observing s′ ∼ S′ . This does not complicate our analysis, however, since the stochasticity can be absorbed directly into
the estimate Zt(s, a). Finally, we note that the consequences of this theorem also hold for arbitrary U if Φt is deterministic
(e.g. risk-free).
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3.2 The Failure of Policy Invariance in Risk-Sensitive DRL

A natural question to ask is whether policy invariance still holds for arbitrary concave utility functions. Unfortunately,
this turns out to be false in general, since the analysis above shows that U must be strictly additive, e.g.

U [Zt(s, a) + Φ(s)] = U [Zt(s, a)] + U [Φ(s)] (4)

for all choices of Zt and Φ. In more intuitive terms, policy invariance holds if the potential function does not permit the learning
agent to improve the overall risk through diversification among two lotteries: (1) the agent’s current knowledge of the return Zt(s, a),
and (2) the expert’s current knowledge of the return Φ(s). Without further knowledge about the dependence between Zt(s, a)
and Φ(s), it is therefore not possible to establish policy invariance except when U = E. To make this point clearer,
we illustrate how this would require making careful choices for U that depend on how Zt(s, a) and Φ(s) are jointly
distributed.
Example 1. Suppose that Zt(s, a) and Φ(s) are independent for each (s, a), and consider the entropic utility function Uβ

Uβ [Z] =
1

β
logE[eβZ ],

where β ∈ R is an arbitrary control parameter, and which satisfies A1-A4. Furthermore, we also define the weighted
entropic utility Uw as

Uw[Z] =
∫
Uβ [Z]w(β) dβ

where w : R→ [0,∞), and which satisfies A1-A4 provided that
∫
w(β) dβ = 1. It is also easy to verify that:

Uw[Zt(s, a) + Φ(s)] = Uw[Zt(s, a)] + Uw[Φ(s)].
Furthermore, it can be shown that Uw is the only class of utility functions that satisfies A1-A4 and A5 under the indepen-
dence assumption [Goovaerts et al., 2004].

While the form of U in the aforementioned example appears restrictive, we note that entropic utility essentially guaran-
tees policy invariance as long as Zt(s, a) and Φ(s) are simulated from uncoupled stochastic processes. This setting is quite
natural, for instance, if Φ(s) and Zt(s, a) were learnt on different tasks using IQN in an end-to-end framework, since sam-
ples Φ(s) ∼ maxa Zβ(τ)(s, a) and Gt ∼ Zβ(τ ′)(s, a) are typically generated according to i.i.d. samples τ, τ ′ ∼ U([0, 1]). In
many instances however, such as when the immediate rewards or the return realizations from different tasks are directly
correlated [Zhang et al., 2021], the entropic utility is no longer a viable quantifier of risk.

Example 2. A converse example to independence is perfect dependence or commonoticity, in which Zt(s, a) = F−1Zt(s,a)
(τ)

and Φ(s) = F−1Φ(s)(τ) for the same realization of τ ∼ U([0, 1]), where equality holds in distribution. We define QX(p) to
denote the p-quantile function of X , and the tail value-at-risk

TVaRp[X] =
1

1− p

∫ 1

p

QX(q) dq.

This utility function is additive for commonotone random variables [Dhaene et al., 2006], so (4) holds.

Taken together, the previous two examples have thus shown that policy invariance holds only when the dependence structure
between the model returns of the agent and the expert are precisely known, and the utility function U is chosen carefully. In other
words, ignoring the hidden interaction between the agents can lead to unintended behaviours in end-to-end or multi-task
approaches. Another shortcoming of the distributional approach to shaping is that it requires computing the convolution
of several probability distributions for each sample and can be computationally demanding. Finally, the choice of utility
should be dictated by the external environment (e.g. regulators), rather than solely from the specificity of each task.

3.3 Point Estimates are All You Need

If arbitrary distributional advice cannot be accounted for directly without knowing the structure of Zt and Φ, we ask
whether it can be incorporated into PBRS in other ways. Given an arbitrary distribution-valued potential Φt ∈ Z , one
such candidate that is consistent with the agent’s decision-making criteria is ϕ(s) = U [Φ(s)]. With this simplification, (4)
holds immediately due to cash invariance, and thus ϕ(s) provides a policy-invariant reward signal.

The next natural question to ask is: what kind of advice allows DRL to learn efficiently? We can answer this question
briefly by showing that the nature of the ideal deterministic potential Φ takes the form of the utility of the return distribu-
tion Z∗, with similar results having been shown only for standard RL [Zou et al., 2021].
Lemma 1. For an MDP with return distribution Z∗ under optimal policy π∗, the PBRS signal ϕ(s) = maxa U [Z∗(s, a)] defines
an MDPM′ with a dense reward, whose optimal utility is zero along the optimal trajectory π∗(s) and negative everywhere else.

3
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Proof. The consequences of Theorem 1 hold for the deterministic signal ϕ(s), and so the optimal policy remains un-
changed. Furthermore, according to (2) and A3:

U [Z ′(s, a)] = U [Z∗(s, a) + (−ϕ(s))] = U [Z∗(s, a)]− ϕ(s) = U [Z∗(s, a)]−max
a
U [Z∗(s, a)] ≤ 0,

where equality holds only if a ∈ argmaxa U [Z∗(s, a)] = π∗(s), as claimed.

3.4 Generalization to State-Action Potentials

As a final observation, we note that it is easy to extend our previous analysis to the setting in which Φt(s, a) is time and
action-dependent, by considering the look-ahead reward shaping function

Ft(s, a, s
′, a′) = γΦt+1(s

′, a′)− Φt(s, a),

where a is the action chosen in state s, a′ is the corresponding action chosen in state s′, and so forth. By extending the
derivations of Wiewiora et al. [2003], Devlin and Kudenko [2012] to our setting, it is easy to check that

U [Z ′t(s, a)] = U [Zt(s, a)− Φt(s, a)].

Thus, under assumptions A1-A5, policy invariance holds once again as long as the actions in the new MDP are chosen
according to

π′t(s) ∈ argmaxa {U [Zt(s, a)] + U [Φt(s, a)]} ,
where ϕ(s, a) = U [Z∗(s, a)] satisfies the usual guarantees for PBRS.

4 Conclusion

We demonstrated that PBRS can be generalized to a distribution over returns, and that it preserves policy invariance in
standard DRL. A negative result is illustrated, namely that policy invariance in the risk-sensitive setting cannot be guar-
anteed for arbitrary non-linear utility functions of the return. Instead, to accommodate many rational choices of utility
functions such as CVaR, we propose to map the distributional advice to a point estimate by using the given utility func-
tion, in which case the resulting PBRS signal is risk-sensitive, policy-invariant, and is optimal in certain circumstances.
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Abstract

We consider constrained policy optimization in Reinforcement Learning (RL), where the constraints are in form of
marginals on state visitations and global action executions. Given these distributions, we formulate policy optimiza-
tion as unbalanced optimal transport over the set of occupancy measures. We propose a general purpose RL objective
based on Bregman divergence and optimize using Dykstra’s algorithm. The approach admits an actor-critic algorithm
for when the state or action space is large and only samples from the marginals are available.
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1 Introduction

Formulating RL as a linear programming problem, occupancy measures appear as an explicit constraint on the optimal
policy [Put14]. Considering the reward function as negative cost of assigning an action to a state, we view RL as a
stochastic assignment problem. We formulate policy optimization as an unbalanced optimal transport on the set of
occupancy measures.

Optimal Transport (OT) [Vil08] is the problem of adapting two distributions on possibly different spaces via a cost
function, unbalanced OT relaxes the marginal constraints on OT to arbitrary measures through penalty functions
[LMS17, CPSV17]. We therefore define distributionally-constrained reinforcement learning as a problem of optimal trans-
port. Given baseline marginals over states and actions, policy optimization is unbalanced optimal transport adapting the
state marginal to action marginal via the reward function. Built upon mathematical tools of OT, we generalize the RL
objective to the summation of a Bregman divergence DΓ and any number of arbitrary lower-semicontinuous convex
functions φ′is and an initial distribution ξ as: min

µ∈∆
DΓ(µ|ξ) +

∑N
i φi(µ), where ∆ is the set of occupancy measures (joint

distributions on states and actions generated from policies). We optimize this objective with Dykstra’s algorithm [Dyk83]
which is a method of iterative projections onto general closed convex constraint sets. Under Fenchel duality, this algo-
rithm allows decomposition of the objective into Bregman projections on the subsets corresponding to each function.

As particular case, we can regularize over the state space distribution and/or the global action execution distribution
of the desired occupancy measures. Given the reward function r and divergence functions Dψ1

and Dψ2
, our formu-

lation allows constraints on the policy optimization problem in terms of distributions on state visitations ρ′ and/or
action executions η′ as: max

µ∈∆
Eµ[r]−ε1Dψ1

(µ1 | ρ′)−ε2Dψ2

(
µT1 | η′

)
.We propose an actor-critic algorithm with function

approximation for large scale RL, for when we have access to samples from a baseline policy (off-policy sampling or
imitation learning) and samples from the constraint marginals.

2 Notation and Preliminaries

For any finite setX , letM(X ) be the set of probability distributions onX . Further we define δX (x) =

{
0 if x ∈ X
∞ otherwise

.

For p,∈ M(X ), H(p) denotes p’s entropy. For a convex function ψ : X → R with ψ(1) = 0, we define ψ-divergence:
Dψ(p|q) =

∑
x ψ
(
p(x)
q(x)

)
q(x). In particular, for ψ(x) = x log(x), Dψ(p|q) = KL(p|q) is the KL divergence between p, q.

2.1 Optimal Transport

Given measures a ∈ M(X ), b ∈ M(Y) on two sets X and Y , with a cost function C : X × Y → R, Kantorovich Optimal
Transportation is the problem of finding stochastic optimal plan µ ∈M(X×Y):min

µ
Eµ[C(x, y)]+δ{a} (µ1Y)+δ{b}

(
µT1X

)
.

Unbalanced Optimal Transport replaces hard constraints δ{a} and δ{b}, with penalty functions ε1Dψ1
(µ1|a) and

ε2Dψ2
(µT1|b), where ε1, ε2 are positive scalars. This formulation also extends OT to measures of arbitrary mass. As

ε1, ε2 →∞, the unbalanced OT approaches Kantorovich OT problem [LMS17].

To reduce the computational costs, an entropy term H(µ) is usually added to the (U)OT objective to apply scaling al-
gorithms [Cut13, CPSV17]. When X and Y are large or continuous spaces, often only samples from a, b are accessible.
Stochastic approaches usually add a relative entropy KL(µ | a ⊗ b), instead of H(µ) in order to take advantage of the
Fenchel dual of the (U)OT optimization and estimate the objective from samples out of a, b [ACPB16, SDF+18].

2.2 Reinforcement Learning

Consider a discounted MDP (S,A, P, r, γ, p0), with finite state space S and action spaceA, transition model P : S ×A →
M(S), initial distribution p0 ∈M(S), deterministic reward function r : S ×A → R and discount factor γ ∈ [0, 1). Letting
Π be the set of stationary policies on the MDP, for any policy π : S → M(A), we denote Pπ : S → M(S) to be the
induced Markov chain on S. In policy optimization, the objective is

max
π∈Π

∑

s,a

ρπ(s)π(a|s)r(s, a), (1)

where ρπ(s) = (1 − γ)
∑∞
t=0 γ

tPr(st = s|π) is the discounted stationary distribution of Pπ . For a policy π, we define its
occupancy measure µπ ∈ M(S × A), as µπ(s, a) = ρπ(s)π(a|s). Let ∆ := {µπ : π ∈ Π} be the set of occupancy measures of
Π, the following lemma bridges the two sets Π and ∆:

1
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Lemma 2.1. [SBS08][Theorem 2, Lemma2]

(i) ∆ = {µ ∈M(S ×A) :
∑
a µ(s, a) = (1− γ)p0(s) + γ

∑
s′,a′ P (s|s′, a′)µ(s′, a′) ∀s}

(ii) πµ(a|s) := µ(s, a)/
∑
a µ(s, a) is a bijection from ∆ to Π.

By multiplying π = πµ to both sides of the equation in (i), one can obtain ∆ = {µ : µ ≥ 0 , Aµµ = bµ}whereAµ = I−γPµT
and bµ = (1− γ)πp0. In the rest of paper, we may drop the superscripts µ and π, when the context is clear. Rewriting the
policy optimization objective (1) in terms of µ, we get max

µ∈∆
Eµ[r] = max

µ
Eµ[r]− δ{bµ}(Aµµ). Entropy-regularized version

of this objective relative to a given baseline µ′ ∈ ∆, is also studied [PMA10, NJG17]:

max
µ∈∆

Eµ[r]− εKL(µ|µ′) ≡ min
µ∈∆

KL
(
µ|µ′er/ε

)
, (2)

where ε is the regularization coefficient. By lemma 2.1, one can decompose the regularization term in (2) as KL(µ|µ′) =
KL (

∑
a µ|

∑
a µ
′) + Eρµ [KL (π|π′)] , with the first term penalizing the shift on state distributions and the second penalty

is over average shift of policies for every state. Since the goal is to optimize for the best policy, one might consider only
regularizing relative to π′ as in [SLA+15, NJG17]

max
µ∈∆

Eµ[r]− εEρµ [KL(π|π′)] . (3)

One can also regularize the objective byH(µ) as

max
µ∈∆

Eµ[r]− εH(µ) ≡ min
µ∈∆

KL(µ|er/ε), (4)

which encourages exploration and avoids premature convergence [HTAL17].

3 A General RL Objective with Bregman Divergence

In this section, we propose a general RL objective based on Bregman divergence and optimize using Dykstra’s algorithm.

Let Γ be a strictly convex, smooth function on relint(dom(Γ)), the relative interior of its domain, with convex conjugate
Γ∗. For any (µ, ξ) ∈ dom(Γ)× int(dom(Γ)), we define the Bregman divergence DΓ(µ|ξ) = Γ(µ)− Γ(ξ)− 〈∇Γ(ξ), µ− ξ〉.
Given ξ, we consider the optimization

min
µ
DΓ(µ|ξ) +

N∑

i

φi(µ), (5)

where φ′is are proper, lower-semicontinuous convex functions satisfying ∩Ni relint(dom(φi)) ∩ relint(dom(Γ)) 6= ∅. Let
dom(Γ) be the simplex on S×A, regularized RL algorithms in Section 2.2 can be observed as instances of optimization (5):

• Given a baseline µ′, setting Γ = H, φ1(µ) = δ{bµ}(Aµµ), ξ = µ′er/ε, recovers objective (2).

• Similarly, as discussed in [NJG17],Γ(µ) =
∑
s,a µ(s, a) logµ(s, a)/

∑
a µ(s, a), φ1 = Eµ[r/ε], φ2(µ) = δ{bµ}(Aµµ), and

ξ = µ′ recovers objective (3).

• Further, Γ = H, φ1(µ) = δ{bµ}(Aµµ), and ξ = er/ε, entropy-regularizes the occupancy measure in objective (4).

The motivation behind using Bregman divergence is to generalize the KL divergence regularization usually used in RL
algorithms. Moreover, one may replace the Bregman divergence term in (5) with a ψ-Divergence and attempt deriving
similar arguments for the rest of the paper.

3.1 Dykstra’s Algorithm

In this section, we use Dykstra’s algorithm [Dyk83] optimize objective (5). Dykstra is a method of iterative pro-
jections onto general closed convex constraint sets, which is well suited because the occupancy measure constraint
is on a compact convex polytope ∆. Defining the Proximal map of a convex function φ, with respect to DΓ, as
ProxDΓ

φ (µ) = arg min
µ̃
DΓ(µ̃|µ) + φ(µ̃), for any µ ∈ dom(Γ), we present the following proposition which is the gener-

alization of Dykstra algorithm in [Pey15]:
Proposition 3.1 (Dykstra’s algorithm). For iteration l > 0,

µ(l) = ProxDΓ

φ[l]N

(
∇Γ∗

(
∇Γ(µ(l−1))

)
+ ν(l−N)

)
, ν(l) = ν(l−N) +∇Γ(µ(l−1))−∇Γ(µ(l)), (6)

2
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with [l]N =

{
N if lmodN = 0

lmodN otherwise
, converges to the solution of optimization (5), with µ(0) = ξ and ν(i) = 0 for

−N + 1 ≤ i ≤ 0.

Intuitively, at step l, algorithm (6) projects µ(l−1) into the convex constraint set corresponding to the function φ[l]N .

As aforementioned RL objectives in Section 2.2 can be viewed as instances of optimization (5), Dykstra’s algorithm can
be used to optimize the objectives. In particular, as the constraint φN (µ) = δ{bµ}(Aµµ) occurs in each objective, each
iteration of Dykstra requires

ProxDΓ

φN
(µ) = arg min

µ̃∈∆
DΓ(µ̃|µ), (7)

which is the Bregman projection of µ onto the set of occupancy measures ∆. In the next section we apply Dykstra to
solve unbalanced optimal transport on ∆.

4 Distributionally-Constrained Policy Optimization

A natural constraint in policy optimization is to enforce a global action execution allotment and/or state visitation fre-
quency. In particular, given a positive baseline measure η′, with η′(a) being a rough execution allotment of action a over
whole state space, for a ∈ A, we can consider Dψ1

(Eρπ [π] | η′) as a global penalty constraint of policy π under its nat-
ural state distribution ρπ . Similarly, the penalty Dψ2

(ρπ | ρ′) enforces a cautious or exploratory constraint on the policy
behavior by avoiding or encouraging visitation of some states according to a given positive baseline measure ρ′ on S.

So, given baseline measures ρ′ on S and η′ on A, we define distributionally-constrained policy optimization:

max
µ∈∆

Eµ[r]− ε1Dψ1 (µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
. (8)

When Dψ1
= Dψ2

= KL, objective (8) looks similar to (2),but they are different. In (8), if ρ′ = µ′1 and η′ = µ′T1, for some

baseline µ′ ∈ ∆, then the third term is KL
(
Eρπ [π] | Eρπ′ [π′]

)
which is a global constraint on center of mass of π over the

whole state space, whereas Eρπ [KL(π | π′)] is a stronger constraint on closeness of policies on every single state. Thus (8)
generally constrains the projected marginals of µ over S and A, and (2) constrains µ element wise.

For regularization purposes in iterative policy optimization algorithm (e.g., using mirror descent), one natural choice
of the state and action marginals is to take ρ′ =

∑
a µk−1, η′ =

∑
s µk−1 at the k’th iteration. Another source for the

marginals ρ′, η′ is the empirical visitation of states and actions sampled out of an expert policy in imitation learning.

Formulation of Objective (8) is in form of UOT on the set of occupancy measures. So, for applying Dykstra algorithm,
we can add an entropy term εH(µ) to transform (8) into

max
µ∈∆
− KL(µ | ξ)−ε1Dψ1

(µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
, (9)

which means setting N = 3, φ1 = ε1Dψ1
, φ2 = ε2Dψ2

, φ3(µ) = δbµ(Aµµ), ξ = er/ε in Objective (5) 1. Hence, the Dykstra’s
algorithm can be applied with following proximal functions:

ProxKL
φ1

(µ) = diag

(
ProxKL

ε1Dψ1
(µ1)

µ1

)
µ,ProxKL

φ2
(µ) = µdiag

(
ProxKL

ε2Dψ2
(µT1)

µT1

)
,ProxKL

φ3
(µ) = arg min

µ̃∈∆
KL(µ̃|µ). (10)

In general, for appropriate choices of φ1, φ2 (e.g., Dψ1 = Dψ2 = KL) the proximal operators ave closed form solutions.
However, as discussed, φ3 in (10) has no closed form solution. We can also consider other functions for φ1, φ2 in this
scenario, for example, setting φ2(µ) = δ{η′}(µT1), changes the problem into finding a policy π which globally matches
the distribution η′ under its natural state distribution ρπ , i.e., Es∼ρπ [π(a|s)] = η(a) for any a ∈ A2.

In the next section we propose an actor-critic algorithm for large scale reinforcement learning.

4.1 Large Scale RL

When S,A are large, policy optimization via Dykstra is challenging because tabular updating of µ(s, a) is time consum-
ing or sometimes even impossible. In addition, it requires knowledge of reward function r for the initial distribution
ξ and transition model P for projection onto ∆ in (10). We derive an off-policy optimization scheme with function
approximation to address these problems.

1Coefficients ε1 and ε2 in equation (9) are different from those in equation (8).
2As a constraint, πρπ would be a feasible solution, when π(a|s) = η′(a).

3
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Replacing the last two terms of obj. (8) with their convex conjugates by dual variables u, v,Q, we get

max
µ

min
u,v,Q

Eµ
[
r −Aµ∗Q− ε1u1TA − ε21Sv

T
]

+ Ebµ [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))], (11)

where Aµ∗ is the convex conjugate (transpose) of Aµ.

Having access to samples from a baseline µ′ ∈ ∆, both helps regularize the objective (11) into an easier problem to solve,
and allows off-policy policy optimization or imitation learning [ND20]. Yet, by the discussion in Section 4, regularizing
with the term Dψ(µ|µ′) in (11) might make marginal penalties redundant, in particular when ρ′ =

∑
a µ
′ and η′ =

∑
s µ
′.

When ρ′ 6= ∑a µ
′ or η′ 6= ∑s µ

′, without the loss of generality, assume marginals ρ′ 6= ∑a µ
′ and η′ 6= ∑s µ

′. In this case,
regularizing (11) with Dψ(µ|µ′) and under Fenchel duality, we get the off-policy optimization objective

max
π

min
u,v,Q

Eµ′ [ψ∗ (r + γPπQ−Q− ε1u− ε2v) (s, a)] + (1− γ)Eπ,p0
[Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))], (12)

where u(s, a) := u(s) and v(s, a) := v(a). Now, the first term is based on expectation of baseline µ′ and can be estimated
from offline samples. In a special case, when Dψ1

= Dψ2
= KL in objective (8) and we take Dψ = KL as well, similar

derivations yield
max
π

min
u,v,Q

logEµ′ [exp (r + γPπQ−Q− ε1u− ε2v) (s, a)] + (1− γ)Ep0,π[Q(s, a)] + ε1logEρ′ [exp(u(s))] + ε2 logEη′ [exp(v(a))].

Also, when ρ′ =
∑
a µ
′ and η′ =

∑
s µ
′, following the approach in [ND20], with the change of variable ζ(s, a) := µ

µ′ (s, a),
we can rewrite (11) with importance sampling weights as a policy optimization problem

max
π,ζ

min
u,v,Q

Eµ′ [ζ(s, a) (r + γPπQ−Q− ε1u− ε2v) (s, a)] + (1− γ)Ep0,π[Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))].

We tested efficacy of our proposed algorithm on the grid-world problem. We also performed an ablation study in an
imitation learning scenario on the cart-pole problem. Results show our algorithm is able to imitate a policy with an
enforced global action distribution post-learning while maximizing the accumulated rewards. Results are omitted due
to the paper length constraints.
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Abstract
Min-max optimization problems (i.e., zero-sum games) have been used to model problems in a variety of �elds in recent years,
from machine learning to economics. The literature to date has mostly focused on static zero-sum games, assuming independent
strategy sets. In this paper, we study a form of dynamic zero-sum games, called stochastic games, with dependent strategy sets.
Just as zero-sum games with dependent strategy sets can be interpreted as zero-sum Stackelberg games, stochastic zero-sum games
with dependent strategy sets can be interpreted as zero-sum stochastic Stackelberg games. We prove the existence of an optimal
solution in zero-sum stochastic Stackelberg games (i.e., a recursive Stackelberg equilibrium), and show that a recursive Stackelberg
equilibrium can be computed in polynomial time via value iteration. Finally, we show that stochastic Stackelberg games can
model the problem of pricing and allocating goods across agents and time; more speci�cally, we propose a stochastic Stackelberg
game whose solutions correspond to a recursive competitive equilibrium in a stochastic Fisher market. We close with a series of
experiments which con�rm our theoretical results and show how value iteration performs in practice.

Keywords: Equilibrium Computation; Stackelberg Games; Market Equilibrium;
Stochastic games
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Min-max optimization has paved the way for recent progress in a variety of �elds, from machine learning to economics. These
applications require computing solutions to the min-max operator, i.e., solving a constrained min-max optimization prob-
lem, also known as zero-sum games (with independent strategy sets): i.e., minx2X maxy2Y f(x, y), where the objective function
f : X ⇥Y ! R is continuous, and the strategy sets X ⇢ Rn and Y ⇢ Rm are nonempty and compact. When f is convex-concave,
the seminal minimax theorem [14, 16] holds, and such a problem can be interpreted as a simultaneous-move zero-sum game be-
tween an outer player x and an inner player y, with the solutions (x⇤, y⇤) 2 X ⇥ Y of the min-max operator corresponding
to a Nash equilibrium. More generally, one can consider zero-sum stochastic games (with independent strategy sets) X ⇢ Rn

and Y ⇢ Rm, nonempty and compact, and a state-dependent payo� function r(s, x, y), for all s 2 S , where the players seek to
optimize their cumulative (discounted) payo�s, in expectation. When r(s, x, y) is bounded, continuous, and concave-convex in
(x, y), for all s 2 S , these games are guaranteed to have a unique solution [15],1 while the optimal policies, i.e., the per-state
collection of solutions to the min-max operator can be interpreted as a recursive Nash equilibrium of a zero-sum stochastic
game, and can be computed in polynomial time by iterative application of the min-max operator [15]. Zero-sum stochastic games
generalize zero-sum games from a single state to multiple states, and have found even more applications in a variety of �elds [11].

Recently, Goktas and Greenwald [10] studied the computation of a generalized min-max operator i.e., solving a constrained
min-max game with dependent strategy sets: i.e., minx2X maxy2Y:h(x,y)�0 r(x, y) where, in addition to the aforementioned
assumptions, h : X⇥Y ! R is continuous. Goktas and Greenwald have shown that evenmore problems of interest can be captured
by solutions to the generalized min-max operator. However, a minimax theorem is not guaranteed to hold in this setting; as a
result, these problems are best interpreted as zero-sum sequential, i.e., Stackelberg [17], games, and their solutions, as Stackelberg
equilibria. One can likewise consider zero-sum stochastic games with dependent feasible strategy sets X ⇢ Rn and Y ⇢
Rm, nonempty and compact and a state-dependent payo� function r(s, x, y), as well as a state dependent constraint function
g(s, x, y), for all s 2 S , where the players seek to optimize their cumulative (discounted) payo�s, in expectation, while satisfying
the constraint g(s, x, y) � 0 at each state s 2 S . Such a problem is best interpreted as a zero-sum stochastic Stackelberg game, for
which the appropriate solution concept is the recursive Stackelberg equilibrium (recSE). Although very little is known about
the properties of such problems, they generalize both min-max games with dependent strategy sets and zero-sum stochastic games
(with independent strategy sets), and, as we show, have novel applications.

In this paper, we prove the existence of recSE in zero-sum stochastic Stackelberg games, and show that a recSE can be computed in
(weakly) polynomial time via value iteration. We further show that stochastic Stackelberg games can be used to solve problems of
pricing and allocating goods across agents and time. In particular, we introduce stochastic Fisher markets, a stochastic general-
ization of the Fisher market [7], and a special case of Friesen’s [9] �nancial market model, which itself is a stochastic generalization
of the Arrow and Debreu model of a competitive economy [1]. We then prove the existence of recursive competitive equilibrium
[13] in this model, under the assumption that consumers have continuous and homogeneous utility functions, by characterizing
the competitive equilibria of any stochastic Fisher market as the Stackelberg equilibria of the corresponding stochastic Stackelberg
game. Finally, we use value iteration to solve various stochastic Fisher markets, highlighting the issues that value iteration might
face as a consequence of the smoothness properties of the utility functions.

1 Preliminaries

Notation We use caligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to denote matrices (e.g., X), bold
lowercase letters to denote vectors (e.g., p), bold uppercase letters to denote vector-valued random variables (e.g., �), lowercase
letters to denote scalar quantities, (e.g., x), and uppercase letters to denote scalar-valued random variables (e.g., X). We denote the
ith row vector of a matrix (e.g.,X) by the corresponding bold lowercase letter with subscript i (e.g.,xi). Similarly, we denote the jth
entry of a vector (e.g., p or xi) by the corresponding Roman lowercase letter with subscript j (e.g., pj or xij ). We denote functions
by a letter: e.g., f if the function is scalar valued, and f if the function is vector valued. We denote the vector of ones of size n by
1n. We denote the set of integers {1, . . . , n} by [n], the set of natural numbers by N, the set of real numbers by R. We denote the
postive and strictly positive elements of a set by a + and ++ subscript respectively, e.g., R+ and R++. We denote the orthogonal
projection operator onto a set C by ⇧C , i.e., ⇧C(x) = arg miny2C kx� yk2. We denote by�n = {x 2 Rn

+ |Pn
i=1 xi = 1}, and

by �(A) the set of probability measures on the set A.

A stochastic Stackelberg game (S, X , Y, µ(0), rx, ry, g, p, �) is a dynamic two-player sequential, i.e., Stackelberg, game where
one player we call the outer-player (resp. inner-player) moves through a set of states S picking an action to play from their
continuous set of actions X ⇢ Rn (resp. Y ⇢ Rm). Players start the game at an initial state determined by an initial state
distribution µ(0) : S ! [0, 1] s.t. for all states s 2 S , µ(0)(s) � 0 denotes the probability of the game being initialized at state s. At
each state s 2 S the action x 2 X chosen by the outer player determines the set of feasible actions {y 2 Y | g(s, x, y) � 0} that
the inner player can in turn play. Once the outer and inner players make their moves, they receive payo�s rx : s⇥X ⇥Y ! R and
ry : S⇥X⇥Y ! R, respectively, and the game either ends with probability 1��, where � 2 (0, 1) is called the discount factor, or
transitions to a new state s0 2 S , according to a transition probability function p : S⇥S⇥X⇥Y ! [0, 1] s.t. p(s0 | s, x, y) 2 [0, 1]

1Although Shapley’s original results concern payo�s which are bilinear in the outer and inner players’ actions, they extend directly to payo�s
which are convex-concave in the players’ actions.
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denotes the probability of transitioning to state s0 2 S from state s 2 S when a strategy pro�le (x, y) 2 X ⇥ Y is chosen by the
players.

In this paper, we focus on stochastic Stackelberg zero-sum games G(0) = (S, X , Y, µ(0), r, g, p, �), in which the outer player’s
loss is the inner player’s gain, i.e., rx = �ry . We say that a zero-sum stochastic Stackelberg game is convex-concave if, for all
s 2 S , r(s, x, y), g1(s, x, y), . . . , gd(s, x, y) are convex-concave in (x, y). A zero-sum stochastic Stackelberg game reduces to
zero-sum stochastic game [15] if for all state-action tuples (s, x, y) 2 S ⇥ X ⇥ Y , g(s, x, y) � 0. As we will show, it su�ces to
focus on deterministic policies in which a policy for the outer (resp. inner) player is a mapping from states to actions ⇡x : S ! X
(resp. ⇡y : S ! Y). The outcome of a zero-sum stochastic Stackelberg game G(0) is a policy pro�le (⇡x,⇡y) 2 X S ⇥ YS

consisting of policies for the outer and inner players, respectively. An outcome (⇡x,⇡y) 2 X S ⇥ YS is said to be feasible
if, for all states s 2 S , g(s,⇡x(s),⇡y(s)) � 0. For simplicity, we introduce a function G : X S ⇥ YS ! R|S|⇥d such that
G(⇡x,⇡y) = (g(s,⇡x(s),⇡y(s)))s2S , and de�ne feasible outcomes as those (⇡x,⇡y) 2 X S ⇥ YS s.t. G(⇡x,⇡y) � 0. For the
rest of this paper, we assume:
Assumption 1.1. 1. For all states s 2 S , the functions r(s, ·, ·), g1(s, ·, ·), . . . , gd(s, ·, ·) are continuous in (x, y) 2 X ⇥ Y with
payo�s r bounded, i.e., krk1  ↵ <1, for some ↵ 2 R+, and 2 X , Y are non-empty and compact.

Given a zero-sum stochastic Stackelberg game G(0), the state-value function, v : S ⇥ X S ⇥ YS !
R, and the action-value function, q : S ⇥ X ⇥ Y ⇥ X S ⇥ YS ! R are respectively de�ned as:
v(s;⇡x,⇡y) = E⇡x,⇡y

S(t+1)⇠p(·|S(t),X(t),Y (t))

⇥P1
t=0(1� �)�tr(S(t), X(t), Y (t)) | S(0) = s

⇤
; q(s, x, y;⇡x,⇡y) =

E⇡x,⇡y
S(t+1)⇠p(·|S(t),X(t),Y (t))

⇥P1
t=0(1� �)�tr(S(t), X(t), Y (t)) | S(0) = s X(0) = x, Y (0) = y

⇤
. For clarity, we write

expectations conditional on X(t) = ⇡x(S(t)) and Y (t) = ⇡y(S(t)) as E⇡x,⇡y , and denote the state- and action-value functions by
v⇡x⇡y (s), and q⇡x⇡y (s, x, y), respectively. Additionally, we let V = [�↵, ↵]S be the space of all state-value functions of the form
v : S ! [�↵, ↵], and we let Q = [�↵, ↵]S⇥X⇥Y be the space of all action-value functions of the form q : S ⇥ X ⇥ Y ! [�↵, ↵].
Note that by Assumption 1.1 the range of the state- and action-value functions is [�↵, ↵]. The cumulative payo� function
of the game u : X S ⇥ YS ! R is the total expected loss (resp. gain) of the outer (resp. inner) player is then given by
u(⇡x,⇡y) = Es⇠µ(0)(s) [v⇡x⇡y (s)].

De�nition 1.2. A feasible policy pro�le (⇡⇤x,⇡⇤y) 2 X S⇥YS is a recursive Stackelberg equilibrium (recSE) of a zero-sum stochas-
tic Stackelberg game G(0) i� max⇡y2YS :G(⇡⇤

x,⇡y)�0 u (⇡⇤x,⇡y)  u
�
⇡⇤x,⇡⇤y

�
 min⇡x2X S max⇡y2YS :G(⇡x,⇡y)�0 u (⇡x,⇡y).

Mathematical Preliminaries A mapping L : A ! B is said to be a contraction mapping (resp. non-expansion) w.r.t. norm
k·k i� for all x, y 2 A, and for k 2 [0, 1) (resp. k = 1) such that kL(x)� L(y)k  k kx� yk.

2 Properties of Recursive Stackelberg equilibrium

We �rst state a necessary condition that the state-value function induced by a policy pro�le needs to satisfy in order for that policy
pro�le to be a recSE. It is not directly clear if there exists a policy for any zero-sum stochastic Stackelberg game which satis�es this
necessary condition since there is no way to guarantee that such an inequality will hold at all states.2

Lemma 2.1. Consider a zero-sum stochastic Stackelberg game G(0). A policy pro�le (⇡⇤x,⇡⇤y) 2 SX ⇥ SY is a recSE if, for all
s 2 S , maxy2Y:g(s,⇡⇤

x(s),y)�0 q⇡
⇤
x⇡⇤

y (s,⇡⇤x(s), y)  q⇡
⇤
x⇡⇤

y (s,⇡⇤x(x),⇡⇤y(y))  minx2X maxy2Y:g(s,x,y)�0 q⇡
⇤
x⇡⇤

y (s, x, y).
Equivalently, a policy pro�le (⇡⇤x,⇡⇤y) is a recSE if (⇡⇤x(s),⇡⇤y(s)) is a Stackelberg equilibrium: i.e., a solution to
minx2X maxy2Y:g(s,x,y)�0 q⇡

⇤
x⇡⇤

y (s, x, y) at each s 2 S .

We de�ne an operator C : V ! V associated with a zero-sum stochastic Stackelberg game G(0) whose �xed points sat-
isfy the condition given in Lemma 2.1, and hence correspond to the value function associated with a recSE of G(0). We
then show that this operator is a contraction mapping, thereby establishing the existence of such a �xed point. This result
generalizes a result �rst shown by [15] for zero-sum stochastic games, i.e., zero-sum stochastic Stackelberg games in which
G(⇡x,⇡y) � 0, for all (⇡x,⇡y) 2 X S ⇥ YS . De�ne C : V ! V for a stochastic Stackelberg game G(0) as the operator
(Cv) (s) = minx2X maxy2Y:g(s,x,y)�0 ES0⇠p(·|s,x,y) [r(s, x, y) + �v(S0)], we have the following two results.

Theorem 2.2. (⇡⇤x,⇡⇤y) is a recSE of G(0) of v⇡x⇡y i� it induces a value function which is a �xed point of C : i.e., (⇡⇤x,⇡⇤y) is a

Stackelberg equilbrium i�, for all s 2 S,
⇣
Cv⇡

⇤
x⇡⇤

y

⌘
(s) = v⇡

⇤
x⇡⇤

y (s).

Theorem 2.3. Consider the operator C associated with a stochastic Stackelberg game G(0). If Assumption 1.1 holds, then C is a
contraction mapping w.r.t. to the sup norm k.k1 with constant �.

2All omitted results and proofs can be found in the full version.
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Given some initial state-value function v(0) 2 V , we de�ne the value iteration process as v(t+1) = Cv(t), for all t 2 N+

(Algorithm 1). One way to interpret v(t) is as the function that returns the value v(t)(s) of each state s 2 S in the t stage zero-
sum Stackelberg game starting at the last stage t and continuing until stage 0, with terminal payo�s given by v(0). The following
theorem, which is a consequence of Theorems 2.2 and 2.3, not only states the existence of a recSE but also provides us with a means
of computing a recSE via value iteration.
Theorem 2.4. Consider a zero-sum stochastic Stackelberg game G(0). If Assumption 1.1 holds, then G(0) has at least one recSE
(⇡⇤x,⇡⇤y) with unique value function v⇡

⇤
x⇡⇤

y . Further, v⇡
⇤
x⇡⇤

y can be computed by iteratively applying C to any initial state-value
function v(0) 2 V : limt!1 v(t) = v⇡

⇤
x⇡⇤

y .
Remark 2.5. Unlike Shapley’s existence theorem for recursive Nash equilibria in zero-sum stochastic games, the above theorem does
not require that the payo� function be convex-concave. The only conditions needed are continuity of the payo�s and constraints, and
bounded payo�s. This makes the recSE a potentially useful solution concept, even for non-convex-non-concave stochastic games.

Note that the proof of Theorem 2.4 shows that there exists a policy pro�le which satis�es the conditions of Lemma 2.1. Since
this recSE de�nition is independent of the initial state distribution, we can infer that the recSE of any zero-sum Stackelberg game
G(0) = (S, X , Y, µ(0), r, g, p, �) is independent of the initial state distribution µ(0). Hence, from now on, we denote a zero-
sum Stackelberg game by G. Theorem 2.4 tells us that value iteration converges to the value function associated with a recSE.
Additionally, under Assumption 1.1, recSE is computable in (weakly) polynomial time.3

Theorem 2.6. [Convergence of Value Iteration] Suppose value iteration is run on input G. If Assumption 1.1 holds, and if we initialize
v(0)(s) = 0, for all s 2 S , then for k � 1

1�� log 2↵
✏(1��) , we have v(k)(s)� v⇡

⇤
x⇡⇤

y (s)  ✏.

3 Recursive Market Equilibrium

We now introduce an application of zero-sum stochastic Stackelberg games, which generalizes a well known market model, the
Fisher market [7], to a dynamic setting in which buyers not only participate in markets across time, but their wealth persists. A
(static) Fisher market consists of n buyers and m divisible goods [7]. Each buyer i 2 [n] is endowed with a budget bi 2 Bi ⇢ R+

and a utility function ui : Rm
+ ⇥ Ti ! R, which is parameterized by a type ti 2 Ti that de�nes a preference relation over the

consumption space Rm
+ . Each good is characterized by a supply qj 2 Qj ⇢ R+. A stochastic Fisher market is a dynamic

market in which each state corresponds to a static Fisher market: i.e., each state s 2 S is characterized by a tuple (t, b, q). In
each state, the buyers choose their allocations X = (x1, . . . , xn)

T 2 Rn⇥m
+ and the market determines prices, after which the

market comes to an end with probability (1� �), or it moves into a new state with probability p(s0 | s, X).4 A stochastic Fisher
market with savings is a stochastic Fisher market in which, at each state, each buyer i, in addition to choosing their allocation,
can set aside some savings �i 2 R+ to spend at some future state, and transitions depend on their savings choices as well: i.e.,
p(s0 | s, X,�). A stochastic Fisher market with savings is denoted by (S, U , b(0), p, �). Given such a market, a recursive
competitive equilibrium (recCE) [13] is a tuple (X⇤,�⇤, p⇤) 2 Rn⇥m⇥S

+ ⇥ Rn⇥S
+ ⇥ Rm⇥S

+ , which consists of an allocation,
savings, and price system s.t. 1) the buyers are expected utility maximizing, constrained by their savings and spending constraints,
i.e., for all buyers i 2 [n], (x⇤i , �⇤i ) is the optimal policy that, for all states (t, b, q) 2 S , solves the Bellman equation ⌫i(t, b, q) =

max(xi,�i)2Rm+1
+ :xi·p⇤(t,b,q)+�ibi

n
ui (xi, ti) + � E(t0,b0,q0)⇠p(·|t,b,q,(xi,X⇤

�i(s),(�i,�⇤
�i(s))) [⌫i(t

0, b0 + �i, q
0)]
o

, where X⇤�i, �⇤�i

denote the allocation and saving systems excluding buyer i, and 2) the market clears in each state so that unallocated goods in
each state are priced at 0, i.e., for all j 2 [m] and s 2 S , p⇤j (t, b, q) > 0 =) P

i2[n] x
⇤
ij(t, b, q) = 1 and p⇤j (t, b, q) � 0 =)P

i2[n] x
⇤
ij(t, b, q)  1. The following theorem shows that the recSE of a stochastic Fisher market with savings are in fact recursive

competitive equilibria. We note that if one ignores the savings terms, then the recSE are recursive competitive equilibria of the
same market without savings.
Theorem 3.1. A stochastic Fisher market with savings (S, U , b(0), p, �) in which U is a vector of continuous and homogeneous utility
functions has at least one recCE. Additionally, the recSE (p⇤, X⇤,�⇤) that solves the following Bellman equation corresponds to the
recCE of (S, U , b(0), p, �):

v(t, b, q) = min
p2Rm

+

max
(X,�)2Rn⇥(m+1)

+ :Xp+�b

X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti)) + � E
(t0,b0,q0)⇠p(·|t,b,q,X,�)

[v(t0, b0 + �, q0)]

(1)
Remark 3.2. This result could not be obtained by modifying the Lagrangian formulation, i.e., the simultaneous-move game form, of
the Eisenberg-Gale program, because the saving problem is a convex-non-concave problem, and existence of recursive Nash equilibrium
in deterministic policies requires convex-concavity of payo�s [11].

3This convergence is only weakly polynomial time, since the computation of the generalized min-max operator applied to an arbitrary con-
tinuous function is an NP-hard problem; it is at least as hard as non-convex optimization. If, however, one restricts themselves to convex-concave
stochastic Stackelberg games, Stackelberg equilibrium is computable in polynomial time, making the problem much more tractable.

4Note that, as is standard in the literature, we assume that prices do not determine the next state since market prices are set by a “�ctional
auctioneer.” There is no market participant who determined prices!
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4 Experiments

In order to better understand the iteration complexity of value iteration, and to understand how it performs in a continuous state
space, we computed the recursive Stackelberg equilibria of various stochastic Fisher market with savings. We created markets with
three di�erent classes of utility functions, each of which endowed the state-value function with di�erent smoothness properties.5
Let ✓i 2 Rm be a vector of parameters that describes the utility function of buyer i 2 [n]. We considered the following (standard)
utility function classes: 1. linear: ui(xi) =

P
j2[m] ✓ijxij ; 2. Cobb-Douglas: ui(xi) =

Q
j2[m] x

✓ij

ij ; and 3. Leontief: ui(xi) =

minj2[m]

n
xij

✓ij

o
. Since the state space is continuous, the value function is also continuous in stochastic Fisher markets. As a result,

we used �tted value iteration, �nding a �t via linear regression (e.g., [6]). To solve the generalized min-max operator at each step
of value iteration, we used two methods: 1. nested gradient descent ascent (GDA)([10]; Algorithm 2), which is not guaranteed
to converge to a global optimum since the zero-sum Stackelberg game for stochastic Fisher markets is convex-non-concave; and
2.max-oracle gradient descent ([10]; Algorithm 3), where we used simulated annealing [5], a metaheuristic which aims to �nd a
global optimum, as the max-oracle. Although simulated annealing is not guaranteed to converge to a global optimum, we observed
that it outperformed nested GDA, more often �nding a global maximum for the inner player. To check whether the value function
computed was optimal, we measured the exploitability of the market, meaning the distance between the recursive competitive
equilibrium computed and the actual competitive equilibrium. To do so required that we check two conditions: 1) if each buyer’s
expected utility is maximized at the computed allocation and saving system at the price system output by the algorithm, and 2) if
the market always clears. For both settings, given the value function computed by value iteration, we extracted the greedy policy
and unrolled it across time to obtain the greedy actions (X(t),�(t), p(t)) at each state s(t). We then computed the cumulative
utility of the allocation and saving systems computed by the algorithms, i.e., for all i 2 [n],

PT
t=0 �

tui(x
(t)
i ), and compared

this value to the expected maximum utility u⇤i , obtained by solving the consumption/saving problem for individual buyers given
the price systems computed by our algorithms. We report the normalized distance between these two values: e.g., in the case
of two buyers, we report ||(u1,u2)�(u?1 ,u?2)||

||(u⇤
1 ,u⇤

2)|| , Finally, we measured the excess demand, which we took as the distance to market

clearance, i.e., 1
T

PT
t=1||

P
i2[n] x

(t)
i � q(t)||. The interested reader can �nd in Appendix E of the full version of the paper, a graph

of the exploitability of the recursive competitive equilibrium computed by both nested GDA and max-oracle gradient descent in all
market types (Figure 2), and a a graph of the average value of the value function across all states as it varies with time (Figure 1).

Utility type Nested GDA Max-Oracle GD
Utility Distance Market Clearance Distance Utility Distance Market Clearance Distance

Linear 6.312 1.513 0.388 2.165
Cobb-Douglas 142.717 2.189 142.03 2.169
Leontief 0.408 2.188 0.558 2.178

5 Conclusion

In this paper, we proved the existence of an optimal solution in zero-sum Stochastic Stackelberg games, and have shown that a
Stackelberg equilibrium can be computed in polynomial time via value iteration. Many sequential game models have been pro-
posed in recent years to formulate problems of mechanism design as learning problems, yet very little theoretical characterization
of mechanisms has been achieved by such work. Our work provides a �rst step in this direction, and suggests that zero-sum
Stackelberg games are tractable and useful models to learn mechanisms.
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Abstract

In this work, we investigate, how multistep lookahead affects critical points of Residual Gradient algorithms. We set up a
compound Bellman Operator for k consecutive transitions similar to TD(λ) methods and analyse the critical points of
the associated Mean Squared Bellman Error (MSBE). By collecting per state multiple successors at once, one can create a
more informative objective without increasing the requirements for function approximation architectures. In an empirical
analysis, we observe that if one uses Hessian based optimisation to minimise the MSBE, it is not possible to benefit from
larger lookahead. Already high convergence speeds and overall lower final error of a Gauss Newton algorithm seem
to prevent further improvements by larger lookahead. Only first order gradient descent shows a significant boost in
convergence for larger k, emphasizing the importance of multiple steps for existing and successful Deep Reinforcement
Learning algorithms. Our results suggest that there are still open questions for Neural Network training in Reinforcement
Learning applications.
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1 Introduction

Reinforcement Learning (RL) is a general approach to solve sequential decision making problems. When facing large
or even continuous state spaces, Value Function Approximation (VFA) must be used as inevitable and effective tool
[Bertsekas, 2012, Sutton and Barto, 2020]. Recent research efforts have focused more on Non-Linear Value Function
Approximation (NL-VFA) methods, which use Neural Networks (NN), e.g. in the form of Multi-Layer Perceptrons (MLP),
as approximation architecture. Impressive successes of NNs in solving challenging problems in pattern recognition,
computer vision, speech recognition and game playing [LeCun et al., 2015, Yu and Deng, 2015, Mnih et al., 2015, Silver
et al., 2017] have further triggered increasing efforts in applying NNs to VFA [van Hasselt et al., 2016].

A key ingredient in well performing RL algorithms, which make use of NL-VFA, are n-step returns [Mnih et al., 2016] or full
TD(λ) like multistep lookahead mechanisms [Schulman et al., 2016, 2017]. This means, instead of using (s, a, r, s′, a′) tuples,
one incorporates multiple consecutive transitions at once for learning. Due to the accumulated amount of information in
the transition data, algorithms work more reliably with better convergence or higher quality approximations.

In this work, we investigate and analyse the impact of multistep lookahead on Residual Gradient (RG) algorithms [Baird III,
1995], especially when using a Gauss Newton (GN) algorithm for optimisation [Gottwald et al., 2021]. We extend the loss
for training with multistep lookahead and derive its differential map. The influence of larger lookahead on critical points
is outlined and empirical experiments regarding convergence and generalisation performance are described.

2 Method

We use a Markov Decision Process (MDP) with a continuous state space S , discrete action space A, one step reward r and
discount factor γ to model the decision making. In this work, only deterministic transitions are considered to avoid the
Double Sampling issue when working with RG algorithms [Baird III, 1995]. The goal is to learn an optimal policy π, which
maps states to actions in such a way that an accumulated reward signal is maximised. To assess its quality, one employs
the value function Vπ : S → R, which is defined as

Vπ(s0) =

∞∑

t=0

γtr(st, π(st), st+1). (1)

Once Vπ is known, it can be used to define an improved policy. The value function under policy π is the unique fixed
point of the Bellman operator Tπ

Vπ(s) = (Tπ Vπ)(s) = r(s, π(s), s′) + γVπ(s
′) ∀s ∈ S, (2)

where s′ is the successor of s when executing the action a = π(s). For an arbitrary V : S → R, the squared difference
of the left and right hand side in Eq. (2) can be used as an objective function to convert the fixed point problem into an
optimisation task. Multistep lookahead is now obtained by k repeated applications of the operator. This can either be
done by summing all powers of Tπ with exponential weighting to obtain the TD(λ) method, or by using only finite many
powers and combining them as simple average. In the latter case, one defines Tπ for several steps k by introducing the
compound operator

T(k)
π =

1

k

k∑

i=1

Ti
π . (3)

As an example, three step lookahead results in T
(3)
π = 1/3

(
T1
π +T2

π +T3
π

)
with (T2

π V )(s) = r(s, π(s), s′)+γr(s′, π(s′), s′′)+
γ2V (s′′) and (T3

π V )(s) = r(s, π(s), s′) + γr(s′, π(s′), s′′) + γ2r(s′′, π(s′′), s′′′) + γ3V (s′′′). Higher powers of Tπ are defined
similarly. The fixed point of T(k)

π is still Vπ as defined in Eq. (1) and yields the condition Vπ(s) = (T
(k)
π Vπ)(s). Hence, T(k)

π

also allows for a conversion of the fixed point iteration into a root finding problem by defining

δ(s, s′, s′′, . . . , s(k)) := V (s)− (T(k)
π V )(s). (4)

The current state s and its k successors s′, s′′ until s(k) are collected from the dynamical system under control according to
the current policy. After collecting a batch of N start states si, which are uniformly distributed in the whole state space,
and their successors s(j)i , one can approximate a solution to the root finding problem with the MLP f : W × S → R by
minimising the multistep Neural Mean Squared Bellman Error (NMSBE)

J (W) :=
1

2N

N∑

i=1

(
f(W, si)−

k−1∑

j=0

(k − j)γ
j

k
rij −

k∑

j=1

γj

k
f(W, s

(j)
i )
)2

=
1

2N
∆(k)
π (W)T∆(k)

π (W), (5)

where the expression ∆
(k)
π (W) ∈ RN takes the form

∆(k)
π (W) := F (W)− 1

k
R(k)
π −

1

k

k∑

j=1

γjF (j)(W) (6)
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by collecting for all i the evaluation of f for the states as vector F (W) := [f(W, s1) . . . f(W, sN )]T ∈ RN . Further, we use
the abbreviation rij = r(s

(j)
i , π(s

(j)
i ), s

(j+1)
i ) and accumulate all reward terms in R(k)

π . Critical points of J (W) are now
characterised by the equation

∇WJ (W) =
1

N

(
G(W)− 1

k

k∑

j=1

γjG(j)(W)

︸ ︷︷ ︸
=:G̃(W)∈RN×Nnet

)T
∆(k)
π (W) = 0, (7)

where G(W) is the differential map of F with respect to the parameters W evaluated at all start states. With G(j)(W)

we denote the same item but use the j-th successor states as input. We see that T(k)
π provides a richer objective for the

optimisation problem than T
(1)
π without increasing the required number of network parameters to allow for a full rank of

G̃(W). A full rank of G̃(W) is important to ensure that any critical point achieves zero error, since in this case ∆
(k)
π (W) = 0

is the only way to satisfy the critical point condition of Eq. (7). This property is important, as it removes local minima and
saddle points. In practical applications, the rank of G̃(W) is full, since sampling and numerical inaccuracies are present. If
exact learning is out of reach, i.e., ∆(k)

π (W) 6= 0 ∀W ∈ W , the objective is free of critical points. One can run a descent
algorithm as long as possible.

There remains an open problem in the definition of ∆
(k)
π (W), which exists due to the sampling of states and their

successors. We hypothesize that with only one step transitions, it is relatively easy to sample states with large pairwise
distances. Especially in high dimensional spaces, this could be rather common. In such a case, an MLP could approximate
a function, where ∆

(1)
π (W) becomes zero without being everywhere close to Vπ, because for some states the transition

information to remaining parts of the state space might not be present in the sampled data. Thus, the sampling based
loss of Eq. (5) has uncontrollable degrees of freedom and for k = 1, one can even construct examples to demonstrate this
issue. We expect that a multistep lookahead algorithm helps here. Due to the use of trajectories, one ensures that there are
proper transitions between states and their various successors available. The chance that parts of the state space are not
sufficiently connected is reduced. Hence, an MLP has less possibilities to approximate functions, which would shrink the
length of ∆(k)

π (W) to zero without becoming close to Vπ .

From a theoretical perspective, one would expect a better performance when switching to multistep methods. This
expectation is supported by the empirical behaviour of existing algorithms. When using k-step returns Tk

π for training, e.g.
as done in [Mnih et al., 2016], or when employing full TD(λ)-like methods as in [Schulman et al., 2016, 2017], one obtains
well performing algorithms. Multiple steps can compensate the convergence issues of Semi-Gradient algorithms, which
exist due to the missing derivates of the MLP for successor states with respect to the parameters. Because expressions
receive higher powers of the discount factor, they have less impact. If the lookahead becomes large, the terms vanish
naturally such that omitted dependencies no longer cause any harm. Opposed to that, we observe that a Gauss Newton
Residual Gradient algorithm converges already without problems with only single-step lookahead. Hence, we argue
that a beneficial impact of multistep-lookahead depends directly on the algorithm and problem at hand. To clarify our
considerations, we compare first order and Hessian based descent algorithms and test, whether different values for k
create a meaningful difference.

3 Experiments

We use the Mountain Car environment from [Brockman et al., 2016] with additional transitions from the goal region to the
valley to obtain an infinite horizon MDP. Training is performed in a batch setting with both a GN and first order only RG
algorithm. For the first, we use a constant learning rate α = 0.1, for the latter α = 0.01. Start states are sampled uniformly
from the whole space. We use N = 300 samples for training. Additional states, which are arranged on a grid with a high
resolution (500× 500), serve as test dataset. For representing value functions, we take an MLP consisting of two hidden
layers with ten units each and employ Bent-Id activation functions. The input layer accepts two dimensional state vectors.
The output is scalar with linear activation. Initial parameters are drawn elementwise uniformly from the interval [−1, 1].
We set the discount factor to γ = 0.99 and the policy for evaluation to accelerating in the direction of movement. For the
lookahead we consider k ∈ {1, 2, 3, 4, 5}. We show results for 25 repetitions, where we randomise the training data and
initial network parameters in each run.

When visualising the descent behaviour in Fig. 1, we observe a missing impact of T(k)
π with increasing k for GN based

optimisation. Using multiple transitions during training does not help with convergence. Opposed to that, when training
with a first order only RG algorithm, the convergence speed can be enhanced significantly by varying k. The well-known
slow convergence of RG algorithms for k = 1 vanishes with larger values. For both first order and Hessian based
optimisation, a stepwise larger k results in worse final training errors. This could be explained by the fact that an MLP
with identical capacity must fit a more complex objective.
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Figure 1: The impact of multistep lookahead onto first order and Hessian based RG algorithms. Only first order
optimisation profits from larger k. For both methods, the final achieved training error increases slightly with bigger k.
Top: First order optimisation. Bottom: Gauss Newton algorithm.

To compare training outcomes fairly, we evaluate the MLP at the end of training with the held out test set. Figs. 2a and 2b
show the final test errors for all k for both optimisation methods. We see, that the average test error increases with k for
first order gradient descent, implying that the solutions become worse. This matches the increase of training errors. For
Hessian based optimisation, we observe a similar rise, but not as pronounced. Interestingly, the best approximated value
function for k = 5, which is shown in Fig. 2f, possesses a qualitatively better shape despite a higher test error than the
best value function for k = 1 in Fig. 2e. The value functions for first order optimisation are for all k almost identical to
that of Fig. 2d and do not reflect the details of the actual value function Vπ , which is obtained from Monte Carlo methods
and shown in Fig. 2c. We conclude that using a test dataset is not a perfect reliable assessment. This could be due to the
aforementioned open problems regarding the objective of Eq. (7) and its critical point condition.

4 Conclusion

We have seen that the compatibility of multistep lookahead formulations is not given when employing Gauss Newton
Residual Gradient algorithms. Although we can demonstrate the beneficial impact of multiple steps on a first order
only Residual Gradient algorithm and we also see that a Hessian based optimisation performs well when using single
transitions, their combination does not lead to an even more impressive algorithm. Since this happens in relatively
easy control problems, our experiments suggest that a proper formulation of the optimisation problem is mandatory
and, unfortunately, to some extent still an unsolved problem. There are open questions about the critical points of the
objective, in particular when using sampling based approximations, and it is not known, whether this loss is suited for
Deep Reinforcement Learning with Residual Gradient algorithms. Furthermore, a sound performance evaluation is also a
challenge on its own.

Our results show that whenever one is restricted to first order only optimisation, it is important to use multistep methods
to overcome the slow convergence of Residual Gradient algorithms. If the quality of the solution is more important, one
should use Hessian information, at least in an approximated form. The final NMSBE is significantly smaller, convergence
is fast and one only requires transition data consisting of a single step.

In this work, we have analysed a compound Bellman operator with uniform averaging. Hence, as a next step, it is
important to know, whether also TD(λ) methods show this incompatibility.
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Figure 2: a) and b): Final test errors for first and second order optimisation. c) to f): Ground truth value function and the
best approximations according to the smallest test errors.
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Abstract

Foraging has been suggested to provide a naturalistic context for studying decision-making. In the wild and in the
laboratory, foragers come close to approximating the optimal decision strategy given by Marginal Value Theorem (MVT;
Charnov, 1976). Recent work has used reinforcement learning to understand how the variables for decision-making
under an MVT-policy are learned (Garrett & Daw, 2020; Simon & Daw, 2011). This work often implicitly assumes the
forager begins with a specific, fixed representation of the environment. However, it is likely that this representation is also
something that must be learned. Here we ask — can foragers learn a representation of the environment and, importantly,
do they adapt their decision strategies and value computations to this representation as it evolves? We propose a model
of how foragers could use principled statistical inference to organize their past experiences into a representation that
guides decision-making. The model was tested in a variant of a serial stay/switch foraging task with multimodal reward
distributions and non-uniform transition structure between patch types. In this task, participants adapted their foraging
to both the richness of the local context and their internal uncertainty. These results are consistent with participants
having learned and used a model of the environment to guide their decisions. Overall, these findings demonstrate the
utility of combining representation learning and reinforcement learning to understand foraging behavior.

Keywords: foraging, structure learning, model-based reinforcement learning
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1 Introduction

Decision-makers commonly choose between staying with a current option or foregoing it in hope of a better future
alternative. Such decisions arise in ethology where they are known as patch leaving problems in which a patch refers to
a concentration of resources in the environment. In solving these problems, foragers must weigh the the costs and benefits
of harvesting an often depleting resource against those associated with searching for a new, unharvested one. An optimal
solution is given by Marginal Value Theorem under a certain set of assumptions (MVT; Charnov, 1976) — a forager should
leave the current depleting patch once its reward rate falls below the overall reward rate of the environment. Relative to
MVT, it’s been widely observed that foragers from rodents to humans stay longer than prescribed (Blanchard & Hayden,
2015; Constantino & Daw, 2015; Kane et al., 2019). This is known as overharvesting.

MVT’s predictions assume the forager has complete knowledge of the environment and its dynamics. Consequently,
MVT provides how the decision should be made, but it does not explicitly describe how its key decision variables, the
local and global reward rates, should be learned. However, this assumption of complete knowledge is not often met in
the real world. This suggests more naturalistic patching leaving is both a decision-making and a learning problem. A
potential simple learning rule involves keeping a running average of rewards across all past patch experiences in the
environment (Constantino & Daw, 2015).

These simple learning rules work well in simple, homogeneous environments in which patches are similar to one another.
However, real world environments are often complex with regions varying in richness (McNamara & Houston, 1985;
Sparrow, 1999). In more naturalistic environments, it may be beneficial to group patches of similar richness together to
form a multi-state representation that affords contextually-appropriate and dynamic estimates of the local and global
reward rates. In standard reinforcement settings, humans use a similar strategy — they track environmental statistics
and leverage them to adaptively adjust reward-related computations (Behrens, Woolrich, Walton, & Rushworth, 2007;
Simon & Daw, 2011). Thus, we asked — in a foraging context, do decision-makers learn an internal representation of
the environment and adapt their strategies and computations with respect to it? We propose a model of how foragers
may incrementally build such a representation from past experiences and use it during decision-making. We then test its
predictions with a novel serial stay-switch task.

2 Latent Cause Model

2.1 Learning a state representation of the environment

Latent-cause inference provides a framework for building state space representations out of past experiences (Courville,
Daw, & Touretzky, 2006; Gershman, Norman, & Niv, 2015). Under this framework, representation learning is treated as
a clustering problem in which an experience is assigned to a pre-existing cluster based on its similarity to experiences
previously assigned to the cluster. In a new environment, the learner begins with a single cluster, or state, to which
experiences can belong. New experiences that differ significantly from past ones can initiate the creation of a new cluster.
Thus, the complexity of the representation is allowed to grow incrementally as experience warrants it. Through princi-
pled statistical learning, the learner develops a representation with a useful number of clusters — enough to allow for
contextually-specific predictions but few enough to enable generalization across experiences.

Within a foraging context, past experiences could correspond to reward decays experienced while harvesting patches
and states to patch types that differ in their richness. To infer the current patch type or state, the observer must combine
their past experiences with current experience. The prior probability of a patch belonging to a patch type, p, at time t is
given by:

P (p) =

{
Np

t−1+α if p is an old patch type
α

t−1+α if p is a new patch type
(1)

Where Np is the number of patches already assigned to that patch type and α is the prior over environment complexity.
This formally instantiates the assumptions that 1) the current patch type is more likely to be a frequently visited one and
2) there always remains some probability that a new patch belongs to a previously unobserved patch type. In our model,
we allow the structure learning parameter, α, to be a free parameter fit to individual participants’ choice data.

A set of reward decays at time t, Dt, can be combined with the prior probability specified in Equation 1 to generate a
posterior distribution over patch types.

P (pt|Dt) =
P (Dt|pt)P (pt)

p(Dt)
(2)
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Figure 1: Task structure. A. Participants sequentially decided whether to stay dig from a depleting gem mine or incurring
a time cost to leave for a new planet with a replenished mine. B. The decay rate distributions associated with rich, neutral,
and poor planet types and and transition probabilities between planet types when leaving for a new planet.

where pt is a potential patch type. Each patch type has a unique distribution over decay rates associated with it that
determines P (Dt|pt).
Exact computation of this posterior is computationally demanding, so we use particle filtering as an approximate in-
ference algorithm (Gershman et al., 2015; Sanborn, Griffiths, & Navarro, 2006). Harhen, Hartley, and Bornstein (2021)
contains further implementation details.

2.2 Using structure to inform stay/leave decisions

The forager compares the value of staying and leaving and selects the higher-valued option. The value of staying is taken
as the reward received on the last harvest, rt, multiplied by the predicted decay rate, d̂, if the forager were to stay again.

Vstay = rt ∗ d̂ (3)

To generate d̂ the agent samples from patch type-specific decay rate distributions. The probability of sampling from a
planet type is proportional to its posterior probability of the current planet belonging to that cluster, P (pt|Dt).

The value of leaving is estimated by averaging over the reward rates from all previously encountered patches discounted
by some factor, γ.

Vleave = γ
rtotal
ttotal

tharvest (4)

Theoretical work has suggested that discounting factors that adapt to an agent’s internal uncertainty can be beneficial
in complex environments (Jiang, Kulesza, Singh, & Lewis, 2015). Following this, we allow γ to be dynamic, flexibly
adjusting to the individual’s uncertainty over the accuracy of their internal representation. Here, we compute uncertainty
as being proportional to the entropy of the samples drawn to generate, d̂.

We compared this structure learning model to two models previously used to explain human foraging behavior in Con-
stantino & Daw (2015) – a temporal difference learning model (TD) and a MVT learning model that learns the mean
decay rate and global reward rate of the environment (MVT learn). Each model’s fit to the data was evaluated using
a 10-fold cross validation procedure. For each participant, we shuffled their PRTs on all visited planets and split them
into 10 separate training/test datasets. The best fitting parameters were those that minimized the sum of squared error
(SSE) between the participant’s PRT and the model’s predicted PRT on each planet in the training set. Then, with the
held out test dataset, the model was simulated with the best fitting parameters and the SSE was calculated between the
participant’s true PRT and the model’s PRT. To compute the model’s final cross validation score, we summed over the
test SSE from each fold.

3 Methods

We tested whether participants could learn an internal representation of a three patch type environment and use it to
guide their foraging decisions. Past human foraging work has focused on either single patch type environments or multi-
patch type environments in which patch types of differing richness are blocked off from one another. To more closely
mimic real world conditions, we interleaved the three patch types and did not indicate that patches could differ from
one another.
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Figure 2: Behavioral results. A. With experience, participant’s planet residence times (PRT) became closer to those
prescribed by an MVT-optimal policy (at 0). B. Participants were slower in making their first decision on a new planet
following a switch to a different planet type relative to if there was no switch.

Specifically, we investigated how humans learn in a serial stay/switch foraging task (Constantino & Daw, 2015). Par-
ticipants visited planets where they would dig for space treasure (Figure 1A). On a planet, participants had to choose
between staying and digging from a depleting mine or incurring a time cost to travel to a new planet with a replenished
mine. Their goal was to collect as many gems as possible across the span of the game. Participants completed 5 blocks
lasting 6 minutes each. The environment consisted of three planet types differing in richness – rich, neutral, and poor
(Figure 1B). Rich planets had decay rates sampled from a distribution with a higher expected value and hence would
deplete more slowly relative to the poor and neutral planets. Participants were not told that planets differed in quality
requiring them to infer this from experienced rewards alone. Planets of a similar type temporally clustered together
resembling natural environments’ spatiotemporal correlations in richness. When the participant left a planet, there was a
80% probability they would travel to a planet of the same type. If traveling to a planet of differing quality, it was equally
likely to be one of the two remaining planet types.

We recruited 198 participants from Amazon Mechanical Turk (ages 23-64, Mean=39.79, SD=10.56). Participation was
restricted to workers who had completed at least 100 prior studies and had at least a 99% approval rate. Participants
were paid $6 as a base payment and could earn a bonus contingent on performance ($0-4). We excluded 82 participants
for having average planet residence times 2 standard deviations above or below the group mean, failing a quiz on the
task instructions more than 2 times, and/or missing catch questions. The catch questions asked participant’s to press the
letter ”Z” on their keyboard at random intervals throughout the task. This was meant to ”catch” participants who were
repeatedly making repetitive choices in a manner not guided by value.

4 Results

As predicted by MVT, participants stayed longer the richer the planet was (rich vs. neutral - t(115)= 19.77, p < 0.0001;
neutral vs. poor - t(115) = 12.57, p < 0.0001). When directly comparing to MVT, participants on average overharvested
across the entire experiment (t(115) = 3.88, p = 0.00018). MVT assumes perfect knowledge of the environment’s structure.
If participants learned the structure of the task environment, then the extent of over harvesting should diminish as they
accumulate more experience. Participants did just that, overharvesting more in the initial two blocks relative to the final
two (Figure 2A, t(115) = 3.27, p = 0.0014). Further suggesting a multi-state representation, participants demonstrated
context sensitivity, overharvesting only on poor and neutral planets but not on rich (Figure 2d; poor - t(115) = 6.92,
p < 0.0001; neutral - t(115) = 9.00, p < 0.0001; rich - t(115) = 1.38, p = 0.17). Participants’ reaction times provided further
evidence of structure learning. We reasoned that learners sensitive to structure should demonstrate switch costs when
transitioning between planets of a different type. Consistent with this, participants were slower in making their initial
choice on planets who differed in type from the most recent prior planet (Figure 2B, t(115) = 2.65,p = 0.0093).

Computational modeling results further supported participants’ use of an internal model of the environment. Based
on cross validation scores, the adaptive discounting model provided a better account of participants’ choices relative to
the two other models that assumed no structure learning (Figure 2AB). In the adaptive discounting model, the structure
learning parameter α must be greater than 0 to allow for multi-state inference. In simulation, the lowest setting of α that
lead to multiple states being inferred in at least 90% of simulation runs was 0.8. Thus, this value was used as our baseline
for assessing structure learning. We found that 76% of participants had a fit α greater than than this threshold (Figure 3C).
Validating α as a measure of individual structure learning ability, participant’s with higher fit α demonstrated greater
switch costs (Figure 3D, Kendall’s τ = 0.24, p = 0.00076).

Prior theoretical work has demonstrated that decision-makers should monitor the uncertainty over the accuracy of their
model of the environment and adapt their planning horizon to it (Jiang et al., 2015). Based on this normative work and
empirical findings that humans similarly adapt their discounting of future value to internal uncertainty (Gershman &
Bhui, 2020), we reasoned that participants’ choices in this more complex, naturalistic environment environment would

3
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Figure 3: Model fitting results. A. The planet residence time (PRT) of the agent, whether real or simulated, is compared to
the PRT of an MVT optimal agent who has complete knowledge of the environment. This done by taking the difference
of the two PRTs. PRTs above 0 reflect overharvesting behavior while below underharvesting. Error bars are S.E.M.
B. Model comparison using cross validation (CV) between the adaptive discounting, temporal difference learning, and
MVT augmented with learning models. A lower CV score indicates the model provided a better account of participants
behavior. C. Each subjects’ best fitting structure learning parameter or α. The baseline was set to the lowest value that
lead to multiple planet types being inferred in at least 90% of simulation runs (0.8). 76% of participants were above this
threshold. D. There was a positive correlation between participants’ structure learning parameter, α, and their reaction
time switch cost.

be better fit by a model that dynamically adjusts its discounting rate as more experience is accumulated and uncertainty
reduced. Consistent with this hypothesis, 93% of participants had an uncertainty adaptation parameter greater than 0.

5 Conclusion

We found evidence that participants learned the structure of their environment and adjusted both their strategies and
computations to it. These findings highlight the importance of representation learning in shaping foraging decisions.
Consistent with work examining the use of model-based strategies in standard reinforcement learning tasks, we observed
considerable individual differences in the sensitivity to task structure and in the adaptation to it. Therefore, a potential
future direction is to examine how individual differences in representation learning can explain variability in individuals’
deviations from MVT optimality (Harhen & Bornstein, 2021).
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Abstract

We contend that the power of reinforcement learning comes
from its fundamental declarative nature, allowing a system
designer to consider what an agent’s objective is instead of
the details of how this objective can ultimately be achieved.
This abstract provides some early design ideas for creating
an end-user-oriented reinforcement-learning system based on
the trigger-action programming model. We propose a study
designed to highlight the similarities and differences of this
end-user-based reinforcement-learning language to more es-
tablished end-user trigger-action programming.

Introduction
Historically, much of research within the reinforcement-
learning community has been directed at applying and de-
signing algorithms to create intelligent agents that solve spe-
cific problems [Sutton and Barto 1998]. In recent years, this
approach to reinforcement learning (RL) has produced ex-
emplary results, with engineers being able to create agents
that rival or even surpass the best human-level performances
on some problems [Mnih et al. 2015, Silver et al. 2016]. In
contrast, little effort has been put into studying how non-
experts can interact with these systems.

An RL “programmer” needs to identify three things to the
algorithm: (1) the actions an agent can take in the environ-
ment, (2) the state variables of the environment the agent
should be concerned with, and (3) the reward function, or
more simply, a goal that the agent should complete. That
is, while RL researchers typically take actions, states, and
goals as given and focus on how to design agents that can
take actions to achieve goal states, RL users are the ones re-
sponsible for defining these parameters in the first place. Bad
choices can lead to intractable learning problems because
of either under-specification (critical aspects of the problem
are not accessible by the learner) or over-specification (too
many details are given to the learner, making learning and
generalization difficult).

For some tasks and for some users, finding the right ac-
tions, states, and goals may be considerably easier than ex-
plicitly articulating the choices the agent should make. For

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

others, perhaps not. Our research objective is understanding
where that line might be.

Our baseline for comparisons is trigger-action program-
ming [Ur et al. 2014, Huang and Cakmak 2015, Zhang et al.
2020], a methodology in broad use that allows end users to
specify behaviors for data analysis, smart home devices, and
other applications. A trigger-action program (TAP) consists
of a set of rules, each of which has a trigger (something that
has become true of the world) and action (an intervention
that should be taken in response). Triggers can be primi-
tive events or a primitive event combined with one or more
conditions. An example TAP rule in the home-automation
domain is: “If I arrive home (trigger event) while the in-
door temperature is above 75 degrees (trigger condition)
then turn on the AC (action).” Existing research shows that
end users with no programming experience are able to con-
struct and interpret TAPs, providing some support for the
contention that this style of programming strikes a useful
balance between ease of use and expressive power.

In this work, we observe that the actions in TAP are anal-
ogous to the actions in RL, while the triggers are akin to
states. Thus, an RL task can be specified by a set of triggers
(which constitute the learner’s states), actions (which consti-
tute the learner’s actions), and a special trigger (which acts
as the learner’s goal).

Proposed Interface
Our interface is a modified version of the AutoTap project
created by Zhang et al. (2019) to support the construction
of TAPs. We have repurposed this framework to provide ac-
tions and triggers for a scenario in which a mobile robot
is tasked with moving boxes throughout a house. We cre-
ated two interfaces: TAP and RL. In both versions, users
are greeted with a page allowing them to create new rules
that guide agent behavior using the associated programming
style.

In the TAP version, the user creates rules that pair a trigger
and an action. (See Figure 1.)

In the RL version (see Figure 2), the user specifies a set
of parts, each of which belongs to one of three selected cat-
egories: ‘Consider doing:’, ‘Pay attention to:’, and ‘Get a
‘yes’ answer to:’. The part finishes the clause started by the
corresponding category. Parts take the form of conditions
that can be true or false given the current state of the envi-
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Figure 1: An example of a TAP ruleset in our system.

ronment or actions that can be performed by the agent. By
combining a category with a part, a user specifies an action
that the agent can take (‘Consider doing:’), a state variable
the agent should be concerned with (‘Pay attention to:’) or
the goal of the agent (‘Get a ‘yes’ answer to:’).

Figure 2: An example of an RL ruleset in our system.

Proposed Experiment Design
Our experiment will involve two groups of 20 participants
with no prior experience in programming. One group will
randomly be assigned to the TAP condition while the other
will be assigned to the RL condition. Both groups will re-
ceive instructions on how to access the website with our
program-creation framework.

Users would then be given four programming tasks of in-
creasing difficulty and tasked with writing rules to control an
agent to solve each task. The tasks involve a robot navigating
through a house and moving items around in it (Figure 3).

Triggers in the system include ‘Robot is in room X’,
‘There is a red/blue block in room X’, and ‘Robot is hold-
ing a red/blue block’. Actions that the robot can take include
‘Go through a door to the North/South/East/West’, ‘Pick up
a red/blue block in your current room’, and ‘Put down held
block’.

Table 1 provides an example set of tasks and the number
of TAP rules or RL parts needed to solve them. Although the
number of required RL parts is consistently larger than the
TAP rule sets, the assembly of RL parts is performed by the
learner, which may make it easier to select them.

After users finish writing their programs, they submit

Figure 3: Floorplan of the house for our experiments. The
blue dot is the agent controlled by the behavior specified by
the user. Red dots are blocks in the enviornment that can be
picked up and moved by the agent.

Table 1: Proposed tasks for our experiments.

Instruction TAP rules RL parts
Starting from the entry, go to
the kitchen.

1 3

Wherever you start, go to the
master bedroom.

8 12

Starting from the entry, bring
back the blue box from the
master bathroom.

7 13

Starting from the entry, clear
all of the red boxes out of the
hall.

6 12

them to our database for analysis. Solutions that miss com-
ponents that are necessary to complete the task or put agents
into situations where they have no available actions will be
deemed incomplete. Solutions will be graded according to a
rubric determined in advance for each task.

We are interested in statistics such as: How often does
each programming style succeed on each task? Is there any
pattern to how the success rates change as the task difficulty
increases? Is a certain programming style better suited to
certain tasks? How often do participants include unneces-
sary components? How often do they miss required com-
ponents? Are there consistent errors that participants make
that might be reduced through careful interface design? Ul-
timately, we are interested in assessing if RL can be a viable
programming language for end users.
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Abstract

In this work, we study two self-play training schemes, Chainer and Pool, and show they lead to improved agent per-
formance in Atari Pong compared to a standard DQN agent—trained against the built-in Atari opponent. To measure
agent performance, we define a robustness metric that captures how difficult it is to learn a strategy that beats the agent’s
learned policy.Through playing past versions of themselves, Chainer and Pool are able to target weaknesses in their poli-
cies and improve their resistance to attack. Agents trained using these methods score well on our robustness metric and
can easily defeat the standard DQN agent. We conclude by using linear probing to illuminate what internal structures
the different agents develop to play the game. We show that training agents with Chainer or Pool leads to richer network
activations with greater predictive power to estimate critical game-state features compared to the standard DQN agent.

Keywords: Adversarial Training, DQN, Pong, Deep Reinforcement Learning,
Robustness, Chainer, Pool
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1 Introduction

Since the introduction in 2013, DQN [Mnih et al., 2013] has been accepted as outperforming human-level play in a range
of Atari games. However, a fundamental question about what these agents truly learn remains: Are they picking up
on gameplay techniques and fundamental scoring concepts, or are they merely exploiting idiosyncrasies in the game
dynamics? As an example, a small change to the opponent policy can totally confuse a standard DQN-trained agent
because it overfits to the opponent gameplay weaknesses instead of learning the essential skills of the game [Witty et al.].
Furthermore, are there ways of training Deep RL agents that can facilitate their learning of the essential rules of the
game, leading to more robust policies? We aim to answer these questions in the game of Pong, showing that adversarial
training schemes can extract more context-relevant information leading to stronger policies.

2 Background

The environment is modeled as a a time-homogeneous Markov Decision Process (X,A,R, P, γ). As usual, X and A rep-
resent state and action spaces, respectively, while the transition kernel P (·|x, a) defines the dynamics of the environment.
Reward function R(x, a) provides a signal to direct learning. Deep Q Networks, or DQN, is an approach to learning to
optimize behavior in such environments. It applies several strategies to stabilize learning compared to naive learning
approaches: replay buffer sampling, a target network, and frame pre-processing tricks.

Recent years have seen an uptick in the attention researchers have paid to questions of generalization of reinforcement-
learning models. Packer et al. [2018] found that the vanilla deep RL algorithms have better generalization performance
than specialized schemes that were proposed specifically to tackle generalization. In addition, Kansky et al. [2017] argued
that generalizing from limited data and learning causal relationships are essential abilities on the path toward general
intelligent systems.

Probe techniques used by Tenney et al. [2019] were useful to determine where different kinds of linguistic information is
encoded in a large language model by correlating network activations with known properties of inputs. We apply these
methods to our work, using linear probing to investigate the ability of the learned networks to support a heuristic task
that well-trained agents should be able to perform well on.

Up until now, DQN in Pong has been trained non-adversarially, where a single agent competes against a static opponent
modelled by the computer. The thesis of this paper is that adversarially trained agents are better than those trained
non-adversarially in that they should develop policies prepared to handle a broader array of scenarios.

We observe in the training of a standard DQN agent (referring to a learner trained non-adversarial) in Pong that the agent
learns to exploit weaknesses in the built-in Atari opponent—after a few million training steps, it perfects a “kill shot”
aimed always at the upper or lower quadrants of the board that the built-in Atari agent cannot return. In our work, we
change the dynamics of the opponent, and we demonstrate that doing so pushes the learner to focus on learning a more
generalizable understanding of the game itself, robustly improving its skills in the process.

3 Methodology

Our adversarial training schemes pit the current agent against a previous version of itself. The key difference between the
two algorithms we propose is which previous agent the current agent faces. We used the Gym Retro Atari implementation
of Pong, which allows us to control both the left and right paddles independently. We chose Pong as a test bed because
it is challenging, but small scale, allowing many training runs in a short amount of time.

In addition, Pong is well suited to adversarial training because the board is vertically symmetric, allowing us to easily
create self-playing agents using a single policy. Specifically, if an agent is trained on one side, we can symmetrically
reflect the game board as input to the agent to apply the same policy to the opposite side. To avoid overfitting the agent
to a single side of the board, we randomly assign the agent a game side to play periodically. Under this uniform setting,
we empirically tested two methods of self-play, Pool and Chainer, described in the following sections. We use the standard
DQN agent as a baseline and our empirical results show that it is much weaker than the pool and chainer agents.

3.1 Pool

Pool, described in Algorithm 1, plays against a randomly selected previous agent from a queue of fixed size. Periodically,
the current version of the agent is frozen and appended to the queue, creating a set of most up-to-date adversaries to
play against. The opponent is updated periodically by sampling from this queue. In practice, we set the queue size to 5
and add new agents to the pool every 250, 000 steps.

1
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3.2 Chainer

Chainer, described in Algorithm 2, plays the current version of the agent, An, solely against its immediate predecessor,
An−1. When An achieves a fixed evaluation threshold, defined here as getting above an average score of 15 over 10
matches, the current agent An replaces the opponent’s policy and a successor An+1 will continue to be trained from
the policy of An. We initialize the first member of the chain, A0, with a standard DQN agent trained for 45 million
steps. Agent A1 is trained from scratch (tabla rasa) to play against agent A0. This training approach allows the agent to
continually improve its skill without overfitting to a specific opponent (which would stagnate the skill learning of the
agent).

Algorithm 1 Pool Self-Play Algorithm

P ← p, pool update frequency
S ← s, step counter
Initialize Agent
Initialize Env
Initialize Pool of fixed size
Initialize Opponent
while True do

interact(Agent, Opponent, Env)
update(Agent)
if S%P == 0 then

Pool← freeze(Agent)
Opponent← sample(Pool)

end if
S+ = 1

end while

Algorithm 2 Chainer Self-Play Algorithm

S ← 0, the number of steps
C ← c, the evaluation frequency
i← 1, current length of chain
t← 15, the iteration threshold
Initialize Ai, the current agent.
Initialize Opponent A0, the standard DQN agent
while True do

interact(Agent: Ai, Opponent: Ai−1, Env)
update(Agent: Ai)
if S%C == 0 then

average score = evaluate(Ai, Ai−1)
if average score > t then

Opponent← Ai

i+ = 1
end if

end if
S+ = 1

end while

3.3 Linear Probing

Linear Probing is a technique used to determine if the learned representation in layers of a neural network contains
information relevant for solving a sample task. This entails using simple machine-learning models like linear regressors
to map layer activations to target values [Tenney et al., 2019]. Designing the heuristic task is entirely problem-dependent;
the task often includes targets that a human expects is important toward achieving the end goal.

In the setting of Pong, we assume that a good agent should have the ability to predict, with high accuracy, where the ball
is going to land on its side of the game board. Therefore, we attempted to linearly map the agent’s final layer activations
(a 512-length vector) to the landing y position of the ball. A ball landing at the top of the board on the agent’s side has a
landing value of 0, and a ball landing on the bottom has a landing value of 82, the height of board in pixels. We collect a
training and test set of 10, 000 frames each; frames in this set are taken ≤ 30 steps before the ball collides with the agent’s
side of board. We report the MSE and R2 statistic using A7 from Chainer, Pool trained with 25 million steps, and the
standard DQN agent trained for 45 million steps.

4 Experiments

In this section, we show empirical results for Chainer and Pool. We present learning curves, a new robustness metric,
and the linear probing results.

4.1 Chainer and Pool Results

The Chainer learning curve shown in Figure 1 (a) shows the game reward achieved throughout training for different
iterations of the opponent. Each vertical red dashed line represents a changing of the opponent (for example, the first
dashed line represents the point in time when the opponent becomes A2, the frozen agent at the second iteration of the
chain). We move on to the next agent in the chain after the current agent has converged, which we define as reaching
an average score of 15 over 10 matches against the opponent (21-point game). Notice how, as training progresses, the
number of steps it takes for the agent to converge against its adversary increases—indicating the strength of opponents
is increasing in the chain.

2
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Figure 1: Learning Curves for Chainer and Pool

The Pooling learning curve in Figure 1 (b) shows the game reward achieved throughout training for different samplings
of opponents from the queue. In this graph, the vertical dashed lines represent points in time where we sample a new
opponent from the pool (every 250, 000 steps). Notice that, as time goes on, the overall reward curve dips downward.
That is because the agents in the pool are getting better, making it more difficult for the current agent to perform well.
Also note, in comparison to Figure 1 (a), this curve is not training agents to convergence. As a result, the agent finds it
more difficult to adapt to the changing opponent. We show in Table 2 how, even though the agent is challenged by these
new, more powerful opponents, it retains the ability to defeat the standard DQN agent.

4.2 Robustness

A truly robust agent should be hard to defeat by an opponent policy because its play is strong across the board. Thus,
we define the robustness of an agent as the difficulty for an opponent to defeat it through learning. More robust agents
will have flatter adversary score curves, indicating less reward achieved by the opponent over the course of learning. We
picked the scores achieved by the opponent after 6e6 steps, after which point the learning curve was stable with no large
fluctuations.

In our robustness experiments, we tested 3 Pooling agents (A0.5M, A4M, A25M) and 3 Chainer agents (A1, A4, A7). Later
agents are consistently more robust than earlier ones, as shown by their lower lines in the graphs. In comparison, the
standard DQN agent is easily defeated by an opponent as shown in Figure 2 (opponent trained against standard DQN
reaches 21 within about 1 million steps).

4.3 Linear Probing

Training Scheme MSE R2

Standard DQN 276.97 0.41
Pool 211.84 0.55

Chainer 202.41 0.57

Table 1: Linear Probing Results

The results for Linear Probing are shown in Table 1. Probes for Chainer and
Pool have significantly lower MSE and higher R2 statistics than the probe for
the standard DQN agent. A regression model that randomly guesses the land-
ing y position of the ball would have MSE≈ (82−41)2 ≈ 1600. It is important to
note that while the true model regressing network activations onto the landing
y position of the ball is likely non-linear, even using the crudest form of estima-
tion with a linear model shows that the activations from adversarially trained
agents have greater predictive power on this task, suggesting these agents more
thoroughly capture the dynamics of the game.

4.4 Adversarial Agents vs. Standard DQN

An obvious question that the learning curves in Figure 1 raise is whether the adversarial agents can consistently defeat
the standard DQN. For example, do Chainer agents in link An+1 remember how to defeat the standard DQN agent (A0,
trained for 45 million steps) even after being trained to defeat more difficult opponents? To answer this type of question,
we play Pooling agents (A0.5M, A4M, A25M) and Chainer agents (A1, A4, A7) against the standard DQN agent and report
the 10-match average score achieved. The general trend is clear, as agents get further along in the adversarial training,
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Figure 2: Robustness Tests (lower is more robust)

they are able to still easily defeat the standard DQN agent (indicating that these gameplay skills are not forgotten). In
fact, their relative strength appears to be steadily increasing. We reiterate that it is not simply a matter of the adversarial
agents being trained longer—the longest training agents have just over half the experience used to train compared to
the standard DQN agent. The difference is that the adversarial agents are taught to handle a wider variety of situations,
resulting in stronger overall play.

Chainer Agents Scores Achieved
Against Standard DQN

A1 16.7
A4 19.5
A7 20

Pooling Agents Scores Achieved
Against Standard DQN

0.5M 18.2
4M 15.1
10M 20.2
25M 20.4

Table 2: Adversarial Agents vs. Standard DQN Agent (trained for 45 million steps)

5 Conclusion

These results validate adversarial training schemes as a way to produce robust agents capable of opponent generalization
in Pong. Agents trained using either Chainer or Pool are capable of handily defeating a standard DQN agent. Lastly,
Chainer and Pool agents are more robust (more difficult to defeat by a learning opponent) and have better informed
internal activations when compared to standard DQN agents.
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Equivariant Transporter Network
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Abstract

Many challenging robotic manipulation problems can be viewed through the lens of a sequence of pick and pick-
conditioned place actions. Recently, Transporter Net proposed a framework for pick and place that is able to learn
good manipulation policies from a very few expert demonstrations [3]. A key reason why Transporter Net is so sample
efficient is that the model incorporates rotational equivariance into the pick-conditioned place module, i.e., the model
immediately generalizes learned pick-place knowledge to objects presented in different pick orientations. This work
proposes a novel version of Transporter Net that is equivariant to both pick and place orientation. As a result, our model
immediately generalizes pick-place knowledge to different place orientations in addition to generalizing pick orientation
as before. Ultimately, our new model is more sample efficient and achieves better pick and place success rates than the
baseline Transporter Net model. Our experiments show that only with 10 expert demonstrations, Equivariant Trans-
porter Net can achieve greater than 95% success rate on 7/10 tasks of unseen configurations of Ravens-10 Benchmark.
Finally, we augment our model with the ability to grasp using a parallel-jaw gripper rather than just a suction cup and
demonstrate it on both simulation tasks and a real robot.

Keywords: Learning from Demonstrations, Robotics, Rotation Equivariance
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(a) If Transporter Network [3] learns to pick and place an object when it is presented in one
orientation, the model is immediately able to generalize to new object orientations.

(b) Our proposed Equivariant Transporter Network is able to generalize over both pick
and place orientation. We view this as Cn × Cn-equivariace of the model.

Figure 1. Cn-equivariace vs. Cn × Cn-equivariace1 Introduction

Pick and place is an important topic in manipulation due to its value in industry. Traditional assembly methods in
factories require customized workstations so that fixed pick and place actions can be manually predefined. Recently,
considerable research has focused on end-to-end visioned based models that directly map input observations to actions,
which can learn quickly and generalize well. However, due to the large action space, these methods often require copious
amounts of data.

A recent sample-efficient framework, Transporter Net, detects the pick-conditioned place pose by performing the cross
convolution between an encoding of the scene and an encoding of a stack of differently rotated image patches around the
pick. As a result of this design, Transporter Net is equivariant with respect to pick orientation. As shown in Figure 1a,
if the model can correctly pick the pink object and place it inside the green outline when the object is presented in one
orientation, it is automatically able to pick and place the same object when it is presented in a different orientation. This
symmetry over object orientation enables Transporter Net to generalize well and it is fundamentally linked to the sample
efficiency of the model. Assuming that pick orientation is discretized into n possible gripper rotations, we will refer to
this as a Cn pick symmetry, where Cn is the finite cyclic subgroup of SO(2) that denotes a set of n rotations.

Although Transporter Net is Cn-equivariant with regard to pick, the model does not have a similar equivariance with
regard to place. That is, if the model learns how to place an object in one orientation, that knowledge does not generalize
immediately to different place orientations. This work seeks to add this type of equivariance to the Transporter Network
model by incorporating Cn-equivarant convolutional layers into both the pick and place models. Our resulting model
is equivariant both to changes in pick object orientation and changes in place orientation. This symmetry is illustrated
in Figure 1b and can be viewed as a direct product of two cyclic groups, Cn × Cn. Enforcing equivariance with respect
to an even larger symmetry group than Transporter Net leads to even greater sample efficiency since equivariant neural
networks learn effectively on a lower dimensional action space, the equivalence classes of samples under the group
action.

2 Background on Symmetry Groups

2.1 Representation of a Group

Figure 2. Illustration of
the action of T reg

g on a
2× 2 image.

We are primarily interested in rotations expressed by the group SO(2) and its cyclic subgroup Cn ≤
SO(2). SO(2) contains the continuous planar rotations {Rotθ : 0 ≤ θ < 2π}. The discrete subgroup
Cn = {Rotθ : θ ∈ { 2πin |0 ≤ i < n}} contains only rotations by angles which are multiples of 2π/n.
The special Euclidean group SE(2) = SO(2)× R2 describes all translations and rotations of R2.

A d-dimensional representation ρ : G → GLd of a group G assigns to each element g ∈ G an in-
vertible d×d-matrix ρ(g). Different representations of SO(2) or Cn help to describe how different
signals are transformed under rotations. For example, the trivial representation ρ0 : SO(2) → GL1

assigns ρ0(g) = 1 for all g ∈ G, i.e. no transformation under rotation. The standard representa-
tion ρ1(Rotθ) =

(
cos θ − sin θ
sin θ cos θ

)
represents each group element by its standard rotation matrix. The

regular representation ρreg of Cn acts on a vector in Rn by cyclically permuting its coordinates
ρreg(Rot2π/n)(x0, x1, ..., xn−2, xn−1) = (xn−1, x0, x1, ..., xn−2). For more details, we refer the reader
to Weiler and Cesa [1].

2.2 Equivariant Mappings

We formalize images and feature maps as feature vector fields, i.e. functions f : R2 → Rc, which assign a feature vector
f(x) ∈ Rc to each position x ∈ R2. The action of a rotation g ∈ SO(2) on f is a combination of a rotation in the domain
of f via ρ1 (this rotates the pixel positions) and a rotation in the channel space Rc by ρ ∈ {ρ0, ρreg}. If ρ = ρreg, then the
channels cyclically permute according to the rotation. If ρ = ρ0, the channels do not change. We denote this action (the
action of g on f via ρ) by T ρg (f):

[T ρg (f)](x) = ρ(g) · f(ρ1(g)−1x). (1)

1
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For example, the action of T ρregg (f) is illustrated in Figure 2 for a rotation of g = π/2 on a 2 × 2 image f that uses ρreg.
For brevity, we will denote T reg

g = T
ρreg
g and T 0

g = T ρ0g . A functional mapping F is equivariant to a group G if the output
produced by F transforms consistently when the input transforms under the action of an element g ∈ G,

T out
g [F (f)] = F (T in

g [f ]) (2)

where T in
g transforms the input of F by the group element g while T out

g transforms the output of F by g.

3 Transporter Network

Figure 3. The Architecture of Transporter Net.

Before describing our variation on Transporter Net, we summarize the the
pick and place problem and the original Transporter Net architecture de-
scribed in [3].

3.1 Problem Statement

We define the Planar Pick and Place problem as follows. Given a visual obser-
vation ot, the problem is to learn a probability distribution p(apick|ot) over
picking actions apick ∈ SE(2) and a distribution p(aplace|ot, apick) over placing actions aplace ∈ SE(2) conditioned on
apick that accomplishes some task of interest. The visual observation ot is typically a projection of the scene (e.g., top-
down RGB-D images) and the pose of the end effector is expressed as (u, v, θ) where u, v denote the pixel coordinates
of the gripper position and θ denotes gripper orientation. (Since [3] uses suction cups to pick, that work ignores pick
orientation.)

3.2 Description of Transporter Net

Transporter Network [3] solves the planar pick and place problem using the architecture shown in Figure 3. The pick
network fpick : ot 7→ p(u, v) maps ot onto a probability distribution p(u, v) over pick position (u, v) ∈ R2. The output pick
position a∗pick is calculated by maximizing fpick(ot) over (u, v). The place position and orientation is calculated as follows.
First, an image patch c centered on a∗pick is cropped from ot to represent the pick action as well as the object. Then, the
crop c is rotated n times to produce a stack of n rotated crops.

Figure 4. Illustration of the main part of the proof of
Proposition 1. Rotating the crop c induces a cyclic
shift in the channels of the output ψ(Rn(T 0

g c)) =

ρreg(−g)ψ(Rn(c)).

We will denote this stack of crops as: Rn(c) = (T 0
2πi/n(c))

n−1
i=0 , where we refer toRn

as the “lifting” operator. Then, Rn(c) is encoded using a neural network ψ. The
original image, ot, is encoded by a separate neural network ϕ. The distribution
over place location is evaluated by taking the cross correlation between ψ and ϕ,

fplace(ot, c) = ψ(Rn(c)) ⋆ ϕ(ot), (3)

where ψ is applied independently to each of the rotated channels in Rn(c). Place
position and orientation is calculated by maximizing fplace over the pixel position
(for position) and the orientation channel (for orientation).

3.3 Equivariance of Transporter Net

Proposition 1 The Transporter Net place network fplace is Cn-equivariant. That is,
given g ∈ Cn, object image crop c and scene image ot,

fplace(ot, T
0
g (c)) = ρreg(−g)fplace(ot, c). (4)

As shown in Figure 4, a rotation of g applied to the orientation of the object to
be picked results in a −g change in the placing angle, which is represented by a
permutation along the channel axis of the placing feature maps. This is a symmetry over the cyclic group Cn which is
encoded directly into the model. It enables it to immediately generalize over different orientations of the object to be
picked and thereby improves sample efficiency. Note that here ψ is a simple CNN with no rotational equivariance. The
equivariance results from the lifting Rn. Instead, our proposed method incorporates the rotational equivariance in the
pick network and Cn × Cn-equivariance in the place network.

4 Equivariant Transporter

4.1 Equivariant Pick

2
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Figure 5. Equivariant Transporter Pick
model. First, we find the pick posi-
tion a∗pick by evaluating the argmax over
fp(ot). Then, we evaluate fθ for the im-
age patch centered on a∗pick .

We propose a Cn-equivariant model for detecting the planar pick action, as shown in
Figure 5. First, we decompose the learning process of apick ∈ SE(2) into two parts:
p(apick) = p(u, v)p(θ|(u, v)), where p(u, v) denotes the probability that a pick exists at
pixel coordinates u, v and p(θ|(u, v)) is the conditioned probability of gripper orientation
of θ. The distributions p(u, v) and p(θ|(u, v)) are modeled as two neural networks:

fp(ot) 7→ p(u, v), fθ(ot, (u, v)) 7→ p(θ|(u, v)).

There are two equivariance relationships that we would expect to be satisfied for planar
picking:

fp(T
0
g (ot)) = T 0

g (fp(ot)) (5)

fθ(T
0
g (ot), T

0
g (u, v)) = ρreg(g)(fθ(ot, (u, v))). (6)

Equation 5 states that the grasp points found in an image rotated by g ∈ SO(2), (LHS of
Equation 5), should correspond to the grasp points found in the original image subse-
quently rotated by g, (RHS of Equation 5). Equation 6 says that the grasp orientation at the rotated grasp point should
be shifted by g = 2πi relative to the grasp orientation at the original grasp points in the original image. We encode both
fp and fθ using equivariant convolutional layers [1] which constrain the models to represent only those functions which
satisfy Equations 5 and 6.

4.2 Equivariant Place

Figure 6. Equivariance of our placing network un-
der the rotation of the object and the placement.
A π

2 rotation on c and a −π
2 rotation on ot\c are

equivariant to: i), a −π
2 rotation on the placing lo-

cation, and ii), the shift on the channel of placing
rotation angle from 3π

2 (the last channel) to π
2 (the

second channel).

Given the picked object represented by the image patch c centered on apick,
the place network models the distribution of aplace = (uplace, vplace, θplace) by:
fplace(ot, c) 7→ p(aplace|ot, apick). Our place model architecture closely follows that
of Transporter Net [3] except that we explicitly encode equivariance constraints
on both ϕ and ψ networks, i.e., ψ(T 0

g (c)) = T 0
g (ψ(c)) and ϕ(T 0

g (ot)) = T 0
g (ϕ(ot)).

As a result of this change: 1) we are able to simplify the model by transposing the
lifting operationRn and the processing by ϕ; 2) our new model is equivariant with
respect to a larger symmetry group Cn × Cn, compared to Transporter Net which
is only equivariant over Cn.

When ψ is Cn-equivariant, we can exchange Rn (the lifting operation) with ψ:
ψ(Rn(c)) = Rn(ψ(c)). This equality is useful because it means that we only need
to evaluate ψ for one image patch rather than the stack of image patches Rn(c) –
something that is computationally cheaper. The resulting place model is then:

f ′place(ot, c) = Rn(ψ(c)) ⋆ ϕ(ot) = Ψ(c) ⋆ ϕ(ot), (7)

where Equation 7 substitutes Ψ(c) = Rn[ψ(c)] to simplify the expression. Note that we use f ′place to denote Equivariant
Transporter Net.

As Proposition 1 demonstrates, the baseline Transporter Net model [3] encodes the symmetry that rotations of the object
to be picked (represented by c) should result in corresponding rotations of the place orientation for that object. However,
pick and place problems have a second symmetry that is not encoded in Transporter Net: that rotations of the scene
image (represented by ot) should also result in corresponding rotations of the place orientation. We encode this second
type of symmetry by enforcing the rotation equivariance of ϕ and ψ. Essentially, we go from a Cn-symmetric model to a
Cn × Cn-symmetric model.

Proposition 2 Equivariant Transporter Net f ′place is Cn × Cn-equivariant. That is, given rotations g1 ∈ Cn of the picked object
and g2 ∈ Cn of the scene, we have that:

f ′place(T
0
g1(c), T

0
g2(ot)) = ρreg(g2 − g1)T 0

g2f
′
place(c, ot). (8)

The top of Figure 6 going left to right shows the rotation of both the object by g1 (in orange) and the place pose by g2 (in
green). The LHS of Equation 8 evaluates f ′place for these two rotated images. The lower left of Figure 6 shows f ′place(c, ot).
Going left to right at the bottom of Figure 6 shows the pixel-rotation by T 0

g2 and the channel permutation by g2− g1 (RHS
of Equation 8).

Note that in additional to the two rotational symmetries enforced by our model, it also has translational symmetry. Since
the rotational symmetry is realized by additional restrictions to the weights of kernels of convolutional networks, the
rotational symmetry is in addition to the underlying shift equivariance of the convolutional network. Thus, the full
symmetry group enforced is the group generated by Cn × Cn × (R2,+).

3
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5 Experiments

block-insertion place-red-in-green towers-of-hanoi align-box-corner stack-block-pyramid

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Equivariant Transporter 100 100 100 100 98.5 100 100 100 88.1 95.7 100 100 41.0 99.0 100 100 34.6 80.0 90.8 95.1
Transporter Network 100 100 100 100 84.5 100 100 100 73.1 83.9 97.3 98.1 35.0 85.0 97.0 98.0 13.3 42.6 56.2 78.2

palletizing-boxes assembling-kits packing-boxes manipulating-rope sweeping-piles

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Equivariant Transporter 75.3 98.9 99.6 99.6 63.8 90.6 98.6 100 98.3 99.4 99.6 100 31.0 85.0 92.3 98.4 97.9 99.5 100 100
Transporter Network 63.2 77.4 91.7 97.9 28.4 78.6 90.4 94.6 56.8 58.3 72.1 81.3 21.9 73.2 85.4 92.1 52.4 74.4 71.5 96.1

Table 1. Performance comparisons on Ravens-10 benchmark (suction gripper). Success rate (mean%) vs. the number of demonstration episodes (1, 10, 100, or 1000) used
in training. Best performances are highlighted in bold.

block-insertion place-red-in-green palletizing-boxes align-box-corner stack-block-pyramid

Method 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

Equivariant Transporter 100 100 100 95.6 100 100 96.1 100 100 64.0 99.0 100 62.1 85.6 98.3
Transporter Network 98.0 100 100 82.3 94.8 100 84.2 99.6 100 45.0 85.0 99.0 16.6 63.3 75.0

Table 2. Performance comparisons on tasks with a parallel-jaw end effector. Success rate (mean%) vs. the number of demonstration episodes (1, 10, or 100) used in
training.

5.1 Results for the Ravens-10 Benchmark Tasks

Task # demos # completions / # trials success rate
stack-block-pyramid 10 17/20 95.8%

place-box-in-bowl 10 20/20 100%
block-insertion 10 20/20 100%

Table 3. Task success rates for physical robot evaluation tasks.

Ravens-10 [3] is a behaviour cloning simulation environ-
ment for manipulation built on Pybullet. For each task, it
could produce a dataset of n expert demonstrations, where
each demonstration contains a sequence of one or more
observation-action pairs (ot, āt). We use āpick and āplace to
generate one-hot labels to train our networks with cross-
entropy loss. Performance of our model is measured in the
same way as [3] – using a metric in the range of 0 (failure) to 100 (success). Partial scores are assigned to multiple-
action tasks. We report the highest test performance during training, averaged over 100 unseen tests for each task. As
illustrated in Table 1, our proposed Equivariant Transporter Net outperform the baseline by orders of magnitude more
sample efficiency. We believe it is due to the inductive bias of the Cn × Cn-equivariance.

5.2 Results for Parallel Jaw Gripper Tasks

Figure 7. Stack-block-pyramid task on the real robot. The
left figure shows the initial state; the right figure shows the
completion state.

We selected 5 tasks from Ravens-10 and replaced the suction cup with the
Franka Emika gripper, which require additional picking angle inference. To
fit Transporter Network to parallel-jaw gripper tasks, we accomplish it by
[2] lifting the input scene image over Cn, producing a stack of differently
oriented input images as input to the pick network fpick. The results are
counter-rotated at the output of fpick. Table 2 compares the performance of
Equivariant Transporter with the baseline Transporter Net for the Parallel
Jaw Gripper tasks.

Finally, We evaluated Equivariant Transporter on a physical robot in our lab. As shown in Figure 7, we used a UR5 robot
with a Robotiq-85 end effector. The workspace was a 40cm× 40cm region on a table beneath the robot. The observations
ot were 200× 200 depth images obtained using a Occipital Structure Sensor that was mounted pointing directly down at
the table. We collected 10 human demonstrations for each of the three selected tasks. Table 3 shows results from 20 runs
of each of the three tasks. Notice that the success rates here are higher than those in simulation (Table 2). This is likely
caused by the fact that the criteria for task success in simulation (less than 1 cm translational error and π

12 rotation error)
were more conservative than the real world experiment.
References
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Abstract

Recent years have witnessed significant advances in our understanding of bounds on rationality in both cognitive psy-
chology and economics. These two fields have been making separate progress, but time is ripe for unifying these efforts.
In this article, we introduce recently developed economic tools, themselves rooted in the psychometric tradition, to
quantify individual differences in the capacity for cognitive control. These tools suggest that a reliable assessment of the
capacity for cognitive control may be accomplished by examining task performance as a function of reward. We demon-
strate through simulation studies that an incentive-informed measure of task performance does a better job of recovering
individual differences in one’s capacity for cognitive control, compared to the commonly used congruency effect. Fur-
thermore, we show that the economic approach can be used to predict control-dependent behavior across different task
settings. We conclude by discussing future directions for the fruitful integration of behavioral economics and cognitive
psychology with the aim of improved measurement of individual differences in the capacity for cognitive control.

Keywords: mental effort; executive function; individual differences; rational
inattention; Bayesian revealed preference
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1 Introduction

Research in value-based decision-making has typically focused on studying how people weigh the value of each option
to guide their choice. However, different decision problems can require different levels of cognitive control—the ability
to guide information processing in the service of a task—to adequately process all information relevant to the goal
of the decision problem. Thus, quantifying a person’s capacity for cognitive control may enable researchers to better
predict their decisions and task performance in the real world. Researchers have developed a variety of paradigms to
index a given person’s capacity to exert cognitive control. Most commonly, these paradigms require the participant to
categorize a target stimulus while ignoring one or multiple distractors [4]. For instance, in the Stroop task, participants
are required to name the ink color of a color word (e.g., say “red” in response to “GREEN”) while ignoring the word.
Such interference tasks allow for the computation of a congruency cost: the difference in performance (e.g., accuracy) on
trials in which target and distractor are associated with the same response (congruent trials, e.g. “RED” in the Stroop
task) and trials in which the distractor interferes with the target to produce a competing response (incongruent trails,
e.g., “GREEN” in the Stroop task). However, task performance measures that are supposed to target the same construct
(e.g., the inhibition of distraction information) are poorly correlated with one another [12]. Mounting theoretical work
suggests that the low predictive validity of performance- and choice-based measures derives from a confound between
a person’s capacity for cognitive control and their willingness to exert it [8, 7]. In this article, we leverage the psychometric
theory of rational inattention [2], to derive an incentive-informed measure of cognitive control capacity. We then build
on a well-established model of control allocation, to simulate individual differences in task performance. We examine
the internal and predictive validity of the introduced measures, by extracting them from the simulated performance and
by correlating them with internal variables that determine an agent’s capacity for cognitive control. We demonstrate that
the assessment of performance across incentives provides a better index of cognitive control capacity and that it may
provide a reliable predictor of cognitive performance across individuals and tasks.

2 The Psychometrics of Rational Inattention

Figure 1: Caplin et al.’s K. K(w) is the area of
the region to the left of the revealed expected
utility ū curve between ū(0) (the revealed ex-
pected utility for the base experiment) and
ū(w) (the revealed expected utility for the ex-
periment that provides w times more of an
incentive than the base experiment). w1, w2,
and w3 are three example values of w. In the
context of Stroop tasks, ū and w can be un-
derstood as response accuracy and incentive
level awarded to the correct responses.

Our psychometric framework builds upon the intellectual tradition of
bounded rationality, assuming that human cognition is rational within
certain boundaries [3, 5]. While an unboundedly rational agent always
chooses the ‘best’ action to take, the actions chosen by a boundedly ra-
tional agent may not always be the absolute ‘best’ but are on average
as good as possible without requiring an unreasonable amount of ef-
fort. To formalize this framework in an experimental setting, we use
A to denote the set of actions selected by a participant. For exam-
ple, in a simple version of the Stroop task, a participant may choose
from two relevant actions, to indicate the ink color of a color word (cor-
rect) or not (incorrect): A = {correct, incorrect}. The value of a chosen
action typically depends on the experimental condition (e.g., whether
the color of the Stroop stimulus is congruent or incongruent with the
word). We call the set of experimental conditions states, denoted by
S. Again in our Stroop task example, two possible experimental states
(or conditions) may occur: the ink color may match the word (con-
gruent condition) and the ink color mismatches the word (incongruent
condition): S = {congruent, incongruent}. Finally, how good an action
a ∈ A is in a state s ∈ S is quantified by an expected utility function
U : S × A → R≥0. A participant that is boundedly rational must always
choose according to an action strategy that maximizes the expected value
of U(s, a) − K(experiment). Here U(s, a) represents the utility the agent
receives and K represents the (mental) cost the agent has to pay to resolve
this choice problem. What we mean by an action strategy is simply the
probability of choosing an action given a state, denoted as p(a|s). Hence
the expected value of U(s, a) − K(experiment) amounts to

∑

s∈S

∑

a∈A
U(s, a)p(a|s)p(s) − K(experiment)

where p(s) denotes the probability of the state s occurring in the experiment1. The probability of each state p(s) is set by
the experimenter and the marginal probability of an action in a given state p(a|s) can be estimated from the participant’s

1Our formalism right now only considers the expected value of utility while ignoring other statistical properties such as variance.
It would be an interesting extension of the current theory to incorporate a variance term to the above equation.

1
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choice data using their choice frequency. Unfortunately, one cannot directly measure a participant’s utility function U
nor their cost of control K. However, U can be estimated based on the reward structure of the experiment. While there is
plenty of work proposing ways to estimate U from rewards under different research contexts, [2] provide a first, general
procedure for recovering the mental cost K—henceforth referred to as Caplin et al.’s K—from only the choice data. We
next introduce the specific procedure of assessing K in 3 steps. We illustrate each step with both the general formulas
and how they are specifically applied to our example Stroop task.

Step 1. We first obtain data from participants for a base experiment at which each participant has some utility function
U. From the data, one can calculate p(s, a) = p(a|s)p(s) for each pair of state and action. In this article, we obtain all
the data from a simulated cognitive agent which we introduce in the next section. Because data are simulated, we can
implement the assumption that reward points equal the participant’s utility, for example:

U(s, a) = R(s, a) =

{
1 if a = correct
0 if a = incorrect

Step 2. Repeat step 1 for a set of n experiments that are identical to the base experiment except for the reward struc-
ture. Importantly, the reward structures differ in such a way that the participant’s utility function in each experi-
ment is some positive multiple w of U. Next for each of the experiments, we can compute the marginal probability
pw(s, a) = pw(a|s)pw(s) of the state s and the action a from the frequencies of each unique pair of state and action in
the choice data. Caplin et al. denote the expected utility û(w) of the experiment as a function ofw. The main quantity of
interest in our framework is the expected utility normalized by the weight w (ū(w)):

û(w) =
∑

s∈S

∑

a∈A
wU(s, a)pw(s, a) ū(w) =

û(w)

w
=
∑

s∈S

∑

a∈A
U(s, a)pw(s, a) (1)

where ū(w) is the revealed expected utility calculated using the choice data of thewweighted experiment and the utility
function of the base experiment. In our Stroop task example, we need to simulate data from versions of the Stroop
experiment with the same S and A, and ∃w ∈ R≥0 such that its reward/utility function

Uw(s, a) =

{
w if a = correct
0 if a = incorrect

For each experiment, if the action amounts to the correct response (i.e., ‘accurate’), the participant receives the reward of
w ∗ 1 = w point, otherwise she gets w ∗ 0 = 0 points. The expected utility of each of these data divided by w, i.e. ū(w),
can be understood as the participant’s response accuracy where the reward isw points. Similarly, a participant’s accuracy
in only the congruent condition is equivalent to ū(w|s = congruent) and participant’s accuracy in only the incongruent
condition is equivalent to ū(w|s = incongruent). To emphasize these operational interpretations, from now on we denote

• w as R (reward for accurate responses),
• ū(w) as A(R) (accuracy as a function of reward),
• ū(w|s = congruent) as AC(R) (congruent trial accuracy), and
• ū(w|s = congruent) as AI(R) (incongruent trial accuracy).

Step 3 Caplin et al. prove that if the participant is indeed a boundedly rational agent, ū should be a monotonically
non-decreasing function [2]. If the data supports such monotonicity, one can recover K:

K(w) = wū(w) −

∫w

0

ū(t)dt. (2)

The geometric intuition is illustrated in Figure 1. Using our new notations for the example Stroop task, we can compute
the Caplin et al.’s K as K(R) = RA(R) −

∫R
0
A(t)dt. Next, we compare and contrast Caplin et al.’s K with the congruency

effect, which has is one of the most commonly used indicators of the capacity for cognitive control [4]. The congruency
effect in the Stroop experiment with reward R, denoted by ∆A(R), is defined as the difference in accuracies on congruent
and incongruent trials in the experiment with reward R, i.e., ∆A(R) = AC(R) − AI(R). These two measures have two
crucial distinctions. First, whereas the congruency effect is restricted to interference tasks like the Stroop paradigm,
Caplin et al.’s K can be applied in any task involving two or more responses. Second, while the congruency effect only
depends on one experiment, Caplin et al.’s K takes advantage of the accuracy function at all reward levels. Finally,
whereas the congruency effect is a theory-free metric, Caplin et al.’s K traces its roots to a rigorous and general theory
rooted in the bounded rationality framework. We proceed by examining the internal and predictive validity of these
metrics based on the behavior of a simulated agent, leveraging a different but related theory of control allocation.

3 Assessing the Internal and Predictive Validity of Caplin et al.’s K
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Table 1: Uniform intervals of sampled EVC parameters.

Parameter Description Min Max
ε control efficacy 4 5
c control cost 0.8 0.9
v reward sensitivity 0.95 1.05
aA automaticity of Task A -4 -2
aB automaticity of Task B -4 -2
iA distractor interference of Task A -2 -1
iB distractor interference of Task B -2 -1
b accuracy bias 5 5

The validity of any performance-based metric of control-
demanding behavior can be assessed based on its ability to
(a) track internal variables of the control system, and (b) pre-
dict behavior across tasks. Here, we considered three differ-
ent metrics: the traditional congruency effect (assessed at
reward = 0), the mean congruency effect (averaged across
reward conditions), and Caplin et al.’s K. In this section, we
extract these metrics from the behavior of a simulated agent
in an interference task. The agent implements a model of
control allocation based on the Expected Value of Control
(EVC) [11]. We examine how well the introduced metrics
relate to latent variables that determine the agent’s capacity
of control, namely (a) the efficacy with which control trans-
lates into performance and (b) the cost of control, and how well they predict performance in a second, unrelated task.

3.1 Parameterization of Simulated EVC Agents

Figure 2: Correlation strength. The x-axis
represents different measurements calculated
from the simulated Stroop task. The y-axis
represents the absolute value of Pearson cor-
relation between the measurement and the
quantity shown in the panel label. ∆A(0) is
the congruency effect at reward 0, ∆A|100 is
the mean congruency effect from reward 0
to 10, K(10) is Caplin et al.’s K at reward 10.
Error bars are bootstrapped confidence inter-
vals using 6000 samples.

For the simulations reported in this article, we assume that the proba-
bility of an agent responding correctly in an interference task increases
monotonically with the amount of control intensity allocated (u):

P(correct|u, S) =
1

1+ eε·u−a

where ε characterizes the control efficacy, i.e. how an increase in control
signal intensity translates into changes in task accuracy. The parameter
a determines the degree of task automaticity: The higher a, the easier
the task, that is, the less cognitive control is needed to reach the correct
outcome. Note that a = a0− i depends on the amount of interference i in
the current trial. For congruent trials, we assume that the agent receives
no interference i = 0 whereas in incongruent trials, the agent receives
some amount of interference i > 0 (effectively lowering the probability of
responding correctly). The agent is assumed to choose the control signal
that maximizes EVC(u, S) = P(correct|u, S)V(R) − Cost(u).

The subjective value can be described as a function of the reward R pro-
vided for a correct response. Here we assume that the subjective value of
the correct outcome amounts to

V(R) = v · R+ b

where R is a monetary reward that is provided in the event of a correct
response, v is the reward sensitivity of the agent and b is the baseline
value that the agent assigns to being accurate (accuracy bias). Finally, the
EVC agent is assumed to allocate control by taking into account an intrinsic cost that scales with control signal intensity.
For the simulations reported below, we adopt an exponential cost function used in prior work [7, 8]:

Cost(u) = ec·u − 1

where c scales the increase in the cost of control with one unit of control signal intensity u. To simulate individual
differences in EVC agents, we sampled parameters of the model from the uniform intervals listed in Table 1. The intervals
were chosen such that the agents would allocate at least some amount control (u∗ > 0) for each task condition. Note that
the control efficacy ε and the control cost c both characterize an agent’s capacity to exert control across different tasks.

3.2 Results

Internal Validity. To compare the internal validity in a first task (Task A), we correlated our measures each with the
simulating parameter values. We found that all of our three measures correlate significantly with the control cost and
control efficacy parameters (|t| > 10, df = 998, p < 10−15). However, the correlation between the control cost and the
congruency effect for R = 0 (r = 0.302) is significantly weaker than between the mean congruency effect from R = 0 to
R = 10 (r = 0.313, p = 0.025) and between Caplin et al.’s K at R = 10 (r = 0.355, p = 0.002). The correlation between the
control cost and the mean congruency effect from R = 0 to R = 10 is also significantly weaker than that between Caplin
et al.’s K at R = 10 (p = 0.008). However, the correlation between the control efficacy and the congruency effect for R = 0
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(r = −0.555) is not significantly weaker than between the mean congruency effect from R = 0 to R = 10 (r = −0.559,
p = 0.155). Note that both measures yield a significantly weaker correlation than Caplin et al.’s K at R = 10 (r = −0.669,
p < 10−3). This suggests that Caplin et al.’s K can better predict the control cost and efficacy than the congruency effect.

Predictive Validity. We found that all three metrics derived from the agents’ performance in Task A correlate significantly
with the congruency effect at R = 0 in a different task with an independently sampled automaticity and distractor
interference (Task B) (t > 12, df = 998, p < 10−15). Similarly, the correlation between the the congruency effect at reward
0 in task B and the congruency effect for R = 0 in task A (r = 0.379) is significantly weaker than between the mean
congruency effect from R = 0 to R = 10 in task A (r = 0.390, p = 0.017). Caplin et al.’s K at R = 10 in task A correlates
more strongly with the congruency effect in Task B than the other two measures (r = 0.458, p < 10−3). This indicates
that Caplin et al.’s K can predict better the congruency effect of another cognitive control task.

4 General Discussion

People rely on cognitive control to adjust how they process information in order to achieve their decision-making goals.
Although reliable measurement of the capacity to exert cognitive control is crucial for predicting human decision-making,
current measures of control (e.g., the congruency effect) show poor internal and external validity [6, 10]. Here we propose
that one of the causes of this issue is that the current measurement approaches are focused on measuring control capacity
at a fixed point. In this work, we introduced Caplin et al.’s K as a novel measurement technique that relies on the
integration of task performance across reward conditions. This measurement device is implied by economic theories of
rational inattention, resulting in a formal relationship with established metrics [2, 1], such as the congruency effect.

Building on the bounded rationality framework, we introduced Caplin et al.’s K as a choice-based measure, computed
across linearly increasing incentives. We examined the validity of these metrics based on the behavior of simulated
agents implementing a theory of control allocation [11, 9]. We find that Caplin et al.’s K does a better job of predicting
latent variables that determine an agent’s capacity for cognitive control (control efficacy and control cost) compared to
the traditional congruency effect. Moreover, Caplin et al.’s K can be leveraged to predict an agent’s behavior across
unrelated interference tasks. These results provide initial support for the idea that considering how performance varies
as a function of incentive levels is crucial for assessing the capacity for cognitive control in choice-based tasks.
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Abstract

Temporally extended actions, options, are often used to accelerate exploration and planning in sparse reward reinforce-
ment learning tasks. We present an option discovery algorithm to accelerate planning by minimizing the average short-
est distance in the task state-action graph. The proposed algorithm is proven to minimize planning time in a multitask
setting and is shown to be a worst case (4α, 2)-approximation of the optimal solution. The algorithm is generalized
to stochastic communicating Markov decision processes and the bounds on optimality and runtime are shown to be
preserved. Furthermore, we present a variant, Fast Average Options, with improved run-time and describe a general
avenue for variants based on selection of a k-medians subroutine. We empirically evaluate our method and show that it
outperforms comparable option discovery algorithms on a number of discrete and continuous domains.

Keywords: options, planning, graph, k-medians
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1 Introduction

Most option discovery methods in the literature are based on heuristics [8]. Eigen options uses the eigen vectors of the
graph Laplacian to create options that traverse the principle directions of the state space [6]. While this method is well
defined and is shown to improve learning empirically, there is no formal guarantee or bound on improvement. Covering
options is the first paper to establish a formal objective for option discovery and derive options that provably improve
that objective [3]. Covering options minimizes the graph cover time and so bounds the expected number of steps needed
to reach a rewarding state with a random walk. Assuming the agent acts randomly gives a bound on the worst case
time to travel between two states. This assumption tends to be overly pessimistic in practice and minimizing cover
time biases options for single task settings. We address both these points by consider the problem of selecting options
that improve performance for planning in the multitask setting. We propose a new option discovery method, Average
Options, which focuses on improving planning time in the multitask setting. We derive an option discovery method that
provably minimizes planning time and present a (2α, 2)-approximation algorithm. We evaluate our method empirically
on several domains and compare against other approaches such as covering options and eigen-options.

2 Background

2.1 Value Iteration

In general we define value iteration for a general MDP (S,A, P,R, γ) with the following initialization and update of
Vt : S → R

V0(s) = 0 ∀s ∈ S

Vt+1(s) = max
a∈A

(∑

s′∈S
P (s, a, s′)(R(s, a, s′) + γVt(s

′))

)
(1)

The update step is repeated until Vt+1(s)− Vt(s) < ε for all s ∈ S.

2.2 Point Options

For MDPs with many far apart states, pairs of states for which the shortest sequence of actions to reach one state from the
other is relatively large compared to the number of states in the MDP, value iteration can be prohibitively slow. This is
because it takes many update steps for the values of these states to propagate to the rest of the states in the MDP. We can
reduce the needed number of iterations by reducing the number of actions needed to travel between such states. This can
be done with options. Options are temporally extended actions that can facilitate exploration, learning, and long-horizon
planning [9]. In this paper we will consider a special case of options called point options [3]. A point option is defined
using an initiation set of a single state I = {s}, a termination set of a single state B = {s}, and a policy π∗ : S → A which
induces the shortest sequence of actions a0, a1, . . . to reach the termination state starting from the initiation state. We
also say an option is “bidirectional” if that option o has a policy to go from the initiation state to termination state and
a policy to go from termination state to initiation state. Let O be a set of such point options. For a graph G we denote
adding options to the graph as G + O = G′. This new G′ has the same vertices as G and for each o ∈ O the edge going
from the initiation state of o to the termination state of o is added. We take the added edges in G + O to have length 1
and so the distance on G + O is defined as normal. For brevity, we will refer to bidirectional point options as options in
this paper [3].

2.3 k-Medians with Penalties Subroutine

The k-medians with penalties problem, also known as uncapacitated facility location with penalties, is used as a subrou-
tine for the average options algorithm. Specifically, it is used to find which states in the state space should be connected
with options. The k-medians with penalties problem aims to find the best set of k facilities F to open out of all facilities
F such that the cost to serve, or deny service, to the cities C is minimized. The cost to serve a city c ∈ C with facility f is
d(c, f) and the cost of denying service, a penalty, is pc. The function d : C × F → R is an arbitrary distance metric that
is symmetric and satisfies the triangle inequality. In this paper we will use k-medians with penalties as a subroutine and
for a given k-medians with penalties algorithm we will say it is an α-approximation if it finds a solution F with cost no
less than α times the cost of the optimal solution, F ∗. There are many choices of such subroutines and they can be chosen
based on their run-time and approximation guarantees [2][10][1]. For our bound on suboptimality we will consider an
algorithm with α < 2 from Jain et al. (2002) [2] and for our experiments we use an 5-approximation algorithm with
improved run-time from Arya et al. (2001) [1].
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3 Average Options

We propose a new method of selecting options that provably minimizes the average planning time for an MDP. Specif-
ically, we consider the problem of finding a set of k bidirectional point options that minimize the number of iterations
of VI necessary for convergence. We will first consider the case of deterministic MDPs with invertible actions and then
generalize the results to stochastic communicating MDPs. We will show that our algorithm is able to achieve a 4α- ap-
proximation of the optimal set of options in polynomial time, O(n2 log(n) + n3). Then we will show how the algorithm
generalizes to stochastic MDP’s with non-invertible actions while also preserving the approximation ration and run-time.

3.1 Deterministic MDPs with Invertible Actions

We first consider the case where the given MDP is deterministic, written as M = (S,A, T,R, γ) where T : S × A → S
is the transition function. We can represent such an MDP as an undirected graph G where the vertices are states S and
states s,s′ are connected by an edge if there exists an action a ∈ A with T (s, a) = s′. We also require that if T (s, a) = s′

there must exist an action a′ such that T (s′, a′) = s.

We propose selecting options that minimize the average distance for the graph G + O. Specifically, we want to find the
set of k point options O such that AvgDist(G+O) is minimized.

d(G+O) =
∑

s∈S

∑

s′∈S
dG+O(s, s

′) (2)

AvgDist(G+O) = d(G+O)/|S|2 (3)

Note that minimizing d(G) is equivalent to minimizing AvgDist(G). To find such a set of k point options we propose the
following algorithm:

1. Given a graph G and distance function d define a set the set of possible facilities F = S, the vertices of G.
Construct the set of cities C by duplicating each node u 2|S| − 2 times to form uuv and uvu for each v ∈ S. Define
the distance d(i, uvu) to be d(i, u) for all i ∈ S and uvu ∈ C and assign each uvu a penalty of d(u, v).

2. Solve the k + 1-medians problem given the set of facilities F , cities C, cost function d, and penalties as defined
in the previous step. Let F be the chosen set of k + 1 facilities to open.

3. Select a state s in F and construct k options connecting the states in F \ {s} to s.

Approximation Ratio and Run-Time Analysis

We will frame our problem of finding a set of options that minimizes the average graph distance in terms of adding
shortcut edges to a graph to match the formulation of theorem 4 in section 6 of Meyerson et al. [7]. Because we consider
the special case of point options which connect only pairs of states, we can equivalently think of them as shortcut edges
that we add to the underlying graph. These edges will have length δ = 1 as they still represent 1 step of planning. The
weights wuv for each pair of states u, v ∈ S are also set to be 1 because we care about the average distance between all
states equally. Adjusting the values of wuv can let us emphasize the connections between specific regions of the MDP
although we do not consider this case in this work. Theorem 4 of Meyerson et al. now gives us that there exists a
(4α, 2)-approximation algorithm that specifically follows the construction we give above.

Computing the distances between all pairs of states in the graph G with n vertices and m edges can be done in
O(n2 log(n)) time [5]. The k-median subroutine with α < 2 can be done in O(n3) time [2] although the α and run-time
vary with choice of k-median algorithm. The total run-time of our algorithm is O(n2 log(n) + n3)

Bound on Planning Time

We now demonstrate that d(G) bounds the number of iterations necessary for convergence of VI.

For a deterministic MDP we can rewrite the VI update as

Vt+1(s) = max
a∈A

(
R(s′) + γVt(s

′)

)
with s′ = T (s, a) (4)

In the context of planning we can assume that the reward function R is 1 for a single state g ∈ S and 0 everywhere
else and that the state g is absorbing. With these assumptions we can consider running VI until convergence in a finite
number of iterations and take V (s) for some s ∈ S. By expanding the VI update equation above we have that V (s)

obtains its value from the state g along the shortest path from g to s. The value of V (s) is consequently γd(g,s). This also
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tells us that the V (s) obtains this value after d(g, s) iterations and by assumption never changes again. This means that
the number of iterations of VI necessary to plan to reach a certain goal g ∈ S can be written as maxs∈S d(s, g) and the
average over all goal states is

∑
g∈S maxs∈S d(s, g). Notice that the average steps to convergence of VI over goals is upper

bounded by the average graph distance.
∑

g∈S
max
s∈S

d(s, g) < d(G) =
∑

s∈S

∑

s′∈S
d(s, s′) (5)

Therefore, by minimizing the average distance for a given graph we minimize the upper bound for number iterations of
VI before convergence.

4 Empirical Results

We compare average options with two other notable methods, eigen options and covering options. Eigen options se-
lects options that traverse the principle directions of the state space based on the eigen vectors of the graph Laplacian.
Covering options selects options which bound the expected cover time of the state space.

We first qualitatively compare the options generated by our method to those obtained with covering options and eigen-
options. For the 9x9 grid, covering options connect the furthest apart corners; average options connect states that are
more central. In Four Rooms, average options connects the centers of the rooms whereas covering options and eigen-
options again join the corner states.

Average Options Covering Options Eigen Options Average Options Covering Options Eigen Options

Figure 1: Visualization of options generated with average options, eigen options and covering options for small discrete
domains.

We also quantitatively evaluate the reduction in planning time obtained by using average options as compared to eigen
options and covering options. For average options, we use a k-median with penalties subroutine with approximation
ratio of α = 5 for improved run-time [1]. We additionally consider a variant of average options, fast average options,
where the k-medians with penalties subroutine is replaced by just k-medians, greatly improving the run time but without
a guarantee on the approximation ratio outside of empirical results [4].

(a) 9x9 grid (b) four-room (c) Towers of Hanoi

Figure 2: Comparison of the average over goals of time to convergence of VI for average options, eigen options and
covering options.

We evaluate the option generation methods on three discrete domains: 9x9 grid, Four Rooms, and Towers of Hanoi. For
each domain we generate a set of n options O using each method and then run value iteration for every state g ∈ S in
the graph G + O. For each run of VI we make g an absorbing state with reward 1 and give all other states a reward of
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0. Because these are small discrete domains we can run VI until exact convergence and record the number of iterations
taken. We then average the number of iterations over all the goal states.

Average options consistently performs better across the tested domains. Fast average options has variable performance
but tends to outperform covering options and eigen-options as domains get larger and more options are selected.

5 Discussion

We note that in the qualitative evaluation that covering options and eigen-options join similar pairs of states with options
for the 9x9 grid and Four Rooms domains. This can be explained by both methods having an objective function based on
the eigen-vectors of the graph Laplacian. This similarity in objective function leads both methods to produce qualitatively
similar options and so have similar effect on planning time.

We seek to provide some intuition about why average options outperforms covering options and eigen-ptions. Covering
options tends to connect far away states, potentially aiding exploration. However, the majority of states are not at the
fringes of the domain, so when planning to reach an arbitrary state, covering options are often unused. Similarly with
eigen-options, when states at opposite ends of a principle direction are linked with an option, planning between the more
common ‘average’ states is unaffected.

6 Conclusion

In this paper we presented a formal objective for selecting options to minimize planning time in a multitask setting. We
derived an algorithm that provably minimizes the objective and bounded the algorithms suboptimality. We evaluated
our method to empirically demonstrate the reduction in planning time and compared our method against covering
options, another principled option discovery approach, and eignen options, a similar heuristic based approach. We also
present a variant of average options, fast average options, with improved run-time and comparable empirical results to
average options.
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Abstract

People can easily evoke previously encountered concepts, compose them, and apply the result to novel contexts in
a zero-shot manner. What computational mechanisms underpin this ability? To study this question, we propose an
extension to the structured multi-armed bandit paradigm, which has been used to probe human function learning in
previous works. This new paradigm involves a learning curriculum where agents first perform two sub-tasks in which
rewards were sampled from differently structured reward functions, followed by a third sub-task in which rewards
were set to a composition of the previously encountered reward functions. This setup allows us to investigate how
people reason compositionally over learned functions, while still being simple enough to be tractable. Human behavior
in such tasks has been predominantly modeled by computational models with hard-coded structures such as Bayesian
grammars. We indeed find that such a model performs well on our task. However, they do not explain how people learn
to compose reward functions via trial and error but have, instead, been hand-designed to generalize compositionally
by expert researchers. How could the ability to compose ever emerge through trial and error? We propose a model
based on the principle of meta-learning to tackle this challenge and find that – upon training on the previously described
curriculum – meta-learned agents exhibit characteristics comparable to those of a Bayesian agent with compositional
priors. Model simulations suggest that both models can compose earlier learned functions to generalize in a zero-shot
manner. We complemented these model simulations results with a behavioral study, in which we investigated how
human participants approach our task. We find that they are indeed able to perform zero-shot compositional reasoning
as predicted by our models. Taken together, our study paves a way for studying compositional reinforcement learning
in humans, symbolic, and sub-symbolic agents.

Keywords: Compositional Inference; Meta Reinforcement Learning; Zero-shot learning; Meta-learning;
Reinforcement Learning; Human Decision Making. Bayesian Grammar.
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1 Introduction

Every day we bring together concepts from seemingly different settings to bear on problems where they have not been
used before. To illustrate, let us take the example of reading trends in COVID vaccination numbers. Figure 1 shows the
vaccination numbers in Germany from December 2020 to March 2021. You can clearly identify a pattern in the trajectory
of these numbers. They increase roughly exponentially (indicated by the black dots) but with a periodic rise and fall
every week. If you were shown the trend until the first week of March and asked to extrapolate to the second week (in
the red box), you would likely predict something close to the true trend. How do we accomplish this?

Figure 1: COVID vaccination numbers

The aforementioned example involves two aspects of learning that have
been studied extensively in cognitive science but mostly in isolation [1, 2, 3].
First, function learning (i.e., learning the exponential and periodic function),
and second, compositional reasoning over learned functions (i.e., combin-
ing the exponential and periodic function to extrapolate the trend for next
week). Recent work of [2], for instance, has investigated the first aspect.
They introduced a structured multi-armed bandit (sMAB) task, where re-
wards for different options followed a latent correlation structure, to study
how people explore in structured environments. The latent reward func-
tions were either linear or periodic (structured condition) or set to random
uncorrelated values (unstructured condition). Participants were told to earn
as many reward points as possible but were not provided any information
regarding the underlying reward functions. They found that participants
could pick up on the latent functions in the structured condition after a few

rounds and use it to guide their exploration in later rounds.

While the study of [2] provides insights into how people learn latent reward functions, it does not tell us how they re-use
earlier learned functions to compose new functions that were never encountered before. We attempt to close this gap
in the present article. To this end, we extended the paradigm of [2] by introducing a learning curriculum. Participants
in our task first performed two sub-tasks in which rewards were sampled from differently structured reward functions,
followed by a third sub-task in which the rewards were set to a composition of the previously sampled functions. We
were primarily interested in the following questions:

1. Do people compose previously learned functions in the final sub-task in a zero-shot manner?
2. Which computational models capture people’s compositional reasoning abilities?

We demonstrate that people can indeed learn to compose new functions in a zero-shot manner. Historically, human
behavior in such tasks has been modeled using algorithms with hard-coded structures, such as Bayesian grammars [4].
We find that these models also perform well in our task. However, they cannot answer the questions of where these
structures come from and how they are acquired in the first place. To address these questions, we propose an alternative
model based on the principle of meta-learning [5]. When trained on an appropriate curriculum, this model exhibits
characteristics comparable to those of a Bayesian agent with compositional priors. We briefly discuss the advantages
and disadvantages of the two modeling approaches and suggest that they can be used to understand distinct aspects of
human cognition.

2 Methods & Results

2.1 Compositional Multi-Armed Bandit Task

To probe compositional reasoning in humans and artificial agents, we developed a task based on earlier work of [2]. Each
task consists of three sMAB sub-tasks, where rewards follow a function that is dependent on the spatial position of arms.
In each sMAB, rewards were determined as follows:

rt = f (at) + ϵt (1)

where t denotes the time-step, at ∈ {0, . . . , 5} the action taken in time-step t, and ϵt ∼ N (0, 0.3) is an additive noise term.

The first two sub-tasks involved latent functions from either the linear or the periodic family:

flinear(at) =

(
2at
5
− 1

)
w + b w ∼ U(−2.5, 2.5), b ∼ U(2.5, 7.5) (2)

fperiodic(at) = A |sin (0.5π (at − ϕ))|+ b A ∼ U(0, 7.5), ϕ ∈ {0, 1}, b ∼ U

(
0,

A

1.4

)
(3)
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Figure 2: Task Overview. Example tasks for both compositional rules and conditions.

Latent functions in the final sub-task were composed from the functions encountered in the two earlier sub-tasks. We
considered both additive and change-point compositions:

fadditive(at) = flinear(at) + fperiodic(at) (4)

fchange-point(at) =

{
flinear(at) if at ∈ {0, 1, 2}
fperiodic(at) otherwise (5)

The order of composition was randomized in the change-point function. The length of each sub-task was set to 5 trials,
leading to 15 overall trials per task. Note that the number of trials per sub-task is less than the number of available op-
tions. This prevents an agent from exhaustively trying out all options and forces it to generalize based on the underlying
function. Figure 2 shows an example for both the additive and change-point condition. To have a comparison, we also
consider a condition without a curriculum. In this non-curriculum condition, the agent did not interact with the first
two sub-tasks and instead directly observed the composite function from the final sub-task (as illustrated on the right in
Figure 2).

2.2 Computational Models

The goal of an agent used to model our task is to maximize the total amount of obtained rewards. We outline two models
for achieving this goal. The first is a Bayesian model that incorporates knowledge of priors via the Gaussian Process (GP)
regression model; the second is a recurrent neural network model that is meta-learned based on repeated interactions
with randomly sampled tasks.

Gaussian Process Model: We implemented a GP regression model as the Bayesian model for our task as they have
been successful at capturing human function learning in previous works [4, 2]. The latent reward functions were learned
using a linear kernel for the first sub-task, a periodic kernel for the second sub-task, and a kernel using a composition of
the linear and periodic kernel for the last sub-task. For additive compositions, the compositional kernel was the sum of
a linear and periodic kernel, and the prior mean was set to the mean of the previously learned functions from the linear
and periodic sub-tasks. For change-point compositions, the kernel entries were set to that of the linear kernel if both arms
belonged to the linear function, the periodic kernel if both belonged to the periodic function, and zero otherwise. The
prior mean in the change-point composition was set to the means learned in linear and periodic sub-tasks respectively.
The model acted using an ϵ-greedy policy with an ϵ-value of 0.9 in the first two sub-tasks and acted greedily on the
last sub-task. These ϵ-values were chosen such that the model explored and learned the latent functions in the first two
sub-tasks and exploited the learned latent functions in the last sub-task.

Meta-Reinforcement Learning: The prior over possible reward functions and how these are composed are hard-coded
in the Gaussian Process model. To test whether such priors and compositions can also be learned from experience, we
implemented a meta-reinforcement learning agent similar to that of [5]. The agent architecture consisted of a long short-
term memory (LSTM) network followed by an actor-critic module. The LSTM network had 48 hidden units and takes
the trial index, the action from the previous step, the reward from the previous step, and – depending on the condition –
the sub-task index as well as a one-hot encoding of the compositional rule as inputs. The actor-critic module comprised
of a two-layer neural network with 48 hidden units in each layer with the first layer shared between actor and critic. It
outputted an estimate of the value function and the policy. We trained the model using the standard A2C loss at the end
of each episode with an additional entropy regularization term to prevent premature convergence [6]. The parameter
that controlled the strength of the entropy regularization term was annealed to zero over the course of training. We used
the ADAM optimizer with a learning rate of 0.001 and trained all agents for a total of 2 · 105 episodes.
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(a) Models: Additive (b) Models: Change-Point (c) Human: Additive (d) Human: Change-Point

Figure 3: Model and Human Performance: (a-b) Mean regrets for both models averaged over 100 runs in the final sub-
task for the additive and change-point rule. (c-d) Mean regrets for participants in the final sub-task for the additive and
change-point rule. Error-bars for models show standard errors over five random seeds; for human data, standard errors
were computed over participants.

2.3 Model Simulations

We simulated both of these models on the task described in Section 2.1. To investigate whether the models can reason
compositionally, we measured their mean regrets in the final sub-task. Regret is defined as the difference between the
optimal reward for a given latent function and the reward of the action selected by the agent. The result of this analysis
is shown in Figure 3 (a) and (b). For both models, we find that the initial mean regret in the curriculum condition is close
to zero. This indicates that the agents re-used earlier learned functions to compose new functions in a zero-shot manner.
In contrast to this, the mean regret in the non-curriculum condition starts at chance-level and takes three to four trials to
reach similar performance.

2.4 Human Experiment

How does human behavior compare to these two algorithms? To answer this question, we conducted a behavioral study
in which the experimental design followed the previously outlined task structure. Participants were told that they are
gamblers visiting the fictional town of Bandit City. This entailed visiting multiple casinos in order to play different sets of
slot machines. Each casino had two slot machines by different companies, with their color indicating the manufacturer.
Coins were earned after choosing an option on the slot machine. Participants were told that all slot machines from a
company behaved similarly. That is, the expected payoffs across options for machines from the same company followed
a similar function (either linear or periodic) but were provided no information about which function belonged to which
company.

In each casino, participants had five trials per slot machine, and their goal was to win as many coins as possible. After-
ward, they were then tested on a new slot machine, which was a composition of the two previously played machines.
The rewards of this new slot machine were given by either an additive or a change-point composition. Machines with an
additive composition had options that were half-green and half-blue in color, while options on machines with a change-
point composition were either green or blue depending on the machine from which its reward was drawn (as shown in
Figure 2).

Participants: We recruited 200 participants (103 female, Mage = 28.90) for the additive and 211 participants (96 female,
Mage = 27.58) for the change-point composition through the Prolific platform. Participants were randomly assigned to the
curriculum or non-curriculum condition. Each condition involved 20 tasks in total. All participants had an approval rate
of 95% or more, were fluent English speakers from the United States and were 18 years of age or older. Participants were
rewarded a base payment of £2 and a performance-dependent bonus payment up to £2.5. The study was approved by
the local ethics committee. We removed 25 participants from our analysis as their performance on the last sub-task was
not above chance level.

Results: If people can learn to compose in our task, we would expect them to pick the most rewarding option in the
curriculum condition on the first trial of the final sub-task with a higher probability than people in the non-curriculum
condition. We consider the last task as an evaluation task as we are interested in the converged behavior. The main
quantity of interest is again the regret in the compositional sub-task. Figure 3 (c) and (d) shows the mean regret (averaged
over participants) for both compositional rules.
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A mixed linear regression analysis revealed that participants in the curriculum condition had a significantly lower regret
on the first trial of the final sub-task compared to participants in the non-curriculum condition (β̂ = −1.49 ± 0.06, p <
.001). This result indicates that people were able to perform some form of zero-shot compositional reasoning in our task,
similar to the investigated models.

However, there were also significant differences to the behavior of both models. The regret in the compositional sub-task
for the participants was larger than that of the Bayesian and the meta-learned model. This is to be expected, as both
models provide us with idealized predictions. Participants furthermore kept on learning during the final sub-task in
the curriculum condition, while both computational models did not. To quantify this effect we fitted a mixed-effects
linear regression using per-trial regret as the dependent variable, and the corresponding trial number as both fixed
effects and random effects over participants. The results of this model showed a significant fixed effect of trial number
(β̂ = −0.31 ± 0.02, p < .001) onto regret. This confirms that the performance of participants improved with additional
interactions. The improvement in the curriculum condition (β̂ = −0.21 ± 0.02) however was weaker than that in the
non-curriculum condition (β̂ = −0.42± 0.02), indicating that participants could exploit the given task structure.

3 Discussion

People effortlessly compose previously learned functions into new ones when navigating their everyday lives. Previous
research has examined this ability in both humans and artificial agents [7, 8] but in a different setting. In the present
article, we proposed a novel experimental task to probe how different agents generalize compositionally. We found that
two very different computational models – a Gaussian Process model and a meta-learned recurrent neural network – can
compose previously learned functions into a new one in a zero-shot manner. We furthermore compared the behavior
of these models to that of human subjects. While we demonstrated that people can learn to compose reward functions,
our analysis also revealed a gap between the behavior of both models and people. We hope to address this gap in future
work by building agents that take the complexity of their solutions into account [9].

It is generally thought that Bayesian models and neural networks offer different theories for understanding human
cognition. In neural network models, cognition emerges from the interaction between a large set of simple processing
units. Bayesian models, on the other hand, explain cognition by appealing to the idea of ideal statistical inference. The
concept of meta-learning offers a bridge between the two frameworks. In the current study, we have seen that it is
possible to meta-learn a recurrent neural network that can reason compositionally on a challenging task – an ability that
has been historically investigated using Bayesian models. In general, we believe that future work should view both
frameworks not as competing hypotheses but rather as symbiotic tools. Each of them comes with its own advantages
and disadvantages: Bayesian models are often interpretable but hard to scale, while meta-learning offers an answer to
the question of how to learn useful priors from experience but comes at the cost of losing theoretical guarantees.

References

[1] David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Structure discovery in
nonparametric regression through compositional kernel search. In International Conference on Machine Learning, 2013.

[2] Eric Schulz, Nicholas T Franklin, and Samuel J Gershman. Finding structure in multi-armed bandits. Cogn. Psychol.,
119:101261, 2020.

[3] Daniel E Acuña and Paul Schrater. Structure learning in human sequential decision-making. PLoS Comput. Biol.,
6(12):e1001003, 2010.

[4] Tankred Saanum, Eric Schulz, and Maarten Speekenbrink. Compositional generalization in multi-armed bandits. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 43, 2021.

[5] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell,
Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. In CogSci, 2017.

[6] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[7] Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. Advances in neural
information processing systems, 32, 2019.

[8] Sreejan Kumar, Ishita Dasgupta, Jonathan Cohen, Nathaniel Daw, and Thomas Griffiths. Meta-learning of structured
task distributions in humans and machines. In International Conference on Learning Representations, 2020.

[9] Marcel Binz, Samuel J Gershman, Eric Schulz, and Dominik Endres. Heuristics from bounded meta-learned inference.
Psychological review, 2022.

4

RLDM 2022 Camera Ready Papers 279

279



Towards Painless Policy Optimization for Constrained MDPs

Arushi Jain∗

McGill University & Mila
arushi.jain@mail.mcgill.ca

Sharan Vaswani∗

Simon Fraser University

Reza Babanezhad
SAIT AI lab, Montreal

Doina Precup
McGill University & Mila

Csaba Szepesvari
Amii, University of Alberta

Abstract

In many safety-critical applications, e.g., robotics, finance, autonomous driving, agents must be subjected to satisfy certain
constraints on a cost function. The Constrained Markov decision process (CMDPs) (Altman, 1999) is a natural framework
for modelling such constraints. The typical objective for CMDP is to maximize a cumulative function of the reward (like
in unconstrained MDPs), while (approximately) satisfying the constraints. In this paper, we study policy optimization
with both tabular and linear function approximation in infinite-horizon, discounted constrained Markov decision process
(CMDP). We propose a generic primal-dual optimization framework, which allows us to bound the sub-optimality gap and
constraint violation for arbitrary algorithms in terms of the primal and dual regret on online linear optimization problems.
We instantiate this framework in a way which allows us to use coin-betting algorithms from online linear optimization
to control both the primal and dual regret. We call the resulting algorithm Coin Betting Politex (CBP). Assuming that
the action-value functions are ε-close to the span of d-dimensional state-action features and γ is the discount factor, T

iterations of CBP result in an O
(

1
(1−γ)3

√
T

+ ε
√

d
(1−γ)2

)
bound on the reward sub-optimality and a constraint violation of

O
(

1
(1−γ)2

√
T

+ ε
√

d
1−γ

)
. Unlike gradient descent-ascent and primal-only methods, our proposed CBP is robust to the choice of

hyper-parameters. We empirically demonstrate the superior performance and robustness of CBP in both tabular and linear
function approximation setting, on both gridworld environments and OpenAI gym tasks.

Keywords: reinforcement learning, constrained MDPs, primal-dual frame-
work, coin-betting algorithm
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(a) Hyperparameter
sensitivity OG

(b) Hyperparameter
sensitivity CV

(c) Environment
misspecification OG

(d) Environment
misspecification CV

(e) Gridworld
environment

Figure 1: Performance in model-based setting: Performance metric – Optimality gap (OG) and constraint violation (CV) – of
our proposed algorithm, CBP, and baselines GDA, CRPO in a gridworld environment (Fig. 1e) with access to the true
CMDP model. Ideally OG and CV should converge to 0. Figs. 1a and 1b show the performance sensitivity to hyperparameters.
The dark lines corresponds to the performance with the best hyperparameters. The lighter color lines show performance
with other hyperparameter values. Figs. 1c and 1d shows the effect of environment mis-specification by varying the discount
factor γ = {0.7, 0.8} and keeping the best hyperparameters obtained from the left two figures (obtained in the original
CMDP with γ = 0.9). GDA and CRPO, exhibit huge variance in performance with different hyperparameters, while CBP
is quite robust to variations in hyperparameters and environment mis-specification.

1 Introduction

In many safety-critical applications, e.g., robotics, finance, autonomous driving, agents must satisfy certain constraints in
addition to optimizing long-term returns. This objective can be formalized in a natural way through the framework of
constrained Markov decision process (CMDP) (Altman, 1999).

In this paper, we focus on the problem of finding an approximately feasible policy (i.e. a policy which is allowed to violate
constraints by a small amount), while (approximately) maximizing the cumulative reward in CMDPs. The literature
on this topic can be divided into two types of methods. Methods of the first type, referred to as primal-only methods,
only update the policy parameters while enforcing the constraints (Achiam et al., 2017). The recent work of Xu et al.
(2021) guarantees global convergence for such methods to the optimal feasible policy in both the tabular and function
approximation settings . The second approach for planning in CMDPs is to form the Lagrangian, and solve the resulting
saddle-point problem using primal-dual algorithms (Altman, 1999). Such approaches update both the policy parameters
(primal variables), and the Lagrange multipliers (dual variables). The recent work of Ding et al. (2020) proves that this
approach converges to the optimal policy in both tabular and function approximation settings as well.

Although there has been substantial progress in designing planning algorithms for CMDPs, all of the proposed algorithms are
highly sensitive to hyperparameter tuning. For example, Figs. 1a and 1b illustrate the effect of varying the hyperparameters of
two provably efficient algorithms – the primal-dual Gradient Descent Ascent (GDA) (Ding et al., 2020) and the primal-only
CRPO (Xu et al., 2021)– on a gridworld task. We can see that the magnitude of both optimality gap and constraint
violations vary greatly for different hyperparameters. Hence, in order to obtain reasonably good performance on a new
task, the hyperparameters of these algorithms need to be tuned from scratch, incurring significant computational overhead.
Designing robust planning algorithms that require minimal hyperparameter tuning is the main motivation for this work.
We propose Coin-Betting Politex (CBP) as an algorithm that can control both the primal and the dual regret, ensuring
better robustness to hyperparameters (as evidenced by the red lines in the figures).

2 Problem Formulation

An infinite-horizon discounted CMDP is defined as a tuple ⟨S, A, P, r, c, b, ρ, γ⟩ where S is the set of states, A is the
action set, P : S × A → ∆S is the transition probability function, ∆S is the S-dimensional probability simplex, ρ ∈
∆S is the initial distribution of states and γ ∈ [0, 1) is the discount factor. The primary reward to be maximized is
denoted by r : S × A → [0, 1]. The expected discounted return or reward value of a policy π : S → ∆A is defined as
V π

r (ρ) = Es0,a0,...

[∑∞
t=0 γtr(st, at)

]
, where s0 ∼ ρ, at ∼ π(at|st), and st+1 ∼ P(st+1|st, at). Similarly, the constrained

reward is denoted by c : S × A → [0, 1] and the constrained reward of policy π is denoted by V π
c (ρ). For each state-action

pair (s, a) and policy π, the reward action-value function is defined as Qπ
r : S × A → R, and satisfies the relation:

V π
r (ρ)(s) = ⟨π(·|s), Qπ

r (s, ·)⟩. We define Qπ
c analogously. Given a class of policies Π, the agent’s objective is to return a

policy π ∈ Π that maximizes V π
r (ρ), while ensuring that V π

c (ρ) ≥ b. Formally,

max
π∈Π

V π
r (ρ) s.t. V π

c (ρ) ≥ b. (1)
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Throughout, we will assume the existence of a feasible policy, and denote the optimal feasible policy by π∗. In this work,
we will consider an easier problem with a relaxed feasibility requirement. In particular, given a target error ε, our aim is to
return a policy π̂ such that, V π̂

r (ρ) ≥ V π∗
r (ρ) − ε, s.t. V π̂

c (ρ) ≥ b − ε. In the next section, we specify a generic primal-dual
framework to solve the problem in Eq. (1) and introduce our algorithm CBP.

3 Methodology

3.1 Primal-Dual framework

In order to specify the primal-dual framework, we use the Lagrangian formulation, and express the constrained optimiza-
tion problem in Eq. (1) as the following saddle-point problem:

max
π∈Π

min
λ≥0

V π
r (ρ) + λ[V π

c (ρ) − b]. (2)

Here, λ ∈ R is the Lagrange multiplier for the constraint and λ∗ refers to its optimal value, meaning that (π∗, λ∗) is the
solution to the above saddle-point problem.

We will solve the above primal-dual saddle-point problem iteratively, by alternatively updating the policy (primal variable)
and the Lagrange multiplier (dual variable). If T is the total number of iterations of such an algorithm, we define πt and λt

to be the primal and dual iterates for t ∈ [T ]. We define Q̂t
r := Q̂πt

r and Q̂t
c := Q̂πt

c as the estimated action-value functions
corresponding to the policy πt. In this section, we assume that we have uniform control over the approximation errors in
the action-value functions for every state-action pair implying that ∥Qt

r − Q̂t
r∥∞ ≤ ε̃ and ∥Qt

c − Q̂t
c∥∞ ≤ ε̃.

Given a generic primal-dual algorithm, our task is to characterize its performance in terms of its cumulative reward and
constraint violation. For a sequence of policies πt and Lagrange multipliers λt generated by an algorithm, we define the
average optimality gap (OG) and average constraint violation (CV) as follows:

OG := 1
T

T −1∑

t=0
[V π∗

r (ρ) − V t
r (ρ)] ; CV := 1

T

T −1∑

t=0
[b − V t

c (ρ)]+. (3)

Here, [x]+ = max{x, 0}. We define the primal regret and dual regret with respect to the optimal policy π∗ as follows. If
V̂ t

c (ρ)(s) = ⟨πt(·|s), Q̂t
c(s, ·)⟩ is the cost value function at state s, then:

Rp(π∗, T ) :=
T −1∑

t=0

S−1∑

s=0
⟨π∗(·|s) − πt(·|s), Q̂t

r + λtQ̂
t
c]⟩ ; Rd(λ, T ) :=

T −1∑

t=0
⟨λt − λ, V̂ t

c (ρ) − b⟩. (4)

The above quantities correspond to the regret for online linear optimization algorithms that can independently update the
primal and dual variables. In the unconstrained setting, reducing the policy optimization problem to that of online linear
optimization has been previously explored through the Politex algorithm (Abbasi-Yadkori et al., 2019). We build upon
Politex to reduce the problem from Eq. (2) to that of online linear optimization in Eq. (4). Theorem 3.1 characterizes the
performance of a generic algorithm in terms of its primal and dual regret (proof omitted due to lack of space).
Theorem 3.1. Assume that ∥Qt

r − Q̂t
r∥∞ ≤ ε̃ and ∥Qt

c − Q̂t
c∥∞ ≤ ε̃, for a generic algorithm producing a sequence of polices

{π0, π1, . . . , πT −1} and dual variables {λ0, λ1, . . . , λT −1} such that for all t. λt is constrained to lie in the [0, U ], where U > λ∗.
Here g(U) = ε̃

1−γ (1 + U) + Uε̃. Then, the average optimality gap (OG) and constraint violation (CV) are bounded by:

OG ≤ Rp(π∗, T ) + (1 − γ)Rd(0, T )
(1 − γ)T + g(U) ; CV ≤ Rp(π∗, T ) + (1 − γ)Rd(U, T )

(U − λ∗)(1 − γ)T + g(U).

Importantly, the above result does not depend on the class of policies Π, nor does it require any assumption about the
underlying CMDP. In order to bound the average reward optimality gap and the average constraint violation, we need to
(i) project the dual variables onto the [0, U ] interval and ensure that U > λ∗, (ii) update the primal and dual variables to
control the respective regret in Eq. (4), and (iii) control the approximation error ε̃. In the next section, we use this recipe to
design algorithms with provable guarantees.

3.2 Coin-Betting Politex Algorithm

Orabona and Pal (2016) and Orabona and Tommasi (2017) propose coin-betting algorithms that reduce the online linear
optimization problems in Eq. (4) to an online betting, and leverage this idea to design parameter-free algorithms. First, we
instantiate the Algorithm 2 in Orabona and Pal (2016) for updating the policy, which is completely parameter-free, to
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our problem. The policy update requires the computation of additional variables wt for each (s, a) pair and iteration t, as
follows:

wt+1(s, a) =
∑t

i=0 Ãi
l(s, a)

(t + 1) + T/2

(
1 +

t∑

i=0
Ãi

l(s, a) wi(s, a)
)

πt+1(a|s) =
{

π0(a|s), if
∑

a π0(a|s) [wt+1(s, a)]+ = 0
π0(a|s) [wt+1(s,a)]+∑
a

π0(a|s) [wt+1(s,a)]+
, otherwise,

(5)

where, Ãt
l(s, a) = Ât

l(s, a) I{wt(s, a) > 0}+[Ât
l(s, a)]+ I{wt(s, a) ≤ 0}. Here, Ât

l(s, a) can be interpreted as the normalized

advantage function, Ât
l(s, a) = 1−γ

1+U

[
Q̂t

l(s, a) −
〈

Q̂t
l(s, ·), πt(·|s)

〉]
. I{ω} is the indicator function with value 1 when

condition ω satisfy. We normalize the action-value function to ensure boundedness within [0, 1] range. Note that the dual
variables are projected in [0, U ] range, where U ≥ λ∗.

Similarly, we instantiate Algorithm 2 in Orabona and Tommasi (2017) for updating the dual variable λ:

λt+1 = λ0 +
∑t

i=0 gi

Lt max(
∑t

i=0 |gi| + Lt, αλLt)

(
Lt +

t∑

i=0
[(λi − λ0)gi]+

)
, (6)

where gt := b − V̂ t
c (ρ), αλ is a tunable hyper-parameter, Lt = max(Lt−1, |gt|) and L0 is initialized to 0. Algorithm

1 summarizes CBP in the linear function approximation setting. In particular, for a given coreset C, we estimate the
action-value functions for a subset of (s, a) ∈ C.

Algorithm 1: Coin-Betting Politex (CBP)
1 Input: αλ > 0 (parameter), π0 (random policy initialization), λ0 = 1 (dual variable initialization), m (Number of

trajectories), T (Number of iterations), Feature map Φ, Coreset C.
2 for t = 0, . . . , T − 1 do
3 Using m trajectories for every (s, a) ∈ C, compute weight vectors θπt

r and θπt
c of Qr and Qc respectively using

LSTDQ (Lagoudakis and Parr, 2003).
4 Compute Q̂t

r(s, a) = ⟨θπt
r , ϕ(s, a)⟩, Q̂t

c(s, a) = ⟨θπt
c , ϕ(s, a)⟩ and Q̂t

l(s, a) = Q̂t
r(s, a) + λt Q̂t

c(s, a).
5 Use stored vectors {θπi

r , θπi
c }t

i=0 and compute πt+1(a|s) using Eq. (5).
6 Compute V̂ πt

c (ρ) and update λt+1 using Eq. (6).
7 end

8 return mixture policy π̄T :=
∑T −1

t=0
πt

T .

Setting U = 2
([maxπ V π

c (ρ)]−b)(1−γ) , and using the primal and dual regret expressions for coin-betting (Orabona and Tommasi,

2017), we can show that a variant of CBP results in an O
(

1
(1−γ)3

√
T

+ ε
√

d
(1−γ)2

)
bound on the reward sub-optimality and a

constraint violation of O
(

1
(1−γ)2

√
T

+ ε
√

d
1−γ

)
. The proof is omitted due to lack of space.

4 Experiments

4.1 Model-based setting

We show experiments on a simple tabular environment to compare our proposed algorithm, CBP, with the primal-dual
approach, exemplified by GDA (Ding et al., 2020), and the primal-only approach exemplified by CRPO (Xu et al., 2021).
We consider the 5X5 gridworld introduced in (Sutton and Barto, 2018) and depicted in Fig. 1e. All four cardinal actions
in the special states A and B receive a non-zero reward and cost values and land in states A′ and B′ respectively. The
remaining states receive 0 reward and cost for all actions. Here γ = 0.9. In this section, we assume access to the true
CMDP model. Figs. 1a and 1b show the performance metrics, OG and CV, for the three algorithms. CBP is robust
to hyperparameter settings. The best hyperparameters corresponds to least OG and satisfy CV ∈ [−0.25, 0]. Next, we
verify the robustness of the algorithms with respect to environment misspecification. We use the best value of the
hyperparameters obtained for discount factor γ = 0.9 and use them for different CMDP corresponding to two other
values of γ = {0.7, 0.8} in Figs. 1c and 1d. This experiment suggests that CBP is robust to environment misspecification
and consistently converges faster than the baselines. The Github code is available for all the experiments at https:
//github.com/arushijain94/CoinBettingPolitex.

3

RLDM 2022 Camera Ready Papers 283

283



4.2 Model-free setting

In this section, we assume the model-free setting with no access to the true CMDP model. We use linear function
approximation (LFA) to learn estimates of action-values using the LSTDQ algorithm (Lagoudakis and Parr, 2003). Tile
coding (Sutton and Barto, 2018) is used to obtain features. We conduct experiments on two environments: Gridworld
(Fig. 1e) and Cartpole (OpenAI gym). Along with the usual reward, we add two penalty constraints in the Cartpole
environment, when (a) entering specific areas on x-axis and (b) having the angle of the pole larger than a threshold. Fig. 2a
shows the OG and CV in the Gridworld environment with LFA. Similarly, Figs. 2c to 2e show the return and two constraint
violations for constrained Cartpole environment. For the Cartpole experiment, we kept the CV ∈ [−6, 0]. In both the
environments, CBP is robust to variations in the values of the hyperparameters.

(a) Gridworld OG (b) Gridworld CV (c) Cartpole return (d) Cartpole CV 1 (e) Cartpole CV2

Figure 2: Model-free with linear function approximation: We compare performance of CBP with baselines GDA and
CRPO. Figs. 2a and 2b shows the performance in the gridworld environment with function approximation. Figs. 2c
to 2e shows the return, CV1 and CV2 in constrained Cartpole environment. Here, dark lines correspond to the best
hyper-parameters for each of the three algorithms. Lighter lines show the variation in performance with different hyper-
parameters.CBP is robust to hyperparameter settings in both domains.

5 Conclusion

We proposed a general primal-dual framework to solve CMDPs with function approximation. We instantiated this
framework using coin-betting algorithms from online linear optimization, and proposed the CBP algorithm. We proved
that CBP is theoretically sound and has a good regret bounds. In addition, we showed empirically that CBP is robust to
hyper-parameter tuning and environment mis-specification. We believe that developing robust, parameter-free algorithms
is important for reproducibility in RL, and hope that our work will encourage future research in this area.
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Abstract

We are concerned with the question of how an agent can acquire its own representations from sensory data. We restrict
our focus to learning representations for long-term planning, a class of problems that state-of-the-art learning methods
are unable to solve. We propose a framework for autonomously learning state abstractions of an agent’s environment,
given a set of skills. Importantly, these abstractions are task-independent, and so can be reused to solve new tasks. We
demonstrate how an agent can use an existing set of options to acquire representations from ego- and object-centric
observations. These abstractions can immediately be reused by the same agent in new environments. We show how to
combine these portable representations with problem-specific ones to generate a sound description of a specific task that
can be used for abstract planning. Finally, we show how to autonomously construct a multi-level hierarchy consisting
of increasingly abstract representations. Since these hierarchies are transferable, higher-order concepts can be reused in
new tasks, relieving the agent from relearning them and improving sample efficiency. Our results demonstrate that our
approach allows an agent to transfer previous knowledge to new tasks, improving sample efficiency as the number of
tasks increases.

Keywords: representation learning, planning, abstractions, hierarchy
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1 Introduction

Recently, state-of-the-art reinforcement learning (RL) approaches have made several significant advances in challenging
domains, such as controlling nuclear reactors [1]. Despite these successes, it is clear that these approaches do not capture
a remarkable aspect of human intelligence—namely, that humans can solve not just a single problem, but a massively
diverse array of tasks. Consider the ALPHAZERO agent which attained superhuman performance in the grand challenge
of Go [2]. While this is an immensely difficult task, the input to this agent is a set of binary vectors specifying stone
locations, while the output is a location at which to place a stone. This input-output format is provided to the agent by a
human designer because it captures exactly the task that must be accomplished. However, it means that the agent cannot
solve any other tasks by definition; it cannot drive a car or cook a meal. While the former approach is useful in designing
narrow, application-specific solutions, it falls short of the ultimate aim of generally intelligent agents.

In general, tasks in RL are formulated by human designers and provided to agents in a standardised, compact form.
Though this practice is widespread, it sidesteps an important question: where do these representations come from in the first
place? It is obvious that this approach is infeasible in the long run: we cannot preprogram an agent with every task it
may encounter before deploying it in the real world. Nor can we require that a human designer accompany the agent
throughout its lifetime, providing task representations as and when required. Clearly then, the only option is for the
agent to learn its own representation for any newly encountered task directly from its observations of the world.

If we are to design a single agent capable of solving multiple tasks in the real world, it must necessarily have a complex
sensorimotor space. However, solving long-horizon tasks at this low level is typically infeasible. A common approach
to tackling this problem is hierarchical RL, which makes use of abstractions to simplify the problem. Action abstractions
(also known as skills) alleviates the need to reason using low-level actions, while the use of state abstraction (where
states are aggregated into high-level states) reduces the size of the problem. However, if an agent’s abstractions are too
high-level, it risks omitting important and necessary details. Conversely, if it seeks to preserve every last detail of the
environment, then its representations will be too low-level and planning will once again be infeasible. The key question
is how best to construct an abstract model of an environment while retaining only the information required for planning.

In this work, we outline a framework for learning transferable abstract representations from low-level data that can
be used for long-term planning. More concretely, we extend the framework of Konidaris et al. [3] so that the learned
representations are portable—given a new task, an agent can reuse the representations it has learned previously to speed
up learning. We apply our framework to learn both agent- and object-centric representations in several high-dimensional
domains, and demonstrate that our approach results in agents that are i) more sample efficient; ii) able to learn their own
representations; and iii) able to use their learned representations to solve a variety of tasks.

2 Preliminaries

We begin by assuming that an agent is equipped with a set of skills and model tasks as semi-Markov decision processes
M = ⟨S,O, T ,R⟩ where (i) S is the state space; (ii) O(s) is the set of temporally-extended actions known as options
available at state s; (iii) T describes the transition dynamics, specifying the probability of arriving in state s′ after option
o is executed from s; and (iv)R specifies the reward for reaching state s′ after executing option o in state s. An option o is
defined by the tuple ⟨Io, πo;βo⟩, where Io is the initiation set specifying the states where the option can be executed, πo is
the option policy which specifies the actions to execute, and βo the probability of the option terminating in each state [4].

We intend to learn an abstract representation suitable for planning. Prior work has shown that a sound and complete
abstract representation must necessarily be able to estimate the set of initiating and terminating states for each option [3].
In classical planning, this corresponds to the precondition and effect of each high-level action operator. The precondition
is defined as Pre(o) = Pr(s ∈ Io), which is a probabilistic classifier that expresses the probability that option o can be
executed at state s. Similarly, the effect represents the distribution of states an agent may find itself in after executing
an option from states drawn from some starting distribution [3]. Since the precondition is a probabilistic classifier and
the effect is a density estimator, they can be learned directly from option execution data. We can use preconditions and
effects to evaluate the probability of an arbitrary sequence of options—a plan—executing successfully.

Partitioned Options For large or continuous state spaces, estimating Pr(s′ | s, o) is difficult; however, if we assume
that terminating states are independent of starting states, we can make the simplification Pr(s′ | s, o) = Pr(s′ | o). These
subgoal options are not overly restrictive, since they refer to options that drive an agent to some set of states with high re-
liability. While many options are not subgoal, it is often possible to partition an option’s initiation set into a finite number
of subsets. That is, we partition an option o’s start states into finite regions C such that Pr(s′ | s, o, c) ≈ Pr(s′ | o, c), c ∈ C.
Given (partitioned) subgoal options, we can estimate their preconditions and effects using the approach outlined by
Konidaris et al. [3].
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3 Agent-Centric Abstractions

Central to the field of artificial intelligence is the notion of the agent. Real-world agents are robots, which perceive their
environments through sensors and act upon them with effectors. In practice, a human designer will usually build upon
the observations produced by the agent’s sensors to construct the Markov state space for the problem at hand, while
discarding unnecessary perceptual information. Instead we will seek to effect transfer by using both the agent’s sensor
information—which is typically egocentric—in addition to the Markov state space. We assume that tasks are related
because they are faced by the same agent. For example, consider a robot (equipped with various sensors) that is required
to perform a number of as yet unspecified tasks. The only aspect that remains constant across all these tasks is the
presence of the robot and, more importantly, its sensors, which map the state space S to a portable, lossy and egocentric
observation space D known as agent space. We can use D to define portable options, whose option policies, initiation
sets and termination conditions are all defined egocentrically. Because D remains constant regardless of the underlying
SMDP, these options can be transferred across tasks [5].

Having made this distinction, we can write the state space of any given taskMi as the tuple ⟨Xi,D⟩, where D is shared
across tasks and Xi represents task-specific state variables. Given this representation, we can follow a two-step process.
The first phase uses the procedure outlined in Section 2 to learn portable abstract rules using agent-space transition data
only. The second phase uses problem-space transitions to partition options in Xi. Each partition is assigned a unique
label, and these labels are used as parameters to ground the previously learned portable representations in the current
task. For a new task, the agent need only estimate how the partition labels change under each option execution. Figure 1
illustrates this entire process, but see James et al. [6] for more details.

We test our approach in the Treasure Game [3], where an agent navigates a maze in search of treasure. This domain
contains ladders and doors which impede the agent. Some doors can be opened and closed with levers, while others
require a key to unlock. We first learn an abstract representation using agent-space transitions only, following the same
procedure above. Once we have learned sufficiently accurate portable abstractions, they need only be instantiated for
the given task by learning the linking between partitions. This requires far fewer samples than learning a task-specific
representation from scratch. To illustrate, we construct ten levels and gather transition samples from each task. We use
these samples to build both task-specific and egocentric (portable) models. For each level, we collect data until a model
is sufficiently accurate at which point we continue to the next task. Results are given by Figure 2.

Data

Partition into
subgoal options

Portable
abstractions

Non-portable
abstractions

Task 1

M
od

el

Estimate
preconditions and

e�ects

Generate abstract
forward model

Partition options
based on problem-

speci�c e�ects

Learn transitions
between partition labels

under each option

Ground portable abstractions
using partition labels for
preconditions and e�ects

Figure 1: The agent learns transferable representations,
which are then combined with problem-specific abstractions
to form a model suitable for planning.

Figure 2: Owing to transfer, the number of samples
required by the agent to learn a sufficiently accurate
model decreases with the number of tasks faced.

4 Object-Centric Abstractions

Having assumed the existence of an agent, it is natural to make another assumption—that the world consist of objects,
and that similar objects are common amongst tasks. Previously, we assumed the existence of an agent equipped with
sensors, which led to the idea of agent space. Since we are now assuming the existence of objects, a natural extension
is to introduce the notion of object space. We adopt an object-centric formulation: in a task with n objects, the state is
represented by the set {fa, f1, f2, . . . , fn}, where fa is a vector of the agent’s features and fi are the features of object i [7].

The process to learn a grounded representation is now three-fold and is summarised by Figure 4. We first follow the same
procedure outlined in Section 2 to construct a non-portable representation of a single task. Since object space is already
factored into the constituent objects, each abstraction will refer to a distribution over a particular object’s state. Next, we
merge these representations where objects fall into the same “type” using the notion of effect equivalence [8]—two objects
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are grouped into the same type when they undergo similar effects under the same set of options. Finally, we once more
use the problem-specific state data to construct partition labels, which are used to ground previously learned portable
representations in the current task. See James et al. [9] for more details.

(a) rep 15 (b) rep 2 (c) rep 17

(d) rep 19 (e) rep 20

Figure 3: Abstract precondition and effect for
breaking a gold block. The agent must be stand-
ing in front of a gold block (rep 15) at a partic-
ular location (rep 17), and the gold block must
be whole (rep 2). As a result, the agent finds it-
self in front of a disintegrated block (rep 20),
and the gold block is disintegrated (rep 19).
Only the red abstraction must be relearned for
each new task.

We demonstrate our approach in a series of Minecraft levels, where
each consists of five rooms with various items positioned throughout.
Rooms are connected with either regular doors, which can be opened
by direct interaction, or puzzle doors requiring the agent to pull a lever
to open. The world is described by the state of each of the objects
(given directly by each object’s appearance as a 600×800 RGB image),
the agent’s view, and current inventory. The agent is given high-level
skills, such as ToggleDoor and WalkToItem. To simplify learning,
we downscale images and applying PCA to a greyscaled version, pre-
serving the top 40 principal components. We follow the process in
Figure 4 to learn portable object-centric representations, and ground
them with task-specific partition labels derived from the agent’s xyz-
location. As mentioned, objects are grouped into types based on their
effects, which is made easier because certain objects do not undergo ef-
fects under certain options. For example, the chest cannot be toggled,
while a door can, and thus it is immediately clear that they are not of
the same type. We investigate transferring abstractions between five
procedurally-generated tasks, where each task differs in the location
of the objects and doors. For a given task, the agent transfers all op-
erators learned from previous tasks, and continues to collect samples
using uniform random exploration until it produces a model that pre-
dicts the optimal plan can be executed. Figure 3 illustrates a learned
abstraction, while Figure 5 shows the number of abstract option rep-
resentations (operators) transferred between tasks.

5 Hierarchies of Abstractions

The previous approaches, whether agent- or object-centric, resulted in an abstract decision problem. If we apply our
framework repeatedly, it will discover increasingly higher order representations, which are themselves distributions
over the representations at the level below; in the agent-centric setting, an abstract state space at level i > 0 is the tuple
⟨X (i),D(i)⟩, where each x ∈ X (i) and d ∈ D(i) is a distribution over states in X (i−1) and D(i−1) respectively. The above
formulation means that, as we construct more levels in the hierarchy, the resulting representations become increasingly
compact and faster to plan with, but so does the degree of uncertainty.

Our first step is to construct an abstract representation using the approach in Section 3. Next we must decide how best to
discover higher order skills in this new representation. We achieve this by converting our representation to a transition
graph, identify “important” nodes (using the VOTERANK metric), and then construct options to reach these subgoal nodes
using Djikstra’s algorithm. Edges along these paths constitute our higher-order options. Note that since all the options
contain only a single node in their termination set, they are subgoal by construction. We can then simply iterate this
approach to construct an entire abstraction hierarchy.

Current task
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abstractions
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on object type
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Figure 4: Learning object-relative representations
from data. Blue nodes represent problem-specific rep-
resentations, while green nodes are abstractions that
can be transferred between tasks.

0 1 2 3 4
Number of tasks seen

0

10

20

30

40

50

60

Nu
m

be
r o

f o
pe

ra
to

rs

No transfer
Transfer

Figure 5: Orange: number of operators that must be
learned to produce a sufficiently accurate model of a
task. Blue: number of operators transferred between
tasks. Mean and standard deviation over 80 runs.
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We again apply our approach to the Treasure Game to construct portable hierarchies. To illustrate the effect of the hierarchy,
we compute the distribution of the length of all pairs of shortest paths for each of the tasks when using abstractions from
varying levels of the hierarchy. Results for the first task are given by Figure 6 and indicate that incorporating information
at increasingly abstract levels of the hierarchy reduces the size of the graph (this trend holds across all other levels
too). Consequently, the maximum planning horizon is shortened, which greatly simplifies the planning problem. We
also investigate transfer by presenting the agent with each of the ten tasks in sequence. Unlike previously, portable
representations here consist of representations at various levels in the hierarchy. We measure the number of samples
required to learn a model of a new task, with the results illustrated by Figure 7. Although the results exhibit high
variance (due to the exploration strategy, the differences in tasks, and the randomised task order), sample efficiency is
clearly improved when an agent is able to reuse past knowledge.
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Figure 6: Distribution of optimal plan lengths in the first task
when using hierarchies of varying heights.
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Figure 7: Number of episodes required to learn a
model of a given task, decreasing as the agent ob-
serves more tasks. Mean and variance reported over
100 runs.

6 Conclusion

We proposed a framework for autonomously learning reusable representations. We showed how to learn an agent-
and object-centric representation that can be used for planning. These representations can be transferred to new tasks,
reducing the number of times an agent is required to interact with the world. We also showed how to construct a
portable hierarchy of abstractions that can be used to plan at different levels. Altogether, our results indicate that the
learned abstractions can be reused in new tasks, reducing the number of times an agent is required to interact with its
environment. We believe this will be critical to scaling abstraction learning approaches to real world tasks in the future.
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[8] E. Şahin, M. Cakmak, M. Doğar, E. Uğur, and G. Üçoluk, “To afford or not to afford: A new formalization of affordances toward
affordance-based robot control,” Adaptive Behavior, vol. 15, no. 4, pp. 447–472, 2007.

[9] S. James, B. Rosman, and G. Konidaris, “Autonomous learning of object-centric abstractions for high-level planning,” in Interna-
tional Conference on Learning Representations, 2022.

4

RLDM 2022 Camera Ready Papers 289

289



Neuro-Nav: A Library for Neurally-Plausible
Reinforcement Learning

Arthur Juliani
Araya Inc.

Minato-ku, Tokyo Japan
arthur juliani@araya.org

Samuel A. Barnett
Princeton University
Princeton, NJ USA

samuelab@princeton.edu

Brandon Davis
Massachusetts Institute of Technology

Cambridge, MA USA
davisb@mit.edu

Margaret Sereno
University of Oregon

Eugene, OR USA
msereno@uoregon.edu

Ida Momennejad
Microsoft Research

New York City, NY USA
idamo@microsoft.com

Abstract

In this work we propose Neuro-Nav, an open-source library for neurally plausible reinforcement learning (RL). RL is
among the most common modeling frameworks for studying decision making, learning, and navigation in biological
organisms. In utilizing RL, cognitive scientists often handcraft environments and agents to meet the needs of their par-
ticular studies. On the other hand, artificial intelligence researchers often struggle to find benchmarks for neurally and
biologically plausible representation and behavior (e.g., in decision making or navigation). In order to streamline this
process across both fields with transparency and reproducibility, Neuro-Nav offers a set of standardized environments
and RL algorithms drawn from canonical behavioral and neural studies in rodents and humans. We demonstrate that the
toolkit replicates relevant findings from a number of studies across both cognitive science and RL literatures. We further-
more describe ways in which the library can be extended with novel algorithms (including deep RL) and environments
to address future research needs of the field.

Keywords: reinforcement learning, open source, navigation, neuroscience
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1 Introduction

Understanding how humans and other animals make non-reactive decisions in their environments remains a longstand-
ing interest of psychologists and neuroscientists alike, especially following the proposal of cognitive maps a century ago
[1]. Applying the formalism of reinforcement learning (RL) to decision making has accelerated the progress in this field
within recent decades [2]. Indeed, there is neuroscientific evidence that various forms of learning in humans and other
animals can be modeled using the formalism of RL, and thus be described by classical algorithms from the RL literature
[3, 4].

Applying the RL paradigm has led to a deeper understanding of learning from describing simple forms of conditioning
in animals [5], to providing a basis for complex navigational strategies in humans [6]. This work is often made possible
by abstracting the underlying complexity of the real environment-agent system into an idealized model. This process
involves the real environment of the animal being abstracted into a computationally tractable Markov Decision Process
(MDP) [7], consisting of an underlying graph of state nodes, which are connected to one another via edges corresponding
to actions taken by the agent. Likewise, the biological organism making the decisions is abstracted into an artificial agent
modeled by a policy and value function, which can interact with and potentially learn the relevant dynamics of the MDP.

This process of abstraction is largely non-standardized, and has seen various ad-hoc implementations over the decades,
often driven by the particular experimental needs of the researchers at the time. Furthermore, many of these concrete
implementations are not available in open-source forms, change when translated from one coding language to another,
or the code has been lost altogether. As a result, the ability to replicate or build on previous work has been limited,
confusing trainees, slowing progress in the field, and preventing the straightforward comparison of various models or
algorithms to animal data. On the other hand, most AI benchmarks remain limited to maximizing scores and super-
human performance, which misses the opportunity for neurally and biologically plausible representation and behavior.

In this work, we present Neuro-Nav1, an open-source library providing a standardized set of benchmark environments
and RL algorithms which can be used to both replicate previous findings, test the biological plausibility of new models,
and provide scaffolding for future experimental work in the field. The benchmarks focus on domains that are the basis
of many experimental studies: spatial navigation in mazes (Figure 1 Top), associative learning, and graph navigation
tasks (Figure 1 Bottom) [4]. In addition, we provide standardized implementations of classical RL algorithms such as
Q-Learning, Successor Representation, and Model-based RL with Value Iteration, which can be evaluated using the
benchmark environments. We provide these all within the context of a documented and tested open-source repository,
which can be freely used and developed further by the broader research community.

Figure 1: Top: Examples of maze environments. White square corresponds to agent location. Green square corresponds
to goal location. Grey squares correspond to walls. Bottom: Examples of graph environments. Blue circle corresponds
to agent location. Green circle corresponds to goal location. Environments drawn from studies in neuroscience [8, 9],
classical RL [2], and cognitive science [10, 11].

2 Neuro-Nav Library

Neuro-Nav is an open source library consisting of three components: a set of benchmark environments, a toolkit contain-
ing artificial reinforcement learning agents and algorithms, and a set of interactive notebooks for replicating experimental

1https://github.com/awjuliani/neuro-nav
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findings in the literature. All of the code in Neuro-Nav is written in the python programming language, and utilizes the
numpy computational programming library to accelerate the relevant tensor mathematics.

2.1 Benchmark Environments

The environments included in Neuro-Nav consist of a set of graph and maze navigation tasks. In both cases, the under-
lying environment dynamics consists of a graph of ‘state’ nodes connected by ‘action’ edges. The agent occupies one of
the nodes in the graph. The graph may also contain nodes that provide reward upon the agent occupying them, as well
as a goal node, which both provides a reward as well as terminates the episode. Maze environments may be seen as a
specific class of graph environments where the structure is mapped to a 2D grid, and the action space always consists
of four actions: movement in each of the cardinal directions. Both types of environments are implemented using the
OpenAI Gym interface, thus allowing for integration with a wide number of pre-existing open source RL codebases [12].

For each class of environments, we provide both an underlying library for defining and interacting with the environ-
ment as well as a set of pre-defined environments, which can be utilized for evaluation. These environments are often
taken from existing literature, and serve to aid in the partial or complete replication of various findings from those orig-
inal papers. In particular, we draw from environments defined in the context of neuroscience [8, 9], classical RL [2],
and cognitive science [10, 11]. See Figure 1 for examples of a representative subset of the included maze and graph
environments.

We also provide an abstraction for defining the observation space of the environment, which is completely orthogonal
to that of the structure or topography of the environment. By default, we utilize a one-hot encoding for states, but also
provide a set of alternative observational spaces such as Euclidean distance from walls in the maze tasks, or CIFAR
images in the graph tasks, as well as many others.

2.2 Algorithms Toolkit

Algorithm Function(s) TD Replay Value Iteration

TD-Q Q(s, a) Yes No No
TD-AC V (s), π(a|s) Yes No No
TD-SR ψ(s, a), ω(s) Yes No No

Dyna-Q Q(s, a) Yes Yes No
Dyna-SR ψ(s, a), ω(s) Yes Yes No
Dyna-AC V (s), π(a|s) Yes Yes No

MBV Q(s, a), T (s′|s, a) No No Yes
MBSR ψ(s, a), ω(s), Q(s, a), T (s′|s, a) Yes No Yes

Table 1: Reinforcement learning algorithms included in the Neuro-Nav toolkit. ’TD’ column: the algorithm utilizes
an online temporal difference learning rule. ’Replay’ column: the algorithm utilizes offline replay algorithm. ’Value
Iteration’ column: the algorithm utilizes an offline model-based learning procedure.

In addition to graph and maze environments, we provide a set of artificial agents, which implement canonical algorithms
from the RL literature. We focus on tabular rather than deep learning algorithms, as this has likewise been the focus of
much of the literature at the intersection of neuroscience and RL [11]. We include algorithms implemented either as
model-free or model-based learning algorithms, as well as hybrid algorithms such as Dyna. See Table 1 for a description
of the provided agent types. Each agent implements one of multiple possible algorithms for learning a policy and value
function. Decisions are taken by the agent with either a softmax policy or epsilon greedy strategy, both of which are
available to use in any agent type.

3 Experimental Results

We validate Neuro-Nav by replicating known results from human and rodent navigation and decision-making experi-
ments. In particular, we replicate two classes of results: behavioral, which compares the observable behavior of biological
and artificial agents, and representational, comparing learned representations of biological agents (using neuroscience)
and artificial agents. Here we present Neuro-Nav results using benchmark from both categories.

In order to validate Neuro-Nav for replication of behavioral results, we focused on two recent studies in the literature,
[10] and [11]. In the former, agent performance is compared to that of humans in a set of navigation tasks, where aspects
of the environments are changed partway during learning. In the latter, agent performance is compared to that of rodents
in a set of maze navigation tasks. We present replications of the findings from Experiment 1 of [10] in Figure 2. We present
results consistent with the results of [11] in Figure 3.
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Figure 2: Replication of results from revaluation task described in Experiment 1 from [10]. Higher revaluation score
corresponds to greater change in behavior after the re-learning phase. Both DynaSR and SRMB algorithms show most
human-like revaluation behavior. Results averaged over ten experiments.

Beyond simply analyzing behavior, the internal content and structure of information utilized for decision making is of
interest to many researchers. Here we focus on three relevant internal representations: value estimations, synthetic place
fields, and grid fields [9]. We present Figure 4, which contains examples of each of these within an open field maze
environment taken from an agent utilizing a successor representation.

Figure 3: Top: Performance comparison between agent types on a reward transfer problem. Goal location changes at
episode 75. SR and model-based algorithms successfully adapt to change. Bottom: Performance comparison between
agents on a structure transfer problem. Environment structure changes at episode 50. Only model-based algorithm
adapts to structural change. Graphs display average performance over five separate experiments. Tasks adapted from
[11].

4 Discussion

Here we presented an open-source library of benchmark environments and algorithms for performing reinforcement
learning experiments on decision making and navigation tasks. Neuro-Nav aims to empower reproducibility and stan-
dardization of evaluation within research in neurally plausible RL models of navigation and decision making. This
project was developed with future extensions in mind, and as such, Neuro-Nav empowers users to easily develop new
environments and algorithms beyond what is demonstrated in this work.

Neuro-Nav users can extend the benchmark environments in two ways. The first is by creating novel environments,
i.e., MDPs, graphs, and maze topographies, to evaluate specific navigation, associative learning, or decision making
experiments. The second is by defining novel observation spaces for the agents, such as using fractal or face/scene
images as nodes or states, or perceiving Euclidean distance from maze walls. These examples, among others, capture
relevant paradigms in the neuroscience literature [8, 13]. Future work using Neuro-Nav can add novel environments
and novel algorithms to the open-source library, compare the performance of RL algorithms on all environments, and
thus replicate a broader class of studies within the field.

Currently, the Neuro-Nav library only supports tabular learning agents. As such, the agents provided here are not
capable of learning from the more varied class of possible observation spaces. In contrast, humans and other animals
learn from complex multi-dimensional sensory signals. While much unrelated work in the field of deep RL has focused
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Figure 4: Top Left: Open field maze environment. Top Middle: Values of Q(a|s) function in a maze environment after
learning for each of the four actions. Top Right: Averaged value function over all actions, i.e. V (s). Bottom Left: Values
of a selection of units in the ψ(s) function in a maze environment after learning. Units show place-like spatially selective
fields. Bottom Right: PCA of ϕ(s) function in a maze environment after learning. Units show grid-like spatial selectivity.
Procedure for generating place and grid fields adapted from [9].

on learning from high-dimensional observation spaces [14], we believe there is an opportunity for a middle path of lower-
dimensional, but biologically grounded observation spaces, which enables linear models or simple neural networks to
learn more expressive and generalizable behavioral policies. While we plan to include deep RL algorithms in future
versions, we believe the current version of Neuro-Nav offers a promising step toward biologically plausible benchmarks,
and a toolkit with potentially significant contributions to the field.
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Abstract

Effective communication enables agents to collaborate to achieve a goal. Understanding the process of communication
emergence allows us to create optimal learning environments for multi-agent settings. Thus far, most of the research in
the field explores unsituated communication in one-step referential tasks. These tasks are not temporally interactive and
lack time pressures typically present in natural communication and language learning. In these settings, reinforcement
learning (RL) agents can successfully learn what to communicate but not when or whether to communicate. Convergence is
slow and agents tend to develop non-efficient codes, contrary to patterns observed in natural languages. Here, we extend
the literature by assessing emergence of communication between RL agents in a temporally interactive, cooperative
task of navigating a gridworld environment. Moreover, we situate the communication in the task—we allow the acting
agent to actively choose between (i) taking an environmental action and (ii) soliciting information from the speaker,
imposing an opportunity cost on communication. We find that, with situated communication, agents converge on a
shared communication protocol more quickly. The acting agent learns to solicit information sparingly, in line with the
Gricean maxim of quantity. In the same multi-step navigation task, we compare real-time to upfront messaging. We
find that real-time messaging significantly improves communication emergence , suggesting that it is easier for agents to
learn to communicate if they can exchange information when it is immediately actionable. Our findings point towards
the importance of studying language emergence through situated communication in multi-step interactions.

Keywords: emergent communication; multi-agent reinforcement learning;
cooperative AI
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1 Introduction
Communication is a key skill for collaboration and hence largely beneficial in multi-agent settings. As humans, we
share well-established communication protocols that have evolved over thousands of generations—shaped by functional
pressures, such as time and articulation effort—to suit the needs of our daily tasks and to take advantage of our cognitive
and physical capabilities. As an example, natural languages are known to be compositional, making them easier to
learn and use [Kirby and Hurford, 2002]. Similarly, when we communicate, we are known to follow Grice’s maxim of
quantity—we try to be as informative as possible, giving only as much information as is needed [Grice, 1975]. If future
artificial systems are to cooperate with humans, it will be beneficial for their communication protocols to follow these
patterns. Understanding communication emergence among artificial agents will allow us to create optimal learning
environments for multi-agent settings and supports the design of machines that will work well with each other and with
people [Crandall et al., 2018, Steels, 2003].

With a recent increase in available computational power, the field has seen a lot of progress [Wagner et al., 2003,
Lazaridou and Baroni, 2020]. Thus far, emergent communication has largely been studied in one-step referential
games, such as the Lewis signalling task [Chaabouni et al., 2019, Li and Bowling, 2019, Lazaridou et al., 2018]. This
type of learning environment is known to successfully enable language development [Kirby and Hurford, 2002] but
does not allow agents to accelerate the learning process through back-and-forth interaction. In line with prior
work [Evtimova et al., 2018] , we show that multi-step interactions can be beneficial for communication emergence, both
in terms of agents’ ability to converge to a collaborative solution and the time needed for convergence.

In most studies, the emerged language structures are analyzed for shared commonalities with natural languages, such
as compositionality or encoding efficiency. Although desired, it is nontrivial for such properties to emerge sponta-
neously between artificial agents [Kottur et al., 2017]. For instance, artificial agents tend towards an anti-efficient en-
coding [Chaabouni et al., 2019]. This likely happens because in the Lewis signalling task, as well as in other simulated
environments [Cao et al., 2018], agents have no incentive to be concise. In our approach, we show it is possible to obtain
sparse communication by providing the agent with an action-communication trade-off, in line with the idea that reward
is enough to shape language [Silver et al., 2021].

In our work, we explore the emergence of communication in a cooperative multi-step navigation task. Importantly, we
situate the communication in the environment—we allow the acting agent to actively choose between (i) taking an action
to move through the maze and (ii) soliciting information from the speaker. Our contributions are two-fold: (1) we study
the emergence of situated communication and how it affects the communication protocol, and (2) we explore the effect of
multi-step interactions on communication emergence.

2 Experimental Setup
The environment. We define a cooperative navigation task as a Markov Decision Process (MDP) with two reinforcement
learning (RL) agents. The environment is set up as a pixel-based gridworld (7 by 7 cells). As illustrated in Figure 1, the
maze includes 3 T-junctions, each allowing a right and left turn. Features of the world are represented with colors: walls
are black, the maze is white, the agent is green, and the target is blue. The features are encoded with binary vectors.

The agents. There are two agents, a speaker and a listener (i.e. acting agent). The listener is embedded inside the
gridworld and can take actions to move between cells. The action space of the listener spans 5 actions [move up, move
down, move right, move left, stay in place]. The listener’s observation consists of the environmental view (if any)
concatenated with the message from the speaker. We test the listener under two conditions: (1) with no visibility, where
the listener’s observation consists solely of the speaker’s message, and (2) with partial visibility, where the listener can
see the 3 pixels directly in front of them. The second variant gives the listener environmental context to take actions
without needing to rely solely on communication. The speaker does not reside within the gridworld and cannot take
environmental actions (i.e. navigate the maze) but instead can communicate information to the listener. The message
space of the speaker spans 5 symbols [0, 1, ..., 4]. At each timestep, the speaker can see the entire gridworld, including
the location of the agent and the location of the goal. The speaker’s view of the world map is rotated to align with
the direction that the listener is facing. In our experiments, we test agents with and without memory. Agents without
memory have to rely only on their current observations to generate messages or pick actions. Agents with memory have
an internal representation of the history of an episode—they can use accumulated knowledge from prior timesteps to
make decisions in the current timestep.

Agent architectures. The speaker and the listener share the same architecture without sharing weights or gradient val-
ues. They both have a 2-layer Convolutional Neural Network (CNN) that generates an 8 to 32 bit representation of the
environment. In the case of the listener, this representation of the environment gets concatenated with the message re-
ceived from the speaker. In both cases, the vector gets passed into a fully connected layer that generates the agent’s action
(a move or a message). Agents with memory have an additional single-layer LSTM [Hochreiter and Schmidhuber, 1997]
after their fully connected layer. We train the agents using neural fitted Q learning [Riedmiller, 2005], with an Adam
optimizer [Kingma and Ba, 2015] and Qt(λ) where λ = 0.9 and γ = 0.99. During training, agents use an ε-greedy policy
with the exploration rate set as ε = 0.01.
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Figure 1: Experimental setup and a walk-through of an example episode with situated communication. In the maze on the left, stars
indicate possible goal locations. To the right, we visualize an example episode of an active listener with partial visibility. The listener
learns to solve the task optimally, deciding to stay and ask for information when at a junction (twice during the episode).

The task. The goal of the agents is to cooperate so that the listener reaches the target. In each experimental episode, both
agents receive a reward R = 1 if the listener reaches the target before the episode terminates. Episode timeout is set to
100 steps. The goal locations are randomly assigned to one of 4 corners in the T-maze, as indicated with stars in Figure 1.
In each episode, the listener agent starts from the bottom middle cell. We evaluate agent performance using 3 metrics:
(1) task success (via a mean return per episode), (2) optimality of task solution (via a normalized reward per step), and
(3) communication sparsity (via the number of asks per episode).

Communication modes. We compare three modes of communication: (1) real-time messaging with a passive listener,
(2) real-time messaging with an active listener, and (3) upfront messaging with a passive listener. In mode 1, the speaker
generates a 1-token message at every timestep and the message gets broadcasted to the listener before they choose an
action. The speaker has to reason about both the content and timing of their message, deciding both what and when
to communicate. In mode 2, we implement real-time messaging with an active listener. Here, the message is only
broadcasted to the listener after they ask for information. The active listener can solicit to receive information in the next
timestep by choosing to stay in place at the current timestep. The active listener has to learn whether to communicate at
all. In mode 3, the speaker generates a 1-, 2-, or 3-token message at the beginning of each episode and that message gets
broadcasted to the listener at each timestep throughout the episode.

We define the communication in mode 1 and 3 as unsituated—it is free and guaranteed to the agent at every timestep.
There is no opportunity cost to communication. The communication in mode 2 is situated—we allow the acting agent to
actively choose between (i) taking an environmental action and (ii) soliciting information from the speaker. As a result,
the active listener experiences an opportunity cost to communication. They have to forego a move in the environment in
order to obtain information from the speaker and make an informed decision.

Experimental parameters. For each experiment, we run a hyperparameter sweep over learning rates of the speaker and
listener α = [10−5, 10−6, 10−7] and over the size of the environmental representation s = [4, 8, 16, 32]. We run the simu-
lation with each hyperparameter setting with 10 different random seeds. In the figures, we present the best performing
agent pair from our hyperparameter sweep and/or the mean over the 10 replicas with the same hyperparameters as the
best performing pair. When we plot metric means, we include the standard error of the mean.

3 Results
We start by generating a baseline for the task. Experiments confirm that without communication agents are unable to
reliably solve the task. Under partial visibility, agents without communication can succeed in the task with a mean return
of≈ 0.25 per episode. With memory, baseline performance improves. However, due to the random location of the target,
the listener cannot consistently solve the task in an optimal number of steps, converging to a normalized reward per step
of ≈ 0.45. When allowed to communicate, all agents in the T-maze environment learn to solve the task and best agent
pairs find an optimal solution, as visualized with the grey line in Figure 2.

The pressure of time in a multi-step interaction can incentivise sparse communication. In the first set of experiments,
we evaluate the impact of situated communication on language emergence. Figure 1 shows a step-by-step example
episode for an active listener with partial visibility. Under the partial visibility condition, information solicitation takes
place mostly at the junctions, where the acting agent has a choice between two viable environmental actions. The active
listener can learn to near optimally solicit information, asking ≈ 9.76 and ≈ 2.06 times per episode under the two
visibility conditions, respectively.

In Figure 2 on the left, we illustrate the learning curves of the best performing agent pairs. Note that the active listeners
ask for information frequently at the beginning of the interaction and gradually less over time. This suggests that agents
initially have opportunities to align on a protocol. Over time, listeners learn when and whether to solicit information as
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Figure 2: Best performing pairs of agents with an active listener. Under all conditions (with/without memory and with/without
visibility) agents learn to solve the task via the shortest path. Listeners without memory learn to query the speakers in the optimal
number of asks (once per step when the listener has no visibility and once per junction when the listener sees environmental context).
Listeners with memory persist to ask for information when it is immediately actionable (instead of once at the beginning of an episode).

communication comes with a cost. We also observe that the best performing agent pairs with an active listener converge
to an optimal solution faster than the best performing agent pairs with a passive listener. The results suggest that situated
communication not only allows agents to learn a sparse communication protocol, in line with the Gricean maxim of
quantity, but also has a positive impact on convergence speed.

The active listener exhibits a preference for just-in-time communication. Interestingly, when we test situated commu-
nication between agents with memory, agents continue to ask for information at the junctions (note the bottom heatmap
in Figure 2). This is non-obvious—given memory, the active listener could ask for information at any point in the maze. In
fact, if the agent were to be optimally sparse, they could (1) ask for information only once at the beginning of an episode,
(2) receive a message encoding the address of the target, and (3) follow the relevant policy from memory. Instead, the
active listener with memory learns sparse communication relative to a passive listener but they do not achieve the the-
oretically maximal sparsity, continuing to ask for information at the junctions when it is immediately actionable. This
result suggests that it may be easier for agents to succeed at the task when they can control the timing of communication.

Real-time communication improves language emergence compared to upfront messaging. In our final experiment,
we compare the real-time communication protocol (mode 1) with upfront messaging (mode 3). In both scenarios, the
theoretical capacity of the communication channel allows the agents to communicate the necessary information, whether
the agents choose to communicate directions, e.g., ‘turn right’, or a goal address, e.g., ‘top left corner’. With upfront
messages of length 1, 2, and 3, the speaker has 5, 25, or 125 unique messages available for communication, respectively.

With both real-time and upfront messaging, agents succeed in establishing a successful communication protocol when
the listener has partial visibility—they converge to a mean return of 1 per episode. With no visibility for the acting agent,
agent pairs with upfront messaging do not succeed at solving the task. Moreover, the real-time agents are more likely
to converge to an optimal solution, being able to solve the T-maze task in 9 moves. With 1 upfront token, even the best
agents learn to at-best solve the task in 12 steps. These agents seem to reliably learn unique messages to encode the
action required at the first turn or the right/left part of the address, but they do not establish a unique encoding for the
top/bottom portion of the address, as visible in the top heatmap in Figure 3. With 3 upfront tokens, the best agent pair
agrees on 4 distinct symbols to encode the 4 possible goal locations. However, convergence is slow and on average agent
pairs perform less optimally than under the real-time communication paradigm. We hypothesize that there are benefits
to allowing communication to emerge from multi-step interactions. Our findings suggest that it is easier for agents to
learn to communicate if they can exchange information when it is immediately actionable.

4 Conclusion & Discussion
Our results point towards the importance of studying emergent communication in multi-step interactions. The interac-
tive aspect of communicating over time enables agents to learn both what and when to communicate. It improves overall
task performance and speeds up convergence to an optimal solution. Secondly, we find that there is value in situating the
communication in the task and giving the listener agency to choose whether to communicate at all. In this way, we allow
the reward to shape the emergent communication protocol to exhibit properties of natural languages, such as sparsity.
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Figure 3: Comparison of upfront and real-time messaging; agents have memory. Real-time messaging improves convergence on a
successful communication protocol. With upfront messaging, agents learn to solve the task before episode timeout when the listener
has partial visibility. However, convergence is slow and agents are unlikely to solve the task in the optimal number of steps.

Our ongoing work will expand this idea and situate both the speaker and listener in the environment, allowing both
agents to communicate and take actions in the gridworld environment.
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Abstract

When making decisions, we sometimes rely on habit and at other times plan towards goals. Planning requires the con-
struction and use of an internal representation of the environment, a cognitive map. How are these maps constructed,
and how do they guide goal-directed decisions? Here we present work from an experiment where we coupled a sequen-
tial decision-making task with a behavioral representational similarity analysis approach to examine how relationships
between choice options change when people build a cognitive map of the task structure.

In this pre-registered replication (n=161), we found that abstract representations reflecting higher-order relationships
among items encountered in the task were associated with increased planning and better performance. In contrast,
lower-order relationships such as simple visual co-occurrence of objects did not predict goal-directed planning. We also
found that higher-order relationships were more strongly encoded among items associated with high-reward contexts,
indicating a role for motivation during cognitive map construction. These results show that humans actively construct
and use cognitive maps of task structure to make goal-directed decisions.

Keywords: cognitive maps, representational similarity analysis, behavioral,
model-based learning
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1 Introduction

Decisions are not made in a vacuum, but rather capitalize on the structure of the world around us. Imagine moving
to a new city and learning about its structure as you navigate it. Ideally, your internal model will be set up to guide
effective planning, strongly encoding relationships among major streets that connect different neighborhoods. However,
this model may also incorporate features that are less relevant for planning, such as which street names rhyme with one
another.

These internal models are commonly referred to as ’cognitive maps’, a term coined by Tolman to explain how rodents
were able to use spatial features of a maze to navigate towards goals (see [1] for review). The discovery of place cells
and grid cells, which indicate an animal’s current location in space and which are used in simulating possible future
trajectories, provide the neural underpinnings for cognitive maps[2]. Recent work suggests that cognitive maps are not
restricted to spatial domain but also encode more abstract features such as social dimensions[3]. However, much remains
unclear about how humans construct abstract cognitive maps, specifically components that are goal-relevant, and how
they use them to plan towards goals.

Recent studies of decision making formalize goal-directed planning as ”model-based” reinforcement learning [4, 5, 6].
A model-based learner computes expected values for available actions by using a representation of the task structure.
This flexible but computationally costly strategy enables it to apply the values learned at a given goal to every path that
leads to that goal. Meanwhile, a model-free learner uses a more efficient but inflexible strategy, only updating the value
of actions that led to reward, without considering the structure of the task.

Here, we assess the construction of cognitive maps to drive goal-directed decisions. To do so, participants (n=161)
performed a variant of the ‘two-step’ task. This task dissociates model-based and model-free control by exploiting the
ability of the model-based system to plan using an internal representation of the task structure, which contrasts with the
model-free reliance on direct action-reward associations. Many prior studies using this task assume or ensure that an
effective representation of the task is present. However, individual differences in cognitive maps may critically influence
differences in model-based control. How does the nature and quality of one’s cognitive map influence behavior? To
index cognitive map structure, we developed a behavioral representational similarity analysis (behRSA) inspired by
neuroimaging analyses. Participants were asked to rate ”how related” pairs of objects were prior to and after learning
the two-step task with minimal other instruction, allowing us to measure the amount of planning-relevant and planning-
irrelevant information incorporated into their maps, and the influences of motivation on map formation.

2 Reinforcement learning model

We adapted an established hybrid reinforcement-learning model to assess participants’ behavior in the decision-making
task, specifically dissociating model-free and model-based decision making. Every trial t started out in one of four first-
stage states (s1,t) where one of two possible actions aA and aB could be selected (a1,t). Depending on their selection,
the participant deterministically transitioned to one of two second-stage states (s2,t) where they could perform only one
action (a2,t) and then obtain a reward (rt).

The model described here contains both a model-free learner and a model-based learner that learn expectations of long-
term future reward Q(s, a) for each combination of state and action. The model-free system learns reward expectations
for each of the eight first-stage objects and two second-state objects, by updating their values based on reward prediction
errors. The model-based system, on the other hand, learns a transition structure that represents which second-stage state
each first-stage object leads to. It then combines this with the model-free reward expectations of the terminal, second-
stage, states to select between first-stage options.

Model-free system: All model-free reward expectations were instantiated with a reward expectation of 4.5 (arithmetic
mean of minimum and maximum possible reward) to all actions and states. The model-free learner would then use the
SARSA() temporal difference learning algorithm [7] to update its cached reward expectations based on the difference
between predicted and received rewards. In the decision-making task this resulted in a reward prediction error being
calculated at each stage according to:

δ1,t = QMF (s2,t, a2,t)−QMF (s1,t, a1,t)

δ2,t = rt −QMF (s2,t, a2,t)

Notice that the second-stage prediction error incorporates the immediate reward outcome for that trial, but that the first-
stage prediction error only incorporates expectations of future reward. The values of each prediction error were then
used to update the reward expectations of the model-free learner at both the first and second stage:

QMF (s1,t, a1,t)← QMF (s1,t, a1,t) + αδ1,t + αλδ2,t

1
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Figure 1: A. Task transition structure. There are four distinct first-stage states that each contain two unique objects. Each
of these objects deterministically leads to a one of two second-stage states, as depicted by the colored arrows. These first-
stage states differed in the amount of reward that could be received. For the two ‘high-reward’ states (top row), 80% of
the trials were high stake, with a multiplier cue indicating that any points would be multiplied by five. For the other two
‘low-reward’ first-stage states, high-stake trials occurred on only 20% of trials. B. Representative trials of the pre- and
post-behRSA task. Participants are shown each novel object pairing twice. A portion of similarity matrix generated from
the behRSA task. The two similarity ratings for each pairing are averaged together and used to populate a symmetric
representational similarity matrix where each cell is the pairwise similarity of the row and column object. In the example
here, objects from the desert and forest become more similar to each other as well as their associated reward object.
Items from the library and restaurant also increase similarity between themselves but less so while still being strongly
associated with the reward object. C. Hypothesized relations that participants will use for the task. The first of these,
visual cooccurrence, is not useful for planning. The later two, which are useful for planning, assess similarity between
a first-stage object and the reward object it leads to as well as first-stage objects that lead to the same reward object. D.
Example participants behRSA matrices for each of the 3 possible relations we hypothesized.

QMF (s2,t, a2,t)← QMF (s2,t, a2,t) + αδ2,t

Here, α is the reward learning rate (between 0 to 1) that determines how quickly new information about rewards is
incorporated into the model-free learner expectations. The eligibility trace decay parameter λ (between 0 to 1) determines
how much a reward prediction error experienced after the second stage choice changes first-stage reward expectations.

Model-based system: The model-based system combines learns the transitions structure of the task, and uses this to flexibly
compute reward expectations for each available first-stage object. Specifically, it learns a transition matrix T (s1, a1) that
encodes the probability of moving to the second-stage state s2 after choosing the action a1 in the first-stage state s1.
In order to compute the model-based reward expectations, these probabilities were then combined with the reward
expectations at the second stage:

QMB(s1,t, a1,t) =
∑
s2
T (s1,t, a1,t)QMB(s2, a2)

QMB(s2,t, a2,t) = QMF (s2,t, a2,t)

Choice rule: The model-free and model-based learners reward expectations in the first stage are integrated using a model-
based weighting parameter w (ranging from 0 to 1) using the following rule:

Qnet(s1, a1) = 1− wQMF (s1, a1) + wQMB(s1, a1)
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We then used a softmax function to map the reward expectation to choice probabilities:

P (a1,t = a1|s1,t) = exp(β[Qnet(s1,t,a1)+π∗rep(a1)+ρ∗resp(a1)]∑
a
′
1

exp(β[Qnet(s1,t,a
′
1)+π∗rep(a

′
1)+ρ∗resp(a

′
1)]

Here, β is the inverse softmax temperature (left-bounded to 0) that determines how much influence reward expectations
have on choice probabilities and can be thought of as a measure of exploration and exploitation. High softmax temper-
atures mean that the model is more likely to explore and low softmax temperatures mean the model more commonly
exploits its knowledge. In order to capture choice perseveration, we included two parameters to capture both response
key and stimulus ‘stickiness’. The variable rep(a1) is defined as 1 if a1 was the action that was chosen on the previous
trial and 0 otherwise. The choice stickiness parameter π (left unbounded) related to choice perseveration when positive
and choice switching when negative. The variable resp(a1) was defined as 1 if the action a1 could be selected with the
same response key that was used in the previous trial and 0 otherwise. The response stickiness parameter ρ captured
perseveration of the response key press when positive and switching of response key press when negative. Together this
results in a model with 8 free parameters.

3 Results

The decision-making task, modeled after an established paradigm, required participants to learn its structure in order to
plan towards reward (Figure 1A). Each trial started pseudorandomly in one of four first-stage states, where participants
chose between two objects. This choice determined which second-stage state – a red or a purple ‘planet’ – would then
be encountered. For each first-stage state, one object always led to the red planet, and the other always to the purple
planet. On each planet, participants then interacted with an object that provided a scalar reward which slowly changed
over time.

We used maximum a-posteriori estimation to fit a dual-system reinforcement-learning model to behavior on this task[8].
This model describes behavior as a mixture of model-free and model-based control weighted according to a mixture
parameter w. This parameter is fit closer to 1 for pure model-based control and closer to 0 for pure model-free control.
Mirroring prior work, we found that participants’ behavior reflected a mixture of model-free and model-based control
(mean w = 0.57). This suggests that participants learned an internal representation of the task, a cognitive map, and that
they used this for goal-directed decision making.

3.1 Behavioral indices of representational change track task structure and are effected by motivation

We used participants’ relatedness ratings of objects to measure the structure of their cognitive maps (Figure 1B). Specif-
ically, we formulated three ways in which objects could become more ‘related’ through task experience. First, we hy-
pothesized that objects could become related if they co-occurred in a first-stage state (Figure 1C). Such a representational
shift, although capturing some task structure, is not useful for planning because it does not reflect the consequences of
actions. We also hypothesized two forms of representational shifts that related to the task’s transitions (Figure 1C). In
one case, we hypothesized that first-stage state objects and the second-stage objects they lead would become related.
This representation, which we call a “direct item association”, allows for planning from a first-stage action to the related
second-stage state. We also hypothesized that all first-stage objects leading to the same second-stage state would become
related. We call this representation an “indirect item association”, because it encodes relations between objects that never
occurred on the same trial.

To measure how strongly participants encoded these aspects of the task structure, we formalized these three representa-
tional shifts from pre- to post-task behRSA data with pre-registered hypothetical model matrices. Then, we used multiple
linear regressions models to fit the changes in behRSA data to these matrices, for each participant separately. This pro-
duces three regression coefficients (co-occurrence, direct-item, indirect-item), each reflecting the strengths of one of the
hypothesized representational shifts.

At the group level, participants judged item similarity in a manner consistent with each model matrix (example subjects
with strong fits to each coefficient can be seen in Fig 1D). Participants judged objects as more related when they had
occurred in the same first-stage state (t(160) = 4.64, p < 0.001, d = 0.37), when they constituted a pair where one object
transitioned to the other (t(160) = 5.98, p < 0.001, d = 0.47), and when they both led to the same second-stage state
(t(160) = 5.29, p < 0.001, d = 0.42). In other words, all three hypothesized components of the task were represented at
the group-level.

We further sought to understand whether the difference in incentives between contexts affect the representation of task
structure. We predicted that aspects of the task related to higher-order structure - both direct item associations and
indirect item associations - would be more strongly encoded for the high-stake compared to the low-stake context items
(Figure 1A).
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To test this, we ran new multiple linear regressions, estimating the coefficients separately for each stake context. We
found no difference between the high- and low-stake context representations of visual cooccurrence (t(160) = 0.45, p =
0.65, d = 0.04). We found a non-significant trend toward a context-driven difference in the direct item outcome repre-
sentations (t(160) = 1.74, p = 0.08, d = 0.14). However, the indirect item associations were encoded more strongly for
the high-stakes context compared to the low-stake context (t(160) = 3.22, p = 0.0015, d = 0.25). These results indicate
that incentives lead to stronger representations for goal-directed information in task structure.

3.2 Correlation with w parameter and points earned

If the behRSA data measures the cognitive map, and cognitive maps enable planning, then individual differences in
these representations of similarity structure should correlate with task performance (average reward rate) and reliance
on model-based control. We predicted positive correlations for structured aspects of the task structure that are important
for goal-directed planning but not for lower-order relationships.

Consistent with our hypotheses, we did not observe a relationship between performance and the strength of the visual
cooccurrence component (r(159) = 0.004, 95% CI = [−0.15, 0.16], p = 0.96). However, we found that performance was
positively correlated with the encoding of direct item associations (r(159) = 0.32, 95% CI = [0.18, 0.46], p < 0.001) and
indirect item associations (r(159) = 0.45, 95% CI = [0.31, 0.56], p < 0.001).

Next, we found a trending but non-significant negative correlation between model-based control and the strength of
the visual cooccurrence component (r(159) = −0.14, 95% CI = [−0.29, 0.01], p = 0.0753). Critically, however, we
found that use of model-based control was positively correlated with the encoding of direct item associations (r(159) =
0.33, 95% CI = [0.18, 0.46], p < 0.001), and indirect item associations (r(159) = 0.48, 95% CI = [0.35, 0.59], p < 0.001).

4 Discussion

The way we plan toward goals to make optimal decisions is a key issue in the study of human behavior. In prior
studies of goal-directed decision making, it has largely been assumed or ensured that the structure of a task was fully
learned. As a consequence, it has been generally taken as a premise that model-based control simply operates over these
representations, rather than considering the representations themselves as important sources of variance. In this pre-
registered experiment, we show the nature of these task representations, or cognitive maps, critically relate to one’s ability
to plan and maximize reward. Using a behavioral variant of RSA that measures similarity at a higher-level than in fMRI,
we assessed the representation of differing components of a validated two-step task, testing a-priori hypotheses about
which components of this task might be represented. Strikingly, the principal ways in which participants differed were
largely accounted for by our a-priori models. We found that participants’ representation of both directly and indirectly
associated components of the task, which were relevant to higher-order task structure, were correlated with greater
model-based control and performance in the task. This goes beyond simply representing the transition structure, as
seen in the indirect association case. Moreover, these indirectly associated representations were more strongly present in
contexts with increased incentives, further indicating goal-relevance of these cognitive maps. In contrast, goal-irrelevant
information such as mere item co-occurrence did not relate to cognitive control or task performance.
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Abstract

To explain a reinforcement-learning agent, we propose comparing its policy to a baseline policy at a set of automatically
identified decision points. Our novel method for selecting important decision points considers each possible state and
decomposes the agent’s value into the reward obtained before vs. after visiting that state. A state is considered important
if the reward obtained by the agent’s policy and the baseline policy are very different after the policy has changed. We
demonstrate the utility of this approach on a grid world domain.
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1 Introduction

Reinforcement learning (RL) is a method that lets an agent interact with its environment making decisions sequentially
and learns along the process of achieving specified goals [6]. As reinforcement learning is applied to larger domains such
videos games and robotics [3, 1], explaining a learned agent is becoming more important [5].

In this paper, we propose a novel method for providing a tool to decompose the agent’s value into the accumulated
reward obtained before vs. after visiting a state and use this metric to select an important decision state where switching
to a different policy would result in the most impact in the overall value of starting states. Based on this analysis, we
generate an explanation for the most influential state.

2 Backgrounds

2.1 Markov Decision Process

Most RL agents are modelled by a Markov Decision Process (MDP). An MDP is defined by a tuple ⟨S,A, T,R, γ⟩. S
denotes all possible states in an agent’s environment and S0 is a set of possible start states. The transition function
T : S,A → S maps a state and action pair to its next state. If s ∈ S and T (s, a, s′) = 0 for ∀s′, a, s is a terminal state and
a set of terminal states are denoted as ST . In this paper, the reward function R : S → R is defined only for arrival states
regardless of its initial state and an action, R(·, ·, s). γ is a discount rate. The objective of an agent is to maximize the
accumulate sum of rewards discounted by γ.

A policy, π : S → A, maps a state to an action and characterizes the behavior of an agent. The Q-value,
Qπ(s, a) is the expected return of a state s by following a policy π after taking ac action a and can be defined as
Eπ
[∑∞

k=1 γ
kR(st+k | st = s, at = a

]
. An optimal policy π∗ is the policy that maximizes Vπ(s),∀s ∈ S. A value of a

state is given as Vπ(s) = Q(s, π(a)).

2.2 Explaining a policy for a MDP

Khan, Poupart, and Black first developed a method to explain an RL agent represented in a MDP using an occupancy
frequency [2]. Using an occupancy frequency they developed a method to distinguish the most influential sets of states
that each set has the same reward value. Templates for explanations can then be generated including an occupancy
frequency for that set of states and factors of states that are generalized from the set of states.

Our approach is built upon this framework and add an algorithm to compare two different policies and find a state that
switching to a different policy from this state has the most impact in the overall utility of an agent, Es0∈S0

[V (s0)].

3 Methods

This section describes are algorithmic approach.

3.1 Occupancy Frequency and Value Decomposition

A (discounted) occupancy frequency K of a state s′ starting from s0 following a policy, π, is defined by

Ks0,π(s′) =
∞∑

t=0

γtP (st+1 = s′ | s0). (1)

It can be computed by a recurrence relation derived from the above definition.

Ks0,π(s′) =
∑

s

T (s′|s, π(s)) (P (s0 = s) + γKs0,π(s)) . (2)

Given a policy π, the occupancy frequency can be used to calculate a value of a starting state s0 together with a reward
function, R.

Vπ(s0) =
∑

s∈S
[Ks0,π(s) ·R(·, ·, s)] . (3)

In this paper, we propose a new decomposition of this occupancy frequency K into two parts. Given a state s∗ ∈ S,
s∗ /∈ ST , occupancy frequencies of a state s′ ∈ S before and after visiting s∗ can be separated into anterior and posterior
occupancy frequencies, L and M respectively:

Ks0,π
s∗ (s′) = Ls0,πs∗ (s′) +Ms0,π

s∗ (s′). (4)
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The recurrence relationships for calculating L and M are given as

Ls0,πs∗ (s′) =
∑

s∈S\{s∗}
T (s′ | s, π(s)) (P (s0 = s) + γLs0,πs∗ (s)) , (5)

and
Ms0,π
s∗ (s′) = γT (s′ | s∗, π(s∗))Ls0,πs∗ (s∗) + γ

∑

s

T (s′ | s, π(s))Ms0,π
s∗ (s). (6)

The different M value can be calculated for a counterfactual policy change from π0 to π1 when the state s∗ is reached if
we use the L from the policy π0:

Ms0,π0,π1

s∗ (s′) = γT (s′ | s∗, π1(s∗))Ls0,π0

s∗ (s∗) + γ
∑

s

T (s′ | s, π1(s))Ms0,π0,π1

s∗ (s). (7)

Using the linearity of the occupancy frequencies, we can derive the value decomposition:

Vs∗,π(s0) = V Ls∗,π(s0) + VMs∗,π(s0). (8)

3.2 Contrasting two different policies

Our approach to explaining RL agents contrasts a policy π0 with the other policy π1. Specifically, we want to answer
the question of why an agent should choose its preferred policy π0 over a contrasting policy π1. The comparison of two
polices is achieved by situating an agent in a counterfactual situation. We run an agent from a start state or a set of start
states and let it follow its preferred policy π0 until a significant state s∗ is reached. We compare the behavior of an agent
that continues with its π0 policy to one that switches at that point to the contrasting policy π1.

The value decomposition approach from the previous section can efficiently compare the value of the original and coun-
terfactual policy. Both policies’ expected values can be calculated via:

Vs,π0,π0(s0) = V Ls,π0
(s0) + VMs,π0,π0

(s0), (9)

Vs,π0,π1
(s0) = V Ls,π0

(s0) + VMs,π0,π1
(s0). (10)

By looking into the theses value differences, we are comparing the impact of switching policies, Is,π0,π1(s0), after an agent
first visits the intermediate state s. This impact is measured by

Is,π0,π1
(s0) = Vs,π0,π0

(s0)− Vs,π0,π1
(s0) = VMs,π0,π0

(s0)− VMs,π0,π1
(s0). (11)

E
s0∈S0

[Is,π0,π1
(s0)] = E

s0∈S0

[
VMs,π0,π0

(s0)− VMs,π0,π1
(s0)

]
. (12)

The expectation of the impact over all the start states measures the overall impacts of switching policies with respect
to a intermediate state s. To generate a useful explanation, we want to find the state s∗ that maximizes this impact,
s∗ = argmaxs Es0∈S0

[Is,π0,π1
(s0)]. The state is the one that, if an agent changes from π0 to an alternative policy π1 upon

reaching that state, it will have the most impact on the overall performance of an agent.

4 Experiment and Evaluation

We demonstrate our method with an experiment on the 4× 3 GridWorld domain introduced in the Russell and Norvig’s
book [4]. In this domain, we look at three different methods for choosing an influential state to use in our explanation.

4.1 Metrics

(A) Maximum Q-value difference: sq = argmaxs [Qπ0
(s, π0(s))−Qπ0

(s, π1(s))]. This method answers the question:
Which state would have its value change the most if it switched from following π0 to following the action proposed by
π1 for one step? As Q-values encode a simple kind of counter-factual, and Q-values are produced in the context of many
RL algorithms, this method is a very natural one to consider. A drawback of this method, however, is it does not take
into account where the agent actually starts: s0 (or a distribution over such states). A state could have very different
Q-values, but be so unlikely to be reached that is hypothetical difference is moot.

(B) Maximum value difference: sv = argmaxs [Vπ0
(s)− Vπ1

(s)]. This method chooses the state where the two policies
differ the most in terms of their state values V . The value of a state Vπ(s) is the expected discounted return starting from
s and following π. The maximum value difference is a direct and simple way to select a state that is very different for the
two different policies—it’s the place in the state space where following the policies leads to the most extreme difference
in value. It is like the maximum Q-value difference except it considers switching behavior indefinitely, instead of for
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Figure 1: GridWorld policies. (a) An optimal policy π0 with R(·, ·, s) = −0.04, ∀s ∈ S, s /∈ ST . (b) Shortest path policy π1 with the
same R. (c) A diagram showing the slip probability of an action.
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Figure 2: The comparison of three evaluation metrics. (a) Q-value difference. (b) Value difference. (c) Impact using anterior and
posterior occupancy frequencies.

the single step used in Q values. As such, it provides a stronger contrast and a more meaningful counter-factual. Like
the maximum Q-value difference, however, it does not consider the likelihood that the state is reached, resulting in a
potentially misleading choice of state.

(C) Impact using anterior and posterior occupancy frequencies: s∗ = argmaxs Es0∈S0
[Is,π0,π1

(s0)]. Our proposed ap-
proach evaluates the difference resulting from following π0 until s is reached, and then following pi1 after that point.
Although marginally more computationally complex than the prior two methods, the main advantage of this impact
measure is that it accounts the overall value difference on the start state, and not just what happens when starting at the
state. In this sense, it is a much better choice as the answer to the why question of how changing policies impacts the
results.

4.2 GridWorld

The GridWorld is fully observable and has four actions, Up, Down, Left, and Right. For each action, an agent will go to an
intended state with the probability 0.8 and will move at the right angles to the original direction for the rest. Taking each
step at non-terminal states, the agent receives the reward −0.04 and at two terminal states, the goal and lava, the ,mkj
either +1 or −1 respectively as in Fig. 1 (c).

The polices for the comparison are depicted in Fig. 1 (a) and (b). The optimal policy is generated from the value iteration
method and the shorted path policy is generated to minimize the total number of steps before reaching the goal state
with the reward +1. The occupancy frequencies L and M can also be generated using the similar value iteration method
and the calculated L and M for the state (1, 0) are depicted in Fig. 2.

The results on the three metrics is in Fig. 3. The state (2, 1) is chosen for the metric (A) and (B). For (A) we can explain
the result as

If an agent starts at (2, 1) with two different policies, the difference of two expected returns will be 0.066.

For (B), the generated explanations are
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Figure 3: The anterior and posterior occupancy frequencies of the state s∗ = (1, 0) (a) Ls0,π0
s∗ (s). (b) Ms0,π0,π1

s∗ (s). (c) Ms0,π0,π1
s∗ (s).

If an agent starts at (2, 1) with two different policies, if an agent takes the optimal action Left it will
receive more reward by 0.081 compared to taking an action Up which is from the alternative shortest
path policy.

The proposed Impact metric has chosen a different state (1, 0). We can generate the below explanations with our occu-
pancy frequencies and factoring states by [2].

At the state (1, 0), if an agent switches from the optimal policy π0 to the shortest path policy π1, the
overall value of a start state (0, 0) will differ by 0.029 which is most compared to any other states. Before
reaching a state (1, 0), the goal state (3, 2) will be reached by 0.794 times. If an agent continues applying
the optimal policy, it will reach the goal state (3, 2) 0.142 times which is 0.015 times more than switching
to the shortest path policy. If an agent switches to shortest path policy it will reach the lava state (3, 1)
0.20 times more compare to 0.0 times when the policy is unchanged.

5 Conclusion

We presented the framework for choosing a state that has the most impact in overall value and provide detailed expla-
nations based the calculated anterior and posterior occupancies. This also gives the power to reason counterfactually
since we can assume the same precondition and reason about the outcome based on the decision a designer can make
by continuing or switching to a different policy. In our future work, we would like to expand this framework to more
domains and possibly to deep RL domains.
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Abstract

How people choose among a set of options is affected both by how they evaluate each option, and how they perceive
the competition among those options. For instance, separate lines of work have shown that people weigh their options
differently depending on (a) how confident they are in their valuation of each, and (b) whether or not selecting one
option from a set excludes the possibility of selecting others. It remains unclear whether and how these two factors
interact in shaping not only choices but also how difficult it feels to make a choice. To examine this interaction, we
compared typical exclusive choices to non-exclusive choices, in which participants can choose additional items from the
set after their initial choice. We tested how the value a person assigned to each option interacted with their confidence
in those values to shape initial choices, subsequent choices, and experiences of choice conflict. When participants were
required to choose one option from a set, we found that they were more likely to choose a low-value option that they
had low confidence in than one they had high confidence in, and vice versa for high-value options. However, when
participants had the flexibility to continue choosing additional items or not, we found that this effect was either absent
or even reversed. We also replicated previous findings that participants experience the most conflict when choosing
among the most and the least valuable options, but showed that this U-shaped effect was attenuated with lower levels of
confidence in one’s value estimates. Our work sheds new light on mechanisms of decision-making by highlighting that
the impact of value confidence on choices critically depends on whether an option needs to be chosen at all. By adding
nuance to previous findings our results provide a starting point for better understanding the mechanisms underlying
value-based decisions, and what makes some choices harder than others.

Keywords: value-based decision-making, value confidence, choice conflict,
choice exclusivity
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1 Introduction

As early as breakfast time, we need to weigh our options and choose among them. These choices are guided by how
much we value each of our options (e.g., scone vs. croissant), information that accumulates for the respective options
and competes to determine our ultimate response. However, this evidence accumulation process can be modulated both
by properties of value estimation and of the choice context itself.

For instance, recent work has shown that a person’s confidence in the values of each of their options (e.g., based on more
consistent or mixed experiences with a given breakfast item) influences how they choose between those options. When
people are overall more confident in their estimates of option values, their choices are faster and more accurate/consistent
[1, 2, 3]. These findings have been accounted for by Bayesian value estimation, where lower precision samples lead to
less updating and the momentary value estimate is consequently shrunk towards one’s prior (e.g., the average value of
options in one’s environment) [4].

A separate line of work has shown that how we accumulate value-related evidence is influenced by our perception of
the level of competition between our options. When selecting our favorite option precludes the choice of other options
(as if selecting from a breakfast menu; exclusive choices), we are slower and experience greater choice conflict than when
we are allowed to subsequently choose additional options (as if selecting from a breakfast buffet; non-exclusive choices)[5].
These results have been accounted for with choice models that vary in the level of competition (e.g., mutual inhibition)
across options during non-exclusive compared to exclusive choice [5, 6].

Important questions remain unanswered at the intersection of these two lines of work. For instance, how does the
influence of value confidence on choice differ when an initial choice excludes or doesn’t exclude additional choices?
How does it further influence choices of whether to select additional options, and how many? How do all of these
factors collectively influence the subjective experience of conflict during a decision? To address these questions, we had
participants make decisions that were either exclusive (requiring only one choice) or non-exclusive (requiring at least
one choice, but allowing for additional selections from the same set) (Fig. 1). We measured how confident participants
were in each of their option values, and tested how this value confidence impacted choice behavior, and perceived choice
conflict during initial and subsequent choices. We hypothesized that low confidence during subsequent choices (where
multiple options can be chosen, but no option needs to be chosen), would produce less down-weighting of high-value
items and less up-weighting of low-value items. We verify this and other hypotheses across two studies, showing that
the interaction of confidence and value depends on one’s choice context.

Figure 1. Task paradigm. Participants rate how much they like items and their confidence in these value ratings.
Participants then choose among sets of 4 options, each. On exclusive choice trials, the trial ends post-initial choice.
On non-exclusive choice trials, participants are allowed to select as many additional products as they like. Finally,
participants rate the level of conflict they experienced during each choice.

2 Method

Participants across two studies (Study 1; N = 56, 25 males, 31 females, age = 36.5 ± 18.5 ys, Study 2; N = 77, 30 males,
47 females, age = 34.4 ± 20.6 ys) performed an experiment consisting of three phases: 1) item rating, 2) choice, and 3)
conflict rating (Fig. 1). During item ratings (200 items total), participants were asked to rate how much they liked a
consumer item on a scale from 0 (not at all) to 10 (a great deal), followed by a prompt to rate how confident they were
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in this rating on a scale from 0 (not confident at all) to 100 (absolutely confident). Based on the individual ratings, we
constructed personalized choice sets that varied in the relative and overall values of options (120 sets total). In the choice
phase, participants made either exclusive (menu-type), or non-exclusive (buffet-type) choices among sets of 4 options. On
exclusive choice trials, participants were allowed to choose only one product from the choice set. Once they clicked on
this product, a box appeared around it and they proceeded to the next trial. On non-exclusive choice trials, participants
were able to continue selecting as many options as they preferred after they chose the most preferred item first. The
choice types were intermixed, occurred with equal likelihood, and were color-coded by a fixation cross in the center.
Participants had 9s to complete their choice(s) for a given option set. Following the choice phase, participants were then
asked to rate their subjective experience of conflict during each choice on a 5 point Likert-scale.

3 Results

3.1 The influence of value confidence and choice exclusivity on initial choices.

Figure 2. Set confidence effects on initial choice. (A) The
probability of choosing the best item increases with increas-
ing Value difference and for higher set confidence. (B) Reac-
tion time decreases with higher set confidence.

To test how confidence and choice exclusivity jointly im-
pact choice behavior, we analyzed initial choices and re-
sponse times as a function of choice condition, overall
value, value difference, set confidence (mean confidence
in all the items’ values for a given set), and confidence in
the chosen option, as within subject regressors, while con-
trolling for confidence bias (a given participant’s average
level of confidence across all rated items).

Consistent with previous findings from separate lines of
work [3, 5, 7], participants were faster (S1: b = −0.01, p <
.001, S2: b = −0.01, p < .001) and more consistent (S1:
b = .04, p = .001, S2: b = 0.09, p < .001) the higher the
set confidence [Fig. 2; [3, 7]], and slower making exclu-
sive compared to nonexclusive choices (S1: b = −0.02, p <
.001; S2: b = −0.02, p < .001), in line with greater mutual
inhibition in exclusive choice [5]. We found no reliable in-
teractions between confidence and context (ps > .05). This
suggests that confidence plays similar roles during initial
choice (when one item has to be chosen), irrespective of
choice exclusivity.

3.2 The influence of confidence on continued option selection in non-exclusive choices.

Figure 3. Set confidence effects on number of items cho-
sen. (A) The number of items chosen increases with over-
all value, and more so for higher set confidence in Study
2. (B) Number of options chosen decreases with increasing
value difference and more consistently so for higher set con-
fidence.

Our task allows us to investigate the impact of choice con-
text beyond these initial choices, for instance how con-
fidence and value impact how many additional items
were chosen in the nonexclusive context. As expected,
participants selected more additional items as the over-
all value of the set increased (S1: b = 0.63, p < .001,
S2: b = 0.67, p < .001; Fig. 3A), and fewer additional
items the greater the difference in value between the first
item and the rest of the set (S1: b = −0.05, p = .001,
S2: b = −0.08, p < .001; Fig. 3B) [5]. Importantly, this
value difference effect, reflecting that the only good item
had already been selected, was amplified when partici-
pants were more confident in their option set values (S1:
b = −0.04, p = .003, S2: b = −0.02, p = .036; Fig. 3B) -
when set confidence was low, participants were less sensi-
tive to value difference when selecting additional options.
In Study 2, but not Study 1, we found that higher set con-
fidence also led people to choose more additional options
overall (S2: b = .06, p < .001, S1: b = 0.02, p = .086), and
that it amplified the positive influence of overall value on
option selection (S2: b = 0.03, p = .011, S1: b = −.01, p =
.552; Fig. 3A).
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To directly compare the decision process for initial relative to subsequent choices, we examined value and
confidence in an item-wise manner (vs. at the level of the set) to see how these predict the likelihood
of choosing a given item initially or subsequently. As expected, across both types of choice, participants
were more likely to choose more valuable items (P(chosen first): S1: b = 0.48, p < .001, S2: b =
0.45, p < .001; P(chosen subsequent): S1: b = 0.78, p < .001, S2: b = 0.85, p < .001; Fig. 4) [5].

Figure 4. Confidence effects on initial vs. subsequent choice. (A)
Lower value confidence reduces value effects on initial choice. (B)
Unlike in initial choices, in subsequent choices value effect on choice
are not reduced for lower value confidence.

When choices were obligatory (initial choice),
the influence of an item’s value was dimin-
ished or amplified according to one’s confi-
dence in that value estimate (S1: b = 0.08, p <
.001, S2: b = 0.13, p < .001; Fig. 4A). Partici-
pants treated low-confidence low-value items
as more valuable and low-confidence high-
value items as less valuable on average, con-
sistent with Bayesian value estimation ac-
counts [4, 7].

However, this pattern was qualitatively dif-
ferent when additional selection was volun-
tary (subsequent choices). In these cases,
the effect of an item’s value on choice was
flatter when confidence was high than when
it was low (S1: b = −0.05, p = .121,
S2: b = −0.11, p = .001; Fig. 4B). In
other words, participants in this context re-
frained from choosing low-confidence, low-
value items, but were similarly if not more in-
clined to choose low-confidence, high-value
items. This inverted confidence effect sug-
gests that when allowed to forego all items,
people no longer treat low-confidence, low-
value items as more valuable, and low-
confidence, high-value items as less valuable.
Thus in initial choices, low-confidence’s ben-
efits for low value items and costs for high
value items might be shaped by the dreaded
alternative of selecting certainly bad options
or forgoing potentially better options.

3.3 The influence of confidence and choice exclusivity on experienced choice conflict.

Figure 5. Experienced conflict in decision making. The U-
shaped value effect (higher conflict experienced for more ex-
treme overall value) is reduced for lower set confidence.

As in previous studies [8, 9], participants reported expe-
riencing the greatest conflict when choosing among espe-
cially high-value or especially low-value options (Linear;
S1: b = 16.46, p < .001, S2: b = −7.14, p < .001, Quadratic;
S1: b = 16.01, p < .001, S2: b = 7.11, p < .001). This find-
ing was hypothesized to reflect reference-dependent val-
uation, resulting in avoid-avoid conflict when choosing
among low value options and approach-approach con-
flict when choosing among high value options [9]. We
found that this effect is modulated by set confidence, such
that the U-shaped effect is strongest at higher levels of
set confidence, and flattens with lower set confidence (S1:
b = 3.37, p = .008, S2: b = 4.13, p = .001; Fig. 5).

This could reflect weaker avoid-avoid and approach-
approach conflict when choosing among higher and lower
values options, respectively [9], perhaps due to regres-
sion to the mean for lower confidence, as predicted by
Bayesian value estimation. Participants also experienced
less conflict overall when making non-exclusive relative
to exclusive choices (S1: b = −0.18, p < .001, S2: b =
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−0.12, p < .001; cf. [5]), but this did not robustly interact with value confidence across both studies (S1: b = 0.05, p = .003,
S2: b = −0.02, p = .101).

4 Conclusion

We demonstrated that value confidence not only affects our choices but also the conflict we experience when making
them. Notably, we show that the way in which value confidence affects choice depends on whether at least one item
must be chosen or not. Taken together, these findings provide a crucial stepping stone for delving further into the
specific mechanisms underlying choice dynamics and how they relate to the subjective experience of choice conflict. In
doing so, we may identify strategies to make hard choices easier and feel better about making them.

References

[1] Rafael Polanı́a, Michael Woodford, and Christian C. Ruff. Efficient coding of subjective value. Nature Neuroscience,
22(1):134–142, 2019.

[2] M. Lebreton, R. Abitbol, J. Daunizeau, and M. Pessiglione. Automatic integration of confidence in the brain valuation
signal. Nat Neurosci, 18(8):1159–67, 2015.

[3] Douglas G. Lee and Marius Usher. Value certainty in drift-diffusion models of preferential choice. Psychological
Review, pages No Pagination Specified–No Pagination Specified, 2021.

[4] F. Callaway, A. Rangel, and T. L. Griffiths. Fixation patterns in simple choice reflect optimal information sampling.
PLoS Comput Biol, 17(3):e1008863, 2021.
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Abstract

Mechanical ventilation is a key form of life support for patients with pulmonary impairment. An important challenge
faced by physicians is the difficulty of personalizing treatment and thus to offer the best ventilation settings for each
patient. This leads to sub-optimal care which further leads to complications such as permanent lung injury, diaphragm
dysfunction, pneumonia and potentially death. It is therefore essential to develop a decision support tool to optimize
and personalize ventilation treatment.

We present DeepVent, the first deep reinforcement learning model to address ventilation settings optimization. Given a
patient, DeepVent learns to predict the optimal values for the ventilator parameters Adjusted Tidal Volume (Vt), FiO2

(Fraction of inspired O2) and PEEP (Positive End-Expiratory Pressure) with the final objective of promoting 90 day
survival. We use the MIMIC-III dataset, comprised of 19,780 patients under ventilation. We show that our use of Con-
servative Q-Learning addresses the challenge of overestimation of the values of out-of-distribution states/actions and
that it leads to recommendations within safe ranges, as outlined in recent clinical trials. We evaluate our model using
Fitted Q Evaluation, and show that it is predicted to outperform physicians. Furthermore, we design a clinically relevant
intermediate reward to address the challenge of sparse reward. Specifically, we employ the Apache II score, a widely
used score by physicians to assess the severity of a patient’s condition, and show that it leads to improved performance.

Keywords: Reinforcement Learning, Conservative Q-Learning, Mechanical
Ventilation, Personalized Healthcare
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1 Introduction

The COVID-19 pandemic has put enormous pressure on the healthcare system, particularly on intensive care units
(ICUs). In cases of severe pulmonary impairment, mechanical ventilation assists breathing in patients and acts as the
key form of life support. However, the optimal ventilator settings is individual specific and often unknown [1], leading
to ventilator induced lung injury (VILI), diaphragm dysfunction, pneumonia and oxygen toxicity [2]. Previous work has
approached ventilation optimization with RL using a tabular approach [3]. Our work makes three key contributions:

• We propose the first deep reinforcement learning approach to personalize mechanical ventilation settings
• We demonstrate the potential of Conservative Q-Learning [4], a recently proposed offline deep reinforcement

learning algorithm, to address overestimation of the values of out-of-distribution states/actions, which is very
important in a healthcare context, where data is limited and risk in decision making must be avoided

• We introduce an intermediate reward based on the Apache II mortality prediction score [5] to address the chal-
lenge of sparse reward

We compare DeepVent’s decisions to those of physicians, as recorded in an existing standard dataset, as well as to those
of an agent trained with Double Deep Q-Learning (DDQN) [6]. DeepVent is predicted to outperform physicians while
avoiding the overestimation problems of DDQN, thus making safe recommendations.

2 Preliminaries

2.1 Double Deep Q-Networks (DDQN)

Overestimation occurs when the estimated value of a random variable is higher than its true value. Deep Q-Networks
are known to overestimate the values of unseen state-action pairs. DDQNs were introduced as a solution by modifying
the calculation of the target value [6]. At any point in time, one of DDQN’s networks, chosen at random, is updated,
by using as target the estimate from the other network. Although this partially solves overestimation, DDQNs can still
suffer from it [6], particularly in offline RL where exploration is limited to the dataset used in training. This can lead to
important overestimation in state-action pairs underrepresented in the dataset, or out-of-distribution (OOD), leading to
sub-optimal action choices [4] which may translate to unsafe recommendations, putting patients at risk.

2.2 Conservative Q-Learning (CQL)

To address the challenge of overestimation in an offline setting, Conservative Q-Learning (CQL) was proposed [4]. It
learns a conservative estimate on the Q-function by incorporating a regularizer Est∼D,at∼A[Q(st,at)] on top of the stan-
dard TD error to minimize the overestimated Q-values of unseen actions. In addition, the term −Est,at∼D[Q(st,at)] is
added to maximize the Q-values in the dataset, providing a lower bound in expectation of the policy. CQL minimizes the
estimated Q-values for all actions while simultaneously maximizing the estimated Q-values for the actions appearing in
the dataset. This prevents overestimation of OOD state-action pairs which are underrepresented in the dataset.

3 Datasets

We used the MIMIC-III database [7] containing data of 61,532 ICU stays at the Beth Israel Deaconess Medical Center.
Standardized Query Language (SQL) was used to extract data for a total of 19,780 patients under ventilation. For fea-
tures with < 30% of the data was missing, KNN imputation was used [8]. If 30% to 95% of the data was missing,
time-windowed sample-and-hold was used [8]. If > 95% was missing, the variable was removed. An out-of-distribution
(OOD) set of outlier patients was created with patients having at least one feature in the top or bottom 1% of the distri-
bution at the start of their ICU stay.

4 Proposed Approach

Our MDP was defined similarly to [3], with episodes lasting from the time of the patient’s intubation to 72 hours after.

State Space The state space S is composed of 37 variables1:

• Demographics: Age, gender, weight, readmission to the ICU, Elixhauser score
• Vital Signs: SOFA, SIRS, GCS, heart rate, sysBP, diaBP, meanBP, shock index, respiratory rate, temperature, spO2

1For variable definitions refer to the MIMIC-III paper [7]
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• Lab Values: Potassium, sodium, chloride, glucose, bun, creatinine, magnesium, carbon dioxide, Hb, WBC count,
platelet count, ptt, pt, inr, pH, partial pressure of carbon dioxide, base excess, bicarbonate

• Fluids: Urine output, vasopressors, intravenous fluids, cumulative fluid balance

Action Space The 3 ventilator settings of interest are:

• Adjusted tidal volume or Vt (Volume of air in and out of the lungs with each breath adjusted by ideal weight)
• PEEP (Positive End Expiratory Pressure)
• FiO2 (Fraction of inspired oxygen)

The action space A is the Cartesian product of the set of these three settings. Each setting can take one of seven values
corresponding to ranges. We can therefore represent an action as the tuple a = (v, o, p) with v ∈ V t, o ∈ FiO2, p ∈ PEEP .

Reward Function The main objective of our agent is to keep a patient alive in the long-term. Therefore, even if DeepVent
only treats patients for 72 hours, it learns how to maximize their 90 day survival. We thus define a terminal reward
r(st, at, st+1), which takes at the final state the value −1 if the patient passes away within 90 days and +1 otherwise.

The sole use of a sparse terminal reward is known to cause poor performance [9] in RL tasks. We therefore developed
an intermediate reward based on the Apache II score [5], a widely used score in ICUs to assess the severity of a patient’s
disease. Apache II takes various physiological variables such as temperature, blood pressure etc. as input and returns
a score based on how far each variable is from the healthy range. A higher score is associated with variables being far
from the normal range, and thus a more severe state. The score was adapted to the variables present in MIMIC-III. In
order to not simply define reward based on how well a patient was doing but rather their evolution through time, our
intermediate reward consists of the change in Apache II score between st+1 and st, which is normalized by dividing it
by the total range of the score. Combining our intermediate and terminal rewards, we obtain our final reward function:

Off-Policy Evaluation (OPE) The performance of various OPE methods was recently evaluated in healthcare [10], and
Fitted Q Evaluation (FQE) was found to consistently provide the most accurate results. We thus use FQE [11], which takes
as input a dataset D and a policy π, and outputs a value estimate for each state in D, corresponding to an approximation
of the cumulative discounted reward received by following a policy π starting at a given state. It is important to note
that FQE outputs an approximation of true performance and not its exact value. Clinical trials would thus be required to
confirm the results in section 5.1.

5 Results & Discussion

5.1 DeepVent Overall Performance

To begin, we compare the performance of DeepVent- (CQL without intermediate reward), DeepVent (CQL with interme-
diate reward), and the physician when applied to the patients in our test set (see Table 1).

Table 1: Mean initial state value estimates for physician, DeepVent- and DeepVent, with std. errors. DeepVent- signifi-
cantly outperforms the physician. Adding the Apache II intermediate reward (DeepVent) further improves the estimate.

PHYSICIAN DEEPVENT- DEEPVENT
0.502± 0.00709 0.762± 0.00402 0.797± 0.00670

The initial state of an episode represents the state of a given patient when ventilation is initiated. The performance of
DeepVent- or DeepVent can be approximated by the value estimation output by FQE for the initial state of a patient.
Although DeepVent was trained with intermediate rewards, FQE’s value estimation only depends on the dataset D and
the actions chosen by the policy π used to train FQE. Because we trained FQE using the dataset without intermediate
rewards for both DeepVent- and DeepVent, the estimates are solely based on the terminal reward and can thus be used as
a fair comparison between the two models. Since the physician policy effectively generates the episodes in our dataset, its
value estimates for each initial state can be computed by taking the cumulative discounted reward for the episode starting
at that state. We observe that DeepVent outperforms physicians by a factor of 1.52. The addition of the intermediate
reward increases this factor to 1.59.
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5.2 DeepVent and Safe Recommendations

We next evaluate DeepVent’s action distributions and compare it with DDQN and the physician (see Figure 1).

Figure 1: Distribution of actions across ventilator settings. Unlike DDQN, DeepVent makes recommendations in safe and
clinically relevant ranges for each setting.

DeepVent was observed to suggest safe setting recommendations. The standard of care in terms of PEEP setting is com-
monly initiated at 5 cmH2O [12] which is supported by the high number of recommendations by physicians being in the
range of 0-5 cmH2O in our dataset. DeepVent spontaneously chose to adopt this strategy by making most recommen-
dations in the range of 0-5 cmH2O. In contrast, DDQN chose settings distributed along all the options, ranging up to 15
cmH2O, where physicians rarely went. High PEEP settings have been associated with higher incidence of pneumothorax
[13], inflammation [14] and impaired hemodynamics [15], and should therefore be avoided.

In terms of FiO2 setting, DeepVent was once again found to follow clinical standards of care. More specifically, we
observe that DeepVent often chose actions in the same ranges as physicians in our dataset, with many recommendations
in the ranges of 35-50% and >55% and few recommendations below 35% and between 50-55%. In contrast, DDQN made
few recommendations in ranges often suggested by physicians, and many in those that were rarely employed.

Finally, for the adjusted tidal volume, the optimal tidal volume is usually found in the 4-8 ml/kg range [16, 17]. DeepVent
made a majority of recommendations in the range of 2.5-7.5 ml/kg, with an important amount of these being concen-
trated in the 5-7.5 ml/kg range. In contrast, DDQN made many recommendations in higher ranges, often even going
above 15 ml/kg, a range rarely observed in clinical practice and associated with increased lung injury and mortality [18].

5.3 DeepVent in Out-Of-Distribution Samples

We next investigated whether the sub-optimal recommendations made by DDQN might be caused by value overestima-
tion. To do so, we investigated the mean initial values for DeepVent and DDQN (as estimated by FQE). It is interesting
to not only understand how well the model performs on data similar to that on which it was trained, but also on outlier
data. We thus consider both an in-distribution (ID) and an out-of-distribution (OOD) setting (see Figure 2).

Figure 2: Mean initial Q-values for both in and out of distribution settings for DeepVent and DDQN (with variances -
DeepVent’s variance is not visible because of its small value). The horizontal line is the maximum expected return per
episode. In contrast to DeepVent, DDQN clearly suffers from overestimation, which is aggravated in the OOD setting

Since the maximal expected return for an episode in our dataset is set at 1, values above this threshold should be consid-
ered as overestimated. We observe that DDQN overestimates policy values in both the ID and OOD settings. In addition,
DDQN’s overestimation is exacerbated in the OOD setting. This failure to accurately assess these OOD states may be the
cause of the unsafe recommendations discussed above. DeepVent seems to avoid these problems, as its average initial
state value estimate stays below the overestimation threshold of 1 in both settings, and barely changes in OOD.
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6 Conclusion

In this work, we developed DeepVent, a decision support tool for personalizing mechanical ventilation treatment using
offline deep reinforcement learning. We showed that our use of Conservative Q-Learning leads to settings in clinically
relevant and safe ranges by addressing the problem of overestimation of the values of out-of-distribution state-action
pairs. Furthermore, we showed using FQE that DeepVent achieves a higher estimated performance when compared to
physicians, which can be further improved by implementing our Apache II based intermediate reward. We conclude
that DeepVent intuitively learns to pick actions that a physician would agree with, while using its capacity to overview
vast amounts of clinical data at once and understand the long-term consequences of its actions to improve outcomes for
patients. Moreover, the fact that DeepVent is associated with low overestimation in out-of-distribution settings makes it
much more reliable, and thus closes the gap between research and real-world implementation. Future work should aim
to investigate the potential of the DeepVent methodology in other healthcare applications.

References

[1] H. Zein, A. Baratloo, A. Negida, and S. Safari. Ventilator Weaning and Spontaneous Breathing Trials; an Educational
Review. Emerg (Tehran), 4(2):65–71, 2016.

[2] T. Pham, L. J. Brochard, and A. S. Slutsky. Mechanical Ventilation: State of the Art. Mayo Clin Proc, 92(9):1382–1400,
09 2017.

[3] A. Peine, A. Hallawa, J. Bickenbach, G. Dartmann, L. B. Fazlic, A. Schmeink, G. Ascheid, C. Thiemermann, A. Schup-
pert, R. Kindle, L. Celi, G. Marx, and L. Martin. Development and validation of a reinforcement learning algorithm
to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med, 4(1):32, Feb 2021.

[4] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement learning, 2020.
[5] W.A. Knaus, E.A. Draper, D.P. Wagner, and J.E. Zimmerman. APACHE II: a severity of disease classification system.

Crit Care Med., 1985.
[6] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning, 2015.
[7] A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi,

and R. G. Mark. Mimic-iii, a freely accessible critical care database. Scientific Data, 2016.
[8] C.M. Salgado, C. Azevedo, H. Proença, and S.M. Vieira. Missing data. in: Secondary analysis of electronic health

records. Springer, Cham., 2016.
[9] Maja J. Mataric. Reward functions for accelerated learning. 1994.

[10] S. Tang and J. Wiens. Model selection for offline reinforcement learning: Practical considerations for healthcare
settings, 2021.

[11] Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline Reinforcement
Learning Workshop, December 2021.

[12] GF Nieman, J Satalin, P Andrews, H Aiash, NM Habashi, and LA Gatto. Personalizing mechanical ventilation
according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (vili). Intensive
Care Med Exp., 2017.

[13] J Zhou, Z Lin, X Deng, B Liu, Y Zhang, Y Zheng, H Zheng, Y Wang, Y Lai, W Huang, and X Liu et al. Optimal
Positive End Expiratory Pressure Levels in Ventilated Patients Without Acute Respiratory Distress Syndrome: A
Bayesian Network Meta-Analysis and Systematic Review of Randomized Controlled Trials. Front. Med., 2021.
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Abstract

In reinforcement learning, the deadly triad refers to the combination of off-policy learning, function approximation, and
bootstrapping. These three components, when used simultaneously in a reinforcement learning algorithm, can lead to
training instability. We introduce a regularizer that favors functions with small gradients and by doing so stabilizes
training, even in the face of off-policy learning and bootstrapping. We elucidate how and why this regularizer stabilizes
training, and our experiments demonstrate that the proposed regularizer can indeed mitigate instability and improve
performance.
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1 Introduction

Deep reinforcement learning (RL) algorithms have demonstrated promise on a variety of complex domains, including
game playing and robotics. The ability of high capacity function approximators such as neural networks to generalize
predictions to unseen data has been essential to the success of RL on environments with complex high-dimensional state
spaces. Many RL algorithms use temporal difference (TD) methods, which bootstrap a network’s predictions to learn
value functions. While TD methods are computationally efficient and can be applied with off-policy learning, these
approaches often suffer from a phenomenon known as the deadly triad.

The deadly triad consists of three components: bootstrapping, function approximation, and off-policy learning. In boot-
strapping, the immediate reward is added to the discounted value estimate at the subsequent state. Function approximation
is used when a separate value estimate cannot be individually stored for each state. Finally in off-policy learning, an agent
learns from policies different from the one it is using to act. Analysis of simple didactic examples establishes that, in the
face of the the deadly triad, TD methods can exhibit divergence [1, 5], with value estimates growing unbounded.

A number of approaches have been proposed to prevent divergence, but they are limited to the linear function ap-
proximation setting. While divergence has been identified as a critical issue in prior analyses of the deadly triad, this
phenomenon is not observed in practice when combining Q-learning with neural networks, and off-policy TD-based
algorithms with neural networks have demonstrated empirical success [4, 3, 2]. However, prior work has found that the
deadly triad can still lead to training instability, with TD methods producing unrealistic value estimates that may hurt
performance [6]. In this work, we develop a mechanism that ameliorates this instability when the function approximation
used is a high capacity neural network.

Our approach involves modifying how function approximation is done. To understand how the standard approach
to function approximation can fuel instability, consider two sets of states: S1 which contains states whose value esti-
mates are updated often and S2 which contains rarely updated states whose value estimates are bootstrapped to states
in S1. When high magnitude incorrect predictions in S2 are not corrected due to off-policy learning, there is a cycle
that emerges. First, bootstrapping reinforces the high magnitude predictions on S2 to states in S1. Second, the neural
network’s generalization from S1 to S2 further increases the magnitude of predictions on S2.

We find that such instability can be addressed by encouraging a neural network to interpolate when between known
values and to extrapolate only in a very conservative manner. This reduces the magnitude of predictions that can be
produced via more aggressive generalization and thus helps break the second step in the cycle. Concretely, we propose a
novel regularizer that penalizes gradients with respect to inputs, favoring neural network parameters that yield functions
which vary slowly across the input space. This regularizer can be easily incorporated into TD methods, and we augment
Approximate Value Iteration (AVI) in this way. Empirically, we show that enhancing AVI with our regularizer improves
training stability on two didactic examples: a four state MDP and GridWorld environment.

2 Markov Decision Processes

We now introduce our Markov decision process (MDP) formulation and notation. Each MDP we consider is identified
by a tupleM = (S,A, R, P, γ), where S is the state space, A is the action space, R is the reward function, P ∈ R|S||A|×|S|+
is the transition matrix where Psa,s′ represents the probability of transitioning to a next state s′ ∈ S if the current state
and action are s ∈ S and a ∈ A, and γ ∈ [0, 1) is the discount factor. A policy π assigns at each state s ∈ S a probability
π(a|s) to each action a ∈ A. If this policy is executed when at state s ∈ S, an action is sampled from the probability mass
function π(·|s). The action value of a policy π, Qπ(s, a), is the expected sum of discounted rewards received when starting
from each state-action pair (s, a) and following π.

3 Gradient Penalty for Improving Stability

In this section, we present our approach for improving training stability in the presence of the deadly triad. We introduce
a novel loss function which penalizes the gradient of a neural network’s outputs with respect to its inputs. We then
introduce this loss function as a regularization term in Approximate Value Iteration. The resulting method, Approximate
Value Iteration + Gradient Penalty (AVI + GP), balances (1) learning a value function by bootstrapping with (2) favoring
parameters which yield functions that vary slowly across the input space.

3.1 Generalization by Interpolation

The deadly triad can lead to instability due to the coupling of two problems. First, due to off-policy learning, incorrect
value targets are repeatedly bootstrapped from infrequently updated states. Second, a neural network’s generalization
of value predictions across states further reinforces incorrect predictions (see Figures 2 and 3 for an illustration of this
phenomenon). We address the second problem by regularizing how a neural network generalizes its value predictions
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from frequently updated states to more sparsely updated states. Our approach is based on the following intuition: for a
state of the latter type, if between states with known values, generalize via interpolating, and otherwise, extrapolate in a
very conservative manner.

Figure 1: As an illustrative example,
consider a supervised learning regres-
sion problem. Given the training dataset
{(−0.5,−1), (−0.25, 1), (0.25, 1), (0.5,−1)}, we
train a neural network to predict y given x.
(a) In red, we show the network’s predictions
on the test x values −0.75, 0.0, and 0.75 when
trained (a) without gradient penalty regulariza-
tion and (b) with regularization.

In Figure 1, we perform a simple experiment to illustrate how a neural
network naturally generalizes to unseen test data in a simple regres-
sion problem. The network tends to follow the slope of the training
predictions when extrapolating. By taking a more conservative tack,
our approach reduces the magnitude of test predictions.

3.2 Penalizing Gradients

Consider a neural network parameterized by a vector θ that out-
puts a scalar fθ(x) for each input x ∈ Rd. Given a set D of data
pairs, a standard regression loss function takes the form L(θ|D) =
1
|D|
∑

(x,y)∈D(y − fθ(x))2. A basic version of gradient descent updates
parameters according to

θ ← θ − α∇θL(θ|D) (1)

where α is a learning rate. To induce the sort of generalization we have
discussed, we introduce a regularization penalty function

R(θ|D) = 1

|D|
∑

(x,y)∈D
∥∇xfθ(x)∥22.

This encourages the use of functions with small gradients, where the gradients are computed with respect to the inputs
to the network. With this regularizer, the gradient descent update formula becomes

θ ← θ − α∇θ(L(θ|D) + βR(θ|D)). (2)

where β is a hyperparameter that controls the degree of regularization.

We used the gradient descent updates 1 and 2 to produce the results in Figure 1 (a) and (b), respectively. Both versions
produce correct predictions on the training dataset but generalize to the test data differently. By penalizing the squared
norm of the gradient, the network’s prediction at the test data point 0.0 locally interpolates between the predictions at the
two closest training examples. Without gradient penalty, the network’s prediction at 0.0 appears to be influenced by the
farther training examples as well. Additionally, when generalizing to test data points −0.75 and 0.75, smaller gradients
result in more conservative extrapolation.

3.3 Extension to TD Methods

This form of regularization extends naturally to TD updates. In particular, consider now a neural network that outputs
action-value estimates Qθ(s, a) for each state s ∈ S and action a ∈ A. Assume that states are embedded in a Euclidean
space Rd and that, for all s ∈ S and a ∈ A, Qθ(s, a) is differentiable with respect to s.

Algorithm 1 AVI + GP
Inputs: θ,D, α, β
θ̄ ← θ
for value iter = 1 to num value iter do

for gradient iter = 1 to num gradient iter do
θ ← θ − α∇θL((θ|θ̄,D)+βR(θ|D))

end for
θ̄ ← θ

end for

Given a set D of transition tuples (s, a, r, s′), where s ∈ S , a ∈ A, r is a
reward obtained by executing action a in state s, and s′ is a subsequent
state, the TD loss function is defined by

L(θ|θ̄,D) = 1

|D|
∑

(s,a,r,s′)∈D
δTD(s, a, r, s

′)2, (3)

where δTD(s, a, r, s
′) is the TD error δTD(s, a, r, s

′) = r + γ ·
maxa′∈AQθ̄(s

′, a′) − Qθ(s, a), and θ is the weight vector of a target
network. A standard TD update takes the form

θ ← θ − α∇θL(θ|θ̄,D). (4)

To induce the sort of generalization we have discussed, we use a mod-
ified update rule

θ ← θ − α∇θ(L(θ|θ̄,D) + βR(θ|D)), (5)
where

R(θ|D) = 1

|D|
∑

(s,a,r,s′)∈D
∥∇sQθ(s, a)∥22. (6)
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Figure 2: A four state MDP. The states have a single dimen-
sion, and there are two actions in each state. The states are
s1 = 0.0, s2 = 0.33, s3 = 0.66, and s4 = 1.0. Actions a1 and
a2 are indicated with green (solid) and blue (dashed) arrows,
respectively. No transitions are seen from state s4. The MDP
has a discount factor of γ = 0.9. The optimal policy is to take
action a2 from state s1.

Figure 3: AVI results on the 4 state MDP. (a)
Predicted values during training, where V (s) =
argmaxa∈AQ(s, a). (b) Final action values after 50,000
training iterations. The value function magnitude be-
comes large and the resulting policy is sub-optimal
(Q(s1, a1) > Q(s1, a2)).

Figure 4: AVI + GP results on the 4 state MDP. (a)
Predicted values as training proceeds, where V (s) =
argmaxa∈AQ(s, a). (b) Final action values after 50,000 train-
ing iterations. Training is more stable and the resulting pol-
icy is optimal (Q(s1, a1) < Q(s1, a2)).

Figure 5: (a) GridWorld environment. State-action
pairs for which the next state enters the red region
and blue region have rewards −1 and 1, respectively.
Otherwise, each transition has reward −0.05. (b) The
shaded black states indicate the transitions that are
collected by a fixed policy. We train AVI using this
dataset.

We introduce our gradient penalty into Approximate Value Iteration (AVI). We provide pseudocode for our gradient
penalty regularized AVI algorithm, AVI + GP, in Algorithm 1. In this algorithm, num value iter is the number of iterations
and num gradient iter is the number of gradient updates in each iteration. At the end of an iteration, θ̄ is updated with
the latest values of θ. Algorithm 1 highlights the ease with which we can augment TD methods with our approach: the
only modification to the AVI update is the term colored in red.

4 Experiments

The goal of our experiments is to evaluate whether our gradient penalty regularizer improves (1) overall performance
and (2) stability of value estimates when using TD methods in the presence of the deadly triad. To this end, we conduct
experiments within a four state MDP and a GridWorld environment. The four state MDP and GridWorld serve as
illustrative examples of the deadly triad. On these domains, we compare AVI with AVI + GP (Algorithm 1), specifically
analyzing performance and stability. We set the regularization weight β to 0.01.

4.1 Four State MDP

As a didactic example of the deadly triad, consider a simple MDP with 4 states, each of which is a single dimension, and
2 actions in each state (Figure 2). Importantly, we do not see transitions or rewards from state s4 to emulate the fact that
in off-policy learning, certain regions of the state space may not be either visited or updated. Using AVI, we attempt
to train a single hidden layer neural network with 1000 hidden units and RELU activations to learn the optimal value
function of this MDP.

The predictions of the network with AVI and AVI + GP after 50, 000 training iterations (num value iter = 50, 000 in
Algorithm 1) are shown in Figures 3 and 4. We perform 1000 gradient steps in each iteration before updating value
targets (num gradient iter = 1000). The action value predictions at states s1 and s2 are inaccurate with high magnitude
after training is completed, notably after 50, 000 training iterations which is quite large for such a simple problem. This
problem arises because of the following cycle. First, the network’s action value estimates at state s4 impact the those
at state s3 via bootstrapping. Second, due to the network’s generalization across states, when the prediction at s2 is
larger than the prediction at s3, this further reduces the prediction at s4. Finally, the now negative predictions at s3
and s4 reduce the prediction at s2, also from generalization. To break this cycle, AVI + GP prevents high magnitude
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Figure 6: Return (a) and action value estimates throughout training ((b) and (c)) for AVI and AVI + GP. AVI + GP enjoys
improved training stability and higher return than AVI. Reporting mean with one standard deviation as shaded region
over 10 different seeds.

negative predictions at s4 occurring in the cycle’s second step by performing conservative extrapolation, which in turn
prevents high magnitude negative predictions at s3 from bootstrapping. When the predictions at both s3 and s4 have
lower magnitude, the accuracy is improved at states s1 and s2 with known transitions and rewards.

4.2 GridWorld

The GridWorld is a 25× 25 grid with each grid cell represented as an (x, y) coordinate, where x and y are normalized to
be between 0 and 1. There are four actions in each state, and transitions are deterministic. One region of the state space
has negative reward, another has positive reward, and otherwise the reward is a small step cost. Using a fixed behavior
policy, we collect a fixed dataset of transitions shown in Figure 5. We train AVI and AVI+GP using a neural network with
two hidden layers, each containing 20 nodes, and RELU activations. We train both algorithms for 10, 000 iterations with
100 gradient steps in each iteration (num value iter = 10, 000 and num gradint iter = 100).

We plot (1) the average return of the greedy policy derived from action value estimates and (2) the average estimated
action value over state-action pairs in the dataset throughout training. AVI achieves relatively low average return and
large variability of return between seeds as shown in Figure 6(a). Lower performance correlates with unstable value
estimates, as action value predictions attain unreasonably high magnitude during training (Figure 6(b)). In contrast,
with AVI + GP the return achieved is consistently higher throughout training, the standard deviation of return between
seeds is much smaller, and the action value estimates remain stable (Figure 6(a), (c)).

5 Conclusion

In this work, we investigate the function approximation component of the deadly triad. We introduce a regularizer that
penalizes large gradients of a neural network’s outputs with respect to its inputs. Our gradient penalty approach can
be easily incorporated into TD methods such as AVI, resulting in practical algorithms which bootstrap value predictions
and generalize across states by interpolation. An empirical study on several domains illustrates that augmenting TD
methods with gradient penalty improves training stability. An analysis of this approach on more challenging domains
and in conjunction with RL algorithms such as Q-learning is left for future work.
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Abstract

Planning, the process of evaluating the future consequences of actions, is typically formalized as search over a decision
tree. This procedure increases expected rewards but is computationally expensive. Past attempts to understand how
people mitigate the costs of planning have been guided by heuristics or the accumulation of prior experience, both of
which are intractable in novel, high-complexity tasks. In this work, we propose a normative framework for optimizing
the depth of decision tree search via Bayesian inference. Specifically, we model a metacognitive process where tree search
is represented as continuously sampling noisy measurements of the value of a given state-action pair. This statistical
approximation is then combined with any available prior experience to compute optimal planning depth. In the absence
of retrospective information, our model makes intuitive predictions over a range of parameters. Meanwhile, integrating
past experiences into our model produces results that are consistent with the transition from goal-directed to habitual
behavior over time and the uncertainty associated with prospective and retrospective estimates.

Keywords: sequential decision-making; planning; Bayesian inference
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1 Introduction

Planning involves the mental simulation of future actions and their consequences in order to make a decision. Such
problems have typically been formalized as search over a decision tree in both cognitive science (Daw et al., 2005; Huys
et al., 2015; van Opheusden et al., 2021) and artificial intelligence (Shannon, 1950; Silver et al., 2016). However, evaluating
every possible course of action in complex environments is simply intractable. A growing body of literature has focused
on solutions for approximating the values of choices without fully expanding a search tree (Snider et al., 2015) or effi-
ciently allocating limited computational resources during planning (Callaway et al., 2018). Additionally, other models
of human planning that achieve similar goals have been predominantly guided by researcher-specified heuristics (Das-
gupta et al., 2018; Huys et al., 2012; Kool et al., 2017). A notable exception to this computes the value of information
gained by planning in a principled manner (Sezener et al., 2019), but relies on a habitual system to estimate values at the
frontier of the search tree.

Here, we propose an alternative: a normative model for optimizing the depth of decision tree search. Our framework
operates at a metacognitive level, where in a given state, an agent thinks about how far into the future they should plan
before any planning takes place. This model sacrifices the specificity of a tree search algorithm in favor of a simpler, task-
general statistical description that facilitates the optimization of planning parameters. Our simulation results show that
this framework derives intuitive principles about the depth to which planning is beneficial as a function of the cost per
measurement, the total number of actions the agent must evaluate, the amount of accumulated retrospective experience,
and the uncertainties associated with both prospective and retrospective samples.

2 Model

We assume the agent is in state swith actions {a1, ..., an} available to them, and that each state-action pair has a theoretical
long-running expected reward under a tree search policy, Q(a). This value is unknown to the agent, and the agent builds
a posterior probability distribution over each Q(a) while balancing the costs of deeper planning. This distribution is
computed by considering how a one-step, myopic measurement will change under a certain depth of search, and is
combined with any retrospective measurements that the agent has already accumulated for each state-action pair.

2.1 Generative model

To simulate the measurements that the agent has available to them prior to planning, we assume that the true value Q
for a given state-action pair is normally distributed:

Q ∼ N
(
µ0, σ

2
0

)
. (1)

We omit the dependence of the parameters on the action a from the notation until the last step, where we will compute
the value of the state across all actions. A retrospective experience with a is modeled as a noisy measurement, qretro,i,
drawn from a normal distribution centered at the true Q:

qretro,i ∼ N
(
Q, σ2

retro
)
. (2)

The retrospective measurements form a vector qretro ≡ (qretro,1, . . . , qretro,n), where n is the number of past experiences
with action a in state s. Similarly, the agent can perform a one-step look-ahead to obtain another noisy measurement, q1,
of Q:

q1 ∼ N
(
Q, σ2

)
. (3)

The core of our framework is a statistical model maintained by the agent of the effects of prospective tree search without
actually performing the search. We assume that each iteration of the tree search algorithm works on a branch that starts
with action a and produces a new, independent measurement of Q, qt. Therefore, after T iterations of tree search, the
agent has another vector of measurements q ≡ (q1, . . . , qT ).

2.2 Inference

The overarching goal of this framework is to solve for the optimal number of iterations to plan for, T ∗. We take a
normative approach, meaning that we assume the agent makes this decision by maximizing expected reward given
costs. T is optimized independently of any action, which includes the possibility of choosing T = 1, or no planning at
all. One way to conceptualize this is that, before planning, the agent approximates a breadth-first search algorithm by
evaluating the future expected reward at each action to the same depth.

The inference scheme works as follows: (1) the agent considers different futures for each action after T planning it-
erations, (2) this future distribution is integrated with any retrospective information to form a posterior distribution,
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and (3) the agent marginalizes over all possible futures by combining across actions and computing the maximum over
the distribution of the posterior’s expected value. The final output of this inference procedure is the mean of the max
distribution, which we call the value of planning for T iterations.

Formally, the posterior is the normalized product of the prior, the retrospective likelihood, and the prospective likelihood,
all of which we assume to be independent:

p(Q|qretro,q) ∝ p(Q)p(qretro|Q)p(q|Q). (4)

Each of the likelihoods is over Q based on the retrospective or prospective measurements available to the agent:

p(qretro|Q) = N
(
Q; q̄retro,

σ2
retro

n

)
(5)

p(q|Q) = N
(
Q; q̄,

σ2

T

)
, (6)

where q̄retro ≡
n∑

i=1

qretro,i and q̄ ≡
T∑

t=1

qt. This allows us to rewrite the posterior as the normal distribution N
(
Q;µT , σ

2
T

)
,

where we define the mean and variance as

µT =
J0µ0 + Jretronq̄retro + JT q̄

JT
(7)

σ2
T =

1

JT
, (8)

along with the precision quantities Jretro ≡ 1
σ2

retro
, J ≡ 1

σ2 , J0 ≡ 1
σ2
0

, and JT ≡ J0 + Jretron+ JT . We then write q̄ to indicate

that the myopic values, q1, are known while the remaining values are defined as q̄>1 =
1

T − 1

T∑

t=2

qt. Now, we calculate

the distribution over q̄>1 given q1 and qretro by marginalizing over the current possible values of Q:

p(q̄>1|q1,qretro) =

∫
p(q̄>1|Q)p(Q|q1,qretro)dQ (9)

= N
(
q̄>1;µ1,

σ2

T − 1
+ σ2

1

)
. (10)

This distribution is over future prospective measurements T time steps into the future given the first myopic measure-
ment. On average, the mean of the resultant distribution stays at the mean of the first measurement while the variance
becomes narrower. The variance of this distribution at T is

Var[µT ] =
σ2
1

1 + σ2

(T−1)σ2
1

. (11)

Intuitively, the variance monotonically increases as a function of T because the future measurements are unknown and
will cumulatively pull the posterior mean away from µ1. Note that when T = 1, the variance is 0 as µ1 is known and that
when T →∞, the variance saturates as σ2

1 . This is because the future measurements will have fully pulled the posterior
mean to the true value of Q.

The value of planning is the maximum of the future posterior mean of Q across all actions, MT = max
a

µT (a). We can

evaluate the expected value of this quantity, E[MT ], by computing the max distribution and taking its mean. Within our
framework, the mathematical reason why planning is beneficial is that the expected value of a maximum is greater than
the maximum of expected values.

2.3 Optimization

After computing the benefit of planning for a range of T values, this expected reward is compared against the cost of
planning. We assume a fixed cost per evaluation c such that the utility of planning for T iterations is given by:

UT = (E[MT ]− E[M1])− cNT, (12)
where N is the total number of actions considered in the state. In this way, our cost function takes into account the depth
and breadth of the tree being approximated by the model. The first term increases sublinearly with T , while the second
one increases linearly, meaning that their difference will have an optimum. This optimum is the best number of steps to
plan ahead:

T ∗ = argmax
T

UT . (13)
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Figure 1: The model makes intuitive predictions about planning depth using only myopic estimates. (A) Optimal plan-
ning depth (T ∗) as a function of the cost per measurement (c) and the number of actions available to the agent (N ).
(B) 75th, 50th, and 25th percentiles for the gap between the top two myopic measurements as a function of number of
actions for a single cost (c = 0.001). (C) Optimal planning depth as a function of the gap between the top two myopic
measurements and number of actions, for the same cost as in (B). The color code is two-dimensional: the hue represents
optimal planning depth and the saturation proportion of total simulations for the combination of top gap size and N .

3 Results

3.1 Myopic model predictions

Figure 2: The effect of experience on depth of plan-
ning. Optimal planning depth for 2 actions (left) and
20 actions (right) as a function of the average num-
ber of retrospective measurements per action (mod-
eled as a Poisson rate) for a single cost (c = 0.001).
The dashed line in each panel indicates the optimal
planning depth without retrospective experience.

We first consider the case where the agent has no prior experi-
ence and relies only on myopic evaluations to decide how far
into the future to plan. This mimics real-world planning envi-
ronments where an agent has uninformed priors over their ret-
rospective system, such as in novel tasks or tasks in which states
may not repeat often.

Our cost function is dependent on the number of evaluations
that the agent must make during inference, or the product of the
cost per measurement (c) and the total number of actions avail-
able to the agent in the state (N ). Over this parameter space, our
model predicts that deeper planning is beneficial at lower costs
and with less alternatives (Figure 1A). The reasoning behind this
effect is based on the value of the myopic measurements. If the
gap between two myopic values is small, should the agent plan
further ahead or avoid wasting valuable resources planning?
And conversely, if the gap between two myopic evaluations is large, should the agent plan more or less?

In Figure 1B, we show that as the number of actions increases, the distribution of the difference between the top two
myopic measurements becomes more right-skewed. In other words, small top gap sizes are more common when there
are more actions to consider, and the size of the top gap is varied at a lower number of alternatives. Figure 1C investigates
the relationship between top gap size and optimal planning depth: T ∗ is higher with smaller top gap sizes and with
less available actions. This suggests that smaller gap sizes do increase optimal planning depth, but that this effect is
diminished with more actions where cost grows and ultimately outweighs the added benefit of planning more deeply.

3.2 Incorporating retrospective information

Next, we examine environments where the agent does have prior experience. Planning depth should be modulated by
the total amount of retrospective experience as well as the uncertainty of those estimates. These correlate to well-studied
mechanisms in the planning literature: the transition from model-based to model-free control over time and uncertainty-
based arbitration between prospective and retrospective systems.
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Figure 3: The effect of uncertainty on depth of plan-
ning. Optimal planning depth for 2 actions (left) and
20 actions (right) as a function of the retrospective and
prospective variance in the generative model for a sin-
gle cost (c = 0.001).

We simulate total experience by using a variable Poisson rate
(λ) to determine n for each action. The model predicts a shal-
lower optimal planning depth as more experience is accumu-
lated, and this trend holds irrespective of the number of alter-
natives that the agent considers (Figure 2). The rationale behind
this is that environments with low amounts of retrospective in-
formation require similar planning depths compared to when
the model relies only on myopic estimates. Optimal planning
depth then decreases as the agent gains more experience. In
these cases, the agent can spend less resources planning and in-
stead relies more heavily on its cost-effective retrospective expe-
riences. Additionally, we varied the amount of uncertainty for
both the retrospective and myopic estimates to investigate their
joint effect on planning depth (Figure 3). This is straightforward
to implement, since our model directly takes the variance asso-
ciated with each type of sample as part of its generative model.
With a low number of alternatives, increased uncertainty with
either or both sources of information leads to deeper planning.
With more alternatives, however, high amounts of prospective
uncertainty results in lower optimal planning depths. Intuitively, planning more deeply is generally beneficial in gain-
ing high-value estimates under uncertainty, but if the uncertainty attached to planning is too high then it is no longer
worthwhile to obtain these costly measurements.

4 Discussion

We presented a normative framework for optimizing the depth of decision tree search based on Bayesian inference to
compute the value of planning from a combination of retrospective samples and myopic estimates. We showed that
this model makes intuitive depth predictions in the absence of retrospective information, primarily driven by cost per
measurement and the number of actions. Then, we introduced retrospective experience and found that planning depth
decreases as the agent gains experience and increases with the uncertainty of the model’s evaluations unless prospective
uncertainty is so high that deeper planning is no longer worthwhile. Ultimately, our framework approximates planning
via an optimal information sampling algorithm that doesn’t construct a full search tree. A more sophisticated variant of
our model would determine online which action to expand the search frontier for, thereby optimizing both the depth and
direction in which planning is beneficial. In future work, we plan to investigate how our model and its variants interact
with forward search in complex planning tasks.
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Abstract

Large-scale data sets in cognitive science allow researchers to test how established results generalize beyond constrained
laboratory settings while leading to novel scientific questions. In this work, we present a data set of 1, 234, 844 partici-
pants playing 10, 874, 547 games of a challenging variant of tic-tac-toe. This task is at an intermediate level of complexity,
providing rich behavior for which modeling is still tractable. We utilize this task and data set in order to examine fun-
damental components of human decision-making, namely the interaction between dropout and learning as well as the
balance between prospection and retrospection. We find a correlation between task performance and total experience,
and independently analyze participants’ dropout behavior and learning trajectories. We uncover that stopping patterns
are driven by increases in playing strength, and investigate the factors underlying playing strength increases with expe-
rience using a set of metrics derived from a best-first search model with a heuristic value function. Finally, we explain
discrepancies between the planning model’s predictions and observed data in early game choices with retrospective be-
havioral patterns. Our results provide examples of how massive behavioral data sets paired with complex tasks provide
unique opportunities for understanding human decision-making.

Keywords: planning; reinforcement learning; decision-making; behavioral
modeling
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1 Introduction

In recent years, massive data sets collected through online experiments have become more common in cognitive science
(Stafford and Dewar, 2014; Steyvers et al., 2019). The purpose of this methodology is to obtain rich data in participants’
real-world environments rather than isolating a single variable and controlling for sources of variation. In turn, this data
can be used to study a wide array of cognitive mechanisms from learning to decision-making to planning (Schulz et al.,
2019; Steyvers and Schafer, 2020), or even for leveraging methods from machine learning to construct computational
models (Peterson et al., 2021). These data sets have additional value in that they can clarify whether results or models
derived from more constrained settings generalize while simultaneously allowing for entirely new research questions.

Here, we present a massive data set to investigate fundamental components of human decision-making in a combina-
torial game of intermediate complexity. In contrast to traditional laboratory experiments, people initiate, continue, and
stop play completely at their own discretion. We begin by characterizing the endpoint of participants’ learning trajecto-
ries, establishing that there is a correlation between final playing strength and overall experience. Then, we characterize
features that drive dropout behavior and learning trajectories in our task. Finally, we establish that people engage in
prospective planning by fitting a computational model to their choices, and illustrate two behavioral patterns that the
model fails to predict but are consistent with retrospective decision-making.

2 Task and data set

Figure 1: Example board position in 4-in-
a-row. The left is the laboratory version
of the task, while the right is the gamified
version used on the Peak platform.

Our task is a variant of tic-tac-toe, in which two players alternate placing to-
kens on a 4-by-9 board (Figure 1). The objective is to get four tokens in a row
horizontally, vertically, or diagonally. The game, which we call 4-in-a-row,
has approximately 1.2 · 1016 non-terminal states, and therefore is at a level
of complexity which far exceeds tasks commonly used in cognitive science
(van Opheusden and Ma, 2019). However, 4-in-a-row retains computational
tractability, making it an ideal candidate for studying the interplay between
dropout and learning as well as prospection and retrospection. Additionally,
we partnered with Peak, a mobile app company, to implement a visually en-
riched version of 4-in-a-row on their platform (https://www.peak.net),
which users play at their leisure in their daily environment. We are currently
collecting data at a rate of approximately 1.5 million games per month, and
here we analyze a subset consisting of 10, 874, 547 games from 1, 234, 844
unique users collected between September 2018 and April 2019. These users
each play a wide range of games, but the data set includes thousands of users who have played upwards of 20 or even
100 games. In this version of the task, users always move first against an AI agent implementing a planning algorithm,
with parameters adapted from fits on previously collected human-vs-human games (van Opheusden et al., 2021). AI
agent playing strength is modulated by changing model parameters based on game outcomes.

3 Results

3.1 Dropout and learning functions

In order to motivate the rest of our findings on learning, we first investigate the relationship between task performance
and total experience. We measure users’ task performance using Elo ratings (Elo, 1978), a standard method for calculating
the relative skill levels of players in zero-sum games. Ratings calculated for relatively few games can be statistically
unreliable, so we exclude players with less than 20 total games played from our analysis and group each user’s experience
into blocks of 20 games. This results in 115, 968 unique users, and we use a common baseline to compute Elo ratings
across all experimental data. In Figure 2A, we correlate this final playing strength with the total number of games
played by each user (ρ = 0.27). Due to the size of the data set, our p-values are below the minimum representable float
(2.0 · 10−308) unless reported otherwise. This result illustrates that, at the endpoint of their learning trajectories, users are
more likely to have higher task performance if they have accumulated more total experience with the task.

One novel feature of a data sets like ours is temporal: participants have complete autonomy over when and for how long
to engage in the given task. In practice, this means that any investigation into learning using these data sets must also
consider dropout behavior. We hypothesize that dropout behavior in this game is strongly influenced by two factors:
current playing strength and current number of games played. In order to test this hypothesis, we examine the effect of
each user’s Elo rating in a given window of 20 games on the probability that they stop playing in the next block of 20
games, and further bin these probabilities by number of games that the user has played so far (Figure 2B). We find that
as users play more games they have a lower stopping probability (logistic regression: β = −0.02 ± 5.8 · 10−5), and their
stopping probability increases with higher Elo ratings (logistic regression: β = (6.31±0.10) ·10−4). This finding suggests
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that as users gain more experience, they are more likely to continue playing when the game is still challenging and they
have lower Elo ratings. Conversely, users tend to quit when their playing strength is high. This aligns with the literature
on intrinsic motivation in humans: if users devalue the task due to lack of a challenge or information gain, they will stop
participating (Schmidhuber, 2010). However, we do not find evidence for the inverse trend that users find the task too
difficult and are therefore more likely to stop playing with lower Elo ratings. One possible explanation for this is that the
AI agents that users were matched with did not make the task difficult enough.

We then validate that a reliable increase in playing strength over time occurs at the population level. In Figure 2C, we
show that average Elo ratings increase as users gain more experience, and that this trend occurs irrespective of the total
number of games each user ends up playing (linear regression: β = 1.5±8.9 ·10−3). We also find a reliable, albeit smaller,
effect of initial Elo ratings on current playing strength (linear regression: β = 0.66± 1.6 · 10−3). Note that the correlation
from Figure 2A can be observed by connecting the endpoints of each learning curve. Importantly, we find no evidence for
changes in the slopes of users’ average learning trajectory when conditioned on either total number of games played or
initial playing strength. This suggests that learning rates in this task are independent of these two factors, and primarily
captured by current playing strength, current experience level, and individual differences.

Figure 2: Dropout and learning are driven by playing strength and experience. (A) Two-dimensional histogram of the
final Elo rating and total number of games played for users in the data set. The visualization is limited to 104, 681 users
who had a final Elo rating between −400 and 400 and played at least 20 and less than 100 total games. (B) Probability
of stopping during the next block of 20 games as a function of the Elo rating and number of games played so far in the
current block, again limited to the same ranges as in (A). (C) Average user Elo rating as a function of current experience
level conditioned on total number of games played for 107, 769 users who played at least 20 and less than 120 total games.

3.2 Prospective planning

Given our insights into the factors driving dropout and learning functions in this task, we fit a computational model to
users’ choices in 4-in-a-row to demonstrate that they engage in prospective planning. This algorithm combines a heuristic
function, which is a weighted linear combination of board features (Campbell et al., 2002), with the construction of a
decision tree via best-first search. Best-first search iteratively expands nodes on the principal variation, or the sequence
of actions that lead to the best outcome for both players given the current decision tree (Dechter and Pearl, 1985). To allow
the model to capture variability in human play and make human-like mistakes, we add Gaussian noise to the heuristic
function and include feature dropout. For each move the model makes, it randomly omits some features from the
heuristic function before it performs search. Such feature omissions can be interpreted cognitively as lapses of selective
attention (Treisman and Gelade, 1980). During search, the model also prunes the decision tree by removing branches
with low heuristic value (Huys et al., 2012).

When fitting the computational model to behavioral data, we estimate the log probability of a user’s move in a given
board position with inverse binomial sampling (van Opheusden et al., 2020), optimize the log-likelihood function with
Bayesian adaptive direct search (Acerbi and Ma, 2017), and account for potential overfitting by reporting 5-fold cross-
validated log-likelihoods. To test whether the tree search component is necessary to fit human choices, we compared
the model’s log-likelihood per move with that of a model where tree search terminates after a single iteration. Model
fitting and comparison is computationally taxing, so we ran this analysis on 50 pseudo-randomly selected users. The
cross-validated log-likelihood per move of the computational model is higher across users than that of the myopic model
(Figure 3A), demonstrating that tree search is indeed necessary to predict user’s moves.

We convert the model parameters inferred for a set of 1, 000 users who had played at least 100 games from the learning
analysis to three metrics: planning depth, feature drop rate, and heuristic quality. Planning depth roughly corresponds
to the number of steps people think ahead, feature drop rate measures the frequency of attentional lapses, and heuristic
quality measures the “correctness” of the feature weights. Figure 3D-E show that depth of planning increases with
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experience (linear regression: β = 0.011± 8.0 · 10−4), while feature drop rate decreases (linear regression: β = (−2.58±
0.36) · 10−4, p = 4.5 · 10−13). We verify that users’ response times decrease across blocks, signifying that the planning
depth increase is not a result of slower play. Figure 3F also shows a reliable increase in heuristic quality with experience
(linear regression: β = (6.11 ± 0.29) · 10−4). However, the heuristic quality in the first 20 games of this data set is much
lower than in previously collected laboratory data, suggesting that users have more opportunity to improve their feature
weights rather than starting at ceiling. These results demonstrate that users’ learning trajectories are underscored by
deeper planning, fewer lapses of attention, and bounded improvement of feature weights.

Figure 3: Evidence for prospective planning. (A) Histogram of the difference in cross-validated log-likelihood per move
for the planning and no tree models across 50 users (mean: −0.075 ± 0.011). (B) Scatterplot of the number of model
iterations and user response time on each move for the same users as in (A). To normalize, we first divide the number of
iterations or response time by the mean and then take the logarithm. (C) Average user response time (blue) and number
of model iterations (pink) taken to make a move during gameplay. (D) Average depth to which 1, 000 users plan as they
gain experience, as estimated by the model. (E) Same as (D) for feature drop rate. (F) Same as (D) for heuristic quality.

3.3 Retrospective decision-making

One major difference between the model and our observed data is predicted response times. We do find that people’s
response times correlate on individual trials with the number of model iterations (ρ = 0.30, p = 6.0 · 10−41, Figure 3B),
but their average trend over the course of a game differs considerably (Figure 3C). Early in gameplay, the model predicts
that people search larger decision trees and thus have longer response times, but the data shows the opposite. Therefore,
it is likely that in situations where the board is fairly empty and no player can immediately win the game, there is a faster
retrospective process that takes place before prospective planning begins. In the middle and late game, response time
trends roughly follow model predictions.

Due to the size of our data set, we were able to uncover clear evidence for retrospective decision-making. We find that
response times in early stages of a game are mediated by previous game outcome: user response times across the first 7
moves are, on average, longer after losses rather than wins (Figure 4A). Furthermore, third move response times decrease
significantly when users encounter repeated 2-piece board states. In terms of action selection, users are significantly more
likely to repeat their opening moves following wins rather than losses, and these moves are primarily distributed in the
center or corners of the board (Figure 4B). This effect continues on the third move, where users most often elect to play
in the center positions closest to the two pieces already on the board (Figure 4C). However, the proportion of move
repetitions based on game outcome decrease further into gameplay. These population-wide trends suggest that users
make decisions partially based on whether or not an opening strategy was successful in previous games, and transition
to alternative strategies, such as thinking ahead, in subsequent moves when board positions are more likely to be unique.
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Figure 4: Evidence for retrospective decision-making. (A) Average response times across the first 7 moves of a game
directly following a loss, draw, or win. (B) Probability that users repeat their opening move directly after a loss, draw, or
win. (C) Same as (B), but for the most frequent 2-piece board state. All panels are computed on the full data set.

4 Discussion

We leveraged a large-scale data set of human participants playing a two-player combinatorial game in order to interro-
gate their decision-making process. We first established that playing strength and overall experience are correlated before
characterizing the factors that underlie dropout and learning. For dropout, we found that current playing strength and
experience level drive stopping probabilities. For learning, we demonstrated that playing strength increases over time,
and that these improvements can be attributed to increased planning depth, decreased feature dropping, and bounded
increase in heuristic quality. We then used a planning model to show that humans engage in prospective reasoning in
the middle and late game, and that their early game moves as well as their response times are affected by the outcome
of previous games in which they encountered the same board positions. Our findings showcase how massive behavioral
data sets with complex tasks can be used to study novel aspects of human decision-making.
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Abstract 

Recent insights from artificial intelligence and computer science have proven invaluable for studying the 

explore-exploit dilemma, particularly in disentangling information-directed from random exploration 

strategies. Despite these advances, the algorithms used to solve this dilemma are largely devoid of affective 

parameters. In this study, we aimed to investigate the relationship between the cognitive computational 

substrates of the explore-exploit dilemma and a particularly powerful indicator of affective state: 

physiological stress reactivity. We first used a Bayesian generalized logistic regression model to evaluate 

propensities to choose more informative bandits over higher valued bandits. This revealed more directed 

exploration under stress, and no change in random exploration. We then considered three hierarchical 

Bayesian reinforcement learning models to determine how uncertainty associated with Kalman filter states 

can influence explorative behavior under stress versus no stress: a Thompson sampler, an upper confidence 

bound algorithm, and a hybrid of the two. We found that an upper confidence bound algorithm best explains 

exploration under stress, whereas a hybrid model may better capture exploration without stress. We discuss 

the implications of these findings for future modeling of the explore-exploit dilemma; models must be flexible 

to affective states such as stress if modeling of the explore-exploit dilemma is to progress beyond normative 

considerations. 
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1 Introduction 

Exploration versus exploitation decisions are fundamental to everyday human decision-making. From a 

computational perspective, these decisions arise from uncertainty in the value of multiple options. For 

example, when a person feels uncertain about whether s/he should continue working a demanding, perhaps 

unfulfilling job, s/he may choose to continue exploiting their current position, or explore alternative employers. 

However, not all exploration is value-driven: Some exploration is stochastic. A person may choose to explore 

new targeted job ads to gain information on other specific employers (i.e., value-directed exploration), or the 

choice may be reflexive of their overall uncertainty (i.e., random exploration). 

Much of the explore-exploit dilemma has been studied under normative considerations, but what can we 

expect people to do under stress? Numerous animal models suggest that anxiety is negatively associated with 

exploration [6, 10]. In humans, Lenow and colleagues [5] discovered that both acute and chronic physiological 

stress – markers of environmental safety or quality – were associated with an increase in exploitation. Other 

studies have suggested that anxiety in humans is similarly inversely related to explorative behavior [2, 8]. 

Although it may appear from this literature that stress drives exploitation at the cost of exploration, few 

studies have considered disparate effects on directed versus random exploration. We hypothesized that 

directed exploration would be attenuated under stress, whereas random exploration would be unaffected. To 

test this hypothesis, we measured participants’ preferences on a multi-armed bandit task immediately after 

an acute physiological and psychological stress manipulation.  

2 Methods 

Participants. We tested 29 participants in this study. Participants were recruited from a midwestern 

University and received partial course credit for their participation. All participants provided written 

informed consent in accordance with the university’s institutional review board. In addition to course credit, 

participants were incentivized with up to $5 USD in performance bonuses. 

Procedure. The study was conducted over two experimental sessions. The 

sessions were approximately 1.5-hours in duration and separated by 1-

week. All participants completed a variation of the Maastricht Acute Stress 

Task (MAST; [7]) during each session. The MAST is a physiological and 

psychosocial stress manipulation which combines a cold pressor task (i.e. 

cold produced pain), serial subtraction task (i.e. social evaluation during 

arithmetic), and uncertainty (i.e. pseudorandom durations). During one 

session, participants alternated between immersing a foot into a bucket of 

2-degrees Celsius ice water and counting backwards from 2043 in units of 

17. During another control session, the same procedures were followed but 

with room temperature (17-degrees Celsius) water and serial subtractions 

of 2. Session order was within-subjects and counterbalanced.  

Participants completed 80 games of the Horizon Task (Figure 1 [9]) 

immediately after the MAST.  On each game, participants chose between two one-armed bandits (i.e., slot 

machines), each of which provided points from different Gaussian distributions. The means of these two 

distributions ranged anywhere between 1 and 100 points, but their standard deviations were always equal to 

8 points. Through sampling, participants were expected to learn the means of these two distributions and 

maximize their total reward. At the start of each game, participants were instructed to make four forced 

Figure 1. Horizon task design.   
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options (i.e., they were bound to select a specific bandit without any volition of their own). These forced 

choices set up the game to have unequal information between the two bandits (e.g., one bandit was forcibly 

chosen three times while the other was chosen once). After the forced choices, participants were free to choose 

either bandit either one time (i.e., short horizon 1) or six times (i.e., long horizon 6; participants may switch 

the bandits chosen throughout the 6 trials). These two horizon conditions manipulated the relative value of 

exploration and exploitation. 

Behavioral Analysis. We fit a Bayesian generalized logistic regression model (i.e., Richards’ curve) to 

participant choice data immediately following the four forced trials. This determined the probability of 

choosing the lesser known bandit on the first free-choice trial as a function of the difference in average bandit 

values δ with Gaussian noise: 𝑐ℎ𝑜𝑖𝑐𝑒 ~ 𝑁 (𝑎 +  
𝑎−𝑏

1+𝑒−𝛽𝛿 , 𝜎2). 𝑎, 𝑏, and 𝛽 were free to vary with stress condition 

(stress versus no stress). Following the informal observations of Wilson and colleagues [9], the growth rate β 

reflects the degree to which choice is influenced by random exploration, and the point of inflection 𝑎 − 𝑏 

reflects the influence of directed exploration. 

RL Modeling. We modeled choice behavior using three hierarchical Bayesian reinforcement learning models; 

one using a Thompson sampler, another an upper confidence bound algorithm, and the last a hybrid of the 

two. Bandit values were updated using Kalman filtering equations, 𝑄𝑡+1(𝑎) =  𝑄𝑡(𝑎) +  𝜅𝑡(𝑟𝑡 − 𝑄𝑡(𝑎)) where 

𝑄𝑡(𝑎) is the expected value of the chosen bandit and 𝜅𝑡 is the Kalman gain. Likewise, variance was updated 

as a proxy for uncertainty, 𝜎𝑡+1
2 (𝑎) = 𝜎𝑡

2(𝑎) − 𝜅𝑡𝜎𝑡
2(𝑎). The Kalman gain is dynamic with learned uncertainty 

and measurement variance,  𝜅𝑡 =
𝜎𝑡

2(𝑎)

𝜎𝑡
2(𝑎)+ 𝜌2(𝑎)

, where 𝜌2(𝑎) is the measurement variance. Initial 𝑄0(𝑎) was 

fixed at 0 whereas initial 𝜎0
2(𝑎) was free to vary across subject and stress conditions. Choice probabilities 𝑝(𝑎) 

for the first model were calculated using a Thompson sampling policy to gauge random exploration, 𝑝(𝑎𝑡) =

 𝛷((𝑄𝑡(𝑎) − 𝑄𝑡(𝑏))/√(𝜎𝑡
2(𝑎) + 𝜎𝑡

2(𝑏) )), where stochasticity is proportional to total uncertainty 

√𝜎𝑡
2(𝑎) + 𝜎𝑡

2(𝑏) across bandits 𝑎 and 𝑏. The second model used an upper confidence bound algorithm instead 

for directed exploration, 𝑝(𝑎𝑡  ) =  𝛷(((𝑄𝑡(𝑎) − 𝑄𝑡(𝑏)) + 𝛾(𝜎𝑡
2(𝑎) − 𝜎𝑡

2(𝑏)))/𝜆), where 𝛾 reflects an 

information bonus for bandit 𝑎’s uncertainty relative to 𝑏, and 𝜆 controls stochasticity. Both 𝛾 and 𝜆 were free 

to vary across subject and stress conditions. Last, the hybrid model combined these policies to assess the 

simultaneous influence of random and directed exploration, 𝑝(𝑎𝑡) =  𝛷 (
(1−𝜔)(𝑄𝑡(𝑎)−𝑄𝑡(𝑏))

√𝜎𝑡
2(𝑎)+𝜎𝑡

2(𝑏)
+ 𝜔(𝜎𝑡

2(𝑎) − 𝜎𝑡
2(𝑏))), 

where 𝜔 is the weight of directed exploration on choice relative to random exploration [4]. 𝜔 was also free to 

vary across subject and stress conditions. 

Model fitting. All models were fit using a Hamiltonian Monte Carlo No-U-Turn sampler, a MCMC method 

provided in the Stan probabilistic programming language. We collected 10,000 samples for each parameter 

across 4 chains run in parallel. The first 5,000 samples of each chain were discarded as warm-up. We compared 

the relative fits of models by approximating their point-wise out-of-sample predictive accuracy using leave-

one-out cross validation (LOO-CV). All Stan models and analysis scripts are available at: 

https://github.com/kjlafoll/stress-ee-rldm2022.  

3 Results 

3.1  Behavioral 

First, we checked for main effects of stress and horizon on the propensity to choose the explorative or less-
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informed bandit. These behavioral analyses did not account for learning and as such were restricted to the 

first free-choice trial of each game. A frequentist logistic regression model revealed more explorative choices 

with longer horizons, β = 0.458, z = 7.162, p < 0.001, as well as after stress manipulation, β = 0.402, z = 6.291, p 

< 0.001 (Fig 2A).  Second, we considered the propensity to explore as a function of the mean difference between 

both bandits prior to the first free-choice. A Bayesian generalized logistic regression model revealed disparate 

effects of stress on model parameters 𝑎 and 𝛽, the lower asymptote and slope of the sigmoid, respectively 

(Figure 2B-C). Participants had a much greater 𝑎 after the stress session, meaning that they had a greater 

propensity to choose a much lower-valued explorative bandit when under stress than when not. This suggests 

more directed exploration under stress. Conversely, participants had near equivalent 𝛽 after stress relative to 

control, indicating similar accelerations in preference with changes in value. This suggests no change in 

random exploration between stress conditions. 

             

 

Figure 2. First free-choice behavior. (A) Total number of explorative choices made. (B) Logistic fits for 

probability of choosing explorative bandit as a function of mean value difference. (C) Posteriors over 

parameter means from Bayesian generalized logistic model for each stress condition. 

 
Figure 3. Results of hybrid model. Subject-level posteriors over 𝜔 weight for directed exploration for control 

(left) and stress (right) sessions.  

A B 

C 
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3.2 Reinforcement Learning 

The behavioral analyses were limited in that while they could elucidate horizon effects, they were restricted 

to the first free-choice and blind to learning processes. To extend our analysis to processes of reinforcement 

learning, we fit three hierarchical Bayesian model to all free-choice trials in long horizon 6 games (short games 

were excluded due to learning being a nonfactor). The winning model, a hybrid of a Thompson sampling 

policy and upper confidence bound algorithm, was selected for inference. Subject-level posteriors over the 

parameter weighting directed exploration relative to random exploration revealed substantially more 

directed exploration during the stress session than during control (Figure 3).  

4 Discussion 

In this study, we presented a two-factored approach to modeling the explore-exploit dilemma under acute 

physiological and psychological stress: a descriptive, generalized logistic regression model, and an 

explanatory hybrid reinforcement learning model. The models revealed that, counter to our hypotheses, 

directed exploration strengthened under stress. This finding conflicts with many behavioral analyses of 

exploration under stress. Nonetheless, it is a step forward toward disentangling directed and random 

exploration at a latent processing level, especially considering that some conflicts in the literature suggest that 

predicting explorative behavior is not so clear-cut. For example, Feldman-Hall and colleagues [3] reported 

that electrodermal activity – a gold-standard measure for stress reactivity – was associated with increased 

risk-taking behavior when probabilities were ambiguous or uncertain. A recent study by Bennett and 

colleagues [1] also concluded that anxiety correlates with informatic utility. Taken together, this suggests that 

stress may have a modulatory effect on explorative behavior dependent on context; it is important not to 

conflate threats of opportunity costs with elements of uncertainty when predicting exploration under stress. 

More research is needed on explorative behavior outside normative considerations such as stress in the face 

of uncertainty, and computational modeling can be a useful tool for formalizing new theoretical directions.  
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Abstract

Depression often leads to impairment in various cognitive functions. Despite earlier computational and neural studies,
we have a limited understanding of how depression affects goal-driven decision-making, where the memory retrieval
can guide the value-based decision-making processes. To investigate these issues, we first designed a computational
model of reinforcement learning (RL) that incorporates memory-based control into the successor representation (SR),
called goal-driven SR. Second, using behavioral and fMRI data acquired using a two-stage goal-directed decision-making
task, we found evidence for goal-driven SR; SR prediction error was encoded in the neural activity of the ventrolateral
prefrontal cortex (vlPFC) and right insula, whereas the conventional reward prediction error was encoded in the ventral
striatum. These results suggest the potential role of the prefrontal cortex and insula in memory-based value learning.
Third, through correlation analyses, we found effects of depression on value learning, memory-based control, and action
selection. Lastly, we built a novel Predictor-Decoder system that estimates the severity of depression from fitted goal-
driven SR parameters, with significantly higher accuracy compared to data-driven machine learning models, including
support vector regression (SVR) and deep neural network (DNN).

Keywords: Depression, Value-based decision-making,
Memory-based control, Prediction of depression severity
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1 Introduction

Major depressive disorder, or depression is known to affect various aspects of human value-based decision-making.
While recent studies have attempted to understand depression in the context of reinforcement learning (RL), whether
and how depression affects goal-driven decision-making, where continuous memory storage and retrieval can support
value-based decision-making. Although the recent study found that arbitration between model-based and model-free
systems can characterize depression well [1], the existing theory does not fully accommodate memory involvement in
goal-driven learning. This necessitates the understanding of depression in the composite viewpoint where we fully
incorporate both RL theory and related memory functions.

This study investigates how subclinical depression affects goal-driven decision-making at behavioral and neural levels.
First, we implemented a computational model incorporating memory-based control into successor representation (SR).
We ran a model comparison analysis on behavioral data to show that our model explains human subjects’ choice patterns
qualitatively better than model-based and model-free RL. Second, we conducted general linear model (GLM) analysis
on fMRI data. Next, through correlation analyses, we demonstrated that fitted model parameters can support sufficient
information about depression scale of the corresponding subject. Finally, we built a framework to predict the severity of
depression from fitted parameters of our model, demonstrating the possibilities of model-driven diagnosis of subclinical
depression.

2 Result

2.1 Computational model of memory-guided goal-directed learning

To establish computational principles of memory-guided goal-directed learning, we constructed the computational
model based on SR named ’goal-driven SR’ (Figure 2 left) and fitted its parameter to behavioral data while subjects
were performing the two-stage Markov decision task (Figure 1). The task involves a goal condition, in which a subject
needs to make a choice leading to a specific goal that is assigned on a trial-by-trial basis. We constructed a ”memory
bank” in the computational model [4] to account for the suboptimal learning and decision-making process caused by
maladaptive memory functions originated from depression. The memory bank keeps weight vectors for each goal con-
dition in the task and returns the weight vector associated with the given goal condition. With support of the memory
bank, the model can explicitly learn a goal-specific policy, whereas a previous RL algorithms maintained one policy to
multiple goals, which update it whenever the goal changes by running backward planning [2, 3].

Figure 1: (a) Sequential two-stage Markov decision task proposed in [3]. Participants make binary choice (left or right)
at each state and move to one of next two states with a certain state-transition probability (p, 1− p) (b) Illustration of the
task context. The goal condition consists of specific and flexible-goal conditions. In specific-goal condition, the color of
the collecting box (red, blue or yellow) should match the color of the coin. In flexible-goal condition, all kinds of coins
are allowed to be collected. The state-transition uncertainty consists of high and low uncertainty conditions. During
state-transition uncertainty is high, state-transition probability was set to p = 0.5, whereas during the low uncertainty
condition, state-transition probability was set to p = 0.9. (c) Illustration of the task. Each state is associated with a
specific fractal image. After the fractal image for initial state was shown, participants made a binary choice (left or right).
Then, they were transited to the next state determined by the state-transition probability. Again, subjects made a binary
choice again to arrive to an outcome state. Each outcome state was associated with a colored coin (red, blue, yellow). In
the specific-goal condition, participants should collect the coin that matches with the color of the collecting box. In the
flexible-goal condition, they can receive the reward afterward regardless of the color of coin.

We compared the prediction performance of our computational model with that of the goal-directed RL model by utiliz-
ing Bayesian information criterion (BIC). As a result, we found that the BIC score of goal-driven SR model (M=614.22,

1
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SEM=20.56) is significantly lower than the BIC score of arbitration control model (M=666.83, SEM=18.33) (Figure 2c-d,
paired-sample permutation test, goal-driven SR model vs. arbitration control model: p < 10−5, d = −0.8524, n = 64).

Figure 2: (a) The structure of goal-driven SR. In each state, the model returns a successor matrix that indicates expected
cumulative future state occupancy for each action. When the new goal is assigned, the memory bank returns the saved
weight vector associated with the goal condition. The state-action value (Q value) is given by the product of the suc-
cessor matrix and the weight vector. Using the state-action value, the model makes a stochastic choice with the softmax
function. (b) After transition (s, a, r, s’), two types of prediction error occur: SR prediction error and temporal difference
(TD) prediction error. SR prediction error refers to the difference between actual and expected state occupancy, and TD
prediction error refers to the difference between received and predicted reward. The model updates its successor matrix
using SR prediction error and weight vector using TD prediction error. After updating the weight vector, the memory
bank saves it, tagging the corresponding goal condition. (c-d) Model comparison analysis result. We used Bayesian
information criterion (BIC); (c) The mean and standard error of the mean of BIC scores. Error bar stands for the standard
error of the mean, (d) Individual comparison of BIC scores for each subject. X axis indicates BIC of arbitration control,
and Y axis indicates BIC score of goal-driven SR. The dotted line in the figure indicates identity line as reference.

2.2 Neural evidence of goal-driven SR

To verify that our model explains the neural activity in the brain, we conducted general linear model (GLM) analysis to
check whether the key signals from our model, SR and TD prediction errors, were represented within the fMRI data. We
found that the SR prediction error was found in the right insula and the ventrolateral prefrontal cortex (vlPFC) (Figure
3 left, all p < 0.05, FWE corrected for multiple comparisons). On the other hand, the TD prediction error was found on
both sides of ventral striatum (Figure 3 right, all p < 0.05, FWE corrected for multiple comparisons).

Figure 3: GLM analysis results. The SR prediction error were encoded in the neural activity of ventrolateral prefrontal
cortex (vlPFC) and right insula, whereas the conventional TD prediction error were encoded in ventral striatum. All the
effects reported were survived after adjusting for family-wise error (FWE p < 0.05).

2.3 Model parameters explain depression severity

To verify that our model reflects the characteristics of the subclinical depression, we measured Spearman’s correlation
coefficients between each subject’s estimated model parameter and their self-reported depression score (CES-D). First,
we found that the degree of exploitation is negatively correlated (rS(62) = −0.273, p = 0.03, n = 63) with CES-D score
(Figure 4 left.) For more detailed investigation, we conducted partial correlation analyses and found that the learning
rate of the weight vector (rS(62) = −0.360, p = 5.10× 10−3, n = 63), the discount factor of the successor matrix (rS(62) =
−0.397, p = 1.90×10−3, n = 63), and the degree of exploitation (rS(62) = −0.483, p = 1.00×10−4, n = 63) are significantly
negatively correlated with CES-D score (Figure 4 right.)

2
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Figure 4: (a) Simple correlation analysis between model parameters and CES-D score. Right graph shows the relationship
between the individual CES-D score and the degree of exploitation, one of the model parameters. (b) Partial correlation
analysis between model parameters and CES-D score.

2.4 Model-driven diagnosis of depression

To fully accommodate the observation that our model parameters convey information related to depression, we designed
a framework that predicts the subject’s CES-D score using model parameters. First, we attempted to directly predict
subjects’ CES-D score from their fitted parameters using data-driven approaches, including support vector regression
(SVR) and deep neural network (DNN). However, their performances were poor because there mainly suffered from
insufficient number of severely depressed subjects compared to the control case (Figure 5d top.)

Figure 5: (a) The outline of the Predictor-Decoder system. The parameters of goal-driven SR for the subjectX are fed into
the system as an input. The model outputs the predicted CES-D score of subjectX , CX . (b) The structure of the predictor.
Model parameters of subject X are combined with model parameters of subject Yi, whose CES-D score is known. The
concatenated parameter vector is passed to the binary SVM classifier that outputs Boolean value Bi (True if CX is higher
than CES-D score of subject Yi, CYi , False otherwise) and the posterior probability of the prediction pi = P (Bi|D). (c)
Decoder is an algorithm that estimates a subject’s CES-D score using the Predictor’s output. (d) Prediction performance of
support vector regressor (SVR), deep neural network (DNN), and our Predictor-Decoder system. The predictions from
our Predictor-Decoder system has significantly positive correlation with the actual CES-D scores, whereas predictions
from SVR and DNN have no significant correlation with actual CES-D scores.

To resolve this issue, we built a Predictor-Decoder system, which consists of the ’predictor’ and ’decoder’ modules
(Figure 5a). The predictor receives the individually-fitted parameter set of goal-driven SR as input (Figure 5b). Then
it compares the input parameter vector with the parameters of other subjects whose CES-D scores are known by the
predictor. The outputs of the predictor are 1) a Boolean value set; each element indicates whether the subject’s CES-D
score is higher than that of the input subject, and 2) the posterior probability of the prediction. The decoder converts the
output of the predictor into the subject’s CES-D score by using the iterative hypothesis evaluation (Figure 5c). First, the
decoder assumes the subject’s CES-D score as an integer M that starts with 1 (Hypothesis HM ). Then it evaluates HM

by calculating the score of HM . The decoder assumes CX being in the range from 1 to 37 (= a maximum CES-D score
in our dataset), each of which is considered to represent a different ’hypothesis’; the Decoder evaluates each hypothesis
iteratively. The score of hypothesis HM , SHM is
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SHM =
N∑

i=1

ai × pi + (1− ai)× (1− pi), (1)

where N is the number of classifications from the Predictor, and ai is a Boolean value, which becomes 1 if Bi is a right
prediction underHM and 0 otherwise. After evaluating all hypotheses, the decoder accepts the hypothesis with the high-
est score. Notably, our Predictor-Decoder system can predict the CES-D score well (Figure 5d), compared to conventional
regression analyses, including SVR and DNN.

3 Discussion

3.1 Neural evidence of goal-driven SR

Previous findings show the neural correlates of state prediction error (SPE) for the model-based learning in the insula and
the lateral prefrontal cortex (lPFC), whereas association with reward prediction error (RPE) for the model-free learning
appears in the ventral striatum [3]. We found that goal-driven SR is associated with neural representations of the two
distinct prediction errors: SR and TD prediction error. The successor matrix keeps track of expected cumulative future
state occupancies. In our task, the visited state cannot be re-visited in the same trial, so the successor matrix should be
converged to the state-transition probability. Accordingly, the SR prediction error resembles SPE. In our analyses, SR
prediction error was found in the insula and ventrolateral prefrontal cortex (vlPFC), consistent with previous findings of
SPE. Taken together, the results expand the potential role of the lateral prefrontal cortex and insula to memory-guided
goal-driven learning. The TD prediction error is associated with the ventral striatum like RPE of the model-free system.
Although the updating processes are quite different, the concept of TD prediction error and RPE are similar, therefore it
can be an evidence that the TD prediction error works like RPE.

3.2 Effects of depression on memory-guided goal-driven learning

For the first, the arbitration control [1] and our goal-driven SR have a parameter that indicates the tendency to make
the most valuable choice. The corresponding parameter value is negatively correlated with the CES-D score in both the
arbitration and our model. This result suggests that the depressed group makes more exploratory choices rather than
exploiting the previous history of success than the healthy group. Also, we found that the learning rate of temporal
difference learning is negatively correlated with the CES-D score. It indicates that the depression group takes more time
to update state values than the healthy control group. In this case, if the subject happens to obtain more rewards than
previously, the control group updates their state-action value accordingly, whereas the depressed group is less capable
of improving their policy. This can be seen as habitual behavior. This result corroborates a previous finding that choice
optimality is negatively correlated with CES-D score. One interesting result is that the discount factor for the successor
matrix is negatively correlated with the CES-D score. The successor matrix provides information about the task structure.
Therefore, this result shows that goal-driven SR can represent the effect of depression on memory-guided learning.

3.3 Predictor-Decoder system for predicting the depression score

We designed a Predictor-Decoder system to estimate CES-D score from model parameters, and it outperforms a few
other data-driven models. The key idea is to learn the ’gradient’ between two data points. The predictor is trained to
compare subject’s CES-D scores from the two subjects’ model parameters. This strategy is intended to learn the difference
in the CES-D score between two subjects instead of the CES-D score itself. Another advantage of the predictor design is
that pairing subjects’ model parameters can increase the number of training data. In addition, the decoder is intended
to recover the subject’s CES-D score correctly by obscuring the wrong predictions by the predictor. Although the most
reasonable hypothesis may receive some fewer points ((1 − P (Bi|D)) because of the wrong prediction, the effects of
incorrect prediction are counterbalanced after summing up the received points.

References

[1] Suyeon Heo, Yoondo Sung, and Sang Wan Lee. Effects of subclinical depression on prefrontal–striatal model-based
and model-free learning. PLoS computational biology, 17(5):e1009003, 2021.

[2] Dongjae Kim, Jaeseung Jeong, and Sang Wan Lee. Prefrontal solution to the bias-variance tradeoff during reinforce-
ment learning. Cell reports, 37(13):110185, 2021.

[3] Sang Wan Lee, Shinsuke Shimojo, and John P O’Doherty. Neural computations underlying arbitration between
model-based and model-free learning. Neuron, 81(3):687–699, 2014.

4

RLDM 2022 Camera Ready Papers 344

344



[4] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals, Demis Hassabis,
Daan Wierstra, and Charles Blundell. Neural episodic control. In International Conference on Machine Learning, pages
2827–2836. PMLR, 2017.

5

RLDM 2022 Camera Ready Papers 345

345



Towards neoRL networks; the emergence of purposive graphs.
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Abstract

The neoRL framework for purposive AI implements latent learning by emulated cognitive maps, with general value
functions (GVF) expressing operant desires toward separate states. The agent’s expectancy of reward expressed as
learned projections in the considered space, allows the neoRL agent to extract purposive behavior from the learned
map according to the reward hypothesis. We explore this allegory further, considering neoRL modules as nodes in
a network with desire as input and state-action Q-value vectors as output; we observe how an action set with a Eu-
clidean significance allows for interpreting state-action values as Euclidean projections of desire. Autonomous desire from
neoRL nodes within the agent allows for deeper neoRL behavioral graphs. Experiments confirm the effect of neoRL
networks governed by autonomous desire, verifying four identified principles for purposive networks for behavioral AI.
The neoRL agent, governed by desire vectors formed from purposive graphs, can navigate Euclidean spaces in real-time
while learning –– exemplifying how modern AI still can profit from gathering inspiration from early psychology.

Keywords: Tolman, purposive AI, GVF, autonomous navigation, neoRL net
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1 Behavioristic AI by neoRL nodes

Thorndike’s law-an-effect in functionalist psychology has been reported as a prime inspiration for Reinforcement
Learning (RL) in AI [6]. Thorndike considered the reinforcement of randomly encountered reflexes as a plausible
explanation for simple behavior and acquired reflexes. The law-of-effect represents an essential first step toward

Figure 1: The first multi-map neoRL agent. The
neoRL agent is capable of expressing latent learning
across several representations of the same Euclidean
space, forming agent value function as a weighted
sum of operant GVFs across multiple NRES maps.
(figure from [1])

the study of behavior becoming a natural science, quickly re-
placed by behaviorism for explaining advanced policies and hu-
man behavior. Edward C. Tolman (1866-1959) further consid-
ered the formation of behavior as being distinct from learning,
based on the observation that an animal could express differ-
ent behavior based on varying motivation [9]. B. F. Skinner
expanded on Tolman’s latent learning, proposing that acquired
policies were operant toward an objective. Operant behaviors
are activated on demand, thus allowing for complex policies.

The neoRL framework for behavioral AI combines Tolman’s
cognitive maps and Skinner’s operant conditioning with results
from modern neuroscience [1]. Via general value functions
(GVF) [7], one can express latent learning as a distributed mech-
anism across numerous off-policy learners for separate operant
state activation. Letting each GVF be guided by a separate intent
signal, i.e., a pseudo-reward that reflects some external condi-
tional, patterns of GVFs could be activated for accurate control
in this space [1, 2]. Inspired by the 2014 Nobel Price in neuro-
science, for the discovery of place cells and other mechanisms
commonly referred to as neural representation of Euclidean space (NRES), Leikanger (2019) demonstrated how NRES-
oriented RL (neoRL) agents are capable of online autonomous navigation by intent signals analogous to NRES reported
in modern neuroscience. Elements-of-interest, the agent’s projections of reward in the considered navigational modality,
facilitates a graded activation of GVFs for purposive activation of latent experience. See my thesis [4] for more on neoRL,
scheduled to be presented in a public online1 PhD defence in the weeks following RLDM-2022.

A neoRL learning module can be considered as a behavioral node in a purposive network. Early results for neoRL
navigation explored the effect of considering multiple state spaces in parallel for the neoRL agent. In some ways analo-
gous to the Hybrid Reward Architecture [10], the neoRL navigation agent combines several learners that establish GVFs
toward separate concerns [2]. From applying the superposition principle in the value domain, the neoRL agent is ca-
pable of combining the value function from many learners in one state space [1], across multiple state representations
of one information space [2], or across information represented by orthogonal Euclidean spaces [3]. The distributed
neoRL value function thus allows a decomposed Markov state, facilitating online learning and autonomous navigation.
Each behavioral node consists of three parts; first, the latently learned cognitive map formed by GVF on operant desires
toward NRES cells. Operant desires are trained by off-policy GVF, expressing latent learning for how to accomplish
separate conditionals in this environment representation. Second, the neoRL agent is governed by purpose – mental
projections of parameter configurations associated with reward are expressed as elements-of-interest in the NRES map.

Figure 2: A schematic representation of fig. 1, the
neoRL agent from [2]. Agent value function is formed
from the combined value functionQN from each of the
three ξN neoRL nodes, where N ∈ {3, 7, 23} [2].

These free-ranging representations of desire in the considered
space are mapped to NRES nodes, activating GVFs correspond-
ing to the associated valence – the element’s expectancy of re-
ward upon achievement. Note that the same neoRL node, con-
taining latent knowledge in one NRES representation, can be
harvested by different sets of elements-of-interest. Third, the
value function can be extracted by elements-of-interest from the
digital analogy to Tolman’s cognitive map – resulting in an ac-
tionable Q-vector output of the neoRL node. When mutually
exclusive NRES receptive fields are used for latent learning, the
GVF components become operant toward that NRES cell – oper-
ant value function components. The singular (orthogonal) value
component can be combined with others to form the full value
function of the agent, further implying that separate naviga-
tional modalities can be learned in parallel and combined to one

agent value function [3]. Figure 2 shows the aggregation of the value function for the neoRL agent in [2]. The location
and valence of elements-of-interest can be considered as inputs to the neoRL behavioral node, and the superposition of
weighted operant GVFs establishes an output of the neoRL node.

1Information about the streamed PhD defence will be posted on www.neoRL.net
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The value function of the neoRL agent is composed across multiple state representations[1], as illustrated in figure 2.
The separate sub-agents ξ3, ξ7 and ξ23 are thus independent sources for the neoRL value function, each formed by three
functional parts: the input to the node are comprised of elements-of-interest, {ein}, each representing a parameter con-
figuration associated with reward; the latent map, reflecting operant policies toward features in the considered state set,
formed by latent learning as expressed as GVFs on the agent’s stream of experience; and the actionable state-action
value-vector as the output of the neoRL node, established as the integral across the operant desires activated by elements-
of-interest. When considering an action set where choices have a Euclidean significance, as with A = {N,S,E,W} in [1],
a state-action value vector could be interpreted a Euclidean desire-vector;

~d =
~∑

Qin ,

where ~∑ represents the vector sum. The valence of the desire vector ~d should express the combined valence across {ein}.
~eout = ~d

eoutψ =
∑

einψ ,

where ~ei signifies the coordinate and eiψ represents the valence of purposive element i. A functional schematic of the
neoRL module is illustrated in figure 3; a single output-desire can be formed from a number of input elements {ein}.
Different sets of purposive elements-of-interest {ein} can establish different output desire eout and actionable state-action
valuesQN from a single cognitive map. The network expressed by figure 2 could be seen as a behavioristic analogy to the
one-layered perceptron (from [5]). Likewise, deeper behavioristic networks are plausible by multi-layered neoRL graphs
with purposive flow of desire. Tolman’s purposive behaviorism and latent learning could be expressed by deep neoRL
networks — allowing for autonomous navigation governed by the agent’s own experience and expectancy of reward.

2 Experiments

A comprehensive environment for research on autonomous navigation is the PLE implementation [8] of Karpathy’s
WaterWorld environment. An agent controls acceleration of the self in the four Cardinal directions [N,S,E,W ], i.e.,
[up, down, right, left]. Three objects move around in the Euclidean plane according to predefined mechanics. Encoun-
tering an object replaces it with a new object with a random color, location, and speed vector. Green objects are desirable
with a positive reward R = +1.0, and red objects are repulsive with a negative valence of −1.0. Capturing the last green
object resets all remaining (red) objects by the same reset mechanisms. The only reward comes from encountering ob-
jects, making the accumulation of R an objective measure for navigational capabilities and its time course an indication
of real-time learning capabilities.

The sparse reward scheme in the WaterWorld environment, with discrete +1.0 or −1.0 rewards af-
ter encountering objects, makes measuring the immediate proficiency of the agent by R difficult.

Figure 3: A neoRL learning module with one input
and two output; actions with a Euclidean significance
implies state-action vectors to be representable in the
same Euclidean space; eout can be used as input for
compatible neoRL nodes.

Capturing the transient time course of agent skill can be done by
averaging independent runts; the enclosed experiments average
100 separate runs to measure transient navigational proficiency,
i.e., across 100 separate agents. No pre-training or other precur-
sors are available for the agents, making all navigation happen
live as the agent gathers experience in the environment for the
first time. Curves are presented with minutes along the x-axis,
signifying the wall-clock time since the beginning of each run.

We shall explore four aspects of purposive graphs; first, we chal-
lenge the basic principle of propagating purpose by the layout
illustrated in figure 4a. The first neoRL node, ξPC , forms a pur-
posive desire based on all reported objects from WaterWorld; a
single desire vector ~dwith accompanying valence eψ propagates
to the compatible neoRL node ξOV C as autonomous desire ePC .
Experiment [b] explores the effect of extracting separate desires
from the same learned cognitive map. A purposive desire vec-
tor from the neoRL node comes from extracting latent knowl-
edge from considered coordinates; the agent extracts two purposive vectors from ξPC , one from desirable objects eingreen
and a separate from aversive objects einred . The output from multiple neoRL nodes can be combined for the policy-
forming value function in the neoRL framework; experiment [c] explores the effect of aggregating value function from
multiple depths of the neoRL net. The output desire from one node ξN can give input to any compatible neoRL node
ξM , including itself: experiment [d] explores recurrent connections for neoRL nodes. Collaborative experience is explored
with and without recursive desires, as illustrated in figure 4c and 4d. All results are reported in figure 4e.
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(a) Aspect 1: a single desire vector ePC as input to ξOV C . (b) Aspect 2: separate desire extraction; ePCred and ePCgreen .

(c) Aspect 3: joint value function from sequential neoRL nodes. (d) Aspect 4: recursive desires for neoRL autonomy.

(e) Transient proficiency of neoRL agent A-D.

Figure 4: [[Top]] Illustrations of the neoRL architecture tested in experiment A-D. [a] A first attempt on desire from expe-
rience; neoRL node ξPC forms a single desire ePC for value-generating neoRL node ξOV C . [b] Latent knowledge can be
extracted separately for separate classes for desire; experiment B forms two desire-vectors ePCred and ePCgreen from ξOV C

– grouping according to valence. [c] The value function output from neoRL node ξPC and node ξOV C contribute equally
to agent value function. [d] Recursive desires are possible for neoRL nodes: the ξOV C is governed by three elements-of-
interest, ePCred , ePCgreen , and recurrent desire eOV C . [[Down]] Results from the four experiments: [e] Purposive neoRL
networks allows for purposive autonomy by deep and/or recurrent desires.
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3 Discussion

The neoRL agent navigates continuous space by projections of desire, vectors of purpose associated with an agent’s ex-
pectancy or reward. When actions have a Euclidean significance, purposive Q-vectors can form autonomous projections
of desire, experience-based inferences that can establish input to deeper neoRL nodes. Experiments demonstrate how
deeper or recurrent desires are crucial for navigational proficiency, suggesting purposive neoRL networks as a plausible
approach to autonomous navigation.

This work explores four principles of purposive neoRL networks. First, experience-based desire vectors can shape pur-
posive navigation in Euclidean space. The neoRL network from illustration 4a improves navigational proficiency over
time; however, considering all objectives under one, i.e., forming an autonomous desire based on all red and green ob-
jects, appears to be too compressed to express proficient navigation. Second, a single neoRL node can generate different
eout desires by considering different sets of objectives {ein}. Experiment b demonstrates the effect of separating desires
according to valence, resulting in an increased performance by the neoRL navigational agent. The simplicity and clarity
expressed by the separation of desires, as illustrated in figure 4b, facilitates the explainability of the trained solution.
Third, the neoRL agent can base agent value function on any neoRL node in the network. Agents extracting purpose
from multiple depths of the neoRL network, as illustrated in 4c, become better navigators than shallow agents. Fourth,
desire vectors eout from one neoRL node can form objectives for any compatible neoRL node – including itself. Experi-
ment [d] explores recursive desires, where the output of ξOV C – desire vector eOV C – establish an additional purposive
input to neoRL node ξOV C . The substantial increase in navigational performance by the simple recursive connection
from 4d indicates the potential of purposive flow in autonomous navigation. Results can be examined in figure 4e and
in real-time video demonstrations published at www.neoRL.net

Note that no comparison has been made with alternative approaches for control; this work is only concerned with un-
covering the basic principles of purposive neoRL nets for behavioral AI. Still, any attempt on finding RL or AI solutions
capable of allocentric Euclidean navigation in real-time has failed. Further work could involve finding and comparing
alternative approaches for real-time autonomous navigation in the WaterWorld environment. Likewise, this work in-
volves no search for optimal parameters for neoRL navigation. Experiment [c] explores collaborative experience with 1:1
weight ratio between ξPC and ξOV C , and experiment [d] only explores the unitary feedback loop with wr = −1.0. It is
left for further work to explore purposive network theory or automate parameter search by data-driven methods from
narrow AI. We have barely scratched the surface of autonomous navigation by purposive graphs, demonstrating four
identified principles in neoRL networks. A deep or recursive flow of desire, here demonstrated for neoRL networks,
might hold the key to genuine autonomy in decision making by digital agents.
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Abstract

In biological organisms, the ability to integrate information about space, time, and sensory stimuli is crucial for many
cognitive functions, including episodic memory, working memory, and decision making. Neurophysiological studies
have found that these external variables are heterogeneously represented in the brain by neurons whose firing rates are
conjunctively modulated by these variables. But why do these representations emerge in a biological neural network,
and how do they contribute to higher-order cognitive functions? In this work, using deep reinforcement learning agents
trained on simulated working memory tasks, we provide a normative model in which heterogeneous representations
of external variables naturally emerge in agents optimized on cognitive tasks. Moreover, by altering the task demand,
we show that the conjunctive modulation of neural activities by these variables depends on their task-relevance. Our
findings link cognitive models of neuroscience with normative models of reinforcement learning, and provide concrete
experimental predictions for future studies.

Keywords: Neural representations, Working memory, Place cells, Time cells
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1 Introduction

The ability to remember “what happened when and where” is central to many cognitive functions of biological intelli-
gence, such as episodic memory, working memory, and decision making. Such ability relies on robust neural represen-
tations that can integratively encode sensory stimulus, time, and location. In mammalian brains, neuroscientists have
discovered neurons that consistently fire when the animal occupies a certain location in space (i.e., “place cells”) [1] or
at a particular time (i.e, “time cells”) [2], which are theorized to construct a cognitive “map” to help scaffold the repre-
sentations of sensory stimuli. As evidence for this, both place cells and time cells representations have been shown to be
modulated by sensory context: the firing rate of place cells at a particular position has been shown to be modulated by
where the animal has been [3], and the firing rate of time cells at a particular time has been shown to be distinct following
the presentation of different sensory stimuli to the animal [4].

Given these biological observations, many studies have used computational modeling of time cells and place cells to
better understand their contributions to higher-order cognitive functions. Earlier models focused on reproducing these
spatiotemporal representations by either handcrafting properties of these representations into the network design [5][6]
or replicating the anatomical structures that give rise to these representations [7]. One caveat of these models is that
they are uninformative about how the brain uses these representations to perform downstream tasks. To address this
caveat, more recent works have shifted their focus to training the network end-to-end on simulated cognitive tasks to
demonstrate the natural emergence of these spatiotemporal patterns [8][9]. While these types of models have shown
competence in linking neural representations to cognitive functions, they have focused on single types of representation
and overlooked the interactions between the modulations of multiple different variables on the same neural population.

Given these limitations in the current literature, in this study, we trained deep reinforcement learning (DRL) agents on
a simulated working memory task that required the agent to integrate information about time, space, and sensory stim-
uli, and analyzed the hidden-state activities of recurrent units using neuroscience-inspired methods. We hypothesized
that the heterogeneous representations of “what happened when and where” can simultaneously emerge in a parallel
distributed processing system optimized on simulated cognitive tasks. Moreover, we hypothesized that the emergence
of representations of behavioral variables will depend on the relevance of such variables to the task.

2 Methods

We simulated the delayed nonmatch-to-sample (DNMS) task (Figure 1A), an episodic working memory task commonly
used in cognitive neuroscience studies. We embedded the DNMS task in a 2D simulation chamber that resembled the
gridworld environment. Agents could move up, down, left, or right, and could also “nose-poke” to interact with el-
ements of the simulated chamber. A complete episode of the task consists of five stages: 1) At the beginning of each
episode, the agent encounters an initiation signal, which it must navigate to and poke with in order to proceed to the
sample phase. 2) During the sample phase, the sample will be displayed in one of two possible locations: either on the
left or right corner of the triangular arena, and the agent must poke the sample. 3) Upon poking the sample, all signals
are turned off, and the delay period of 40 simulation time steps starts. The end of the delay period is indicated by the
onset of the initiation signal again, with which the agent must poke in order to proceed to the choice phase. 5) During the
choice phase, both left and right sample locations are presented. If the agent pokes the location not displayed during the
sample phase (i.e. “nonmatch”), it will receive a reward and the episode ends. This task requires the agent to remember
the location of the sample throughout the delay period in order to choose correctly during the choice phase after the
delay. To maximize the reward, the agent must not only remember the sample, but also navigate to desired locations in
the shortest path possible without taking redundant actions. As such, to optimize the reward, the agent must learn to
integrate information about location, time, and sensory stimuli (i.e., sample).

The DRL agents used in our study (Figure 1B) were composed of a visual module, a memory module, and an actor-critic
module. We used a deep convolutional neural network as the visual module to generate a latent representation of the
visual input, a three-channel RGB image of the environment state as described in the previous section. The output of
the visual module was passed to the memory module, which consisted of an LSTM layer with 512 hidden units and a
linear layer with 512 hidden units. The output of the linear layer was then fed forward to a value network and a policy
network, which generated an estimate of state value V̂ (St, θ) and a stochastic policy π(at|St, θ) from which the action will
be sampled, respectively. We used an actor-critic algorithm, in which the network parameters were adjusted to minimize
the loss L = Lπ + LV where

Lπ =

T−1∑

t=0

−log[π(at|St, θ)] ∗ [Rt − V̂ (St, θ)] (1)

LV =
T−1∑

t=0

l1[V̂ (St, θ), Rt] (2)
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Figure 1: DRL agents trained on working memory task exhibited conjunctive coding of time, space, and stimulus. A)
Schematic illustration of the task structure in one trial of DNMS task. B) Architecture of the DRL agent. C) The agent
achieves almost perfect performance on the DNMS task in approximately 30000 episodes (green). In contrast, a feed-
forward agent without any recurrent connections chooses nonmatch at random (grey). Performance is measured as the
fraction of choices that are nonmatch to sample. Solid line and shaded area represent the average and standard devia-
tion of performance over 4 seeds, respectively. D) Two example LSTM units that exhibited stimulus-specific temporal
tuning as a conjunctive representation of stimulus and elapsed time. Each panel shows, from top to bottom, a heatmap
of z-normalized hidden state activities during the delay period in 100 left-sample trials and 100 right-sample trials (blue
and red represent the lowest and highest hidden state activities during the delay period of each trial, respectively), and
the temporal tuning curves averaged over the 100 left-sample trials (yellow) and 100 right-sample trials (brown). E)
Two example LSTM units whose hidden state activity exhibited stimulus-specific spatial tuning as a conjunctive rep-
resentation of stimulus and location. Each panel shows the unit’s trial-averaged activity when the agent is at different
locations under all trials, left-sample trials, or right-sample trials. F) The amount of mutual information between the
hidden unit activities and occupancy in a two-dimensional location-by-time (Loc x Time) space (left column), compared
to the amount of mutual information if the units encode location (middle column) or time (right column) independently.
R(Time) and R(Loc) indicate randomized temporal and spatial dimensions, respectively. Only units that contain signifi-
cant amount of mutual information in the Loc x Time space were included in the analysis (N=421).

where t = 0, 1, ..., T − 1 index the time steps in an episode with T experiment steps, Rt =
∑t
i=0 γ

irt−i denotes the
discounted return at t, and l1 is the smooth L1 loss implemented in PyTorch.

For all tasks, we used a discount factor γ=0.99. The model parameters were updated using gradient descent and Adam
optimizer with β1=0.9, β2=0.999, ϵ=1e-8, batch size=1, and a learning rate of 10−5.
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Figure 2: Task-irrelevant sensory stimuli
minimally modulate temporal represen-
tations. A) The schematic illustration of
mnemonic DNMS task (”Mem DNMS”,
left panel) and non-mnemonic DNMS task
(”NoMem DNMS”, right panel). B) Ensem-
ble neural activity during the delay period
for left- or right-sample trials under the
mnemonic (left panel) or non-mnemonic
(right panel) condition. Each heatmap shows
the trial-averaged hidden state activities of
all LSTM cells, normalized to each cell’s
minimum (blue) and maximum (red) activity.
In all heatmaps, cells are sorted by the latency
to peak hidden state activity during the left-
sample trials under the corresponding task
condition. C) SVM decoding of the sample
displayed prior to the delay period from
population activities at each time step during
the delay period of Mem DNMS (left panel,
green) and NoMem DNMS (right panel, pur-
ple). Decoding accuracy is measured by the
fraction of trials decoded correctly. Decoding
accuracies from unit-shuffled population
activities are plotted in grey and serve as
chance baseline. Solid lines and shaded areas
represent mean and standard deviation of
accuracies across 5 cross-validation folds.

3 Results

3.1 DRL agents trained on working memory task exhibited conjunctive representations of time, space, and
stimulus

After training, the DRL agent was able perform the DNMS task well (Figure 1C). To examine the representations of task-
relevant variables by the hidden state activities of LSTM cells, we adopted several analyses commonly used to analyze the
neuronal activities in the brain. First, inspired by the observation of time cells, we investigated the how the elapsed time
since delay onset can modulate the hidden state activity of LSTM units. We found that the temporal receptive fields of
individual LSTM “time cells” were not only trial-reliable, but also different under the left- versus right-sample conditions,
suggesting a mechanism by which LSTM cells conjunctively encode time and sensory stimuli (Figure 1D). Second, using
analysis methods commonly used in place cell studies, we also found that LSTM cells have preferred location of firing
in the simulated chamber, and that their spatial encoding is in conjunction with the encoding of sensory stimuli, as
suggested by the differential spatial tuning following different samples (Figure 1E). We further confirmed the conjunctive
coding of time and space using mutual information, where we showed that shuffling the spatial dimension (Time x
R(Loc)) significantly reduces the mutual information, indicating the joint encoding of location and time in the LSTM
unit activities. Interestingly, we see an increase in mutual information when the temporal dimension is randomized
(Loc x R(Time)) (Figure 1F), which suggests that space is a stronger regulator of neural activity than time. Therefore, by
optimizing the DRL agent on the cognitive task, we showed that the same population of LSTM units can simultaneously
encode space, time, and sensory information.

3.2 Neural representations of sensory stimuli depend on task-relevance

Next we asked: how do these representations contribute to the cognitive function? Specifically, when the sensory stim-
ulus is irrelevant to working memory, is it still represented in the same way by the neural activities? To answer these
questions, we examined the sensory modulation of temporal and spatial representations separately. First, to investi-
gate whether time representations are still stimulus-specific when the stimulus is task-irrelevant, we simulated a non-
mnemonic version of the DNMS task wherein, after the delay, the agent can choose either nonmatch or match location
to receive a reward (Figure 2A), in a location-fixed environment to avoid confounding by spatial variables. We then
trained new DRL agents on the NoMem DNMS task and contrasted how the identity of the stimulus (i.e., left or right) is
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represented by the activities of LSTM cells under the mnemonic and non-mnemonic conditions. As expected, under the
mnemonic condition, the identity of the sensory stimuli are represented by the LSTM hidden state dynamics throughout
the delay, as suggested by the different orders of sequential activation of the neural ensemble during the delay period
(Figure 2B, left). In contrast, when the task does not require the agent to remember the identity of sensory stimulus (i.e.,
non-mnemonic), different sensory stimuli were represented by almost identical neural dynamics, suggesting a lack of
neural representation for the sensory stimulus when it is task-irrelevant (Figure 2B, right). We further quantified this by
constructing a binary support vector machine (SVM) to decode the identity of the sample in each trial from hidden state
activities of LSTM cells at each single time step during the delay period from that trial. We found that the decoding accu-
racy gradually decreased to chance level when the agent does not need to remember the sensory sample, suggesting that
the representation of sensory stimuli is gradually lost when they are irrelevant to the task (Figure 2C, right). In contrast,
when the agent is required to remember the sample across the delay, the sensory representation remained intact (Figure
2C, left).

Having established that temporal representations are not modulated by the sensory context when the context does not
contribute to working memory, we next asked whether it is the same for spatial representations. To this end, we em-
bedded the NoMem DNMS task in the simulated chamber where the agent can freely move, and we compared the
location at which each LSTM hidden unit activity peaked in left-sample trials vs. right-sample trials as an estimate of
stimulus-specificity of place coding. We found that the percentage of LSTM units whose place coding is modulated by
the sensory stimulus is similar for the mnemonic (104/321, or 32.4%) and non-mnemonic (76/259, or 29.3%) conditions.
This suggests that the sensory scaffolding of place cells may arise naturally and independently of the task requirements.

4 Discussion & Future Work

In this work, we present a normative model using DRL to demonstrate that heterogeneous representations of space, time,
and stimulus can simultaneously emerge in the same population of recurrent units in agents trained to optimize a single
reward function. Moreover, by simulating a control task without the cognitive demand of working memory, we show
that the temporal and spatial representations are differentially modulated by the sensory stimuli, and such modulation
depends on the working memory demand. We note that there are a few limitations to our model. First, our network is not
a physiological model; it is inspired by, but does not replicate, the anatomy and function of the hippocampus. Second,
unlike animals, our network is trained from scratch without any pre-wired, highly structured brain connectivity, which
explains the large number of training episodes needed for the agent to learn the task compared to training animals on
the same task. Third, the DNMS tasks in this study are simulated toy models of the real experiments and therefore may
not fully capture the complexity of cognitive tasks. Nonetheless, our study successfully reproduced the heterogeneous
representations commonly observed in the real brain, and provided a concrete prediction for future neuroscience experi-
ments: the task-relevance of sensory information will determine the extent to which they modulate the representation of
other variables. Moreover, it provided a DRL training scheme that, in the future, could afford the opportunity to perform
in-silico lesion experiments to evaluate the causal roles of these heterogeneous representations in performing cognitive
tasks.
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Abstract

Deep reinforcement learning agents such as AlphaZero have achieved superhuman strength in complex combinatorial games. By
contrast, the cognitive science of planning has mostly focused on simple tasks, for experimental and computational tractability. To
allow for direct comparisons between humans and artificial intelligence, we need tasks with intermediate complexity. Therefore, we
trained AlphaZero on 4-in-a-row, a variant of tic-tac-toe in which human planning has previously been modeled. We characterize
AlphaZero’s performance using three derived metrics: planning depth, policy quality and value function quality; the latter two are
derived based on the objective value of a state. We find that AlphaZero agents improve in value function quality and planning depth
through learning, similar to human in previous modeling work. In addition, these metrics reflect causal contributions to AlphaZero’s
playing strength, and the strongest contributor is the policy quality. The decrease in policy entropy also drives the increase in planning
depth. The contribution of planning depth to performance is lessened in late training. These results contribute to a joint understanding
of machine and human planning, providing an interpretable way of understanding the learning and strength of AlphaZero, while
generating novel hypothesis on human planning.

Keywords: Human-DNN comparison; Planning; Learning; Interpretable Machine
Learning;
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1 Introduction
There has long been a positive mutual influence between research on artificial intelligence (AI) and research on human intelligence
(Turing, 2009; Lake, Ullman, Tenenbaum, & Gershman, 2017). However, such mutual influence is less common in the field of
planning, defined as a cognitive process in which the decision-maker mentally simulates future states, actions or outcomes in a
decision tree (van Opheusden & Ma, 2019). AI research has focused on solving complex tasks like Chess (Silver et al., 2018) and
Go (Silver et al., 2017), while cognitive science and psychology have favored detailed modeling using simple tasks like the two-step
task (Daw, Gershman, Seymour, Dayan, & Dolan, 2011), and the Solway and Botvinick task (Solway & Botvinick, 2015).

The tasks used in studies comparing AI and humans still lie on either extreme (Wang et al., 2018; Tian et al., 2019; McGrath et
al., 2021). We aim to complement the comparative work between AI and humans by using a task that is challenging enough for
both humans and artificial agents while being computationally tractable. We train AlphaZero agents to learn 4-in-a-row. Using a
combination of observation and causal manipulations, we show that planning metric improvements mediate the increase in playing
strength. We also find phenomena that have not been reported in human study. Policy quality contributes the most to performance.
The increase in planning depth is mediated through a decrease in the entropy of the policy, reflecting a more concentrated search
process. The contribution of planning depth to playing strength diminishes at later stages of learning. These discrepancies might
either reflect mechanistic differences between machine and human planning, or point to phenomena only observable in the more
extreme end of the spectrum in human expertise, or highlight alternative hypotheses about human planning. Our result not only
provides a cognitive account for the playing strength and learning of AlphaZero, but also inspires future research directions in human
planning.

2 Methods
2.1 Task
The four-in-a-row task is a generalization of tic-tac-toe. Two players alternate placing pieces on a 4-by-9 board; black moves first.
The goal is to have four pieces of one’s color in a row horizontally, vertically, or diagonally.

2.2 Agents
The deep RL agents trained to play 4-in-a-row are slightly modified versions of AlphaGo Zero (Silver et al., 2017) and AlphaZero
(Silver et al., 2018). AlphaZero type deep RL agents use a deep neural network (DNN) to guide its Monte-Carlo tree search (MCTS).
Given the input (a board and optionally the player’s color), the DNN returns an immediate value v of a board, indicating how likely
the current player will win/lose from this board. The DNN also returns a policy p (or P(s,a) for a board s and move a), a prior
probability of selecting an action before doing any tree search. MCTS simulates future actions and states in a way that balances
exploration and exploitation. It then integrates those results to inform current decision.

For each training iteration, we use the current best agent to play 100 games against itself to generate the training examples. Each
training example contains a tuple of (board positions s, MCTS output π(s,a), game outcome r). The DNN outputs (p,v) are trained
to match the game result r under a mean-squared error loss and the action probabilities π under a cross-entropy loss, with l2 weight
regularization. The DNN parameters are optimized by the Adam Optimizer. The updated network will play 30 games against the
current best network. If the updated network can win more games than it loses, it will be accepted and become the new current best
network for data generation and network comparison. We use this looser selection criterion compared to AlphaGo Zero to encourage
easier update of networks. Because if the updated network is not accepted, we revert it back to the current best network, forgoing the
parameter update (different from AlphaGo Zero).

Using thirteen sets of hyperparameters, we produce thirteen Networks that show a diversity in the playing strength and planning
metrics (value function quality and planning depth) (1). We call models sharing the same hyperparameter set and initialization during
training a “Network”, to distinguish the concept from an individual iteration saved during training, which we call an “agent” or a
“model.”

2.3 Measuring playing strength
We hold a tournament in which each agent plays against every other agent once as both colors. There are 789 agents in total, including
all accepted iterations from the thirteen Networks, as well as the agents whose NMCTS have been modified, and those whose value or
quality functions have been swapped. The temperature is fixed at 0.1. Playing strength is quantified by Elo ratings, computed by the
BayesElo program (Coulom, 2008). The Elo ratings are computed such that the difference between the Elo ratings of two players
maps monotonically to the probability that one player will defeat the other.

2.4 Probe boards and game-theoretic values
The probe boards are all positions (5482 positions) which occurred in human-vs-human experiments conducted by van Opheusden
et al. (2021). The game-theoretic values of these boards are defined as game outcomes in which both sides play perfectly. van
Opheusden et al. (2021) approximated the game-theoretic values by searching each board for 200,000 iterations using the cognitive
model. The result for most boards converges to a game-theoretic value, while the undetermined ones are assigned a 0 value, indicating
a draw. We used these pre-computed game-theoretic values for our value quality calculation.
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2.5 Policy quality
After computing the game-theoretic values for each child board of all probe boards (used in value quality and depth calculation), we
applied softmax to the values of those children boards to get an “optimal” policy for each probe board. We then concatenate these
optimal policies of all probe boards, and correlate the long vector with the concatenated policy vector returned by a DNN.

3 Results
3.1 Playing strength increases
AlphaZero’s playing strength increases over training across all Networks (Figure 1A; left). To obtain a human benchmark, we have
the strongest human player we could find play 4 games each against 8 selected agents, with Elo ratings ranging from 140 to 242
(the best). Agents at middle training iterations already start to surpass the human bench mark, with later agents lying above the
95-confidence interval. Human learning curve from the previous study is recreated here (1A; right). Our question is what aspects of
the agents’ capacity have improved to enable such an improvement in playing strength.

3.2 Evidence for smarter trees

Figure 1: Elo and planning metric comparison between
AlphaZero and human. Playing strength (Elo rating, A),
value function quality (B) and planning depth (C) of both
AlphaZero and human increase with training. Solid lines
represent Networks. Dotted line in (A) represents the Elo
of a strong human player, and the shade reflects the 95-
confidence interval of this Elo estimate. Human results are
reproduced from data in van Opheusden et al. (2021). The
scale of Elo ratings are different between AlphaZero (left)
and human (right) and the numbers are not directly compa-
rable because there is no tournament between human play-
ers from prior study with our AlphaZero agents.

For each AlphaZero agent, we compute the value function quality by calculat-
ing the Pearson correlation between the DNN-returned immediate values of
the probe boards and their game-theoretic values obtained in previous work
(see Methods). We measure planning depth by having each agent make a
move at probe boards, and average across the probes the length of the deep-
est branch of each resulting MCTS tree. Both value function quality and
planning depth increase as training progresses (Figure 1B and C; left). We
plot previous human results here to aid comparison (Figure 1B and C; right)
(van Opheusden et al., 2021). Compared to human learning, the increase in
planning metrics are more drastic in AlphaZero, which is expected given that
human is not a blank slate to begin with.

The increase of planning depth in human learning has been attributed only to
an increase in the number of search iterations (van Opheusden et al., 2021).
By contrast, we discover that planning depth of AlphaZero increases over
training despite the number of MCTS searches, NMCTS, being fixed. This
suggests either a potential difference between humans and machines in how
their decision trees change during learning, or a potential alternative hypothe-
sis for the mechanism of the depth increase in humans. Here we only provide
a mechanism of depth increase in AlphaZero.

3.3 Entropy of action prior mediates depth increase
When the total search budget is fixed, one possible mechanism for the in-
crease in planning depth could be a more targeted and less scattered search
process. In AlphaZero the targetedness of the search is largely modulated by
the policy. The policy starts out uniform and evolves to match the post-MCTS
action probabilities. Since the search process makes the action probabilities
be less uniform, the policy should become less uniform and thus have a lower
entropy over training, defined as H(s) =−∑a p(a|s) log p(a|s). A decrease in
entropy over training is confirmed in Figure 2B. (Similar to planning depth,
the entropy here is also averaged across probe boards.)

3.4 Policy quality improves
A more concentrated prior does not necessarily imply “smarter” searches. A
bad prior can lead a deep but misguided search. We therefore develop a met-
ric, policy quality, to quantify how good AlphaZero’s policies are. Policy
quality reflects the correlation between AlphaZero’s policies and the optimal
policies(see Methods). The policy quality improves over training for all Net-
works (Figure 2A. So not only are the priors more concentrated, but they
also align better with optimal policies, leading the search in more promising
directions.

3.5 The increase in playing strength is mediated by planning metrics
Playing strength of AlphaZero agents increases with training (Fig 1A; left), and we hypothesize that the effect of training on playing
strength is mediated by planning metrics. Mediation analysis shows that policy quality, value function quality and planning depth all
have a significant mediated effect on Elo ratings (Figure 3).
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Figure 2: Policy quality and policy entropy. A) Policy quality of Al-
phaZero agents increases with training. B) Policy entropy of AlphaZero
agents decreases with training. Figure 3: Mediation analysis: illustration and results. The effect

of training on Elo ratings is mediated via three planning metrics: pol-
icy quality, value quality and planning depth. ACME is the average
causal mediation effect. Numbers next to arrows represent the re-
gression coefficients between variables. Asterisks denote statistical
significance.

3.6 Policy quality matters the most

Mediation analysis on each planning metric shows that learning-induced Elo changes are mediated by planning metrics. However we
cannot reliably conclude the relative contribution of each metric, since the metrics are correlated with each other

Policy quality, planning depth and value function quality together explain 0.95 of the variance in Elo in a linear regression, with
weights: βpolicy = 0.92, whereas βdepth = 0.09 and βvalue = −0.03. We also test the dominance of policy quality by first regressing
out all the other confounders from Elo. Policy quality explains the residuals significantly well (F = 29.11, p < 10−6). By contrast,
neither a similar residual regression for value function quality (F = 0.18, p = 0.668) nor one for depth (F = 2.69,p = 0.101) is
significant.

3.7 Causal manipulations reveal contributions from all planning metrics

To arbitrate the role of planning depth in playing strength, we causally manipulate planning depth for each iteration in the best
Network, while holding everything else about an agent constant. To do this, we replicate an agent and then set its number of MCTS
searches (NMCTS) to four different levels. For the same iteration (dots connected by the same line in Figure 4A.), a higher NMCT S
induces a high planning depth, which correlates positively with Elo in all iterations. As training progresses, the positive effect of
planning depth on Elo diminishes, as seen from the decreasing of the slopes of the lines in Figure 4A. We perform a linear regression
(Elo ∼ depth) for each iteration within the Network to obtain its “depth efficiency” (Figure 4B). The depth efficiency decreases as
training progresses. One possible explanation for why the benefit of depth diminishes is that the good action priors of well-trained
models are sufficient to guide actions.

For the value and policy manipulation, we select eleven models from a Network that spans early, middle and late epochs of training.
We swap either the value or the policy function of a model with the value/policy function of low, middle or the best quality. These
swap targets come from the initial, a middle (iter 22) or the final iteration of the model within the Network, respectively. Models
from one training epoch do not have swaps with models from the same training epoch.

The result shows that both value and policy contribute to performance, as equipping early models with a well-trained policy or value
function improves their Elo (Figure 5). The gain is larger with the policy swap initially, but the value swap catches up during the
middle epoch (20-35 iters), suggesting value and policy quality can complement each other in this intermediate range, i.e. a good
performance does not require both value and policy to be really high, but only one to be high and the other intermediate. Swapping
the policy function of a well-trained model to a naive policy is unambiguously more disruptive than swapping the value function,
again echoing the the overall dominance of policy. Swapping the components of the late models to those of the middle ones produces
qualitatively similar but quantitatively less drastic reduction, compared to swapping to early ones.
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Figure 4: The effect of NMCTS manipulation on depth and Elo. A)
Elo vs planning depth for selected iterations and all NMCTS manipulation
of the chosen Network. Color indicates training iteration, and marker
style indicates the number of MCTS searches. Agents with the same
training iteration are connected by a line. B) Depth efficiency vs Training
iteration for all agents. Depth efficiency is defined as the slope of each
line in A (as well as the lines for other iterations not shown in A), which
represents the efficiency of depth increase in increasing Elo. Error bars
reflects the 95% confidence intervals.
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Figure 5: Elo ratings as a result of the value or policy function
manipulation. Black markers (solid line) are the original agents across
training. Colored diamond markers (half solid line) are agents with
policy functions swapped. Colored cross markers (dotted lines) are
agents with value functions swapped. Color reflects the quality of the
target of the swap: low-blue, middle-green, best-red.

4 Discussion

We analyzed what capacity changes underlie AlphaZero’s learning in a game of intermediate complexity. We found that although
value function quality, planning depth and policy quality all improve during training, the improvement in performance is driven
the most by policy quality. The intermediate complexity of 4-in-a-row allowed us to compute the game-theoretical values of board
positions and therefore the value function quality and policy quality metrics, which are difficult to obtain in complex games.

The distinction between value and policy is worth emphasizing. Value provides a context independent common scale for measuring
all possible states, and can be updated during the planning/reinforcement learning process. Policy provides a context dependent
relative scale for comparing available actions at one state. The machine learning community has noted the distinct and crucial role of
policy. Hessel et al. (2021) argued that action values alone are not enough for representing the best stochastic policy. Hamrick et al.
(2020) showed that planning is most useful in the learning process, while post-learning, shallow trees are often as performant. The
AlphaGo Zero study also showed strong play from a myopic policy network without MCTS (Silver et al., 2017). These results are
consistent with our result of manipulating the NMCT S, all of which point to the effect of a good policy in maintaining performance
in the absence of many searches. The appropriate complexity of the task allows us to further quantify policy and value quality and
demonstrate the dominant role of policy quality.

Our agents improve planning depth through a more concentrated policy induced by training. By contrast, in humans, a depth increase
in 4-in-a-row seemed to be due to an increase in the number of searches (Van Opheusden, Galbiati, Bnaya, Li, & Ma, 2017). What is
the origin of this difference? In the cognitive model for the human, after the current player selects the best leaf node and simulates an
opponent move, that move would often block the current player’s feature, turning the best node into the worst. Only after a thorough
search through the alternative actions, can the initial best node regain its status. Only then can the search advance one level deeper.
Perhaps aspects of MCTS, such as using a policy to guide tree search, could possibly help explain human behavior. It would be an
interesting future direction in human planning research to arbitrate between “more searches” and “smarter searches” as mechanisms
for depth increase.

The diminishing contributions of the planning depth on Elo as training progresses has not been reported in human 4-in-a-row studies.
One possibility is that the human subjects recruited were not on the extreme end of expertise such that deeper searches stop providing
marginal utilities. Intriguingly, the early work on chess by de Groot (1965) was unable to find gross differences in the number of
moves considered, search heuristics, and depth of search, between masters and weaker players. But masters are good at coming
up with the “right” moves to search further. This finding allows us to draw similarities between the masters and AlphaZero agents
at a later learning stage. It also provides some confidence that AlphaZero could be valuable in showing a wider range of possible
behaviors than those shown in the recruited human subjects. More importantly, the chess result indicates that something similar to
the policy in AlphaZero might indeed play a crucial role in human decision making.
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Abstract

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying to safety-critical
applications. Primal-dual as a prevalent constrained optimization framework suffers from instability issues and lacks
optimality guarantees. This paper overcomes the issues from a novel probabilistic inference perspective and proposes an
Expectation-Maximization style approach to learn safe policy. We introduce a novel Expectation-Maximization approach to
naturally incorporate constraints during the policy learning: 1) a provable optimal non-parametric variational distribution
could be computed in closed form after a convex optimization (E-step); 2) the policy parameter is improved within the
trust region based on the optimal variational distribution (M-step). The proposed algorithm decomposes the safe RL
problem to a convex optimization phase and a supervised learning phase, and we show its unique advantages by proving
its optimality and policy improvement stability. A wide range of experiments on continuous robotic tasks show that the
proposed method achieves significantly better performance in terms of constraint satisfaction and sample efficiency than
primal-dual baselines.
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1 Introduction

The past few years have witnessed great success of reinforcement learning (RL). However, deploying a trained RL policy
to the real world is challenging. One of the major obstacles is to ensure the learned policy satisfies safety constraints. Safe
RL studies the RL problem subject to certain constraints, where the agent aims to not only maximize the task reward
return, but also limit the constraint violation rate to a certain level. However, learning a parametrized policy that satisfies
constraints is not a trivial task, especially when the policy is represented by black-box neural networks.

Existing safe RL optimization approaches are mostly under the primal-dual framework, which transforms the original
constrained problem into an unconstrained one by introducing the dual variables (i.e., Lagrange multipliers) to penalize
constraint violations [6, 7]. However, the primal-dual iterative optimization may run into numerical instability issues
and lacks optimality guarantee for each policy iteration [4, 8]. The instability usually comes from imbalanced learning
rates of the primal and dual problem, and the optimality term means both feasibility (constraint satisfaction) and reward
maximization. [2] and [9] propose to approximate the constrained optimization problem with low-order Taylor expansions
such that the dual variables could be solved efficiently, but the induced approximations errors may yield poor constraint
satisfaction performance in practice [7]. In addition, these policy-gradient algorithms are on-policy by design, and
extending them to a more sample efficient off-policy setting is non-trivial. Note that in safe RL context, sample efficiency
means using both minimum constraint violation costs and minimum interaction samples to achieve the same level of
rewards. As a result, a constrained RL optimization method that is 1) sample efficient, 2) stable and has 3) optimality
guarantees is absent in the literature.

To bridge the gap, this paper proposes the Constrained Variational Policy Optimization (CVPO) algorithm from the
probabilistic inference view. The main contributions of this work are summarized as follows: 1) To our best knowledge,
this is the first work that formulates safe RL as a probabilistic inference problem. We propose a novel two-step algorithm in
an Expectation Maximization (EM) style to naturally incorporate safety constraints during the policy training; 2) We show
that an optimal and feasible non-parametric variational distribution can be solved analytically during the E-step, and the
parametrized policy could be trained via a supervised learning fashion during the M-step, which allows us to improve the
policy with off-policy data and increase the sample efficiency; 3) We evaluate CVPO on a series of continuous control
tasks. The empirical experiments demonstrate the effectiveness of the proposed method – more stable training, better
constraint satisfaction, and up to 1000 times better sample efficiency than on-policy baselines.

2 Constrained Variational Policy Optimization (CVPO)

Constrained Markov Decision Processes. Constrained Markov Decision Processes (CMDPs) provide a mathematical
framework to describe the safe RL problem [3], where the agents are enforced with restrictions on auxiliary safety
constraint violation costs. A CMDP is defined by a tuple (S,A, P, r, γ, ρ0, c), where S is the state space, A is the action
space, P : S × A × S −→ [0, 1] is the transition kernel that specifies the transition probability p(st+1|st, at) from state st
to st+1 under the action at, r : S × A −→ R is the reward function, γ −→ [0, 1) is the discount factor, and ρ0 : S −→ [0, 1] is
the distribution over the initial states, c : S × A −→ R≥0 is the cost for violating safety constraints. Denote π(a|s) as the
policy, and τ = {s0, a0, ..., } as trajectory, the discounted return of the reward is Jr(π) = Eτ∼π[

∑∞
t=0 γ

trt], and similarly
the discounted return of the cost is Jc(π) = Eτ∼π[

∑∞
t=0 γ

tct], where the initial state s0 ∼ ρ0. The objective is to find the
policy π∗ that maximizes the expected cumulative rewards while limiting the costs incurred from constraint violations to a
threshold ϵ1 ∈ [0,+∞): π∗ = argmaxπ Jr(π), s.t. Jc(π) ≤ ϵ1.
Constrained RL as Inference. Before presenting the inference view, we first introduce the standard primal-dual perspective
to solve CMDP, which transforms the objective into a min-max optimization by introducing the Lagrange multiplier λ:
(π∗, λ∗) = argminλ≥0 maxπ Jr(π)− λ(Jc(π)− ϵ1). The core principle of primal-dual approaches is to solve the min-max
problem iteratively. However, the optimal dual variable λ = +∞when Jc(π) > ϵ1 and λ = 0 when Jc(π) < ϵ1, so selecting
a proper learning rate for λ is critical. Approximately solving the minimization also leads to suboptimal dual variables
for each iteration. In addition, the non-stationary cost penalty term involving λ will make the policy gradient step in the
primal problem hard to optimize, just as shown in the upper diagram of Fig. 1a. To tackle the above problems, we view
the safe RL problem from the probabilistic inference perspective – inferring safe actions that result in “observed” high
reward in states. This is done by introducing an optimality variable O to represent the event of maximizing the reward.
As shown in [5], the likelihood of being optimal given a trajectory is proportional to the exponential of the discounted
cumulative reward: p(O = 1 | τ) ∝ exp(

∑
t γ

trt/α), where α is a temperature parameter. Denote the probability of a
trajectory τ under the policy π as pπ(τ), then the lower bound of the log-likelihood of optimality under the policy π is:

log pπ(O = 1) = log

∫
p(O = 1 | τ)pπ(τ)dτ ≥ Eτ∼q[

∞∑

t=0

γtrt]− αDKL(q(τ)∥pπ(τ)) = J (q, π) (1)

where q(τ) is an auxiliary trajectory distribution and J (q, π) is the evidence lower bound (ELBO). To ensure safety,
we limit the choices of q(τ) within a feasible distribution family that is subject to certain constraints. Recall that
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(a) Primal-dual view (upper) and inference view
(lower) of safe RL problem. (b) Reward versus cumulative cost (log-scale).

ct = c(st, at) is the cost for constraint violations. We define the feasible distribution family in terms of the threshold ϵ1 as
Πϵ1Q := {q(a|s) : Eτ∼q[

∑∞
t=0 γ

tct] < ϵ1, a ∈ A, s ∈ S}, which is a set of all the state-conditioned action
distributions that satisfy the safety constraint. Afterwards, by factorizing the trajectory distributions q(τ) =
p(s0)

∏
t≥0 p(st+1|st, at)q(at|st),∀q ∈ Πϵ1Q and pπθ (τ) = p(s0)

∏
t≥0 p(st+1|st, at)πθ(at|st)p(θ) , where θ ∈ Θ is the pol-

icy parameters, and p(θ) is a prior distribution, we obtain the following ELBO by cancelling the transitions:

J (q, θ) =Eτ∼q

[ ∞∑

t=0

(
γtrt − αDKL(q(·|st)∥πθ(·|st))

)
]
+ log p(θ), ∀q(a|st) ∈ Πϵ1Q . (2)

Optimizing the new lower bound J (q, θ) w.r.t q within the feasible distribution space Πϵ1Q (E-step) and π within the
parameter space Θ (M-step) iteratively via an Expectation-Maximization (EM) fashion yields the Constrained Variational
Policy Optimization (CVPO) algorithm. Viewing safe RL as a variational inference problem has many benefits. As shown
in the lower diagram of Fig. 1a, we break the direct link between the inaccurate dual variable optimization and the difficult
policy improvement and introduce a variational distribution in the middle to bridges the two steps, such that the policy
improvement could be done via a much easier supervised learning fashion. The key challenges arise from the E-step
because of the limitation of the variational distribution within a constrained set. However, we observe that the constrained
q could be solved analytically, efficiently and with optimality and feasibility guarantee through convex optimization.

Constrained E-step. The objective of this step is to find the optimal variational distribution q ∈ Πϵ1Q to improve the return of
task reward, while satisfying the safety constraint. At the i-th iteration, we resort to perform a partial constrained E-step to
maximize J (q, θ) with respect to q by fixing the policy parameters θ = θi. We set the initial value of q = πθi such that the re-
turn of task reward Qqr(s, a) and cost Qqc(s, a) could be estimated by: Qqr(s, a) = Q

πθi
r (s, a) = Eτ∼πθi ,s0=s,a0=a

[∑∞
t=0 γ

trt

]
,

Qqc(s, a) = Q
πθi
c (s, a) = Eτ∼πθi ,s0=s,a0=a

[∑∞
t=0 γ

tct

]
. We further optimize q(·|s) by the following KL regularized objective:

max
q

Eρq
[ ∫

q(a|s)Qπθir (s, a)da
]

s.t. Eρq
[ ∫

q(a|s)Qπθic (s, a)da
]
≤ ϵ1, Eρq

[
DKL(q(a|s)∥πθi)

]
≤ ϵ2,∀s ∼ ρq (3)

where ρq(s) is the stationary state distribution induced by q(a|s) and ρ0. Intuitively, in E-step, we aim to find the optimal
non-parametric distribution that 1) maximizes the task rewards, 2) belongs to the feasible distribution family Πϵ1Q , and 3)
stays within the trust region of the old policy. To solve (3), we use a non-parametric form for q(a|s). Namely, given a state
s, we use |A| variables for q(·|s) if the action space is finite. Otherwise, we sample K particles within the action space to
represent the variational distribution for the continuous action space. Then we can obtain the optimal analytical solution
after solving a convex dual problem. We show the strong duality guarantee under the Slater’s condition:
Assumption 1. There exists a feasible distribution q̄ ∈ Πϵ1Q within the trust region of the old policy πθi : DKL(q̄∥πθi) < ϵ2.

Theorem 1. If assumption 1 holds, then the optimal variational distribution within Πϵ1Q for problem (3) has the form:

q∗i (a|s) =
πθi(a|s)
Z(s)

exp

(
Qθir (s, a)− λ∗Qθic (s, a)

η∗

)
, (4)

where Z(s) is a constant normalizer, and the dual variables η∗ and λ∗ are the solutions of the following convex optimization problem:

min
λ,η≥0

g(η, λ) = λϵ1 + ηϵ2 + ηEρq
[
logEπθi

[
exp

(
Qθir (s, a)− λQθic (s, a)

η

)]]
. (5)

Theorem 1 suggests the non-parametric variational distribution could be easily solved in close-form with optimality
guarantee, since Assumption 1 ensures zero duality gap. One exciting property of Theorem 1 is that we prove the
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convexity of the dual problem, which guarantees the optimality of the solution. Furthermore, when the Slater condition in
Assumption 1 holds, at least one optimal solution exist, which ensures the dual problem could be solved efficiently via
any convex optimization tools. We believe this finding is original and non-trivial.

M-step. After E-step, we obtain an optimal feasible variational distribution q∗i (·|s) for each state by solving (3). In M-step,
we aim to improve the ELBO (2) w.r.t the policy parameter θ. By dropping the terms in Eq. (2) that are independent
of θ, we obtain the following M-step objective: J̄ (θ) = Eρq

[
αEq∗i (·|s)

[
log πθ(a|s)

]]
+ log p(θ). Since optimizing J̄ (θ) is a

supervised learning problem, we could use any prior p(θ) to regularize the policy. Note that the objective could be viewed
as a weighted maximum a-posteriori problem, which is similar to MPO [1]. We adopt a Gaussian prior around the old
policy parameter θi in this paper: θ ∼ N (θi,

Fθi
αβ ), where Fθi is the Fisher information matrix and β is a positive constant.

With this Gaussian prior, we obtain the following generalized M-step by converting the soft KL regularizer to a hard KL
constraint, which is important to improve the training robustness and prevent the policy from overfitting:

max
θ

Eρq
[
Eq∗i (·|s)

[
log πθ(a|s)

]]
, s.t. Eρq

[
DKL(πθi(a|s)∥πθ(a|s))

]
≤ ϵ. (6)

Theoretical Analysis. CVPO updates the policy by maximizing the KL-regularized objective in an EM manner, which
has it two advantages over primal-dual methods – the ELBO improvement guarantee J(qi, θi+1) ≥ J(qi−1, θi) and the
worst-case constraint satisfaction bound.
Proposition 1. Suppose πθi ∈ Πϵ1Q . πθi+1 and πθi are related by the M-step (6), then we have the upper bound: Jc(πθi+1) ≤
ϵ1 +

[(1−γ)+
√
2ϵγ]δ

πθi+1
c

(1−γ)2 , where δ
πθi+1
c = maxs |Ea∼πθi+1

[Aθic (s, a)]|, Aθic (s, a) is the cost advantage function of πθi .

We can see the worst-case episodic constraint violation upper bound for πθi+1
is related to the trust region size ϵ and the

worst-case approximation error δθi+1
c . Though we inherit a similar bound as CPO, our method ensures the optimality of

each update and could be done in a more sample-efficient off-policy fashion. In addition, we observe that by selecting
proper KL constraints ϵ in the M-step, we have the following policy improvement robustness property:
Proposition 2. Suppose πθi ∈ Πϵ1Q . πθi+1

and πθi are related by the M-step. If ϵ < ϵ2, where ϵ, ϵ2 are the KL threshold in E-step and
M-step respectively, then the variational distribution q∗i+1 in the next iteration is guaranteed to be feasible and optimal.

Proposition 2 provides us with an interesting perspective and a theoretical guarantee of the policy improvement robustness
– no matter how bad the M-step update in one iteration is, we are still able to recover to an optimal policy within the
feasible region. Furthermore, We find that under the Gaussian policy assumption, multiple steps robustness could also be
achieved. The monotonic reward improvement guarantee, the worst-case cost bound and the policy updating robustness
ensure the training stability of CVPO. Formal proofs and implementation details are left out due to space constraints.

3 Experiments and Conclusion

We designed 5 robotic control tasks on SafetyGym [7] with different difficulty levels to show the effectiveness of our
method. In these tasks, the agent is supposed to obtain high reward by reaching the goal and avoid penalty or cost by
keeping in the safe zones. To better understand the role of variational inference, we compare our method with three
off-policy primal-dual-based baselines (i.e., SAC-Lag, DDPG-Lag and TD3-Lag ) and three on-policy baselines (i.e.,
CPO [2], TRPO-Lag and PPO-Lag), where Lag denotes the PID-Lagrangian [8] method to update the dual variables and
are thus stronger than naive Lagrangian approaches. We separate the comparison with off-policy and on-policy baselines
because off-policy ones are more sample efficient, so the scales for them are different and thus making it hard to distinguish
the plots. For fair comparison, we use the same network sizes of the policy and critics for all the methods, including CVPO
(our method). The safety critics updating rule and the discounting factor are also the same for all off-policy methods.

Results. Fig. 2a shows the training curves for off-policy safe RL approaches. Two rows correspond to the episodic reward
and cost while the dashed line is the target cost threshold. We can clearly see that CVPO outperforms the off-policy
baselines in terms of the constraint satisfaction while maintaining high episodic reward, which validates the optimality
and feasibility guarantee of our method. Note that all the off-policy baselines use the same network architecture and
sizes for Qr and Qc critics, and the only difference between them is the policy optimization. The training curves also
demonstrate better stability of our approach, which validates our theoretical analysis. Fig. 1b demonstrates the efficacy of
utilizing each cost – how much task rewards we could obtain given a budget of constraint violations. The curves that
approach to the upper left are better because fewer costs are required to achieve high rewards. We can clearly see that
CVPO outperforms baselines with large margin among all tasks – we use 100 ∼ 1000 times less cumulative constraint
violations to obtain the same task reward. Note that the x-axis is on the log-scale.

Convergence cost comparison. Fig. 2b shows the box plot of each method’s constraint satisfaction performance after
convergence. We define convergence as the last 20% training steps. The box plot – also called whisker plot – presents
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(a) Training curves for off-policy baselines comparison. (b) Convergence cost of different methods

Figure 2: (a) Comparison between different off-policy baselines. Each column corresponds to an environment. The curves
are averaged over 10 random seeds, where the solid lines are the mean and the shadowed areas are the standard deviation.
(b) Box plot of the convergence cost. (on)/(off) denotes on-policy/off-policy method, respectively.

a five-number summary of the data. The five-number summary is the minimum (the lower solid line), first quartile
(the lower edge of the box), median (the solid line in the box), third quartile (the upper edge of the box), and maximum
(the upper solid line). As shown in the figure, on-policy baselines have better constraint satisfaction performance than
off-policy baselines, which indicates that extending the primal-dual framework to off-policy settings is non-trivial. We
find that our method meets the safety requirement better and with smaller variance than most baselines. Interestingly, we
could observe that even the third quartile of cost of our approach is below the target cost threshold, which indicates that
CVPO satisfies constraints state-wise, rather than in expectation as baselines. The reason is that we sample a mini-batch
from the replay buffer to compute the optimal non-parametric distribution for these states, while baseline approaches
directly optimize the policy to satisfy the constraints in expectation.

Conclusion. We show the safe RL problem can be decomposed to a convex optimization phase with a non-parametric
variational distribution and a supervised learning phase. We show the unique advantages of constrained variational
policy optimization: 1) high sample-efficiency from the off-policy variant of the approach; 2) stability ensured by the
monotonic reward improvement guarantee, worst-case constraint violation bound and the policy updating robustness;
and 3) with theoretical optimality and feasibility guarantees by solving a provable convex optimization problem in the
E-step. We validate the proposed method with extensive experiments, and the results demonstrate the better empirical
performance of our method than previous primal-dual approaches in terms of constraint satisfaction and sample efficiency.
We believe our work will provide a new perspective in this field and inspire more exciting researches along this direction.
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Abstract

We present an alternative architecture for continuous control deep reinforcement learning which we call Q-functionals:
instead of returning a single value for a state and action, our network transforms a state into a function that can be rapidly
evaluated in parallel for many actions, allowing us to efficiently choose high-value actions through sampling alone. This
contrasts with the typical architecture of off-policy reinforcement learning, where a policy network is trained for the
sole purpose of selecting actions from the Q-function. We represent our action-dependent Q-function as a weighted
sum of basis functions (Fourier, Polynomial, etc) over the action space, where the weights are state-dependent and
output by the Q-functional network. In addition to fast sampling, this representation of state-action value is helpful in
imposing an inductive bias on learning (such as making the value function smooth over actions) which can lead to faster
speed of convergence. We characterize our framework, describe two implementations of Q-functionals, and demonstrate
promising performance on a suite of continuous control tasks.

Keywords: Reinforcement Learning, Value-Based Continuous Control, Q-
Functionals
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1 Introduction

The final product of a successful reinforcement learning system is a policy that performs well at interacting with the
environment, as measured by expected cumulative discounted reward. A dominant paradigm in reinforcement learning
is to derive policies from a Q-function [8], which summarizes the expected cumulative reward for taking a given action.
When the number of actions available is finite, a strong policy can be derived by enumerating all action-values for a
given state and choosing the one with the highest value. However, this brute enumeration is impossible when there are
large or infinite possible actions, for example when actions are drawn from a continuous vector space. This is the natural
description of, for example, robotic locomotion and control; as such, a significant amount of effort has gone into action-
selection in these domains. A common framework for so-called continuous control problems is to train a policy network
that selects actions according to some criteria of the Q-values.

The training signal from a policy network comes completely from the Q-function, and as such they essentially summarize
information about the Q-function for a given state so as to efficiently produce high-value actions. For example, standard
practice is to train a policy network to estimate the maximum-valued action for any given state[5]. The quantities policy
networks estimate are difficult to calculate on a per-state basis, so policy networks can be thought of as amortizing the
expensive computation of finding desirable actions: the training procedure is expensive, but it allows actions to be
sampled with a single pass of a neural network. We highlight two potential pitfalls of this framework. First, since the
policy network is not reinitialized after every Q-function update, at any given timestep most of the policy training has
been done on old versions of the Q-function; as such, the policy may be maximizing a stale estimate of action-value.
Second, policies are generally either deterministic or sampled from a tight distribution around some single valuable
action. Therefore, it is unlikely for the policy to sample two high-value actions if they are too far apart from each other
[7]. This limits exploration as well as the robustness of the value-function across all actions.

We take a different perspective on this problem: instead of training a network to amortize expensive action-value compu-
tations, we design a learning system such that these evaluations are cheap to do in parallel. This opens up a new avenue
for action-selection: instead of using a policy network, we can evaluate many actions in parallel and choose between
them. Since the policy is directly derived from Q-values at each timestep it always reflects the most current action-value
estimates. Furthermore, random sampling can easily generate high-value actions from throughout the action-space.

In this paper, we introduce a class of Q-functions we call Q-functionals that allow for efficient sampling. A functional is
a function that returns another function. Likewise, a Q-functional transforms a state into a function over actions, such
that Q-values for many actions can be evaluated in parallel and with little overhead. We describe two implementations
of this architecture, and demonstrate its speed and effectiveness at continuous control reinforcement learning.

2 Q-Functionals

In RL, we seek to learn a policy which results in high cumulative discounted reward. For a given policy π, we define the
state-action value function, or Q-function, as:

Qπ(st, at) = Eπ[R(st, at) + γV π(st+1)].

where V π(s) is the expected value of following π from state s. A common method of iteratively improving a Q function
parameterized by θ is through bootstrapping [6]:

Qθ(s, a)← r(s, a) + γV π(s′)

Q-functionals are a way of expressing Q-functions so that many action-values can be evaluated in parallel for a given
state. Consider a traditional Q-function, perhaps represented by a neural network:

Q(s, a) : (S ×A)→ R.

A standard design for such a Q-function in continuous control is to concatenate states and actions, and then pass this
through a 2-hidden-layer neural network. For this standard architecture, evaluating two action-values for the same state
takes twice as long as evaluating one. A Q-functional breaks the computation of action-values into two parts: first, a
state is transformed into parameters that define a function over the action space. Then, this function is evaluated for the
action(s) in question:

QFUNC(s, a) : S → (A → R) (1)

1
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Figure 1: Network architecture of traditional Q-function (left) and Q-functional (right)

We design these functions such that while the per-state computation may be expensive, the per-action computation is
relatively cheap. One simple way to represent these functions is by learning the coefficients of basis functions over the
action space. An appropriate choice of basis function also adds an inductive bias to learning action-values: though we
may expect values to have complicated dependence on state (especially when the state is something like an image), in
general we expect values to be relatively smooth with respect to the action dimensions. In Figure 1, we visualize the
difference between the two architectures as differing places that the actions enter the computation.

2.1 Fourier and Polynomial Basis Q-Functionals

We describe two implementations of Q-functionals using different basis functions. First, a Q-functional calculated using
the Fourier basis is shown below in equation 2. The Fourier basis representation of states had great success when used
for Q-learning in small state spaces [4]; we rely on the same inductive bias over the moderately-sized action spaces found
in continuous control. L represents the difference between the max and min action space value allowed, xi(s), yi(s) are
the state-dependent coefficients output by the critic network. C is a matrix of frequencies for the Fourier basis. For a
rank R Q-functional using the Fourier basis and operating in an environment with action dimension d, the full set of
frequencies is represented by the cartesian product {0, 1, 2, ..., R}d. In practice however, we find that limiting the set of
frequencies to those where the sum of all elements in the frequency is less than or equal to the rank provided sufficient
critic generalization. Formally speaking, C =

{
Ci = {0, 1, 2, ..., R}d|

∑d
j=0 Cij ≤ R

}

QFUNC(s, a) =
∑

Ci∈C

xi(s) sin(
π

L
a · Ci) + yi(s) cos(

π

L
a · Ci). (2)

The learned coefficients xi(s) and yi(s) are dependent solely on the state, allowing us to efficiently sample many actions
at once without needing to pass this through the coefficient critic network again. We can define a polynomial basis
similarly: we represent our action-value function such that the total polynomial-order is less than some R:

Q(s, a) =
∑

Ci∈C

xi(s)
d∏

j=0

a
Cij
j . (3)

Previous work demonstrates that action-values can be analytically maximized for quadratic polynomials over actions
(R = 2) [2]. Without a policy network, however, Q-functions defined as such are restricted to convex functions over
actions which can be overly limiting. Our sampling framework can derive a strong policy from more complex, higher-
order polynomial Q-functions. In addition, as described in the next section, sampling allows us to calculate state-values
with various methods that work better than simple maximization.

2.2 Extracting policies and state-values from Q-Functionals

In standard continuous-control RL, the policy network is used in two distinct locations: calculating state-value functions
(bootstrapping), and during action-selection (policy-evaluation). Here we describe how a variety of strategies for both
can be implemented using sampling.

The most common strategy for both is action maximization: aiming to find the highest-value action for every state, and
using this for both bootstrapping and action-selection:

π(s)← argmax
a∈A

Q(s, a) ; V (s) = Q(s, π(s))

Instead of training a policy network, we can directly estimate the maximum through sampling k actions:
π(s) = argmax

ai∈Ak
Q(s, ai) ; V (s) = max

ai∈Ak
Q(s, ai)

2
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Figure 2: Q-functional Performance in comparison to DDPG. We perform 200 update steps every iteration with each
iteration consisting of {1600, 1600, 2000} interaction steps for Bipedal Walker, Hopper, and Half Cheetah respectively.
Q-functionals all have “rank” 3. Results are averaged over 8 seeds, with the standard error shaded.

with accuracy bounds of V (s) dependent on the dimension of A, the Lipschitz-constant L of Q(s, a), and k. For τ -
entropy-regularized RL, the optimal policy is proportional to the Boltzmann distribution over Q-values. This simplifies
to:

π(s) = Pr(a|s)← exp{Q(s, a)/τ}∫
A exp{Q(s, a)/τ} ; V (s) =

∫

A
π(s)Q(s, a)− log(Pr(a|s)) = τ log

(∫

A
exp{Q(s, a)/τ}

)

Due to limitations imposed by common representations of stochastic policies (often constrained to state-dependent
normal distributions over actions), this relation between policy and value cannot be achieved by standard policy-
parameterizations [3]. In contrast, we can consistently estimate these qualities through Monte Carlo sampling:

π(s) = Pr(a|s) = exp{Q(s, a)/τ}
1
k

∑
ai∈Ak exp{Q(s, a)/τ} ; V (s) = τ log

(1
k

∑

ai∈Ak
exp{Q(s, a)/τ}

)

with accuracy bounds on both π(s) and V (s) computable from Qmax −Qmin, k, and τ .

In our experiments, we derive a robust policy π(s) and value function V (s) through a “top-n of k” approach: we evaluate
k random actions, and represent our policy and value by sampling from the best n actions during interaction with the
environment and averaging these n values during bootstrapping updates for stability.

π(s) ∼ top-n
{
Q(s, a1), ...Q(s, ak)

}
; V (s) = mean

[
top-n

{
Q(s, a1), ...Q(s, ak)

}]
(4)

This is a similar strategy to TD3 [1], which computes V (s) as a single-sample mean of the Q-values surrounding the
policy-networks output. We find that averaging over many values, instead of simply choosing one, leads to decreased
noisiness of V (s) for the Bellman target in the update, and superior performance at maximizing reward.

3 Experimental Results

Our experimental results are included in Figure 2. All experiments are averaged over 8 seeds, with shading representing
standard error confidence intervals. Both Fourier and Polynomial Q-functionals outperform Deep Deterministic Policy
Gradients (DDPG) [5] on Bipedal Walker (4 dim action space), Hopper (3 dim action space), and Half Cheetah (6 dim
action space). For action-selection and bootstrapping, we sample k = 1, 000 actions for each state (which takes roughly
equivalent computation to a single policy + value evaluation for DDPG). For V (s) and our interaction policy π(s) we
anneal our top-n sampling in the range [k2 , 1] over the course of training. We find this improves exploration when using
Q-functionals; early in training the agent can try a broader range of actions. During evaluation, we choose the highest-
value action (n = 1) sampled at each state.

As described earlier, standard feedforward Q-functions can be evaluated for multiple actions by simply evaluating the
network multiple times. We quantify the speedup of the Q-functional paradigm compared to a standard feedforward
Q function in Figure 2. A rank-3 Fourier critic is roughly 8 times faster than a standard neural network at this task on
an Nvidia 2080ti GPU. Furthermore, the lightweight action-evaluation of Q-functionals allows for much larger sampling
size: the standard architecture runs out of GPU memory with 5,000 samples, while the Fourier critic can evaluate up
to 10,000 actions in a single pass. In the low-sample regime (up to 100), Q-functionals evaluate in near-constant time
because the entire computation can be processed in parallel on a consumer GPU.
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Figure 3: Rank Sweep for Bipedal Walker using Fourier Basis

Figure 4: Speed comparison of 100 sets of action-evaluations of the same states (batch size 1024), for varying number of
action-samples. Left: samples up to 10,000. Right: zoomed in sampling up to 100.

4 Discussion

We describe the framework of Q-functionals, a class of architectures for continuous-control RL that allow for efficiently
calculating actions through sampling, without the need for training a large policy network. Besides requiring roughly half
the parameters, our method naturally leads to more thorough exploration, represents the most current estimates of the
Q-value, and enforces a smooth inductive bias over the action-space. We find that implementations of this framework
consistently outperform baseline policy gradient methods on a range of continuous control tasks.
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Abstract

Count-based exploration can lead to optimal reinforcement learning in small tabular domains. But, it is challenging to
keep track of visitation counts in environments with large state spaces. Previous work in this area has converted the
problem of learning visitation counts to that of learning a restrictive form of a density model over the state-space. Rather
than optimizing a surrogate objective, our proposed algorithm directly regresses to a state’s visitation count. Compared to
previous work, we show that our method is significantly more effective at deducing ground truth visitation frequencies;
when used as an exploration bonus for a model-free reinforcement learning algorithm, our method outperforms existing
approaches.

Keywords: Exploration, Reinforcement learning
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1 Introduction

Effective exploration is key to solving long-horizon problems using reinforcement learning. When the number of possible
states is small, an agent can keep track of how many times it has visited each state. This count can then be used as an
exploration bonus to train an optimal policy [Strehl and Littman, 2008]. When the environment has a large number of
states, the agent may not visit the same state twice. To facilitate count-based exploration in such domains, the notion of
visitation counts are generalized to that of “pseudocounts”. Previous methods have equated the problem of estimating
pseudocounts to the canonical machine learning problem of density estimation: the lower the probability density (under
the learned model) of a given state, the higher the reward for reaching it [Bellemare et al., 2016, Ostrovski et al., 2017].

While providing the first way to estimate pseudocounts, Bellemare et al. [2016]’s relationship between counts and prob-
ability densities exists only when the density model meets the following restrictions [Ostrovski et al., 2017]:

• it must allow computing normalized probability densities, which precludes many powerful density models

• it must be learning-positive, which means that the probability density of a state must increase when it is encoun-
tered by the density model again,

• it must be updated on a state exactly once per visitation, precluding common techniques such as batching and
replay.

Rather than designing a density model under such a restrictive setting, we propose to directly learn the exploration
bonus associated with different states. Our proposed method does not place any restrictions on the type of function
approximator used and can be trained using any and all of the common deep learning practices (such as using optimizers
with adaptive learning rates, batching, experience replay and so on) [Goodfellow et al., 2016].

Given all the restrictions imposed by Bellemare et al. [2016]’s pseudocounts, it is tempting to forego count-based explo-
ration in favor of other novelty estimates that have fewer theoretical guarantees. Random Network Distillation (RND)
[Burda et al., 2019] is one such popular method that has achieved state-of-the-art performance on some hard exploration
problems in the Arcade Learning Environment (ALE). RND assigns an exploration bonus to a state using a simple, el-
egant heuristic: the novelty of a state is directly proportional to how the accurately a learned network can mimic a
randomly-initialized network’s projection. If s is a state, fθ is a neural network being learned and fθ∗ is a fixed randomly
initialized neural network, the RND exploration bonus is given by ri(s) = ||fθ(s)− fθ∗(s)||2.

The output of a random network fθ∗ can have different scales depending on the random initialization of θ∗ or the input
state s. This makes RND sensitive to hyperparameter settings. Furthermore, unlike visitation counts, RND’s explo-
ration bonus does not have an intuitive interpretation—it is an unnormalized distance in a neural network’s latent space.
Normalization tricks are often used to stabilize training in practice, but they introduce their own unintended artifacts.

Another shortcoming of RND is that it conflates encountering a state and updating a model on that state. An RL agent may
encounter a state exactly once, but the novelty associated with that state will fall every time RND’s prediction model fθ is
updated on it. This is not ideal because a single gradient update is often insufficient for learning effective representations
in high-dimensional spaces. As we will see in the next section, our procedure gets counts from the fixed point of an
optimization procedure, allowing us to train our model to convergence.

Our core insight is that a state’s visitation count can be derived from the sampling distribution of Bernouli trials made
every time a state is encountered. When we use a neural network to predict this sampling distribution, we inadvertently
learn the inverse of the state’s visitation count. We test this procedure on a visual grid world and show that our method
can recover the ground truth counts while other pseudocount methods cannot. When used as an exploration bonus, it
causes a model-free RL agent to rapidly explore its environment and outperform strong model-free baselines.

2 Coin Flip Network (CFN)

Consider the fair coin flip distribution of -1 and +1. Imagine you flip this coin n times, and average the results into yn.
In expectation the average is 0, but any given time you run this experiment you likely get a non-zero value for yn. For
example, if you flip the coin once you will get Pr(y1 = −1) = 0.5, and Pr(y1 = 1) = 0.5. If you flip it twice, you get
Pr(y2 = −1) = 0.25 and Pr(y2 = 0) = 0.5 and Pr(y2 = 1) = 0.25. More generally, for all n the second moment of yn is
related to the inverse-count:

M2(yn) = E[y2n] =
∑

i

Pr(yn = i) ∗ i2 = 1/n. (1)
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2.1 Bonuses from states

We construct a dataset of m encountered states {s1, ..., sm}, and pair each state with a random vector of d coin flips
ci ∼ {−1, 1}d. The mean of n random coin flip vectors is a vector of d samples from yn:

( 1
n

n∑

i=1

ci

)
j
∼ yn (2)

Consider the class of functions F such that f ∈ F : R|S| → Rd. Our goal is to find f∗ ∈ F that best predicts each ci:

f∗(s) = argmin
f

m∑

i=1

∥ci − f(si)∥2 = argmin
f

m∑

i=1

d∑

j=1

(cij − f(si)j)2 (3)

If each state si is encountered exactly once, the optimization problem above will simply learn the mapping from states to
their associated random vector. However we are interested in cases where there are multiple instances of some states. In
that case, the best you can do is to learn the mean random vector for all instances of a given state. Let’s look at one such
state s, of which there are n occurrences, and each ci is a d-dimensional sample from the coinflip distribution:

f∗(s) =
1

n

n∑

i=1

ci

=⇒ E
[1
d
∥f∗(s)∥2

]
=

1

d

d∑

j=1

E
[( n∑

i=1

cij
n

)2]
[Taking expectation of the vector norm]

=
1

d

d∑

j=1

E
[
y2n

]
[Using Eq 2]

=
1

d

d∑

j=1

1

n
=

1

n
[Using Eq 1]

This suggests that in expectation, f∗(s) contains an unbiased and consistent estimator of the inverse-count. We can
now use this property of f∗ to map states to bonuses. We train a neural network fθ(s) to approximately solve the
optimization problem described in Equation 3, and obtain exploration bonuses using:

B(s) :=
√

1

d
∥fθ(s)∥2 ≈

1√
N(s)

(4)

2.2 Bonuses from many states

fθ(s) is a deterministic function that maps each input to a single output: that’s why the best we can do is learn the mean of
a state’s random vectors. But, we can learn a different mean for each state. A learning architecture with infinite capacity
would learn the exact mean for each unique state. However, finite capacity and training time imply that the network
will not learn this mapping exactly. Next, we will discuss ways in which we can control how our network trades off
prediction errors among states in the data set and generalizes to unseen states during inference.

2.3 Prioritizing Novel States

Training fθ to convergence at every time step is not feasible. To maintain reasonable training time, we update it once
every time step on a single mini-batch of states drawn from its replay buffer. Revisiting the optimization target from
Equation 3, we note that a unique state s visited n times will appear in uniform sampling n times more than a state visited
only once. This would make fθ disproportionately better at predicting the bonus corresponding to high-count states. To
remedy this problem, we assign more weight to low-count states. Note that we can re-weight the optimization target
from Equation 3 by scaling each state’s contribution to the loss by its true count, without changing the ideal fixed point
f∗(s):

f∗prioritized(s) = argmin
f

m∑

i=1

1

True Count(si)
∥ci − f(si)∥2.

Of course, we do not have access to the true count during training; so, we approximate this procedure by prioritizing by
our current estimate of inverse-count:

priority(s)← 1

d
∥fθ(s)∥2.
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Figure 1: (left) Comparing bonus estimation accuracy for different variants of CFN and PixelCNN on the Visual Grid-
world task (end of training). (right) Zoomed in version of PixelCNN’s bonus prediction accuracy from the left subplot.

Prioritizing in this way introduces another difficulty: if a state has been recently added to the replay buffer, it has not
appeared in many gradient updates and thus we cannot trust our estimate of its count. To combat this we also prioritize
sampling by the number of times, nupdates(s), we have sampled s in the past. We combine both these prioritization
schemes using an α-weighted sum:

priority(s) = α

(
1

nupdates(s)

)
+ (1− α)1

d
∥fθ(s)∥2.

2.4 Temporal Consistency for Better Generalization

The training scheme described so far ignores temporal structure present in sequential decision problems; to encourage
meaningful generalization, we want our training scheme to reflect the temporal relations between states. We encourage
sequential states to have similar latent representations by only “replacing” each random coin flip with a probability pr:

ci+1,j =

{{−1, 1} with probability pn
ci,j with probability (1− pn)

This makes the targets for sequential states similar, which in turn encourages them to have similar latent representations.

3 Experiments

We test our algorithm on a “visual grid world” task [Allen et al., 2021]. In this task, the agent gets an 84 × 84 image
observation of the grid. The controllable block starts every episode at the bottom-left cell; it gets a terminating reward
of 1 when it reaches the goal at the top-right of the grid and a reward of 0 everywhere else. For all experiments we use
Rainbow DQN [Hessel et al., 2018] as a base agent and modify it with various exploration bonuses.

3.1 Evaluating Bonus Prediction Accuracy

We test CFN’s ability to correctly predict the inverse visitation count in a 21 × 21 visual grid world. The learning agent
gets image-based observations as input, but we keep track of the ground truth state (the agent’s x, y location in the grid)
to evaluate how well different methods can reconstruct the true bonus (or equivalently, 1/

√
ns). Figure 1 (left) shows

the importance of α (as described in section 2.3)—when the ground-truth bonus is high (i.e, when the visitation count is
low), CFN with α < 1 outperforms CFN with α = 1 because α < 1 up-weights prediction errors on novel states. Figure
1 also shows that PixelCNN is unable to learn a meaningful count—not only are its predictions very close to 0, it assigns
very similar exploration bonus to states that have been seen 25 times (which should have a true bonus of 0.2) and states
that have been seen only once (which should have a true bonus of 1.0). In other words, PixelCNN does not recover the
true counts in this domain and it dramatically underestimates the exploration bonus for truly novel states.
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Figure 2: (left) Learning curves comparing CFN with Rainbow and PixelCNN on a 42× 42 grid. (right) Comparing CFN
with different values of pr on 21×21 grid with noisy observations. Each line denotes the mean undiscounted return over
5 random seeds, shaded regions denote standard error. Each iteration is 1000 action executions in the environment.

3.2 Reinforcement Learning with CFN Bonus

RL in Visual Gridworld. We test if CFN’s exploration bonus can lead to sample-efficient reinforcement learning. For
this experiment, we consider a 42×42 visual gridworld. As shown in Figure 2 (left), a Rainbow agent [Hessel et al., 2018]
is unable to explore this grid and get any positive reward. When augmented with the CFN exploration bonus, the same
agent rapidly explores the state-space and gets high return. We also compare our CFN agent to the most popular way of
computing pseudocounts, PixelCNN [Ostrovski et al., 2017]; we find that CFN comfortably outperforms PixelCNN.

RL in Noisy Visual Gridworld. We now test if CFN is robust to observation noise. For this experiment, we consider a
21× 21 visual grid world and add speckled noise to the visual observations. Figure 2 (right) shows that pr (described in
Section 2.4) helps CFN generalize to similar inputs and be robust to observation noise.

4 Conclusion

Though pseudocount-based exploration methods are a principled way to perform thorough exploration in sparse-reward
reinforcement learning problems, they have not been the dominant algorithm used in practice; we aim to remedy that.
We point to restrictions on the functional form, difficulty of implementation, and inability to use with a wealth of deep-
learning training tricks, as a few reasons for this theory-practice divide. In contrast, CFNs estimate counts through
a simple optimization procedure over the data set of encountered states, and can be used with most standard deep
learning architectures. We find that CFNs explore more rapidly and represent ground-truth counts better than existing
pseudocount methods. In this paper we focus on a simple environment where we can directly compute the counting
accuracy; in future work, we plan to scale to more complicated domains like the hard exploration games in the ALE.
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Abstract

In Reinforcement Learning there is often a need for greater sample efficiency when learning an optimal policy, whether
due to the complexity of the problem or the difficulty in obtaining data. One approach to tackling this problem is to
introduce external information to the agent in the form of domain expert advice. Indeed, it has been shown that giving an
agent advice in the form of state-action pairs during learning can greatly improve the rate at which the agent converges
to an optimal policy. These approaches typically assume a single, infallible expert. However, it may be desirable to
collect advice from multiple experts to further improve sample efficiency. This may introduce the problem of multiple
experts offering conflicting advice. In general, experts (especially humans) can give incorrect advice. The problem of
incorporating advice from multiple, potentially unreliable experts is considered an open problem in the field of Assisted
Reinforcement Learning.

Contextual bandits are an important class of problems with a broad range of applications such as in medicine, finance
and recommendation systems. To address the problem of learning with expert advice from multiple, unreliable experts,
we present CLUE (Cautiously Learning with Unreliable Experts), a framework which allows any contextual bandit al-
gorithm to benefit from incorporating expert advice into its decision making. It does so by modelling the unreliability of
each expert, and using this model to pool advice together to determine the probability of each action being optimal.

We perform a number of experiments with simulated experts over randomly generated environments. Our results show
that CLUE benefits from improved sample efficiency when advised by reliable experts, but is robust to the presence of
unreliable experts, and is able to benefit from multiple experts. This research provides an approach to incorporating the
advice of humans of varying levels of expertise in the learning process.

Keywords: Assisted Reinforcement Learning, Interactive Reinforcement
Learning, Agent Teaching, Contextual Bandits, Expert Advice
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1 Introduction

Sample efficiency is often an issue of great concern in Reinforcement Learning (RL). This is often due to the complexity
of a problem, which may consist of a large number of states and actions. It may also be due to the difficulty in acquir-
ing data. The Assisted Reinforcement Learning (ARL) framework seeks to improve sample efficiency by incorporating
external information in the learning process [1]. For example, a domain expert could advise an expert on which action it
should perform in a given state. This advice could be given throughout the learning process, in response to the agent’s
behaviour; an approach termed Interactive Reinforcement Learning (IRL). The types of advice offered by an expert may
differ between approaches. In this work, we consider policy-shaping advice in the form of a single action offered for a
state, as it is often easier to elicit from a domain expert and is more robust to infrequent and inconsistent feedback [7].

It is often assumed that advice is coming from a single, infallible expert. These assumptions are not always practical,
however. Experts, especially humans, can give suboptimal advice due to misunderstandings (e.g. advice is given for the
wrong state), erroneous domain knowledge or on purpose with the intent of sabotaging the agent. Restricting advice
to a single expert also limits the amount of information the agent can receive. Multiple experts can potentially have
different perspectives or areas of expertise, and the contradictions and consensus between experts may reveal additional
information.

Our aim is to build on the IRL approach in the specific context of contextual bandits (CBs), which are in essence RL
problems whose episodes are a single timestep in length, where we attempt to tackle the open problem of incorporating
the advice of multiple, potentially unreliable experts in policy-learning. Our main contribution in this regard is CLUE
(Cautiously Learning with Unreliable Experts). This framework uses a model of the reliability of the experts to augment
any CB action-selection algorithm with the ability to incorporate advice from multiple experts.

Related Work: There have been some approaches to tackling the problems of multiple experts and of unreliable experts,
though the experts in these approaches often provide other forms of advice than the action advice we consider. Gimel-
farb, Sanner, and Lee [6] combine reward-shaping advice from multiple experts as a weighted sum of potential functions,
where the weights are updated as the agent learns. The decision-making rule in Section 2.2 is directly inspired by this
Bayesian combination of advice. Griffith et al. [7] account for incorrect advice by modelling the probability of an expert
giving correct advice with a single, static parameter C ∈ (0, 1). Such a model of reliability is expanded on in Section 2.1.
Other approaches include the adversarial bandit algorithms EXP4 and EXP4.P, whose experts provide advice in the form
of probability vectors [10], and the probabilistic policy reuse algorithm, in which experts’ entire policies are transferred
and weighted against the agent’s own policy using the reward [5].

2 Methodology

In this section we describe the CLUE framework and the problem setting, which is composed of three actors: an en-
vironment, an agent and a panel E of one or more experts. The environment is a standard Contextual Bandit (CB)
environment. For each trial t, it samples state st, accepts action at from the agent and returns reward rt. At the end of the
trial, each expert e in panel E receives ⟨st, at, rt⟩ and may independently offer their own advice, (st, a

(e)
t ) on what action

the agent should have taken this trial. How and when an expert decides to offer advice may differ between experts.
In our formulation of the problem, we assume each expert to be a domain expert with consistent reliability across the
breadth of the problem. It is worth noting here that, although we choose to have the expert give advice at the end of the
trial in this work, this can occur instead at the start of a trial without requiring any change to the CLUE algorithm.

The agent is composed of three components, the first of which is a learning algorithm, which uses the information
⟨st, at, rt⟩ to learn a policy, such as the action-value update rule Q(st, at)← Q(st, at) + α(rt −Q(st, at)), where Q(s, a) is
the action-value function and α ∈ [0, 1] is a step size parameter.

The second component, and one of the contributions of this work, is a model of the reliability of each expert (see Section
2.1). This model is necessary for learning which pieces of advice are to be followed and which are to be ignored. When
an expert utters a piece of advice at the end of a trial, the agent uses its own information about the environment (such as
an action-value function) to evaluate the advice and update the model. The third component, and another contribution
of this work, is a decision making process which uses the information learned by the learning algorithm and the models
of each expert to select an action for a state while exploring, given any advice it has previously received for that state (see
Section 2.2).

2.1 Modelling Experts

Intuitively, we can think of an expert’s reliability as the probability of them giving optimal advice [7]. We can therefore
model it as ρ ∈ [0, 1], where ρ = 1 is an infallible expert and ρ = 0 is an expert that always gives suboptimal advice.
Given the range of values, a natural choice is to model the probability distribution P (ρ) as a Beta distributionBetaρ[α, β],
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where α, β > 0 can be thought of as counts recording the number of times the expert gave correct and incorrect advice
respectively.

At the end of trial t, the agent must update this distribution for each expert that gave advice for st sometime in the past.
To do this, the agent can evaluate the advice as either optimal or suboptimal, given its own information. In this work,
we set xt = 1 if Q(st, a

(e)
t ) = maxaQ(s, a), and xt = 0 otherwise, where a(e)t denotes the advice received from expert e.

Let xt = 1 denote an optimal evaluation, and xt = 0 denote a suboptimal evaluation. In order to allow for inconsistent
experts (e.g. an expert whose performance degrades over time), we update an estimate χ of the expected value E[ρ] using
a recency-weighted moving average with weight parameter δ ∈ [0, 1],

χt+1 = (1− δ)χt + δxt, (1)

where χ0 = E0[ρ] =
α0

α0+β0
, with prior counts α0 and β0.

2.2 Making Decisions

Suppose that, at the start of trial t, the agent observes state st and recalls any advice that some subset Et ⊆ E of ex-
perts offered for state st in trials [0, ..., t − 1]. The agent must now use its model of the reliability of each expert to
decide which advice (if any) to follow. In order to allow the agent to surpass the performance of the experts advis-
ing it, we only allow the agent to consider expert advice when exploring. Determining when the agent is exploring
depends on the underlying action-selection algorithm. As CLUE can augment any CB action-selection algorithm, we
consider the Epsilon-Greedy, Adaptive Greedy, Explore-then-Exploit (ETE) and Upper Confidence Bound (UCB) algo-
rithms, representing several families of CB algorithms [4]. For the first three algorithms, whether or not the agent is
exploring is explicitly determined by the algorithms’ parameters. For UCB, the agent can be said to be exploring if

argmaxaQ(s, a) ̸= argmaxa(Q(s, a) + c
√

2ln(t)
N(s,a) ), where N(s, a) counts the number of times action a has been selected

for state s and c is a parameter that balances exploration and exploitation.

If exploring, the agent must choose between the action suggested by the underlying action-selection algorithm or be-
tween following advice it has received for s, in which case it must choose which advice to follow. If Et = ∅, no advice
has been offered, such as may happen at the beginning of the learning process, and the agent must act without advice
according to its underlying action-selection algorithm. If |Et| ≥ 1, at least one expert has offered advice. In order to take
advantage of the information provided by consensus and contradiction among experts, we employ a Bayesian method
of pooling advice, inspired by similar approaches in potential-based reward shaping [6] and in crowd-sourced data la-
belling [2]. Let a∗ denote the optimal action for state st and v(e)t denote the advice utterance given by expert e for st, with
Vt denoting the set {v(e)t |e ∈ Et}. Our aim, therefore, is to calculate P (aj = a∗|Vt) for each aj ∈ A. To do this, we employ
Bayes’ rule, coupled with the assumptions that each expert gives advice independently of every other expert and that
each action has a uniform prior probability of being optimal,

P (aj = a∗|Vt) =
∏
e∈Et P (v

(e)
t |aj = a∗)

∑|A|
k=0

∏
e∈Et P (v

(e)
t |ak = a∗)

. (2)

Note that, if for a particular domain one can reasonably assume a non-uniform prior distribution of P (a = a∗), this
distribution can be incorporated into Equation 2 without fundamentally changing this decision-making process.

All that remains is to calculate P (v(e)t |aj = a∗). Recalling that the probability of the advice being correct is estimated by
χ(e) ≈ E[ρ(e)] and assuming that, if the advice is incorrect, the expert is equally likely to advise any suboptimal action,
then P (v

(e)
t |ak = a∗) = χ(e) if the expert advised ak and P (v

(e)
t |ak = a∗) = 1−χ(e)

|A|−1 otherwise. Substituting this into
Equation 2, we can calculate the probability of each action in A being optimal, and can set abest = argmaxa P (a = a∗|Vt).
In an approach reminiscent of both Epsilon Greedy and probabilistic policy reuse [5], the agent selects action abest with
probability P (abest = a∗|Vt), and otherwise acts as if Et = ∅. This allows for a trade-off between following advice and
exploring as normal, where the former is more likely if the agent is confident that abest is optimal.

In the above formulations, we have assumed that the estimated χ(e) accurately represents the underlying reliability of the
expert e. Early in the learning process however, this will not be the case. Erring on the side of caution, we can compensate
for the over-estimation of the reliability of particularly bad experts by introducing a threshold parameter T ∈ [0, 1], such
that if P (abest = a∗|Vt) < T , the agent acts without advice. This approach ensures that the agent will only follow advice
if it is sufficiently confident that the advice is correct.
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3 Experiments and Results

In this section, we present a number of experiments to demonstrate that CLUE benefits from improved sample efficiency
when being advised by a reliable expert but is robust to the presence of suboptimal advice. Furthermore, we aim to show
that CLUE can benefit from advice from a panel of multiple experts with varying degrees of reliability.

These experiments are performed using a number of randomly generated Contextual Bandit environments, specified
by Influence Diagrams with a great diversity of randomly generated graph structures and parameters [8]. Experts are
simulated, and are limited in how much advice they can give, thus only giving advice if the agent is underperforming
within some degree of tolerance [9]. In order to simulate reliability, each expert is controlled by a true reliability parameter
ρtrue. When offering advice, the expert will advise the optimal action a∗ with probability ρtrue, or else will randomly
advise any other action. Thus an expert with ρtrue = 1 is reliable, while one with ρtrue = 0 never advises the optimal
action.

3.1 Panel Comparisons

In this set of experiments, we compare the reward obtained in 80, 000 trials, averaged across 100 random environments
(|S| = 1024, |A| = 8). LOWESS smoothing is employed for legibility [3], with the standard deviation represented by the
shaded areas. We compare the performance of each agent with three panels of experts. The first, a Single Reliable Expert,
consists of one expert that always gives correct advice (ρtrue = 1). The second, a Single Unreliable Expert, consists of one
expert that always gives incorrect advice (ρtrue = 0). The third, a Varied Panel, consists of seven experts with varying
degrees of unreliability (Ptrue = {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}). Agents tested include an unassisted Baseline Agent, a Naı̈ve
Advice Follower (NAF), which follows any advice it has received for a state (choosing randomly between contradicting
advice) otherwise acting as the Baseline Agent, and CLUE (α0 = 1 = β0, T = 2

|A| , δ = 0.5), which augments the Baseline
Agent. The four tested baselines are Epsilon Greedy (ϵ decays from 1 to 0 across 80% of trials), Adaptive Greedy (z decays
from 1 to −1 across 80% of trials), Explore-then-Exploit (ETE, threshold of 20, 000) and Upper Confidence Bound (UCB,
c = 0.25), all of which employ the Q update rule in Section 2 (Q0 = 0, α = 1

k(s,a) ). Results are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1: Panel comparisons for (a) Epsilon Greedy, (b) Adaptive Greedy, (c) ETE and (d) UCB. Note that CLUE and the
Baseline are nearly identical for ρtrue = 0.

For ρtrue = 1, both CLUE and NAF converge faster than all Baselines as they quickly benefit from the optimal advice
provided by the reliable expert. A demonstration of the robustness of CLUE comes when ρtrue = 0. In this scenario,
NAF exclusively follows sub-optimal advice and thus is unable to converge to the optimal policy. CLUE on the other
hand is able to identify that the expert is unreliable and defaults to its underlying action-selection algorithm, performing
identically to the Baselines. For the varied panel, the performance of NAF lies somewhere between the two single
expert cases, as it receives a mix of advice including optimal and suboptimal actions, and cannot discern which advice
is advantageous to follow. CLUE is able to differentiate between reliable and unreliable experts and benefits from the
former despite the presence of the latter. In all cases, CLUE either converges faster than the Baseline when good advice
is available, or otherwise converges at the same rate as the Baseline.
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3.2 Reliability Estimates

To investigate the results obtained in Section 3.1, we plot the value of χ(e) over time for the same panels of experts and
with an Epsilon Greedy Baseline. Results are plotted in Figure 2.

Figure 2: A comparison of χ(e) for each panel with an Epsilon Greedy Baseline. The Legend denotes the value of ρtrue

For the single expert cases, the value of χ converges towards the correct value of ρtrue (1 and 0 respectively), with the
final estimates being χ = 0.995 for the single reliable expert and χ = 0.005 for the single unreliable expert. For the
varied panel, each expert is correctly ranked according to their reliability and the value of χ(e) for each expert e correctly
converges towards the true value of ρ(e)true, even faster than the single expert cases. This accuracy in the estimates of
reliability explains the performance obtained in Section 3.1. As is to be expected, the variance in the final estimate is
larger for experts that randomly choose between suboptimal and optimal advice (ρtrue = 0.5) than for experts that more
consistently offer one or the other.

4 Conclusion

Our results show that CLUE is able to incorporate expert advice in such a way that it benefits from improved sample effi-
ciency when advised by a reliable expert, but is robust to advice from unreliable experts. Furthermore, by modelling the
reliability of the experts, CLUE is able to incorporate advice from multiple experts, even when these experts contradict
each other. When multiple experts are present, CLUE is able to rank them by their reliability and exploit the information
revealed by consensus and contradiction between experts. This work may allow for easier integration of external infor-
mation in the learning process, ultimately contributing towards tackling more complex problems with greater sample
efficiency.
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Abstract

Offline reinforcement learning allows the training of competent agents from offline datasets without any interaction with
the environment. However, depending on the dataset’s quality, finetuning may be desirable to improve performance
further. While offline RL algorithms can, in principle, be used for online finetuning, the online performance improves
slowly in practice. We show that it is possible to use standard online off-policy algorithms to achieve competitive finetun-
ing performance. However, this approach suffers from issues with initial training instability known which we referred
to as policy collapse. We study the issue of policy collapse empirically and investigate approaches to stabilize online
off-policy finetuning from offline RL. We show that conservative policy optimization is a promising solution that can
stabilize online off-policy algorithms for finetuning. We analyze when conservative policy optimization is useful and
discuss alternative strategies to stabilize finetuning when they fail.

Keywords: reinforcement learning, offline reinforcement learning, finetuning,
transfer learning
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1 Introduction and Preliminaries

Offline reinforcement learning [8, 11] considers the problem of learning policies from fixed datasets without requiring
additional interaction with the real environment. By construction, offline RL algorithms rely heavily on the quality of
the data, and it may be impossible to reach optimal performance with offline data only; online data is still needed to fur-
ther improve the policy’s performance. While offline RL algorithms can, in theory, be utilized for sample-efficient online
learning, in practice, they suffer from low sample efficiency due to distributional shifts from the fixed dataset to the online
environment [13, 10]. In this paper, we study how to improve offline pre-trained policies with additional online finetun-
ing. We found empirically that offline RL algorithms converge more slowly than online off-policy algorithms, possibly
because the conservative nature of the offline RL algorithms hinders effective online finetuning. Previous work [13, 10]
showed that conservative offline RL, such as Conservative Q Learning (CQL) [7], is not well-suited for finetuning. Our
result complements their work by demonstrating similar findings with TD3-BC [3]. We also show that sometimes simply
switching to a standard off-policy RL algorithm works well for online finetuning. However, we observe that finetuning
with online off-policy algorithms suffers from policy collapse, where the policy degrades severely during initial train-
ing when the offline dataset has low diversity. We hypothesize that effective online finetuning from offline RL may be
achieved with more robust online policy optimization and present a partial solution, a constrained policy update on top
of the TD3 algorithm, which we call conservative TD3 (TD3-C), that empirically helps stabilize online finetuning. Finally,
our results suggest that better evaluation protocols should be considered when evaluating finetuning performance of RL
algorithms.

Offline RL with Online Finetuning We consider reinforcement learning (RL) in a Markov Decision Process (MDP)
defined by the tuple (S,A, p, p0, r, γ). In addition to the standard reinforcement learning setting, we assume having an
additional dataset B = {(si, ai, ri)}Ni=1 of experience collected by an intractable behavior policy µ in the same MDP. We
are interested in utilizing the offline fixed dataset B to improve the agent’s online sample efficiency. Concretely, we
consider the setting where we first pretrain a policy using offline RL and then further finetune it online, similar to the
scenario considered in [6, 10, 13].

Off-policy reinforcement learning Off-policy RL algorithms learn a policy πθ with experience generated by a different
policy µ. Example algorithms include Deep Deterministic Policy Gradient (DDPG) [12] and Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) [5]. These deep off-policy algorithms learn an approximate state-action value functionQϕ
and deterministic policy πθ by alternating policy evaluation and improvement. During policy evaluation, we learn an
approximate state-action value function Qϕ by minimizing the Bellman error

ϕ∗ = min
ϕ

Es,a,r,s′∼B
[
(Qϕ(s, a)− (r + γQϕ′(s′, πθ′(s

′)))2]
]
, (1)

where Qϕ′ and πθ′ are the target critic and policy networks used to stabilize TD learning with function approximation.
During policy improvement, the policy is updated to maximize the current state-action value function

θ∗ = max
θ

Es∼B [Qϕ(s, πθ(s))] . (2)

In principle, we can apply off-policy algorithms, such as DDPG or TD3, to learn from a fixed dataset; however, in practice,
they are ineffective when learning from fixed offline datasets due to extrapolation errors [4]. Recently, many deep offline
RL algorithms [6, 7, 15, 4] have been proposed to reduce the extrapolation error. These algorithms modify standard deep
off-policy algorithms and constrain policy learning to be supported by the dataset, which helps minimize extrapolation
error. However, when offline RL algorithms are used for finetuning, they typically improve more slowly compared to
their off-policy backbone [13, 10]. For example, [10] found that online finetuning with the offline RL algorithm CQL
results in little improvement with addition of online data.

In this paper, we show that, instead of offline RL algorithms, online finetuning by standard off-policy algorithms is a sur-
prisingly strong baseline on the D4RL MuJoCo benchmark [2]. However, we also found that this simple approach suffers
from varied degrees of training instability and performance degradation on different D4RL MuJoCo datasets. Finally,
we propose a solution that improves the training instability while enjoying fast online improvement. We also perform
ablations on our proposed method and discuss further useful findings that we found to stabilize online finetuning.

2 Evaluation

In this section, we empirically analyze the challenges in performing online finetuning after pretraining with offline RL.
Our analysis builds on top of MuJoCo tasks in the D4RL benchmark suite [2]. We consider datasets from the walker2d,
halfcheetah and hopper tasks. For each task, we perform finetuning given the corresponding medium, medium-replay,
and expert datasets. The medium datasets consist of transitions collected by an early-stopped, suboptimal agent.
medium-replay datasets refer to the transitions stored in the replay buffer of an early-stopped agent, and expert refers to
the transitions collected by an expert agent after a complete training run.
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For offline pre-training, we use TD3-BC [3]. TD3-BC is a simple offline RL algorithm that extends the TD3 algorithm by
including an additional behavior cloning (BC) term in the policy improvement step to encourage the policy to stay close
to the behaviors in the offline dataset. We selected TD3-BC because of its strong empirical performance on the MuJoCo
benchmarks.

During online finetuning, we load the weights for the neural networks obtained from offline training and use either
TD3 [5] or TD3-BC as the finetuning algorithm. In both cases, we pretrain the actor and the critic offline for 500K
iterations and then train online for 1M environment steps. Figure 1 shows the learning curve for both set-ups.
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Figure 1: Comparison between TD3, TD3-BC and our proposed conservative TD3 (TD3-C) for online finetuning on the
D4RL benchmark suite. Dashed lines indicate the end of offline learning and the beginning of finetuning. Results are
averaged with three random seeds. The result is not smoothed, which accurately shows the effect of collapse.

2.1 Empirical Findings

Offline RL algorithms improve more slowly compared to their online counterparts. Figure 1 reveals a few interesting
findings. First, we can see that finetuning online with TD3-BC improves slowly compared to using TD3. This suggests
that offline RL algorithms that constrain the target policy to be close to behavior policy may improve more slowly than
their standard off-policy counterparts. While we restrict our comparison to using the TD3 algorithm as the base RL
algorithm, previous work [10, 13] shows similar findings for other offline RL algorithms.

Online finetuning with off-policy algorithms suffers from policy collapse. While online finetuning with TD3 achieves
a better evaluation score compared to TD3-BC, there is noticeable training instability for some datasets at the beginning
of online finetuning. This phenomenon is sometimes referred to as policy collapse. We hypothesize that collapse happens
as the critic is inaccurate when finetuning starts and is over-optimistic on novel states encountered early in finetuning.
Nevertheless, the asymptotic performance of finetuning with TD3 after 1M environment steps always surpasses TD3-BC.

Policy collapse is more severe when the diversity of dataset is low. The extent of instability varies across domains and
dataset qualities and is more noticeable as the diversity of the dataset decreases. Although the offline performance on
the medium and medium-replay datasets are comparable, finetuning from agents pretrained with TD3 on the medium
datasets is more unstable. Notice that the rate at which TD3 recovers its original performance also varies across the
datasets, and it is more difficult to recover the full performance when pretrained on expert datasets. This suggests that
it is difficult to establish a standardized benchmark for studying finetuning: if we choose a small sampling budget for
online finetuning, then TD3-BC is actually preferable despite having lower performance when more online interactions
are allowed.

Policy collapse happens even with mild change in the online sampling distribution. We investigate the effect of
discarding the offline data for performing online updates. To do this, we compare the online performance of agents
finetuned with TD3-BC by loading or not loading the offline dataset into the online agents’ replay buffer, similar to the
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Figure 2: Effect of using offline datasets for on-
line finetuning.

experiments considered in [14]. The result is illustrated in fig. 2. TD3-
BC remains stable during the initial period of finetuning. This holds
even in the absence of offline data in the online replay buffer. On the
other hand, TD3 collapses immediately independently of whether we
include the offline dataset in the online buffer. This is perhaps surpris-
ing since when we keep the offline data for online sampling, during
the initial period of training, there is very little data from the online
collection. In this case, we would expect that the sampled transitions
not to be drastically different from the offline training distribution,
and the transferal to online finetuning would therefore be more sta-
ble. However, this experiment suggests that offline RL algorithms are
sensitive to even mild changes in the sampling distribution.

2.2 Negative Results

The critic suffers from significant extrapolation error when first deployed online. Therefore, we considered many ap-
proaches that we thought will mitigate this issue prior to the approach that we will discuss in section 2.3. However,
we have not been able to succeed with any of these ideas. This section shows that bootstrap error even under mild
distribution shift is severe and that standard regularization is insufficient to ensure stable online finetuning.

We tried running the policy evaluation only in the first 500K online steps before improving the policy and still observed
significant policy collapse as soon as we start updating the policy. This suggests that it is not sufficient to avoid collapse
by having a more accurate critic with online policy evaluation. We tried regularizing the policy and critic optimization
with weight decay, clipping the gradients in the policy and/or the critic, using a larger critic network but none seems to
mitigate this issue. The policy collapse suggests that the offline trained critic overfits, so we tried improving generaliza-
tion with data augmentation [9], but this is ineffective for preventing policy collapse. We tried a distributional critic or
using an ensemble of critic networks, i.e., instead of using two critics as in TD3, we trained ten critics in parallel in the
hope of further reducing overestimation bias. We also tried using uncertainty in the critic ensemble to penalize policy
improvements, but we have not managed to take advantage of it to prevent policy collapse.

2.3 Conservative Policy Improvement in TD3

We hypothesize that the policy collapse happens as the distribution shift in online learning causes the critic to produce
erroneous estimates of the Q values. When the offline dataset is more diverse, the error is mild, similar to the errors
encountered in online off-policy learning, thus it is not sufficient to collapse the good initial policy. However, when the
dataset consists of high quality trajectories, the critic may have never seen the outcome of bad transitions. In this case,
over-fitting to successful transitions in the offline dataset causes larger extrapolation error that overrides the good policy
initialization.

While offline RL algorithms constrain the policy to be close to the empirical data distribution, such constraint is inade-
quate for finetuning since it may be too conservative to allow for fast online learning. On the other hand, constraining
policy optimization to not deviate too much from a historically good policy may be beneficial since it may limit influence
of an inaccurate critic.

Therefore, we propose to improve the online TD3 algorithm by changing the unconstrained policy improvement step to
a constrained update that penalizes large policy updates. Concretely, we propose to use the following constrained policy
improvement step in place of the original TD3 policy optimization step

max
θ

Es∼B[Qϕ(s, a)|a=πθ(s)] s.t. Es∼B[ℓ2(πθ(s)− πθ′(s))] ≤ ϵ, (3)

where θ is the online policy network parameter, θ′ is the target policy network parameter, ℓ2 is the L2 norm and ϵ is a
hyper-parameter that controls the degree of the constraint. The constraint regularizes the online policy to not deviate too
much from the moving target policy. This formulation resembles the constrained optimization used in MPO [1], except
that we are working with a deterministic policy and using the ℓ2 norm as the constraint. We optimize the objective by
formulating the Lagrangian with dual variables λ. The constrained optimization now becomes

max
θ

min
λ≥0

Es∼B [Qϕ(s, a)− λ[ϵ− ℓ2(a− πθ′(s))]], a = πθ(s), (4)

where the primal θ and dual variables λ can be jointly optimized by stochastic gradient descent.

Figure 1 shows our proposed constrained policy improvement step is effective in stabilizing training on the medium
and medium-replay datasets where online finetuning with TD3 suffers from policy collapse. At the same time, the
constrained improvement enjoys comparable sample efficiency and improves significantly faster compared to finetuning
online with TD3-BC. In fig. 1 we use ϵ = 0.001. Figure 3a ablates on different choices of ϵ, and larger ϵ results in more
unstable learning.
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Figure 3: (a) Effect of increasing the number of delay steps
in TD3-C. Constrained updates alone do not prevent policy
collapse, but reducing the amount of policy improvement
steps mitigates it. (b) Effect of varying ϵ. Smaller ϵ leads to
more stable online finetuning but slower improvement.

Improving training stability with more delayed pol-
icy improvements. The policy improvement constraint
penalty stabilizes learning for the medium datasets. How-
ever, when only expert demonstrations are used in offline
learning, the critic suffers from severe overfitting, and
constrained updates alone are insufficient to prevent pol-
icy collapse. In this case, we found that updating the critic
more frequently stabilizes finetuning. Note that reduc-
ing update frequency is different from constraining pol-
icy updates: constraining the policy optimization has the
added benefit of making policy optimization more robust
to critic error. Our concrete implementation takes advan-
tage of the delay parameter in TD3, which determines the
frequency of policy optimization. Figure 3b compares dif-
ferent delayed step values with evaluation performance.
We see that increasing the delay helps prevent policy col-
lapse during initial finetuning. This ablation suggests that
when adopting standard off-policy algorithms for finetuning, reducing the ratio of policy improvement to policy evalu-
ation steps may help.

3 Conclusion

In this work, we studied the difficulty in leveraging offline RL as pretraining for online RL. We found that pretrained
policies and critics from offline RL are sensitive to distribution shifts due to online finetuning. While conservative policy
optimization is a promising approach for stabilizing finetuning from offline RL, it may be insufficient for stable online
improvement when the offline dataset lacks diversity. We found that changing the ratio between policy evaluation and
policy optimization stabilizes online finetuning. Future work will focus on stablizing online critic learning to take full
advantage of pretraining with offline RL.
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Abstract

Offline reinforcement learning (RL) is a promising framework for sample-efficient, scalable, and practical data-driven
decision-making. However, offline RL assumes that the offline dataset comes with reward labels, which may not always
be possible. To address this, offline imitation learning (IL) leverages a small amount of expert demonstrations to provide
supervision for policy learning from an offline dataset of unknown quality. Expert demonstrations, however, are often
much more expensive to acquire than offline data; thus, offline IL benefits significantly from minimizing assumptions
about the expert data.

To this end, we propose State Matching Offline DIstribution Correction Estimation (SMODICE), a novel and versatile
algorithm for offline imitation learning (IL) via state-occupancy matching. Without requiring access to expert actions,
SMODICE can be effectively applied to three offline IL settings: (i) imitation from observations (IfO), (ii) IfO with dynamics
or morphologically mismatched expert, and (iii) example-based reinforcement learning, which we show can be formulated
as a state-occupancy matching problem. We show that the SMODICE objective admits a simple optimization procedure
through an application of Fenchel duality, reducing a nested optimization problem to a sequence of stable supervised
learning problems. We extensively evaluate SMODICE on both gridworld environments as well as on high-dimensional
offline benchmarks. Our results demonstrate that SMODICE is effective for all three problem settings and significantly
outperforms prior state-of-art.

Keywords: Offline Imitation/Reinforcement Learning, DICE, Example-based
RL, Convex Optimization
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Figure 1: Diagram of SMODICE. First, a state-based discriminator is trained using the offline dataset dO and expert
observations (resp. examples) dE . Then, the discriminator is used to train the Lagrangian value function. Finally, the value
function provides the importance weights for policy training, which outputs the learned policy d∗.

1 Introduction

The offline reinforcement learning (RL) framework [11, 13] aims to use pre-collected, reusable offline data—without
further interaction with the environment—for sample-efficient, scalable, and practical data-driven decision-making.
However, this assumes that the offline dataset comes with reward labels, which may not always be possible. To address
this, offline imitation learning (IL) [20, 1, 7] has recently been proposed as an alternative where the learning algorithm is
provided with a small set of expert demonstrations and a separate set of offline data of unknown quality. The goal is to
learn a policy that mimics the provided expert data while avoiding test-time distribution shift [18] by using the offline
dataset.

Expert demonstrations are often much more expensive to acquire than offline data; thus, offline IL benefits significantly
from minimizing assumptions about the expert data. In this work, we aim to remove two assumptions about the expert
data in current offline IL algorithms: (i) expert action labels must be provided for the demonstrations, and (ii) the expert
demonstrations are performed with identical dynamics (same embodiment, actions, and transitions) as the imitator
agent. These requirements preclude applications to important practical problem settings, including (i) imitation from
observations, (ii) imitation with mismatched expert that obeys different dynamics or embodiment (e.g., learning from
human videos), and (iii) learning only from examples of successful outcomes rather than full expert trajectories [2]. For
these reasons, many algorithms for online IL have already sought to remove these assumptions [19, 14, 17, 2], but extending
them to offline IL remains an open problem.

We propose State Matching Offline DIstribution Correction Estimation (SMODICE), a general offline IL framework that
can be applied to all three problem settings described above. At a high level, SMODICE is based on a state-occupancy
matching view of IL; in particular, it optimizes a tractable offline upper bound of the KL-divergence of the state-occupancy
d between the imitator π and the expert E:

min
π

DKL(d
π(s)∥dE(s)). (1)

This state-occupancy matching objective allows SMODICE to infer the correct actions from the offline data in order to
match the state-occupancy of the provided expert demonstrations. This naturally enables imitation when expert actions are
unavailable, and even when the expert’s embodiment or dynamics are different, as long as there is a shared task-relevant
state. Finally, we show that example-based RL [2], where only examples of successful states are provided as supervision,
can be formulated as a state-occupancy matching problem between the imitator and a “teleporting” expert that is able to
reach success states in one step. Hence, SMODICE can also be used as an offline example-based RL1 method without any
modification.

Naively optimizing the offline upper bound on (1) would result in an actor-critic style IL algorithm akin to prior
work [6, 8, 9]; however, these algorithms suffer from training instability in the offline regime [10, 12, 7] due to the entangled
nature of actor and critic learning, leading to erroneous value bootstrapping [13]. SMODICE bypasses this issue and
achieves “actor-free” training by directly estimating the importance weight ratio of the occupancy measures between
the optimal policy and the empirical behavior policy of the offline data, leveraging the stationary distribution correction
estimation [15, 16] (DICE) paradigm. Specifically, by formulating the policy optimization problem via its dual (i.e.,
optimizing over the space of valid state-action occupancy distributions) and applying Fenchel duality, SMODICE obtains
an unconstrained convex optimization problem over a value function arising from Lagrangian duality, which admits
closed-form solutions in the tabular case and can be easily optimized using stochastic gradient descent (SGD) in the deep
RL setting. Then, SMODICE projects the optimal value function onto the dual space to extract the optimal importance
weights, and learns the optimal policy via weighted Behavior Cloning. Note that SMODICE does not learn a policy until
the value function has converged. As such, SMODICE performs a sequence of disjoint supervised learning problems to

1We refer to this problem as “offline imitation learning from examples” to unify nomenclature with the other two problems.
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achieve stable policy learning. The method overview is illustrated in Figure 1, and we omit all other method details and
derivations in this extended abstract; the full paper is publicly available: https://arxiv.org/abs/2202.02433

(a) Mismatched experts (b) Learning via examples

Figure 2: Illustrations of tabular SMODICE for
offline imitation learning from mismatched ex-
perts and examples.

Through extensive experiments, we show that SMODICE is effective
for all three problem settings we consider and outperforms all state-
of-art methods in each respective setting. Altogether, our proposed
method SMODICE can serve as a versatile offline IL algorithm that
is suitable for a wide range of assumptions on expert data.

Pedagogical examples. To illustrate SMODICE’s versatility, we have
applied it to two gridworld tasks, testing offline IL from mismatched
experts and examples, respectively. Figure 2(a) shows an expert agent
that can move diagonally in any direction, whereas the imitator can
only move horizontally or vertically. In Figure 2(b), only a success
state (the star) is provided as supervision. An offline dataset collected
by a random agent is given to SMODICE for training in both cases.
As shown, SMODICE recovers an optimal policy (i.e. minimum state-
occupancy divergence to that of the expert) in both cases.

2 Experiments

We experimentally demonstrate that SMODICE2 is effective for offline IL from observations, mismatched experts, and
examples. We briefly describe the tasks and datasets for each setting, and provide all remaining experimental details in
the full paper. SMODICE videos are on the project website:https://sites.google.com/view/smodice/home

Tasks and Datasets. We utilize the D4RL [3] offline RL dataset. We consider the following standard Mujoco environments:
Hopper, Walker2d, HalfCheetah, and Ant. For each, we take a single expert trajectory from the respective “expert-v2”
dataset as the expert dataset and omit the actions. For the offline dataset, following [7], we use a mixture of small number
of expert trajectories (≤ 200 trajectories) and a large number of low-quality trajectories from the “random-v2” dataset
(we use the full random dataset, consisting of around 1 million transitions). This dataset composition is particularly
challenging as the learning algorithm must be able to successfully distinguish expert from low-quality data in the offline
dataset.

(a) Mujoco (b) AntMaze (c) Franka Kitchen

Figure 3: Ilustrations of the evaluation environments.

We also include two more challenging environments from
D4RL: AntMaze and Franka Kitchen. In AntMaze (Figure
3(b)), an Ant agent is tasked with navigating an U-shaped
maze from one end to the other end (i.e., the goal region).
The offline dataset (i.e., “antmaze-umaze-v2”) consists of
trajectories (≈ 300k transitions) of an Ant agent navigating
to the goal region from initial states; The trajectories are
not always successful; often, the Ant flips over to its legs
before it reaches the goal. We visualize this dataset on
the project website. As above, we additionally include
1 million random-action transitions to increase the task difficulty. We take one trajectory from the offline dataset that
successfully reaches the goal to be the expert trajectory. Franka Kitchen (Figure 3(c)), introduced by [5], involves controlling
a 9-DoF Franka robot to manipulate common household kitchen objects (e.g., microwave, kettle, cabinet) sequentially
to achieve a pre-specified configuration of objects. The dataset (i.e., “kitchen-mixed-v0”) consists of undirected human
teleoperated demonstrations, meaning that each trajectory only solves a subset of the tasks. Together, these six tasks
(illustrated in Figure 2) require scalability to high-dimensional state-action spaces and robustness to different dataset
compositions.

Finally, in the offline IL from examples setting, we include the PointMass-4Direction environment. Here, a 2D PointMass
agent is tasked with navigating to the middle point of a specified edge of the square that encloses the agent. At training
and evaluation time, we set the left edge to be the desired edge and collect success states from the offline data accordingly.
This task is low-dimensional but consists of multi-task offline data, making it challenging for algorithms such as BC that
do not solve the example-based RL objective.

A subset of the first six tasks are re-used for the three settings, and the only difference across the settings is the type of
provided expert data. In the mismatched expert setting, we utilize HalfCheetah, Ant, and AntMaze. For the first two,
the original expert data is replaced by demonstrations from a crippled version of the agent. For AntMaze, we use a
PointAass agent to provide the demonstration. In offline IL from examples setting, we utilize AntMaze and Kitchen tasks

2Code is available at: https://github.com/JasonMa2016/SMODICE
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Figure 4: Offline imitation learning from observations results.

Figure 5: Offline imitation learning from mismatched experts results.

but replace expert demonstrations with just examples of success states; Kettle and Microwave are two sub-tasks needed to
be completed in the original full task.

Baselines. We compare SMODICE to state-of-art methods in respective settings. In IfO, we consider DEMODICE [7],
Behavior Cloning (BC), SAIL [14], and ORIL [20]; DEMODICE uses expert-actions, while SAIL and ORIL3 are state-based
IL methods. For the mismatched expert setting, we consider SAIL and ORIL. For the offline IL from examples setting, we
consider RCE [2], the state-of-art method in this setting, and ORIL. SAIL and RCE are online actor-critic methods, we
replace their original RL method with TD3-BC [4], a state-of-art offline RL method, to make them compatible in the offline
setting; we also implement ORIL using TD3-BC to make the comparison fair.

Results. The training curves are shown in Figure 4, 5, 6. As shown, SMODICE is the best performing method in all three
settings. In Figure 4, we see that SMODICE matches the state-of-art method DEMODICE without access to expert actions
and significantly outperforms it in the challenging kitchen task. Other baselines struggle to perform well in all six tasks
due to different dataset compositions and high-dimensionality of the state space, among many other factors.

While ORIL and SAIL outperform SMODICE on AntMaze, when the expert supervision is provided by a morphologically
different agent (i.e., PointMass), their performances greatly decline. In contrast, SMODICE exhibits robustness to
mistmached expert in AntMaze as well as the other two tasks considered in Figure 5.

Finally, when we further reduce the expert supervision to mere examples of successful outcome (Figure 6), SMODICE
is more stable and outperforms the current state-of-art RCE. Furthermore, in the most challenging Microwave task,
SMODICE is the only method that makes non-trivial progress.

3 Conclusion

We have proposed SMODICE, a simple, stable, and versatile algorithm for offline imitation learning from observations,
mismatched experts, and examples. Leveraging Fenchel duality, SMODICE optimizes a state-occupancy matching
objective that enjoys closed-form tabular solution and stable optimization with deep neural networks. Through extensive
experiments, we have shown that SMODICE significantly outperforms prior state-of-art methods in all three settings.

3we adapt ORIL to state-based IL method by using a state-based discriminator.
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Figure 6: Offline imitation learning from examples results.
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Abstract

Humans are able to learn about the visual world with a remarkable degree of generality and robustness, in part due to
attention mechanisms which focus limited resources onto relevant features. Deep learning models that seek to replicate
this feature of human learning can do so by optimizing a so-called “disentanglement objective”, which encourages rep-
resentations that factorize stimuli into separable feature dimensions [4]. This objective is achieved by methods such as
the β-Variational Autoencoder (β-VAE), which has demonstrated a strong correspondence to neural activity in biological
visual representation formation [5]. However, in the β-VAE method, learned visual representations are not influenced
by the utility of information, but are solely learned in an unsupervised fashion. In contrast to this, humans exhibit gen-
eralization of learning through acquired equivalence of visual stimuli associated with similar outcomes [7]. The question
of how humans combine utility-based and unsupervised learning in the formation of visual representations is therefore
unanswered. The current paper seeks to address this question by developing a modified β-VAE model which integrates
both unsupervised learning and reinforcement learning. This model is trained to produce both psychological represen-
tations of visual information as well as predictions of utility based on these representations. The result is a model that
predicts the impact of changing utility on visual representations. Our model demonstrates a high degree of predictive
accuracy of human visual learning in a contextual multi-armed bandit learning task [8]. Importantly, our model takes as
input the same complex visual information presented to participants, instead of relying on hand-crafted features. These
results provide further support for disentanglement as a plausible learning objective for visual representation formation
by demonstrating their usefulness in learning tasks that rely on attention mechanisms.

Keywords: Representation Modelling, Visual Learning, Attention
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1 Introduction

In the context of visual learning, a representation refers to the internal psychological state of an agent while perceiving
the external information relevant to a task. In complex learning tasks, agents must form efficient representations of
information due to limited cognitive resources by ignoring or abstracting away irrelevancies. An important phenomenon
in studies of human representation learning is acquired equivalence, which describes increased generalization of dissimilar
stimuli based on associations of similar outcomes [7]. The focus of this work is in modelling the visual representations
formed by humans in utility-based learning tasks.

One method for modelling visual representation formation in humans is the Variational Auto-Encoder (VAE), a deep
neural-network model that forms informationally limited representations of visual information. This is done by taking an
input stimuli and reducing the dimensionality of the neural network layer by layer to form a constrained representation,
which is then used to reconstruct the original stimuli. In VAEs the learned latent representations take the form of a
multi-variate Gaussian distribution. This distribution can be sampled from to form lossy reconstructions of the original
stimuli. VAE models are trained to produce reconstructions that are as close to the original stimuli as possible, and thus
effectively learn useful low-dimensional representations.

Reinforcement Learning (RL) techniques for predicting human behaviour in utility-based learning have shown impres-
sive accuracy, even in complex visual tasks that require attention mechanisms [8]. However, these methods typically rely
on the use of tabular RL and hand-crafted features that represent complex visual information using low-dimension one-
hot encodings. Deep Reinforcement Learning (DRL) has demonstrated human-level performance on a range of visual
based tasks, such as video games [9]. These neural network-based techniques reach super human level performance on
a variety of tasks by leveraging a large amount of experience, often the equivalent of thousands of hours on a single task
[9]. The model 1 presented in this work connects deep learning techniques in representation learning with predictions of
utility that can be trained using RL to model human behaviour and visual representations in learning tasks.

2 Background

2.1 Variational Autoencoders

VAE models seek to learn representations of visual stimuli that preserve statistical structure. The closely related β-VAE
method adds to the VAE a controllable information bottleneck regulated by an additional β parameter, to encourage gen-
eralization and robustness. As β increases the information capacity of the latent representation decreases, while when
set to 0, information is unconstrained. β-VAE models have previously been used to model human choice in a visual cate-
gorization task [2] and visual decision making [6]. Results from this experiment provide evidence that systematic biases
of human categorization can be explained by the information-constrained representations formed by β-VAE models.

Relatively less attention has been focused on the usefulness of these latent representations for utility learning tasks. The
Uβ-VAE model presented in this work seeks to account for the interaction between utility-based learning and visual
representation learning. The result is a deep learning based approach that is able to reflect the high generalization
and sample efficiency of human learning, while also producing predictions of psychological representations that have
applications beyond predicting behaviour, detailed in section 4.

2.2 Feature Reinforcement Learning

Feature Reinforcement Learning has been suggested as a plausible account for the high sample efficiency of human
learning in visual learning tasks [8]. This method predicts the value of a stimulus as the sum of its constituent features;
for example, a red square is valued as the sum of the features “red” and “square” individually. This encourages com-
positionality, reducing the amount of experience required to make predictions of utility with novel stimuli, improving
generalization and sample efficiency, and better modelling human behaviour.

The FRL model was trained on a task in which participants were presented with three objects, each composed of three
unique features: shape (square, triangle, circle), color (red, yellow, green), and pattern (dotted, wavy, hatched), and asked
to predict the highest-utility stimulus, based on an observed reward. Critically, during blocks of trials (∼20-25 stimuli), a
single feature among the 9 possible features was indicative that a stimuli had a higher utility than the other two options.
This single feature indicative of utility is the ‘feature of interest’, and the goal of a block of trials is to determine this
feature and repeatedly select the option containing it. This allowed human participants to quickly generalize to stimuli
pairs they had not seen before by leveraging the regularity of this utility function. Figure 1.A shows an example of the
stimulus of red-wavy-square. A more complete description of the methodology is given in [8].

1Model code available at: github.com/TylerJamesMalloy/DisentangledVisualLearning
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Figure 1: A Schematic of Utility β-VAE model with example input fed into convolutional layers to develop latent repre-
sentations used both as input to utility prediction as well as sampled from to reconstruct original stimuli. B Schematic of
CNN model used for comparison, structured similarly as the β-VAE based model, using the final fully connected layer
to predict utilities. C Predictive accuracy of FRL, Utility β-VAE and 2 CNN models (sparse and standard).

3 Model

3.1 Utility β-VAE Model

To allow for utility-predictions based on visual stimuli, we developed a Utility β-VAE model (Uβ-VAE) that outputs
both a stimulus reconstruction and utility prediction (see 1.A). This architecture is similar to previous methods that have
been used in visual categorization tasks [2] and decision making [6] as well as deep RL methods that train based on
abstract constrained representations of the state such as MuZero [9]. The Uβ-VAE model is trained using a loss function
which balances the standard reconstruction error Eqϕ(z|x)[log pθ(x|z)] and model complexity βDKL

(
qϕ(z|x)||p(z)

)
with

the addition of utility error υ(U(z)− u(x)) through the following loss function:

L(θ,U , ϕ;x, z, β) = Eqϕ(z|x)[log pθ(x|z)]− βDKL

(
qϕ(z|x)||p(z)

)
+ υ
(
U(z)− u(x)

)2

In the model shown in 1.A, U represents the utility prediction module which outputs the prediction U(z) based on the
latent representation z, and u(x) represents the predicted utility from the supplied RL algorithm. This utility prediction
error is weighted by the value υ, which allows for flexibility in the relevance of utility. The remaining terms are identical
to those defined in the traditional β-VAE model. ϕ represents the parameters of the encoder qϕ(z|x), which defines the
probability distribution over latent representations z given the stimulus x and θ represents the parameters of the decoder
pθ(x|z) of the stimulus x given the representation z. For a more complete description, see [4].

As mentioned, updating the predictions of utility relies on an error term based on the difference between the model
predictions and a separate RL algorithm. In the results presented here these training utilities are supplied by the FRL
algorithm. Training the Uβ-VAE model on utility predictions from the FRL algorithm allows for a comparison of our
model against alternative deep learning approaches which are described in the following section.

3.2 Model Comparison

To provide a comparison with alternative DRL techniques, our model is compared against a similarly structured convo-
lutional neural network (CNN) that is trained to predict the category of the stimulus (shape, color, and texture). This
network (Figure 1.B) makes utility predictions based on the final layer of the network before the output categorization
prediction. The network is trained in the same utility-weighted manner as the Utility β-VAE model. We also compare
our model against a ‘Sparse’ CNN, which is trained using the same dimensionality for the utility prediction input as
our model (6 values). Additionally, to emulate the properties of the β-VAE, we use Dropout, randomly zeroing some
percentage (60%) of the NN nodes during training, which has been related to the information bottleneck principle [1].

In Figure 1.B models are compared in their accuracy of predicting human behaviour according to predictive accuracy, the
probability that the model assigns to the action that was selected by the human participant. Note that the upper limit for
all deep learning methods (BVAE, CNN, Sparse) is the accuracy of the FRL model that produces utility values used in
training all DNN models. The Uβ-VAE model closely approaches the predictive accuracy of the baseline FRL, indicating
that it has learned to predict the utility, but has significantly higher accuracy than the other deep learning methods.
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Figure 2: A: Demonstration of the relative likelihood that a data-point will be mislabeled (red area). Decreasing the
likelihood of mislabelling results in a higher KL-divergence. The data-point x̃ drawn from the left overlapping blue dis-
tribution has a high likelihood of being mislabelled, this likelihood is decreased with the right partitioned distributions.
B: Demonstration of the impact of learning utility values on latent representations. With all utilities as 0 (left) there is no
preference for representation overlap. As the utility of the orange stimuli increases (middle) the model learns to prefer
an overlap that reflects the acquired equivalence based on similar utility. Finally, as orange utility increases significantly
(right), the model learns representations that only allow an overlap of stimuli with the same utility. C: Overlap of β-VAE
latent representation distributions by episode trial, grouped by similar vs. dissimilar utility stimuli. D: Symmetric KL-
divergence of β-VAE latent distribution overlap by episode trial, grouped by similar vs. dissimilar utility stimuli.

4 Modelling Results

The first method of analyzing the latent representations learned by Uβ-VAE uses information theoretic measures to
explain the high generalization and robustness of the model. The β parameter in the β-VAE model limits informational
complexity based on KL-Divergence. Overlapping latent representation distributions, such as those shown on the left
side of Figure 2.A (based on a figure in [3]), have lower KL-Divergence scores and require less information to represent.
However, a data point x̃ drawn from a distribution that overlaps with others is more likely to be incorrectly labelled as
being drawn from a different distribution. This issue can be solved by partitioning representations, such as those shown
on the right side of Figure 2.A, which increases the informational complexity of the learned representations. The loss
function of the β-VAE model balances reconstruction accuracy and the complexity of learned representations. This has
the effect of ensuring that neighboring stimuli in data space produce similar distributions in latent space [3].

In Uβ-VAE, representations are formed to balance reconstruction accuracy, informational complexity and utility-
prediction error. This results in latent representations that depend on stimulus utility as well as visual structure. Previ-
ous research in acquired equivalence has demonstrated that stimuli representations can be updated based on categories
within visual learning tasks [7]. The utility-based training of our model is motivated in part by a similar acquired equiv-
alence, instead based on the utility that is associated with a visual stimuli in a learning task.

If this utility-based acquired equivalence exists in Uβ-VAE when predicting the behaviour of human subjects, it should
be observable through a change in the similarity of latent representations. This expected change is demonstrated in
Figure 2.B, which shows the hypothetical alteration of a learned latent representation as the utility associated with each
stimuli is learned. As the utility associated with the orange stimuli increases, the cost associated with the orange stimuli
being mistaken for either blue or green increases, and the overlap of these latent representation distributions changes.
We test whether this effect takes place in Uβ-VAE by comparing the representation distribution overlap (Figure 2.C) and
Kullback–Leibler divergence (Figure 2.D) between stimuli with similar utilities vs. stimuli with different utilities. The
gap in overlap and distribution similarities based on utility provides evidence that the representations learned by our
model have an acquired equivalence based on stimuli utility.
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Figure 3: Average reconstructions from perturbed latent samples after training on each of the 9 features of interest, split
into stimuli containing (top) and not containing (bottom) the given feature of interest. Note that the color features used
(blue, green, red) differ from those used in [8] to maximize the reconstruction error between differently colored stimuli.

The final comparison of latent representations is done by visualizing the reconstructed images by first training our β-
VAE model to predict a high utility for 1 of the 9 features of interest. After this, the learned latent representation for all
stimuli is sampled from, with a small noise added. These noisy samples are used to reconstruct the stimuli, averaged
over 1000 samples in the images shown in Figure 3. We compare the average reconstruction of stimuli that contain (top)
and do not contain (bottom) the feature of interest. This visualization demonstrates that the learned representations of
stimuli containing the feature of interest are more robust to noisy sampling. Specifically, when a particular color, shape,
or texture is important for predicting utility, that feature tends to be better preserved in the stimulus reconstructions. This
increased robustness is due to a partitioning of the representation space (as described in Figure 2.A) along the feature of
interest, furthering the evidence of an acquired equivalence along the feature related to utility.

5 Conclusions

The Uβ-VAE model presented in this work quickly learns the stimuli utilities used by the FRL method to predict human
performance in a complex visual task. This provides further support for the disentanglement objective as a plausible
account of human visual representation formation, extending its application into visual utility learning. Compared with
alternative deep learning methods, our approach better fits human behaviour while also producing latent representations
that have been connected to biological visual representations in previous work.

Beyond predictive accuracy, the latent representations formed by our model can provide interesting insight into biologi-
cal visual representations used in utility-based learning tasks. Analysis of both information theoretic and visualizations
of these latent representations demonstrated evidence of a acquired equivalence of visually different stimuli based on
their similar utility. This feature of Utility β-VAE representations opens up interesting possibilities for future research
combining visual utility learning with additional tasks like change detection, categorization, and others.

References
[1] Alessandro Achille and Stefano Soatto. “Information dropout: Learning optimal representations through noisy com-

putation”. In: IEEE transactions on pattern analysis and machine intelligence 40.12 (2018), pp. 2897–2905.
[2] Christopher Bates and Robert Jacobs. “Efficient Data Compression Leads to Categorical Bias in Perception and

Perceptual Memory.” In: CogSci. 2019, pp. 1369–1375.
[3] Christopher P. Burgess et al. “Understanding disentangling in β-VAE”. In: CoRR abs/1804.03599 (2018).
[4] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”. In: 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017. 2017.
[5] Irina Higgins et al. “Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face

patch neurons”. In: Nature communications 12.1 (2021), pp. 1–14.
[6] Tyler Malloy and Chris R. Sims. “Modelling visual decision making using a variational autoencoder”. In: 19th In-

ternational Conference on Cognitive Modelling, ICCM 2021, Virtual Conference, July 1-12, 2021. 2021.
[7] M Meeter, D Shohamy, and CE Myers. “Acquired equivalence changes stimulus representations”. In: Journal of the

experimental analysis of behavior 91.1 (2009), pp. 127–141.
[8] Yael Niv et al. “Reinforcement learning in multidimensional environments relies on attention mechanisms”. In:

Journal of Neuroscience 35.21 (2015), pp. 8145–8157.
[9] Julian Schrittwieser et al. “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”. In: Nature

588.7839 (2020), pp. 604–609.

4

RLDM 2022 Camera Ready Papers 396

396



A Novel Inverse Reinforcement Learning Formulation
for Sample-Aware Forward Learning

Giorgio Manganini
Department of Computer Science

Gran Sasso Science Institute
L’Aquila, Italy

giorgio.manganini@gssi.it

Angelo Damiani
Department of Computer Science

Gran Sasso Science Institute
L’Aquila, Italy

angelo.damiani@gssi.it

Alberto Maria Metelli
Artificial Intelligence and Robotic Laboratory

Politecnico di Milano
Milano, Italy

albertomaria.metelli@polimi.it

Marcello Restelli
Artificial Intelligence and Robotic Laboratory

Politecnico di Milano
Milano, Italy

marcello.restelli@polimi.it

Abstract

We propose a novel formulation for the Inverse Reinforcement Learning (IRL) problem, which jointly accounts for the
compatibility with the expert behavior of the identified reward and its effectiveness for the subsequent forward learning
phase. Albeit quite natural, especially when the final goal is apprenticeship learning (learning policies from an expert),
this aspect has been completely overlooked by IRL approaches so far. We propose a new model-free IRL method that
is remarkably able to autonomously find a trade-off between the error induced on the learned policy when potentially
choosing a sub-optimal reward, and the estimation error caused by using finite samples in the forward learning phase,
which can be controlled by explicitly optimizing also the discount factor of the related learning problem. The approach is
based on a min-max formulation for the robust selection of the reward parameters and the discount factor so that the
distance between the expert’s policy and the learned policy is minimized in the successive forward learning task when
a finite and possibly small number of samples is available. Differently from the majority of other IRL techniques, our
approach does not involve any planning or forward Reinforcement Learning problems to be solved. After presenting
the formulation, we provide a numerical scheme for the optimization, and we show its effectiveness on an illustrative
numerical case.

Keywords: Inverse Reinforcement Learning, Off-line Reinforcement Learning,
Sample Complexity, Min-Max Optimization
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1 Introduction

Inverse Reinforcement Learning [IRL, 11] is the process of recovering, from (demonstrations of) an expert’s policy, a
reward function, which in many cases is the most parsimonious way to describe the behaviour of the expert, especially
in complex problems. The learned reward is intended to be successively used in forward Reinforcement Learning (RL)
to find new policies that could generalize over unseen states or even improve the expert’s actions in new environments,
accounting for transferability of the expert’s intention, which is compactly described by its reward function.

In their quest for the expert’s reward function, many IRL approaches implement an iterative process [1, 15, 4, 5], that
alternates between solving a forward RL problem and updating a reward function estimate. In particular, consistency in
terms of performance equivalence between the demonstrated trajectories and the ones induces by the learner’s policy are
enforced. Then, the learning of a generalized policy is performed using a forward RL procedure based on the current
estimate of the reward. Another main common aspect in most IRL approaches is the assumption about the underlying
MDP. Traditionally, the vast majority of IRL methods rely on the knowledge of the model (either given or accurately
learnt from the demonstrated trajectories) [11, 15, 10], which sometimes is also used to perform the internal forward
RL subroutines for finding/evaluating intermediate optimal policies. More recently model-free approaches have been
proposed [5, 9], even though some of them still require continuous interactions with the environment [1, 4, 5].

In this work, we take a different point of view on IRL and focus on finding a reward function not only compatible with the
expert’s demonstrations, but that can make the next forward learning phase as efficient as possible, in terms of the sample
complexity required to learn a near-optimal policy. We explicitly take into account how the recovered reward function
will be employed, i.e., plugged into (a possibly different) environment and used to perform forward RL. In this spirit,
among the compatible ones, we prefer the rewards that make the next forward learning phase as efficient as possible. This
goal is indirectly pursued by many IRL algorithms, but, to the best of our knowledge, no algorithm performs the reward
selection phase by explicitly quantifying the sample complexity of forward RL. The novel formulation we propose blends
these ambitious goals together and results in an algorithmic procedure which i) is purely model–free, ii) does not need any
interaction with the environment to collect new on-policy data for policy evaluation, and iii) does not require solving any
forward problem (i.e., finding an optimal policy given a candidate reward function).

2 Background

We define a Markov Decision Process as M = (S,A, P, r, γ), where S and A are continuous state and action spaces,
P : S × A × S → R≥0 is the transition model P (s′|s, a), r : S × A → [0, 1] is the reward function, and γ ∈ [0, 1) is the
discount factor. A policy π : A×S → R≥0 specifies the action density for each state π(a|s). We denote withQπr,γ : S×A → R
the state-action value function of the policy π. Any policy π ∈ Π satisfying

∫
A π(a|s)Q(s, a)da = maxa∈AQ(s, a) for all

states s ∈ S is named greedy w.r.t. the function Q. Given Q, we denote with G[Q] ⊆ Π the set of greedy policies w.r.t. Q.

The IRL problem aims at finding a reward function r that can explain the behaviour of an expert that follows a policy πE ,
which is optimal w.r.t. some unknown reward rE [11]. Formally, a reward r is compatible with the expert’s policy πE if
πE ∈ Π is optimal under r, i.e., πE ∈ G[Q?r,γ ], where Q?r,γ is the optimal state-action value function under the pair (r, γ).

3 The IRL formulation for Efficient Forward Learning

The issue of efficient learning is related with the sample complexity of finding a good approximation of the optimal policy.
In RL, the number of calls to the sampling model are generally a function of the problem parameters and, in particular, of
the discount factor γ (linked to the effective number of decision epochs). The smaller is the discount factor, the smaller
is the number of samples required to attain a near-optimal estimate of the optimal value-function, as shown in many
sample complexity bounds depending on a power of 1/(1− γ) [e.g. 2]. Moreover, the recovered reward in IRL has to be
compatible with expert’s demonstration, which are known only within some accuracy ε and confidence δ, being estimated
from a finite set of demonstrations.

The following novel IRL formulation blends all these elements together, and takes into direct consideration the effect
of the learned IRL reward on the subsequent forward learning phase. Suppose we are given a forward RL algorithm
A that, provided with a reward function r, a discount factor γ, and a number of samples M ≥ 0 is able to output an
εA(M,γ)-approximation of the expert Q-function, with probability at least 1− δ. Then, the influence of the IRL reward
and discount factor on the distance between the expert’s policy and the learned policy in the successive forward learning
task, when M samples are available, can be captured by the next adversarial min-max optimization program:

min
r,γ

max
π∈G[Q̂πEM ]

∥∥QπErE ,γE −QπrE ,γE
∥∥ (1a)

s.t.
∥∥∥Q̂πEM −QπEr,γ

∥∥∥ ≤ εA(M,γ), r ∈ R, γ ∈ [0, 1), (1b)

whereR is a set of available reward functions and ‖ · ‖ is a suitably defined norm.
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The formulation (1a) constitutes a worst-case guarantee on the sub-optimality of the learned policy π w.r.t. the expert’s
policy πE , when evaluated under the true (and unknown) reward rE and discount factor γE . This implies also the
compatibility of the learned reward r with the expert’s policy, which is the main requirement in IRL. Moreover, the explicit
optimization of the learned discount factor γ allows to trade-off with the reward itself the optimality of the learned policy
π, and hence tune the sample complexity in the subsequent forward RL task. To this end, we define in (1b) the confidence
region of the estimated expert’s Q-function Q̂πEM under the optimized reward r and discount factor γ. This set determines
the feasible domain where we can seek for a greedy policy mimicking the expert’s one, which will be known within some
accuracy ε and confidence level δ varying with the number of data M available during the forward learning phase.

4 Construction of a Solvable IRL Formulation

This section is devoted to the construction of a numerically tractable optimization problem for the formulation (1), which
is not readily solvable because of the unknown quantities rE and γE in its objective function (1a). First, we consider
linearly independent features φ : S ×A → [0, 1]dθ and ψ : S ×A → [0, 1]dω through which we linearly parametrize the
reward function and the action-value function: rθ(s, a) = φ(s, a)>θ and Q̂πω(s, a;ω) = ψ(s, a)>ω, where θ ∈ Rdθ and
ω ∈ Rdω . We restrict the search of the greedy policy over a class of parametric differentiable policies Πη =

{
πη : η ∈ Rdη

}
.

We manipulate the objective function and the constraint of the formulation (1) according to the following steps.

1) Wasserstein Distance on Expert’s Policy πE

We bypass the value-function representations in (1a), and hence remove the dependence on expert’s reward rE and
discount factor γE , 1 by considering a surrogate objective function based on the notion of policy divergence. Specifically,
we bound the Q-function distance with the policy distance, thanks to the following theorem.
Theorem 4.1. [12] If the MDP and the policy πE are Lipshitz continuous with constants (Lr, LP ) and Lπ . Then, it holds that

∥∥QπErE ,γE −QπrE ,γE
∥∥
µ
≤ γELrLπ

(1− γE) (1− γELP (1 + Lπ))
×
∫

S×A
dπEµ,γE (s)W2(πE(·|s), π(·|s)) ds ,

where W2 is the L2-Wasserstein distance and dπEµ,γE is the γE-discounted state occupancy induced by policy πE .

Since we deal with continuous actions and deterministic policies (the expert’s policy is usually deterministic), the
Wasserstein’s distance is an appropriate distributional divergence. Given two deterministic policies πη and πE , and a state
s ∈ S, it can be computed as W 2

2

(
πE(s), πη(s)

)
=
(
πE(s)− πη(s)

)2.

2) Dealing with the Forward Q-function Q̂πEM

We replace, in the constraint (1b), the forward Q-function Q̂πEM , which is not available during the IRL problem, with one
computable during the IRL task, say Q̂πEN . To this end we start simplifying the greedy constraint from (1a):

πη ∈ G
[
Q̂πEM

]
⇒ Q̂πEM (s, πη(s)) ≥ Q̂πEM (s, πE(s)) ∀s ∈ S ⇒

∑

s∈DIRL

Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≥ 0, (2)

The first relaxation involves the transition from a greedy policy to all policy with at least some performance improvement,
so as to have an explicit dependence of the learner policy πη on Q̂πEM . The second relaxation implies that the constraint
should hold on average over a finite subset of selected states DIRL ⊆ S , since it would be impossible enforce it in an infinite
state space (a similar relaxation is operated for instance in [14] for the KL-divergence).

We now use, in the next proposition (see Appendix A for the proof), the original confidence interval (1b) in combination
with the policy improvement inequality (2) to compute a looser constraint than (2) but that does not involve the unknown
quantity Q̂πEM .

Proposition 4.2. Let Q̂πEM be a Q-function known with accuracy εM (with probability 1 − δM ) and let Q̂πEN be the Q-function
estimated with N samples during IRL with accuracy εN (with probability 1− δN ), i.e., :

∥∥∥Q̂πEM (s, a)−QπEr,γ(s, a)
∥∥∥ ≤ εM ,

∥∥∥Q̂πEN (s, a)−QπEr,γ(s, a)
∥∥∥ ≤ εN . (3)

Then, with probability at least 1− δM − δN , inequality (2) is relaxed as:
∑

s∈DIRL

Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s)) + 2εM + 2εN ≥ 0. (4)

1The Q-functions refer to the optimized pair (r, γ) which, for compactness, are removed from the subscripts.
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As for the parameters εM and εN , we now consider the general structures εM = γcM/(1−γ)
√
M, εN = γcN/(1−γ)

√
N, which

generalize most of the sample complexity bounds available in the literature [e.g. 2]. Parameters cM and cN are problem
and algorithm-specific constants, that we will treat as hyperparameters.
Remark 4.3. We remark that the assumption in (3) is simply the constraint (1b) itself, which we directly use here to build the
new relation involving only Q̂πEN . In particular, inequality (4) comprises all the uncertainties related either with Q̂πEM and
Q̂πEN , and it depends on both the outer optimization variables γ (via parameters εM and εN , and the Q-function Q̂πEN ) and
r (via the Q-function Q̂πEN ), as well as on the number of samples N available for the IRL task (rather then on the number of
samples M that will be used in the forward RL problem). Dependence of (4) on the policy πη is instead straightforward.

3) Expert’s Policy Evaluation with Q̂πEN

The final stage in our construction of a solvable IRL formulation is the estimation of the new Q-function Q̂πEN . While, in
principle, any policy evaluation algorithm may be used to this purpose, here we resort to the the least-squares temporal
difference [LSTDQ, 7] algorithm, for which a confidence region of the form (3) is available via Finite-sample Analysis. In
particular, the prediction error of the LSTDQ estimation Q̂πEN (s, a; ω̂) w.r.t. the true value function QπEr,γ(s, a) is provided
by [8, Theorem 5], with the accuracy parameter εN asymptotic to γcN/(1−γ)

√
N .

5 Optimization Algorithm

Having introduced in the previous section all the necessary elements for the definition of our new IRL formulation, we
discuss now the optimzation algorithm for the solution of the min-max optimization problem. We start by rewriting the
final optimization problem in terms of the optimization variables (θ, γ,η) as:

min
θ∈Rdθ
γ∈[0,1)

max
η∈Rdη

∑

s∈DIRL

W2

(
πE(s), πη(s)

)

︸ ︷︷ ︸
, f(η)

, s.t.
∑

s∈DIRL

Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s)) + 2εM + 2εN

︸ ︷︷ ︸
,−g(θ,γ,η)

≥ 0, (5)

where the sample-based approximation on the dataset DIRL is used for the computation of the Wasserstein distance f(·), as
well as for the constraint g(·).

Solving problems as (5) could be extremely challenging in the non-convex setting, where there are no widely-accepted opti-
mization algorithms. Here we look at the min-max optimization as a competitive game between two players and seek for a
stationary solution of the problem. Specifically, we reformulate (5) via the potential function F (θ, γ),maxη:g(η,θ,γ)≤0 f(η),
obtaining minθ∈Rdθ , γ∈[0,1) F (θ, γ). If we assumed the concavity of f(·), we could compute, following [13], the gradient
of F (·) as ∇θ,γF (θ, γ) = ∇θ,γf(η?(θ, γ)), where η?(θ, γ) = arg maxη:g(η,θ,γ)≤0 f(η), and reach a stationary point of (5).
Some caution should be exercised here, since η? is an implicit function of (θ, γ), as it is defined by the constraint g(·). In
place of partial derivatives, we should then resort to the following total differential forms:

dF

dθ
=
∂F

∂η

dη

dθ
, with

dη

dθ
= − ∂g

∂θ

/
∂g

∂η
,

dF

dγ
=
∂F

∂η

dη

dγ
, with

dη

dγ
= −∂g

∂γ

/
∂g

∂η
, (6)

where the differentials and the divisions are to be intended component-wise, and the differentials of η are computed by
applying to g(·) = 0 the Implicit Function Theorem [6]. This iterative procedure would require to find the exact maximum
solution of η?(θ, γ), which can be computationally unfeasible if the function f(·) is not concave. Fortunately, we can
substitute η? with an approximate value η̃? so as to satisfy the condition f(η̃?) ≥ maxη:g(η,θ,γ)≤0 f(η)− ε, and relax the
concavity assumption. In this case, the algorithm is guaranteed [13] to find an approximate stationary point, where the
accuracy level is given by the value of ε.

6 Experiments

As a proof of concept of the behaviour of our new IRL formulation, we run a set of experiments and investigate the main
characteristics of the approach in the well-know Linear Quadratic Gaussian (LQG [3]) control problem. We consider the
scalar case with nominal parameters, and compute in closed-form the expert policy πE which is optimal for the reward
rE(s, a) = −s2 − a2 and γE = 0.9. The Q-function feature vector is ψ = [s2, a2, sa] so as to span the space of the exact
Q-function QπErE ,γE , while the reward features are set to φ = [−s2 − a2, QπEs̄ (s, a)], where QπEs̄ represent the Q-function of
the expert in a shifted LQG problem with the goal in s̄. In the following experiments, the policy is parametrized linearly in
the state as πη(s) = ηs, and the reward weights θ are normalized to sum to 1. Finally, we assumed to have an infinite
number of samples to solve the forward learning problem, and set M =∞.2.

2We assumed to have a sufficiently high number of samples in the forward learning phase to reach the asymptotic behaviour εM → 0
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For a complete numerical analysis of the new min-max formulation, we show in Figure 1 the values of the maximum
Wasserstein distance f(η?) in (5) related to the change of the discount factor γ and the weights θ of the reward rθ, when
we gradually increase the value of the goal state s̄. As expected, when s̄ = 0, the formulation selects as the optimal
min-max solution γ? = 0, thus minimizing the sample complexity for the forward learning phase, and rθ? = QπEs̄ , which
recovers the same behaviour of the expert’s reward rE . Interestingly, while the goal s̄ moves from 0 (the expert’s goal)
to an higher value, the formulation trades off the sample complexity induced by a higher γ with the error induced on
the learned policy when choosing a sub-optimal reward, moving towards the selection of the unbiased expert reward,
selecting γ? = γE and rθ? = rE when the goal s̄ = 0.4 is too different (sub-optimal) w.r.t the expert goal 0.
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(a) s̄ = 0.0
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(b) s̄ = 0.1
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(c) s̄ = 0.2
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(d) s̄ = 0.4

Figure 1: Value of the objective function f(η?) in (5) related to the change of the outer variables (γ,θ), with N = 200, cN =
0.01 and M =∞ . Each plot refers to different values of the goal s̄.
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A Proof of Proposition 4.2

The idea of this proposition is to start from the constraint (2)
∑

s∈S
Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≥ 0, (7)

which includes the unknown quantity Q̂πEM , and to compute a new looser inequality that involves only the known quantity
Q̂πEN . To make the above constraint looser, we need to take a larger LHS, i.e., we need to consider an upper bound to
Q̂πEM (s, πη(s)) and a lower bound to Q̂πEM (s, πE(s)). Starting with the former, we can write:

Q̂πEM (s, πη(s)) = Q̂πEN (s, πη(s)) +
(
Q̂πE(s, πη(s))− Q̂πEN (s, πη(s))

)
+
(
Q̂πEM (s, πη(s))− Q̂πE (s, πη(s))

)
(8)

≤ Q̂πEN (s, πη(s)) +
∣∣∣Q̂πE(s, πη(s))− Q̂πEN (s, πη(s))

∣∣∣+
∣∣∣Q̂πEM (s, πη(s))− Q̂πE (s, πη(s))

∣∣∣ (9)

≤ Q̂πEN (s, πη(s)) + εN + εM , (10)

where in the last step we applied the assumptions (3). Similarly, we can proceed with latter term, and derive

Q̂πEM (s, πE(s)) = Q̂πEN (s, πE(s)) +
(
Q̂πE(s, πE(s))− Q̂πEN (s, πE(s))

)
+
(
Q̂πEM (s, πE(s))− Q̂πE (s, πE(s))

)
(11)

≥ Q̂πEN (s, πE(s))−
∣∣∣Q̂πE(s, πE(s))− Q̂πEN (s, πE(s))

∣∣∣−
∣∣∣Q̂πEM (s, πE(s))− Q̂πE (s, πE(s))

∣∣∣ (12)

≥ Q̂πEN (s, πE(s))− εN − εM , (13)

where again in the last step we applied the assumptions (3). Putting back together the computed upper and lower bound
we obtain:

∑

s∈S
Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≤

∑

s∈S
Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s)) + 2εN + 2εM . (14)

If the original constraint is satisfied, also the looser one holds.

B LQ case with a limited amount of samples

In order to highlight the effect of employing a possibly suboptimal reward when the forward RL phase has a limited
number of samples at disposal, we design an additional experiment in the LQ setting. Specifically, we consider the two
reward functions learned in the previous experiments −s2 − a2 and QπE0 (s, a). In Figure 2 we plot the learned parameter
(top row) and the average discounted return (bottom row), when performing RL with REINFORCE in two different LQ
environments. On the left, we consider the very same environment in which we performed the IRL phase, while on the
right we consider an LQ in which we change the dynamical matrix (multiplied by 0.85 compared to the original setting).
Thus, on the left, as expected, we observe that both reward functions QπE0 (s, a) (Controller with IRL reward) and −s2 − a2

(Controller with Real reward) are able to recover the optimal parameter, although QπE0 (s, a) requires a smaller number of
samples. However, the interesting behavior is displayed on the right. While the original reward function −s2 − a2 is able
to recover the correct parameter, when the number of samples is limited the biased reward QπE0 (s, a) learned in a different
environment is more effective to achieve a reasonable performance. Clearly, as the number of samples increase the effect
of bias is more visible.

The effect of using the optimized IRL reward on the sample complexity of the forward learning problem is also depicted
in Figure 3. After solving the problem (5) (with parameters N = 200, cN = 0.01,M = ∞, s̄ = 0), we employ the final
pair (γ?,θ?) to learn the optimal policy parameter as the number of available samples vary: in particular, we select 20
uniformly random initial states and then estimate the gradient direction in the REINFORCE algorithm by a Monte Carlo
evaluation of the reward along trajectories of different length H = {1, 2, 6, 10}. The plot clearly shows how the IRL reward
and discount factor allow the RL algorithm to reach the optimal value of the policy parameters much faster then using
the LQG reward, i.e., the number of samples processed during the learning process is much lower if the solution of our
proposed IRL formulation is used in place of the expert’s (and exact) one (γE , rE).
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Figure 2: Comparison of the learned policy parameter and average return when learning in the same environment used
for IRL (left) and when changing the environment (right) (10 runs, 95% c.i.).
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Figure 3: Impact of the optimized IRL reward on the sample efficiency of the forward learning task, and convergence to
the expert’s policy parameter (10 runs, 95% c.i.).
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Abstract

The performance of a reinforcement learning (RL) system depends on the computational architecture used to approximate
a value function. Deep learning methods provide both optimization techniques and architectures for approximating
nonlinear functions from noisy, high-dimensional observations. However, prevailing optimization techniques are not
designed for strictly-incremental online updates. Nor are standard architectures designed to efficiently represent obser-
vational patterns from an a priori unknown structure: for example, light receptors randomly dispersed in space. This
paper proposes an online RL algorithm for adapting a value function’s architecture and efficiently finding useful nonlinear
features. The algorithm is evaluated in a spatial domain with high-dimensional, stochastic observations. The algorithm
outperforms non-adaptive baseline architectures and approaches the performance of an architecture given side-channel
information about observational structure. These results are a step towards scalable RL algorithms for more general
problem settings, where observational structure is unavailable.
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1 Introduction

Architectures for value function approximation typically impose sparse connections with prior knowledge of observational
structure. When this structure is known, architectures such as convolutions, transformers, and graph neural networks can
be inductively biased with fixed connections. However, there are times when observational structure will be unavailable
or prohibitively difficult to encode as an architectural bias—for instance, relating sensors that are randomly dispersed in
space. Even when observational structure is available, common biases may not always be the most useful. Yet in all of
these situations it is still desirable to approximate value functions with a sparsely-connected architecture for computational
efficiency. An important open question is whether equally-useful representations can be constructed when observational
structure is unknown—particularly in the incremental, online setting without access to a replay buffer.

Prior work has viewed observational structure as a hidden aspect of the environment [1] or a fixed architectural element
that relates inputs. Instances of the latter type examined small input spaces, a combinatorially-large space of graphs [6], or
offline methods that learn to reduce connections of a dense architecture [2]. Early work treated observational structure as
the learning target: first positing a family of smooth topologies then selecting one to minimize a reconstruction loss [4].

This paper is concerned with how a reinforcement learning system could construct a value function approximation
architecture in the absence of observational structure. We propose an online algorithm that adapts connections of a
neural network using information deriving strictly from the learner’s experience stream, using many parallel auxiliary
predictions. Auxiliary predictions are specified as General Value Functions (GVFs) [11], and their weights are used to
relate inputs and form subsets we call neighborhoods. These represent the input of fully-connected, random subnetworks
that provide nonlinear features for a main value function. The algorithm is validated in a synthetic domain with high-
dimensional stochastic observations. Results show the algorithm can adapt an approximation architecture without
incurring substantial performance loss, while also remaining computationally tractable. Code has been made publicly
available at https://github.com/jdmartin86/frogseye. Our key contributions are as follows.

Online adaptive architecture: Using many parallel auxiliary learning objectives, our architecture dynamically connects
observations to a set of filter banks to form useful nonlinear features.

Useful neighborhoods: The proposed algorithm is shown to compute sparse neighborhoods that perform comparably
well to neighborhoods formed from side-channel distance information, and it substantially outperforms static baseline
architectures.

Reduced architectural bias with conventional data and computational resources: In a domain of noisy observations with
thousands of dimensions, useful neighborhoods are found within five-million time steps of experience, after running on a
single GPU for two hours.

2 Problem Setting

This work considers the standard prediction setting for reinforcement learning [10]. The return at time t ∈ N is the
discounted sum of future rewards, Gt ≡ Rt+1 + γRt+2 + γ2Rt+3 + . . . . The value function gives the expected return from
a state: v(s) ≡ E[Gt|St = s]. Instead of experiencing states directly, the learner receives a stream of observation vectors
ot ∈ Rd and rewards. The learner’s only knowledge of the environment state St and dynamics comes from this single
stream of experience. With no direct access to the environment state, the learner forms an approximate value function to
estimate the expected return. Under a linear approximation, this is defined as a function of a feature vector xt ∈ Rℓ, where

v̂(xt;wt) ≡ w⊤t xt, v̂(xt;wt) ≈ v(St). (1)

In this work the learner incrementally updates its weights wt online with a temporal difference algorithm.

2.1 An approximation architecture for the online setting:

We consider an architecture that computes nonlinear features from a sparsely-connected neural network with one hidden
layer of random weights. A neighborhood is the set of inputs connected to a given nonlinear feature in the network; here it
contains a sparse subset of the input, similar to an image patch used with convolutional architectures for vision. Nonlinear
features from the i-th neighborhood are computed as a composition of three functions, yit ≡ f(AMiot + a). First is a
neighborhood selection matrix Mi ∈ {0, 1}k×d, then a linear projection A ∈ Rn×k shared between all the neighborhoods,
and finally a nonlinearity f : Rn → Rn. The neighborhood selection matrix Mi is an orthogonal rank-k matrix with
one-hot columns—used to mask out an ordered selection of k elements of the observation. The linear projection A can
be thought of as a set of filters, and a ∈ Rn is a bias. The function f applies a fixed nonlinearity f : R → R to each
element of its n-dimensional input: f(z) = (f(z1), ..., f(zn)). The full feature vector, xt, contains nonlinear features from
m neighborhoods, Miot, and the current observation, xt ≡ concatenate(ot,y1

t , . . . ,y
m
t ). The m neighborhoods encode the

architecture’s graph topology.
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3 Prediction Adapted Neighborhoods Algorithm 1 Online Value Estimation with
Prediction Adapted Neighborhoods

1: Initialize: w, z, A (fixed), a (fixed), M1:m, w̄1:m, z̄1:m.
2: Receive observation o1 from the environment.
3: x1 ← ComputeFeatures(o1,M

1:m,A,a)
4: for t = 1, 2, 3, · · · do
5: Receive rt+1,ot+1 from the environment.
6: x̄j ← oj for j ∈ {t, t+ 1}
7: parallel for i ∈ {1, · · · ,m}

# Update GVF weights with TD(λ).
8: r̄it+1 ← ot+1[c(i)]

9: δ ← r̄it+1 + γw̄i⊤x̄t+1 − w̄i⊤x̄t
10: z̄i ← γλz̄i + x̄t
11: w̄i ← w̄i + ᾱδz̄i

# Construct top-k selection matrix.
12: ℓ← Top(k, w̄i), where |w̄i

ℓ1
| ≥· · ·≥ |w̄i

ℓk
|

13: parallel for j, l ∈ {1, . . . , k} × {1, . . . , d}
14: Mi

j,l←1{l = ℓj}
15: xt+1 ← ComputeFeatures(ot+1,M

1:m,A,a)
# Update main prediction weights with TD(λ).

16: δ ← rt+1 + γw⊤xt+1 −w⊤xt
17: z← γλz+ xt
18: w← w + αδz

Algorithm 2 ComputeFeatures

1: input: o,M1:m,A,a
2: parallel for i ∈ {1, · · · ,m}
3: yi ← f(AMio+ a)
4: return concatenate(o,y1, ...,ym)

Instead of constructing neighborhoods with prior knowl-
edge of observational structure, we propose using informa-
tion that derives from auxiliary RL predictions, specified as
general value functions [11]. The resulting collections of ob-
servation subsets are called prediction adapted neighborhoods.
This idea stems from the insights of previous works; one
of which suggests that learning many GVF predictions in
parallel can provide problem-relevant statistics [8]; another
that shows predictions can be sufficient for representing
state [5], and a third line of work showing how informative
spatial embeddings can be defined from statistics between
different observation components [9].

A GVF is defined as the expected return of some auxiliary
reward signal R̄it+1, also known as a cumulant. Here aux-
iliary rewards are given by observation components, and
their returns are predicted under the same discount and
policy as the main value function (1): Ḡit ≡ R̄it+1 + γR̄it+2 +

γ2R̄it+3 + . . .. A selector function c(i) returns an index
into the observation vector to determine the i-th cumulant
r̄it+1 ≡ ot+1[c(i)], for i = 1, · · · ,m. In this work, GVFs
are approximated by linear functions of the observation
x̄t ≡ ot, with weights w̄i: w̄i⊤x̄t ≈ E[Ḡit|St = s].

One of our key discoveries is that observations can be
related when used as auxiliary rewards for linear GVFs.
Recall a GVF in this work predicts the future discounted
sum of an observation signal, i.e. the auxiliary reward.
Also recall that a GVF is approximated with a linear com-
bination of all observation components, and that linear
representations are insensitive to the input ordering. This latter point means an accurate GVF can be obtained without
knowledge of the observational structure, which is typically encoded in the relative ordering of inputs. Observations
that closely relate to an auxiliary reward tend to have high-magnitude prediction weights. Based on these principles,
prediction adapted neighborhoods are formed with observations with high absolute GVF weights w̄i.

Algorithm 1 outlines how to compute prediction adapted neighborhoods in the online prediction setting (lines 6–14), with
TD(λ) and accumulating traces z. The algorithm constructs each neighborhood with the k observations whose absolute
GVF weights are largest (lines 12–14), and it encodes them with the selection matrices Mi.

In contrast to prior work that regularizes the internal architecture weights A with auxiliary prediction losses [3], our
proposed algorithm uses auxiliary GVFs to impose sparse connections with a predictive structure. This information
derives entirely from the observation stream, with no a priori knowledge of the observational structure. Furthermore, our
proposed algorithm continually adapts the architecture’s connections in response to patterns of the observation stream.

4 Empirical Results in the Frog’s Eye Domain

Figure 1: The Frog’s Eye domain: An insect (gray
circle) is detected by irregularly-distributed prox-
imity receptors (blue: on, gold: off). Three differ-
ent insect trajectories are shown: two prior, one
active. A reward of +1 is received upon entering
the circular red region.

Drawing inspiration from the arrangement of light receptors in a frog’s
eye, we introduce an environment for studying continual prediction in
the absence of observational structure (Figure 1). In our environment,
light receptors have a uniformly-irregular spatial distribution, with
neither the concentrated fovea of a mammalian eye nor the regular
grid of a silicon imaging chip. A simulated frog needs to anticipate the
arrival of an insect without any knowledge of how its light receptors
relate to one another.

The full observation vector ot ∈ {0, 1}4000 is given from a random or-
dering of 4000 proximity receptor outputs. The observation’s ordering
is scrambled at the start of learning and then held fixed. Observations
are corrupted with fifty-percent uniform binary noise. The reward is
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Figure 2: Prediction adapted neighborhoods are useful: For each feature type, the Adaptive architecture (using prediction
adapted neighborhoods) approaches the performance of Distance (biased with knowledge of observational structure).
Adaptive also performs better than fixed architectures using random neighborhoods (Random) or none at all (Linear).

+1 whenever the insect enters a circular region at the center of the observable space, and it is zero otherwise. An insect
entering the circular region will disappear and respawn at a random location. This process continues indefinitely.

Features f(z) A shape and values
Majority I(z > 2k

3 ) (1× k) filled with one
LTU I(z > 4) (n× k) from N (0, 1)
ReLU ReLU(z − 4) (n× k) from N (0, 1)

Table 1: Nonlinear feature types defined on a neighborhood.

Methodology: Our experiments compare prediction
accuracy of different value function architectures
while specifically controlling for the effects of neigh-
borhood selection. We use empty neighborhoods
with m = 0 (denoted as Linear), sparse neighbor-
hoods with k randomly-selected observation compo-
nents (Random), prediction adapted neighborhoods
from fixed randomly-selected cumulants (Adaptive), and sparse neighborhoods containing the k-nearest sensors to each
cumulant using side-channel distance information (Distance). The three different nonlinearities considered are shown in
Table 1. We report the average and standard error confidence intervals from 30 trials, which were run to 5 million steps
and observed to complete in under two hours on a V100 GPU. Results are shown in Figures 2, 3, and 4. More experimental
details including information about hyperparameter selection are provided in the full-length paper [7].

4.1 Are Prediction Adapted Neighborhoods Useful?
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Figure 3: Auxiliary Learning Effect: Increasing the number
of auxiliary predictions leads to performance improvements,
as measured with final error. These observations relate to
two well-known results in RL; the idea that states can be
represented as a collection of predictions [5], and that a rep-
resentation can improve with more auxiliary predictions [3].

Our first experiment asks: do prediction adapted neighbor-
hoods provide measurable utility for approximating the main
value function? Figure 2 shows learning curves of predic-
tion accuracy. The Adaptive architecture—using predic-
tion adapted neighborhoods—leads to little performance
loss compared to the Distance architecture when evalu-
ated across three types of activation functions. Recall the
Distance architecture uses neighborhoods that contain the
k-nearest sensors to each cumulant. The small performance
gap between Adaptive and Distance suggests that predic-
tion adapted neighborhoods are just as useful in this do-
main as neighborhoods biased with side-channel distance
information.

4.2 Does Performance Scale with more GVFs?

Our second experiment examined whether prediction ac-
curacy of Adaptive monotonically improves with an increasing number of auxiliary predictions m. Indeed, in Figure 3
we see that Adaptive’s performance improves as the number of GVFs increase. The best performance is with m = 4000
predictions: one for each sensor in the simulated frog’s eye. These observations relate to two well-known results in RL.
Namely, the idea that states can be represented as a collection of predictions [5], and that a representation can improve
with more auxiliary predictions [3]. Across the range of m values, the Adaptive architecture’s performance is comparable
to the Distance baseline.
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Figure 4: Prediction adapted neighborhoods appear to encode a temporally-stable spatial structure: A spatial distribution
of auxiliary weights is shown for a random GVF with a cumulant marked by an×. The top ten neighborhood use converges
and remains centered around the cumulant’s location.

4.3 The Spatial Structure of Adapted Neighborhoods

A final inspection examined whether the prediction weights of a GVF contained any spatial structure. Figure 4 shows one
set of auxiliary weights as learning progresses for a randomly-selected GVF. Clearly there are GVFs whose weights encode
a local degree of spatial structure. Furthermore, this structure appears temporally stable over the extended regime of ten
million time steps. These two points highlight that even without prior knowledge of the observation’s spatial structure,
auxiliary GVFs are able to relate observations in a similar way—ultimately one that is useful for the main prediction.

5 Conclusion

This paper addressed how an RL system could construct a value function architecture, specifically in the incremental
online setting for prediction, and in the absence of observational structure. One of our key discoveries was that weights
of auxiliary predictions could be used to relate observations and impose useful sparse connections in a random neural
network approximating a value function. We believe this work could be useful for designing general RL systems that
acquire knowledge from sensory inputs whose observational structure is unknown.
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[4] N. Le Roux, Y. Bengio, P. Lamblin, M. Joliveau, and B. Kégl. Learning the 2-d topology of images. Advances in Neural

Information Processing Systems, 20:841–848, 2007.
[5] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In Advances in Neural Information

Processing Systems 14, pages 1555–1561, 2001.
[6] A. R. Mahmood and R. S. Sutton. Representation search through generate and test. In Workshops at the Twenty-Seventh

AAAI Conference on Artificial Intelligence, 2013.
[7] J. D. Martin and J. Modayil. Adapting the function approximation architecture in online reinforcement learning.

arXiv preprint arXiv:2106.09776, 2021.
[8] J. Modayil, A. White, and R. S. Sutton. Multi-timescale nexting in a reinforcement learning robot. Adaptive Behavior,

2014.
[9] D. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and effectors. Artificial Intelligence, 92(1-2):169–

227, 1997.
[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[11] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A scalable real-time

architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768, 2011.

4

RLDM 2022 Camera Ready Papers 408

408



Decentralized Shield Decomposition for Safe Multi-Agent
Reinforcement Learning

Daniel Melcer
Northeastern University

Boston, MA 02115
melcer.d@northeastern.edu

Chris Amato∗
Northeastern University

Boston, MA 02115
c.amato@northeastern.edu

Stavros Tripakis∗
Northeastern University

Boston, MA 02115
stavros@northeastern.edu

Abstract

Learning safe solutions is an important but challenging problem in multi-agent reinforcement learning (MARL). Shielded
reinforcement learning is one approach for preventing agents from choosing unsafe actions. Current shielded reinforce-
ment learning methods for MARL make strong assumptions about communication and full observability. In this work,
we extend the formalization of the shielded Reinforcement Learning problem to multi-agent environments without any
communication assumptions. We then identify a subset of safety specifications and centralized shields which allow for
decentralization. An algorithm is presented for the construction of a decentralized shield, given a centralized shield that
meets the requirements for decentralization. Our preliminary results show that this method of decentralization does
not significantly decrease performance for most variations in a standard benchmark task, compared to a method where
agents are able to communicate with each other to avoid taking unsafe actions. We conclude by presenting a number of
additional research directions which we are actively investigating.
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1 Introduction & Related Work

Recently, the advent of deep reinforcement learning has enabled the application of classic reinforcement learning tech-
niques to highly complex domains such as Atari [8], and the game of Go [9]. However, the neural networks which
power these methods are opaque, and it is difficult to verify their properties. This limits the real-world application of
reinforcement learning in safety-critical systems.

Therefore, the subject of Safe Reinforcement Learning has been the focus of extensive study. Perhaps the most straight-
forward approach to this is the idea of shielding [1]. A shield monitors the agents and environment during both training
and execution. When an agent proposes an action, the shield evaluates whether this action is safe. If the action is unsafe,
or if it could lead to a future state in which no safe actions are available, the shield substitutes a known-safe action, and
potentially assigns a punishment for the attempted unsafe action. Alternatively, the shield disables all unsafe actions at
a given state, allowing the agent to only choose from a set of safe actions. This work draws from the idea of Runtime
Enforcement [2] from the Formal Methods community. The idea of shielding has also been extended to continuous ac-
tion spaces [3], in which the necessity and extent of action modifications are obtained as the solution to a set of linear
equations. Additionally, shielding has been extended to multi-agent environments [4]. However, in previously proposed
multi-agent shielding methods, all agents must be able to communicate with each other during action selection.

Therefore, we present a method of shield decentralization, allowing agents to avoid unsafe actions during training and
testing, without any communication with each other. In Section 2, we introduce the setting and define several structures
which are useful for the rest of the paper. In Section 3, we formalize the decentralized shielding problem. Finally, in
Section 4, we show that decentralized shielding maintains the safety benefits of centralized shielding, without sacrificing
performance in the majority of environments that we tested.

2 Preliminaries

Let R denote the set of real numbers. Let ∆(X) be the set of all probability distributions over set X . We denote 1x to be
the indicator variable, equalling 1 when x holds and 0 otherwise.

Definition 1 (MMDP) A Multi-agent Markov Decision Process (MMDP) is a tuple M = (D,S,A, E , T, γ,R, b0) where
D = {1, . . . , n} is a set of agents, S is a set of states, A =

∏
i∈D Ai is a finite joint action space, factorizable into n individual action

spaces, E : S → P(A) represents the set of actions available to the agents at a given state, T : S × A → ∆(S) is the transition
probability distribution function, γ ∈ [0, 1] represents the discount factor for future rewards, R : S× A→ R is the reward given to
each agent after a transition, and b0 ∈ ∆(S) is the distribution of initial states.

We call a sequence of states and joint actions ((s0, s1, . . . , sn+1), (a0, a1, . . . , an)) an environment trace of MMDPM if every
pair (si, ai, si+1) is allowed by the transition function of the MMDP.

M is said to be in a deadlock at state s ∈ S if E(s) = ∅. M is deadlock-free if there are no environment traces ofM that end
in a deadlock state.

We will often have some prior knowledge of how to abstract the states in a meaningful way for safety properties. For
our purposes, these properties are agnostic to the choice of reward function. For example, in a domain where we avoid
collisions between agents, the relative positions of the agents may be important, even if the absolute positions of all agents
is not known. We call a function f : S→ L which translates MMDP states into members of a given label set an abstraction
function.1 All agents in the MMDP are assumed to have access to the corresponding label for the current state. Every
environment trace through a MMDP has a corresponding label trace ((l0, a0), . . . , (ln, an)), where ∀i ∈ {0, . . . , n}, li =
f(si).2 Note that several unique environment traces may correspond to the same label trace.

Definition 2 (DFA) A Deterministic Finite Automaton (DFA) is a tuple φ = (Q,Σ, δ, s0, F ) where Q is a set of states, s0 ∈ Q
is the initial state, Σ is an alphabet, δ : Q× Σ→ Q is the transition function, and F ⊆ Q is the set of accepting states.

Given a word (w0, w1, . . . , wn) ∈ Σ∗, the corresponding DFA trace (q0, q1, . . . , qn+1) ∈ Q∗ is obtained by stepping through
the transition function. A word is accepted by the DFA iff the last state of its corresponding DFA trace is a member of F .

For a given MDPM = (D,S,A, E , T, γ,R, b0) and label set L, we define a safety specification overM and L to be a DFA
φs = (Qs, (L × A), δs, ss0, F

s) which accepts the empty word and does not contain any transitions from Q \ F to F . M
satisfies φs (M � φs) iff all possible label traces ofM are accepted by φs.

φs induces the accepting action function Cφ : Q×L→ P(A) = (q, l)→ {a ∈ A|δ(q, (l, a)) ∈ F}; given a DFA state and label,
output the actions which transition the DFA to an accepting state.

1Prior work refers to f as the MDP observer function [1, 4].
2We intentionally omit f(sn+1) to allow label traces to be a word of (L× A)∗.
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Definition 3 (DFA-MMDP Composition) Given an MMDP M = (D,S,A, E , T, γ,R, b0), label set L, an abstraction func-
tion f over M and L, and DFA φg = (G, (L × A), δg, sg0, F

g) where sg0 ∈ F g , the composition of M and φg is a new
MMDP denoted as M||φg = (Dc,Sc,Ac, Ec, T c, γc, Rc, bc0), where Dc = D,Sc = S × G,Ac = A, Ec((s, qg)) = E(s) ∩
Cφg (qg, f(s)), T c((s′, q′g)|(s, qg), a) = T (s′|s, a) · 1q′g=δg(qg,(f(s),a)), γc = γ,Rc((s, qg), a) = R(s, a), and Pr[bc0 = ((s, qg))] =
Pr[b0 = s] · 1qg=sg0 .

Definition 4 (Centralized Shield) A DFA φg is a centralized shield3 for MMDP M that enforces safety specification φs iff
M||φg � φs andM||φg is deadlock-free.

In practice, the DFA-MMDP composition is never explicitly constructed; rather, a shielded agent only keeps track of
the current DFA state, and uses the accepting action function to determine which actions are safe. However, the use
of a centralized shield requires the implicit assumption that agents are able to instantaneously communicate with each
other. For example, suppose we had a MMDPM = (D,S,A, E , T, γ,R, b0) where D = {1, 2},A = {b, c} × {x, y}. There
may exist a centralized shield φg , such thatM||φg = (Dg,Sg,Ag, Eg, T g, γg, Rg, bg0) where for some state s ∈ Sg , Eg(s) =
{(b, x), (c, y)}. Without knowing which action agent 1 will pick, agent 2 has no way of picking an action while ensuring
that the resulting joint action is safe, unless it can communicate with agent 1.

The problem of synthesizing a centralized shield DFA has previously been explored in [1] for the single-agent case,
and [4] for the multi-agent case. Our focus in this paper is on creating shields without the implicit communication
requirement mentioned above.

3 Decentralized Shielding

Definition 5 (Individual Specification) Given a MMDPM = (D,S,A =
∏
i∈D Ai, E , T, γ,R, b0) and a label set L, a DFA of

the form φsi = (Qsi , (L× Ai), δsi , ssi0 , F si) is called an Individual Specification for agent i ∈ D.

Definition 6 (Action Product) Given a MMDP M = (D,S,A =
∏
i∈D Ai, E , T, γ,R, b0), a label set L, two agents i, j ∈ D,

and two individual specifications φsi = (Qsi , (L × Ai), δsi , ssi0 , F si), φsj = (Qsj , (L × Aj), δsj , s
sj
0 , F

sj ), the Action Prod-
uct4 of φsi and φsj is a new DFA denoted as φsi � φsj = (Qsp , (L × Ap), δsp , s

sp
0 , F

sp) where Qp = Qsi × Qsj ,Ap =
Ai × Aj , δsp((qi, qj), (l, ai, aj)) = (δsi(qi, (l, ai)), δ

sj (qj , (l, aj))), s
sp
0 = (ssi0 , s

sj
0 ), and F sp = F si × F sj

Definition 7 (Decentralized Shield) Given a MMDP M = (D,S,A, E , T, γ,R, b0) and a safety specification φs, a list of |D|
DFAs {φs1 , . . . , φsn} is a Decentralized Shield which enforces φs iff for every i ∈ D, φsi is an individual specification for agent i,
and φs1 � . . .� φsn is a centralized shield which enforces φs.

We would like to synthesize a decentralized shield which enforces a given safety specification. As a first step, we attempt
to synthesize a centralized shield—if this (decidable) process fails, we can assume that decentralized shield synthesis
will be impossible.

Problem 1 (Dec-A Shield Decomposition) Given a MMDPM = (D,S,A, E , T, γ,R, b0), a label set L, an abstraction func-
tion overM and L, a safety specification φs, and a centralized shield φg = (G, (L × A), δg, sg0, F

g) that enforces φs, synthesize a
decentralized shield which enforces φs.

This problem statement admits a trivial solution: for every pair (q, l) ∈ (F g × L), choose a single joint action Aq,l =

(aq,l1 , . . . , aq,ln ) in advance such that δs(q, (l, Aq,l)) ∈ F g . Such an action is guaranteed to exist due to the deadlock-free
nature of a centralized shield. The decentralized shield for each agent i has the same set of states. When the shield
state equals q and the current environment label is l, the decentralized shield forces the agent to take action aqli . While
this prescriptive approach technically results in a decentralized shield that enforces φs, it doesn’t allow the agents any
freedom to explore actions and optimize for expected future rewards.

To address this, we add the constraint that the decentralized shields must be maximally-permissive. Shield φgX is at least
as permissive as shield φgY iff every label trace which is accepted by φgY is also accepted by φgX . A shield is maximally
permissive iff there are no shields which are strictly more permissive than it. Note that there may exist multiple incom-
parable maximally permissive shields.

We propose Algorithm 1 to construct a Maximally Permissive Dec-A Shield Decomposition for the subset of centralized
shields (G, (L× A), δg, sg0, F

g) which are stateless—centralized shields where F g = {sg0}.5 Each agent’s individual shield
3Some prior formulations define the shield as a reactive system which prescribes a specific action in response to a proposed action

and environment label [2]; for now, we use a definition based on allowed actions for simpler analysis.
4This is similar to the standard DFA Synchronous Product [6], except that the inputs only synchronize on the label, not the actions.

Note that the action product is associative, and therefore can naturally be extended to more than two DFAs.
5There may still exist an arbitrary number of states in G \ F g .
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Algorithm 1 Decompose a set of actions

Input
M = (D,S,A, E , T, γ,R, b0) A MMDP
φg = (G, (L × A), δg, sg0, F

g) Stateless centralized
shield

l ∈ L A label
Cl : P(A) Joint actions where δg(sg0, (l, a)) = sg0.

Output
Dli : P(Ai), i ∈ D Set of actions where

∏
i∈DDli ⊆ Cl

procedure DECOMPOSESINGLESTATESHIELD(Cl)
Choose arbitrary a = (a1, a2, . . . , an) ∈ Cl
∀i ∈ D : Dli = {ai}
for i ∈ D do . Optionally permute agents

for a′i ∈ Ai do
if {a′i} ×

∏
j∈D,j 6=iDli ⊆ Cl then

Dli ← Dli ∪ {a′i}
end if

end for
end for
return Dli∀i ∈ D

end procedure

s0

s1

...

((0, 1), (←, ←))

...((0, 1), (↓, ↑))

∗
Figure 1: A partial view of the safety specification and
centralized shield for the two-agent gridworld collision
domain. Based on the relative positions of the two agents
with respect to each other (the label), and the joint ac-
tions taken by the agents, the automaton either stays
in the accepting state or transitions to a trapping non-
accepting state, representing a collision having occurred.

will also be stateless. For every label, each agent can take any individual action in Dli to stay in the accepting state. This
is safe because Algorithm 1 maintains the invariant that

∏
i∈DDli ⊆ Cl; all combinations of individual actions from the

decentralized shield would have been deemed a safe joint action by the centralized shield. If the input is a maximally
permissive centralized shield, the output shield is maximally permissive among all decentralized shields. The full proof
is omitted due to space, but the innermost if statement in the algorithm implies that no agent can take any other
individual actions and guarantee safety of the joint action.

4 Experiments

4.1 The Gridworld Collision Domain

We adapt the 2-agent gridworld maps from Melo and Veloso [7] to test our method. Each agent has five actions available:
movement in the four cardinal directions, or a no-op. If all agents reach their goal positions, they each receive a +100
reward. Any agents which hit a wall receive a -10 reward. The safety specification is that a collision between two agents
should never occur (including agents crossing over each other). If an agent violates this specification, all agents receive
a -10 reward. Agents receive a -1 reward at all other time steps. We use the four maps “MIT,” “ISR,” “SUNY,” and
“Pentagon,” both with and without randomized start positions. These maps range in size from 8x10 to 10x23.

These maps have previously been used to test multiagent shielding, with stateful shields and instantaneous local com-
munication [4]. We use an abstraction function that calculates the relative position of the agents; the label set is all relative
positions of the agents with respect to each other. The centralized shield in this environment, which was manually gen-
erated, happens to be identical to the safety specification—the two-state DFA shown in Figure 1. All joint actions are
allowed by this centralized shield automaton, except for those which result in a collision. We decentralize the shield
using the procedure described above. The resulting shields are more conservative when the agents are near each other,
ensuring that no more than one agent moves into a potentially contested area.

4.2 Agents and Training

We train independent tabular Q-learning agents using ε-greedy exploration, with a linear ε annealing schedule from 0.2
to 0.01. The discount factor is 0.9. Agents are trained with a centralized shield, a decentralized shield, and with no
shield. When an agent attempts to take an action a which is not allowed by the shield, the shield substitutes the action
with a known-safe no-op action a′ and observes the environment transition (s, a′, r, s′). The agent is trained on this real
transition, plus an additional synthetic transition (s, a, r+ rp, s

′) where rp is a penalty reward of−10. Each configuration
is run with 10 random seeds for one million steps each. We record the average number of safety specification violations
during training.
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4.3 Testing and Results

After training completes, we run 100 episodes for each configuration, using a greedy policy, and average the rewards.
Preliminary results are shown in Table 1. In nearly all the configurations, the decentralized shield performs similarly to
the centralized shield, and both avoid the safety violations which are occasionally encountered by the unshielded agent.

Map Name Pentagon ISR SUNY MIT
Randomized Starts No Yes No Yes No Yes No Yes
Centralized Shield 91.5 (0) 88.9 (0) 92.3 (0) 89.3 (0) 89.4 (0) -291.7 (0) 76.5 (0) 78.4 (0)
Decentralized Shield 90.8 (0) 84.2 (0) 92.7 (0) 86.9 (0) 88.8 (0) -307.6 (0) 19.6 (0) 84.3 (0)
No Shield 89.4 (0) 90.5 (0) 92.9 (0.04) 83.4 (0) 88.2 (0) -675.9 (15.6) 14.8 (1.63) 80.4 (0)

Table 1: Average reward during testing over 10 seeds, and safety violations per episode encountered during the last
5000 time steps of training. Due to a logging issue, we could not calculate the total number of safety violations for all
configurations; in a small sample, this value is 0 for the centralized and decentralized shield cases, and several thousand
for the no shield case.

5 Conclusion

Preliminary results show that our shield decomposition method elicits comparable agent performance to a centralized
shield in the majority of environments, without any communication between agents. We are currently working to extend
our results in several ways. First, we are implementing additional agents and training schemes, including individual
Deep Q Networks with convolutional layers [8], and Centralized-Critic Decentralized-Actor methods [5]. Second, we
are currently investigating what shields can enforce which specifications in partially-observable environments, and how
to apply our shield decomposition method in such environments. Third, we plan to test our method in several other
environments, such as the cooperative navigation domain introduced in [10]. Lastly, we aim to generalize our shield
decomposition method to work with a broader set of centralized shields and safety specifications.
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Abstract

We consider a stochastic multi-armed bandit setting where reward must be actively queried for it to be observed. We
provide tight lower and upper problem-dependent guarantees on both the regret and the number of queries. Interestingly,
we prove that there is a fundamental difference between problems with a unique and multiple optimal arms, unlike in
the standard multi-armed bandit problem. We also present a new, simple, UCB-style sampling concept, and show that it
naturally adapts to the number of optimal arms and achieves tight regret and querying bounds.
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1 Introduction

In the stochastic multi-armed bandit (MAB) problem, an agent repeatedly selects actions (‘arms’) from a finite set and
obtains their rewards, generated independently from arm-dependent distributions, with the goal to minimize the regret.
This setting has been extensively studied and its extensions are ubiquitous. In particular, many of its variants suggest
different feedback models, but once the feedback model is fixed, rewards are always observed through this model.

Nevertheless, such models ignore a key element in sequential decision-making: whatever the feedback model is, asking to
observe rewards usually comes at some cost. In some cases, the cost is evident from the setting, e.g., if experimentation is
required or the reward is manually labeled by an expert. In other settings, the feedback cost is more subtle. For example,
when humans supply the reward feedback, incessantly asking for it may aggravate them. Thus, it is natural to allow
agents to decide whether they ask for feedback and design algorithms to ask for feedback with care.

One approach to regulate feedback requests is to limit reward querying by a hard querying-budget constraint [Efroni et al.,
2021]. However, this approach is very wasteful, as it encourages exhausting the budget whenever possible, regardless
of the querying costs. Instead, we should aim to query only when we gain valuable information and avoid querying
otherwise. A goal of our work is to develop an algorithm that performs well, while not violating querying constraints and
not querying for reward unnecessarily. The importance of such a goal is illustrated in the following example.
Example 1 (restaurant recommendation problem). Consider a restaurant recommendation problem that learns from
user-rankings (‘feedback’). Repeatedly asking for rankings will annoy users, so it is natural to cap the ranking requests
(‘budget’) with an initially low cap that gradually increases to allow learning. Yet, even when the agent is allowed to ask
for user feedback, such queries harm the user experience, so we should avoid asking for feedback when not needed.

In this work, we study tradeoffs between feedback querying and reward gain in stochastic MAB problems. To do so, we
derive both lower and upper bounds to this problem (see Table 1 for a summary of our main results). Lower bounds. In
Section 2, we study asymptotic and finite-sample lower bounds for reward querying. These reveal fundamental tradeoffs
between the querying profile and regret. Interestingly, the lower bounds highlight a clear separation – absent in the usual
MAB setting – between problems where the optimal (highest rewarding) arm is unique and problems with multiple
optimal arms. Upper Bounds. In Section 3, we present and analyze a simple algorithm for efficient reward querying – the
BuFALU algorithm – and study its problem-dependent behavior. Notably, unlike prior work, we show that BuFALU
naturally adapts to problems with a unique optimal arm and avoids wasting its reward queries unnecessarily. We conclude
with a numerical comparison of BuFALU to other alternatives, which highlights its advantages.

1.1 Setting

At each round t ≥ 1, an agent (bandit strategy) plays a single arm at ∈ [K] ≜ {1, . . . ,K}. Then, the arm generates a reward
Rt ∼ νat , of expectation µat , independently at random of other rounds. However, to observe this reward, the agent must
actively query (‘qt = 1’); otherwise, the reward is not observed (‘qt = 0’). We denote the number of times an arm was
played up to round t by nt(a), and the number of times it was queried by nqt (a). For an arm to be queried, it must first be
played, and thus nqt (a) ≤ nt(a). We similarly denote the total number of queries up to t by Bq(t) and sometimes limit it by
a querying budget B(t). The optimal reward is µ∗ = maxa∈[K] µa, and the set of optimal arms is A∗ = {a : µa = µ∗}. The
suboptimality gap of an arm a is ∆a = µ∗ − µa, and we denote the maximal and minimal gaps by ∆max = maxa∆a and
∆min = mina:∆a>0 ∆a, respectively. Finally, we define the empirical mean of an arm a, based on observed samples up to
round t, by µ̂t(a). In this work, we evaluate agents by two metrics: the expected number of reward queries, E[Bq(T )], and the
regret, Reg(T ) = E

[∑T
t=1(µ

∗ − µat)
]
. Particularly, we analyze the effect of reducing the querying on the regret.

1.2 Failures of Existing Approaches

Failure of best-arm identification approach. The simplest approach to incorporate reward querying to sequential
decision-making is to query rewards using a best-arm identification (BAI) algorithm [Kalyanakrishnan et al., 2012] and
an explore-first-then-exploit scheme. However, this is nontrivial in an anytime setting, where the interaction horizon is
unknown. For simplicity, assume that a hard querying budget is given at its whole at the beginning of the interaction
(B(t) = B for all t ≥ 1). For interactions of length T ≫ B, we would like to use all the budget for exploration, while for
T < B, we should save rounds for exploitation. In general, the number of exploration rounds must be adaptive, and it is
unclear how to do so with off-the-shelf BAI algorithms, especially with time-dependent adversarial budgets.

Failure of confidence-budget-matching (CBM). Alternatively, one might use the confidence-budget matching mechanism
[CBM, Efroni et al., 2021], which is designed for anytime settings and time-dependent budgets. However, CBM wastefully
expends its querying budget. For example, when B(t)≫ t the algorithm reduces to be UCB1 and queries every round. In
contrast, when the optimal arm is unique, O

(
K ln t
∆2

min

)
queries are sufficient to identify it. Thus, CBM should not query every

round (even though allowed), but rather on a logarithmic number of rounds, and fails to conserve queries.
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Table 1: Summary of the main results. For simplicity, the lower bounds are stated for Gaussian arms of fixed
variance. ϵ(t) > 0 is a sequence that affects the querying and for simplicity is assumed to be strictly decreasing to
0. nqt (a) is the number of queries from arm a before time t and Bq(T ) is the total queries before T .

Regime Scenario Lower Bounds Upper Bounds (BuFALU)

Asymptotic Bounds

Suboptimal Arms ∀a /∈ A∗,E[nq
T (a)] = Ω

(
lnT
∆2
a

)†

Unique Optimal E[nq
T (a

∗)] = Ω
(

lnT
∆2

min

)† E[Bq(T )] = O
(∑

a/∈A∗
lnT
∆2
a
+ lnT

∆2
min

)

Reg(T ) = O
(∑

a/∈A∗
lnT
∆a

)‡

Multiple Optimal E[nq
T (a

∗)] = ω(lnT )†
E[Bq(T )] = O

(∑
a/∈A∗

lnT
∆2
a
+ |A∗| lnT

ϵ(T )2

)

Reg(T ) = O
(∑

a/∈A∗
lnT
∆a

)‡

Scarce Querying
Bounds E[nq

T (a
∗)] ≤ Ba(T ) Reg(T ) = Ω

(∑
a/∈A∗

∆a
K
B−1

a

(
1

K∆2
a

))⋆ Ba(t) ≜ E[nq
T (a)] = O

(
lnT
ϵ(T )2

)

Reg(T ) = O
(∑

a/∈A∗ ∆aB
−1
a

(
lnT
∆2
a

))§

† Theorem 2.1 ‡ Theorem 3.1, N̄(T,∆) term ⋆ Proposition 2.2 § Theorem 3.1, Lϵ(T,∆) term

2 Lower Bounds

For simplicity, we state our results for Gaussian arms of unit variance, but they can be extended for general distributions.

2.1 Asymptotic Lower Bounds

Probably the most common assumption for a bandit strategy is consistency, namely, asymptotically sub-polynomial regret.
Definition 1. A bandit strategy is called consistent if for any bandit instance, any suboptimal arm a /∈ A∗ and any α ∈ (0, 1]
it holds that nT (a) = o(Tα).

Theorem 2.1. Let nq∞(a) = lim infT→∞
E[nqT (a)]

lnT for any a ∈ [K]. If the bandit strategy is consistent, then:

1. For any suboptimal arm a /∈ A∗, nq∞(a) ≥ 2/∆2
a.

2. Assume that a∗ is the unique optimal arm and denote the maximal suboptimal reward by µs = maxa ̸=a∗ µa. Then
nq∞(a∗) ≥ 2/∆2

min. Moreover, for all suboptimal arms a /∈ A∗ it holds that nq∞(a) + nq∞(a∗) ≥ min
{
8/∆2

a, 2/∆
2
min

}
.

3. If there are at least two optimal arms, then nq∞(a) =∞ for some optimal arm a ∈ A∗.

These bounds are asymptotic; for large enough T , an action a is roughly queried nq∞(a) · lnT times. Also, recall that
nqt (a) ≤ nt(a), so all results also hold for the number of plays. The theorem is divided into three parts. The first part is a
natural extension of the classical lower bound for MABs [Lai and Robbins, 1985] and emphasizes that it is not enough
to sufficiently play suboptimal arms, but we rather must sufficiently query them. The second and third parts discuss the
querying requirements from optimal arms when there is a unique or multiple optimal arms, respectively. This comes in
stark contrast to the classical lower bounds that disregard querying, as playing optimal arms does not incur regret and
can thus be ignored. When there is a unique optimal arm a∗, the result first states that it must be distinguished from the
highest suboptimal arm a. Yet, the second part of the theorem implies that by itself, this does not suffice. Instead, for any
suboptimal arm a, both a and a∗ must be sufficiently queried to separate them; namely, identifying that a∗ is better than a.
Concretely, for near-optimal arms, both a and a∗ should roughly be sampled up to a precision of ∆a/2, which effectively
separates their confidence intervals. Finally, the last part of Theorem 2.1 treats problems with multiple optimal arms and
prove that in the Gaussian case, they must always be queried super-logarithmically.

2.2 Lower Bounds for Scarce Querying

Finally, we discuss the best possible performance in the limit of scarce querying.

Definition 2. A strategy is called better-than-uniform if for any bandit instance and any T ≥ 1,
∑
a∈A∗

E[nT (a)] ≥ |A∗|
K T .

Proposition 2.2. Denote Ba(t)=E[nqt (a)]; also, let B−1a (x)= sup{t ∈ N : Ba(t) ≤ x} for x≥B(1) and otherwise B−1a (x)=0.
Then, for any instance, better-than-uniform strategy and T ≥maxa/∈A∗ B

−1
a

(
1

4K∆2
a

)
, we have Reg(T )≥∑a/∈A∗

∆a
2KB

−1
a

(
1

4K∆2
a

)
.

We remark that the same result naturally holds if we only have bounds on the number of queries (E[nqt (a)] ≤ Ba(t) for
some positive nondecreasing Ba(t)), e.g., per-arm querying budget. Importantly, when arms are queried sub-polynomially
(Ba(t) ≈ lnT but do not depend on ∆a), this might lead to an exponential lower bound in the gaps.
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Algorithm 1 Budget-Feedback Aware Lower Upper Confidence Bound (BuFALU)

1: Define: UCBt(a) = µ̂t−1(a) +
√

3 ln t
2nqt−1(a)

, LCBt(a) = µ̂t−1(a)−
√

3 ln t
2nqt−1(a)

(‘Hoeffding’)

2: Play each arm once and ask for feedback (qt = 1); observe Rt and update nqt (a) = 1, µ̂t(at)
3: for t = K + 1, ..., T do
4: Observe ϵ(t) ≥ 0
5: Set lt ∈ argmaxa LCBt(a), ut =∈ argmaxa̸=lt UCBt(a) and ct ∈ argmaxa∈{ut,lt} CIt(a)
6: if UCBt(ut) ≤ LCBt(lt) or UCBt(ct)− LCBt(lt) ≤ ϵ(t) then
7: Play at = lt and do not ask for feedback (qt = 0)
8: else
9: Play at = ct and ask for feedback (qt = 1) ; observe Rt and update nqt (at), µ̂t(at)

10: end if
11: end for

3 Upper Bounds

For simplicity, we focus on problems with rewards bounded in [0, 1], but our results hold any confidence intervals that
follow some mild assumptions (including Bernstein bounds).

To be more feedback-conscious, we adopt a confidence-based approach. Namely, we assume that each arm a is equipped
with a confidence interval of width CIt(a) = UCBt(a) − LCBt(a) ≥ 0, such that with a sufficiently high probability,
µa ∈ [LCBt(a), UCBt(a)]. In general, by controlling the widths of confidence intervals, we can identify good actions and
bound their suboptimality. However, narrowing these intervals requires reward samples, which are limited at our setting.

Our approach carefully shrinks the confidence intervals, with the goal to separate a unique optimal arm (whenever such
exists), while controlling the number of reward queries. We divide our algorithm into two steps – action-selection and
confidence-control. For action-selection, inspired by the lower bounds, we aim to separate the confidence interval of a
unique optimal arm a∗ from all other arms. If we manage to do so, we can safely declare that a∗ = argmaxa LCBt(a) ≜ lt
and play lt without reward querying. Letting ut ∈ argmaxa ̸=lt UCBt(a), this case happens if UCBt(ut) ≤ LCBt(lt).
When this condition does not hold, we separate ut from lt by actively shrinking their confidence by playing (and querying)
the arm with the wider confidence interval, ct ∈ argmaxa∈{ut,lt} CIt(a).

Yet, this separation might be costly in queries and is impossible if there are multiple optimal arms. To avoid this, we
regulate the number of queries by controlling the widths of the confidence intervals. Let ϵ(t) be a variable that controls the
widths of the confidence intervals. Then, we let our algorithm to query for reward only if UCBt(ct)− LCBt(lt) > ϵ(t).
We allow ϵ(t) to be externally controlled (be chosen adversarially), to allow external effects on the querying rule (e.g.,
querying budget), but it can also be chosen the algorithm designer. Lastly, if UCBt(ct)− LCBt(lt) ≤ ϵ(t), we revert to
playing the ‘default action’ lt without reward querying. We can show that doing so is safe, in a sense that ∆lt ≤ ϵ(t).
Combining both playing and querying schemes leads to the BuFALU algorithm, depicted in Algorithm 1.

Before stating the regret and querying guarantees of BuFALU, we present two fundamental quantities on which our bounds
will depend: Lϵ(T,∆) =

∑T
t=1 1{ϵ(t) ≥ ∆} and N̄(T,∆) = maxt∈[T ]

6 ln t
max{∆2,ϵ2(t)} . The first quantity Lϵ(T,∆) counts the

number of rounds that ϵ(t) exceeds a fixed confidence level ∆ until time T . A notable case is when ϵ(t) is nonincreasing,
and then Lϵ(T,∆) can be conveniently bounded by Lϵ(T,∆) ≤ ϵ−1(∆) ≜ sup{t ≥ 1 : ϵ(t) ≥ ∆}. The second quantity
N̄(T,∆) represents the maximal number of queries required to shrink the confidence intervals max{ϵ(t),∆}. Importantly,
if ϵ(t) =

√
6K ln t/B(t) for a nondecreasing budget B(t), see that N̄(T,∆) = 6 lnT

max{∆2,ϵ2(T )} . Then, we get that N̄(T, 0) ≤
B(T )/K, so this term can ensure that the budget constraints are never violated.

We now state problem-dependant and problems independent performance bounds for BuFALU. The bounds are stated for
oblivious ϵ(t), but also hold for an adaptive one (by taking an expectation on all bounds).
Theorem 3.1. Assume that the rewards are bounded in [0, 1]. Also, let T ≥ 1 and assume that {ϵ(t)}t∈[T ] is some nonnegative
sequence. Then, when running Algorithm 1, for all a ∈ [K], it holds that nqT (a) ≤ N̄(T, 0) + 1. Moreover, the following hold:

1. If there are multiple optimal arms (|A∗| > 1), then

Reg(T )≤
∑

a/∈A∗

∆a

(
N̄(T,∆a)+Lϵ(T,∆a)

)
+ 3K∆max, E[Bq(T )]≤

∑

a/∈A∗

N̄(T,∆a) + |A∗|N̄(T, 0) + 3K.

2. If the optimal arm a∗ is unique, then

Reg(T ) ≤
∑

a̸=a∗
∆a

(
N̄

(
T,

∆a

2

)
+ Lϵ(T,∆a)

)
+ 3K∆max, E[Bq(T )] ≤

∑

a̸=a∗
N̄

(
T,

∆a

2

)
+ N̄

(
T,

∆min

2

)
+ 3K.

3

RLDM 2022 Camera Ready Papers 417

417



Proposition 3.2. For any sequence ϵ(t) ≥ 0 and any T ≥ 1, it holds that Reg(T ) ≤ 4
√
6KT lnT +

∑T
t=1 ϵ(t) + 3K∆max.

3.1 Discussion and Comparisons

Given a positive nondecreasing (possibly adversarial) querying budget B(t), one can choose ϵ(t) =
√
6K ln t/B(t). Then,

Theorem 3.1 provides strict (almost sure) querying guarantee of B(T ) +K queries, while Proposition 3.2 achieves a regret

bound of Reg(T ) = O
(√

KT lnT +
∑T
t=1

√
K lnT
B(T )

)
. These are the same guarantees achieved by CBM-UCB [Efroni et al.,

2021]. On the other hand, BuFALU also enjoys problem dependent regret and querying guarantees. In particular, when
the optimal arm is unique, the number of queries is logarithmic – usually far less than the allocated budget.

Next, we compare Theorem 3.1 to the lower bounds of Section 2, and for simplicity, assume that ϵ(t) is nonincreasing.
First, the per-arm query bound of Ba(t) = O

(
ln t/ϵ2(t)

)
implies that ϵ−1(∆a) ≈ B−1a

(
lnT/∆2

a

)
. Then, by bounding

Lϵ(t,∆) ≤ ϵ−1(∆), the regret term of ∆aLϵ(T,∆a) corresponds with the lower bound of Proposition 2.2. Moreover, for any
ϵ(t)−→ 0, the regret is logarithmic, and all suboptimal arms are logarithmically sampled. This matches the asymptotic lower
bound up to absolute constants. However, if there are multiple optimal arms, they will be queried O

(
lnT
ϵ2(T )

)
times each

– super-logarithmically. Also, notice that the suboptimal queries depend on N̄(T,∆a) ≤ 6 lnT
∆2
a

when there are multiple
optimal arms, and in contrast, when the optimal arm is unique, the bounds depend on N̄(T,∆a/2) ≈ 4N̄(T,∆a). This
factor is similar to the one in Theorem 2.1, part 2, and is related to the separation of the optimal arm from suboptimal ones.

3.2 Numerical Illustration

Figure 1: Regret and queries on two deterministic instances. In the two left plots there is a unique optimal arm, while in
two right ones there are two. All evaluations used ϵ(t) = t−1/4 and tested one seed (deterministic problems).

We illustrate the behavior of BuFALU in the presence of a unique or multiple optimal arms on two deterministic MAB
instances (see Figure 1). In the first instance, the optimal arm is unique (with µ∗ = 1) and there exists a single suboptimal
arm (with µ1 = 0). The second instance is the same, except for an additional optimal arm. We compare BuFALU to a few
natural baselines. The first, called BaFAU, uses the same querying rule as BuFALU but sets ct ∈ argmaxa UCBt(a). The
second is CBM-UCB [Efroni et al., 2021], whose problem-independent bounds are similar to BuFALU. The final baseline is
a greedy algorithm that receives a total budget as guaranteed by Theorem 3.1. If the budget is not exhausted, it plays (and
queries) the maximal UCB; otherwise, it plays (without querying) the arm with the maximal empirical mean. Notice that
Theorem 3.1 guarantees that BuFALU cannot query any arm more than ∼ 20, 000 times. We remark that evaluations in
stochastic 5-armed problems yield similar insights, but are not presented due to space limitations.

One immediate conclusion is that in these simple instances, all baseline algorithms behave roughly the same, where the
only difference is that the greedy baseline completely exhausts its querying budget while all other baselines only exhaust it
for optimal arms. Moreover, the simulated behavior of BuFALU validates the characterization of Theorem 3.1: when there
are multiple optimal arms, BuFALU uses all available budget to query them and achieves the same regret and querying
performance as the baselines. In contrast, when the optimal arm is unique, BuFALU only sparingly asks for feedback
(∼ 1/150, compared to the baselines), but its regret is larger by a factor of 4.
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Abstract

In this work, we investigate the properties of data that cause popular representation learning approaches to fail. In
particular, we find that in environments where states do not significantly overlap, variational autoencoders (VAEs) fail
to learn useful features. We demonstrate this failure in a simple gridworld domain, and then provide a solution in
the form of metric learning. However, metric learning requires supervision in the form of a distance function, which
is absent in reinforcement learning. To overcome this, we leverage the sequential nature of states in a replay buffer to
approximate a distance metric and provide a weak supervision signal, under the assumption that temporally close states
are also semantically similar. We modify a VAE with triplet loss and demonstrate that this approach is able to learn useful
features for downstream tasks, without additional supervision, in environments where standard VAEs fail.

Keywords: representation learning, unsupervised learning, metric learning,
reinforcement learning
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1 Introduction

A fundamental challenge in machine learning is to discover useful representations from high-dimensional data, which
can then be used to solve subsequent tasks effectively. Recently, deep learning approaches have showcased the abil-
ity of neural networks to extract meaningful features from high-dimensional inputs for tasks in both the supervised
and reinforcement learning (RL) setting [1, 2]. While these learnt representations have obviated the need for manual
feature selection or preprocessing pipelines, they are often not semantically meaningful, which can negatively impact
downstream task performance [3]. Prior work has therefore argued that it is desirable to learn a representation that is dis-
entangled. While there is no consensus on what constitutes a disentangled representation, it is generally agreed that such
a representation should be factorised so that each latent variable corresponds to a single explanatory variable responsi-
ble for generating the data [4]. For example, a single image from a video game may be represented by latent variables
governing the x and y positions of the player, enemies and collectable items.

In deep RL, there are two general approaches to feature learning. The first is to implicitly discover features by sim-
ply training an agent to solve a given task, relying on a neural network function approximator and stochastic gradient
descent to uncover useful features. An alternative approach is to explicitly learn features through some auxiliary ob-
jective. One such method is to use variational autoencoders (VAEs) [5], which are trained on collected data to learn a
lower-dimensional representation capable of reconstructing the given input. VAEs have been shown to produce disen-
tangled representations when trained on synthetically generated data, although there is still no explicit reason why these
representations should align with generative factors in the data.

In this work, we investigate the correspondence between the VAE reconstruction loss and learnt distances in the latent
space. We demonstrate the ineffectiveness of state-of-the-art models by designing a simple visual gridworld domain
over which VAE-based frameworks fail to learn useful features for a downstream RL task. We overcome this limitation
by utilising the sequential nature of an RL replay buffer along with metric learning to guide representations learnt by
VAEs. Furthermore, we design a disentangled metric learning approach which further improves learnt representations
for downstream tasks.

2 Background

We model an agent acting in an environment by a Markov decision processes (MDP)M = ⟨S,A, T,R, γ⟩ where (i) S is
the state space; (ii) A is the set of actions; (iii) T (s, a, s′) describes the transition dynamics, specifying the probability of
arriving in state s′ after action a is executed from s; (iv) R(s, a) specifies the reward for executing action a in state s; and
(v) γ ∈ [0, 1) is a discount factor. The agent’s aim is to compute a policy π that maps from states to actions and optimally
solves the task. Given a policy π, RL algorithms often estimate a value function vπ(s) = Eπ

[∑∞
i=0 γ

iR(si, ai)|s0 = s
]
,

representing the expected return obtained following π from state s. The optimal policy π∗ is the policy that obtains the
greatest expected return at each state: vπ

∗
(s) = v∗(s) = maxπ v

π(s) for all s ∈ S. A related quantity is the action-value
function, qπ(s, a), which defines the expected return obtained by executing a from s, and thereafter following π. Similarly,
the optimal action-value function is given by q∗(s, a) = maxπ q

π(s, a) for all states s and actions a [6].

For high-dimensional or continuous state spaces, representing the value function precisely is intractable. Instead, the
value function is normally approximated through a parameterised function vπ(s) ≈ v̂(s;w), where w is some parameter
vector to be learned; in deep RL, these parameters are the weights of a neural network that can be trained to approximate
the value function. Since these neural networks require significant amounts of data to train, one way to improve sample
efficiency is to use a replay buffer, where old experience data is stored in memory and reused to update the network as it
continues to interact with the environment.

2.1 Representation Learning

Assume a dataset X =
{
x(0), ...,x(n)

}
is a set of independent and identically distributed (i.i.d)1 observations x ∈ RN,

generated by some random process involving an unobserved random variable z ∈ RD of lower dimensionality D ≪ N.
Additionally, the true prior distribution z ∼ p∗(z) and true conditional distribution x ∼ p∗(x|z) are unknown. Variational
autoencoders (VAEs) aim to learn this generative process. Unlike autoencoders (AEs), which consist of an encoder
fϕ(x) = z and decoder gθ(z) = x̂ with weights ϕ and θ, VAEs instead construct a probabilistic encoder by using the
output from the encoder or inference model to parameterise approximate posterior distributions z ∼ qϕ(z|x). The
approximate posterior is then sampled from during training to obtain representations z, which are then decoded using
the generative model to obtain reconstructions x̂ ∼ pθ(x|z).
A factorised Gaussian encoder [5] is commonly used to model the posterior using a multivariate Gaussian distribu-
tion with diagonal covariance z ∼ N (µϕ(x), σϕ(x)), with the prior given by the multivariate normal distribution

1In RL, a replay buffer is not i.i.d, as data is generated by a sequential decision process. This can be mitigated via random sampling.

1

RLDM 2022 Camera Ready Papers 420

420



pθ(z) = N (0, I), with a mean of 0 and diagonal covariance I. To enable backpropagation, the reparameterisation trick
in Equation (1) is used to sample from the posterior distribution during training by offsetting the distribution means by
scaled noise values.

ϵ ∼ N (0, I); z = µϕ(x) + σϕ(x)⊙ ϵ (1)

VAEs maximise the evidence lower bound (ELBO) by minimising the loss given by Equation (2). VAE-based approaches
often make slight modifications to this loss but generally the terms can still be grouped into regularisation and reconstruc-
tion components. The regularisation term constrains the representations learnt by the encoder, while the reconstruction
term improves the outputs of the decoder so that they better match the inputs to the encoder. These terms usually conflict
in practice, strong regularisation leads to worse reconstructions but often better disentanglement [4, 7].

Lrec(x, x̂) = Eqϕ(z|x) [log pθ(x|z)] ; Lreg(x) = −DKL (qϕ(z|x) ∥ pθ(z)) ; LVAE(x, x̂) = Lrec(x, x̂) + Lreg(x) (2)

3 A Motivating Gridworld Environment

Before investigating representation learning in RL, we first consider the simpler unsupervised learning setting, in which
VAEs and their variants are primarily developed through benchmarks over synthetic data. The 3D Shapes dataset [8]
in Figure 1a contains observations of shapes fixed in the centre of the image with progressively changing attributes or
factors such as size and colour. If, as humans, we are given unordered observations from a traversal along the size factor
of 3D Shapes, it would be easy to order these observations using a perceived increase or decrease in the size of the shape.
We might even say that the shapes in the images overlap by different amounts. We may consider shapes that are closer
in size to possess more overlap, and therefore also consider them to be closer together in terms of distance. In contrast,
consider a simple gridworld environment (Figure 1b) where an agent moves to adjacent cells in any of the four cardinal
directions. The agent is a square of size 8 × 8 pixels and each action translates it 8 pixels in a given direction. Note that
in this case, there is no overlap between the agent in any two images because of the distance it moves.

(a) 3D Shapes [8] (b) Simple gridworld domain with pixel-based states

Figure 1: (a) A common synthetic dataset—images are generated by smoothly varying ground-truth factors such as floor
hue and object shape. (b) Gridworld environment whose underlying factors are the agent’s xy-position.

It is therefore natural to ask whether a lack of overlap is problematic. To answer this question, let x be an observation
and y be the underlying factors that generated it. We define the ground-truth distance between pairs of observations
{x(a),x(b)} as the Manhattan distance between the observations’ underlying factors: dgt(x

(a),x(b)) = ∥y(a) − y(b)∥1.2
Similarly, we define the perceived distance as the difference between the two observations in pixel space as measured by
the model’s reconstruction loss function (usually MSE): dvis(x(a),x(b)) = Lrec(x

(a),x(b)).3

To investigate the above question, we modify the environment so that the agent moves in smaller increments. For each
step size s, we generate all possible image states and store them in a buffer.4 As s decreases, the probability that the
agent position overlaps in any two randomly sampled images increases. We next visualise ground-truth and perceived
distances for each step size setting, with the results given by Figure 2a. The results show a clear relationship between the
two distance measures—at very small step sizes (with high probability of overlap) there is almost perfect correspondence.

We further probe this relationship by using the data buffers as an unsupervised dataset. We make the problem harder by
converting it to a multiagent environment which increases the number of states—three objects are now each described
by their xy-positions. We train a β-VAE [7] and the state-of-the-art weakly-supervised Ada-GVAE [9]. The β-VAE scales
the VAE regularisation term with a coefficient β > 0, while the Ada-GVAE encourages axis alignment and shared latent
variables between pairs of observations. This is achieved by averaging together latent distributions between observation
pairs that are estimated to remain unchanged when the KL divergence is below some threshold. To evaluate if the

2The notation a(i) is alternative notation for either a named variable or the ith element of the ordered set A.
3We use the term increased perceived overlap as a synonym for lower perceived distance between neighbouring states.
4We modify the size of the environment to ensure the size of the buffer remains constant regardless of the step size.
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(a) Top Row: Manhattan ground-truth distance matrices over factor traver-
sals. Bottom Row: Pixel-wise perceived distance matrices between observa-
tions over factor traversals. Left to Right: Step size increases from 1px to 8px.
Smaller values result in more overlap in the data space, which leads to higher
a probability of being able to find an ordering along a factor traversal.

(b) Regression plot of increasing domain spacing
versus MIG score (higher is better). As the β-VAE
(dashed line) and Ada-GVAE (solid line) are trained
with decreasing (left to right) levels of overlap, their
disentanglement performance worsens.

Figure 2: Varying spacing of valid locations in gridworld domain affects overlap as perceived by an VAE.

representations are disentangled, we use the Mutual Information Gap (MIG) [10] The results in Figure 2b indicate that
as the spacing decreases and overlap is introduced, the disentanglement performance improves as perceived pixel-wise
distances better correspond to latent and ground-truth distances.

4 Triplet Loss

VAEs, therefore, appear to learn latent distances over the data that correspond to their reconstruction loss. However, if
these distances are not useful, we may be able to instead guide the learning process by introducing metric or similarity
learning. A common approach is triplet loss, which makes use of three observations Xtriple = (x(a),x(p),x(n)). These
are sampled using supervision such that the anchor x(a) is considered closer to positive x(p) than it is to the negative x(n).
The intuition is that corresponding representations z(a), z(p), z(n) output by a network should satisfy the original anchor-
positive and anchor-negative distance constraints: d(z(a), z(p)) < d(z(a), z(n)). We construct the β-TVAE as three parallel
versions of the same β-VAE augmented by the soft-margin formulation of triplet loss, where α > 0 is the scaling factor:

LβTVAE = α ln
(
1 + exp

(
d(z(a), z(p))− d(z(a), z(n))

))

︸ ︷︷ ︸
Triplet loss

+
1

3

∑

x∈Xtriple

LβVAE(x) (3)

4.1 Adaptive Triplet Loss

Standard triplet loss provides no direct pressure to learn factored representations; for example the x and y factors may
be encoded with some arbitrary rotation in the latent space. To fix this, we adapt the Ada-GVAE[9] to construct Ada-
Triplet and the Ada-TVAE. These adaptive methods encourage partially shared representations such that differences
between observations are encoded in subsets of latent units. Shared latent units are estimated as those whose distances
δi = |z(a)i − z(n)i | are less than half way between the maximum and minimum: δi < 1

2 (mini δi +maxi δi). To encourage
factored latents, we elementwise multiply ⊙ arguments of the anchor-negative triplet term by the weight vector w =
(ω1, ..., ωD). Shared latents are weighted less ωi ∈ (0, 1) and non-shared units ωi = 1 remain unchanged:

LAda−Triplet = ln
(
1 + exp

(
d(z(a), z(p))− d(ω ⊙ z(a),ω ⊙ z(n))

))
(4)

4.2 Using the Replay Buffer for Metric Learning and Feature Extraction

Typically, triplet loss is used in the supervised learning case, where the anchor, positive and negative samples are known.
However, no such signal exists in the RL setting. To overcome this, we leverage the sequential nature of the problem and
assume that states closer together in time are also on average closer in terms of their ground-truth factors.

Given a replay buffer B = {s0, a0, r0, s1, a1, r1, . . .}, we use this assumption to sample some anchor state sa, a positive
sp and a negative sn such that n > p > a. To test the effectiveness of this assumption, we execute a uniformly random
policy to populate a replay buffer. We train a β-VAE and Ada-GVAE as baselines, which we compare against the β-TVAE
and Ada-TVAE from the previous sections. As a sanity check, we also train a fully supervised β-TVAE and Ada-TVAE on

3

RLDM 2022 Camera Ready Papers 422

422



the underlying ground-truth factors of the environment (the agent’s xy-position) so that the anchor-positive ℓ1 distance
is always less than the anchor-negative. The results in Figure 3a demonstrate that triplet-based models significantly
outperform the baselines by learning better features.

Finally, we test the effect of using the encoders of these learnt models as feature extractors in an RL setting. We freeze
the weights of the previously trained encoders, and apply deep Q-learning [2] over these features to solve the task of
reaching the top left corner from the bottom right (rewards of−1 on all timesteps). Results in Figure 3b demonstrate that
features from the adaptive triplet loss model are the most useful for the RL task; however, this is well approximated by
sampling triplets using only the ordering of states from the replay buffer. Both triplet methods outperform the baselines;
however, adaptive triplet encourages factored representations which are better features for the downstream RL task.

(a) (b)

Figure 3: (a) Different VAE frameworks trained to extract features. The plot shows the average rank correlation between
the ground-truth distances and corresponding distances between these learnt features. Striped bars are models trained
using ground-truth distances, while solid bars use our approach of sampling sequentially from the replay buffer. (b)
Downstream RL training rewards using previously learnt features. Mean and standard deviation are given over 30 runs.

5 Conclusion

We identified a shortcoming of VAE-based approaches in domains where there is little or no variation in perceived dis-
tances or overlap. This may be inherent in the environment, or arise inadvertently due to design decisions. For example,
if frame skipping [2] or high-level skills are used, there may be no perceived overlap between successive states in the
buffer. We overcome this problem by incorporating the inherent temporal information present in an episode through the
simple use of metric learning. Furthermore, we improve the performance by enabling representation disentanglement
by designing an adaptively weighted version of triplet loss. Leveraging the sequential nature of the replay buffer to
perform metric learning may open up interesting new avenues for future feature learning approaches in RL.
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Abstract

Research suggests that humans learn by grouping experiences into clusters or latent causes, which help organize context-
dependent state representations in reinforcement learning. Latent-cause inference supports optimal generalization –
learning can be applied to all situations that are deemed to be similarly generated. In contrast, as learning state repre-
sentations is so fundamental to adaptive behavior, suboptimal latent-cause inference could underlie psychopathological
cognitive deficits, such as overgeneralization of negative events in depression or incoherent world models in schizophre-
nia. To test this hypothesis, we quantified individual differences in latent-cause inference using a novel task and a
Bayesian inference model, and correlated these with self-reported psychiatric symptoms. N = 565 online participants
assigned abstract visual stimuli to clusters. We fitted the latent-cause inference model hierarchically to task behavior to
estimate individual-level parameters: the tendency to start a new latent cause, the temporal decay of existing causes, and
priors for the size or variability of causes. Participants also answered psychiatric symptom questions as part of a larger
sample (N = 1234), and we used exploratory factor analysis to derive transdiagnostic factors (i.e., clusters of symptoms
that co-occur) and factor scores for each participant. Higher scores on the ‘Schizotypy-disinhibition-mania’ factor were
correlated with an increased tendency to create new clusters, as well as a tendency to create larger, overlapping clusters.
This behavior was also correlated with the ‘Obsessive-compulsivity’ and ‘Positive affectivity’ factor, albeit less strongly.
These results establish our task as a means to quantify latent-cause inference and relate this process to state-space learn-
ing, and suggest that a tendency to group experiences into a large number of overlapping clusters might contribute to a
broad range of clinical conditions, from schizophrenia to ADHD.

Keywords: computational psychiatry; generalization; latent-cause inference;
state representation
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1 Introduction

Forming internal representations of the outside world, such as state representations in reinforcement learning, is funda-
mental to adaptive behavior. One of the ways in which we form these representations and carve up the world for effective
learning is by incrementally grouping experiences into clusters. Because the world is full of statistical regularities, it is
rational to assume a generative model in which experiences come from unobservable (latent) causes, with similar ex-
periences being generated by the same cause. Clustering experiences then becomes inferring their hypothesized latent
causes, or latent-cause inference.

Normatively, latent-cause inference can be modeled as Bayesian inference with an infinite capacity prior over clusters
and a cluster-specific likelihood. This allows for an unbounded number of clusters to be formed as new events are
experienced, leading to a dynamically growing hypothesis space for learning. While initially proposed in the context of
categorization [1], recent work has shown that this type of inference is also employed by both humans and animals in
various reinforcement-learning settings, from Pavlovian [2] and instrumental conditioning [3] to learning task structures
[4] and social evaluation [5]. In all these examples, latent causes do not strictly refer to cause-effect relationships, but
can be interpreted as any underlying grouping that reflects the statistical structure of the world (including categories
or contexts). In particular, in the case of reinforcement learning, both partially-observable states and entire context-
dependent Markov decision processes can be interpreted and modeled as latent causes, and latent-cause inference is
likely involved at both levels of analysis [6].

The major adaptive benefit of latent-cause inference is that it supports optimal generalization of behavioral policies
across different situations that are similar in some way (such as having a similar reward function - e.g., crossing different
streets, where the goal is to cross safely, and a learned policy can be easily generalized). Given the importance of latent-
cause inference, its failure could underlie different forms of psychopathology. Overgeneralization has been observed
both clinically and in the lab in many psychiatric disorders, including generalized anxiety disorder [7], depression [8]
and post-traumatic stress disorder (PTSD) [9]. This phenomenon can be explained by an increased tendency to assign
new experiences to previously inferred latent causes. Conversely, schizophrenia and schizotypy (schizophrenia-like
traits present in the general population) are associated with cognitive disorganization and an incoherent perception of
reality, behaviorally manifesting as e.g. both under- and overgeneralization in categorization tasks [10, 11]. Such clinical
symptoms and task behavior could be explained by having a tendency to infer a large number of overlapping causes,
leading to an inconsistent representation of reality.

To explore the links between suboptimal latent-cause inference and psychopathology at the level of individual partic-
ipants, we developed a task through which we could quantify individual differences in latent-cause inference using
parameters of a Bayesian model estimated from participants’ behavior. A large number of online participants performed
this task alongside completing several psychiatric questionnaires. We then correlated factors summarizing self-reported
psychopathology with individual-level parameters of latent-cause inference.

2 Methods

Psychiatric symptom questions: Online participants (N = 1234) answered a set of questions assessing psychiatric trait
symptoms of depression and anxiety, obsessive-compulsive disorder (OCD), PTSD, social anxiety and bipolar disorder
(adapted from the Inventory of Depression and Anxiety Symptoms-II [12], Depressive Attributions Questionnaire [13],
Positive Overgeneralization Scale [14] and Intolerance of Uncertainty Scale [15]). They also answered questions assessing
detachment (low positive affect and social withdrawal), schizotypy and disinhibition (risk-taking and impulsivity), taken
from the Personality Inventory for DSM-5 [16]. To address the issue of multicollinearity when using these measures
as regressors for task behavior and parameters, we performed exploratory factor analysis using maximum-likelihood
estimation with varimax rotation.

Task: A subset of participants (n = 565) also completed a task in which they assigned abstract visual stimuli to either
old or new clusters (Figure 1). The stimuli, introduced in the cover story as ‘microbes,’ had spikes coming out of a core.
These spikes varied along two dimensions: the number of spikes (dimension 1) and the length of the spikes (dimension
2). Participants were asked to classify the microbes into ‘strains’ (clusters) based on their perceptual similarity. They were
told that the stimuli were photos of microbes taken at consecutive time points and that, at any given time, one microbe
strain is dominant; however, microbes mutate sometimes to generate a new strain, which quickly starts to dominate
but does not take over completely, so they could still sometimes see exemplars of old strains. The task consisted of
6 blocks, each block involving 4 ground-truth clusters. However, after a short practice session with feedback on their
classification, participants were not given any further feedback and could classify stimuli into as many clusters per block
as there were trials. After the latent-cause inference task, participants also completed the symmetry span task measuring
spatial working memory [17].

Model: We modeled task behavior using a Bayesian model of latent-cause inference with a prior over clusters and a
likelihood for each cluster. The prior was a time-sensitive Dirichlet process mixture (tDPM) [18], with the concentration
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Figure 1: Schematic of the latent-cause inference task. Numbers denote the sequence of ’microbes’ for the first block,
and the axes denote the spike number and length of each microbe in the sequence. Example microbes are shown linked
with dotted arrows to their corresponding number in the sequence. Microbes on most consecutive trials came from the
same ground-truth cluster, but there would occasionally be a jump to a new cluster (green arrows and circles), or a jump
back to an old cluster (purples arrows and circles).

parameter α (representing the tendency to form a new cluster, i.e. the ‘new-cluster parameter’) as a free individual-level
parameter:

p(zt = k) =





wk
K∑
k′=1

wk′+α
, k ≤ K.

α
K∑
k′=1

wk′+α
, k = K + 1.

(1)

where zt is the cause to be inferred on trial t, K is the number of existing clusters, and wk is the weight of cluster k <= K.
This weight function is an exponential decay of the number of observations (with a free decay rate parameter λ), such
that unused clusters become less and less weighted in the prior:

wk =
∑

{i|ti<t,zt=k}
exp(−λ(t− ti)) (2)

The likelihood for each cluster was computed as a product of the likelihoods for each dimension, as these were assumed
to be independent. These likelihood functions were Gaussian-shaped with means equal to the average of previous
observations the participant had assigned to the cluster, and variances (representing how variable/wide a cluster is
assumed to be, i.e. the ‘cluster size’ parameters) as free parameters:

p(yt|zt = k) = exp(
−(yt − µk)2

2σ2
) (3)

where yt is the stimulus value on trial t and µk is the average of previous stimulus values for cluster k.

We estimated the four free parameters of this latent-cause inference model from participants’ behavior using hierarchical
Bayesian fitting. We also performed parameter recovery by simulating artificial behavior using parameter values from
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Figure 2: Associations between model parameters and transdiagnostic factors. Dots depict regression coefficient esti-
mates for each factor from multiple regressions with a model parameter as dependent variable and with the four factors,
gender, age and working memory as predictors. Whiskers represent 95% confidence intervals.

a subset of participants, re-estimating those parameters from the simulated behavior, and correlating the actual and
recovered values.

Regression analyses: For each parameter of latent cause inference, we built linear regression models predicting the
parameter values from the scores on the four psychiatric factors, while controlling for age, gender and working memory.

3 Results

All four model parameters were highly recoverable (Spearman’s ρ > 0.9 between all actual and recovered parameters).
As expected, the cluster-size parameters for the two dimensions correlated with each other (ρ = 0.65), but also with the
new-cluster parameter (ρ = 0.65 and ρ = 0.72, respectively). Additional analyses suggested that the correlations between
the new-cluster and cluster-size parameters were partially explained by lower working memory.

The exploratory factor analysis identified 4 factors. We named these factors based on the questions they loaded on:
‘Anxious-depression’, ‘Schizotypy-disinhibition-mania’, ‘Obsessive-compulsivity’, and ‘Positive affectivity’. Of these, all
but the ‘Anxious-depression’ factors significantly predicted the new-cluster (α) and cluster-size parameters (σ1 and σ2 ,
Figure 2). The ‘Schizotypy-disinhibition-mania’ factor had the largest effect sizes. The associations with the ‘Obsessive-
compulsivity’ factor were mainly driven by the Checking subscale of OCD symptoms, which was the only subscale
loading onto this factor that predicted in separate regressions the new-cluster (β = 0.17; SE = 0.05; p < 0.001) and cluster-
size parameters (for dimension 1: β = 0.14; SE = 0.04; p = 0.002; for dimension 2: β = 0.16; SE = 0.04; p < 0.001).

4 Discussion

Our results establish our task as a means to quantify the latent-cause inference process in humans, and show that this
process relates to mental health symptoms. In particular, our findings suggest that an increased tendency to infer new
latent causes, as well as a tendency to infer large and variable causes, are associated with several transdiagnostic forms
of psychopathology. We found a primary association with a transdiagnostic factor related to schizotypy, disinhibition
(impulsivity, risk-taking) and mania. This suggests that suboptimal latent-cause inference might be related to deficits
in executive function, which are a unifying characteristic of conditions related to our transdiagnostic factor, such as
schizophrenia [19], ADHD [20] and bipolar disorder [21]. Interestingly, we found no association between working mem-
ory and psychopathology, suggesting the observed link is due to other aspects of executive function such as planning.

We also found weaker associations with checking compulsivity and a transdiagnostic factor related to heightened pos-
itive affect (euphoria) and positive overgeneralization (the tendency to overgeneralize from positive experiences to
broader aspects of life). These might be related to a perception of the world as constantly prone to change (which
might encourage repetitive checking to ensure that a feared negative outcome has not occurred), or the perception of
new experiences as more novel than they actually are (as increased novelty has been linked to more positive affect [22]).
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Overall, our results suggest that a tendency to group one’s experiences into a large number of overlapping clusters might
contribute to a broad range of clinical symptoms and conditions, from schizophrenia to ADHD. This highlights the ben-
efit of transdiagnostic approaches and at the same time warrants further investigation of latent-cause inference deficits
in specific disease populations. Lastly, our results underscore the role of fundamental processes related to reinforcement
learning, such as learning a state representation using clustering/latent-cause inference [6], in maintaining mental health.
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Abstract

Addiction, or substance use disorders (SUDs) are the most prevalent of all psychiatric conditions, with dire costs to
individuals and society. Computational models of SUDs have proposed that drug use influences valuation of drug and
non-drug stimuli, including via changes in prediction error (PE) driven learning.

However, there are inconsistent neuroimaging findings examining PE learning in substance use: Some studies have ob-
served changes in PE related neural activity in drug-using populations compared to healthy adults, while others have
not. To assess the evidence for changes in PE signaling in substance use, we conducted a coordinate-based meta-analysis
of BOLD activity to reward PEs in individuals with SUDs and substance use problems [Nstudies=9, Nparticipants=250]
using multi-level kernel density analysis (MKDA). PEs assessed in included studies tended to be model-free, instru-
mental PEs, incorporating unexpected rewards or punishments. We selected a similar, representative database of PE
coordinates from healthy adults matching these features (Nstudies = 141, Nparticipants 3630; Corlett*, Mollick*, and
Kober, 2022).

We found consistent activity to reward PEs in striatal regions in substance users, primarily ventral striatum, and cortically
in the right inferior frontal gyrus, and in the supramarginal gyrus (including parietal lobe). We compared brain areas
consistently encoding PE in the substance users with those in healthy adults, finding that PEs were more consistently
represented in the striatum for substance-using participants.

These results have important ramifications for theories of PE and addiction. More consistent PE signals in substance use
may be linked to the pharmacological effects of drugs of abuse on the dopamine system. Further, changes in PE signals
contribute to value signals for non-drug rewards, which may be particularly important for addiction recovery, involving
choices of alternative actions over choices to use drugs.

Keywords: prediction error, addiction, neuroimaging, reward
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1 Introduction

Substance use disorders (SUDs) are extremely prevalent (with around 40.3 million people experiencing a substance use
disorder in the US in the past year [1], and incorporate many symptoms including risky and compulsive use, impaired
control, physiological alterations, and craving [2]. Importantly, individuals with SUDs make continued choices to take
drugs, despite negative consequences that impact many aspects of their lives, including work, social relationships, and
emotional well-being. Understanding how learning mechanisms contribute to continued drug-taking will increase our
understanding and the design of effective treatments.

We can consider how learning contributes to drug-taking choices with a reinforcement or temporal-differences learning
framework, which involves updating the value of actions with reward prediction errors (PEs: δ) see Equation 1. Reward
prediction errors are calculated based on the difference between expected values of an action or cue (V) and the obtained
reward outcome (r) [3]). Neurobiologically, PEs have been linked to the phasic firing of dopamine neurons [4], and
dopamine release, measured using fast-scan cylic voltammetry in animal studies [5]. Notably, human fMRI BOLD signals
in the ventral and dorsal striatum have also been correlated with prediction error signals [6, 5, 7].

V < −V + δ(r–V ). (1)

Drugs of abuse increase dopamine in the nucleus accumbens as measured by voltammetry [8] and cause changes in
synaptic plasticity in the midbrain and ventral striatum that affect PEs [9]. For example, [10] demonstrated that cocaine
use impaired the ability of dopamine neurons to suppress firing during the omission of an expected reward. Drug use is
also important for theories of reward PE generally, as initial drug use may lead to positive reinforcement, but continued
drug use leads to negative valence emotional states that may enhance the value of positive rewards to offset the aversive
state [11]. Thus, how drug use affects PE may also help us understand more basic interactions between positive and
negative valence and their effects on the dopamine system.

The effects of drugs on PE signaling have also been linked with computational models of the dopamine system. For
example, Redish [12] proposed that the pharmacological effects of drug use on the dopamine system causes an enhance-
ment of PE signals that cannot be compensated by the value function, causing drug-related actions to continue to accrue
value. However, it is unclear to what extent the drug-induced PE enhancement influences learning for non-drug rewards.
We would predict that non-drug related actions have relatively smaller value increases due to relatively reduced effects
of natural rewards on the dopamine system (a similar finding was modeled by Redish), but the effects of drug use on the
dopamine system may also enhance PEs more generally, even for non-drug rewards.

Based on this theoretical background, it is important to characterize the neurobiological effects of drug use on PE and
value signals and how these signals are influenced by substance use. Studies have directly compared value signals for
drug and non-drug rewards, generally finding a blunting of value signals to non-drug rewards relative to drug rewards
[13, 14]. However, recent studies on the neural representations of PEs in substance users and SUDs have found conflicting
results. While Tanabe et al. [15] observed reduced neural PE tracking in individuals with stimulant SUD, Park et al. [16]
did not observe differences in striatal PEs in individuals with alcohol SUD compared to healthy controls. A recent small
meta-analysis of reward PEs and value signals compared substance users with control participants, finding blunted
PE/value signals in substance users in bilateral putamen, insula, and medial frontal gyrus [17].

Here, we focus on understanding PE brain signals for non-drug rewards, which guide value updating and action se-
lection. Understanding how difficulties with substance use influence neural PE representations is critically important
for understanding the learning mechanisms behind reinforcement of actions to use drugs and to abstain from drugs.
Importantly, we can also relate PE signals measured by fMRI to the function of the dopamine system as captured by pre-
clinical data, which inspired the computational models described above. We do so by interpreting our results in light of
combined pharmacological and fMRI studies [18], or combined optogenetic and fMRI studies [19]. Understanding stri-
atal biology, which contains medium spiny neurons (MSNs) with D1 or D2 receptors, is important for interpreting these
effects. Positive BOLD signals in the nucleus accumbens occur when dopamine neurons are optogenetically stimulated
and accumulating data supports a model suggesting that dopamine release in the accumbens activates post-synaptic D1
receptors, which changes postsynaptic membrane potential, leading to BOLD increases [18]. Both results are important
for interpreting BOLD signals to reward PEs in substance users, as SUDs have been linked to changes in post-synaptic
D2 receptors as measured with PET [20].

Overall, our goals involved examining how drug use influences the regions encoding reward PEs. To examine this, we
conducted a fMRI meta-analysis of reward PEs in individuals with SUDs, substance use problems and regular substance
users. Importantly, we focus selectively on PEs for non-drug rewards because this has been the focus of the literature
and thus of the included studies. We compared consistency of brain activity in responses to prediction error in studies
with healthy control participants and regular substance users on similar types of prediction error tasks.
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2 Methods

Search strategy: We conducted the search and selection of articles for this meta-analysis in accordance with Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and analyzed using Multi-level Kernel
Density Analysis (MKDA; [21, 6]). Overall, 56,667 abstracts were identified. After removing duplicates, 94 full-text arti-
cles were assessed for inclusion; of these, we included 9 fMRI studies in the meta-analysis, contributing 20 independent
contrasts and representing 250 participants.

Inclusion: We included fMRI studies that involved human participants between the ages of 18-65 who used drugs reg-
ularly (alcohol, nicotine, cocaine, marijuana, or opiates), experienced substance use problems, or had an SUD. The in-
cluded studies reported xyz activation coordinates (standard MNI or Talairach) corresponding to prediction errors, like
unexpected reward or punishment, or unexpected sensory or motor outcomes that violated beliefs. Studies only compar-
ing rewards to punishments were excluded. Each study was assessed by two researchers, and any disagreements were
discussed until both were in agreement.

Data extraction: We extracted the following information from each included contrast: N (number of participants), xyz
coordinates for each activation foci, whether the foci came from an ROI or whole-brain analysis, and information related
to drug use and the participant group, including the type of substance, and the severity of drug use/SUD. We also
extracted information about the type of PE, following methods based on a meta-analysis on PEs in healthy adults [6],
including whether the PE resulted from a (1) primary or secondary reward, (2) was positive or negative (3) instrumental
or Pavlovian conditioning, and (4) outcome valence (an appetitively reward or an aversive punishment, and (5) whether
the PE involved an unexpected outcome, or an atypical PE capturing a violation of beliefs.

B. Primary Vs. Secondary RewardA. Drug Type

C. Positive Vs Negative PE D. Appetitive and Aversive Valence

Figure 1: Characterizing the proportion of drug studies by: A.
Drug type B. Primary or secondary reinforcers C. positive or
negative PE D. appetitive or aversive valence

To quantify the type of included PEs, we examined the distri-
bution of characteristics of PE in included contrasts, as shown
in Figure 1. All included contrasts focused on instrumental,
model-free PE. 85% of contrasts focused on secondary rewards
and 15% focused on primary rewards, and incorporated either
appetitive valence (25%), aversive (30%), or both (45%). The ma-
jority of included contrasts focused on signed PE (95%), and in-
cluded positive (50%) and negative PE (15%), and PEs in both
positive and negative directions (35%). 70% of included con-
trasts had participants with a substance use disorder diagnosis,
while 20% included participants with substance use problems
or used substances regularly, and 10% included participants in
both categories. One contrast included a fictive PE signal and
one included a social outcome.

Based on these characteristics, we extracted a matched set of
contrasts from our large published database of prediction error
coordinates from healthy participants [6]. More specifically, we
selected studies that were instrumental, model free prediction
errors, and excluded cognitive and perceptual PEs (but included
social and fictive PEs). This selected database incorporated 141
studies and 226 contrasts.

Analysis Using MKDA, we incorporated coordinates from each
included contrast and convolved them with a 10mm spheri-
cal kernel to create a contrast indicator map containing vox-
els within 10mm of the peak for that contrast. We then gen-
erated a weighted average of CIMs to obtain a density map,
weighted by the square root of the sample size for each contrast
(which weights larger studies more heavily). This creates an in-
terpretable meta-analytic statistic (P) at each voxel, representing
the weighted proportion of contrasts that activate within 10 mm of each voxel. The images were thresholded at FWE
(family wise-error) p <.05 (voxelwise p <.005). Cluster level thresholds were determined using Monte-Carlo simulation.
Results represent meta-analyses across all included studies, and meta-contrasts that compare the consistency of activa-
tion across two subsets of coordinates by comparing the proportion of contrasts activating within 10mm of that voxel in
each subset.
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A. PE in drug users

p < .05, 

FWE

p < 1e-6

y=12
 z=-12

B.  PE in healthy adults

y=12
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C. PE in drug users > PE in healthy adults
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 y=8


x=10z=-12

y=15


Figure 2: Comparison of PEs in Drug-using and healthy individuals A. PEs in
drug-using and SUD participants. B. PEs in healthy individuals. C. Contrast
comparing PE in drug-using/SUD participants and healthy individuals

3 Results

Among drug users (Fig 2A), we observed consistent PE signals in the left and right ventral striatum, extending into the
pallidum, as well as dorsal striatum (including both caudate and putamen). We also observed cortical signals to PE in
the right inferior frontal gyrus and insula, and in the inferior parietal lobe (including the right supramarginal gyrus).

In our matched-subset database of PEs from healthy adults – and consistent with the published results in Corlett* et al.
[6] – we observed prediction error signals both cortically and subcortically, including midbrain, bilateral, ventral and
dorsal striatum, thalamus, orbitofrontal cortex, medial PFC, anterior cingulate, and bilateral inferior parietal lobule (Fig
2B).

A direct contrast between these two meta-analytic databases (Fig 2C) revealed a peak in the left ventral striatum, extend-
ing into the pallidum, that showed more consistent prediction error signaling in substance users compared to healthy
adults. Right mid- to dorsal striatum also showed more consistent PE encoding in substance users compared to healthy
adults. Control participants showed more consistent PE-related activations in caudate, putamen, subgenual and poste-
rior cingulate, medial PFC, parietal cortex, and midbrain.

4 Discussion

Using meta analysis, we report consistent PE-related activations in substance users in both cortical and subcortical re-
gions. As expected, substance users exhibited consistent PE-related activations in both dorsal and ventral striatum,
insula/inferior frontal gyrus, and in the inferior parietal lobe. We further showed that, compared to a matched meta-
analytic set of PE studies in healthy adults, substance users exhibited more consistent PE-related activations in left ven-
tral striatum, while control participants had more consistent PE in dorsal striatum, medial PFC, midbrain and parietal
regions. However, interpreting the brain regions consistently encoding PE signals in substance users, and comparing
consistency of brain regions encoding PE across substance users and healthy adults, is complex, particularly when com-
bining effects across different drug types, as we did in this meta-analysis. Importantly, as we examined PE in participants
who were already using drugs, we cannot tell whether the changes in PE observed are due to differences in brain regions
encoding PE before use, or the consequence of the effects of drugs on these signals.

The dorsal and ventral striatum have been implicated in coding of PE signals across numerous studies in healthy indi-
viduals [6, 7]. We found consistent PE signals in the dorsal and ventral striatum in individuals using drugs, which was
expected based on prior literature. This could be interpreted as an increase in the signal-to-noise ratio of the PE signal
itself – which could suggest an enhanced signal to reward PE or less noise, i.e. enhanced fidelity of PE signals compared
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to other signals. It is possible that drug users hyperfocus on drug rewards, increasing the gain of drug-related signals,
and have reduced or blunted signals to non-drug rewards. However, our data does not support a blunting of non-drug
related PE signals, in fact suggesting that such signals are consistently represented in individuals who use drugs. One
possibility is that individuals with SUDs compute and represent the PE signal adequately but don’t use it well to up-
date behavior choice. Another important thing to consider when interpreting our results is that money is a secondary
reinforcer which can be used to obtain drugs, so drug use may also enhance attention to money due to the ability to use
money to obtain drugs.

The observed results have important implications for models of PE and addiction. We observed that PE signals were
more consistently represented in striatum in participants who used substances regularly compared to PEs in healthy
participants. Importantly, we compared PEs in healthy adult participants during similar types of tasks as the prediction
error tasks used in participants who used substances. This is significant given that findings are mixed on how substance
use affects striatal PE, with some studies observing reduced PE tracking in individuals with SUDs in striatum [15] while
others observed intact striatal PE signals in individuals with SUDs [16]. The results are also significant from a compu-
tational modeling perspective, particularly the idea that ventral striatum may act a a “critic”, providing prediction error
signals that influence action selection by influencing updating of action values in dorsal striatum [22].

The observed increase in PE signals in substance-using participants may be consistent with the Redish [12] model which
proposes that the effects of drug reward on the dopamine system leads to an increase in PE signals. However, impor-
tantly, Redish [12] proposes that this increase in dopamine causes drug-related cues and actions to grow without bound,
while non-drug rewards and cues grow until they reach a certain asymptote. Prior work showed reduced differentiation
in value signals between drug and non-drug rewards in dependent smokers [14] and enhanced PE signals for unex-
pected alcohol in alcohol-dependent individuals [23]. Future work could examine drug-related values and PE as data
accumulates.

One hypothesis is that individuals who use drugs may demonstrate changes in model-free temporal difference learning
(or reward learning [24]). Differences in model-free updating following a rewarded choice have been linked to greater
escalation of methamphetamine administration [25].

We plan to compare the brain regions associated with different types of PEs in substance using participants compared to
healthy adults. We have observed differences in brain areas encoding appetitive and aversive PE, and future work could
examine how drug use changes these signals. Our work may also inspire future studies of PE in addictive disorders. We
observed a lack of studies considering Pavlovian PE and few studies with primary rewards.

PEs are important for updating the values of cues and actions, and one aspect of addiction is continued choice of drug-
related actions over alternative actions. PE signals to non-drug rewards may be critically important for developing
addiction treatments and understanding recovery, as PE signals update the value of non-drug related actions. One
effective treatment of addiction, contingency management, pays participants for abstaining from drugs, thus enhancing
the value of abstinence [26]. A general enhancement in PE signals in substance use is important because it suggests that
treatments incentivizing abstinence may be particularly effective. Further, understanding how repeated reinforcements
(such as drugs) affect localization of PE computations will influence our understanding of how these computations
influence behavior selection. For example, more consistent representation of PE in striatum after continued drug use
may enhance attention toward reward values when selecting behaviors, and reduce updating of goals with PE signals
that may be represented prefrontally. More broadly, examining how habits such as drug use influence PE will enhance
our understanding of brain systems involved in goal-directed behaviors and can inform design of biologically plausible
algorithms.
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Abstract

Reward optimization in fully observable Markov decision processes is equivalent to a linear program over the polytope
of state-action frequencies. Taking a similar perspective in the case of partially observable Markov decision processes
with memoryless stochastic policies, the problem was recently formulated as the optimization of a linear objective subject
to polynomial constraints. Based on this we present an approach for Reward Optimization in State-Action space (ROSA).
We test this approach experimentally in maze navigation tasks. We find that ROSA is computationally efficient and can
yield stability improvements over other existing methods.
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1 Introduction

Partially Observable Markov Decision Processes (POMDPs) offer a popular model for sequential decision making with
state uncertainty. Here, actions are selected based on partial observations of the system’s state with the objective to max-
imize a cumulative discounted reward. We focus on infinite horizon problems and memoryless stochastic policies which
offer an alternative to difficult-to-optimize policies based on belief states and policies with memory. Techniques such as
policy iteration and value iteration usually require a belief state or a finite-state controller representation of the policy,
and the standard approaches based on policy gradients [SMS+99, AYA18] can suffer from ill-conditioning when future
rewards are not sufficiently discounted. Recently, a polynomial programming formulation of POMDPs was derived
in [MM22], generalizing the linear program associated to MDPs. In this work we provide a practical implementation
of this approach and demonstrate experimentally, in navigation problems of different sizes, that it offers a competitive
alternative improving computational cost and numerical stability for a range of discount factors.

Figure 1: A blind controller with two states; policies
can be parameterized by p ∈ [0, 1]; for increasing γ the
Lipschitz constant of the reward increases (left); the cor-
responding feasible state-action frequencies, probability
simplex ∆S×A, and instantaneous reward vector (right).

Policy gradients A very popular approach in Reinforce-
ment Learning are policy gradients methods. In fully ob-
servable problems, the iteration complexity of policy gradi-
ent methods behaves like O((1 − γ)−κ), where γ ∈ (0, 1)
is the discount factor and κ ∈ N depends on the specific
method [CCC+21]. This is reminiscent of the Lipschitz con-
stant of the reward function (as a function of the policy),
which behaves like O((1− γ)−1) [PRB15]; see Figure 1. This
leads to increasingly ill-conditioned problems as γ → 1
and can cause undesired oscillations during optimization
[Wag11]. However, choosing a discount factor close to 1 is
desirable as one often wishes to optimize the mean reward
rather than a discounted reward. This is also required to
prevent vanishing policy gradients in sparse reward MDPs,
where, denoting nS the number of states, gradients can of order O(2−nS/2) if γ ≤ nS/(nS + 1) [AKLM21]. In principle
the ill-conditioning problem can be addressed by introducing an appropriate metric, as in natural policy gradients or
trust region policy optimization, which can be costly, however.

Optimization in state-action space An alternative to optimizing over the policy parameters is to optimize the reward
over all feasible state-action frequencies of the POMDP. State-action frequencies are weighted averages of the time spent
by the Markov process at different state-action pairs. The reward of a policy depends linearly on its state-action frequency
and the optimization in state-action space maximizes the time spend in favorable states. The policy corresponding to
a state-action frequency can be recovered by conditioning over states. In MDPs, the state-action frequencies form a
polytope and hence the problem becomes a linear program [Der70, Kal94]. This yields a strongly polynomial algorithmic
approach, i.e., does not degrade for γ → 1 [PY15]. In the case of POMDPs, additional polynomial constraints describe
the set of all feasible state-action frequencies of POMDPs, which were recently described by [MM22]. This yields a
polynomial program of POMDPs generalizing the linear programs of MDPs. In this work we investigate the practical
viability of this approach to optimize the reward in POMDPs. We consider navigation tasks in random mazes of different
sizes, for which we develop a tool to generate the constraints and solve the constrained optimization problem using
interior point methods. Our experiments show that the proposed method can yield significant computational savings
compared to several baselines, while also remaining numerically stable across values of γ where other methods fail.

2 Notation and setup

We denote the simplex of probability distributions on a finite set X by ∆X and the set of Markov kernels from a finite set
X to another finite set Y by ∆XY . A partially observable Markov decision process or shortly POMDP is a tuple (S,O,A, α, β, r).
We assume that S,O and A are finite sets which we call the state, the observation and the action space respectively. We fix
a Markov kernel α ∈ ∆S×AS which we call the transition mechanism and a kernel β ∈ ∆SO which we call the observation
mechanism. Further, we consider an instantaneous reward vector r ∈ RS×A. As policies we consider elements π ∈ ∆OA, which
are referred to as memoryless stochastic policies. Every policy defines a transition kernel Pπ ∈ ∆S×AS×A by Pπ(s′, a′|s, a) :=

α(s′|s, a)
∑
o π(a′|o)β(o|s′). For any initial state distribution µ ∈ ∆S , a policy π ∈ ∆OA defines a Markov process on S ×A

with transition kernel Pπ which we denote by Pπ,µ. For a discount rate γ ∈ (0, 1) we define the infinite horizon expected
discounted reward

R(π) := EPπ,µ

[
(1− γ)

∞∑

t=0

γtr(st, at)

]
. (1)

1

RLDM 2022 Camera Ready Papers 436

436



We consider the reward maximization problem, i.e., the problem of maximizing R(π) subject to π ∈ ∆OA. The discount
factor γ is most commonly introduced for mathematical convenience. For large state spaces and sparse rewards or more
generally for POMDPs where the optimal policy should not depend on an unknown initial state distribution, it may be
more desirable to consider the expected reward per time step, which corresponds to the limit γ → 1.

3 Feasible state-action frequencies

It is well known that R(π) = 〈r, ηπ〉S×A, where ηπ(s, a) = (1 − γ)
∑
t≥0 γ

tPπ,µ(st = s, at = a) is the state-action frequency
of π. We denote the set of feasible state-action frequencies in the fully observable and in the partially observable case
by N and Nβ , respectively. Hence, instead of solving the reward maximization problem over π, one can also solve the
reward maximization problem in state-action space, which is given by

maximize 〈r, η〉 subject to η ∈ Nβ ⊆ ∆S×A. (2)

To do this in practice, one requires a suitable characterization of the set of feasible state-action frequenciesNβ . To describe
this set via polynomial conditions, we introduce the effective policy poltyope1 ∆S,βA := {π ◦ β : π ∈ ∆OA}, which is the set of
state policies that can be realized by selecting the actions based on observations made according to β. Note that the set
of effective policies ∆S,βA is a polytope since it is the image of the polytope ∆OA under the linear map π 7→ π ◦ β.

The state-action frequencies of an MDP As mentioned before, the state-action frequencies of an MDP form a polytope
N = {η ∈ R≥0 : `s(η) = 0 for s ∈ S} ⊆ ∆S×A , where `s(η) = 〈δs ⊗ 1A − γα(s|·, ·), η〉S×A − (1− γ)µs; see [Der70]. Hence
for MDPs the reward maximization problem (2) becomes a linear program in state-action frequency space. This is known
as the dual linear programming formulation of MDPs [Kal94].

The state-action frequencies of a POMDP The effective policy corresponding to a state-action frequency can be com-
puted by conditioning. In order for the conditioning to be well defined, we require the following assumption, which
holds for instance if the initial distribution µ has full support.

Assumption 1. For any state-action frequency η ∈ N and any state s ∈ S it holds that
∑
a ηsa > 0. In the mean reward

case we further assume that for every policy π ∈ ∆OA there exists a unique stationary distribution of Pπ . This is a standard
assumption in MDP linear programming [Kal94] and necessary for the convergence of PG methods [MXSS20].

The correspondence of state-action frequencies η ∈ N and state policies τ ∈ ∆SA via conditioning provides a correspon-
dence of polynomial inequalities in the two sets ∆SA andN . More precisely, setting S := {s ∈ S : bsa 6= 0 for some a ∈ A}
it holds that ∑

s,a

bsaτsa ≥ 0 if and only if
∑

s∈S

∑

a

bsaηsa
∏

s′∈S\{s}

∑

a′

ηs′a′ ≥ 0. (3)

Therefore, the set of feasible state-action frequencies Nβ can be described by finitely many polynomial (in)equalities
corresponding to the linear (in)equalities describing ∆S,βA in ∆SA. In particular, this shows that solving the reward op-
timization problem in infinite-horizon POMDPs with memoryless stochastic policies is equivalent to a polynomially
constrained optimization problem with linear objective, which generalizes the lienar program associated to MDPs. This
formulation was obtained in [MM22] and was used to establish upper bounds on the number of critical points of the
reward optimization problem. In this work, we focus the solution of POMDPs via this polynomial program.

4 Reward optimization in state-action frequency space (ROSA)

We formulate our approach for Reward Optimization in State-Action space (ROSA) in Algorithm 1. The two non-trivial
steps in the algorithm are the computation of the defining linear inequalities of the polytope ∆S,βA in line 4 and the
solution of the constrained optimization problem in line 6.

Computing the polynomial constraints The linear inequalities defining ∆S,βA and therefore the polynomial constraints
of Nβ can be computed in closed form if β has linear independent columns [MM22, Thm. 12]. If this is not the case, they
can be computed algorithmically using Fourier-Motzkin elimination, block elimination, vertex approaches, or equality
set projection [JKM04]. Let us discuss the special case of deterministic observations. We associated β with a mapping
S → O, which partitions the state space into sets So := {s ∈ S : β(o|s) = 1} ⊆ S . If we fix an arbitrary action a0 ∈ A and

1Here, π ◦ β denotes the composition of the Markov kernels given by (π ◦ β)(a|s) := ∑
o∈O π(a|o)β(o|s).
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Algorithm 1 Reward Optimization in State-Action space (ROSA)

Require: α ∈ ∆S×AS , β ∈ ∆SO, γ ∈ (0, 1), µ ∈ ∆S
1: for all s ∈ S do
2: `s(η)← 〈δs ⊗ 1A − γα(s|·, ·), η〉S×A − (1− γ)µs . Define the linear equalities
3: end for
4: Compute the defining linear inequalities of ∆S,βA . In closed form or algorithmically
5: Compute the defining polynomial inequalities pi(η) ≥ 0 of Nβ . Can be done according to (3)
6: η∗ ← arg max〈r, η〉 sbj to η ≥ 0, `s(η) = 0 , pi(η) ≥ 0 . Solve the constrained maximization problem
7: R∗ ← 〈r, η∗〉 . Evaluate the optimal value
8: τ∗ ← η∗(·|·) ∈ ∆SA . Compute an optimal state policy
9: π∗ ← solution of βπ = τ∗ . Compute an optimal observation policy

return η∗, R∗, π∗ . maximizer, optimal value, optimal policy

arbitrary states so ∈ So, o ∈ O, the polynomial equations cutting out the set Nβ of feasible state-action frequencies from
the set N of all state-action frequencies are given by

posa(η) := ηsoa
∑

a′

ηsa′ − ηsa
∑

a′

ηsoa′ =
∑

a′ 6=a
(ηsoaηsa′ − ηsoa′ηsa) = 0, (4)

for all actions a ∈ A\ {a0}, states s ∈ So \ {so} and observations o ∈ O. Hence, for deterministic observations the reward
maximization problem in state-action space takes the form

maximize 〈r, η〉 subject to

{
`s(η) = 0 for s ∈ S
posa(η) = 0 for o ∈ O, a ∈ A \ {ã}, s ∈ So \ {so}

ηsa ≥ 0 for s ∈ S, a ∈ A.
(5)

This is a problem in |S||A| variables with |S| linear and
∑
o(|So| − 1)(|A| − 1) = (|S| − |O|)(|A| − 1) quadratic equality

constraints and |S||A| inequality constraints (of which only |O||A| are non redundant).

Implementation and solution of the optimization problem We provide a Julia [BEKS17] implementation of ROSA
for deterministic observations. In general, problem (5) can be solved with any constrainted optimization solver. Our
implementation is built on Ipopt, an interior point line search method [WB06]. We call Ipopt via the model-
ing language JuMP in which the constraints are easy to implement [DHL17]. The implementation is available un-
der https://github.com/muellerjohannes/POMDPs-ROSA.

5 Experiments

To demonstrate the performance of ROSA we test it on navigation problems in mazes. For this, we generate connected
mazes using a random depth first search [maz]. Then we randomly select a state as the goal state at which a reward of
|S| is picked up and from which the agent transitions to a uniform state. For all other states four actions move the agent
right, left, up or down. The agent can only observe the 8 neighboring cells and starts at a uniform position.

We compare against two other optimization approaches. First, we consider tabular softmax policies and directly optimize
the parameters for the exact discounted reward. Instead of a vanilla policy gradient ascent, we use L-BFGS, which is a
first order method that estimates second order information. In comparison to a naive policy gradient, we observed L-
BFGS to converge faster. We refer to this approach as direct policy optimization (DPO). As a second baseline we consider
the reformulation of the reward maximization problem as a quadratically constrained linear program [ABZ06]

maximize 〈µ, v〉 subject to π ∈ ∆OA and v = γpπv + (1− γ)rπ, (6)

where pπ(s′|s) :=
∑
o,a π(a|o)β(o|s)α(s′|s, a) and rπ(s) :=

∑
a,o r(s, a)π(a|o)β(o|s). Note that here the constraint is on the

value function. We use Ipopt to solve (6). We call this approach Bellman constrained programming (BCP).

In order to compare the running times of the three approaches, we generate square mazes of side length 2n − 1 and
2n2−1 states, for n = 2, . . . , 10. We solve the POMDPs for a discount factor of γ = 0.9999 using ROSA, BCP and DPO for
102 different mazes of each size2 and report the mean solution times and achieved rewards as well as their 16% and 84%
quantiles in Figure 2. We observe that all three methods achieve comparable rewards. However, DPO becomes inefficient
even for problems of moderate size and the running time of BCP grows significantly faster compared to ROSA.

2For DPO we solved only 20 mazes of each size due to the long solution time.
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Figure 2: Shown is the solution time and cumulative reward obtained by different methods solving navigation tasks
depending on the number of states or the discount factor. Inset shows one of the mazes with 199 states. ROSA reaches
higher reward in less time, with stability improvements and time savings becoming more pronounced for larger γ.

To evaluate the performance of ROSA for γ → 1 we solve 102 mazes3 with side length 9 and 49 states for increasing
discount factors. We report the average solution times and achieved reward in Figure 2. In the comparison of the
rewards, examples where BCP did not converge are excluded. In these experiments we see that BCP becomes unstable,
whereas the solution time of ROSA appears to be very robust and even decrease for γ → 1. In fact, in the solution of (6)
Ipopt fails to converge to local optimality for about 15% of all problems with discount factor at least 0.9999.
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Abstract

In this paper, we explore the problem of learning a collection of subtasks in parallel from a single stream of experience.
Our motivating hypothesis is that successful goal-achieving continual learning agents in complex environments are ones
that can perform tasks and predictions within their environment. We formalize the problem of effectively gathering
this experience as a large Markov decision process. We then provide an alternative problem setting that simplifies this
complex problem into a tractable non-stationary reinforcement learning problem. In this setting, we have a behavior
learner which learns to act in the environment and acquire experiences. Then, subtask learners update their parameters
off-policy in parallel using these experiences generated by the behavior learner. The behavior learner’s goal is to gather
experiences so as to optimize subtask learning. We then investigate the role of replay on the behavior learner, and propose
a simple new method, non-stationary replay, as a potential improvement on standard replay in this non-stationary setting.

Keywords: reinforcement learning; continual learning; subtasks; general
value functions;

Acknowledgements

We would like to thank the Alberta Machine Intelligence Institute and Canada CIFAR AI Chairs Program for the funding
for this research.

RLDM 2022 Camera Ready Papers 440

440



1 Introduction

For complex tasks, reward alone need not necessarily be the only form of feedback to drive learning of reward-
maximizing behavior. The primary goal of the agent is to maximize cumulative rewards, and the reward function
provides evaluative feedback of the agent’s performance. However, reward is one of many learning signals, and the
environment is often rich with feedback and learning signals about the world. The hypothesis is that effective rein-
forcement learning (RL) agents should have a general understanding of the world, and be able to perform tasks and
predictions about its environment which will ultimately help the agent achieve the primary task of maximizing reward.

One such hypothesis on how to represent knowledge of the environment is through solutions to RL subtasks [Sutton
et al., 2011], such as prediction or control general value functions. However, an open question is how an agent can
efficiently gather useful data to learn a large set of subtasks in parallel. Ideally, an agent is able to select actions in
the world that leads it to gather important data needed for its subtasks learners, while not neglecting learning of other
subtasks, such that the entire collection of subtask learners are learned in the most efficient way possible in an off-policy
manner from a single stream of experience.

In this paper, we answer two questions:

1. How can we formulate the problem of learning a collection of subtasks from a single stream of experience in a
continual learning setting?

2. How can agent direct its experience to be more efficient at learning a collection of subtasks?

For the former, we formalize this problem as an RL problem with the rewards serving as a measure of learning progress
on the subtasks. Towards the latter, we perform a preliminary investigation of the use of replay in this problem setting
so the agent can rapidly adapt to the changing non-stationary learning signal that the behavior receives, and introduce
non-stationary replay to tackle the problems that standard replay faces with non-stationary rewards.

2 Problem Formulation

2.1 Contextualizing the Problem Setting

In our problem setting, which we consider from McLeod et al. [2021], an agent is continually interacting and learning in
a complex environment to accumulate knowledge about the world to facilitate reward maximization. This knowledge
can be in many forms, such as transition dynamics models, options, skills, and general value functions. Learning these
subtasks helps the agent progressively improve on its primary task, which is to maximize the (external) reward signal in
the environment. The agent needs to discover useful subtasks and efficiently learn these subtasks to help it efficiently
improve on the primary task. This larger continual learning problem setting has many components: subtask discovery,
directed exploration to learn about both the subtasks and the primary task, and sample efficient update algorithms to
learn the subtasks and the primary task.

To make progress towards addressing this larger problem setting, it is fruitful to study each component in isolation
to develop a better understanding of these sub-problems before building a unified system that addresses all of these
challenges. In this paper, we focus on the exploration aspect of learning a collection of subtasks, and leave the questions
of subtask discovery and how to integrate subtask learning with primary task learning for future work.

2.2 Formalization

We assume the agent interacts in a Markov decision processM defined by a set of states S, set of actionsA, and transition
probability function P (s′|s, a), where the set of states and actions can be continuous. We omit the reward function as we
are not considering the primary task.

We formulate the continual subtask learning problem as an RL problem. The agent has a set of subtasks {Tj}Nj=1, with
each with Tj consisting of an objective function Jj : Ωj → R that is dependent on a set of weights θ(j) ∈ Ωj . For each
subtask Tj , the agent has an associated subtask learner lj which attempts to update θ(j) such that Jj is minimized. Each
subtask learner may also contain a set of internal parameters ϕ(j) ∈ Φj that is updated and affects the learner’s updates
to θ(j), which may be replay buffers, eligibility traces, per-weight step-sizes, or more. Subtasks can be quite general,
including prediction tasks, control tasks, or even supervised learning tasks, as long as they are tasks learnable from
observations in the MDP. In the continual subtask learning problem, the agent’s objective is to minimize the objective
functions across subtasks

∑N
j=1 Jj(θ

j
t ). We call an algorithm that learns to acquire experiences to minimize this objective

a behavior learner. This is in contrast to a subtask learner which learns subtasks from off-policy experiences generated
by the behavior learner. That is, a behavior learner aims to visit states that benefit the subtask learner’s learning. Both the
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behavior learner and subtask learners can be considered to be part of the agent, but the behavior learner’s parameters
more directly impact the states that are visited.

The behavior learner’s task of learning this collection of subtasks can be formalized in an alternative, augmented MDP.
This augmented MDPM′ is formalized as a tuple (S ′,A, P ′, R′) where the state consists of both the environment state
and the state of all its subtask learners. That is, S ′ = S ×∏N

j=1 Ωj×
∏N
j=1 Φj , where (st, θ

(1)
t , ϕ

(1)
t , ..., θ

(N)
t , ϕ

(N)
t ) = s̃t ∈ S ′.

In this formulation, P ′ is a combination of the environment transition dynamics P and all the learning updates lj . At
each timestep, each subtask learner updates its weights and internal parameters using the current environment transi-
tion: lj(st, at, st+1, θ

(j)
t , ϕ

(j)
t ) = θ

(j)
t+1, ϕ

(j)
t+1. The reward R′(s̃t, a, s̃′t+1) =

∑N
j=1 ∆

j
t+1, where ∆j

t+1 = Jj(θ
(j)
t ) − Jj(θ(j)t+1),

representing learning progress after a timestep.

2.3 Simplified Problem Setting

The above problem setting is Markov, and there is some optimal policy that will choose actions based on the parameters
and the environment state so as to best minimize the objective functions of the subtasks. Unfortunately, finding such an
optimal policy is difficult for several reasons. The parameter and action space of this augmented MDP is prohibitively
large, and grows as the number of subtasks increases. Moreover, the reward function which represents progress towards
minimizing the objectives, e.g., computing changes in the objective function, can be quite expensive to compute. For
example, when learning the value function for a policy, we can use stochastic algorithms that minimize the (projected)
Bellman error over many iterations, even though it is expensive to actually compute this full objective. As such, we sim-
plify this complex augmented MDP into a non-stationary, or partially observable setting to make this complex problem
tractable while still performing well.

First, the objective is difficult to measure directly at each step, as Jj(θ
(j)
t ) may be expensive to compute. Since the objective

Jj(θ
(j)
t ) is difficult to measure directly at each timestep, we use a proxy reward signal that encourages the behavior

learner to achieve this objective. A simple choice for this intrinsic reward is the cumulative change in the weights for the
subtasks: after taking action At from St and transitioning to St+1, the agent receives intrinsic reward

Rt+1 =
N∑

ȷ=1

∥θ(j)t+1 − θ(j)t∥1,

where we assume that θ(j)t+1 is computed from θ
(j)
t using the data generated from transition (St, At, St+1). This intrinsic

reward reflects that, if the weights changed, then the data generated by taking that action induced learning for that
subtask. In principle, we can select some other estimator of learning progress, but our choice is based off of empirical
results [Linke et al., 2020] that suggest that weight change is a good measure of learning progress to effectively drive
adaptation of the agent’s behavior. To further simplify the setting, we additionally assume that the subtask learners are
online learners. That is, we require that the subtask learners learn and produce a weight change at each timestep. Subtask
learners that update infrequently, e.g., after every 100 timesteps, can make credit assignment extremely difficult for the
behavior learner because it must attribute the intrinsic rewards to specific states across a longer time interval. Note
that this simplified problem setting is inherently non-stationary because the intrinsic reward at each time step changes
depending on the state of the subtask learners, which is not part of the state.

Figure 1a depicts our overall system. Our subtask learners produce weight changes, which are aggregated into an
intrinsic reward for our agent. The agent then interacts with the environment to acquire new experiences which are used
to train the subtask learners.

3 Non-stationary Replay (NS-Replay)

Experience replay [Lin, 1992] has long been used to increase the sample efficiency of agents by reusing previously ex-
perienced transitions. However, one issue with experience replay in a non-stationary reward setting is that the rewards
associated with old transitions are stale due to the non-stationary nature of the environment. This causes the replay
sample to inaccurately reflect the current environment, negatively affecting learning especially if the buffer is large and
the samples are very outdated.

Non-stationary replay (NS-Replay) consists of the experience replay buffer and a separately learned reward model. This
reward model is repeatedly updated online based on observed rewards. When a sample is drawn from the buffer, the
experienced reward is replaced with the reward model’s predicted reward. The goal is that the reward model’s prediction
will be more reflective of the true reward that would be given by the environment if the agent were to experience that
transition online. In this paper, our reward model is a simple reward memorizer for tabular setting, where the predicted
reward for a transition is the last reward experienced for that transition.
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Figure 1: (a) shows the architectural overview of the RL system (b) The left plot shows an overview of the TMaze, and the
right plot shows an example of the cumulant schedule used for each GVF at the goals. In our experiment, GVF questions
for goal 2 and 4 have constant cumulants of 10, while the GVF question for goal 1 has a distractor cumulant N(1, 5), and
the GVF question for goal 3 has a drifting cumulant with a random walk behavior with random step drawnN(0, 0.0317).

4 Experiments

We ran various behavior learners in the TMaze depicted in Figure 1b. The agent’s four subtasks are general value function
prediction (GVF) problems, where the policy is the shortest-path policy to each goal state. The pseudo-termination
functions for the GVFs terminate at the respective goal states. The cumulants for the GVFs are 0 at all states other than
goal states. At goal states G2 and G4, the cumulants are constant values of 10. At G1, the cumulant is drawn from a
normal random distribution. At G3, the cumulant is constant but nonstationary, changing according to a random walk
at each timestep.

Our behavior agents are Expected Sarsa, Expected Sarsa + Replay, and Expected Sarsa + NS-Replay. For all experiments,
our subtask learners uses TB(λ) with the Auto optimizer [McLeod et al., 2021] to learn the GVF subtasks. We set the
replay buffer capacity to 10,000, and the number of replay steps per timestep to 16. Our results over 30 runs are depicted
in Figure 2, with a 95% confidence interval.

We find that while the final predictions are similar between all three methods, Expected Sarsa and Expected Sarsa with
NS-Replay outperform Expected Sarsa with Replay during the first 60k steps, with close performance between Expected
Sarsa and Expected Sarsa with NS-Replay. We hypothesize the NS-Replay may outperform Expected Sarsa with a reward
model that is more sophisticated than replaying the last seen reward at that state.

5 Related Work

This work primarily extends from the work and formulation of McLeod et al. [2021]. Linke et al. [2020] studies our
research problem in a bandit setting, and explores the effectiveness of different types of intrinsic rewards. Our work
also has connections to curiosity-based exploration Pathak et al. [2017], which explores skill learning in the absence of an
extrinsic reward. However, our problem setting is related to areas such as unsupervised RL or skill learning, curiosity-
based exploration, the most similar setting was to our knowledge introduced by Sutton et al. [2011]. Our work is also
related to goal-conditioned RL Schaul et al. [2015], though in goal-conditioned RL the state is usually parameterized by
some goal that the agent should be achieving, whereas we are learning about multiple tasks in parallel and do not have
goal parameterizations.

Riedmiller et al. [2018] introduces Scheduled Auxiliary Control which learns tasks and learns to schedule and execute
these tasks. Veeriah et al. [2019] focuses on GVF discovery and on on-policy learning of GVFs, as opposed to our focus
on off-policy parallel learning.
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(a) Comparison between behavior learning algorithms. (b) First 60k timesteps

Figure 2: Results from experiments in the TMaze with different behavior learning algorithms. (a) shows the average
RMSE of each prediction learner at each timestep for Expected Sarsa, Expected Sarsa with Experience Replay, and Ex-
pected Sarsa with NS-Replay. Note that while the final performance between all 3 algorithms are similar, the initial
performance of Expected Sarsa + NS-Replay and Expected Sarsa outperforms Expected Sarsa + Replay over the first 60k
steps as shown in (b).
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Abstract

An open problem in artificial intelligence is how to learn and represent knowledge that is sufficient for a general agent
that needs to solve multiple tasks in a given world. In this work we propose world value functions (WVFs), which are
a type of general value function with mastery of the world—they represent not only how to solve a given task, but also
how to solve any other goal-reaching task. To achieve this, we equip the agent with an internal goal space defined as
all the world states where it experiences a terminal transition—a task outcome. The agent can then modify task rewards
to define its own reward function, which provably drives it to learn how to achieve all achievable internal goals, and
the value of doing so in the current task. We demonstrate a number of benefits of WVFs. When the agent’s internal
goal space is the entire state space, we demonstrate that the transition function can be inferred from the learned WVF,
which allows the agent to plan using learned value functions. Additionally, we show that for tasks in the same world, a
pretrained agent that has learned any WVF can then infer the policy and value function for any new task directly from
its rewards. Finally, an important property for long-lived agents is the ability to reuse existing knowledge to solve new
tasks. Using WVFs as the knowledge representation for learned tasks, we show that an agent is able to solve their logical
combination zero-shot, resulting in a combinatorially increasing number of skills throughout their lifetime.

Keywords: reinforcement learning, multitask, transfer, logic, composition
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1 Introduction

The ultimate goal of artificial intelligence is to create general agents capable of solving multiple tasks in the world in
the same way that humans are able to. To achieve this, we need a general decision-making framework for agents that
interact with a world to solve tasks, and a sufficiently general knowledge representation for what those agents learn.
Reinforcement learning (RL) [2] is one such framework that has made several major breakthroughs in recent years,
ranging from robotics to board games, but these agents typically are narrowly designed to solve only a single task.

In RL, tasks are specified through a reward function from which the agent receives feedback. Most commonly, an agent
represents its knowledge in the form of a value function, which represents the sum of future rewards it expects to receive.
However, since the value function is directly tied to one single reward function (and hence task), it is definitionally
insufficient for constructing agents capable of solving a wide range of tasks. We seek to overcome this limitation by
proposing world value functions (WVFs), a knowledge representation that encodes how to solve not just the current task,
but any other task, in the world. In the literature, agents with such abilities are said to possess mastery [5]. Importantly,
WVFs are a form of general value function [3] that can be learned from a single stream of experience like standard value
functions—no additional information need be provided to the agent.

In this work, we define the WVF and demonstrate how it can be learned using standard RL algorithms. We then demon-
strate several advantages of learning such a representation. In particular, we show that (a) WVFs implicitly encode the
dynamics of the world and can be used for model-based RL; (b) having learned a WVF, any new task that an agent
encounters can be solved by estimating its reward function, reducing the problem to a supervised learning one; and (c)
WVFs can be composed with Boolean operators to produce novel and human-interpretable behaviours.

2 World Value Functions

We model the agent’s interaction with the world as a Markov Decision Process (MDP) (S,A, P,R), where (i) S is the
state space, (ii) A is the action space, (iii) P (s, a, s′) are the transition dynamics of the world, and (iv) R is a reward
function bounded by [RMIN, RMAX], representing the task the agent needs to solve. Note that in this work, we focus on
environments with deterministic dynamics, but put no restrictions on their complexity.

The agent’s aim is to compute a policy π from S to A that optimally solves a given task. This is often achieved
through a value function that represents the expected return obtained under π starting from state s: V π(s) =
Eπ [

∑∞
t=0 r(st, at, st+1)]. Similarly, a Q-value function Qπ(s, a) represents the expected return obtained by executing a

from s, and thereafter following π. The optimal Q-value function is given by Q∗(s, a) = maxπ Q
π(s, a) for all states s and

actions a, and the optimal policy follows by acting greedily with respect to Q∗ at each state.

2.1 A New Form of General Value Function Algorithm 1: Q-learning for WVFs

Initialise: WVF Q̄, goal buffer G
foreach episode do

Observe an initial state s ∈ S and sample a goal g ∈ G
while episode is not done do

a←
{
argmax
a∈A

Q̄(s, g, a) probability 1− ε
a random action probability ε

Take action a, observe reward r and next state s′
if s′ is absorbing then G ← G ∪ {s}
for g′ ∈ G do

r̄ ← R̄MIN if g′ ̸= s and s ∈ G else r

Q̄(s, g′, a)
α←−
[
r̄ +max

a′
Q̄(s′, g′, a′)

]
− Q̄(s, g′, a)

s← s′

We now introduce world value functions (WVFs), which
provably encode how to reach all achievable goals in a
world with arbitrary task rewards. We first define the
internal goal space G of the agent as all states where
it experiences a terminal transition. Importantly, the
goal the agent wishes to achieve is not specified by the
world, but rather chosen by itself. In order to simulta-
neously learn how to achieve the overall task goal and
the agent’s internal goals, the agent can define its own
reward function R̄, which extends the task rewards R
to simply penalise itself for achieving goals it did not
intend to:

R̄(s, g, a, s′) :=

{
R̄MIN if g ̸= s and s′ is absorbing
R(s, a, s′) otherwise,

where R̄MIN is a large negative penalty that can be derived from the bounds of the reward function [1]. We can think of
the penalty R̄MIN as adding one bit of information to the agent’s rewards, which we will later prove is sufficient for the
agent to learn how to achieve its internal goals and the value of achieving them in the current task. The overall goal of
the agent now is to compute a world policy π̄ : S × G → Pr(A) that optimally reaches its internal goal states. Given a
world policy π̄, the corresponding WVF is defined as follows:

Q̄π̄(s, g, a) := Eπ̄s′
[
R̄(s, g, a, s′) + V̄ π̄(s′, g)

]
, where V̄ π̄(s, g) := Eπ̄

[ ∞∑

t=0

R̄(st, g, at, st+1)

]
.

1
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Since the WVF satisfies the Bellman equations, Q̄∗(s, g, a) can be learned using any suitable RL algorithm like Q-learning
(Algorithm 1). To show that a WVF does still encode knowledge of how to solve the task in which it was learned,
we prove that the regular task reward function and value function can be recovered by simply maximising over goals
(Theorem 1). The task policy can then be obtained as: π∗(s) ∈ argmaxa∈A

(
maxg∈G Q̄∗(s, g, a)

)
.

Theorem 1. Let M = (S,A, P,R) be a task with optimal Q-value function Q∗ and optimal world Q-value function Q̄∗. Then for
all (s, a) in S ×A, we have (i) R(s, a) = max

g∈G
R̄(s, g, a), and (ii) Q∗(s, a) = max

g∈G
Q̄∗(s, g, a).

Having established WVFs as a type of task-specific GVF, we prove in Theorem 2 that they do indeed have mastery—that
is, they learn how to reach all reachable goal states in the world. We formally define mastery as follows:

Definition 1. Let Q̄∗ be the optimal world Q-value function for a task M . Then Q̄∗ has mastery if for all g ∈ G reachable from
s ∈ S \ G, there exists an optimal world policy

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗(s, g, a) such that π̄∗ ∈ argmax
π̄

P π̄s (sT = g),

where P π̄s (sT = g) is the probability of reaching g from s under a policy π̄.
Theorem 2. Let Q̄∗ be the optimal world Q-value function for a task M . Then Q̄∗ has mastery.

Finally, if the agent’s goal space is the state space (G = S), then we can estimate the transition probabilities for
each s, a ∈ S × A using only the reward function and optimal WVF. That is, P (s, a, s′) for all s′ ∈ S can be
obtained by simply solving for them in the system of Bellman optimality equations given by each goal g ∈ S:
Q̄∗(s, g, a) =

∑
s′∈S p(s, a, s

′)
[
R̄(s, g, a, s′) + V̄ ∗(s′, g)

]
. This shows that optimal WVFs implicitly encode the dynam-

ics of the world. In practice, if the learned WVF is sufficiently optimal in a neighbourhood N (s), then we only need
to consider s′, g ∈ N (s) × N (s) if the transition probabilities are known to be non-zero only in N (s), common in most
domains.
Experiment 2.1. Consider a 4-rooms gridworld where an agent may be required to visit various goal positions. The agent can move
in any of the four cardinal directions at each timestep (with reward −0.1), and also has a “done” action that it chooses to terminate
at any position (with reward 2 if it is a task goal). We train an agent on the task where it must learn to navigate to the middle of
the top-left or bottom-right rooms. Figure 1 (left) shows the learned WVF. The figure is generated by plotting the value functions for
every goal position (since G = S), and displaying it at their respective xy position. Note how the values with respect the “top-left”
and “bottom-right” goals are high (red), reflecting the high rewards the agent received for reaching those goals when it was trying to
reach them. Figure 1 (middle) shows a close up view of the learned WVF around the “top-left” goal. We can observe from the value
gradient of the plots that the WVF does indeed learn how to reach all positions in the gridworld. We can then maximise over goals to
obtain the regular value function and policy (Figure 1 (right)).

Finally, we demonstrate that the transition probabilities can be inferred from the learned WVF. Figures 2 (left) and (middle) respec-
tively show the transitions inferred by solving the Bellman equations with s′, g ∈ S × S and s′, g ∈ N (s) × N (s). For each, we
inferred the next state probabilities for taking each cardinal action at the center of each room, and placed the corresponding arrow in
the state with highest probability. The red arrows in Figure 2 (left) correspond to incorrectly inferred next states, which is a conse-
quence of the learned WVF not being near optimal at all states for all goals. Figure 2 (middle) shows that in practice, if the WVF is
not near-optimal, we can still infer dynamics by using s′, g ∈ N (s)×N (s). Figure 2 (right) shows sample trajectories for following
the optimal policy using the inferred transition probabilities. The gray-scale color of each arrow corresponds to the normalised value
prediction for that state.

Figure 1: Learned WVF (left), close up of WVF for “top-
left” goal (middle), and inferred values and policy (right).

Figure 2: Inferred transitions (left-middle) and imagined
rollouts using the learned WVF (right).

3 Benefits of WVFs across tasks in the same world

We now highlight some benefits of WVFs that are a natural result of assuming tasks come from the same world—that
is we assume that all tasks share the same state space, action space and dynamics, but differ in their reward functions.

2

RLDM 2022 Camera Ready Papers 447

447



More specifically, we define the world as a background MDPM0 = ⟨S0,A0, P0, R0⟩with its own state space, action space,
transition dynamics and background reward function. Any individual task M is specified by a task-specific reward
function RτM (s, a) that is non-zero only for transitions entering terminal states. The reward function for the resulting
MDP is then simply RM (s, a, s′) := R0(s, a, s

′) + RτM (s, a). We denote the set of all these tasks asM and the set of their
corresponding optimal WVFs as Q̄∗.
Interestingly, this definition means that if tasks come from the same world, then their WVFs share the same world
policy—that is, the agent has the same notion of goals and how to reach them no matter the task.

Theorem 3. Let Q̄∗ be the set of optimal world Q̄-value functions with mastery of tasks inM. Then for all s ̸= g ∈ S × G,

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗M1
(s, g, a) ⇐⇒ π̄∗(s, g) ∈ argmax

a∈A
Q̄∗M2

(s, g, a) ∀M1,M2 ∈M.

Similarly, if we require that the world policies need to be the same across tasks, then we have that the tasks must come
from the same world as defined above. In a sense, this gives us a notion of task invariance (the world does not change
with changes in task) implying policy conservation (the world policy is constant across tasks), and vice-versa.

3.1 Zero-shot values and policies from rewards

Since each task M ∈ M share the same dynamics (and consequently the same world policy), their corresponding WVFs
can be written as Q̄∗M (s, g, a) = G∗s,g,a + R̄τM (s′, a′) for some s′, a′ ∈ S × A, where G∗s,g,a is a constant across tasks that
represents the sum of rewards starting from s and taking action a up until g, but not including the terminal reward.
Using this fact, we can show that the optimal value function and policy for any task can be obtained zero-shot from an
arbitrary WVF given the task-specific rewards:

Theorem 4. Let RτM be the given task-specific reward function for a task M ∈M, and let Q̄∗ ∈ Q̄∗ be an arbitrary WVF. Define

˜̄VM (s, g) := max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

RτM (g, a)−max
a∈A

Q̄∗(g, g, a)

)
, the estimated WVF of M.

Then,

(i) for all g ∈ G reachable from s ∈ S, V̄ ∗M (s, g) = ˜̄VM (s, g).

(ii) V ∗M (s) = max
g∈G

˜̄V (s, g), and π∗M (s) ∈ argmax
a∈A

Q̄∗(s, argmax
g∈G

˜̄VM (s, g), a).

This has several important implications for transfer learning. For example, one can learn an arbitrary WVF with unsu-
pervised pretraining, then solve any new task by only learning the reward function (from experience or demonstrations).
Experiment 3.1. Consider the 4-rooms domain introduced in Experiment 2.1 where the agent has learned the WVF for navigating
to the top-left or bottom-right rooms. Figure 3 shows the estimated WVFs, values and policy for each task, computed as per Theorem 4
using the given task rewards and the learned WVF for the bottom-left task. Notice how the WVFs look similar to the rewards. This
highlights the structural similarity between the task space and value function space which enables the zero-shot inference of task
policies from task rewards alone.

(a) Navigating to the hallways. (b) Navigating to the bottom of the grid.

Figure 3: Inferring values and policies zero-shot from goal rewards. From left to right on each figure: The given task
specific rewards, the inferred WVF using Theorem 4, and the inferred values and policy from maximising over goals.

3.2 Zero-shot logical composition

We recently proposed a framework for agents to apply logical operations—conjunction (∧), disjunction (∨) and negation
(¬)—over the space of tasks and WVFs [1]. We first define these logical operations over tasks and WVFs as follows (we

3
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omit the value functions’ parameters for readability):
RM1∨M2

:= max{RM1
, RM2

}; RM1∧M2
:= min{RM1

, RM2
}; R¬M1

:= (RMSUP
+RMINF

)−RM1
,

Q̄∗M1
∨ Q̄∗M2

:= max{Q̄∗M1
, Q̄∗M2

}; Q̄∗M1
∧ Q̄∗M2

:= min{Q̄∗M1
, Q̄∗M2

}; ¬Q̄∗M1
:=
(
Q̄∗SUP + Q̄∗INF

)
− Q̄∗M1

,

where Q̄∗SUP is the goal-oriented value function for the maximum taskRMSUP
where r = RMAX for all G. Similarly Q̄∗INF

is goal-oriented value function for the minimum task RMINF
where r = RMIN for all G.

We then showed that the logical composition of WVFs produces exactly the WVF for the corresponding task composition
(Theorem 5 (i)). We further showed that when the task specific rewards are binary,M and Q̄∗ from homomorphic Boolean
algebras (Theorem 5 (ii)). This formally defines classical logic over the space of tasks and value functions.
Theorem 5. Let Q̄∗ be the set of optimal world Q̄-value functions for tasks inM. Then,

(i) for all tasks M1,M2 ∈M, we have Q̄∗¬M1
= ¬Q̄∗M1

, Q̄∗M1∨M2
= Q̄∗M1

∨ Q̄∗M2
, and Q̄∗M1∧M2

= Q̄∗M1
∧ Q̄∗M2

.

(ii) If the task specific rewards are binary, then (M,∨,∧,¬) and (Q̄∗,∨,∧,¬) are homomorphic Boolean algebras.

Experiment 3.2. Consider video game world where an agent must navigate a 2D world and collect objects of different shapes and
colours [4]. The state space is an 84× 84 RGB image, and the agent is able to move in any of the four cardinal directions. The agent
also possesses a pick-up action, which allows it to collect an object when standing on top of it. The positions of the agent and
objects are randomised at the start of each episode. We first use deep Q-learning (similarly to Algorithm 1) to learn two base tasks:
collecting blue objects and collecting squares. Figure 4a shows the values with respect to each goal of the learned WVF for collecting
blue objects, and maximising over goals gives us the regular value function (Figure 4b). We can then compose them to solve their
disjunction (OR), conjunction (AND) and exlusive-or (XOR), as shown in Figure 4c. In general, after learning n base tasks we can
solve all their 22

n

logical compositions, giving agents a super-exponential explosion of skills (Figure 4d).

(a) Learned WVF for col-
lecting blue objects.

(b) Inferred regular value
function for collecting Blue
objects.
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Figure 4: Experiments in a 2D domain where the agent needs to collect objects of various shapes and colors.

4 Conclusion

For an agent to learn how to solve multiple tasks in a given world from a single stream of experience, it should not
only encode knowledge about how to optimally solve the current task, but also how achieve agent-centric goals in the
world. We introduced WVFs as a principled knowledge representation that captures this idea. We then showed that
WVFs learned on any task have mastery of the world—they encode how to solve all possible goal-reaching tasks. This
results in agents that can infer the dynamics of the environment (which can be used for model based approaches like
planning), enables them to solve new tasks zero-shot given just their terminal rewards, and finally enables zero-shot
logical composition of learned skills (an important ability for the combinatorial explosion of skills in long-lived agents).
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Abstract

The framework of mixed observable Markov decision processes (MOMDP) models many robotic domains in which some
state variables are fully observable while others are not. In this work, we identify a significant subclass of MOMDPs
defined by how actions influence the fully observable components of the state and how those, in turn, influence the
partially observable components and the rewards. This unique property allows for a two-level hierarchical approach we
call HIerarchical Reinforcement Learning under Mixed Observability (HILMO), which restricts partial observability to
the top level while the bottom level remains fully observable, enabling higher learning efficiency. The top level produces
desired goals to be reached by the bottom level until the task is solved. We further develop theoretical guarantees to
show that our approach can achieve optimal and quasi-optimal behavior under mild assumptions. Empirical results
on long-horizon continuous control tasks demonstrate the efficacy and efficiency of our approach in terms of improved
success rate, sample efficiency, and wall-clock training time. We also deploy policies learned in simulation on a real
robot. For a full version of this work, please refer to https://arxiv.org/pdf/2204.00898.pdf.

Keywords: Robot Learning, Hierarchical, Mixed Observability
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1 Introduction

Many robotic domains feature a state space that factorizes into high and low observability subspaces, in which actions
primarily influence the high observability components of the state. For example, robot navigation with unknown dy-
namics and noisy sensors to an unknown dynamic target (Fig. 1a), or robot manipulation to reach an unknown target
pose, e.g., find an object in cluttered and occluded environments (Fig. 1b), grasp under uncertainty, or collaborate with
humans with partially observed human factors (e.g., trust, preferences, or goals). In these examples, state variables such
as a robot’s position or an arm’s pose can be much more certain (e.g., using GPS signals and sensors) than partially
observable variables relative to the task and are often fully observable. Moreover, actions directly influence the fully ob-
servable state components and indirectly affect partially observable ones. For example, in Fig. 1, movement actions can
lead the robot to different positions that might contain useful information to reach the destination; sequences of poses
help the robot arm open boxes to examine which contains the object.

Can localize well
Destination unknown

Poses are sensed accurately
Object in an unknown box

a) Robot Navigation b) Robot Manipulation

Obj

Figure 1: Examples of partially observable domains of our interests.

Our contributions are as follows. First, we formulate such tasks using the framework of mixed observability Markov
decision process (MOMDP) [1] and define motion-based MOMDPs (MOB-MOMDPs), a subclass of MOMDPs which
makes mild assumptions concerning dynamics and tasks. Second, we introduce a hierarchical solution to solve MOB-
MOMDPs, consisting of a high-level policy with partial observability and a low-level policy with full observability. In
our agent, the top policy uses high-level observations to compute the bottom policy’s goals, which are desired points
in the fully observable space. When the bottom policy achieves a given goal or times out, emitted observations are
used to produce the next high-level observation for selecting the next goal, and so on. Our approach strikes a great
analogy to how different parts of the human body function: while at a high level, the brain is equipped with memory,
low-level sensorimotor components, e.g., limbs, are more feed-forward. Our approach can potentially offer efficient
learning by breaking a long-horizon task into easier-to-learn subtasks, which enjoy full observability. Moreover, a hier-
archical approach would explore more efficiently when rewards are sparse, thanks to high-level actions. In both theory
and empirical experimentation, we show that our proposed hierarchical approach can achieve optimal or quasi-optimal
behavior in MOB-MOMDPs with sufficiently low stochasticity constraints. Due to the space limit, our theoretical proof
and real-world robot experiments can be seen at https://arxiv.org/pdf/2204.00898.pdf.

2 Background

A POMDP [2] is specified by a tuple (S,A, T,R,Ω, O), where (S, A, T , R), are respetively the state space, action space,
transition function, and the reward function. Instead of directly observing the state s, the agent only observes o ∈ Ω after
taking an action a and reaching state s′ governed by the observation function O(s′, a, o) = p(o | s′, a). The goal is to find
a policy π that maximizes the expected discounted return defined as Eπ[

∑∞
t=0 γ

trt] with some discount factor γ ∈ [0, 1).
To take an optimal action at timestep t, an agent often must condition its policy on the entire action-observation history
ht = (o≤t, a<t) ∈ Ht that it has seen so far. However, the size of the history Ht grows exponentially with t. Therefore, a
recurrent neural network (RNN) is often used to summarize ht with its fixed-sized hidden state.

A MOMDP [1] is a POMDP in which a state can be decomposed as s = (x, y), where x is fully observable and y is
partially observable. Since x is fully observable, an observation o can be decomposed as o = (x, z) ∈ Ω where z is the
remaining component of o. The observation function O(s′, a, o) = p(o | s′, a) = p(x, z | x′, y′, a) = 1[x = x′]p(z | x′, y′, a) ,
specifies which observation the agent gets after it took action a and reached state s′ = (x′, y′) with 1 denoting the
indicator function. The transition function T (s, a, s′) = p(s′ | s, a) = p(x′, y′ | x, y, a) for x, x′ ∈ X and y, y′ ∈ Y (X
and Y are respectively the spaces of all possible values of x and y) specifies the probabilities of reaching a state (x′, y′)
after taking an action a in state (x, y). T (s, a, s′) can be decomposed as T (s, a, s′) = p(s′ | s, a) = p(x′, y′ | x, y, a) =
p(x′ | x, y, a)p(y′ | x, y, a, x′). Let TX (x, y, a, x′) = p(x′ | x, y, a) and TY(x, y, a, x′, y′) = p(y′ | x, y, a, x′), then the tuple
(X ,Y,A, TX , TY , R,Ω, O, γ) formally defines a MOMDP.
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Figure 2: Our proposed agent acts through a two-level hierarchy. A memory-based top-level policy looks at a summary of
several past observations to select a desired state (goal) xgt for the bottom-level policy. A memoryless bottom policy then
looks at xt (extracted from an observation ot = (xt, zt)) and the the goal state xgt to produce at most k primitive actions to
achieve xgt , which emits a new sequence of observations. Next, these observations will be fed to a summarizer to create
a new high-level observation for the top policy to select a new goal.

3 Motion-Based MOMDPs

We define motion-based MOMDPs (MOB-MOMDPs) as MOMDPs which satisfy the following assumptions,

p(s′ | s, a) = p(x′ | x, a)p(y′ | x, y, x′) , p(o | s′, a) = p(o | s′) , R(s, a) = R(s) . (1)

In other words, a) the fully observable component x of the state satisfies the Markov property without depending on the
partially observable component y of the state, b) both the partially observable component y of the state and the observed
component z are conditionally independent on the action a (when conditioned on the fully observable component x of
the state), and c) the task is encoded by a reward function which exclusively depends on the reached states. We further
refer to MOB-MOMDPs, which have deterministic (stochastic) TX as deterministic (stochastic) MOB-MOMDPs; note that
such terminology does not refer to the stochasticity of TY , which remains unconstrained.

In MOB-MOMDPs, actions only have a direct influence on the resulting x trajectories, while their influence on the y, z,
and reward trajectories is indirect through x. MOB-MOMDPs include (but are not limited to) navigation tasks where x
represents the fully observable pose of the agent in the environment, while y represents other partially observable infor-
mation about the environment and task. In such navigation MOB-MOMDPs, actions relate to the motion of the agent,
and it is exclusively through such motion that the agent is able to interact with the environment, gather information, and
complete the task. Although not all MOB-MOMDPs intrinsically represent navigation tasks, we will use the imagery
of navigation tasks as a useful analogy to simplify the way we discuss and analyze MOB-MOMDPs and the respective
learning algorithms. Therefore, we reinterpret general MOB-MOMDPs as navigation tasks where x figuratively repre-
sents the agent’s pose, a is the movement to change its pose, and y as any other partially observable components.

Using such analogy, and because actions exclusively influence the environment through the resulting agent pose, it is
possible to abstract “motion”-based control (i.e., based on the actions which move the agent) as “pose”-based control
(i.e., based on the poses which the agent should reach in order to gain information or complete the task). “Pose”-based
control is executed not by choosing how the agent should move (action a), but rather where it should move to (pose x′).
Such abstraction is the inspiration for a hierarchical reinforcement learning method specifically for MOB-MOMDPs.

4 Hierarchical Reinforcement Learning under Mixed Observability

Method. As shown in Fig. 2, our method - HIerarchical reinforcement Learning under Mixed Observability (HILMO)
makes decisions through a two-level hierarchy. The top-level policy is a recurrent module (symbolized by an arrow
pointing to itself) which takes in a top-level observation oTt (a summary of several past primitive observations o ∈ Ω) to
produce a goal xgt ∈ X being the desired value for xt. Then the memoryless bottom-level policy selects an action at using
xt (extracted from ot = (xt, zt)) and xgt . Notice this also covers the case when we want to set the goal only for a subspace
of X . For instance, although x of the mobile robot in Fig. 1 might include both positions and velocities, we might just
want it to reach a certain location regardless of its velocity successfully.

The goal xgt remains unchanged for the next few timesteps until xgt is achieved or k bottom-level actions have been
performed (for clean notations, from now, we assume that the bottom episode will always last k timesteps). When the
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Figure 3: Four continuous control domains to perform experiments.

bottom level finishes acting, k observations ot:t+k−1 (i.e., ot, . . . , ot+k−1) are emitted. These observations will be fed to a
summarizer to create the next top-level observation oTt+k for the top policy to choose the next goal. In this hierarchy, the
top level acts at a higher temporal resolution than the bottom level.

Bottom-Level. A bottom-level goal-conditioned MDP MX is specified by (X ,A,G = X , TX , RX , γ). The reward
function RX is defined for each goal xg ∈ X as RX (x′, xg) = −1[d(x′, xg) ≥ ϵ], where d is some given distance metric
in X and ϵ is a small reaching threshold. The transition function TX (x, a, x′) = p(x′ | x, a) specifies the probabilities
of reaching x′ after taking action a in x. A goal-conditioned policy πX (a | x, xg) that solves MX will maximize the
discounted cumulative reward

∑t+k−1
t′=t γt

′−tRX (xt′ , xg), where xt is the starting state. The input x of πX is from an
extractor that extracts x from o = (x, z).

Top-Level. A top-level POMDP PT is specified by (S,AT = X , TT , RT ,ΩT , OT , γ). In particular, its action space X is
the goal space inMX , therefore a top-level policy πT (· | oT ) that solves PT will output a desired state xg to be reached
by πX . The top-level transition function can be specified as a multi-step policy taking in the goal aT from state s, i.e.,
TT (s, aT , s′) =

∑k
m=1 p(s

′,m | s, aT ) , where p(s′,m | s, aT ) is the probability that the bottom policy πX terminates at
state s′ after exactly m primitive actions when it acts to achieve the goal aT starting from state s. Unlike πX , the objective
of πT is to optimize the discounted cumulative reward

∑∞
t=0;t+=k γ

t/kRT (st, a
T
t ) where each RT (st, aTt ) is the expected

accumulated environment rewards when πX acts for k timesteps to achieve the goal aTt starting at state st. The top-level
observation function in PT is constructed as

OT (s′, aT , oT ) = p(oT | s′, aT ) =
{
1 for oT = F({o}k1),
0 otherwise,

(2)

whereF is some summarizing operator that the summarizer applies to k observations o ∈ Ω emitted when πX was acting
to achieve the goal aT = xg and ended up at state s′. In this perspective, a high-level observation oT can be considered
as an implication of temporally extended perception.

5 Experiments
5.1 Domains

Two-Boxes. A finger moves on a 1D track to perform a dimension check of two boxes (Fig. 3a). Since the finger is kept
compliant, it will be deflected from the vertical axis when it glides over a box. The agent observes the finger’s position
and angle but not the positions of the two boxes. When the two boxes have the same size, the agent must go to the right
end to get a non-zero reward and otherwise to the left end. The agent receives a penalty if reaching wrong ends.

Ant-Heaven-Hell. An ant moving in a 2D T-shaped world will receive a non-zero reward by reaching a green area
(heaven) that can be on the left or the right corner (Fig. 3b) of a junction. It receives a penalty when entering a red area
(hell). When it enters the blue ball, it can observe heaven’s side (left/right/null). Here the observation includes the
joints’ angles & velocities of the four legs and the side indicator.

Ant-Tag. The same ant now has to search and “tag” a moving opponent by being sufficiently close to it (having the
opponent inside the green area centered at the ant in Fig. 3c) to get a non-zero reward. Both start randomly but not too
close to each other. The opponent follows a fixed stochastic policy, moving a constant distance away from the ant 75% of
the time or staying otherwise. An observation includes the joints’ angles & velocities of four legs and the 2D coordinate
of the opponent, containing the opponent’s position only when it is inside the visibility (blue) area centered at the ant.

Door-Push. A 3-DoF gripper in 3D must successfully push a door to receive a non-zero reward (Fig. 3d). The door,
however, can only be pushed in one direction (front-to-back or vice versa), and the correct push direction is unknown to
the agent. Here the agent can observe the joints’ angles and velocities and the door’s angle.

3

RLDM 2022 Camera Ready Papers 453

453



Door-PushAnt-Heaven-HellAnt-TagTwo-Boxes

Figure 4: Success rate means and standard deviations (4 seeds). Final and Full are different choices for F in Eq. 2.

Table 1: Wall-clock training time in hours for selected agents in Fig. 4.

Domain RSAC HILMO-O HILMO

Two-Boxes 3.31 ± 0.2 0.96 ± 0.2 1.04 ± 0.3
Ant-Heaven-Hell 71.02 ± 0.3 11.31 ± 0.2 4.69 ± 0.3
Ant-Tag 68.25 ± 0.4 12.51 ± 0.3 6.41 ± 0.3
Door-Push 112.7 ± 0.4 26.10 ± 0.2 23.2 ± 0.2

5.2 Agents

We consider the following hierarchical (H) and flat (F) agents:

• Two versions of our proposed two-level agent: (H) HILMO implemented using the HAC [3] framework and (H)
HILMO-O implemented using the HIRO [4] framework.

• (H) A two-level HAC [3] agent.
• (F) Soft Actor-Critic (SAC) [5] and its recurrent version (F) Recurrent Soft Actor-Critic (RSAC) [6].
• (F) DPFRL [7] is one of state-of-the-art model-free POMDP methods.
• (F) VRM [8] is one of state-of-the-art model-based agents.

5.3 Results

Success Rates. Fig. 4 shows that HILMO consistently outperforms all flat baselines and is on par or better than HILMO-
O. Moreover, HILMO is the only agent that can learn well in Ant-Heaven-Hell and Ant-Tag. With no memory, SAC
could not solve any domains. A memory-less HAC can perform quite well in Ant-Tag due to a well-trained bottom
policy that sometimes can corner and tag the opponent. RSAC can only succeed in Two-Boxes for some seeds, while
struggling in the other tasks with longer episodes. Both DPFRL and VRM perform poorly across all domains.

Wall-clock Training Time. Table 1 shows that our agents (HILMO and HILMO-O) take significantly less time to train
than RSAC in all domains. The acceleration can be attributed to shorter top-level episodes for these agents because each
top-level observation summarizes several primitive observations. Moreover, the bottom policy trained in parallel can
learn significantly faster due to full observability.
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Abstract

Memory is essential for adaptive decision making as it enables choices to be guided by past experience. Value-based
decisions can be guided by past experience in at least two different ways. One approach akin to habit-learning consists
of consulting the average value for a candidate choice, built up incrementally over many past experiences. A second
approach consists of retrieving value from a single past experience in episodic memory. While there have been major
advances in understanding how average values are acquired and used, less is known about the circumstances under
which episodic memory is recruited and about how these two approaches interact. Here we focus on the role of uncer-
tainty in modulating the use of episodic memory for decision making. Healthy adults completed a value-based decision
making task in which the uncertainty around incrementally constructed value varied over time and between conditions,
allowing us to assess how this uncertainty modulates the contribution of episodic memory to choice. As expected, we
found that participants relied more on episodic memory when there was more reward-related uncertainty. These results
help to clarify the impacts of uncertainty on episodic memory and suggest that rational principles of cost and benefit
determine how and when different forms of memory are used for decision making.

Keywords: incremental learning, episodic memory, uncertainty, volatility
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1 Introduction

Adaptive decision making depends on using memories of the past to inform the present. This process has been ex-
tensively studied using models of reinforcement learning,1 which capture how feedback is used to gradually improve
decisions. Learning in this way is useful for decision making due to its simple and time-efficient ability to update value.
However, recent findings indicate that episodic memory also contributes to learned value and decision making through
the retrieval of individual memories.2,3 Although theoretical work has suggested a role for episodic memory when ex-
perience is limited,4,5 the use of episodes has proven surprisingly pervasive, detected even for decisions that can be
resolved normatively using incremental learning alone.2 The persistence of episodic memory as a substrate for decision
making is thus somewhat puzzling and raises important questions about the circumstances under which it is recruited
for decisions. Here we sought to provide answers by investigating the impact of uncertainty on decisions based on either
episodic memory or incremental learning. Our main hypothesis was that episodic memory is well-suited to contribute
to decision making when incremental value estimates are uncertain.

Previous computational work has suggested that uncertainty plays an important role in arbitrating between candidate
systems for decision making.6,7 However, this work does not consider episodic memory, which has the potential to
provide a lossless representation of experience that can be particularly helpful for decision making.4 For example, arti-
ficial agents endowed with episodic memory are able to learn more quickly and effectively on problems that challenge
traditional reinforcement learning algorithms.5,8 The computations required by episodic memory can, however, be time-
inefficient when compared to retrieving simple summaries of the type provided by incremental learning. Episodic mem-
ory is thus somewhat costly. While past computational work has focused on a specific role for episodic memory when
deciding between relatively novel options,4,5 or at different time scales,4,8 the common thread underlying these proposals
is that episodic memory is most useful for behavior when an alternative learning system is uncertain. We therefore chose
to investigate this idea directly by altering uncertainty as tracked by arguably the simplest of these systems, incremental
learning, and testing how increased uncertainty impacts reliance on episodic memory.

To quantify how uncertainty modulates the use of episodic memory for decisions, we developed a procedure that al-
lowed us to i) independently measure the contribution of episodic memory to choice and ii) manipulate the impact of
uncertainty on episodic memory-based choices. A large sample of healthy adults (n=374) recruited from Amazon Me-
chanical Turk completed two tasks. The main task of interest was the deck learning and card memory task, which combined
incremental learning and episodic memory (Figure 1A). On each trial, participants chose between an orange and a blue
card and received feedback following their choice. The cards appeared throughout the task, but their relative value
changed over time such that one deck was always worth more than the other (Figure 1B). In addition to the color of
the card, each card also displayed an object. Critically, objects appeared on a card at most twice throughout the task,
such that a chosen object could re-appear after 9-30 trials. Thus, participants could make decisions based on incremental
learning of the average value of the orange vs. blue decks, or based on episodic memory for the value of an object which
they only saw once before. Finally, participants made these choices across two environments: a high volatility and a low
volatility environment. The environments differed in how often reversals in deck value occurred, on the assumption
that the larger and more frequent prediction errors which occur following a reversal signal a decrease in the accuracy of
incrementally learned value, thereby increasing uncertainty. Prior to the main task, participants also completed a simple
deck learning task to quantify the effects of uncertainty without trial-unique episodic memories.

2 Results

2.1 Episodic memory is used more under conditions of greater uncertainty

To determine whether both forms of memory were used in the combined deck learning and card memory task, we first
examined the extent to which participants were sensitive to the value of previously seen (old) objects and reversals in
deck value. Despite an overall bias toward choosing an old object regardless of its value (β0 = 0.465, 95% CI = [0.424,
0.505]), high-valued old objects were substantially more likely to be chosen than low-valued old objects (βoldvalue = -
0.415, 95% CI = [-0.561, -0.268]; Figure 2A). Thus, participants deployed episodic memory to guide decision making
throughout the task. Next, we examined whether participants altered their behavior in response to reversals in deck
value. Immediately preceding a reversal trial t, participants based most choices on the higher-valued deck (βt−1 = 0.141,
95% CI = [0.07, 0.214]; Figure 2B). Reversal trials disrupted this tendency (βt = -0.362, 95% CI = [-0.437, -0.289]) until
performance recovered around four trials later (βt+4 = 0.132, 95% CI = [0.084, 0.18]). Thus, participants were sensitive to
reversals in deck value, thereby indicating that they engaged in incremental learning throughout the task.

Having established that both episodic memory and incremental learning were recruited for choice, we next sought to
determine the impact of uncertainty on episodic memory specifically. To accomplish this, we isolated trials on which
episodic memory was most likely to have guided participants’ decisions. We first identified trials where the predictions
made by either memory system were in direct conflict with one another. These incongruent trials consisted of those on
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Figure 1: A) Participants first completed a deck learning task which consisted of choosing between two decks of cards and
receiving an outcome. Second was the main task of interest, the combined deck learning and card memory task, which was
identical to the deck learning task but cards also contained trial-unique objects. B) Environment design. Top: The true
value of the blue deck is drawn in gray for an example trial sequence. In blue is estimated blue deck value from the RB
model.9 Bottom: Uncertainty about deck value as estimated by the RB model.

which the higher value deck had a card featuring an old object that was of low value (<50¢) or the lower value deck had
a card featuring an old object that was of high value (>50¢). Consistent with our hypothesis, we found that participants
based more decisions on episodic value in the high volatility environment compared to the low volatility environment
(βenv = 0.101, 95% CI = [0.048, 0.155]; Figure 2C). In line with the idea that incremental learning, which is simpler and
more time-efficient, should be used more frequently for decisions, participants deployed this system for the majority
of incongruent trials across both environments (β0 = -0.254, 95% CI = [-0.301, -0.208]). Furthermore, decisions based on
episodic value took longer (βRT = 0.183, 95% CI = [0.152, 0.216]; Figure 2D), suggesting that retrieving a single experience
is indeed more costly in time when compared to relying on cached incremental value.

2.2 Uncertainty increases sensitivity to episodic value

We next sought to understand the circumstances under which incremental learning was eschewed in favor of episodic
memory by developing a computational model that modulates its’ sensitivity to episodic value as a function of posterior
uncertainty about incremental value. We first fit a hierarchical version of the reduced Bayesian (RB) reinforcement learn-
ing model developed by Nassar and colleagues9 to the deck learning task. This allowed us to assess incremental learning
free of any contamination due to competition with episodic memory. The RB model modulates its learning rate for deck
value as a function of two quantities: the probability that the most recent outcome received was indicative of a change
in deck luckiness and how uncertain the model’s beliefs about deck luckiness are. We focused on the second quantity,
relative uncertainty (RU), as it specifically captures imprecision in incremental learning. We then used the parameters fit
for each participant to generate estimates of subjective deck value and RU in the deck learning and card memory task.
We next used a mixed effects logistic regression to create a combined choice model that used these estimates alongside
episodic value to predict choices in the deck learning and card memory task. For each subject s and trial t, this model
can be written as:

θt =logit
−1(β0 + b0,s[t] + Vt(β1 + b1,s[t]) +Ot(β2 + b2,s[t]) +OVt(β3 + b3,s[t]) +OVt ×RUt(β4 + b4,s[t])) (1)

where θt is the probability that the orange deck was chosen on trial t, fixed effects are represented with β, and random
effects for each subject are represented with b. The intercept captures a bias toward choosing either of the decks regardless
of outcome, the effect of V captures sensitivity to deck value estimated from the RB model, the effect of O captures a bias
toward choosing a previously seen object regardless of its value, and the effect of OV captures sensitivity to the value of
a previously seen object. Critically, the effect of OV ×RU captures sensitivity related to the interaction between episodic
value and uncertainty: the more positive this term, the greater the impact of uncertainty on the role of episodic memory.

We first checked that participants were sensitive to the volatility manipulation by examining the RB model hazard rates
fit to each environment, which capture the subjective probability that a participant believes a reversal in deck luckiness
will occur on any given trial. Group-level hazard rates were indeed reliably larger for the high compared to the low
volatility environment (Low = 0.051, 95% CI = [0.043, 0.059]; High = 0.077, 95% CI = [0.065, 0.092]; Figure 3A). Next,
we examined the model’s ability to estimate uncertainty as a function of reversals in deck luckiness. RU increased
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Figure 2: A) Participants’ choices demonstrate sensitivity to the value of old objects. B) Reversals in deck luckiness altered
choice such that the currently lucky deck was chosen less following a reversal. C) On incongruent trials, choices were
more likely to be based on episodic memory in the high compared to the low volatility environment. D) Reaction time
was longer for incongruent choices based on episodic memory compared to those based on incremental learning. Group-
level averages are shown as large points and bands represent 95% CIs. Small points represent averages for individual
subjects and box and whiskers represent quartiles of this distribution.

immediately following a reversal and stabilized over time and was greater in the high compared to the low volatility
environment (βenv = 0.217, 95% CI = [0.109, 0.285]; Figure 3B). A primary prediction made by the combined choice
model is that participants should increase their reliance on episodic memory with greater RU. In line with this prediction,
episodic memory was indeed used more on incongruent trial decisions made under conditions of high RU (βRU = 1.71,
95% CI = [0.55, 2.924]; Figure 3C).

Finally, we examined the bias and sensitivity parameters of the fit combined choice model. Participants were not unduly
biased toward either deck color (β0 = -0.03, 95% CI = [-0.068, 0.005]), but they were biased to choose cards that featured
an old object regardless of that object’s value (βO = 0.291, 95% CI = [0.267, 0.316]). Participants used both sources of
value: both deck value as estimated by the model (βV = 0.549, 95% CI = [0.486, 0.616]) and the episodic value from old
objects (βV T = 0.146, 95% CI = [0.126, 0.165]) had strong impacts on choice. Lastly, we turned to participants’ sensitivity
to the interaction between episodic value and RU (Figure 3D), which captures the hypothesized effect. As predicted,
episodic value did indeed impact choices more when relative uncertainty was high (βOVXRU = 0.02, 95% CI = [0.004,
0.037]), thereby indicating that episodic value was relied on more when beliefs about incremental value were uncertain.

2.3 Posterior inference and statistical analyses

All analyses not described in the previous section were conducted using mixed effects regressions (linear for continuous
and logistic for binary outcomes). All reinforcement learning and regression models were fit hierarchically with Bayesian
inference such that the joint posterior was approximated using No-U-Turn Sampling as implemented in Stan. This
approach improves parameter identifiability and predictive accuracy.10 For all models, fixed effects are reported in the
text as the median of each parameter’s marginal posterior distribution alongside 95% credible intervals, which indicate
where 95% of the posterior density falls. Parameter values outside of this range are unlikely given the model, data, and
priors. Thus, if the range of likely values does not include zero, we conclude that a meaningful effect was observed.

3 Discussion

The majority of research on memory’s role in value-based decision making has focused on simple strategies involving
the storing and updating of cached estimates extracted over many experiences. While recent work has demonstrated
that episodic memory also contributes to value-based decisions,2,3 the circumstances under which episodic memory is
recruited for decisions have yet to be elucidated. Here, we sought to determine whether the use of episodic memory
is shaped by volatility, an aspect of the environment that has been extensively shown to exert control over incremental
learning. We reasoned that the inaccuracies that are characteristic of a volatile environment would increase uncertainty,
yielding separate effects on how incremental learning and episodic memory are used. First, as has been extensively
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Figure 3: A) Hazard rates fit to each environment. The true hazard rates are shown on the interior of the plot. B) RU
shown on each trial surrounding a reversal event. C) Participants’ episodic-based choice increased with RU. D) Fit old
object value x RU sensitivity parameter from the combined choice model. Large points are group-level means and small
points are individual subject means. Error bars and bands represent 95% CIs.

shown in the incremental learning system, new outcomes should exert more influence while the past is downweighted
in response to uncertainty.9 Second, we hypothesized that episodic memory should be recruited to augment decisions
during this period of poor incremental performance.

Our findings support this hypothesis. Participants based a greater number of decisions on single experiences in the high
volatility environment. Within each environment, participants were sensitive to reversals in deck value. As predicted,
single experiences were used more at these timepoints.

These results have important implications for understanding memory’s role in guiding decisions, and suggest that ra-
tional principles of cost and benefit determine how and when different forms of memory will be used. While decision
making can greatly benefit from episodic memory early in learning when little is known about the environment,5,8 our
results suggest a more general interpretation of these findings: that episodic memory is useful whenever uncertainty is
high. There is strong precedent for this type of uncertainty-based arbitration in the brain, with the most well-known
being the trade off between incremental, or model-free, learning and model-based learning.6 Control over decision mak-
ing by model-free and model-based systems has been found to shift in accordance with the accuracy of their respective
predictions,7 and humans adjust their reliance on either system in response to external conditions that provide a relative
advantage to one over the other.11 Tracking uncertainty provides useful information about when inaccuracy is expected
and helps to maximize utility by deploying whichever system is best at a given time. Our results add to these findings
and expand their principles to include episodic memory in this tradeoff.

In conclusion, we have demonstrated that uncertainty signaled by larger than expected prediction errors impacts whether
incremental learning or episodic memory is recruited for decisions. Greater uncertainty increased the likelihood that
single experiences were retrieved for decision making. This effect manifested as an overall increase in the number of
choices that were based on episodic memory in an environment with higher volatility. Our results suggest that episodic
memory aids decision making when simpler sources of value are less accurate.
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Abstract

This work identifies a common flaw of deep reinforcement learning (RL) algorithms: a tendency to rely on early interactions
and ignore useful evidence encountered later. Because of training on progressively growing datasets, deep RL agents
incur a risk of overfitting to earlier experiences, negatively affecting the rest of the learning process. Inspired by cognitive
science, we refer to this effect as the primacy bias. Through a series of experiments, we dissect the algorithmic aspects of
deep RL that exacerbate this bias. We then propose a simple yet generally-applicable mechanism that tackles the primacy
bias by periodically resetting a part of the agent. We apply this mechanism to algorithms in both discrete (Atari 100k) and
continuous action (DeepMind Control Suite) domains, consistently improving their performance.

Keywords: deep reinforcement learning, overfitting, forgetting
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1 Introduction

The primacy bias is a well-studied cognitive bias in human learning [13]. Facing a sequence of experiences, humans often
form generalizations based on early evidence which might negatively impact future decision making [18].

The central finding of our work is that deep reinforcement learning (RL) algorithms are susceptible to a similar bias.
The primacy bias in deep RL is a tendency to overfit early interactions with the environment preventing the agent from
improving its behavior on subsequent experiences. Through a series of controlled experiments, we first expose plausible
causes of this phenomenon and show that common algorithmic features such as a high replay ratio [7, 4] and long n-step
targets [20] amplify the primacy bias. As a remedy, we then propose a simple resetting mechanism, compatible with any
deep RL algorithm equipped with a replay buffer, which allows the agent to forget a part of its knowledge.

Despite its simplicity, this resetting strategy consistently improves the performance of agents on benchmarks including the
discrete-action ALE [2] and the continuous-action DeepMind Control Suite [21]. Resets impose no additional computational
costs and require only two implementation choices: which neural network layers to reset and how often.

2 Preliminaries

We adopt the standard formulation of reinforcement learning [20] under the Markov decision process (MDP) and consider
deep RL algorithms where the action-value function Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] and π (when needed)
are modelled by neural network function approximators. We focus on off-policy methods that learn Qπ(s, a) though
temporal-difference (TD) learning [19] and reuse past experiences with a replay buffer [14]. The frequency of resampling
experience from the buffer is controlled by the replay ratio [7, 4] which plays a critical role in the algorithm’s performance:
higher replay ratios may allow better sample efficiency but incur a risk of overfitting. TD learning can be generalized
by using n-step targets Eπ [r(st, at) + γr(st+1, at+1) + · · ·+ γnQπ(st+n, at+n)] for predicting Qπ(s, a). Here, n controls a
trade-off between the (statistical) bias of Qπ estimates and the variance of the sum of future rewards.

3 The Primacy Bias

The main goal of this work is to understand how the learning process of deep reinforcement learning agents can be
disproportionately impacted by initial phases of training due to an effect called the primacy bias.

The Primacy Bias in Deep RL: a tendency to overfit initial experiences that damages the rest of the learning process.
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Figure 1: Undiscounted returns on
quadruped-run for SAC with and with-
out heavy priming on the first 100 transi-
tions. An agent extremely affected by the
primacy bias is unable to learn even af-
ter collecting thousands of new transitions.
Mean and std are over 10 runs.

This definition is wide-ranging: the primacy bias has multiple roots and leads
to multiple negative effects on the training of an RL agent, but they are all
connected to improper learning from early experiences.

The rest of this section presents two experiments intending to demonstrate
the existence and behavior of the phenomenon in isolation. First, we show
that excessive training of an agent on early interactions can fatally damage
the rest of the learning process. Second, we show that data collected by an
agent impacted by the primacy bias is adequate for learning, although the
agent cannot leverage due to its accumulated overfitting.

3.1 Heavy Priming Causes Unrecoverable Overfitting

One of the crucial algorithmic aspects impacting the primacy bias is degree
of the reliance of an agent on early data. It is vital for sample efficiency
to leverage initial experiences well, and to this end, the agent may sample
from its buffer and update its neural network several times before interacting
further with an environment. We hypothesize that such a practice may have
severe consequences and probe it to its extreme: could overfitting on a single
batch of early data be enough to entirely disrupt an agent’s learning process?

To investigate this question, we train Soft Actor-Critic [6] on the
quadruped-run environment from DeepMind Control suite (DMC) [21]. We use default hyperparameters, which
imply a single update for policy and value functions per step in the environment. Then, we train an identical agent in an
experimental condition that we refer to as heavy priming: after collecting 100 data points, we update the agent 105 times
using its replay buffer, before resuming standard training. Figure 1 shows that even after training on almost one million
new transitions, the agent with heavy priming is unable to solve the task.
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This experiment conveys a simple message: overfitting to early experiences might inexorably damage the rest of the
learning process. Indeed, we will see in Section 4 that even a relatively small number of updates per step can cause similar
issues. The finding suggests that the primacy bias has compounding effects: an overfitted agent gathers worse data that
itself leads to less efficient learning that further damages the ability to learn and so on.

3.2 Experiences of Primed Agents are Sufficient
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Figure 2: Undiscounted returns on
quadruped-run for SAC trained with 9
updates per step. SAC failing is a stan-
dard SAC agent; SAC with failing
agent buffer is a SAC agent initialized
with the replay buffer of the first agent,
which allows it to learn quickly. Mean and
std are over 10 runs.

Once the agent is heavily impacted by the primacy bias, it might struggle to
reach satisfying performance. But is the data collected by an overfitted agent
unusable for learning? We train a SAC agent with 9 updates per step in the
MDP; due to the primacy bias, this agent performs poorly. Then, we initialize
the same agent from scratch but use the data collected by the previous SAC
agent as its initial replay buffer. Figure 2 demonstrates that returns collected
by this agent improve rapidly approaching the optimal task performance.

This experiment articulates that the primacy bias is not a failure to collect
proper data per se, but rather a failure to learn from it. The data stored in
the replay buffer is in principle enough to have better performance but the
overfitted agent lacks the ability to distill it into a better policy. In contrast,
the randomly initialized neural networks are not affected by the primacy bias
and thus capable of fully leveraging the collected experience. This intuition
forms the basis of the algorithmic solution to the issues highlighted above.

3.3 Have You Tried Resetting It?

We now present a simple technique that mitigates the primacy bias. The
solution, which we dub resetting in the rest of the manuscript, is given by the
following recipe:

Addressing the Primacy Bias: periodically re-initialize the last layers of the agent’s neural networks, preserving the replay buffer.

The next section analyzes both quantitatively and qualitatively the performance improvements provided by resetting in
addressing overfitting to early data.

4 Experiments
Method IQM

SPR + resets 0.478 (0.46, 0.51)
SPR 0.380 (0.36, 0.39)
DrQ(ϵ) 0.280 (0.27, 0.29)
DER 0.183 (0.18, 0.19)
CURL 0.113 (0.11, 0.12)

SAC + resets 656 (549, 753)
SAC 501 (388, 609)

DrQ + resets 757 (698, 810)
DrQ 570 (473, 665)

Table 1: Point estimates and 95% bootstrap
confidence intervals for the performance
of SPR, SAC, and DrQ with resets. Results
for SPR are computed over 20 seeds per
task, and for SAC and DrQ are computed
over 10 seeds. Other baselines are taken
from [1] and use 100 seeds.

The goals of experiments are mostly twofold. First, we investigate across
different algorithms and domains the effect on performance of using resets
as a remedy for the primacy bias; next, we analyze the learning dynamics
induced by resetting, including its interaction with critical design choices
such as the replay ratio and n-step TD targets.

We focus our experimentation in two settings: discrete control, represented by
the 26-task Atari 100k benchmark [9], and continuous control, represented by
the DeepMind Control Suite [21]. We apply resets to three baseline algorithms:
SPR [17] for Atari, and SAC [6] and DrQ [10] for continuous control from
dense states and raw pixels respectively. For SPR, we reset the final layer of
a 5-layer Q-network, using three resets spaced 2× 104 steps apart; for SAC,
we reset the entire policy and value networks every 2× 105 steps; for DrQ, we
reset last 3 layers of the policy and value networks every 4 × 105 steps. In
every case, we also reset target networks. After each reset, we return directly
to standard training.

To provide rigorous evaluations of all algorithms, we follow recommenda-
tions from [1] and use interquartile mean (IQM) for measuring performance.

4.1 Resets Consistently Improve Performance

The empirical evidence in Table 1 suggests that resets mitigate the primacy bias and provide significant benefits across
environments for the final performance of the agent. Remarkably, the magnitude of improvement provided by resets for
SPR is comparable to improvements of prior advances while not requiring additional computation costs.
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4.2 The Learning Dynamics of Resetting Agents

At the first glance, resetting may appear as a drastic (if not wasteful) measure as the agent must learn the parameters of the
randomly initialized layers from scratch every time. Figure 3 shows a representative example of the learning trajectories
induced by resets. Surprisingly, the agent quickly reaches or surpasses its prior performance after each reset.
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Figure 3: Effects of resets for SAC (32 up-
dates per step) on hopper-hop. After
each reset, performance recovers quickly
and the resetted agent achieves higher
overall returns. Mean and std are over 10
runs.

After resetting, the agent is free from the negative priming provided by its
past training iterations: it can better leverage the data collected so far, thus
improving its performance and unlocking the possibility to generate higher
quality data for its future updates. The crucial element behind the success
of resetting resides in preserving the replay buffer across iterations allowing
the agent to recover.

4.3 The Elements Behind the Success of Resets

We now provide an ablation study aiming at the question: under which
conditions resets are maximally impactful?

Replay Ratio. Our initial experiments in Section 3 suggest that the degree of
reliance on early data is a critical determinant of the strength of the primacy
bias. We vary the replay ratio, the number of gradient steps per each envi-
ronment step, in SPR and SAC. Figure 4 reports results for SAC while the
conclusions for SPR are the same. With fewer updates, resets provide little or
no benefit, implying that agents might be underfitting early data. With resets,
however, SAC achieves its highest performance at the high replay ratio of
32, where resets increase performance by over 100%. Resets thus improve
sample efficiency by performing more updates per each data point.
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Figure 4: The impact of resets on SAC at different replay ratios
(left) and SPR at different n-step return lengths (right). High
replay ratio makes the agent overly reliant on the early experince
and thus the resets have the largest influence. The effect size of
resets is largest for high n since it increases the variance of targets
exposing the agent to a risk of overfitting.

n-step targets. The effect of resets depends on the
variance of TD targets. We observe that with high
n the agent is more likely to overfit and hence the
resetting effect increases. Figure 4 demonstrates the
effect size for SPR; for SAC results are similar.

The results with varying replay ratios and n-step tar-
gets suggest that resets reshape the hyperparameter
landscape creating a new optimum with higher per-
formance.

What to reset. The number of layers to reset is a
domain-dependent choice. We observed the best per-
formance when resetting only the last layer in SPR,
while for DrQ resetting the last 3 (out of 7) layers was
better. We conduct two additional ablations: resetting
or preserving the optimizer state and replay buffer. We
find that resetting the optimizer state has essentially no impact because moment estimates are update rapidly. Resetting
the replay buffer, however, made it impossible for agents to quickly recover their prior performance.

TD failure modes. Temporal-difference learning can be prone to divergence and collapse to a trivial solution. Once in
a failure mode, standard RL optimization struggles to recover from it. Adding resets solves this problem by giving the
agent the second chance. We observe that on sparse reward tasks where Qπ might collapse, the buffer contains trajectories
reaching the goal state suggesting that the primacy bias is more an issue of optimization rather than exploration.

5 Related Work

The primacy bias in deep RL is intimately related to memorization, optimization in RL, and cognitive science. Various
aspects of our work have been studied in the literature.

Addressing overfitting in RL. [11, 12] show that an approximator for value function gradually loses its expressivity due to
bootstrapping which might amplify the effects of the primacy bias. [8] uses an on-policy buffer-free algorithm and distills
the previous network after resetting it to improve generalization. Forms of non-uniform sampling including re-weighting
recent samples [22] and prioritized experience replay (PER) [16] can be seen as a way to mitigate the primacy bias. SPR,
which already uses PER as a component, still benefits from resets.
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Forgetting mechanisms. In contrast to the well-known phenomenon of catastrophic forgetting [5], several works have
observed catastrophic memorization [15], similar to the primacy bias. [3] notices higher sensitivity of the trained networks
to early data. Resetting subnetworks has recently received more attention in supervised learning. [23] shows that forgetting
might improve generalization and draws a connection to the emergence of compositional representations. These works
complement the evidence about the primacy bias in deep RL and add to our analysis of the regularizing effect of resets.

Cognitive science. The primacy bias (also known as the primacy effect) has been studied in human learning for many
decades [13]. [18] argues that outcomes of the first experience have a substantial and lasting effect on subsequent behavior
and affect the outcomes of future decision making. Even though humans and RL systems learn under different conditions,
our findings provide evidence that artificial agents also exhibit this type of bias.

6 Conclusion

This work identifies the primacy bias in deep RL, a damaging tendency of artificial agents to overfit early experiences.
We demonstrate the dangers associated with this form of overfitting and propose a simple solution based on resetting a
part of the agent. The experimental evidence across domains and algorithms suggests that resetting is an effective and
generally applicable technique. We are intrigued by the results: if something as simple as resetting drastically improves
the performance, a room for advancements in deep RL is enormous. Overall, this work sheds light on the learning process
of deep RL agents, unlocks training regimes that were unavailable without resets, and opens possibilities for further
studies improving both understanding and performance of deep reinforcement learning algorithms.
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Abstract

Generalization to out of distribution tasks in reinforcement learning is a challenging problem. One successful approach
improves generalization by conditioning policies on task or environment descriptions that provide information about the
current transition or reward functions. Previously, these descriptions were often expressed as generated or crowd sourced
text. In this work, we begin to tackle the problem of extracting useful information from natural language found in the wild
(e.g. internet forums, documentation, and wikis). These natural, pre-existing sources are especially challenging, noisy, and
large and present novel challenges compared to previous approaches. We propose to address these challenges by training
reinforcement learning agents to learn to query these sources as a human would, and we experiment with how and when an
agent should query. To address the how, we demonstrate that pretrained QA models perform well at executing zero-shot
queries in our target domain. Using information retrieved by a QA model, we train an agent to learn when it should
execute queries. We show that our method correctly learns to execute queries to maximize reward in a reinforcement
learning setting.

Keywords: Reinforcement learning, Natural language, Question answering

1 Introduction

Reinforcement learning agents have recently begun to be deployed in real world applications, but these systems still tend
to be repetitive tasks with well defined state spaces. Better generalization is needed for applications that interact with the
more dynamics parts of the real world. Towards this end, researchers have been attempting to assist reinforcement learning
agents using natural language, an abundant type of data that is easy for humans to provide and understand. In this work
we explore using domain data found in the wild to help agents learn better in given domain.

Using text data found in the wild is important for scaling reinforcement learning methods to real world applications
(Luketina et al., 2019). Some of the most abundant sources of informative language in the wild are data specific to a
domain but independent of any particular task in that domain (e.g. internet forums, wikis, and other documentation).
This type of data tends to be noisy, large, and filled with information irrelevant for the current task. While most previous
work informing reinforcement learning agents with natural language uses text that is generated from rules and templates
(Chevalier-Boisvert et al., 2018; Zhong et al., 2019) or crowdsourced for a specific task (Chen et al., 2019; Shridhar et al.,
2020; Hanjie et al., 2021), we use challenging task-independent domain text found in the wild.

We propose teaching reinforcement learning agents to actively query natural language sources for information to help in its
current task. Humans often query the internet to help them generalize to new tasks. We identify three major components
to teaching artificial agents to do the same. Those are how, when, and what to query. We address the first two in this work
and leave the latter for future work.

To address the how, we use a pretrained QA model to extract structured representations from text in a zero-shot setting.
Next, we teach an agent when to query by adding a query action in the agent’s action space. Our agent successfully
retrieves relevant information from text and only does so when required for the current task. We use the nethack learning
environment for our experiments along with the game’s online wiki pages (Küttler et al., 2020).
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Resistance Attack

recall precision F1 IOU recall precision F1 IOU

Keyword 0.62 0.64 0.63 0.46 0.98 0.15 0.26 0.15
UnifiedQA 0.81 0.72 0.76 0.61 0.74 0.53 0.62 0.45

Table 1: Metrics for predicting monster resistance and damage types from nethack wiki pages. The keyword baseline
searches the page for the resistance and attacks type directly. The UnifiedQA method searches the QA model output for
the resistance and damage keywords.

2 Related Work

2.1 Task & Domain Independent Language

Language is becoming a popular method for informing reinforcement learning agents. This is partly motivated by recent
advancements in powerful pretrained language models. Language models have been used in reinforcement learning
applications to process text data such as natural language instructions (Hill et al., 2020) or observations grounded in text
(Ammanabrolu et al., 2020; Yin et al., 2020; Li et al., 2022). Language models are generally found to increase generalization
capability.

Other work, more closely related to ours, has attempted to impart common sense to reinforcement learning agents from the
language model itself (Dambekodi et al., 2020; Ahn et al., 2022). Because lanuage models are trained on vasts amount of
data that are independent of both an agent’s target domain and task, this approach limits knowledge to information that
the language model was repeatedly exposed to during training. This is usually referred to as common sense knowledge and
doesn’t provide the same type of knowledge found in domain dependent language.

2.2 Task & Domain Dependent Language

Language that is both task and domain dependent is specific to the current task and can provide information about
the agent’s current reward and transition functions. For example, Zhong et al. (2019) and Hanjie et al. (2021) train
agents conditioned on descriptions on the current environment and goal. These descriptions are gathered using generation
templates and crowdsourcing respectively.

In an effort to work towards methods that scale, we choose to use language that is found in the wild. We found that
language found in the wild is often domain dependent but usually task-independent. We believe that focusing on this type
of language data will lead to valuable research as it is more applicable than domain independent data but more available in
the wild than task dependent data.

3 Learning How to Query

Text in the wild often consists mostly of information that is irrelevant to our current task. Also, there are typically too few
instances found in the data to train models from scratch. Thus, our goal is to suggest a method for extracting specific
information from language with little to no training data. To this end we propose using pretrained QA models prompted
with task specific questions.

3.1 Zero-shot Performance

We analyze the ability of the QA Model to perform in a zero-shot setting by testing its ability to recover monster resistance
and damage types from the nethack wiki (https://nethackwiki.com/). We label a small evaluation set of monster data
for 98 pages. Monsters are labeled as having a set of resistance and attack types. There are eight potential resistances
and 17 potential attack types. Table 1 shows the performance of a three billion parameter pretrained UnifiedQA model
(Khashabi et al., 2020) compared with a simple keyword search baseline.

For the resistance task we prompted UnifiedQA with the contexts “What is it resistant to?” and “What is it’s resistance?”.
For the attack task we prompt the model with “What attack does it do?” and “What type of damage does it do?”. We
check the joint generated output for the questions for the set of resistance and attack types. Our reported metrics compare
this predicted set with the labeled set.

The attack type task was the more of the two because of the greater number of attribute classes and because attack types
of other monsters were commonly mentioned on a monster’s wiki page. This made precision on this task suffer, but, for the
most part, the UnifiedQA model was able to filter these irrelevant mentions of attack types.

2

RLDM 2022 Camera Ready Papers 466

466



Training Task Evaluation Task

Figure 1: Returns for each method on the training and evaluation tasks. We perform an 80:20 training evaluation split over
the nethack monsters. This way, the evaluation task only sees novel monsters. Error bars represent standard deviation over
10 random seeds.

3.2 Representation Generalization

To compare methods for extracting information from natural language data, we use a contextual bandit problem based on
the nethack learning environment (Küttler et al., 2020) to compare the below text representation methods.

No External Source Baseline: This method trains a value function on a one-hot encoding of the state with no additional
knowledge. It is expected to overfit.

RNN Encoding: We train a single layer LSTM to encode the provided language data. The final hidden layer of the
LSTM is passed to the value function and both are trained end to end.

LM Encoding: This approach uses a pretrained LM with frozen weights to encode language data. The extracted text
features is passed to the value function as a vector encoding.

QA Model: The QA approach defines a fixed set of questions to ask using the language data as context. The language
data is then represented as a binary vector encoding the responses to each question. We write a set of questions manually
to prompt the model.

Ground Truth QA Baseline: The ground truth baseline is identical to the QA model but with ground truth query
responses rather than responses returned by the model. This method represents ideal generalization with the caveat that it
may provide information that doesn’t exist in the original external language source.

In our setup, the agent is given the goal of receiving a target resistance (fire, shock, sleep, poison, or cold) by consuming a
monster corpse. It is then given a choice between two monsters (out of 388) along with the wiki pages each monster. One
of the monsters is guaranteed to confer the target resistance. The agent receives a reward of one if it chooses the monster
that will confer the target resistance and a zero otherwise.

Figure 1 shows the results of our contextual bandit over 100,000 iterations. As expected the baselines both perform well
on the training task while only the ground truth baseline generalizes to the evaluation task. Due to the extra monster
identifying information contained in the LM encoded representation, it outperforms the QA model on the training task,
but it does not generalize any better than the QA model on the evaluation task. The RNN struggles to encode the needed
information from the wiki pages on both tasks. The only methods that do not overfit to the training data are the QA
model and the ground truth baseline.

4 Learning When to Query

In partially observable environments, a reinforcement learning agent is given an imperfect observation of the current
environment state. Additional natural language data can be viewed as providing additional observations to an agent to
help disambiguate between states. When actively querying language data, an agent should be able to learn to query only
in states where the additional information will increase its expected return.
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Reward Weapon Choice Query Relevance

Baseline Agent 2.16 0.55
Query Agent 2.25 0.89 0.64
Query+Explore Agent 2.28 0.95 0.67
Oracle Agent 2.34 0.98

Table 2: Performance of reinforcement learning agents in nethack. Reward is the number of monsters killed in an episode.
Weapon choice is the percent of time that the agent chose to attack with the correct weapon for a corresponding monster.
Query relevance is the percent of queries the agent makes that were significant in determining the correct weapon choice.
The querying agent is compared to agents that have all important information without needing to query (Oracle) and
an agent that is deprived of that information and cannot query (Baseline). Finally, we experiment with adding a special
exploration policy specifically for queries (+Explore).

We formulate querying as part of the reinforcement learning problem by adding a query action to the agent’s action space.
In our experiments, executing a query receives the same timestep penalty that all actions receive. This way the agent
learns to only query when it is optimal to do so.

We test this method by designing custom nethack levels using the minihack library (Samvelyan et al., 2021). We spawn an
agent with two choices of weapon in its inventory in a level full of four types of monsters. For two of these monsters, the
choice of weapon the agent attacks with is significant because the monsters have resistances to one item or the other. For
the other two, both weapons work equally well. We give the agent the ability to query the resistances of nearby monsters
using the monster wiki pages and the QA method described in section 3. The agent is rewarded each time it successfully
slays a monster until it dies or the episode horizon is reached.

Table 2 shows the results of our querying agent compared with baselines that either always or never have the monster
resistance information. We report the reward along with how often the agent chooses to attack with the correct weapon
and how often the agent’s queries are for the monsters with different resistances. The agent should be able to learn to
manage its inventory to always attack with the optimal weapon. It should also learn to only query the wiki when necessary,
avoiding unnecessary queries about the monsters with identical resistances.

We found that the base querying agent took nearly eight times longer to learn to use resistance information in this task.
To speed up this process we implement an exploration policy for taking the query action. At the start of training, the
agent is forced to take the query action with 25% probability. This probability decreases to zero over the first five million
steps of training. Doing this helps the agent learn to utilize queries sooner. As shows in table 2, the query+explore agent
converged in the same amount of time as the baseline and oracle agents and learned a better policy.

5 Conclusion

In this work, we teach a reinforcement learning agent how and when to query for additional information about its
environment. We use natural language data found in the wild for the agent to query and discuss how to overcome the
challenges that come from this type of data. We find that pretrained QA models are good at retrieving structured zero-shot
representations of text. Additionally, reinforcement learning agents can learn when to query this information and when not
to.

In future work, we’re excited to see reinforcement learning agents with more advanced methods for querying. In addition,
further work should explore what to query in the current context of the environment in addition to how and when.
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Abstract

Model-based value expansion methods aim to improve the quality of value function targets and, thereby, the effective-
ness of value function learning. However, to date, these methods are being outperformed by Dyna-style algorithms
with conceptually simpler 1-step value function targets. This shows that in practice, the theoretical justification of value
expansion does not seem to hold. We provide a thorough empirical study to shed light on the causes of failure of value
expansion methods in practice which is believed to be the compounding model error. By leveraging GPU based physics
simulators, we are able to efficiently use the true dynamics for analysis inside the model-based reinforcement learning
loop. Performing extensive comparisons between true and learned dynamics sheds light into this black box. This paper
provides a better understanding of the actual problems in value expansion. We provide future directions of research by
empirically testing the maximum theoretical performance of current approaches.

Keywords: Model-based Reinforcement Learning, Value Expansion
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1 Introduction

In recent years a large fraction of the reinforcement learning (RL) community has been focused on model-based RL to
improve the sample complexity. Model-based RL algorithms consist of an iterative process of jointly learning a dynamics
model from data and then leveraging the learned model in a model-free RL training loop. The learned models have been
used for data augmentation [8, 9, 11], improving the value targets [2, 4, 12, 13], improving the policy gradient [7] or any
combination thereof. These works have proposed various approaches for training the model, new model architectures,
(automatically) adapting the rollout horizons and computing better value targets.

A common understanding among most model-based RL approaches is that the compounding model error along mod-
elled trajectories is one of the main problems to be solved or at least avoided. This compounding model error results in
modelled trajectories drifting away from the true trajectory even though they start from the same states and execute the
same action sequence. Learning more accurate dynamics models is often believed to be key.

Two key takeaways that have been used by many of these model-based RL papers and have manifested in recent litera-
ture are using (1) Short model-rollout horizons and (2) Heteroskedastic ensemble dynamics models.

Short model-rollout horizons As the learned models are at best approximately correct, model errors accumulate with
the length of the rollout horizon. Therefore, one common practice introduced by Janner et al. [8] is to use shorter rollout
horizons with learned models. Otherwise, one exploits the approximation error, and the RL agent fails to learn the task.
This approach can be vaguely thought of as treating the symptoms of model errors by behaving pessimistic and cutting
rollouts early before the accumulating error can become too large. In practice, this paradigm is often taken to the extreme
by using 1-step model rollouts only. Furthermore, using shorter rollouts contradicts the theoretical insights we have into
value expansion methods.

Heteroskedastic ensemble dynamics models Initially proposed by Chua et al. [3], this model has been widely adopted
in most subsequent papers. The main benefit is that the model learns the aleatoric uncertainty separately from the
epistemic uncertainty. It is an attempt to construct a more capable model architecture which is better suited to represent
the environment dynamics. A further benefit is that by explicitly modelling uncertainties they can be used down the line.

Both of these takeaways are an attempt to treat model errors. The first, by reducing the length of the prediction horizon,
and the second by explicitly learning uncertainty measures which can be leveraged later down the line. This leads us to
two lines of questioning which might challenge the understanding of the current approaches.

First, if we learned a perfect dynamics model, would this solve all of the problems that current model-augmented actor-
critic approaches struggle with? And if this were the case, could we then just simply use longer horizons and obtain even
greater increases in sample efficiency? The relevance of different possible future research directions is linked directly to
the answer of these questions. If the answer is yes, then we should focus future research onto learning more accurate
models. If the answer turns out to be no, however, it might be the case that greater accuracy has diminishing returns
for model-augmented actor-critic approaches or hinders necessary exploration for example. Striving for more accurate
models in these approaches might then not be the most important priority and interesting new research directions could
open up.

Second, are stochastic models really necessary to achieve good results? Or can deterministic models deliver comparable
performance if built and trained carefully? Current benchmark environments usually feature deterministic dynamics.
Naturally, the question arises, of whether a deterministic model should not be sufficient at learning to model these
systems. If the answer is yes, we should revisit deterministic models with the possibility of cutting down complexity.

To come closer to answering these questions, we believe, that there is a need for extensive empirical analysis of the im-
pact of model errors on the training algorithms. In this paper, we focus on the first line of questioning. We investigate
the question of whether learning more accurate dynamics models can still increase the performance of value expansion
methods [4]. Therefore, we create an experimental setup with a perfect dynamics model, by replacing the learned dy-
namics model with an oracle dynamics model. This allows us to study the theoretical performance of value expansion
approaches in isolation without the negative impact of model errors. Only recently, with the development of GPU based
physics simulators, this type of study has becoming computationally feasible. Simulators like BRAX [5], provide GPU
accelerated simulation of dynamical systems scaling to thousands of parallel environments. It allows us to perform fast,
oracle dynamics rollouts in the inner model-based RL training loop for entire batches in parallel. An additional perfor-
mance benefit is that we are able to perform the training on the GPU only which limits the amount of costly memory
transfers from CPU to GPU and back.
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2 Maximum-Entropy Model-Based Value Expansion

We adapt Model-based Value Expansion (MVE) [12] for the maximum-entropy RL case in order to combine it with
a model-free Soft Actor-Critic (SAC) [6] learner. For this, consider a Markov Decision Process (MDP) [10], defined
by the tuple {S,A,P,R, ρ, γ} with state space S ⊆ Rn and action space A ⊆ Rm. At each time step t, the agent
observe a state st ∈ S and samples an action at ∈ A according to a policy at ∼ π( · | st). The environment re-
turns a next state st+1 ∈ S according to the transition probability density function st+1 ∼ P( · | st, at) and the cor-
responding scalar reward rt = R(st, at). The starting state of a trajectory is sampled from the initial state distri-
bution s0 ∼ ρ. γ is a discount factor. The main objective of maximum-entropy RL is to find a policy π that maxi-
mizes J(π) = Es0∼ρ {

∑∞
t=0 γ

t(r(st, at)− α log π( · | st))} with the initial state distribution ρ. The actor loss is defined as
Jπ(st, at) = α log

(
π(at|st)

)
− Q(st, at) with at ∼ π(st). In the maximum-entropy case, the value expansion used within

the critic loss is described by

V H(s0) =
H−1∑

t=0

γt
[
r(st, at)− α log π( · | st)

]
+ γH

[
Q(sH , aH)− α log π( · | sH)

]
.

The corresponding critic loss is defined as JQ(st, at, st+1) = 1
2 [Q

H
tar − Q(st, at)]

2 with QHtar(st, at, st+1) = r(st, at) +

γV H(st+1). We define a learned dynamics model as an ensemble of N probabilistic neural networks P̂Φ =
{piϕ(st+1, rt|st, at)}Ni=0, which output mean and variance of the state transition and reward, similar to [3]. At inference
time, one network in the ensemble is sampled uniformly to capture epistemic uncertainty.

3 Experiments

In this section, we compare the theoretical performance of MVE with its practical performance. For this purpose, we
construct a version of MVE where we replace the learned dynamics model with an oracle dynamics model. For clarity,
we will refer to the latter as Oracle-based Value Expansion (OVE). OVE creates a well-defined, artificial environment for
studying training performance by eliminating the negative impact of model errors. It lets us answer whether there is
still room for performance gains by learning more accurate dynamics models and if, in the absence of model errors, ever
longer rollout horizons can increase performance of value expansion methods further. Our experiments focus on five
standard RL benchmark environments: InvertedPendulum, Cartpole Swingup, Hopper, Walker2d and HalfCheetah.
As an efficient GPU based physics simulator, we use BRAX [5], which provides implementations of these benchmark
environments. Our experiments are implemented in JAX [1] to integrate seamlessly with BRAX and take full advantage
of the GPU.

3.1 Training Performance

We compare the training performance of MVE and OVE. Therefore, we train both algorithms with varying rollout
lengths. Figure 1 shows the MVE and OVE training performance on the top and bottom row, respectively. For com-
parison, we provide a SAC baseline (corresponding to MVE/OVE with a rollout horizon of 0). We plot the mean and
standard deviation across five random seeds.

OVE shows a clear trend that the theoretical improvements of increased horizons can be achieved in the absence of model
errors. As expected, the improvements have diminishing returns with increased rollout horizons. Where Walker2d and
HalfCheetah suffer a slight performance decrease for H = 30. From a practical perspective, there seems to be an optimal
trade-off between the benefit of a longer rollout horizon and the increase in computational cost.

Overall, MVE results are split. While longer rollout horizons assist the training performance in InvertedPendulum,
Cartpole and Walker2d, the training performance of Hopper and HalfCheetah suffers immensely. We assume that the
learned model is not accurate enough to produce better value targets for the learning agent in these two environments
due to the compounding model error.

3.2 Diminishing Returns of Longer Rollout Horizons

We further investigate the diminishing returns in training performance using longer rollout horizons. Figure 2 shows the
number of environment steps that MVE/OVE with a certain rollout horizon requires to first reach a set threshold on the
episode reward. The differently shaded lines represent different thresholds. The thresholds are linearly interpolated be-
tween a [min, max] episode reward which for the different environments we have picked as follows: InvertedPendulum
= [50, 200], Cartpole = [100, 400], Hopper = [250, 1000], Walker2d = [500, 1900], HalfCheetah = [500, 3000].

OVE shows the tendency of diminishing improvements for longer rollouts. While most environments show notable
improvements by increasing rollout horizons from H = 0 to H = 5 or even H = 10, the lines flatten for horizons
H = {20, 30}. Even in the absence of model errors, increasing the rollout horizon appears to reach limitations.
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Figure 1: MVE training performance (top) and OVE training performance (bottom). We evaluate each for multiple rollout
horizons H ∈ {1, 3, 5, 10, 20, 30} and plot the mean and variance across 5 random seeds.
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Figure 2: Number of environment steps until MVE/OVE with rollout horizons H ∈ {1, 3, 5, 10, 20, 30} reach a certain
threshold of episode reward. The different thresholds are represented by the different shades of red/blue.

Except for the InvertedPendulum environment, MVE experiments show that in the case of a learned dynamics model,
rollout horizons above H = 3 or H = 5 indeed hurt the overall performance. Up to a point where it is not able to
solve HalfCheetah for H = 30. This is clear evidence that more accurate dynamics models could improve MVE training
performance for short rollout horizons. However, due to the diminishing returns of increasing rollout horizons it has its
practical limitations for longer rollout horizons.

4 Conclusion

Our experiments have empirically shown that in the absence of model errors, MVE shows increased performance with
longer rollout horizons. Therefore, we conclude that MVE can be made more sample efficient by training more accurate
dynamics models. At the same time, we have seen diminishing returns of that improvement with increasing rollout
horizons. Our empirical findings strengthen the theoretical justifications of MVE by Feinberg et al. [4] and allow for two
streams of future research. First, improving model accuracy through better model training techniques and architectures.
Second, understanding how model errors impact value expansion and how the negative impact can be mitigated. This
needs more research into analyzing and understanding how these model errors negatively impact training.
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In the future, we plan to take a detailed look at the exact nature of the impact of model errors on the learning process
and on the generated value targets themselves. We hope that by understanding the effects, we can design more capably
algorithms that are more robust to model errors and sample efficient at the same time.
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Abstract

Complex controls are increasingly common in power systems. Reinforcement learning (RL) has emerged as a strong
candidate for implementing various controllers. One common use of RL in this context is for prosumer pricing aggrega-
tions, where prosumers consist of buildings with solar generation and energy storage. Specifically, supply and demand
data serves as the observation space for many microgrid controllers who are passed on a policy from a central RL agent,
who is learning online. Each controller outputs an action space consisting of hourly “buy” and “sell” prices for energy
throughout the day; in turn, each prosumer can choose whether to transact with the RL agent or the utility. The RL agent
is then rewarded through its ability to generate a profit.

RL is known to be effective for this task. We ask: what happens when some of the microgrid controllers are compromised
by a malicious entity? We demonstrate a novel attack in RL and a simple defense against the attack.

At a high level, our attack perturbs each trajectory to reverse the direction of the estimated gradient. We demonstrate
that if data from a small fraction of microgrid controllers is adversarially perturbed, the learning of the RL agent can be
significantly slowed. With larger perturbations, the RL aggregator can be manipulated to learn a catastrophic pricing
policy that causes the RL agent to operate at a loss. We demonstrate other environmental characteristics are worsened
too: prosumers face higher energy costs, use their batteries less, and suffer more transformer power violations when the
pricing aggregator is adversarially poisoned.

We address this vulnerability with a “defense” module; i.e., a “robustification” of RL algorithms against this attack.
Our defense identifies the trajectories with the largest influence on the gradient and removes them from the training
data. Intuitively, it works because the non-poisoned trajectories are not expected to have out-sized gradients. It is
computationally light and reasonable to include in any RL algorithm.
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1 Introduction

Artificial Intelligence (AI) heralds great benefits to power system operation. In the future, AI-based controls could man-
age the use of passive appliances [19, 3], orchestrate demand response [2], and optimize power flow throughout networks
[4, 5]. In the context of energy grids, local grid networks (i.e., microgrids) enable refined control at the cost of increased
complexity, necessitating adoption of complex controls at scale.

At the same time, energy grids are known to be lucrative targets for cyberattacks (e.g., [8]). Our work investigates
the robustness of an AI-based microgrid controller to malicious actors. We present a novel attack that enables a few
compromised microgrid controllers to adversely affect the behavior of connected controllers by poisoning the data on
which it is trained. This expands on a recent explosion of interest in adversarial attacks [10, 12, 6]. We pair this finding
with a gradient-based defense that eliminates the threat of this attack.

More concretely, we examine a setting in which a network of microgrid controllers collect supply and demand data
that are continually aggregated by a central agent. The agent uses online reinforcement learning (RL) to optimize its
profits. In our attack, a few microgrid controllers are compromised by a malicious adversary. The adversary applies a
perturbation to the collected data, severely impacting the provider and the entire network of controllers. The provider is
made to operate at a loss, and all prosumers are made to pay higher energy costs, use their batteries less, and violate
more transformer power constraints.

Our work is set against a backdrop of developments in energy grid control that hold both promise and peril: RL-based
controllers allow for sophisticated control in unprecedented granularity. Yet, we must be careful to minimize risk enabled
by the opaque nature of deep learning. Our attack stands out in its subtlety and its scope. Other forms of large-scale inter-
ference such as blackouts and line disruptions are, by definition, easily detectable and local. Yet our attack causes harm
by interfering with the agent’s learning, and may not be detected until significant financial damage has been incurred.
Furthermore, by interfering with the central agent’s learning, our methods can damage systems that are physically dis-
connected from the energy grid under attack.

Outline. In Section 2 we briefly contextualize our work within RL and energy controls. In Section 3 we describe the
threat model, attack, and defense. In Section 4 we introduce our experimental setup, which is used in Section 5 to
evaluate the efficacy of our attack and defense in an energy grid environment. Finally, in Section 6 we discuss limitations
and future work.

2 Background: RL for prosumer energy pricing

RL has been applied to a number of demand response situations in prosumer microgrids; most work centers on agents
that directly schedule resources [15, 16] or control appliances [19, 11, 20]. Recent works have used an RL controller as a
price setter in a market: RL has been used to estimate dynamic prices in a multi agent environment of demand response
assets in [9], as well as [7, 1, 18].

Demand response, an incentive mechanism geared towards moving consumption, is a no-material solution to variable
wind and solar generation and is thus seen as an important technique in the energy transition. It has been demonstrated
that learning local price controls is an effective demand response mechanism due to its generalizability and optimal local
battery resource utilization [14, 13].

The literature on adversarial attacks for RL in demand response focuses on responding to prices [17] rather than setting
them. To our knowledge, there are no works on adversarial attacks on dynamic price setting for demand response.

3 Techniques

3.1 Threat model

In our setting, N controllers continuously collect data to be aggregated by a centralized agent. Learning takes place over
multiple iterations; in each iteration, each controller collects a trajectory τ := (oi, ai, ri)i collected according to the agent
policy πθ. The agent’s policy πθ is described by a neural network. Nodes are required to feed observations through πθ so
as to collect policy-specified actions (pricing schemes), so we assume that the network parameters θ and architecture are
shared with the controllers.

The attacker’s power is determined by a fraction of corrupted controllers ε ∈ (0, 1), and a perturbation bound ρ > 0, as
follows: An attacker controls ε · N of controllers. The attacker perturbs the trajectories collected by each compromised
controller, causing it to report back a trajectory τ̃ instead of the collected trajectory τ . Crucially, these perturbations are
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Figure 1: A. A description of the microgrid environment. In this figure, the brain is the RL agent, the black dot is the
microgrid controller, and the adversary attacks the at that is sent back to the RL agent. B. Effect of the adversary on
the agent’s learning. Note that ε = 1% corresponds to only one adversarial microgrid. C. Effect of our defense in the
presence of an adversary. D. Characterization of prosumer costs in the baseline and adversarial scenarios. The prosumer
consistently pays more in energy when the adversary interferes.

of small norm, that is,
∥τ̃ − τ∥∞ ≤ ρ

for some perturbation bound ρ > 0. Note that our attacker adheres to the suggested policy πθ, but lies about the result to
the agent.

Remark 1. In our setting, the attacker may only perturb the actions of each trajectory. Observations and rewards remain
unperturbed, because such perturbations would be expensive or easily noticed. This is in contrast to previous work in
RL poisoning in which only rewards are poisoned [12].

3.2 The attack

At a high level, our attack aims to perturb each trajectory to reverse the direction of the estimated gradient∇θf(θ). Let θ
be the parameters of the agent’s policy, τP be the unperturbed set of compromised trajectories (the trajectories collected
by compromised controllers), τ̃P be the set of perturbed adversarial trajectories (reported back to the agent), and τH
be the set of honest trajectories (unaffected by the adversary). Our adversary minimizes the correlation of the gradient
post-perturbation with the honest one by solving the following constrained optimization problem:

min
τ̃P

⟨∇θfθ (τ̃P ) ,∇θ (fθ(τP ) + fθ(τH))⟩ (1)

such that ||τ̃P − τP ||∞ ≤ ρ.
Since the compromised controllers report τ̃P to the agent instead of τP , the agent will take gradient steps according to
∇θ (fθ(τ̃P ) + fθ(τH)). Therefore, choosing τ̃P to minimize Equation (1) should maximally mislead the gradient towards
a sub-optimal policy. Equation (1) is optimized by the adversary using the Fast Gradient Sign method (FGSM) [6].
Interestingly, we find that our adversaries can obtain nearly identical results by solving Equation (1) without the τH
term, meaning that the adversary does not require any information about the honest (uncompromised) controllers.

3.3 The defense

We propose a defense to protect an online deep RL agent from the attack described in Section 3.2. Our defense works
by identifying and removing the trajectories which have the largest influence on the gradient from the training data.
Intuitively, this defense works because the honest trajectories are not expected to have out-sized gradients. Note that the
poisoned trajectories are not easily identifiable without calculating the gradient through the policy; while the adversarial
perturbations significantly influence the gradient estimate, the perturbations themselves are small. More formally, if the
RL agent suspects that some fraction ε̂ of the microgrids are adversarially controlled, then, when estimating the gradient
∇θf(θ), it ignores the ε̂-fraction of trajectories τ with largest ||∇θfθ(τ)||2.
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4 Experimental setup

4.1 The Price-Setting Microgrid Problem

Consider a setting of 100 microgrids. One RL agent sets the policy parameters θ of all 100 microgrid controllers, which
transacts locally within each microgrid. Each microgrid consists of 7 prosumer office buildings. Every prosumer has
a battery, solar panel array, and baseline energy consumption; each wants to minimize their energy cost. Prosumers
see both grid-set hourly energy buy and sell prices and local microgrid controller-set hourly energy buy and sell prices.
Prosumers choose to transact with either the grid or the RL aggregator at each hour. Prosumers also decide when to
discharge their battery according to both their demand and the energy prices. The microgrid controller accepts all trans-
actions the prosumers request of it. It does not produce or store energy, but sells energy it has bought from prosumers
producing energy in a timestep to prosumers demanding energy in the same timestep. The aggregator balances the net
load by purchasing from or selling to the energy utility under which they sit, usually at a loss. As the manager of the
RL-aggregator, you see the grid’s buy and sell prices, and wish to learn an automatic pricing strategy such that you
consistently turn a profit. See Figure 1.A for a graphical depiction of the environment.

For a more precise description of the convex optimizations governing prosumer battery behavior and the reward function
training the RL-aggregator, see [1].

4.2 Adversarial microgrid poisoning “in the wild”

We briefly present a potential real-world example of our adversary in action.

Suppose that Eastern Gas & Electric (EG&E) is piloting a dynamic, local pricing program. To do this, EG&E instantiates
an RL agent to train across a sample of building clusters (i.e. microgrids grouped locally). Unfortunately, there is an
attacker who wishes to disrupt the functioning of EG&E, and they intercept the outflow of data from one of the local
microgrid controllers. In one attack strategy, the attacker wishes to minimize the extent to which the outgoing prices
are perturbed so as to escape detection. In another attack strategy, the attacker considers high perturbations in order to
maximally disrupt profitability.

5 Results

Next, we present experimental results demonstrating the gradient-reversing adversary’s harmful potential, as well as
the efficacy of the filtering defense.

All of our experiments used the MicrogridLearn environment [1] consisting of 100 microgrids of 7 buildings each. The
RL agent is an Actor-Critic agent which updates every week over the course of one year.

The attack. Figure 1.B shows our attacker can significantly hinder the RL agent’s learning by co-opting a single micro-
grid controller. The maximal difference between successive actions taken by the true policy is around 6, so the strongest
attack in the single-trajectory setting requires a relatively high perturbation budget ρ = 10. However in Figure 1.C, our
attack utilizes a smaller perturbation budget of ρ = 3 with ten (ε = 10%) compromised controllers to achieve significant
damage.

The defense. We find that our defense recovers the original performance of the RL agent, even under generous ε and
ρ. See Figure 1.C.

Characterizations of environmental response. We investigated several ways in which the environment responded to
adversarial attack beyond the sheer profit: individual prosumer energy costs (the sum of the building’s energy expendi-
tures with the adversary and without), battery utilization (the number of times batteries were charged and discharged,
and the total capacities) and transformer power constraint violations. Under all measures, the environment performed
worse with an adversary, even those not directly targeted: the prosumers paid on average more for the energy, the bat-
tery was used less when the microgrid controller was adversarially perturbed, and transformer power constraints were
violated more. We present the prosumer prices in Figure 1.D and omit the rest due to space constraints.

6 Future Work

The goal of our work is to call attention to the threats made possible by adoption of RL in energy grid pricing. Towards
this end, we focused on a narrow yet concrete setting, leaving much room for future work.
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• The classical adversarial machine learning literature has an abundance of targeted attacks, in which the adversary
is able to lead the agent towards a particular policy. One of our next objectives is to design an adversary to cause
targeted damage, for example to lead the agent to learn a policy which puts the voltage constraints of the power
grid at risk.

• Our proposed defense requires the RL agent to drop as many trajectories as could potentially be compromised.
More sophisticated defenses could likely result in less dropped data and more robust learning.

• We would like to explore our attack in more environments. In parallel, we hope to achieve successful attacks
with smaller settings of ρ and ε.
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Abstract

State-of-the-art world models such as DreamerV2 [4] have significantly improved the capabilities of model-based rein-
forcement learning. However, these approaches typically rely on a reconstruction loss to shape their latent representa-
tions, which is known to fail in environments with high fidelity visual observations. Previous work has found that when
learning latent dynamics models without a reconstruction loss by using only the signal provided by the reward, the
performance can also drop dramatically. We present a simple set of modifications to DreamerV2 to remove its reliance
on reconstruction inspired by the recent self-supervised learning method Bootstrap Your Own Latent [3]. The combina-
tion of adding a stop-gradient to the posterior, using a powerful auto-regressive model for the prior, and using a slowly
updating target encoder, which we call BLAST, allows the world model to learn from signals present in both the reward
and observations, improving efficiency on our tested environment as well as being significantly more robust to visual
distractors.
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1 Introduction

Many environments have simple dynamics and yet require millions or billions of potentially expensive agent interactions
to be solved using deep reinforcement learning (DRL) algorithms. One promising way to improve the sample efficiency
of DRL is by learning a model of the environment and then learning a policy within this model. Model-based RL (MBRL)
is particularly efficient when learning a world model is relatively easy compared to learning the policy. Luckily, the
state of the art in generative modeling is constantly improving, and as new techniques are discovered, these can bring
significant improvements to our ability to learn world models for MBRL, making it a viable approach for learning a
growing set of complex tasks.

With recent progress in generative modeling, MBRL can solve control tasks from pixels and master several Atari games.
However, MBRL still struggles to solve problems with highly complex observations. This is largely because most MBRL
techniques today rely on reconstruction to learn their models, where the world model is trained to predict future frames
at a pixel level. This makes MBRL susceptible to changes in how an environment is rendered. While an environment
may have fundamentally simple dynamics, it can be rendered with high fidelity textures, in 3D, or with a natural video
playing in the background. All of these changes have been shown to cripple the performance of MBRL since a large
amount of modeling capacity is taken up by modeling features that are irrelevant to the control task.

DreamerV2 [4], a state-of-the-art MBRL agent that learns a discrete world model, uses reconstruction to form its repre-
sentations and thus suffers from this problem. The authors describe a modification that doesn’t use a reconstruction loss,
where it simply learns a latent representation that can predict rewards and the distribution of the next latent state. While
learning a latent dynamics model this way should, in theory [2], be sufficient, empirical studies have shown that across
multiple tasks, the signal from predicting future observations is critical and without it, performance suffers dramatically
[4].

In our work, we show a simple way to regain this performance without using reconstruction or even contrastive [6] losses.
Additionally, our method of leveraging image signals for representation learning without reconstruction is significantly
more robust to distractors than DreamerV2 and can perform well even when a video is displayed in the background of
the environment. Our method, which we call BLAST, consists of the following changes on top of DreamerV2:

• While DreamerV2 experiments with weighing the gradients that go to the prior and posterior in the KL loss, we
show that by completely stopping the gradient from going to the posterior, the KL loss encourages represen-
tations that are informative of the predictable features of the observations.

• Since our method does not update the posterior to be predictable by the prior, we choose to use an auto-
regressive prior to better fit the latent distribution.

• Inspired by similarities to recent advancements in self-supervised learning, we use techniques from Bootstrap
Your Own Latent (BYOL) [3] such as a slowly updating target network for prior targets to stabilize training
and using batch normalization in the encoder.

In order to evaluate our method, we run experiments on a highly-customizable grid world environment as well as
continuous control experiments on the DeepMind Control Suite (DMC) [7]. In our grid world experiments, we evaluate
the performance of our method on several rendering modifications, including environments with a small agent sprite as
well as video backgrounds. We show empirically that DreamerV2 performs poorly on these environments while BLAST
can learn a strong world model. On DMC, we find that BLAST can match the performance of several other MBRL agents
without relying on reconstruction or contrastive losses. We conduct an extensive ablation study on the proposed changes
and find that while all of the changes improve performance, batch normalization makes a substantial difference in several
environments. Overall, BLAST represents a simple set of changes to DreamerV2 that enables practical reconstruction-free
MBRL.

2 BLAST: Bootstrapped LAtents for Simulating Trajectories

2.1 Dreamer without Reconstruction

In this work, we build off of DreamerV2, a state-of-the-art MBRL algorithm. In Dreamer [4], a latent dynamics model
called a Recurrent State-Space Model (RSSM) [4] is learned. This model consists of:
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Recurrent model: ht = fθ(ht−1, zt−1, at−1)

Representation model:zt ∼ qθ(zt|ht, xt)
Transition predictor: ẑt ∼ pθ(ẑt|ht)
Image predictor: x̂t ∼ pθ(x̂t|ht, zt)
Reward predictor: r̂t ∼ pθ(r̂t|ht, zt)
Discount predictor: γ̂t ∼ pθ(γ̂t|ht, zt).

(2.1)

The world model is trained by minimizing the following loss, which corresponds to an ELBO of a hidden Markov model
conditioned on the action sequence, making the RSSM a sequential VAE [4, 5]:

L(θ) .= Eqθ(z1:T |a1:T ,x1:T )

[∑T
t=1 −βimg ln pθ(xt|ht, zt)

image log loss

−βr ln pθ(rt|ht, zt)
reward log loss

−βγ ln pθ(γt|ht, zt)
discount log loss

(2.2)

+βKLKL(qθ(zt|ht, xt)∥pθ(zt|ht))
KL loss

]

In the original work [4], various representation learning ablations were done, including the removal of the image log
loss. However, without image gradients to help form representations, Dreamer fails to learn an accurate world model.

While this naive reward-only version of Dreamer might not work well in practice, there have been several works that
learn representations in Dreamer without reconstruction, primarily through contrastive learning. The original Dreamer
paper used contrastive learning to learn a representation that has maximal mutual information with the encoded obser-
vation. Temporal Predictive Coding (TPC) [6] proposes to augment this loss with a contrastive approach that operates
between timesteps, encouraging representations of predictable elements. While Dreamer with contrastive representa-
tions did not achieve performance on par with reconstruction-based representations, TPC is competitive with Dreamer
with reconstruction on several tasks. Theoretically, TPC learns representations that are sufficient for control, but it is
unclear whether the loss is still a lower bound on the log probability of the data. In practice, TPC requires carefully
balancing four separate losses to avoid collapsed representations.

2.1.1 Learning Bootstrapped Representations

In order to learn a world model with neither reconstruction nor contrastive losses, we note that there are two ways to
optimize the KL loss in DreamerV2. We can change the latent representations from the past to be more informative of
future representations (forward) or we can change our future representation to be more predictable by the past (reverse).
DreamerV2 [4] introduces an additional hyperparameter called the KL balance, where a parameter α is used to scale the
gradients going into the prior and posterior in the KL loss. In experiments on Atari, DreamerV2 uses a KL balance of
α = 0.8, which updates both the posterior and prior distributions. In this section, we argue that by completely stopping
the gradients that update the future representation (α = 1), we are able to learn representations not only from the reward
signal, but from bootstrapping off of the information present in the embeddings of future observations.

By only allowing gradients to flow into the prior and not the posterior, we recover a representation learning algorithm
similar to BYOL [3], a self-supervised learning algorithm that has achieved strong performance on benchmarks without
the use of the negative samples that are necessary for contrastive learning. Intuitively, even the representation produced
by our encoder at initialization has some information about the observation it is encoding. By predicting this future
representation, the past representations are encouraged to contain information that can help with the prediction task,
which in turn increases the amount of information that is present in the representation.

In order to stabilize training, we use techniques from BYOL. Primarily, we employ a slowly updating target encoder with
parameters ξ to produce the posterior, resulting in the following loss:

L(θ) .= Eqθ(z1:T |a1:T ,x1:T )

[∑T
t=1 −βr ln pθ(rt|ht, zt)

reward log loss

−βγ ln pθ(γt|ht, zt)
discount log loss

(2.3)

+βKLKL(stop grad(qξ(zt|ht, xt))∥pθ(zt|ht))
KL loss

]

The target encoder’s parameters ξ are updated as an exponential moving average of θ as ξ ← τξ + (1 − τ)θ. Since
we no longer update our encoder to be more predictable and fit an independent prior, we experiment with using an
auto-regressive prior. We also find that batch normalization is important for the best performance of our model.
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3 Experiments

We run experiments to evaluate the following hypotheses: (H1) The combination of proposed changes (BLAST) enable
the learning of a strong world model without the use of reconstruction. (H2) BLAST is more robust to changes in en-
vironment rendering compared to DreamerV2. (H3) The most effective combination of the proposed changes is the
combination of all five, which we call BLAST.

3.1 Environment

We primarily run experiments on a modified grid world environment as well as the DeepMind Control Suite (DMC) [7].
We choose to use the dynamic obstacles environment in gym-minigrid [1]. In this environment, three obstacles randomly
move to adjacent tiles each time-step and the agent must navigate around them to reach a goal without colliding with any
obstacles. This environment was primarily chosen since it is easy to modify while retaining characteristics that make it a
good test-bed for testing world models, such as environment stochasticity and sparse reward. We also chose to evaluate
on DMC to allow comparison to prior work which tested on this benchmark.

We modified the base environment MiniGrid-Dynamic-Obstacles-6x6-v0 in several ways, as shown in Figure 1:

• color direction: A different color is used to represent each of the possible directions that the agent could be
facing.
Scenario: uncertainty in reconstruction can be confused with another possible observation.

• smaller agent: The agent is rendered as a triangle using one quarter of the pixels as in the original environ-
ment.
Scenario: important elements have a low weight in the reconstruction loss.

• random frames: The background is set to a random frame of a fixed video at each time-step.
Scenario: environment observations have temporally uncorrelated and uncontrollable elements in the background.

• video: The background is set to a random frame of a fixed video upon resetting the environment. The video is
then displayed in order in subsequent steps.
Scenario: environment observations have temporally correlated and uncontrollable elements in the background.

For all experiments, we used a fixed horizon of 100 time-steps. The return is the number of times the agent reaches the
green square in the episode minus the number of times it collides with an obstacle. For video background we use a video
drawn from the the kinetics400 driving class across all experiments.

3.2 Experimental Setup

We ran all experiments using code forked from the official DreamerV2 [4] implementation. The code was modified to
allow the use of batch normalization, a separate target encoder with weights set to an exponentially moving average of
online weights, and an autoregressive prior within the RSSM. This allows us to configure DreamerV2 with any subset
of our proposed changes and fairly compare the different configurations. Error bars in our plots represent represent
standard deviation across 5 seeds.

3.3 Summary of Modifications

• (-recon) We remove the reconstruction loss from DreamerV2 by setting its weight to zero.
• (+SG) We add a stop gradient to the posterior in the KL loss by setting a KL balance of α = 1.
• (+EMA) We use an exponential moving average for the encoder when we compute the posterior in the KL loss.
• (+BN) We add batch normalization to the encoder.
• (+AR) We use an autoregressive prior in the RSSM to better fit the discrete latent distribution.

3.4 Grid World Experiments

Figure 1 shows how performance differs on the grid world environments when the proposed modifications are added
to DreamerV2 to create BLAST. DreamerV2 works well on the unmodified environment but struggles to learn in the
presence of most of the rendering modifications. BLAST is able to achieve strong performance on all of the rendering
modifications, confirming our hypothesis that BLAST would be more robust to adversarial rendering (H2). We found
that only BLAST (+AR) and BLAST without an autoregressive prior (+BN) consistently performed well. We note that
there are some environments such as color direction where the use of batch normalization is vital to achieve strong
performance.

3

RLDM 2022 Camera Ready Papers 483

483



1 2 3 4 5

Time Steps (104)

0

6

12

R
et

u
rn

s

unmodified

1 2 3 4 5

Time Steps (104)

0

6

12

color direction

1 2 3 4 5

Time Steps (104)

0

6

12

smaller agent

1 2 3 4 5

Time Steps (104)

0

6

12

random frames

1 2 3 4 5

Time Steps (104)

0

6

12

video

BLAST (Ours) DreamerV2

unmodified color direction smaller agent random frames video
−8

−4

0

4

8

12

av
er

ag
e

re
tu

rn

DV2 -recon +SG +EMA +BN +AR

dmc pendulum swingup dmc hopper hop dmc walker run

0

200

400

600

800

av
er

ag
e

re
tu

rn

dmc cheetah run dmc cup catch dmc cartpole swingup

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

DV2 -recon +SG +EMA +BN +AR TPC

Figure 1: We performed a series of experiments to understand how our proposed changes affect performance across our
various grid world modifications. Each subsequent change includes all of the modifications to the left. For example, the
rightmost +AR represents the combination of all five changes.

3.5 DeepMind Control Suite

Our experiments on the modified grid world environments confirm that BLAST is significantly more robust to rendering
changes than DreamerV2. In order to compare with prior state of the art model based RL algorithms, we ran continuous
control experiments on several standard DMC environments. Figure 1 shows that BLAST can achieve performance that
is essentially on par with vanilla DreamerV2 and Dreamer. Surprisingly, we found that batch normalization had an even
larger effect on these environments, with several tasks achieving practically zero return until batch normalization was
added. We also found that the autoregressive prior did not have a significant effect on performance in DMC environ-
ments, likely due to the deterministic nature of the environment. Figure 1 also shows that BLAST achieves comparable
performance to TPC, both in terms of asymptotic performance as well as sample complexity. Despite using neither
reconstruction nor contrastive losses, BLAST achieves performance that is on par with existing state-of-the-art MBRL
approaches on DMC tasks.

4 Discussion

We present BLAST, a modification of DreamerV2 which adds a stop-gradient to the posterior, a powerful auto-regressive
prior, and a slowly updating target network to learn representations without using reconstruction. BLAST performs
far better than DreamerV2 on a range of differently rendered grid world environments, including ones with a video
embedded in the background where DreamerV2 fails entirely to learn. We empirically justify our modifications and
show evidence that adding the stop-gradient encourages the latent representations to contain more information about
the observation.

While BLAST shows strong performance in our grid world environments as well as on continuous control tasks, we ac-
knowledge several limitations and opportunities for future work. The primary limitation of this work is the need for an
expressive prior such as an autoregressive model in stochastic environments. Since autoregressive models are consider-
ably slower than the independent prior used in DreamerV2, our model takes longer to run simulations. We also believe
that more work should be done to differentiate self-predictive approaches to representation learning such as BLAST to
contrastive approaches in order to provide a stronger recommendation to practitioners looking to use reconstruction-free
world models.
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Abstract

Nowadays, more people can access digital educational resources than ever before. However, access alone is often not
sufficient for learners to fulfill their learning goals. To support motivation, learning environments are often gamified,
meaning that they offer points for interacting with them. But gamification can add to learners’ tendencies to choose
learning activities in a short-sighted manner. An example for a short-sighted choice bias is the preference for an easy
task offering a quick sense of accomplishment (and in gamified environments often a quick accumulation of points) over
a harder task offering to make real progress. The concept of optimal brain points demonstrates that methods from the
field of reinforcement learning, specifically reward shaping, allow us to align short-term rewards for learning choices
with their expected long-term benefit in a learning context. Building on that work, we here present a scalable approach
to supporting self-directed learning in digital learning environments applicable to real-world educational games. It can
motivate learners to choose the learning activities that are most beneficial for them in the long run. This is achieved by
incentivizing each learning activity in a way that reflects how much progress can be made by completing it and how that
progress relates to their learning goal. Specifically, the approach entails modelling how learners choose between learning
activities as a Markov Decision Process and applying methods from reinforcement learning to compute which learning
choices optimize the learners progress based on their current knowledge. We specify how our developed method can be
applied to the English-learning App “Dawn of Civilisation”. We further present the first evaluation of the approach in a
controlled online experiment with a simplified learning task, which showed that the derived incentives can significantly
improve both learners’ choice behaviour and their learning outcomes.

Keywords: education; self-directed learning; reward shaping; optimal gami-
fication; decision making; incentives
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1 Introduction
Digital educational resources have become increasingly available over the past years. However, many people struggle to
fully exploit the offered resources in the pursuit of their personal learning goals [1, 2]. One possible reason for this is an
aversion towards failure, leading to a preference for easy tasks over tasks that might allow them to really progress [2].
This can be viewed as a form of procrastination, as it stems from the tendency to prefer short-term pleasure (succeeding
at an easy task) over long-term benefit (developing one’s skills or knowledge) [2, 3]. Gamification has often been the
tool of choice for helping learners persist through such motivational difficulties [4]. But just adding points or badges to
an educational context without a principled theory can elicit negative effects [4]. Specifically, emphasizing momentary
performance through game elements can intensify rather than alleviate the problem of striving to avoid failure [5]. Ad-
ditionally, incentivizing schemes can often be gamed, meaning that a learner can engage in behaviour that will serve to
accumulate points or badges without increasing the efficiency or success of their actual learning efforts [2, 5]. This issue
can be addressed by leveraging a computational approach to calculating learning incentives in a way that aligns short-
term rewards with expected long-term learning benefits. Xu et al. (2019) [2] showed that optimal brain points, derived
from an application of optimal gamification to a mathematical model of skill acquisition, can help learners to overcome
the described choice biases in a simple learning task. The term “brain points” was coined to describe a growth-mindset
incentive system [6] and is meant to emphasize the opportunity to develop one’s brain by seeking out challenges. How-
ever, optimal brain points cannot be computed for complex tasks and therefore do not translate to the kind of learning
environments people encounter in their everyday life.

The work presented here extends the approach by [2] by developing a scalable method for computing brain points that
can be applied to boost self-directed learning in the real world. Our goal is to eventually evaluate the developed method
within the English learning app “Dawn of Civilisations” (DoC) by the non-profit organisation Solve Education. DoC
specifically designed to address the needs of disadvantaged youth [7]. Users take on the role of a a city’s mayor and play
different minigames conveying different language lessons in order to gain resources to develop the city. Those resources
are the in-game rewards, which have been purely performance-dependent so far. Here, we present a formal model of the
choice between different learning activities and its application to the learning app. We describe how we compute brain
points in a scalable manner and present the results from an online learning paradigm used to evaluate the method prior
to its release in the learning app.

2 A scalable method for computing learning incentives
Choosing between educational activities can be modeled as a MDP For the purpose of developing a scalable prin-
cipled method for supporting self-directed learning in digital learning environment, we model a learner’s interaction
with such an environment as a Markov Decision Process (MDP). The digital learning environment itself is defined by the
following parameters:

• The number of skills to be trained, denoted Ns
• The number of activities a learner can choose between, denoted Na
• An estimate of the effort required to complete each learning activity, denoted ra

• A way to quantify a learner’s competence at each skill, such that the set of competence values for the ith skill is
defined as Ci = {c1, c2, ..., cNci}

• A learning goal (or sequence of learning goals) defining a goal competence value cgs ∈ Cs for each skill which
has to be reached by the learner in order to consider the learning goal completed: g = (cg1 , cg2 , ... , cgNS ). Goal
completion is therefore defined as:

d(c, g) =

{
1, if ∀i ∈ {1..Ns} : ci ≥ cgi
0, otherwise

(1)

Using these parameters allows us to define the MDP in the following way:

• The action space of the MDP comprises one action for each learning activity the student could choose: A =
{a1, a2, ..., aNa}

• The state s encompasses the current competence values cs ∈ Cs of each skill. Additionally, system-specific
information β such as task availability or delay periods is needed to estimate the transition probability P (s, a, s′).

• The reward function R(s, a, s′) incorporates the estimation of the required effort ra to carry out the chosen learn-
ing activity and a positive reward rg for reaching the learning goal:

R(s, a, s′) =

{
rg − ra, if d(c′, g) = 1 ∧ d(c, g) = 0

−ra, otherwise
(2)
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Figure 1: The spaced repetition schedule

Applying the model to an educational game Our use case, the
English-learning app “Dawn of Civilisations” (DoC) defines 6
skills to be trained: grammar, vocabulary, writing, reading, lis-
tening, and speaking (Ns = 6). Each skill at each of the 16 com-
petence levels ci is trained by a set of questions conveyed by 16
different minigames a learner can choose between (Na = 16). Each
minigame can train more than one skill depending on its content.
As minigames are played, those questions go trough a spaced repetition schedule (see Figure 1). Questions move up a
level when answered correctly and down a level when answered incorrectly. The delay between repetitions is longer
for questions with higher levels, accounting for the assumption that the number of successful recalls flattens the forget-
ting curve [8]. The skill level of individual questions allows us to quantify a learner’s competence at the trained skills.
Specifically, a goal competence level cgi is considered reached by a learner once 80% of the corresponding questions have
reached the highest level of the repetition schedule. Those rules also impact the transition probability P (s, a, s′), as it
determines which questions will be presented by the chosen minigame and restricts possible state transitions. Conse-
quently, the state s can be defined as the distribution of the questions across the different level- and delay categories.
Knowing that distribution allows to both derive the current competence values and possible next states and therefore
satisfies the conditions of the state definition laid out above. The probability of reaching a specific next state depends on
how likely a learner is to solve the questions presented by the minigame correctly. Those probabilities were estimated
from user data (for more details see [9]). The effort required to play the minigames ra was parameterised as the time re-
quired to complete it, which is also estimated from the user data. Having defined this formal model of choosing between
learning activities allows to apply the framework of optimal brain points [2].
Scalably computing learning incentives The optimal gamification method for decision support developed by Lieder
et al. [3] computes incentives by adding a shaping function F (s, a, s′) to the MDP’s reward function R(s, a, s′). The
shaping function expresses the difference in value between two states of the MDP (Eq. 3).

F (s, a, s′) = γϕ(s′)− ϕ(s) (3)
The potential function ϕ(s) estimates the value of being in state s. The optimal choice for ϕ(s) is therefore the optimal
value function V ∗(s) [10]. Consequently, we define optimal brain points as

OBP(s, a) =
∑

s′

P (s′|s, a) · [R(s′, a, s) + γV ∗(s′)− V ∗(s)] (4)

Because computing the optimal value function is not tractable for large state-action spaces as that of the learning app,
we have to define a different potential function in order to develop a scalable method for computing brain points. The
optimal brain points serve as the benchmark against which we evaluate the success of the approximation. The potential
function in Eq. 5 captures the progress towards a learning goal by looking at the ratio between the current competence
value ci and the goal competence value cgi for each skill. An overall measure of progress is obtained by summing over
all skills.

ϕABP(s) =

Ns∑

i=1

[
(cgi − 1) +

ci
cgi

]
(5)

For calculating the approximate brain points (Eq. 6), we then maximize for the potential progress to be made by taking an
action. That ensures that the action with the greatest possibility for progress will be incentivised most strongly, regardless
of its perceived difficulty. The brain points thereby nudge the user away from games that only involve skills they have
already mastered.

ABP(s, a) =
∑

s′

P (s′|s, a)R(s, a, s′) +
(
max
s′

ϕABP (s
′)− ϕABP (s)

)
(6)

Applied to the model of the learning app DoC and its definition of ci, the potential function (ϕDoC) sums the current
levels l(q) of the set of questionsQcgi−1 needed to complete to reach the goal competence value cgi and dividing it by the
sum of maximal levels m(q) for the same set, that is

ϕDoC(s) =

Ns∑

i=1

[
(cgi − 1) +

∑
q∈Qcgi−1

l(q)
∑
q∈Qcgi−1

m(q)

]
. (7)

As the approximate brain points only need to look one step ahead to estimate which action can lead to maximal progress,
they can be computed regardless of the size of the state-action space and therefore scale to the level of complexity found in
real-world learning games such as DoC. To test their effectiveness against the benchmark provided by the optimal brain
points, we modeled a subset of DoC small enough to calculate the optimal value function. We then incentivized simulated
agents which greedily chose the action yielding the largest immediate reward with either optimal or approximate brain
points. We found that both kinds of brain points significantly improved the agent’s performance in comparison to an
agent choosing greedily based on the unchanged reward function and an agent choosing randomly. Approximate brain
points led to equivalent increase in performance as optimal brain points and therefore commenced the next evaluation
step with human learners [9].
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3 Testing the method in an online experiment

Figure 2: Choice screens
with(out) brain points

To test the developed method in a controlled manner before the eventual field experiment
within the actual learning app, we created an artificial learning task mimicking the dig-
ital learning environment of DoC. As learning material, a paired associative recognition
paradigm was chosen. That means that participants were tasked to memorize associations
between word pairs and recognize whether two words presented to them were associated
or not. Non-words drawn from a database [11] were used to emulate words from an artifi-
cial language unknown to participants. Participants were offered three learning activities
to choose from (Na = 3). To that end, we created three distinct sets of word pairs with vary-
ing difficulty induced by varying levels of inter-word similarity. The successful manipula-
tion of difficulty was confirmed in pre-tests, from which we also estimated the probability
of answering correctly needed to construct P (s, a, s′) (for details, see [9]). Mastering each
set was defined as a skill (Ns = 3). Each word pair got assigned levels according to the
repetition schedule (Figure 1). As all three activities took an equal amount of time to com-
plete, ra = 1 ∀a. In the experiments, participants were tasked to repeatedly choose which
learning activity to engage in (see Figure 2). All participants were given a score based on
their performance; this score mimicked the in-game reward structure of DoC.
Experimental Design The experiment used a between-subjects design with five condi-
tions. In all conditions, participants saw a score based on the number of questions they
had answered correctly and knew that their bonus payment depended on that score. In the
control condition, participants chose between learning activities without any further in-

centives shown to them (see the top panel of Figure 2). In the second condition (OBP), participants were shown rounded
optimal brain points (Eq. 4) when choosing between learning activities. In the third condition (ABP), participants were
shown rounded approximate brain points (Eq. 6) when choosing between learning activities. There were two additional
conditions, in which participants were not able to choose between learning tasks, but the choice associated with the
highest number of optimal or approximate brain points was imposed on them. These conditions were included to dis-
entangle the effects of the incentives on choice behaviour from the effect of optimal choices on learning progress. In all
experimental conditions, participants were informed that the brain points convey information on how much each game
is expected to help their learning progress. They were also made aware that the brain points did not count towards their
score nor the monetary bonus they could earn.
Hypotheses Based on previous findings regarding the beneficial effects of optimal brain points [2], we hypothesized
that participants in the OBP and ABP conditions would choose learning activities less short-sightedly, meaning that
they choose more challenging games that they can learn from rather than exploit their knowledge to obtain a high score
in a game they have already mastered. Specifically, they were expected to choose the game they scored the highest
in so far less often than participants in the control condition, especially after having mastered the corresponding skill.
Consequently, we expected participants supported by either kind of brain points (OBP or ABP) to learn more word pairs,
which was defined as them having reached the highest level of the repetition schedule (see Figure 1). Furthermore they
were expected to achieve higher overall sums of levels, representing a more continuous measure of learning progress.
Lastly, based on our simulation results, we expected the approximated brain points (ABP) to have equivalent effects to
the optimal brain points (OBP).
Participants 300 participants (57.5% female; mean age = 24.9 yrs, SD = 6.16 yrs), all older than 18 years and fluent
in English, were recruited via Prolific [12]. All participants provided written informed consent and received a base
compensation of 1.70 £ for the 16 minute experiment. Additionally, they were awarded a bonus payment based on their
performance, with the average bonus set to be 0.40 £. 36 participants were excluded due to having failed two or more
attention checks. New participants were recruited to replace them. This experiment was covered by the ethics approval
from the IEC of the University of Tübingen under IRB protocol number 667/2018BO2.
Procedure Each of the experiment’s 40 mini-blocks consisted of one choice trial (see Figure 2), four learning trials and
a message informing participants of their score. In each choice trial, participants clicked on the button corresponding to
the game they wanted to play (in the fourth and fifth condition, only one button was enabled). The assignment of the
word pair sets to Game A, B and C was randomized. /In the learning trials, participants are first presented with the
word pair and a reaction prompt and had 3.5 seconds to respond responses. Then, the appropriate feedback was shown
for 2 seconds. After the 4 learning trials, participants were informed of the score they achieved, which equates to the
number of correct answers given.
Results The type of incentives influenced how participants chose between games after having mastered at least one skill
(H = 7.62, p = 0.022, η2 = 0.031), see the up-most tile of Figure 3. As predicted, we found that participants in the control
condition continued to choose the game they performed best in so far even after having mastered its contents at high
rates (median = 75%, Interquartile Range (IQR) = 27%). Those rates were reduced strongly for participants incentivized
with OBP (median = 9.5%, IQR = 14.4%, U = 39, p = 0.030*, η2 = 0.709) as well as for participants incentivized with ABP
(median = 4.7%, IQR = 22.2%, U = 18, p = 0.035*, η2 = 0.725).

*Corrected p-value: The false discovery rate of the pairwise comparisons was controlled with the Benjamini-Hochberg procedure.

3

RLDM 2022 Camera Ready Papers 488

488



Figure 3: Choice ratios, number of
learned word pairs and summed
levels per condition

The different incentives also effected both learning outcome measures, namely the
number of learned word pairs (H = 8.96, p = 0.011, η2 = 0.039) and the progress
measured in summed levels (H = 8.456, p = 0.015, η2 = 0.036). Participants in the
OBP condition learned more word pairs (median = 9, IQR = 5) than those without
choice incentives (median = 7, IQR = 5, U = 1321, p = 0.006*, η2 = 0.075), as can be
seen in the middle tile of Figure 3. OBP also led to higher sums of levels (median
= 57, IQR = 9) in comparison to the control condition (median = 54, IQR = 9.25, U
= 1393.5, p = 0.020*, η2 = 0.058), as depicted in the lower-most tile of Figure 3 An
equivalent effect is also found to be elicited by ABP (median = 56, IQR = 10, U =
1503.0, p = 0.046*, η2 = 0.037). We found that ABP were as effective (102.25%) as
OBP in reducing exploiting choice behaviour. The effects on the learning progress
measures exhibited larger differences, with ABP having 26% of the effect of OBP
on the number of learned words and 64% of the effect on overall achieved word
levels. A complete analysis of all dependent variables and conditions can be found
in [9].

4 Discussion and Conclusion
Based on the presented results, we can conclude that our scalable computational
approach to calculating incentives for self-directed learning can benefit learners
choosing between different learning tasks. Specifically, the incentives lead to an
improved choice behavior, meaning that learners were less inclined to exploit al-
ready mastered skills for gaining higher scores and more motivated to confront
themselves with novel learning material. Consequently, the incentives led learners
to make more learning progress on the material overall. The comparable effects of
optimal and approximated choice incentives on the choice behaviour show the po-
tential of the approximated points as a scalable alternative to optimal brain points.
This is crucial for the translation of the approach from a controlled experimen-
tal task to the complexity of real-world learning environments. We observed that
the approximate incentives did not increase the number of learned words within
the experiment. This is most likely due to the fact that only a minority of partic-
ipants mastered more than one skill whereas the approximated incentives mini-
mize the number of games needed to complete all three. This finding reflects that
the approximate incentives do not prioritize reaching the highest level of the most
advanced skill over improving other skills. In the context of the artificial learning
task, the approximated brain points did not reach the effectiveness of optimal brain
points regarding the learning progress. Nevertheless, they did impact the learning progress positively in comparison to
no incentives and with that justify their further evaluation in real learning environments. Future work will therefore
evaluate the approximate brain points within the English learning app DoC. Acquiring data on the interaction of real
users with an educational environment equipped with progress-based choice incentives will be immensely valuable in
the pursuit to develop a general approach to incentivizing self-directed learning that could potentially help people make
better use of the vast educational resources that are available to them.
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Abstract

Decision-making under uncertainty (DMU), i.e., taking actions with uncertain outcomes using (potentially imperfect) ob-
servations, is present in many important problems. An open challenge is DMU in non-stationary environments, where
the dynamics of the environment can change over time. Reinforcement learning (RL), a popular approach for DMU prob-
lems, learns a policy by interacting with a model of the environment offline. Unfortunately, if the environment changes
the policy can become stale and take sub-optimal actions, and relearning the policy for the updated environment takes
time and computational effort. An alternative is online planning approaches such as Monte Carlo Tree Search (MCTS),
which perform their computation at decision time. Given the current environment, MCTS plans using high-fidelity
models to determine promising action trajectories. These models can be updated as soon as environmental changes
are detected to immediately incorporate them into decision making. However, MCTS’s convergence can be slow for
domains with large state-action spaces. In this paper, we present a novel hybrid decision-making approach that com-
bines the strengths of RL and planning while mitigating their weaknesses. Our approach, called Policy Augmented MCTS
(PA-MCTS), integrates a policy’s action-value estimates into MCTS, using the estimates to ”seed” the action trajectories
favored by the search. We hypothesize that by guiding the search with a policy, PA-MCTS will converge more quickly
than standard MCTS while making better decisions than the policy can make on its own when faced with nonstationary
environments. We test our hypothesis by comparing PA-MCTS with pure MCTS and an RL agent applied to the classical
CartPole environment. We find that PA-MCTS can achieve higher cumulative rewards than the policy in isolation under
several environmental shifts while converging in significantly fewer iterations than pure MCTS.

Keywords: Reinforcement Learning, Non-stationary Environment, Monte
Carlo Tree Search
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1 Introduction
Decision-making under uncertainty (DMU), i.e., taking actions with uncertain outcomes using (potentially imperfect)
observations, is present in many important problems such as autonomous driving, emergency response, and medical
diagnosis [3]. An open challenge is DMU in non-stationary environments, where the dynamics of the environment can
change over time. A decision agent must adapt to these changes or take sub-optimal actions. To illustrate, consider
emergency response management (ERM), a domain we have significant experience with [5]. ERM deals with optimizing
the allocation and dispatch of mobile resources such as ambulances in the face of uncertain incident demand to minimize
response times. The state-action space for an ERM setting can be very large; for example, in a city with 20 ambulances to
allocate between 30 potential waiting locations, there are Permutations(30, 20) = 30!

10! = 7.31 × 1025 possible assignments
at each decision epoch. This complexity alone makes ERM a difficult problem, and non-stationarity compounds the
challenge. The environments in which ERM systems operate shift over long time scales: road networks, congestion
patterns, and demographics all change over time [5]. Sudden events such as road closures, inclement weather, and
equipment failure can also unpredictably impact the environment. An effective ERM decision agent must adapt to such
changes with minimal effects on service quality.

There are two common DMU approaches: reinforcement learning (RL) and online planning. In RL approaches, an agent
learns a policy π, a mapping from states to actions, through interacting with the environment. Often, learning takes place
offline using environmental models, and once a policy is learned, it can be invoked nearly instantaneously at decision
time. Deep RL methods have achieved state-of-the-art performance in many applications [9, 3]. However, when faced
with non-stationary environments, a policy can become stale and make suboptimal decisions. Moreover, retraining the
policy on the new environment takes time and considerable computational effort, particularly in problems with complex
state-action spaces such as ERM. While RL methods specifically designed to operate in non-stationary environments
have been explored [6, 2], there is a delay between when a change is detected and when the RL agent converges to the
updated policy.

The alternative approach is to perform online planning using algorithms such as Monte Carlo Tree Search (MCTS). Given
the current environment, these approaches perform their computation at decision time by planning using high-fidelity
models to determine promising action trajectories. These models can be updated as soon as environmental changes
are detected and then such changes can be immediately incorporated in decision-making. MCTS has been proven to
converge to optimal actions given enough computation time [4], but convergence can be slow for domains with large
state-action spaces. The slow convergence is a particular issue for problem settings with tight constraints on the time
allowed for decision-making, e.g., in ERM, when an incident occurs, any time used for decision-making increases the
time until a responder is dispatched. In prior work, we have applied several approaches to scale MCTS to practical ERM
problems, including decentralized [7] and hierarchical planning [8], but these approaches make assumptions about the
environment to prune the state-action space that can lead to sub-optimal decisions.

Both RL and MCTS have weaknesses when applied to complex DMU problems in non-stationary environments. In
this paper, we present a novel hybrid decision-making approach that combines the strengths of RL and planning while
mitigating some of these weaknesses. The intuition behind our approach is that if the environment has not changed too
much between when a policy was learned and when a decision needs to be made, the policy can still provide helpful
information. Our approach, called Policy Augmented MCTS (PA-MCTS), integrates a policy’s action-value estimates into
MCTS, using the estimates to ”seed” the action trajectories favored by the search. The impact of the policy can be tuned
based on how similar the environment at decision time is to the one used during training. We hypothesize that by guiding
the search with a policy, PA-MCTS will converge more quickly than standard MCTS while making better decisions than
the policy can make on its own. The primary advantage of this approach compared to pure RL approaches for non-
stationary environments is that it does not require any relearning—it can be applied as soon as changes are detected.

In this paper, we test our hypothesis by applying PA-MCTS to the OpenAI Gym Cartpole-v1 environment [1], a version of
the classic inverted pendulum problem. We first learn a policy using RL on the standard environment and then perform
several experiments in which we vary parameters affecting environmental dynamics, such as the force of gravity and the
cart’s mass. Finally, we compare the performance of pure MCTS, the RL policy in isolation, and PA-MCTS. Our results
show that PA-MCTS can achieve higher cumulative rewards than the policy in isolation under several environmental
shifts while converging in significantly fewer iterations than pure MCTS. While this exploratory paper shows the promise
of PA-MCTS, there are still open questions to consider: how can we determine the influence the policy should have at a
decision time based on the current environment? Are there specific types of environmental shifts where this approach
performs poorly? Are there bounds on how much the environment can change while still benefiting from PA-MCTS? In
future work, we will explore these questions and apply the approach to more complex environments such as ERM.

2 Approach
We consider a Markov Decision Process (MDP) which is represented by the tuple (S,A, P (s, a), R(s, a)) where S is a
finite state space, A is an action-space, P (s, a) is a state transition function, and R(s, a) is a reward function defining the
instantaneous reward for taking action a in state s. We consider non-stationary environments, meaning that P (s, a) and
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Figure 1: PA-MCTS results when applied to the default CartPole environment. Columns represent values for α. The individual
plots’ x-axis is the number of MCTS iterations per decision epoch. The y-axis is the cumulative reward. The dots represent the mean
cumulative reward over 50 samples, while the vertical lines are the standard deviation.

R(s, a) can change over time. Our agent’s goal is to choose the sequence of actions that maximizes the cumulative reward
G (referred to as the return) received while interacting with the environment. We assume that a policy π is learned offline
under initial environmental conditions (defined by a transition and reward function). The policy can be used to compute
the expected discounted reward of taking an action a in a state s and then following the policy (denoted by Q(s, a)).

Our approach is based on Monte Carlo Tree Search (MCTS), an iterative algorithm that builds a search tree online in an
incremental and asymmetric manner. Each MCTS iteration consists of four stages: (1) selection, (2) expansion, (3) rollout,
and (4) back-propagation. The stage relevant to our work is selection, in which the next node to expand is determined.
Starting at the root node, a tree policy is recursively applied to descend through the tree to pick the most promising child,
continuing until it reaches a non-terminal leaf node to expand. A popular tree policy is the Upper Confidence Bounds
for Trees (UCT) algorithm [4], which selects the next node according to:

argmax
j∈Children(p)

{Gj + c
√

ln(np)/nj} (1)

where p is the parent node, Gj is the average return of rollout simulations including child j, np and nj are the number
of times p and j have been visited respectively, and c is a hyperparameter controlling the trade-off between exploitation
and exploration.

Our contribution is a novel version of UCT that is modified to incorporate the policy’s action-value estimates Q(s, a)
when estimating the value of a node, which we call Policy Augmented UCT (PA-UCT). When PA-UCT is used as the tree
policy for MCTS, we call the resulting algorithm Policy Augmented MCTS (PA-MCTS). PA-UCT selects nodes to explore
using the following policy

argmax
j∈Children(p)

αQ(sp, ap,j) + (1− α)Gj + c

√
ln(np)
nj

(2)

where sp is the state at the parent node p, ap,j is the action which transitions state sp to child j′s state when taken, and α
is a weight hyperparameter that controls the trade-off between the policy and rollout returns: if α = 1, PA-UCT reduces
to greedy action selection based on the learned policy, whereas if α = 0, it reduces to standard UCT. If α ∈ (0, 1), then
both estimates are considered for action selection.

MCTS is proven to converge to the optimal action given infinite iterations [4]. As the tree search produces improved
estimates with increasing iterations given the updated environmental dynamics, we can decrease the influence of the
policy on PA-UCT. Therefore, an alternative version of PA-UCT, PA-UCT with α-decay, uses the following selection
policy on iteration i:

argmax
j∈Children(p)

α(
1

1 + k · i )Q(sp, ap,j) + (1− α( 1

1 + k · i ))Gj + c

√
ln(np)
nj

(3)

where k is a hyperparameter that controls the rate of decay.

3 Experiments
To evaluate the efficacy of PA-MCTS, we first learn a policy π for the OpenAI Gym cartpole-v1 environment [1], using a
double deep Q RL algorithm [10]. Environment parameters are set to default values, except the maximum length of each
episode which is increased from 500 to 2500 time steps, in order to evaluate the performance of PA-MCTS1.

1The relevant default parameters are that gravity g = 9.8 and the cart’s mass m = 1.0. The standard cartpole reward function
of returning R(s, a) = 1.0 for each time step before reaching a terminal state was used. The double Q-learning agent’s learning rate
= 0.001, and a Boltzmann control policy was used. The agent learned for 300000 steps
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Figure 2: PA-MCTS results with gravity modified from its default value of 9.8 m/s2. Rows represent different gravity values. Columns
represent values for α. The individual plots’ x-axis is the number of MCTS iterations per decision epoch. The y-axis is the cumulative
reward. The dots represent the mean cumulative reward over 50 samples, while the vertical lines are the standard deviation.
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Figure 3: PA-MCTS results with the cart’s mass modified from its default value of 1.0 kg. Rows represent different cart masses.
Columns represent values for α. The individual plots’ x-axis is the number of MCTS iterations per decision epoch. The y-axis is
the cumulative reward. The dots represent the mean cumulative reward over 50 samples, while the vertical lines are the standard
deviation.

We then perform experiments comparing π (α = 1.0) and MCTS (α = 0.0) 2 against PA-MCTS3 with several values for α
in the default environment used to learn π. We use the following MCTS iteration budgets to evaluate the convergence of
each approach: {50, 100, 200, 300, 400, 500}. The results are shown in figure 1. Our first observation is that the policy π
(α = 1.0) achieves the best possible return of 2500, as expected. We also observe that PA-MCTS with α ∈ {0.25, 0.5, 0.75}
converges in far fewer iterations than standard MCTS (i.e. with α = 0.0), with α = 0.75 converging to the optimal return
at 300 iterations.

The second set of experiments introduce non-stationarity to the environment by modifying two environmental parame-
ters: we change the gravitational constant g from the default value of 9.8 m/s2 to 30.0 m/s2 and 50.0 m/s2, and change
the cart’s mass m from the default of 1.0 kg to 10.0 kg and 25.0 kg. The results are shown in figures 2 and 3. Our first
observation is that the policy’s performance in isolation degrades significantly: with g = 30 m/s2 and α = 1.0, the mean
return does not reach the optimal value, while for g = 50.0 m/s2 and m ∈ {10.0 kg, 25.0 kg} the policy obtains returns
close to 0. We also observe that PA-MCTS again converges in significantly fewer iterations than standard MCTS in most
cases, notably achieving the optimal return within 50 iterations for g ∈ {30.0 m/s2, 50.0 m/s2} and α = 0.75 in figure 2.

2Recall that when α = 1.0, PA-UCT reduces to greedy action selection based on the learned policy, and when α = 0.0, it reduces to
standard UCT.

3We use the following PA-MCTS hyperparameters in all experiments: the exploration-exploitation tradeoff parameter c = 50, the
planning horizon is 500 time steps, the discount factor γ = 0.999, and the decay rate k = 0.0

3

RLDM 2022 Camera Ready Papers 493

493



50 100 200 300 400 500
num_iterations

500

1000

1500
sc

or
e

Standard MCTS 
 alpha = 0.0

50 100 200 300 400 500
num_iterations

PA-MCTS 
 alpha = 0.25

50 100 200 300 400 500
num_iterations

PA-MCTS 
 alpha = 0.5

50 100 200 300 400 500
num_iterations

PA-MCTS 
 alpha = 0.75

50 100 200 300 400 500
num_iterations

Policy  
 alpha = 1.0

Figure 4: PA-MCTS results with a modified reward function which incentivizes staying near the center of the track. Columns represent
values for α. The individual plots’ x-axis is the number of MCTS iterations per decision epoch. The y-axis is the cumulative reward.
The dots represent the mean cumulative reward over 50 samples, while the vertical lines are the standard deviation.

The exception is m = 25.0 kg in figure 3, where PA-MCTS does not significantly improve upon standard MCTS with any
tested α. There are several possible explanations for this: we may not have tested the optimal α value, the environment
may have shifted too much for the policy to be useful, or it may be that balancing the pole with a cart this massive is too
challenging given the default action-space. More study is needed to determine the amount of environmental shift that
PA-MCTS can handle without retraining the policy. Finally, we evaluate PA-MCTS with a modified reward function. In
the standard cartpole environment, the agent receives a reward of 1 for each time-step before the episode is terminated.
We modify the reward function to return 1− (|xp|/Xt), where xp is the cart’s x coordinate and Xt is the track’s boundary.
In the cartpole environment, the center of the track is at x = 0 and the boundaries are at x = −Xt and x = Xt. Therefore,
this new reward function provides higher rewards the closer the cart is to the center of the track. The results with this
reward function are shown in figure 4. We again observe that PA-MCTS obtains higher returns than the policy while
converging in fewer iterations than standard MCTS.

4 Conclusion
We present a novel hybrid decision-making approach that combines the strengths of reinforcement learning and planning
for non-stationary environments called Policy Augmented MCTS (PA-MCTS). Using the classical cartpole environment, we
show that PA-MCTS can achieve higher cumulative rewards than an RL agent in isolation under environmental shifts
while converging in significantly fewer iterations than pure MCTS. In future work, we will apply PA-MCTS to more
complex problems, further explore the effect of hyperparameters such as the policy’s influence weight α and the decay
rate k, and study how we can use observations of the current environment to determine α at decision time.
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Abstract

Why do some beliefs and action policies fail to update despite abundant contrary evidence, re-appearing long after they
have stopped being adaptive? The failure to extinguish outdated beliefs, although inconsistent with many simple mod-
els of learning, is a widely observed empirical phenomenon proposed to arise from maladaptive inference of hidden
structure - for instance, individuals assigning contrary evidence to new hidden causes, rather than updating previously
learned associations. What parameters of the inference process might make agents susceptible to forming such maladap-
tive structures? Here, using simulations of latent cause inference during Pavlovian and instrumental learning tasks, we
show that priors about randomness and change influence resistance to updating as well as learning dynamics. We show
that prior beliefs that the world is highly deterministic or controllable yield fast learning of new associations at the cost of
making old ones more resistant, while beliefs that the world is stochastic or uncontrollable yield slow but robust updat-
ing of old associations. Additionally, prior beliefs that latent causes persist with a certain timescale yield fast adaptation
to contingency shifts occurring at that timescale, but also increase the possibility that outdated beliefs or action policies
will resurface at a similar timescale. These results link observable features of update-resistant behavior in Pavlovian and
instrumental tasks to inductive biases about the stochasticity, volatility and controllability of the world. Understanding
the factors underlying update-resistance could yield insight into recurring conditions such as spontaneous recovery of
fear in anxiety and relapse in addiction.

Keywords: Latent cause inference, belief updating, inductive biases, Anxiety,
Addiction
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1 Introduction
A central feature of learning theories is their ability to update beliefs, values and action policies in light of new evidence
so that they are more accurate or adaptive. This ability is also the basis of paradigms such as extinction learning and
exposure therapy, which assume that exposure to contrary evidence should be sufficient to correct outdated beliefs.
However, it is a well-known empirical phenomenon that contrary evidence alone is not sufficient to properly update
beliefs and such paradigms often fail to yield their desired results, with outdated beliefs or action policies continuing
to resurface long after they are no longer adaptive (Dunsmoor et al., 2015). What makes some beliefs or action policies
resistant to being updated?

One mechanism that has been proposed to explain such updating failures, is maladaptive inference of hidden-cause
structure. Gershman et al., 2010 proposed that if agents attributed surprising or contrary evidence to new hidden (latent)
causes, this would prevent them from updating previously existing associations (‘old’ latent causes), and those associ-
ations would be more likely to resurface in the future. For instance, after learning about a cue that is associated with a
punishment, the lack of that punishment may be surprising. If the new state of affairs is attributed to a new ”safe” latent
cause, this will prevent the update of the old ”dangerous” latent cause, therefore protecting it from extinguishing due to
prediction-error driven learning (Figure 1a). Indeed, individual differences in inferred causal structure have been shown
to correlate with differences in the ability to extinguish fearful associations (Gershman & Hartley, 2015; Norbury et al.,
2020). What parameters of the inference process might make an agent more or less susceptible to learning such hidden
structures, and consequently, to update-resistance?

Here, we explore the factors shaping latent-cause inference and update-resistance in Pavlovian (Figure 1a) and instru-
mental (Figure 1b) tasks. We demonstrate that the extent to which beliefs or action policies are update-resistant is shaped
by two factors. First, priors about randomness (i.e. the stochasticity or controllability of observations) can influence the
speed of learning and the extent to which surprising evidence updates old associations. Second, priors about change (i.e.
the persistence or volatility of latent causes) can influence the speed of adaptation to changing evidence, and the extent
to which old beliefs resurface long afterwards.

Figure 1: Resistance to extinction due to inference of causal structure: a) Extinction-resistant beliefs arising from mal-
adaptive inference in a Pavlovian task. b) Extinction-resistant action policies in an instrumental task. C = latent cause.

2 Model description

We start from a model of associative learning proposed by Gershman et al., 2010, that assumes that rather than directly
learning associations between cues and outcomes (i.e., cue values), individuals infer hidden or ”latent” causes that pro-
duce ”observations” in the form of both cues and outcomes, learning observation probabilities for each latent cause.

The model assumes that new observations are a priori more likely to be generated by latent causes that have already
generated many observations, but new causes may be encountered with a small probability proportional to a ”concen-
tration” parameter ν (upto as many causes as trials). In addition, the model assumes that the currently active cause may
persist into the next trial with a probability η, a parameter that reflects the agent’s estimate of the volatility of latent
causes. This amounts to a prior belief that latent causes are generated by a ”persistent” variant of the Chinese Restaurant
Process similar to Lloyd and Leslie, 2013. The prior probability of encountering latent cause k on trial t is therefore given
by:

p(ct = k|ct−1 = j, c1:t−2) =





η · Nk
t−1+ν if k = j, i.e., the previously active latent cause

(1− η) · Nk
t−1+ν if k ̸= j, i.e., any other old latent cause

(1− η) · ν
t−1+ν if k is a new latent cause

(1)
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We assume that observations on a trial are a collection of binary events generated by latent causes through Bernoulli
processes with independent ”generative” probabilities ϕi,k for each feature fi,t (cue, outcome, etc.) in feature vector Ft
conditioned on each latent cause ct = k. As such, the same set of observations could have been generated by any one
of the known old causes, or an entirely new cause. We use Beta priors with parameters α and β for these generative
probabilities, whose variance reflects the agent’s estimate of stochasticity in observations – when both these parameters
are greater than 1, the prior is ”stochastic” and expects events to occur randomly with probabilities close to α

β , whereas
when they are less than 1, it is ”deterministic” and expects events to occur with probabilities close to 0 or 1, with a
uniform prior corresponding to α = β = 1.

p(Ft|ct = k) =
∏

i

p(fi,t|ct = k) =
∏

i

ϕi,k; p(ϕi,k) = Beta(α, β);α, β





= 1,Uniform prior
< 1,Deterministic prior
> 1, Stochastic prior

(2)

The model performs approximates Bayesian inference using particle filtering (sequential importance resampling of m
particles with importance weights wt), to infer the possible partitioning of trials into causes, based on all of the obser-
vations it has made so far F1:t. Further, it uses this posterior to inform its predictions about future observations (e.g.
predicted outcomes given a cue), as well as to update its estimates of the ”generative” observation probabilities given
each cause.

p(c1:t|F1:t) =
p(F1:t|c1:t)p(c1:t)

p(F1:t)
; p(c1:t = c|F1:t) ≈

m∑

l=1

w
(l)
t δ[c

(l)
1:t, c], w

(l)
t ∝

∏

i

p(fi,t|c(l)1:t,F1:t−1) (3)

We extended this model to incorporate actions (Figure 1b) in a similar way to Lloyd and Leslie, 2013, allowing the latent
cause ct = k to act as a partially observable context and condition the outcome probabilities ϕi0,j,k of different actions
at = j, and using Thompson sampling to select actions. One key difference in our formulation is that we use multiple
particles to represent the posterior over causes on every trial. Thus, rather than sampling a single cause (particle) on
every trial and selecting actions through Thompson sampling on the action-value distribution conditioned on that cause
(Lloyd & Leslie, 2013), we perform Thompson sampling on the marginal action value distribution across causes, to ensure
that our policy converges to the optimal policy in the limit of sufficient exploration, when uncertainty about action values
is negligible but uncertainty about causes may still remain.

at = argmax
j

m∑

l=1

w
(l)
t ϕ̃

(l)
i0,j,k

, ϕ̃
(l)
i0,j,k

∼ p(ϕi0,j,k|c(l)1:t,F1:t) (4)

The variance of Beta priors over the action-and-cause-conditioned outcome probabilities ϕi,j,k controls the outcome en-
tropy, akin to a prior over controllability (Huys & Dayan, 2009). When these parameters are < 1, the prior is more
”controllable” since it expects actions to sometimes lead to high outcome probabilities and other times not.

3 Results

3.1 Beliefs that resist updating

We simulated the model on a classic extinction-learning task (Figure 1a) in which a cue (A) is paired with a threatening
outcome (+) for 20 trials (acquisition), after which it is no longer paired with the punishment for another 20 trials (extinc-
tion), and observed the effect of different parameters on three measures – the inferred posterior probability over causes,
p(Cause); the learnt associations with cue and outcome p(Event | Cause); and the outcome prediction p(Outcome).

We found that the variance of the observation prior over pObs affected all three measures to varying degrees (Figure 2a).
A stochastic prior over observations lead to stable inference of a single cause throughout the extinction learning task,
and as a result, to the complete updating and extinguishing of the threat association (Fig 2a, 1st column, red box). A side
effect of this prior was an overall lower effective learning rate, as evident from the outcome prediction. On the other
hand, a deterministic prior led to an abrupt inference of a second cause during extinction, thus protecting the original
association and forming a new safe association (Fig 2a, last column, green box). This prior also had the effect of speeding
up learning but only during initial acquisition.

The persistence of latent causes (Figure 2b, pStay) had a slightly different effect on learning dynamics. Although higher
values of persistence also led to stronger segmentation into two causes, and protected the old association from updat-
ing, these also led to faster ”change-detection”, i.e., faster adaptation to the change in contingencies from acquisition
to extinction (Figure 2b, gray curves). A side effect of the persistence was that the lower outcome prediction during
extinction was only temporary: querying the model with the same cue after a short gap (Figure 2c, retrieval) revealed
a drastic increase in outcome expectations reminiscent of ”spontaneous recovery” of fear, which decreased soon after
(”habituation”) following further exposure to no outcomes.
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Figure 2: Extinction resistant beliefs: a) Effect of prior on randomness of observations, b) Effect of prior on persistence
of latent causes, c) Spontaneous recovery phenomenon in the model. Shaded boxes: lighter shading = higher probability
across trials or events

3.2 Action policies that resist updating

We next simulated an extension of the model that incorporated actions on a probabilistic reversal-learning task – a three-
armed bandit task whose payoffs abruptly switch midway through the task, with the worst action becoming the best and
vice versa. We measured the effect of prior parameters on the posterior over causes, p(Cause), the learnt contextual action
value, p(Outcome | Action, Cause), the marginal action values across latent causes, p(Outcome | Action), and choices.

The effect of changing the variance of the outcome prior was similar in spirit to the Pavlovian simulations described
above – a more ”uncontrollable” prior (similar to a stochastic prior) that expects a close-to-chance probability of outcomes
from all actions led to inference of a single stable cause, and therefore fully extinguished the initially learnt association by
the end of reversal (Fig 3a, left column, red box). It also led to slower learning of action values, and more ”perseverative”
choices that were slow to reverse. Conversely, a more ”controllable” prior (similar to a deterministic prior) that expects
either very low or very high payoffs from actions, led to rapid inference of a new cause during reversal and therefore
learning of two sets of conflicting action values, almost perfectly protecting the initial associations from updating (Fig
3a, right column, red and green boxes). It also led to much faster learning of action values, and a faster transition from
exploratory to exploiting behavior after reversal.

Different priors on persistence over latent causes had a similar effect on inference, with higher values of persistence
giving rise to better change-detection (up to a point), and a cleaner separation between acquisition and reversal causes,
values and policies (Figure 3b, right column). However, a side effect of high persistence was that some time after reversal,
the agent started inferring spurious switches back to the original cause, yielding spontaneous ”relapse” events that were
briefly evident in the policy (Figure 3c, red circle). These relapses were brief because the lack of outcomes from these
mistaken actions quickly recalibrated the agent’s beliefs, returning it to the correct policy. Such relapses can be seen in
animal behavior on such a task (not shown).

4 Discussion

We showed that resistance to updating is shaped by two parameters that influence latent-cause inference – prior be-
liefs about randomness (stochasticity or controllability of observations) and prior beliefs about change (persistence or
volatility of latent causes). These priors produce a trade-off between the stability of learning and the complexity of
learnt representations, akin to a bias-variance tradeoff (Bear & Cushman, 2020; Dorfman & Gershman, 2019). Stochas-
tic or uncontrollable priors produce simpler representations that are more robust to fluctuations in the evidence, with
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Figure 3: Extinction resistant action policies: a) Effect of prior on controllability of outcomes, b) Effect of prior on
persistence of latent causes, c) Spontaneous relapse phenomenon in the model. Shading: lighter = higher probability.

the downside that they change more slowly. Conversely, deterministic or controllable priors produce more complex
representations that adapt more quickly to changes in the evidence, but run the risk of being over-sensitive to sudden
fluctuations and creating update-resistant beliefs.

These results help relate learning phenomena such as update resistance to high-level inductive biases about the stochas-
ticity, volatility and controllability of the world, similar to past work using Kalman filters with (Gershman et al., 2014) and
without memory of past states (Piray & Daw, 2021) in continuous-domain learning problems. These priors may them-
selves require updates to remain adaptive to changing environments (Huys & Dayan, 2009). Such mappings between
learning phenomena and ”core beliefs” (i.e., priors) may also have clinical implications, helping to improve predictions
about therapeutic outcomes or personalized psychotherapy regimes by using precise models of learning (Niv et al., 2021).
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Abstract 
Decisions have consequences that gradually unfold over time. To make effective decisions, it is therefore 
necessary to learn not only which states of the world are useful to be in (value-based learning) but also whether 
these states will be visited in the future (state-predictive learning). However, in real-world contexts, states are 
complex and vary along numerous feature dimensions. This reduces the likelihood that a given combination 
of features will reoccur, in turn limiting the extent to which past learning can be applied to relevant future 
experiences. This problem is known as the curse of dimensionality. Feature-based learning has been shown to 
mitigate the curse of dimensionality in the domain of pure value-based learning [1]; theoretically, feature-
based learning should improve learning speed, generalizability, and compositionality. The present work 
addresses whether these advantages extend to the realm of predictive learning. We implement state- and 
feature-based successor representation models, and simulate their behavior on a novel sequential learning 
task in which sequences can be learned at either the state or feature level. We found that feature-based 
learning improves the speed, generalizability, and compositionality of predictive learning. Varying the 
amount of training each model received, we additionally observed that these advantages were most 
pronounced with less training. These results support the notion that feature-based learning (1) facilitates 
quick generalization in novel sequential learning problems, and (2) has the potential to mitigate the curse of 
dimensionality in real-world contexts. Continuing work will adapt the described task to probe whether 
humans use feature-based learning to make predictive inferences. 
 
Keywords:  Feature-based Learning, Successor Representation, Human Cognition, Compositionality 
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1 Introduction 

Decisions have consequences that gradually unfold over time. For example, after choosing to drive to work 
instead of taking the subway, you may run into rush-hour traffic, fail to find parking near your workplace, 
arrive to work late, and ultimately get scolded by your boss for your tardiness. To make effective decisions, 
it is therefore necessary to learn not only which states of the world are useful to be in (e.g., at work on time; 
value-based learning) but also whether these states will be visited in the future (state-predictive learning). 
States in real-world contexts are complex and high-dimensional. For example, as you consider which mode 
of transport to take to work, there will be differences in the weather, your mood, how long you slept, and so 
forth. This renders state-predictive learning non-trivial to perform. Due to variance along many numerous 
dimensions, it is unlikely that the exact same combination of features will reoccur. Learning predictions at the 
multidimensional state level therefore limits the extent to which learning can be applied to relevant future 
experiences. This problem is known as the curse of dimensionality. 
In the domain of pure value-based learning, the curse of dimensionality can be mitigated by learning on the 
decomposed features of states (feature-based learning) rather than the states themselves (state-based learning, 
[1, 2, 3]). Theoretically, this improves learning along three dimensions: (1) learning speed, (2) generalizability, 
and (3) compositionality. (1) Learning speed is faster because tasks generally have fewer features than states, 
meaning that features are encountered more frequently. This allows for more opportunities to learn over the 
same number of training iterations. (2) Generalizability is greater because a single feature can be present across 
multiple states. Therefore, anything learned about a given feature in one state can be applied to any novel 
state partially composed of the familiar feature. (3) Compositionality is greater, since decomposed features 
encountered in different contexts may be re-combined into novel configurations with some inferred value. 
An agent can harness the power of compositionality to generate creative, goal-oriented action plans. 
The present work addresses whether the benefits of feature-based learning extend to the realm of predictive 
learning. Using successor representation modeling, we simulate the behavior of state- and feature-predictive 
learners, and compare the speed, generalizability, and compositionality of their learning. 

2 Successor Representation Modeling 

State-predictive learning can be modeled using the successor representation (SR, [4]). SR learns a compressed 
version tasks’ multi-step transition structures. This facilitates inference about distant outcomes without 
performing computationally intensive tree searches through the full state-space (e.g., as with model-based 
reinforcement learning [5]). Since searching through the large decision trees of real-world contexts is likely 
intractable, the computational efficiency of SR makes it a good candidate for human state-predictive learning. 
Work identifying signatures of SR in human behavioral and fMRI data supports this theory [6, 7, 8, 9]. 
SR learns estimated values and state predictions independently through temporal difference learning [10]. 
After a reward 𝑟 is observed, the current state’s estimated value 𝑉! is updated according to the reward 
prediction error, plus the discounted estimated value of the next state 𝑉!!"#: 
 

𝑉! = 𝑉! + 𝛼(𝑟 + 𝛾𝑉!!"# − 𝑉!) 
(1) 

where free parameters 𝛼 and 𝛾 respectively control the learning and discount rates. State predictions are 
represented in the successor matrix 𝑀 ∈ ℝ"×", where rows and columns correspond to current and new states, 
respectively. After a transition is observed, a count 𝑒!!"# is added to the new state’s position in the row vector. 
Since this update incorporates the discounted predictions of the new state, SR gradually learns to predict 
distant visitations. Formally: 
 𝑀! = 𝑀! + 𝛼(𝑒!!"# + 𝛾𝑀!!"# −𝑀!) (2) 

When evaluating given state 𝑠, both the estimated values and visitation expectancies are incorporated: 
 𝑂! = 𝑀!𝑉! (3) 

State values 𝑂! are then turned into choice probabilities using a softmax with inverse temperature 𝛽: 
 

𝑝(𝑎|𝑠, 𝑠$) =
𝑒
%$
𝛽

𝑒
%$
𝛽 + 𝑒

%$%
𝛽

 
(4) 
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2.1  State-based SR 

State-based SR learns and evaluates actions as described. It additionally caches visited states in memory as it 
interacts with the environment. To generalize to a novel state, the model identifies the most similar 
representation in memory, and retrieves the associated 𝑉! and 𝑀!. State-based SR also uses representational 
similarity to guide composition. When tasked with combining decomposed features into some rewarding 
state, the model considers all possible combinations of the provided features, and deterministically builds the 
combination which is most similar to high-value states in memory.  

2.2  Feature-based SR 

Feature-based SR is achieved by simply tweaking the model to learn 𝑉 and 𝑀 separately for each feature 
category 𝑓. In this case, final values 𝐹"# are produced per feature instance 𝑖.  

 
𝐹&' = 𝑀&'𝑉&' 	 (5) 

The state’s final value 𝑂! is the mean of these feature values. To generalize to novel states composed of 
partially familiar features, feature-based SR directly calculates 𝑂! from the familiar feature values 𝐹"#. When 
tasked with combining decomposed features into some rewarding state, the model also directly retrieves 
associated 𝐹"#’s and deterministically builds the state that maximizes these values.	

3  Sequential Learning Task	

We implemented a sequential learning task (Figure 1), in which agents’ goal was to maximize point earnings. 
The task consisted of three phases: training, test, and composition. 
During training, choices were made between pairs of items that represented different states (Figure 1A). Each 
item was composed of three feature instances, sampled from five feature categories (ABCDE). Only three of 
the five categories would be seen in each training half (1st half: ABC; 2nd half: ADE; Figure 1C). After a choice 
was made, a single-step sequence was displayed followed by a reward (r = [-6, 6]). The successor item’s 

Figure 1: Task Design. A. Training and test trials. After an action was made during training, a one-step 
sequence and reward were observed (these were not seen at test). Example stimuli here are from the human 
subjects task. B. Composition trial. Agents selected decomposed features from different categories on each 
trial. C. Feature category sets. Whereas training items were directly sampled from a fixed set in each training 
half (i.e., ABC or ADE), novel items were composed of a mixture of features across halves (e.g., ACE, BDE, 
BCE). D. Sub-sequences associated with each feature category. Start items were composed of feature instances 
2, 3, 4, or 5. Successor items were partially or fully composed of terminal feature instances (1, 6), that are 
associated with a reward value. E. Reward values of terminal feature instances. The reward values for 
terminal feature instances associated with a successor item would be summed to get the item reward value. 

A 

B 

C 

D 

E 
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identity and reward value were determined by sub-sequences 
associated with each feature category (Figure 1DE). Thus, to 
maximize cumulative reward, agents had to predict which 
choices would lead to rewarding successor items.  
Test was similar to training, but agents neither observed the one-
step sequences nor the reward outcomes, preventing further 
learning. On each test trial, choices were between either training 
or novel items (Figure 1C). We hypothesized that feature-based 
learning is more generalizable, and thus expected the feature-
based model to perform better on novel item trials. Trials also 
differed on whether choices were between terminal or start items 
(Figure 1D). In contrast to terminal items, start items were never 
worth points, and only indirectly led to reward outcomes 
through terminal items. Therefore, to make accurate inferences 
on start item trials, agents needed to apply both value and state-
predictive learning. 
Finally, agents completed a composition phase. On each trial, 
they were presented with decomposed feature instances, and had 
to recompose them into a reward-predictive item (Figure 1B). 
These trials also differed on whether training or novel items, and 
start or terminal items could be composed. Since the feature-
based model learns directly on features, we predicted that it 
would be more effective at constructing rewarding items than the 
state-based model. 

4  Results 

We simulated the feature- and state-based learning models on the sequential learning task, and compared the 
speed, generalizability, and compositionality of their learning.  
First, we probed whether feature-based learning is faster by comparing the models’ learning trajectories over 
5000 training trials. We calculated the cumulative mean accuracy (CMA) of each agent's choices, where an 
accurate choice is defined as one that will lead to a more rewarding successor item. In each training half, since 
feature-based learners encountered each of the 18 feature instances more frequently than the state-based 
learners encountered each of the 128 unique items, we hypothesized that feature-based learners would 
achieve higher accuracy earlier in training. The results reflect this hypothesis (Figure 2). Whereas state-based 
learners surpassed a mean CMA of 0.6 on trial 465, feature-based learners surpassed a mean CMA of 0.6 on 

trial 150. However, on the 
final trial, state-based 
learners achieved a higher 
mean CMA (M = 0.70) than 
the feature-based learners 
(M = 0.62). These results 
indicate that while feature-
based learning is faster, 
state-based learning is more 
accurate in the long run. 
There was also a more 
substantial drop in state-
based learners’ accuracy 
entering the second training 
half (where feature 
categories B and C were 
replaced with D and E). This 
indicates they were poorer 
at applying past learning to 

Figure 2: Training Curves. Curves are 
quantified by cumulative mean accuracy, 
and averaged over 1000 simulations of 
5000 trials per model. Errors at 95% 
confidence intervals. The first 2500 trials 
involved features from categories ABC, 
and the remaining trials involved 
features from categories ADE. 

Figure 3: Test and Composition Performance. Errors are 95% confidence 
intervals. A. Proportion of correct choices made during test, by training amount 
and item type. B. Composition-value rank, by training amount and item type. 

A B 
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the new context and learning about the novel items. 
Next, we assessed the models’ abilities to generalize during the test phase with different amounts of training 
(50, 250, 500, 750, or 1000 trials). As predicted, we found that the feature-based model was better at 
generalizing, particularly with fewer training iterations (Figure 3A). With just 50 training iterations, the 
feature-based learners were more accurate on all trial types. However, the magnitude of this difference 
reduced with more learning, supporting the notion that while feature-based learning is faster, state-based 
learning performs better in the long-term. Notably, whereas the state-based learners’ training accuracy came 
to surpass that of feature-based learners, their novel item accuracy did not. This suggests feature-based 
learning particularly facilitated generalization. 
Lastly, we compared the models’ performance at composing reward-predictive items during the composition 
phase. High performance is operationalized as the reward-value rank of the composed item, relative to all 
other possible combinations of features presented on a given trial. We predicted that the feature-based model 
would be able to leverage its feature-level learning to compose rewarding items more precisely, and thus 
achieve higher overall performance. The results support this hypothesis (Figure 3B). Notably, feature-based 
learners achieved higher composition accuracy for novel items across all numbers of training iterations. 

5 Discussion 

Simulating feature- and state-based predictive learning, we found that learning on the features of states rather 
than the states themselves bolsters learning speed, generalizability, and compositionality. These advantages 
were particularly pronounced with less training. Our results have two important implications. 
Firstly, in novel tasks, agents would benefit from performing feature-based learning to achieve some degree 
of accuracy quickly. However, with extended experience, they may benefit from switching to more state-
based mechanisms. Farashahi, Rowe, and colleagues [1] demonstrated similar advantages in the domain of 
pure value-based learning, finding that human subjects gradually switched from feature- to state-based 
learning in a low-dimensional environment. State abstraction also increases the generalizability of predictive 
learning [11].  However, since abstractions must be learned over multiple experiences, feature-based learning 
may be advantageous prior to the formation of stable abstractions. 
Secondly, feature-based learning may help agents learn structural contingencies in real-world environments, 
where the curse of dimensionality renders state-based learning ineffective. For this reason, human beings may 
rely on feature-based learning to make predictive inferences. Continuing work will adapt the sequential 
learning task described here to test this hypothesis. 
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Abstract

In the expeditionary sciences, spatiotemporally varying enviironments — hydrothermal plumes, algal blooms, lava
flows, or animal migrations — are ubiquitous. Mobile robots are uniquely well-suited to study these dynamic, mesoscale
natural environments. We formalize expeditionary science as a sequential decision-making problem, modeled using the lan-
guage of partially-observable Markov decision processes (POMDPs). Solving the expeditionary science POMDP under
real-world constraints requires efficient probabilistic modeling and decision-making in problems with complex dynam-
ics and observational models. Previous work in informative path planning, adaptive sampling, and experimental design
have shown compelling results, largely in static environments, using data-driven models and information-based re-
wards. However, these methodologies do not trivially extend to expeditionary science in spatiotemporal environments:
they generally do not make use of scientific knowledge such as equations of state dynamics, they focus on information
gathering as opposed to scientific task execution, and they make use of decision-making approaches that scale poorly
to large, continuous problems with long planning horizons and real-time operational constraints. In this work, we dis-
cuss these and other challenges related to probabilistic modeling and decision-making in expeditionary science, and
present some of our preliminary work that addresses these gaps. We ground our results in a real expeditionary science
deployment of an autonomous underwater vehicle (AUV) in the deep ocean for hydrothermal vent discovery and char-
acterization. Our concluding thoughts highlight remaining work to be done, and the challenges that merit consideration
by the reinforcement learning and decision-making community.

Keywords: Bayesian optimization, planning under uncertainty, robotics, in-
formative path planning, adaptive sampling
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1 Introduction
Expeditionary science is the act of collecting in situ samples and observations of the natural world for the purposes of
scientific discovery and model development. Transient, dynamic phenomena — hydrothermal plumes, algal blooms,
lava flows — are of interest in many disciplines of observational science. It is often impossible for a single, static sensor
to capture a comprehensive picture of these mesoscale spatiotemporal phenomena due to their large spatial scales and
dynamic temporal nature. Large networks of static sensor nodes could address this sensing challenge, but the transience
and sparsity of the target phenomena necessitates logistically impractical sensor density. Mobile robots are uniquely
well-positioned to tackle this problem via extended deployments carrying heterogeneous sensor payloads that actively
seek and perform targeted surveys of ephemeral environments. However, robots deployed for expeditionary science
today currently execute open-loop, preset trajectories, like “lawnmowers” (back-and-forth grid-based pattern) hand-
designed by human scientists. In dynamic environments, this open-loop execution often results in sparse measurements
of the target phenomena or misses a short-lived target entirely. Given the cost of expeditionary field operations and the
value of the data collected, it is critical to improve the efficiency and efficacy of robots as scientific tools.

Building robotic platforms for expeditionary science requires an autonomy stack that can integrate observations from
heterogeneous sensors into a model of a spatiotemporal system and use this model to plan informative trajectories that
target a specific scientific objective. This kind of autonomy poses many challenges for integrating probabilistic modeling
and decision-making. Previous work in informative path planning (IPP) [1], adaptive sampling/experimental design
[2], and decision-making under uncertainty [3] has tackled aspects of the expeditionary science problem, especially in
static environments using data-driven models and information-based rewards. However, existing methodologies do
not trivially extend to spatiotemporal environments, leaving key challenges such as model and dynamics learning and
decision-making in large-scale environments unaddressed. In this abstract, we discuss these and other key challenges,
and present some preliminary work conducted for hydrothermal plume discovery and mapping in the deep sea.

2 Expeditionary Science as a Decision-Making Problem
In an expeditionary science mission, a robot is tasked with collecting scientifically useful measurements of an un-
known, partially-observable spatiotemporal environment under time, energy, and dynamical constraints. We formu-
late this sequential decision-making problem as a partially observable Markov decision-process (POMDP). Let Π(·) de-
note the space of probability distributions over the argument. A finite horizon POMDP can be represented as tuple:
(S, A, T, R, Z, O, b0, H, γ), where S are the states, A are the actions, and Z are the observations. At planning iteration t,
the agent selects an action a ∈ A and the transition function T : S × A → Π(S) defines the probability of transitioning
between states in the world, given the current state s and control action a. After the state transition, the agent receives
an observation according to the observation function O : S × A → Π(Z), which defines the probability of receiving an
observation, given the current state s and previous control action a. The reward function R : S × A → R serves as a
specification of the task. A POMDP is initialized with belief b0 and plans over horizon H with discount factor γ.

Due to the stochastic, partially observable nature of current and future states, the realized reward in a POMDP is a ran-
dom variable. Optimal planning is defined as finding a policy {π∗

t : Π(S) → A}H−1
t=0 that maximizes expected reward:

E
[ ∑H−1

t=0 γtR
(
St, πt(bt)

)
| b0

]
, where bt is the updated belief at time t, conditioned on the history of actions and observa-

tions. The recursively defined horizon-h optimal value function V ∗
h quantifies, for any belief b, the expected cumulative

reward of following an optimal policy over the remaining planning iterations: V ∗
0 (b) = maxa∈A Es∼b[R(s, a)] and

V ∗
h (b) = max

a∈A
Es∼b[R(s, a)] + γ

∫

z∈Z
P (z | b, a)V ∗

h−1(b
a,z)dz h ∈ [1, H − 1], (1)

where ba,z is the updated belief after taking control action a and receiving observation z, computed via Bayes rule using
the transition T and observation O functions. The optimal policy at horizon h is to act greedily according to a one-
step look ahead of the horizon-h value function. However, Eq. 1 is intractable for large or continuous state, action, or
observation spaces and thus the optimal policy must be approximated. Well-designed algorithmic and heuristic choices
are necessary to develop efficient, practical, and robust planning algorithms for expeditionary sciences.

3 Advances to Expeditionary Science
As a case study we highlight a scientific mission to the Gulf of California in November 2021, in which a research vessel
deployed an autonomous underwater vehicle (AUV) for deep sea discovery and mapping of hydrothermal vent plumes
(see Fig. 1). Characterizing hydrothermalism has implications for global nutrient and energy budgets, but nearly two-
thirds of all hypothesized hydrothermal vents are yet undiscovered [4]. AUVs with point sensors and the ability to
execute trajectories under operational constraints can “sniff” for vents in the water column and use observations to
estimate seafloor vent characteristics, but tidal advection, diffusion, and turbulent mixing all contribute to complicated
spatiotemporal observations. Additionally, accurate vent inference requires the disambiguation of the spatially-small,
chemically-rich buoyant stem from the spatially-vast neutrally-buoyant layer that compose plumes [5]. Here, we present
some of our work tackling this expeditionary robotics problem, and highlight key challenges we found in this context.

1
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Figure 1: In November 2021, AUV Sentry was deployed in the Gulf of California to detect and map hydrothermal plume
structures in the deep ocean. Plumes are composed of a buoyant stem and neutrally-buoyant layer. These plumes are dy-
namic, subject to tidal advection, diffusion, and turbulent mixing. We infer the spatiotemporal structure of plumes from
sparse partial-observations and plan informative trajectories that respect operational constraints of AUV Sentry. Field
data are shown on the right from two onboard science point-sensors. The dORP/dt sensor shows areas of reactive water,
likely indicating buoyant stem detections. The OBS sensor shows areas of high turbidity, which can persist throughout a
plume. Combining these sensor signals, we can infer the plume structure and dynamics.

3.1 Spatiotemporal IPP for the Maximum Seek-and-Sample Problem

We formulated the problem of finding the buoyant stem within the multi-modal non-buoyant plume layer using a robot
as a POMDP and developed PLUMES : Plume Localization under Uncertainty using Maximum-valuE information and
Search [6], an autonomy stack for target-seeking in multi-modal environments. PLUMES utilized a Gaussian Process (GP)
belief to model a single time-varying chemical signal, a progressively-widened Monte Carlo tree search, and a novel task-
driven information-theoretic reward function. In spatiotemporal systems, PLUMES was able to find and track moving
buoyant-stem targets and repeatedly explore an environment as uncertainty grew under stochastic plume dynamics [7].
PLUMES addressed challenges in continuous search for planning and balancing exploration-exploitation behavior under
sparse reward signals, and demonstrated how the sum of algorithmic components can lead to a potent system. However,
PLUMES also revealed the challenges of expeditionary science, particularly the difficulty of simultaneously training and
utilizing a spatiotemporal belief model, and developing computationally tractable real-time nonmyopic planners.

3.2 Abstraction via Task-driven Macro-action Discovery

One key barrier to tractable, real-time nonmyopic planning in PLUMES was the need to search over long planning hori-
zons, chaining together low-level action primitives to explore the environment. The development of abstract, high-level
action representations would enable planners to search over shorter planning horizons, saving compute effort during
real-time planning. Instead of using human-designed abstractions of the robot’s continuous action space, our recent
work learns a set of high-level actions that are useful for a given scientific task directly from a low-level specification of
the POMDP model [8]. The algorithm takes into account the robot’s current uncertainty about the state of the world, the
stochasticity of the underlying environmental dynamics, and the current task to develop a set of high-level actions that
can be used online while providing formal performance guarantees about the resulting “abstract” policies.

3.3 Iterative Mission Structures and Physically-Informed Uncertainty Models

PLUMES used a general, data-driven model of the environment and assumed that the robot’s action space consisted of
flexible, low-level motion primitives. To improve the operational effectiveness of PLUMES at sea, we proposed to: 1)
make use of data-efficient probabilistic models that explicitly use physical equations that govern plume expression in
the water column, and 2) develop planners that directly encode the physical and operational constraints of the AUV.

2
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We developed and tested this new algorithmic expeditionary system during field trials in November 2021. The system
made use of a belief model called PHUMES : PHysically-informed Uncertainty Model of Environment Spatiotemporality,
which sampled uncertain parameters of a simplified model of buoyancy-driven hydrothermalism (e.g., vent tempera-
ture, tidal crossflow) to generate multiple “envelopes” of possible plume-derived waters. These were aggregated into a
probabilistic forecast over the spatiotemporal volume to be sampled by the AUV. A trajectory optimizer with knowledge
of vehicle and ship operational constraints then scaled lawnmower primitives to maximize the number of “in plume”
measurements that were to be collected at the continuum between buoyant stem and neutrally-buoyant layer. PHUMES
addressed open challenges in robotic decision-making related to injection of prior knowledge or scientific inductive bias
for data efficient training in complex domains and scalable planning with expensive belief models.

4 Core Challenges and Opportunities in Expeditionary Robotics
As identified in Sec. 3, there are a number of open challenges in reinforcement learning and decision-making in the
context of expeditionary robotics. Here we present a brief survey of these open challenges and opportunities informed
by years of collaborating with scientists to develop expedition frameworks in diverse application areas.

4.1 Belief Representations

Epistemic and aleatoric uncertainty: Reducing epistemic uncertainty of a spatiotemporal environment requires access
to a model of the underlying dynamical system, or a data-driven technique that can uncover it. Extracting physically-
meaningful quantities from observational data is typically performed post-expedition using computationally expensive
numerical models “tuned” by observations. While this lends itself well to Bayesian inference formulations, it is in-
tractable for practical decision-making. Data-driven techniques for model discovery [9] may be arguably more tractable,
but generally suffer small-data challenges. Developing models that overcome the challenges of efficiently character-
izing spatiotemporal dynamics from streaming, sparse observations would generally improve expeditionary robotics.
Additionally, there is a unique opportunity to enable computation of proxies for aleatoric uncertainty, which are well-
described in spatiotemporal environments with measures of chaotic motion (e.g., Lyapunov exponents) inferred from
data [10]. The implication that aleatoric uncertainty can be estimated has yet to be utilized to, e.g., assess the attainable
resolution of a model or set planning horizons.

Scientific knowledge as inductive bias: The kernel of a GP, the loss function in a neural network, or the activation
functions between layers in a deep network can all be viewed as forms of inductive bias in a learning problem. For data-
driven discovery of spatiotemporal dynamics, improving sample efficiency by leveraging opportunities to inject scientific
knowledge to alleviate the learning burden is an open problem. While canonical numerical models of spatiotemporal
phenomena are too computationally expensive to directly incorporate into e.g., GP kernels, the physical principles that
underlie these models can be more easily summarized. “Physically-informed” data-driven probabilistic representations
have been demonstrated outside of expeditionary robotics [9] and some work within IPP [11] shows rich opportunities
for analyzing and extending these methods for larger environments and longer planning horizons.

Low-dimensional state embeddings: Expressing a spatiotemporal environment completely would require an exceed-
ingly large, high-dimensional representation. Model order reduction (MOR) techniques reduce the dimensionality of
spatiotemporal systems to a set of weights and vectors that sufficiently describe patterns in the dynamics. Uncovering
low-dimensional state embeddings from partially-observed expedition data is a general challenge; uncovering a useful
embedding for a specific decision-making problem is additionally challenging. Access to such an embedding would
reduce the computational burden of representing belief in large environments for planning.

4.2 Decision-Making

Rollout-based planning with expensive belief models: State-of-the-art planners for POMDP problems often make use
of rollout-based planning in tree search frameworks; continuous search variables are handled using strategies such as
progressive widening or scenario sampling [3]. However, these planners require extensive online simulations for each
rollout performed. Forward-simulating the dynamics and observational models for complex, spatiotemporal phenom-
ena can be computationally intensive, which often limits the feasible look-ahead horizon in real-time operations on
computationally-limited robotic platforms. Planners that selectively or adaptively perform expensive rollouts, automati-
cally adjust the planning horizon based on the dynamics of the environmental system, or make use of continuous, offline
planners would enable improved decision-making for expeditionary science.

Information rewards and task-driven exploration: Due to partial observability and stochastic dynamics in spatiotem-
poral contexts, a decision-maker must operate with significant and often growing state uncertainty. However, not all
state uncertainty impacts task performance and uniform information gathering strategies can be inefficient. Understand-
ing the value of information for accomplishing a task is a known challenge for planning under uncertainty and this is
particularly true for expeditionary robotics. Recent works that develop heuristic information rewards [6] or task-driven
value of information metrics [8] begin to build the tools necessary for expeditionary robotic planning.
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Robust planning under model mismatch and uncertainty: Scientific models, whether data-driven or based on physical
principles, are always imperfect representations of a robot’s environment. Model mismatch or uncertainty in key model
parameters leads to discrepancies between the environmental predictions that a robot uses during planning and its real-
time observations. Planning robot trajectories that entirely miss a phenomenon due to overconfidence in an incorrect
model is detrimental to scientific objectives. Planners must develop policies or trajectories that are robust to model
mismatch and uncertainty, or are guaranteed to perform as well as a simple, naive data collection strategy.

Interpretable and operational decision-making: Decision-making algorithms must interface with and are constrained
by a variety of stakeholders, including scientists, robot operators, and engineers. For example, when deploying an AUV
from an oceanographic research vessel, the decision-making algorithm must account for ship scheduling, timing delays,
weather, and multi-vehicle operations. This requires developing flexible planners that can understand and account for
these complex constraints. Additionally, stakeholders are often concerned with robot safety and data quality. Producing
plans that are interpretable for scientific and operational stakeholders is key for building trust and confidence in scientific
autonomy.

5 Final Thoughts
Expeditionary science and robotics motivates a set of interesting reinforcement learning and decision-making problems
that are not well-addressed by current state-of-the-art methods. There is increasing need to enable better in situ method-
ologies for monitoring and characterizing large spatiotemporal environments as accelerated climate change transforms
delicate carbon budgets, ecosystem networks, and weather patterns. Robotic technologies can play a transformative role
in understanding these evolving trends and assessing policy interventions. Novel developments towards the challenges
listed here may have constructive and complementary effects in other application spaces, as many domains, such as ma-
terial discovery and robotic manipulation, have overlapping challenges and opportunities. Our contributions, including
PLUMES [6,7], macro-action discovery [8], the PHUMES model and trajectory optimizer for operational missions, and on-
going work in physically-informed deep kernel learning, represent algorithmic and systems contributions towards more
effective autonomous systems in expeditionary science and begin to address some of the key challenges that we propose.
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Abstract

Auxiliary tasks have been argued to be useful for representation learning in reinforcement learning. Although many
auxiliary tasks have been empirically shown to be effective for accelerating learning on the main task, it is not yet clear
what makes useful auxiliary tasks. Some of the most promising results are on the pixel control, reward prediction, and
the next state prediction auxiliary tasks; however, the empirical results are mixed, showing substantial improvements
in some cases and marginal improvements in others. Careful investigations of how auxiliary tasks help the learning of
the main task is necessary. In this paper, we take a step studying the effect of the target policies on the usefulness of the
auxiliary tasks formulated as general value functions. General value functions consist of three core elements: 1) policy
2) cumulant 3) continuation function. Our focus on the role of the target policy of the auxiliary tasks is motivated by the
fact that the target policy determines the behavior about which the agent wants to make a prediction and the state-action
distribution that the agent is trained on, which further affects the main task learning. Our study provides insights about
questions such as: Does a greedy policy result in bigger improvement gains compared to other policies? Is it best to set
the auxiliary task policy to be the same as the main task policy? Does the choice of the target policy have a substantial
effect on the achieved performance gain or simple strategies for setting the policy, such as using a uniformly random
policy, work as well? Our empirical results suggest that: 1) Auxiliary tasks with the greedy policy tend to be useful. 2)
Most policies, including a uniformly random policy, tend to improve over the baseline. 3) Surprisingly, the main task
policy tends to be less useful compared to other policies.

Keywords: representation learning; auxiliary tasks; general value functions;
reinforcement learning
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1 Introduction

Learning about many aspects of the environment in addition to the main task of maximizing the discounted sum of
rewards has been argued to be beneficial in reinforcement learning [Sutton et al., 2011]. A common view is that these
additional tasks, also known as auxiliary tasks, can improve the data efficiency by shaping the representation [Jaderberg
et al., 2016, Shelhamer et al., 2016, Mirowski et al., 2016]. In environments with sparse reward structures, auxiliary
tasks provide instantaneous targets for shaping the representation in the absence of reward. It has also been argued
that auxiliary tasks can function as regularizers, improving the generalization and avoiding representation overfitting
in RL [Dabney et al., 2020]. Finally, what has been learned about an auxiliary task can be transferred to the main task,
improving the data efficiency.

Many auxiliary tasks have been proposed and shown to accelerate learning on the main task. However, much of the work
on auxiliary tasks have demonstrated their efficacy empirically and in many cases, the empirical results are mixed: in
some cases auxiliary tasks result in substantial performance gain over the baselines whereas in other cases they achieve
marginal improvements or even harm the performance [Jaderberg et al., 2016, Shelhamer et al., 2016]. Recent works
have explored how auxiliary tasks benefit the representation learning in a systematic way [Lyle et al., 2021, Dabney et al.,
2020]. More systematic studies are required to answer the question of what makes useful auxiliary tasks.

In this paper, we take a step toward answer the question of what makes useful auxiliary tasks. We specifically consider
auxiliary tasks formulated as general value functions (GVF) [Sutton et al., 2011]. A core element of GVFs is the target
policy as it both determines the target of prediction and the state-action distribution that the agent gets trained on. We
empirically study the effect of the target policies associated with auxiliary tasks on their usefulness.

2 Background

In this paper, we consider the interaction of an agent with its environment at discrete time steps. At each time step t, the
agent is in a state St ∈ S, performs an action At ∈ A according to a policy π : A×S → [0, 1], receives a reward Rt+1 ∈ R,
and transitions to the next state St+1. We consider the problems of prediction and control.

For the prediction problem, the goal of the agent is to approximate the value function for a given policy π where the
value function is defined by: vπ(s)

.
= Eπ[Gt|St = s] where Gt =

∑∞
k=0 γ

kRt+k+1 is called the return with γ ∈ [0, 1) being
the discount factor. In the control setting, the goal of the agent is to maximize the expected return. In this setting, it is
common to use state-action value functions: qπ(s, a)

.
= Eπ[Gt|St = s,At = a].

To estimate the value function, we use semi-gradient temporal-difference learning [Sutton, 1988]. More specifically, we
use TD(0) to learn a parametric approximation v̂(s;w) by updating a vector of parameters w ∈ Rd as follows:

wt+1 ← wt + αδt∇wv̂(St;w)

where α denotes the step-size parameter and δt denotes the TD error: Rt+1 + γv̂(St+1;wt)− v̂(St;wt). ∇wv̂(St;w) is the
gradient of the value function with respect to the parameters wt.

For the control setting, to estimate the state-action value functions, we use the control variant of TD(0), Q-learning
[Watkins and Dayan, 1992]. The update rule for Q-learning is similar to that of TD(0); however, q̂(St, At,w) is used
instead of v̂(St,w) and the TD error is defined as Rt+1 + γmaxaq̂(St+1, a;wt) − q̂(St,At;wt). For action selection,
Q-learning is commonly integrated with the epsilon greedy policy.

As the function approximator, we use neural networks. We integrate a replay buffer, a target network, and the RMSProp
optimizer with TD(0) and Q-learning as is commonly done to improve performance when using neural networks as the
function approximator [Mnih et al., 2013].

To formulate auxiliary tasks, a common approach is to use general value functions (GVFs). GVFs are value functions
with a generalized notion of target and termination. More specifically, a GVF can be written as the expectation of the
discounted sum of any signal of interest: vπ,γ,c(s)

.
= E[

∑∞
k=0(

∏k
j=1 γ(St+j))c(St+k+1)|St = s,At:∞ π] where π is the

target policy, γ is the continuation function, and c is a signal of interest. General state-action value function qπ,γ,c(s, a)
can be defined similarly with the difference that the expectation is conditioned on At = a as well as St = s.

3 Investigating the effect of the auxiliary task’s policy on its usefulness

As we discussed in Section 1, we study the effect of the target policy of the auxiliary tasks on their usefulness. Our
experimental setup includes two phases: 1) Pre-training on the auxiliary tasks 2) Learning the main task. For the pre-
training phase, a neural network is used as the function approximator for learning the auxiliary tasks. The behavior
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Figure 1: The two phases of pre-training on the auxiliary tasks and learning the main task.

policy is set to the target policy of the auxiliary tasks. In the second phase, the representation learned during the pre-
training phase is kept fixed and fed to another network to learn the main task. The behavior policy in this phase is set
to the policy learned for the main task. See Figure 1. Using this procedure, the representation learned for the auxiliary
tasks in Phase 1 is transferred to be used in Phase 2 when learning the main task.

For the auxiliary tasks, we considered 4 policies: 1) Uniform random 2) Greedy 3) Sticky actions 4) The main task policy.
The sticky actions policy is to follow the previous action with probability 0.9 and to select an action randomly with
probability 0.1. Learning the auxiliary task corresponding to the greedy policy is a control problem whereas learning the
auxiliary tasks corresponding to the other policies are prediction problems.

We experimented with pixel-based and non pixel-based environments. For the non pixel-based environments, we con-
sidered two types of cumulants: 1) The observationOt+1 2) The observation differenceOt+1−Ot. We also used 6 different
values of γ: {0, 0.5, 0.75, 0.8, 0.9, 0.99} to cover a wide range of temporal horizons for the auxiliary tasks. Therefore, for
each policy and each type of cumulant, 6×|O| auxiliary tasks were learned in parallel where |O| denotes the observation
size. To learn the auxiliary tasks in parallel during the pre-training phase, we used a multi-headed network with the
representation learning layer being shared between the auxiliary tasks and each head corresponding to one auxiliary
task. (In the case of control auxiliary tasks, multiple heads are assigned to each auxiliary task, each corresponding to one
state-action value.). In the case of prediction auxiliary tasks, the behavior policy during the pre-training phase was set to
the target policy of the auxiliary tasks; therefore, learning was on-policy. In the case of control auxiliary tasks, 6×|O| tar-
get policies were being learned each maximizing the return corresponding to one cumulant and γ. The behavior policy,
in that case, was round-robin over the 6× |O| target policies, and learning was off-policy.

For the pixel-based environments, to specify the auxiliary tasks, we cropped the 40× 40 observation space into a 36× 36
region and subdivided it into a 6× 6 grid of non-overlapping cells of size 4× 4. We considered two types of cumulants:
1) Sum of the pixels in each cell 2) The absolute difference of the sum of the pixels in each cell from t + 1 to t. We
used one value of γ equal to 0.9. Therefore, for each policy, 36 auxiliary tasks were learned in parallel for the pixel-based
environments. Similar to the non pixel-based environments, for the prediction auxiliary tasks, the behavior policy during
pre-training was set to the target policy of the 36 auxiliary tasks. For the control auxiliary tasks, on the other hand, the
behavior policy was round-robin over the 36 target policies each corresponding to one of the auxiliary tasks.

4 Experimental setup and results

We experimented with classic control environments and pixel-based environments. For the classic control environments,
we used the Mountain Car [Moore, 1991] and Acrobot [Sutton, 1995] problems. In the Mountain Car problem, an un-
derpowered car should reach the top of a hill starting from the bottom of the hill. The observation space includes the
position and velocity of the car with the position in [−1.2, 0.6] and velocity in [−0.07, 0.07]. The action space includes
three actions: 1) throttle forward 2) throttle backward 3) no throttle. The reward is −1 in all time steps and γ = 1.

Acrobot simulates a two-link underactuated robot with the goal of swinging the endpoint above the bar. The observation
space includes two angles: 1) the angle between the first link and the vertical line 2) the angle between the two links. Note
that in the original Acrobot environment, the observation space also includes the angular velocities corresponding to the
two angles. In our experiments, however, to make the problem more challenging, we omitted the angular velocities. This
makes the problem partially observable. The action space includes three actions: positive torque, negative torque, and
no torque applied to the bottom joint. The reward is −1 at all steps and γ = 1.

For the pixel-based environments, we used two instances of the Minimalistic Gridworld Environment [Chevalier-
Boisvert et al., 2018]: 1) Empty Minigrid 2) Door & Key Minigrid. The objective is to reach the goal cell. The observation
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space is 40× 40× 3 pixel input. The action space includes turning left, turning right, moving forward, picking an object,
dropping something off, and opening the door. The reward is 0 except once the goal is reached in which case it is 1. γ is
0.99.

In the pre-training phase, for the classic control environments, we used a neural network with two feed-forward hidden
layers of size 100 with ReLU nonlinearity. For Mountain Car, the position and velocity were fed into the network. For
Acrobot, to deal with partial observability, we passed the angles and the action at the previous time step in addition
to the angles at the current time step to the network as input. For Empty Minigrid, we used a neural network with
one convolutional hidden layer and one feedforward hidden layer of size 64 with ReLU nonlinearity. For Door & Key
Minigrid, we used a neural network with three convolutional hidden layers and one feedforward hidden layer of size 32
with ReLU nonlinearity. For the phase of learning the main task, we fed the representation learned during pre-training
to a network with two feed-forward hidden layers of size 100.

We used learning curves to study the effect of different auxiliary tasks on performance. We first trained the representation
using each of the auxiliary tasks for 500 episodes for Mountain Car, Acrobot, and Empty Minigrid, and 2000 episodes for
Door & Key Minigrid. To create learning curves, we ran Q-learning with each of the learned representations 30 times (30
independent runs). To get the learning curve for Mountain Car, Acrobot, Empty Minigrid, and Door & Key Minigrid, we
used 400, 200, 200, and 5000 episodes respectively.

In the case where the cumulant was equal to the observation, the representation learned for the auxiliary tasks resulted
in performance gain over the baseline of no pre-training in almost all cases (Figure 2). In Mountain Car, the sticky actions
policy and greedy policy resulted in the largest improvement over the baseline. In Acrobot and Empty Minigrid, the
choice of the target policy did not have a substantial effect. In Door & Key Minigrid, the random policy resulted in the
largest improvement over the baseline.

Mountain Car

Episode

# step to
finish

(30 runs)

no pre-training

random

greedy

sticky actions

main task policy

Episode

Acrobot

Episode Episode

Empty Minigrid Door & Key Minigrid

Figure 2: Learning curves for the case of cumulant equal to the observation. In the pre-training phase, the neural network
was trained using the auxiliary tasks. The last hidden layer of the neural network was then fixed and used as the
representation to learn the main task for 30 independent runs. In almost all cases, the representation learned for the
auxiliary tasks improved over the baseline of no pre-training. In Mountain Car, the sticky actions policy and greedy
policy resulted in the largest performance gain over the baseline. In Acrobot and Empty Minigrid, all auxiliary tasks
resulted in similar performance. In Door & Key Minigrid, the random policy resulted in the largest performance gain.

Mountain Car
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(30 runs)

Episode
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Episode Episode
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random
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Figure 3: Learning curves for the case of cumulant equal to the observation difference. The results are for 30 independent
runs. In almost all cases, the representation learned for the auxiliary tasks accelerated learning on the main task with the
greedy policy resulting in the largest improvement in almost all cases.

In the case where the cumulant was equal to the observation difference, in almost all cases, the representation learned for
the auxiliary tasks resulted in performance gain over the baseline of no pre-training, except for the case where the policy
was the main task policy in Acrobot (Figure 3). The auxiliary task corresponding to the greedy policy resulted in the
highest improvement across tasks. The results on the other policies were mixed: In the classic control environments, the
sticky actions policy resulted in good performance gain whereas the main task policy was less useful or even harmful.
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On the other hand, in the pixel-based environments, the main task policy resulted in good performance whereas the
sticky actions policy resulted in worse performance compared to the other auxiliary tasks.

The results from both classic control and pixel-based environments suggest that the auxiliary tasks based on the greedy
policy tend to be useful. Note that in the case of pixel-based environments where the cumulant is the observation
difference, these auxiliary tasks are similar to the well-known pixel-control auxiliary task. Another conclusion is that
most policies, even the random policy result in performance gain over the baseline. A surprising observation is that in
most cases, the auxiliary tasks corresponding to the main task policy tend to fall into the group of less useful auxiliary
tasks and even in some cases result in worse performance compared to the baseline.

5 Conclusions

Auxiliary tasks about different aspects of the environment can assist representation learning in reinforcement learning.
The theories about what makes useful auxiliary tasks are still evolving. In this paper, we took a step toward answering
this question by conducting an empirical study, investigating the role of the target policy in the utility of auxiliary tasks.
Our study suggests that most policies, including a uniformly random policy, tend to improve over the baseline with the
greedy policy resulting in the largest performance gain.

Further work is required to develop an understanding of how the target policy contributes to the usefulness of the
auxiliary tasks. A natural future direction is to form concrete hypotheses regarding the observations that we had from
our empirical results and answer questions such as: Why does the greedy policy tend to be useful? Why in some cases,
the random policy results in the highest performance gain? Why in many cases, the main task policy results in lower
performance gain?
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Abstract

Exploration in reinforcement learning through intrinsic rewards has previously been addressed by approaches based on
state novelty or artificial curiosity. In partially observable settings where observations look alike, directly applying state
novelty approaches can lead to intrinsic reward vanishing prematurely. On the other hand, curiosity-based approaches
commonly require modeling precise transition dynamics which are potentially quite complex. Here we propose random
curiosity with general value functions (RC-GVF), an intrinsic reward function that connects state novelty and artificial
curiosity. Instead of predicting the entire environment dynamics, RC-GVF predicts temporally extended values through
general value functions (GVFs) and uses the prediction error as an intrinsic reward. In this way, our approach generalizes
a popular approach called random network distillation (RND) by encouraging behavioral diversity and reduces the need
for additional maximum entropy regularization. Our experiments on four procedurally generated partially observable
environments indicate that our approach is competitive to RND and could be beneficial in environments that require
behavioural exploration.

Keywords: exploration, general value functions, curiosity, random network
distillation
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1 Introduction

Efficient exploration in reinforcement learning (RL) is a challenging problem, especially in high-dimensional observation
spaces and sparse-reward environments [1, 2]. A common strategy to address this is by incorporating an intrinsic reward,
in addition to the (sparse) extrinsic reward.

In the recent literature two main approaches have emerged: (1) approaches based on state novelty, where an intrinsic reward
in the form of a ‘novelty bonus’ is awarded based on how often a state has been visited [2–4]; and (2) approaches based on
artificial curiosity, where reward is constructed from the prediction error or information gain of a world model [5, 6].

A limitation of state novelty bonuses in partially observable settings is that observations may look alike. For example in
random network distillation (RND) [4] the agent simply receives a novelty bonus based on the error in making predictions
about the observation after applying a fixed randomly initialized neural network. The success of the RND novelty bonus
would therefore rely on the generalization properties of a (random) neural network’s mapping of observations to features.
This can be especially problematic if the error (and thus the intrinsic reward) vanishes before the agent has reliably
discovered the source of extrinsic rewards in the environment [7]. Similarly, curiosity-based approaches usually require
modeling the complete environment dynamics, which are potentially very complex.

In this paper we explore a connection between state novelty and artificial curiosity that may address both limitations. We
propose random curiosity with general value functions (RC-GVF), a novel approach to generating intrinsic rewards based on
general value functions (GVFs) [8] and the prediction of abstract quantities about the environment [9]. We view GVFs
as partially modeling the environment dynamics by predicting the temporally extended value of a quantity of interest
(i.e. ‘answering’ a question) in the environment when following a given policy. This quantity of interest corresponds
to random observation-dependent pseudo-rewards, akin to the random target features of RND. We then minimize the
TD-error of these GVFs while using the error as an intrinsic reward. We argue that this is similar to the intrinsic reward
derived from curiosity-based approaches, but now only modeling a random subset of the environment dynamics.

RC-GVF includes RND as a special case where the discount factor of the GVF is set to zero. Unlike in RND, where
predictions about random target features may be viewed as predicting pseudo-rewards, RC-GVF takes longer horizon
prediction errors into account that might be better suited for exploration. In particular, by integrating the policy as part
of the prediction problem, we reward the agent for altering its behavior, reducing the need for additional exploration
mechanisms such as maximum entropy regularization that is typically used in the case of RND.

We evaluate RC-GVF on a benchmark of sparse reward partially observable environments. Compared to RND we observe
improvements in mean return in the absence of entropy regularization. Introspection reveals that our approach reaches
states that provide external reward more frequently when learning only from intrinsic rewards in environments that
benefit from behavioral diversity. In environments that require visiting most states, performance is similar to RND.

2 Preliminaries

We follow the standard POMDP formulation with time steps t ∈ N, observations ot ∈ O, environment states st ∈ S,
actions at ∈ A, extrinsic rewards Re(st), and policies π(at|ht) where ht = o1:t. The objective is to find the optimal policy
π∗ that maximizes the expected discounted return J(π) = Eπ[

∑∞
k=0 γ

kRe(Sk)], where 0 < γ < 1 is the discount factor and
upper case variables denote random variables.

Random Network Distillation In random network distillation (RND) [4] the agent receives a state novelty reward
proportional to the error of predicting features ẑ(ot) generated by a randomly initialized neural network Zϕ : O → Rd.
The RND intrinsic reward for an observation is given by

Ri(ot) = ∥Zϕ (ot)− ẑ (ot) ∥2. (1)

Entropy Regularization To encourage additional exploration, many RL algorithms employ entropy regularization. The
maximum entropy objective [10] adjusts the RL objective to JMaxEnt(π) = Eπ[

∑∞
k=0 γ

kRe(Sk)+αH(π(·|Hk))],where α ∈ R+

is a hyper-parameter that trades off rewards and entropy regularization. RND also typically employs this regularization,
despite introducing its own exploration mechanism.

General Value Functions A general value function (GVF) [8] is defined by a policy π, a cumulant or pseudo-reward
function Z : O → R, and a discount factor γz . It can be expressed as vπ,z(o) = Eπ

[∑∞
k=0 γ

k
zZ(Ot+k)|Ot = o

]
. General

value functions extend the concept of predicting expected cumulative values to arbitrary signals beyond the reward. They
can be viewed as answers to questions about such quantities under a particular policy.
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3 Random Curiosity with General Value Functions

This section describes random curiosity with general value functions (RC-GVF), a novel approach to intrinsic rewards based
on GVFs of random pseudo rewards.

Random Pseudo-Rewards and GVFs Similar to artificial curiosity [5], in RC-GVF we model the environment dynamics.
However, instead of modeling precise transition dynamics, we ask questions about future outcomes under a policy
π [9]. In this paper, these questions are random and represented by a randomly initialized neural network Zϕ that
maps observations to features Zϕ : O → Rd, here referred to as pseudo-rewards. At time step t, the current observation
ot is mapped to the pseudo-rewards zt+1 ∈ Rd. To capture the outcome of a question across time, we are interested
in the discounted pseudo-return Gzt for a sequence of pseudo-reward random variables Zt+1, Zt+2 . . . given by Gzt =∑∞
k=0 γ

k
z · Zt+k+1, where γz is a scalar discount factor. Pseudo-rewards and returns are random variables due to the

stochasticity in the policy and/or environment dynamics. Similarly, the pseudo-value(s) of an observation under the
policy π is given by vπ,z (o) = Eπ

[∑∞
k=0 γ

k
zZϕ (Ot+k) | Ot = o

]
. This value function is known as a general value function [8].

TD-Error as Intrinsic Curiosity Reward Our exploration mechanism rewards the agent for taking actions that generate
unknown outcomes under fixed random questions. To that end, we train a separate (recurrent) neural network, which we
call the predictor, to predict these pseudo-values. Concretely, the predictor v̂π,z : H → Rd maps histories of observationsH
to values. We focus on a predictor that is trained on-policy. One motivating factor for this is that it couples the prediction
task to the current policy, which creates an incentive to vary the policy for additional exploration. As a target we use the
(truncated) λ-return, which can be recursively expressed as Gzt (λz) = Zt+1 + γz(1− λz)v̂π,z (Ht+1) + γzλzG

z
t+1(λz). Here,

λz ∈ [0, 1] is the usual parameter that allows us to balance the bias-variance trade off by interpolating between TD(0) and
Monte Carlo estimates of the pseudo-return [11].

The intrinsic reward of RC-GVF at time step t is then defined as the error between the output of the predictor and the
truncated λ-pseudo-return

Ri(ot) = ∥Gzt (λz)− v̂π,z (ht) ∥2, (2)

where ht = o1:t. Using Gzt (λz) as the target links the prediction task and the intrinsic reward to the agent’s policy, thereby
encouraging behavioral exploration.

Effective Horizon The effective horizon over which predictions are considered depends on the choice of the discount
factor γz . We obtain an intrinsic reward matching RND (Equation 1) for the special case of γz = 0, which yields Gzt = Zt+1.
The larger γz , the more pronounced is the contribution of the current policy to the prediction problem.

4 Experiments

We compare RC-GVF and RND on four procedurally generated environments from MiniGrid [12]: KeyCorridor-S3R3,
ObstructedMaze-2Dl, MultiRoom-N7-S8, and MultiRoom-N10-S4. Exploration in these environments is particularly
challenging due to partial observability, sparse rewards, and the procedural generation of mazes and objects.

To avoid confounding factors from combining different exploration strategies, we mainly focus on the exploration
behaviour in the absence of entropy regularization. For comparison with previous works, we also include an analysis
with entropy regularization. Moreover, to study the benefit of RC-GVF in isolation, we also consider a setting where the
agent only receives intrinsic rewards to guide its behaviour. Finally, we conduct an experiment to study the influence of
the RC-GVF discount factor (γz) on the agent’s performance.

Implementation We use Proximal Policy Optimization (PPO) [13] as our base agent. This agent is trained to maximize
the expected sum of a weighted combination of intrinsic and extrinsic rewards. At each time step t, the agent receives a
reward Rt = Re(st) + βRi(ot). Here Re(st) is the extrinsic reward from the environment, Ri(ot) is the intrinsic reward
from either RND or RC-GVF, and β ∈ R+ is a hyperparameter to balance the weighting of intrinsic and extrinsic rewards.

The agent consists of an actor and a critic, both share convolution layers followed by an LSTM [14], with separate multi-
layer perceptron (MLP) heads for the actor and critic. The pseudo-reward generator is implemented as a convolutional
neural network whose output is flattened to a vector. As per the original implementation of RND [4], the predictor has the
same architecture as that of the pseudo-reward generator. In the case of RC-GVF, the predictor is recurrent, consisting of
three convolutional layers followed by an LSTM with a linear output layer.

Evaluation We present the results averaged over 10 independent runs for each problem. Unless mentioned otherwise, all
figures report the mean as a solid line and the shading indicates 95% bootstrapped confidence intervals for the 10 seeds.
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(b) MultiRoom-N10-S4
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(c) ObstructedMaze-2Dl
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(d) MultiRoom-N7-S8

Figure 1: Average return of RC-GVF and RND on the selected Minigrid environments (with no entropy regularization).
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Figure 2: Cumulative number of times the agent successfully solves the environment, while only receiving intrinsic rewards. Shading
indicates 95% bootstrapped confidence intervals over 6 seeds.

Results Figure 1 presents our results on the MiniGrid environments when no entropy regularization is used. We
observe that RC-GVF appears more sample efficient than RND on the KeyCorridor environment. In the ObstructedMaze
environment we see that our approach is more stable across independent runs. Both approaches are comparable and
slightly unstable in the Multi-Room environments (N10-S4 and N7-S8). We note that in a previous empirical comparison
with IMPALA [15] instead of PPO as the base agent (i.e. as in this paper), RND was not able to reach any extrinsic reward
states on these MultiRoom tasks [7].

One explanation for the findings in Figure 1 could be that the tasks in the Multi-Room environments are inherently suited
to RND’s intrinsic reward of covering as many states as possible. The extrinsic reward in these environments requires
visiting most states. Similarly, the better performance of RC-GVF in KeyCorridor and ObstructedMaze could be due to a
greater need to try out different behaviours (finding the key, unlocking doors, picking up objects). Indeed, this variation in
behaviors is encouraged by the policy dependence in RC-GVF.

Figure 2 presents an analysis of the number of episodes in which the agent successfully completes a task (i.e. it receives
any extrinsic reward). To measure the exploration effect independent of extrinsic reward maximization, in this setting the
agent receives only intrinsic rewards to guide its behaviour. It can be observed how RC-GVF completes the task more
often on the KeyCorridor and ObstructedMaze environments, again indicating that RC-GVF could be better suited to
explore the kinds of environments which benefit from policy diversity and higher entropy.

In the MultiRoom environments, we observe mixed results. It can be seen how an agent trained solely with the RND
bonus reaches the goal state more frequently in the N10-S4 environment as compared to an agent trained with our bonus.
We believe that the reason behind the reduced performance of RC-GVF is tied to the exploration mechanism driven
by altering the policy. In these environments the goal state (with non-zero rewards) has a visually unique appearance
that potentially produces large intrinsic rewards in the case of RND, whereas RC-GVF is also incentivized by behavioral
exploration, reducing the tendency to follow the precise policy to revisit that state.
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Figure 3: Performance of RC-
GVF with different values of γz
on the KeyCorridor-S3R3 environment
(no entropy regularization).

Additional Analysis We carry out an experiment to study the influence of the
GVF discount factor γz on RC-GVF’s performance in the KeyCorridor-S3R3 en-
vironment. Here γz can be viewed as interpolating between RND (γz = 0) and
variations of RC-GVF with increasing emphasis on longer horizon predictions. We
observe that the lower discount factors γz ∈ {0.007, 0.07, 0.25} generally perform
similarly to RND (shown as γz = 0), with only γz = 0.007 performing slightly better
than expected (Figure 3). Increasing the GVF discount factor–and therefore the
horizon considered for the value function predictions–appears to have a positive
impact on the agent’s performance in this setting.

In the previous experiments we have focused on settings without entropy regular-
ization, to avoid confounding multiple exploration mechanisms. In Figure 4, we
see that the performance of both approaches improves with the introduction of the
entropy term. RND’s improvement is more pronounced in comparison to RC-GVF.
This suggests that RC-GVF requires less entropy regularization due to promoted behavioral diversity.
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5 Conclusion
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Figure 4: With entropy regularization,
both methods improve and are compara-
ble in KeyCorridor-S3R3.

We developed RC-GVF, an intrinsic reward approach to exploration inspired by
ideas from state novelty bonuses and artificial curiosity. Based on general value
functions, it derives intrinsic rewards from the long term prediction error of random
questions under the current policy. The discount factor allows us to control the
horizon over which predictions are considered. Our approach includes RND as a
special case when the discount factor is zero. Our experiments on four procedurally
generated partially observable environments indicate that our approach could be
beneficial in environments that require behavioural exploration.

While the incorporation of the current policy into the prediction task can have
benefits in behavioral exploration, it can also lead to over-exploration. An off-policy
or policy-conditioned [16] version of RC-GVF may mitigate this. Another potential improvement can come from a
distributional perspective to obtain intrinsic rewards. This may be important as RC-GVF does not account for the inherent
variance in the pseudo-return even for a fixed policy. Furthermore, in comparison to RND, where the predictor belongs to
same model class as the pseudo-reward generator, we need to select a predictor of appropriate complexity.

In the future, we aim to compare RC-GVF with transition dynamics based curiosity approaches [17]. Further generaliza-
tions are possible; such as moving beyond random pseudo-rewards, general value functions under different policies, and
introducing time or state dependent discounting.
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Abstract

Reinforcement Learning (RL) has a lot of potential in the robotics domain. However there remain some critical challenges
that need to be overcome for us to see more successful deployments of RL based robotic systems in the real world. In
this study we try to address one of these challenges, namely, sample efficiency, through the model-based RL approach.
We learn a model of the environment, essentially its transition dynamics and reward function, and use it to generate
imaginary trajectories which are then used to update the policy and value functions. Intuitively, the quality of the learnt
policy will depend on the quality of the imaginary trajectories, which in turn will depend on the quality of the learnt
environment model. Thus, learning better environment models should lead to better policies. In this study we investigate
if this is true.

Recently there has been growing interest in developing better deep neural network based dynamics models for physical
systems, by utilizing the structure of the underlying physics. These studies however, have only focused on dynamics
learning. In this study, we investigate if such structured models can also improve model-based RL. We train two ver-
sions of our model-based RL algorithm, a standard version and a physics-informed version. In addition, we also train a
state-of-the-art model-free RL algorithm, Soft-Actor-Critic, to serve as a baseline. Our results show that physics-informed
model-based RL outperforms standard model-based RL across environments in terms of dynamics learning, policy learn-
ing as well as sample efficiency. In simple environments, we find that physics-informed model-based RL, standard
model-based RL and state-of-the-art model-free RL achieve similar average-return. In complex environments, we find
that physics-informed model-based RL achieves significantly higher average-return compared to standard model-based
RL and state-of-the-art model-free RL.

Keywords: Model-Based Reinforcement Learning, Robotics,
Physics-Informed Neural Networks, Hamiltonian Mechanics
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1 Introduction

Reinforcement Learning (RL) can learn to solve sequential decision making problems through trial and error. In recent
years, RL has been combined with powerful function approximators such as deep neural networks to successfully solve
complex problems with high-dimensional, continuous state and action spaces across a range of domains, from video
games [1] to robotics [2].

We are particularly interested in the application of RL to robotics. RL has a lot of potential in the robotics domain. Many
tasks that are difficult to solve using traditional approaches, can be solved more easily using RL. However there remain
some critical challenges that need to be overcome for us to see more successful deployments of RL based robotic systems
in the real world. Some of these challenges include sample efficiency, safety, stability, explainability and generalization.
In this study we focus on the problem of sample efficiency.

One of the drawbacks of traditional RL algorithms has been their poor sample efficiency – they require a large number
of interactions with the environment to learn successful policies. In robotics, collecting such large amounts of training
data using actual robots is not practical as the process would be extremely slow. Also, there would be significant wear
and tear of parts over time, requiring frequent replacement. Hence it is preferred to train in simulation first and then
deploy on actual robots. Usually, it is hard to capture all the salient aspects of the environment in a simulation, this is
also known as sim-to-real mismatch. Hence it becomes necessary to fine tune the agent using data from the actual robot.
In general, whether we are learning using simulations or actual robots, it is desirable to improve sample efficiency.

One approach to improving sample efficiency of RL algorithms is model-based RL, where we learn a model of the
environment, essentially its transition dynamics and reward function, and use it to generate imaginary trajectories which
are then used to update the policy and value functions. While most model-based RL approaches use the model simply
to generate additional data, we make more effective use of the model by exploiting its differentiability. We efficiently
learn behaviors by propagating gradients of learned state values back through the imagined trajectories. Intuitively, the
quality of the learnt policy will depend on the quality of the imaginary trajectories, which in turn will depend on the
quality of the learnt environment model. Thus, learning better environment models should lead to better policies. In this
study we investigate if this is true.

Recently there has been growing interest in developing better deep neural network based dynamics models for physical
systems [3]. Consider for example, a simple pendulum swinging under just the force of gravity. In the absence of friction,
it would keep swinging forever. Greydanus et al [4] learnt the dynamics of such an ideal pendulum using a standard deep
neural network. They found that, given the current state, the network is able to predict the next state quite accurately.
However when they tried to predict longer trajectories, they found that the network’s predictions become progressively
worse. When they estimated the total energy of the pendulum along the predicted trajectory, they found that it does not
remain constant. Conservation of energy is a fundamental law of physics. In the case of the pendulum, it is a fundamental
aspect of its dynamics, which the neural network has failed to learn. This is a simple example that motivates the need
for better deep neural network based dynamics models for physical systems.

In general, we can learn better deep neural network based dynamics models for physical systems by utilizing the struc-
ture of the underlying physics, i. e., through better inductive biases. Zhong et al [3] summarizes and benchmarks the
recent work in this area. These studies however, have only focused on dynamics learning. In this study, we investigate if
such structured models, which are known to learn the dynamics better, can also improve model-based RL.

We focus on the robotics domain, in particular, systems undergoing pure rigid body motion. We consider the following
environments,

(a) Pendulum (b) Reacher (c) Cartpole (d) Acrobot (e) Cart-2-pole

Figure 1: Environments considered
• Pendulum : Swing up and balance a pendulum. Gravity is present.
• Reacher : Control a two-link manipulator in the horizontal plane (no gravity), to reach a fixed target location.

Both joints are actuated.
• Cartpole : Swing up and balance an unactuated pole by applying forces to a cart at its base. Gravity is present.
• Acrobot : Control a two-link manipulator in the vertical plane (gravity present), to swing up and balance. Only

the second joint is actuated.
• Cart-2-pole : One extra pole is added to Cartpole.

We assume that there is no friction and that low-dimensional state information is available to the RL agent.
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2 Methodology

2.1 Classical Mechanics

Classical mechanics is a branch of physics which studies the motion of macroscopic objects. The most familiar formula-
tion of classical mechanics is Newtonian mechanics. Alternative formulations include Lagrangian mechanics and Hamil-
tonian mechanics. For complex mechanical systems such as robots, it is generally much easier to derive the equations of
motion using Lagrangian or Hamiltonian mechanics rather than Newtonian mechanics.

In Lagrangian mechanics, the system’s state is completely described by its position q and velocity q̇. The Lagrangian L
is a scalar quantity defined as L(q, q̇, t) = T (q, q̇) − V (q), where T is the kinetic energy and V is the potential energy.
Assume that the external non-conservative force (e. g., motor torques) acting on the system is τ . The Lagrangian equation
of motion is given by,

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (1)

Note that the Lagrangian equation of motion is a single second-order differential equation. In Hamiltonian mechanics,
the system’s state is completely described by its position q and momentum p. The Hamiltonian H is a scalar quantity,
which for many physical systems is simply the total energy of the system, i. e., H(q,p, t) = T (q,p) + V (q). The
Hamiltonian equations of motion are given by,

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
+ τ (2)

Note that the Hamiltonian equations of motion are two first-order differential equations. Conventionally, when simulat-
ing robotic systems, Lagrangian mechanics is used. We instead use Hamiltonian mechanics, because it is easier to learn
first-order differential equations using deep neural networks compared to second-order differential equations. Common
robotic simulators such as Mujoco [5] internally use Lagrangian mechanics and do not off-the-shelf provide the necessary
data to study Hamiltonian mechanics. Hence we implement our own simulation.

2.2 Dynamics Learning

By learning dynamics, we essentially want to learn the transformation (qt,pt, τ t) → (qt+1,pt+1). The most straightfor-
ward solution is to train a standard deep neural network. We refer to this approach as DNN. This is shown in figure 2(a).
Another approach is to utilize the structure of the underlying Hamiltonian mechanics. This approach builds upon recent
work such as Hamiltonian Neural Networks [4] and Symplectic ODE-Net [6]. We detail our approach here. For systems
undergoing rigid body motion, the Hamiltonian H can be written as

H(q,p) =
1

2
pT M−1(q)p + V (q) (3)

where M is the mass matrix. In this approach, one network learns the potential energy function V (q) and another
network learns a lower triangular matrix L(q), which we use to compute the inverse of the mass matrix as M−1(q) =

L(q) LT (q), using the fact that the mass matrix and its inverse are symmetric and positive definite. Then, using equation
(3) we compute the Hamiltonian H . Substituting H into equation (2), we compute the time derivative of the state. We
then numerically integrate the time derivative of the state using a standard numerical integration technique, fourth-order
Runge-Kutta, to compute the next state (qt+1,pt+1). We refer to this approach as HNN. The entire process is shown in
figure 2(b).

(a) DNN (b) HNN

Figure 2: Dynamics Learning
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2.3 Model-Based RL

While most model-based RL approaches use the model simply to generate additional data, we make more effective use
of the model by exploiting its differentiability. We efficiently learn behaviors by propagating gradients of learned state
values back through the imagined trajectories. We summarize our model-based RL algorithm below. It builds on the
recent Dreamer algorithm [7].

Algorithm 1 MBRL Algorithm
Initialize networks with random weights.
Execute random actions for S episodes to initialize replay buffer.
for each episode do

// Environment Model Learning
for N1 times do

Draw mini batch {(oi, ai, ri, oi+1) : i = 1, ..., B1} from replay buffer.
Fit transition dynamics and reward models.

end for
// Behaviour Learning
for N2 times do

Draw mini batch {(oj) : j = 1, ..., B2} from replay buffer.
for each j do

Imagine trajectory of length H starting from oj .
end for
Actor Loss = − 1

B2

∑B2
j=1

∑H−1
t=0 [ V targetλ (ojt)− α log π(ajt |ojt) ]

Critic Loss = 1
B2

∑B2
j=1

∑H−1
t=0

1
2‖ V (ojt)− V targetλ (ojt) ‖2

Update Actor, Critic.
Update entropy weightage α, in a manner similar to Soft-Actor-Critic.
Every 100 updates, V target ← V

end for
// Environment Interaction
Interact with environment for 1 episode using current policy. Add experience to replay buffer.

end for
Note : S = 5, N1 = 104, B1 = 64, N2 = 103, B2 = 64, H = 16

We train two versions of our model-based RL algorithm, one which uses the DNN approach for dynamics learning and
the other which uses the HNN approach. In addition, we also train a state-of-the-art model-free RL algorithm, Soft-
Actor-Critic (SAC) [8], to serve as a baseline.

3 Results

Environment Method Steps Dynamics Average Lyapunov
GMBRL-HNN − GMBRL-DNN

|GMBRL-DNN|
GMBRL-HNN − GSAC

|GSAC|
L1 Error Return Exponent

(× 10−5) (G) (× 100) (× 100)

MBRL-HNN 0.25 M 3.7115 886
Pendulum SAC 2.5 M - 885.2 0.0372 0.63 0.09

MBRL-DNN 0.5 M 200.62 880.5

MBRL-HNN 0.5 M 2.737 -120.8
Reacher SAC 5 M - -121.2 0.0459 10.32 0.33

MBRL-DNN 1 M 126.08 -134.7

MBRL-HNN 0.5 M 28.846 884.2
Cartpole SAC 5 M - 879.8 0.0725 12.21 0.48

MBRL-DNN 1 M 2354 788

MBRL-HNN 1 M 3.5471 -240.6
Acrobot SAC 10 M - -396.2 0.9208 69.2 39.27

MBRL-DNN 2 M 186.62 -781.1

MBRL-HNN 1 M 5.0984 783.4
Cart-2-pole SAC 10 M - 409.8 1.0910 166.19 91.17

MBRL-DNN 2 M 1432 294.3

Table 1: Results
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Figure 3: Imaginary trajectory vs ground truth, for Acrobot environment, for different imagination horizons H .
Row 1 : H = 16, Row 2 : H = 100, Row 3 : H = 1000.

From table 1, we see that HNN is able to learn better dynamics models than DNN in terms of L1 error, across envi-
ronments. We find that the imaginary trajectories of HNN show minimal deviation from the ground truth, while the
imaginary trajectories of DNN show larger deviation. This is shown in figure 3, for the case of Acrobot. A similar trend
is seen for other environments. Although during behaviour learning we use an imagination horizon of only 16 time
steps, in figure 3, we plot imaginary trajectories for longer horizons as well, to see how far into the future our models can
predict accurately.

From table 1, we see that MBRL-HNN achieves higher average-return compared to MBRL-DNN across environments,
while requiring fewer samples. We find that the relative difference between the average-return of MBRL-HNN and
MBRL-DNN is directly correlated to the Lyapunov exponent [9] of the environment. We try to explain why this is so.
Lyapunov exponents measure the exponential rate of separation of trajectories which start from nearby initial states.
Thus, they represent how quickly numerical errors will accumulate. Consider the dynamics model learnt by DNN. Its
one-step prediction will have some error. Now consider an imaginary trajectory of horizon 16 time steps produced by
DNN. If the environment has a large Lyapunov exponent, the prediction error will accumulate fast and the resulting
trajectory will deviate significantly from the ground truth and we cannot learn a good policy from such trajectories.
Whereas, if the environment has a small Lyapunov exponent, the prediction error will accumulate more slowly and the
resulting trajectory will not deviate from the ground truth significantly and we can learn a reasonably good policy from
such trajectories. Thus, the relative difference between the average-return of MBRL-HNN and MBRL-DNN is small
when the Lyapunov exponent of the environment is small, and large when the Lyapunov exponent is large.

In simple environments, the average-return of MBRL-HNN and SAC are comparable. In complex environments, the
average-return of MBRL-HNN is significantly higher than SAC.

4 Conclusion

We believe that model-based RL has an important role to play in unlocking the vast potential that RL has in the robotics
domain. Our results show that physics-informed model-based RL outperforms standard model-based RL across envi-
ronments in terms of dynamics learning, policy learning as well as sample efficiency. In simple environments, we find
that physics-informed model-based RL, standard model-based RL and state-of-the-art model-free RL achieve similar
average-return. In complex environments, we find that physics-informed model-based RL achieves significantly higher
average-return compared to standard model-based RL and state-of-the-art model-free RL. In the future, we plan to ex-
tend our work to robotic systems involving contact dynamics and dissipation, and also attempt to learn directly from
images.
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Abstract

Deep reinforcement learning has been extensively studied, resulting in several extensions to DQN that improve its per-
formance, such as replay buffer sampling strategies, distributional value representations, and double/dueling networks.
Previous works have examined these extensions in the context of either discrete action spaces or in conjunction with
actor-critic learning algorithms, but there has been no investigation of combining them for deep value-based continuous
control. We adapted the methods discussed in Rainbow DQN to RBF-DQN, a deep value-based method for continuous
control, showing improvements when evaluated over a set of 7 OpenAI Gym continuous control tasks in baseline per-
formance and sample efficiency. Rainbow RBF-DQN outperforms both vanilla RBF-DQN and state-of-the-art actor-critic
methods on the most challenging tasks such as Half-Cheetah and Humanoid.

Keywords: RBF-DQN, Value Based, Continuous Control, Rainbow
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1 Introduction

Figure 1: Rainbow RBF-DQN and
SAC performance relative to vanilla
RBF-DQN across the 7 MuJoCo con-
trol tasks.

The introduction of RBF-DQN [Asadi et al., 2020] was a key neural network ar-
chitectural breakthrough that made deep value based RL perform competitively
on continuous action domains. In this paper we select four of the improvements
to DQN—Distributional Representations [Dabney et al., 2017], Dueling Networks
[Wang et al., 2015], Double Networks [van Hasselt et al., 2015], and Priority Ex-
perience Replay [Schaul et al., 2015]—and modify them to work in the continu-
ous action space with RBF-DQN. The resulting agent, termed Rainbow RBF-DQN,
overall demonstrates more stable learning and lower sample complexity on 7 Ope-
nAI MuJoCo continuous control tasks: Humanoid, Ant, Half-Cheetah, Hopper,
Bipedal Walker, Lunar Lander, and Pendulum.

2 Background

Deep value-based methods use deep learning to learn a set of parameters θ to
approximate the state-action value function Qθ(s, a). The vanilla Q-Learning ob-
jective is to minimize the TD-Error (also known as the Bellman error), which is
defined for a single transition (s, a, r, s′) as r + γmaxa′ Qθ(s

′, a′) − Qθ(s, a). Q-
Learning is off-policy and therefore allows the agent to use a behavioral policy
(such as epsilon greedy) to approximate a target policy (the optimal policy). Mnih
et al. [2013] introduced DQN, allowing deep neural networks to play Atari using
the TD-Error objective, a replay buffer to store previously experienced transitions, and a target network for stabilizing
the TD target between learning updates. Note that in Q-Learning, the update rule relies on finding maxa′∈A Q̂(s′, a′; θ).
This is prohibitively expensive in continuous action spaces, due to an infinite search space, and approximations like
discretizing the action space may produce sub-optimal solutions.

RBF-DQN [Asadi et al., 2020] is a value-based deep reinforcement learning approach that uses radial-basis functions to
approximate the Q function for continuous action space tasks. RBF-DQN learns both the radial-basis centroids (which
represent sampled actions) and their values, and uses a kernel to efficiently compute the action that maximizes the Q-
value with a bounded error that depends on the temperature parameter β. Specifically, RBF-DQN approximates Q∗(s, a)
by learning centroid locations ai(s; θ) and centroid values vi(s; θ) as functions of state s and parameters θ and β according
to:

Q̂β(s, a; θ) :=

∑N
i=1 e

−β∥a−ai(s;θ)∥vi(s; θ)∑N
i=1 e

−β∥a−ai(s;θ)∥
. (1)

The centroid locations ai(s; θ) and state-dependent centroid values vi(s; θ) are used to form the Q function output [Asadi
et al., 2020], and are learned end-to-end during training by optimizing the Bellman error similar to the DQN loss [Mnih
et al., 2013]. The action maximization property of RBF-DQN [Asadi et al., 2020] guarantees all critical points of Q̂β can
be well-approximated by a centroid location ai. This makes action-maximization as simple as searching over all N cen-
troids maxi∈[1,N ] Q̂β(s, ai; θ) where ai represents a centroid location. In multi-dimensional action spaces, the temperature
parameter β can be tuned to ensure an upper bound on error for the optimal action [Asadi et al., 2020]:

max
a∈A

Q̂β(s, a; θ)− max
i∈[1,N ]

Q̂β(s, a; θ) ≤ O(e−β). (2)

The action-maximization property of Deep RBFs, paired with its universal function approximating properties, make
RBF-DQN well-suited for continuous control tasks.

3 Extensions to RBF-DQN

Many of the recent successes in deep reinforcement learning have come from improvements to the vanilla Q-Learning
approach. In this work, we specifically investigate a set of popular extensions to DQN that are included in Rainbow DQN
[Hessel et al., 2018], which combines double Q-Learning [van Hasselt et al., 2015], prioritized experience replay [Schaul
et al., 2015], and distributional RL [Bellemare et al., 2017]. In this section, we present new augmentations to accommo-
date applying Double Q-Learning, and Distributional Q-Learning to RBF-DQN. All other Rainbow augmentations (PER,
Noisy Networks, and Multi-step Learning) are directly applicable without modification. 1

1https://github.com/xdADq73Tur/rainbow RBFDQN. Our rainbow RBF-DQN implementation.

1
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3.1 Double Q-Learning

To adapt doubleQ-Learning networks for RBF-DQN, the optimal action is selected using the online centroid and centroid
value modules, parameterized by θ, and then a Q-value is produced using the centroid and centroid values from the
target network, parameterized by θ−, respectively. We implement double RBF-DQN according to

Q(s′, a∗; θ−) =

∑N
i=1 e

−β||a∗−ai(s′;θ−)||vi(s′; θ−)∑N
i=1 e

−β||a∗−ai(s′;θ−)||
(3)

where a∗ = ai Q(s′, ai; θ) is chosen according to the online network. The action a∗ is the centroid location associated with
the highest Q value according to Equation 1.

3.2 Distributional Q-Learning

In distributional Q-learning, rather than learning Q values in expectation, we learn the complete value distribution for a
given state-action pair.

Applying this to RBF-DQN, the network’s centroid value module is modified to instead output the quantile distribution
for each centroid, denoted by the matrix Z ∈ RNC×NQ values, whereNC is the number of centroids andNQ is the number
of quantiles. Taking the expectation of the supports for the ith centroid results in the value vi for the ith centroid, and can
be summarized by v⊤ = w⊤Z, where v ∈ RNQ , a is the proposed action and ai is the location of the ith centroid, and the
components wi of the vector w ∈ RNC represent the normalized distances from the proposed action a to each centroid
location ai:

wi =

(
∥ai − a∥2∑NC
i=1 ∥ai − a∥2

)
(4)

[w1 w2 ... wNC ]




z11 z12 · · · z1NQ
z21 z22 · · · z2NQ

...
...

. . .
...

zNC1 zNC2 · · · zNCNQ


 (5)

Each row in Z represents the quantiles for a given centroid. The element zij(s, a; θ′) represents the jth quantile for the
ith centroid. v represents the weighted quantile distribution for an action a, which can then be averaged to get Q(s, a).

Quantile regression loss [Dabney et al., 2017] is used to update the network, where τ is a quantile probability associated
with the given target distribution.

ρτ (u) = |τ − δu<0|L(u),
where

L(u) =
{

1
2u

2, if |u| < 1

|u| − 1
2 , otherwise.

u is the distance between each predicted support and each target support, with an additional argument of τ to specify
which quantile point the prediction support is approximated to. Each quantile point zj(s, a; θ′) ∀j ∈ [1, NQ] is indepen-
dently moved toward the correct quantile position (according to the target quantile distribution formed by T zj where T
is the Bellman operator) T zj ← r + γzj(s

′, a∗; θ−),∀j.

3.3 Integrated Agent

Our integrated RBF-DQN agent (Rainbow RBF-DQN) incorporates Distributional Quantile Regression, Double Net-
works, and Priority Experience Replay (PER). Empirically we found that Dueling networks, Noisy networks, and Multi-
step returns did not lead to a consistent boost in performance over vanilla RBF-DQN so we exclude them from our
Rainbow agent.

In order to incorporate PER to distributional RBF-DQN, the sampling weights are replaced with the regression loss for
each batch of transitions.

pt ∝ (

NQ∑

i=1

Ej [ρτi(r + γzj(s
′, a∗; θ−)− zi((s, a; θ))])w.

Double Q learning is added to Distributional RBF-DQN by having the online network parameterized by θ choose the
centroid with the highest value at s′, and return that centroid as the optimal action. This action is then passed into
the target network parameterized by θ− to return the target quantile distribution. ytarget = r + γzj(s

′, a∗; θ−), where
a∗ ← E[zi(s

′, ·; θ)].

2
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4 Experiments

We test our rainbow RBF-DQN agent on the 6 Open AI gym [Brockman et al., 2016] tasks presented in the vanilla RBF-
DQN paper [Asadi et al., 2020] as well as on Humanoid-v2, a challenging 17 dimensional action space control task.
For each task we use the low dimensional state space and default dense reward. We report the cumulative evaluation
rewards across 10 trajectories.
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Figure 2: Total Evaluation Reward per Episode on 7 MuJoCo control tasks. All variants ran on 5 seeds and the 95%
confidence interval across seeds is shaded.

5 Analysis and Discussion

In this section we review our experimental results and compare rainbow RBF-DQN to vanilla RBF-DQN and an existing
state of the art actor-critic method, Soft Actor Critic (SAC) from Haarnoja et al. [2018]. We use the public implementation
of vanilla RBF-DQN2 and use the stable baselines 3 implementation of SAC3.

5.1 Comparison to baseline vanilla RBF-DQN and SAC

In Figure 1 we plot rainbow RBF-DQN’s performance across all 7 control tasks relative to vanilla RBF-DQN and SAC.
Each task is treated equally, each variation is run for 5 seeds, and evaluation rewards are normalized relative to vanilla
RBF-DQN.

According to Figure 1, when we average the performance of Rainbow RBF-DQN across all tasks, it is ≈ 10% better in
final performance than vanilla RBF-DQN and ≈ 30% better than SAC (as well as more sample efficient as can be seen
by the steeper learning curve). This improvement is in aggregate—on certain tasks like Humanoid, Rainbow RBF-DQN
achieves almost 200% the reward of vanilla RBF-DQN, and nearly 25% better than current state of the art methods like

2https://github.com/kavosh8/RBFDQN pytorch
3https://github.com/DLR-RM/stable-baselines3
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SAC. Individual results are given in Figure 2. On a per-task basis, Rainbow RBF-DQN outperforms SAC on every task
except Ant (where it is similar in performance), and only slightly underperforms vanilla RBF-DQN on Hopper. Rainbow
RBF-DQN improves performance on Bipedal Walker and improves on vanilla RBF-DQN’s already strong performance
on the HalfCheetah task.

5.2 Ablation Studies

On high dimensional action space tasks, distributional value representations (with quantile regression) for RBF-DQN
are crucial to achieving high reward, and are thus the most important ingredient to Rainbow RBF-DQN. In Figure 2,
the Humanoid learning curve shows that both vanilla per (vanilla with PER) and vanilla double lag behind all the vari-
ations with distributional representations included (dist double, dist, and Rainbow RBF-DQN). Double networks had
only marginal positive impact on Distributional RBF-DQN hinting toward the fact that Distributional alone may have
overestimation limiting properties. PER generally speaking led to only marginal improvements when paired with distri-
butional RBF-DQN (we used α = 0.1), but we included it because it is a relatively simple addition to the algorithm.

6 Conclusion

We presented algorithmic extensions for deep value-based learning for the RBF-DQN architecture, and empirically
demonstrated improved performance on Humanoid, Bipedal Walker, and Half Cheetah. The most crucial ingredient
in Rainbow RBF-DQN is quantile distributional value representations—allowing our agent to excel on high dimensional
tasks like Humanoid, outperforming state of the art SAC results. Taken together, our results show that classical DQN
enhancements in the discrete action domain can be applied with care to the continuous action domain. We hope Rainbow
RBF-DQN becomes one of the go-to value-based methods that RL researchers use for continuous control tasks in high
dimensional action spaces.
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Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 449–458. PMLR,
2017. URL http://proceedings.mlr.press/v70/bellemare17a.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
OpenAI Gym. arXiv e-prints, art. arXiv:1606.01540, June 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. arXiv e-prints, art. arXiv:1801.01290, January 2018.

4

RLDM 2022 Camera Ready Papers 529

529



Autonomous Open-Ended Learning
of Tasks with Non-Stationary Interdependencies

Alejandro Romero 1, Gianluca Baldassarre 2, Richard J. Duro1, Vieri Giuliano Santucci2
1Integrated Group for Engineering Research (GII)

CITIC research center
Universidade da Coruña, Spain

{alejandro.romero.montero, richard.duro}@udc.es
2Istituto di Scienze e Tecnologie della Cognizione (ISTC)
Consiglio Nazionale delle Ricerche (CNR), Roma, Italy

{gianluca.baldassarre, vieri.santucci}@istc.cnr.it

Abstract

Autonomous open-ended learning is a relevant approach in machine learning and robotics, allowing the design of arti-
ficial agents able to acquire goals and motor skills without the necessity of user assigned tasks. A crucial issue for this
approach is to develop strategies to ensure that agents can maximise their competence on as many tasks as possible in
the shortest possible time. Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the
training time amongst goals. While the majority of works in the field of intrinsically motivated open-ended learning
focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition
of interdependent tasks, and even fewer tackled scenarios where goals involve non-stationary interdependencies. Build-
ing on previous works, we tackle these crucial issues at the level of decision making (i.e., building strategies to properly
select between goals), and we propose a hierarchical architecture that treating sub-tasks selection as a Markov Decision
Process is able to properly learn interdependent skills on the basis of intrinsically generated motivations. In particular,
we first deepen the analysis of a previous system, showing the importance of incorporating information about the rela-
tionships between tasks at a higher level of the architecture (that of goal selection). Then we introduce H-GRAIL, a new
system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences of
tasks to be able to modify them in case the interdependencies are non-stationary. All systems are tested in a real robotic
scenario, with a Baxter robot performing multiple interdependent reaching tasks.

Keywords: Autonomous Open-Ended Learning, Interdependent Tasks, Cur-
riculum Learning, Intrinsic Motivations, Reinforcement Learning,
Autonomous Robotics
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1 Introduction

Autonomous open-ended learning (A-OEL) [5, 18] aims at the development of artificial agents able to solve a poten-
tially unbounded set of different tasks in environments that might be unknown at design time. Similarly to multi-task
reinforcement learning [6], a system has to learn multiple policies associated with different goals (i.e., the achievement
of desired states/effects in the environment. In this sense “task” and “goal” can be used interchangeably, where a task
consists in the achievement of the associated goal). However, in the A-OEL perspective the focus is not “simply” on the
maximisation of the rewards, but on the development of a strategy that allows the agent to properly allocate the training
time to maximise its competence over all the goals during the learning period. This reflects the scenario in which a sys-
tem is left to explore the world for a limited time, while only in a second phase it will be assigned tasks that are useful
for users: the greater the competence acquired, the higher the probability of being able to maximise the rewards for the
subsequently assigned tasks.

In this perspective, intrinsic motivations (IMs) have been used in the field of machine learning and developmental
robotics [11, 2], amongst other applications, to provide self-generated signals guiding the autonomous selection of tasks
to be trained [16, 3, 4]. The majority of works within the intrinsically motivated open-ended learning framework are
normally focused on scenarios where goal achievability does not depend on specific environmental states or precondi-
tions. However, in real-world scenarios, tasks may require particular conditions to be fulfilled or, more interestingly,
they may be interdependent so that one (or a sequence of them) is the precondition for the achievement of the other(s).
As an example, consider a setting where the goal of arriving at a particular [x, y] location is possible only if the intensity
of illumination has already been set to a certain value. In that regard, the navigation goal is conditioned on the agent
having caused the environment to reach a specific “illumination intensity goal”.

The “interdependent tasks” scenario is of particular interest for both machine learning and robotics, and it has so far been
scarcely studied in an A-OEL perspective [7, 15, 4]. Under the headings of curriculum learning [8, 9] and hierarchical
reinforcement learning [1, 10], different works have focused on sequencing ever more complex tasks, with the aim of
transferring knowledge from one to another or dividing the most difficult goals into sub-goals that can be learnt more
easily. However, in most of these works, even when the agent autonomously creates and selects sub-tasks, these processes
are based on an externally-assigned final goal. On the contrary, here we are interested in a situation where several
possible interrelated tasks are presented to the agent, whose aim is to maximise its overall competence by selecting the
goals it wants to learn and, where necessary, to learn the different curricula that are needed to acquire the skills of the
hierarchically more complex goals. Furthermore, our aim is to address an even more complex scenario, which to date,
especially in the field of autonomous robotics, is still poorly addressed: the scenario in which the interdependencies
between goals may change over time, thus forcing the system to re-learn the different sequences in order to maintain a
high competence in solving all the possible tasks.

In previous works, we presented the M-GRAIL architecture [15, 12] and we analysed how treating goal selection as a
Markov Decision Process (MDP) results in better overall competence acquisition with respect to other approaches that
treat goal selection as a bandit or contextual bandit problem [17, 7, 4]. Here we present a twofold study. On the one hand,
we deepen the analysis of our approach by comparing M-GRAIL with a system which, although treating task selection
as a bandit problem, is able to integrate the information about the dependencies between the goals directly into the low-
level skills. On the other hand, we extend our system which, by relying only on intrinsic motivations, was not able to
save the acquired sequences, and we present H-GRAIL, a new hierarchical system with 3 different learning processes.
H-GRAIL is then tested in a scenario where the interdependencies between goals can change over time.

2 Problem Analysis and Suggested Solution

In multiple task learning the objective is to learn a set of different tasks (i.e., reaching a different goal), each associated
to a core MDP. We assume a goal g is a specific subset Sg ∈ S, so that g has been achieved if the system enters any state
in Sg . For each goal g there is a goal-dependent reward function rg , determining a goal-dependent reward rgt at time t.
Following [6], the overall objective of the system is then to find a policy π (or different goal-related policies πg) such that

π∗ = argmax
π

Eg∼P
[
rg(π)

]
, (1)

where P is a probability distribution over the setG of possible goals g. As analysed in [15], in an OEL scenario the system
objective is to maximise, in a finite and unknown learning time L, its competence C over G

C = Eg∼P Cg (2)
where Cg is the goal-related competence for achieving goal g using πg . In this sense, Cg reflects the expected goal-
specific rewards E{rgt + rgt+1 + . . . |πg} when executing πg . Since L is finite and unknown, the agent has to maximise C
as quickly as possible, efficiently distributing the learning time over G. The A-OEL of multiple goals is thus a training
time allocation problem where the system has to build a meta-policy Π that at each time step t selects a goal to train for
a certain (eventually fixed) amount of time t′ so that at L the overall competence C will be maximal.

1

RLDM 2022 Camera Ready Papers 531

531



Π∗(t) = argmax
Π

Eg∼P
[
Cg(t+ L) |Π(t)

]
. (3)

Given this objective, Π is not selecting goals to train with respect to their current competence Cg(t), i.e. to the amount of
returns expected for executing πg , but with respect to the amount of competence the system can gain for practicing on g.
The reward is thus the intrinsic motivation signal determined by the competence improvement ∆Cg = Cg(t+ t′)−Cg(t)
obtained for training on g. Autonomously learning multiple tasks can thus be seen as a two-level problem: (a) the high-
level goal-selection process to increase competence; and (b) the low-level learning of policies πg . While we make no
assumption about which algorithm is used to solve (b), in the case where goals are independent (learning about one
goal does not help the agent achieve other goals) and where the initial state of the environment is not affecting policy
execution, task selection can be modelled as an N -armed bandit, as it has been typically addressed in the majority of
OEL architectures, e.g. [3, 17, 4]. Differently, if tasks are interdependent (i.e. the achievement of some goals constitute
the precondition for the achievement of other goals), Π has to take into consideration that goal-selection implies long-
term consequences in terms of possible future rewards (i.e. future competence gain): it may be important to spend time
practising goals that, on their own, do not provide competence improvement, but that allow the agent to train more
advantageous goals. Thus, task selection now involves a credit assignment problem, since evaluating the returns gained
from goal g requires backing up expected future competence improvement that may be achieved by further practising
“distant” goals that have g as a precondition.

For this reason, similarly to [9], in M-GRAIL we proposed to no longer treat goal selection as a bandit problem but as an
MDP, and to solve it through a Q-Learning algorithm that models the relation between the values of interrelated goals.
However, given the transient nature of intrinsic motivations (which disappear when competence has reached a plateau),
M-GRAIL has the problem that although it is able to learn all the policies πg by properly assigning value to goals that
constitute preconditions for others, it is not able to execute these sequences once the evaluations determined by intrinsic
motivations have vanished. To cope with this limitation, here we propose H-GRAIL, a new architecture that adds a
further layer to the previous system. M-GRAIL (as well as other systems in the literature) was essentially composed of
two levels: one in which low level skills are learnt, through the maximisation of goal-specific rewards rg ; and a higher
level in which goal selection takes place, treated as an MDP in which a Q-Learning algorithm maximises the competence
improvement signal ∆Cg . H-GRAIL adds a further layer, changing the structure of the goal selector and dividing it
into two components. The meta policy Π is again treated as a bandit problem based on the maximisation of competence
improvement, but once the system has selected a goal g, it is used as an input to a second level which, structured as an
MDP, must learn to sequence the sub-goals necessary to achieve the task selected by Π. This sub-goal selector, unlike the
M-GRAIL selector, aims at the maximisation of goal-specific reinforcement rg : in this way, the learnt interdependencies
between the different goals will remain available to the system as “curricula”, or better, as policies over sub-goals, even
after the intrinsic motivations have disappeared.

3 Robotic Setup and Experiments

Figure 1: The experimental setup: buttons
“light up” when pressed if all their pre-
conditions are satisfied.

To test our system we implemented a robotic scenario (Fig. 1) where a Bax-
ter robot has to learn to reach for different buttons that “light up” when
pressed if their preconditions are satisfied. In a first experiment (Sec. 4.1),
we compare M-GRAIL with a modified version of the e-MDB system [13],
called Bandit-MDB, where the motivational system is implemented using
a goal-selecting bandit mechanism based on competence improvement in-
trinsic reinforcements. On the contrary, M-GRAIL treats goal-selection as an
MDP and solves it through a standard Q-Learning algorithm [19]. Both M-
GRAIL and Bandit-MDB learn low-level skills via utility models, where each
skill is an artificial neural network-based value function (see [14] for more
details), however only the Bandit-MDB utility models receive contextual in-
formation as input (here a binary vector stating if a goal has been achieved
within the current epoch, i.e. if a button is “on” or “off”), while in the case
of M-GRAIL only the goal selector receives such information. This allow us
to analyse how, and in particular at what level of the architecture, a robotic system should handle the dependencies
between goals.

In a second experiment (Sec. 4.2) we test H-GRAIL in a similar robotic scenario, where interdependencies between
goals are non-stationary (in particular, they change after a certain time during learning). H-GRAIL receives contextual
information regarding the goals at the level of the sub-goal selector (implemented as a Q-Learning algorithm), while the
high-level goal selector is implemented as a standard bandit maximising competence improvement.

In both experiments we use the right arm of the robot and we control its wrist final position (x, y, z) through Cartesian
position control. Regarding perception, we used the images from an RGB-D camera located on the ceiling of the room and

2

RLDM 2022 Camera Ready Papers 532

532



Figure 2: Configuration of the first experiment (arrows indicate dependencies) and the performance of the two systems.

Figure 3: Configuration of the second experiment with non-stationary dependencies, and the performance of H-GRAIL.

binary sensors associated with buttons being pushed. This information is re-described in the form of distances between
the detected objects and the end effector of the robot arm. Therefore, the perception of the robot is (d1, . . . , dn, s1, . . . , sn),
where dj are the relative distances between the buttons and the robot end-effector, si are the states of the different buttons
(active or not), and n is the number of buttons in the scenario (6 in the current experiment).

4 Results and Discussion

4.1 Testing where to incorporate interdependence knowledge

The first experiment was run for 500 epochs, each lasting 8 trials ending when the robot lights up the target button
(it achieves the selected goal) or after a timeout of 70 time steps. At each trial the goal selector of the systems selects
the goal to be achieved, while at the end of each epoch we reset the environment (the robot is set to home positions
and the buttons are switched off). In this scenario there are two chains of dependencies: a simple one (with just one
precondition) and a more complex chain where reaching the last goal (cyan button) requires the accomplishment of
three other precondition goals. Fig. 2 shows the performance of the two systems (averages over 20 repetitions). M-
GRAIL is very efficient in learning all the tasks, including those requiring preconditions, while Bandit-MDB needs 300
epochs to reach 90% performance and has more trouble learning the last task (activation of the cyan button). The longer
time required by the Bandit-MDB system is the result of it having to learn more complex and longer skills, since, for
example, to reach the blue button, the utility model corresponding to that skill must first learn to reach the red and
green buttons. Unlike Bandit-MDB, when learning simple skills and concatenating them, M-GRAIL only has to learn
to reach the blue button while the goal selector takes care of selecting the precondition goals before it: this ensures that
the red and green buttons are active when the blue-button goal is selected. This experiment further corroborates the
findings in [15], showing how our proposal to treat autonomous goal learning in a hierarchical manner yields positive
results. In particular, here we analysed how it is more efficient to learn simple skills, not storing information on goal
interdependencies, and concatenate goals at the level of the goal selector. This is because the time required for learning a
single skill, given the appropriate preconditions guaranteed by the goal selection, is less than the time necessary to learn
a skill to achieve a goal and also all those being the preconditions to it.
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4.2 Testing H-GRAIL on tasks with non-stationary interdependencies

In the second experiment we test our new architecture H-GRAIL in an environment where interdependencies between
goals are non-stationary. In particular, after 1,000 epochs the dependencies are modified as shown in Fig. 3 (right).
Experiments are run for a total of 2,000 epochs, composed as in the first experiment. The results (averages over 20 repe-
titions) show that H-GRAIL was not only able to learn the skills necessary to achieve the different goal-dependent tasks,
but also had the ability to dynamically adapt to a change in the structure of task relationships. Unlike M-GRAIL, the
sub-goal selector added in H-GRAIL is able to store the acquired curricula through a Q-Learning algorithm based on the
reinforcements obtained to achieve the tasks selected by the same sub-goal selector. However, when the interdependen-
cies change the performance in achieving goals will drop (the curricula will not work anymore), thus the goal selector
starts again a selection process aimed at maximising competence improvement that pushes the sub-goal selector towards
finding new ways to sequence the different tasks to properly achieve those selected by the agent.
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Abstract
The classical Policy Iteration (PI) algorithm alternates between greedy one-step policy improvement and policy evaluation. Recent
literature shows that multi-step lookahead policy improvement leads to a better convergence rate at the expense of increased complexity
per iteration. However, prior to running the algorithm, one cannot tell what is the best fixed lookahead horizon. Moreover, per a
given run, using a lookahead of horizon larger than one is often wasteful. In this work, we propose for the first time to dynamically
adapt the multi-step lookahead horizon as a function of the state and of the value estimate. We devise two PI variants and analyze the
trade-off between iteration count and computational complexity per iteration. The first variant takes the desired contraction factor as
the objective and minimizes the per-iteration complexity. The second variant takes as input the computational complexity per iteration
and minimizes the overall contraction factor. We then devise a corresponding DQN-based algorithm with an adaptive tree search
horizon. We also include a novel enhancement for on-policy learning: per-depth value function estimator. Lastly, we demonstrate the
efficacy of our adaptive lookahead method in a maze environment and in Atari.
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1 Introduction

The classic Policy Iteration (PI) and Value Iteration (VI) algorithms are the basis for most state-of-the-art reinforcement learning (RL)
algorithms. As both PI and VI are based on a one-step greedy approach for policy improvement, so are the most commonly used
policy-gradient and Q-learning based approaches. In each iteration, they perform an improvement of their current policy by looking one
step forward and acting greedily. While this is the simplest and most common paradigm, stronger performance was recently achieved
using multi-step lookahead. Notable examples are AlphaGo [10] and MuZero [9], where the multi-step lookahead is implemented via
Monte Carlo Tree Search (MCTS) [1]. Several recent works rigorously analyzed the properties of multi-step lookahead in common
RL schemes [2, 3, 4, 5, 6]. This and other related literature studied a fixed planning horizon chosen in advance. However, both in
simulated and real-world environments there is a large variety of states that benefit differently from various lookahead horizons. A
grasping robot far from its target will learn very little from looking a few steps into the future, but if the target is within reach, much
more precision and planning are required to grasp the object correctly. Similarly, at the beginning of a chess game, lookahead grants
little information as to which move is better, while agents in intricate situations in mid-game benefit immensely from considering all
future possibilities for the next few moves. Indeed, in this work, we devise a well-established methodology for adaptively choosing the
planning horizons in each state, and show it achieves a significant speed-up of the learning process.

We propose two complementing approaches to determine the suitable horizon per state in each PI iteration. To do so, we keep track of
the distance between the value function estimate and the optimal value. Our first algorithm Threshold-based Lookahead PI (TLPI)
ensures a desired convergence rate and minimizes the computational complexity for each iteration. Alternatively, our second algorithm
Quantile-based Lookahead PI (QLPI) takes the per-iteration computational complexity as a given budget and aims for the best possible
convergence rate. We then prove that both TLPI and QLPI converge to the optimum and achieve significantly lower computational
cost than its fixed-horizon alternative. Next, we devise QL-DQN: a DQN [7] variant of QLPI. In QL-DQN, the policy chooses an
action by employing an exhaustive tree search [6] looking h steps into the future. The tree-depth h is chosen adaptively per state to
achieve an overall improved convergence rate at a reduced computational cost. To sustain on-policy consistency while generalizing
over the multiple depths, we use a different value network per depth, where the first layers are shared across networks. We test our
method on Atari and show it improves upon a fixed-depth tree search.

2 Preliminaries and a Motivating Example

We consider a discounted MDPM = (S,A, P, r, γ), where S is a finite state space of size S, A is a finite action space of size A,
r : S × A → [0, 1] is the reward function, P : S × A → ∆S is the transition function, and γ ∈ (0, 1) is the discount factor. Let
π : S → A be a stationary policy, and let Vπ ∈ RS be the value function of π defined by Vπ(s) = E

[∑∞
t=0 γ

tr(st,π(st) | s0 = s
]
. The

goal of a planning algorithm is to find the optimal policy π⋆ such that, for every s ∈ S, V⋆(s) = Vπ
⋆

(s) = maxπ:S→A Vπ(s).

Policy Iteration (PI) starts from an arbitrary policy π0 and performs iterations that consist of: (1) an evaluation step that evaluates the
value of the current policy, and (2) an improvement step that performs a 1-step improvement based on the computed value. That is,
for n = 0, 1, 2, . . . : πn+1(s) = arg maxa∈A r(s, a) + γ

∑
s′∈S P(s′ | s, a)Vπn (s′). By the contraction property of the Bellman operator,

one can prove that PI finds the optimal policy after at most ⌈(log 1
γ )–1S(A – 1) log 1

1–γ ⌉ iterations [8]. PI can be extended to h-PI
by performing h-step improvements (instead of 1-step). Formally, the update rule of h-PI is πn+1(s) = arg maxa∈AQπn

h (s, a), where
Qπh (s, a) = max{πt}h

t=1
E
[∑h–1

t=0 γ
tr(st,πt(st)) + γhVπ(sh) | s0 = s,π0(s) = a

]
. The operator induced by h-step lookahead is γh contracting

which allows to reduce a factor of h from the bound on the number of iterations until convergence [2], i.e., ⌈(h log 1
γ )–1S(A – 1) log 1

1–γ ⌉.
Multi-step lookahead guarantees that the number of iterations to convergence is smaller than 1-step lookahead, but it comes with a
computational cost. Computing the h-step improvement may take exponential time in h. In tabular MDPs, this can be mitigated with
the use of dynamic programming [5], while in MDPs with a large (or infinite) state space, MCTS [1] or the alternative exhaustive
tree-search [6] are used in a forward-looking fashion. We evaluate our algorithms by measuring their computational complexity. For
this, let c(h) be the computational cost of performing an h-step improvement.

To show the potential of adaptive lookahead, consider the following MDP example: LetM be an MDP with n + 1 states s0, s1, . . . , sn
and a single sink state sn+1. Each of the n + 1 states transitions to the consecutive state by applying action u, and to the sink state with
action d. All rewards are 0 except for state sn where action u obtains reward 1 – γ. Now consider the standard PI algorithm when
initialized with π0(si) = d for all i. Since the reward at the end of the chain needs to propagate backward, in each iteration the value of
only a single state is updated. Thus, PI takes exactly n iterations to converge to the optimal policy π⋆(si) = u. When instead a fixed
horizon h = 2 is used, the reward propagates through two states in each iteration (instead of one) and therefore convergence takes n/2
iterations. Generally, h-PI takes n/h iterations to converge. While h-PI converges faster (in terms of iterations) as h increases, in most
states, performing h-step lookahead does not contribute to the speed-up at all. For instance, taking h = 2, we can achieve the exact same
convergence rate as 2-PI by using a 2-step lookahead in only a single state in each iteration. For general h, consider applying ℓ-step
lookahead in only one state – the one that is ℓ steps behind the last updated state in the chain – for each ℓ = 2, . . . , h and 1-step in the
others. This guarantees the same number of iterations until convergence as h-PI, but with much less computation time. Namely, while
the per-iteration computational cost of h-PI is O

(
n · c(h)

)
, we can achieve the same convergence rate with just O

(
n · c(1) +

∑h
ℓ=2 c(ℓ)

)
.

In practice, when n is large and c(h) can scale exponentially with h, this gap can be immense: O
(
n · 2h

)
versus O

(
n + 2h

)
.
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Algorithm 1 TLPI(κ)
Initialization: Arbitrary π0, t← 0.
while πt changes do

Evaluation: compute Vπt , and set U(s, a)←∞.
1-step improvement: U(s, a)← Qπt

1 (s, a) ∀s ∈ S.
h(κ)-step improvement: U(s, a)← Qπt

h(κ) (s, a) for every s ∈ S
such that |V⋆(s) – maxa∈A U(s, a)| > κ∥V⋆ – Vπt∥∞.
Set πt+1(s)← arg maxa∈A U(s, a) ∀s ∈ S.

end while

Algorithm 2 QLPI(θ1, . . . , θH)
Initialization: Arbitrary π0, t← 0.
while πt changes do

Evaluation: compute Vπt , and set U(s, a)←∞.
For h = 1, . . . , H, h-step improvement: U(s, a)← Qπt

h (s, a) for
every s ∈ S such that |V⋆(s) – maxa∈AU(s, a)| ≥ qh, where
qh is the (1 – θh) quantile of {|V⋆(s) – maxa U(s, a)|}s∈S .
Set πt+1(s)← arg maxa∈A U(s, a) ∀s ∈ S.

end while

3 Contraction-Based Adaptive Lookahead

In this section, we introduce the concept of dynamically adapting the planning lookahead horizon during runtime, based on the online
obtained contraction. As shown in Section 2, h-PI convergence rate can be achieved when using lookahead larger than 1 in just h
states. A prominent question is thus how to choose these states? In the example, the chosen states are evidently those with the maximal
distance between their 1-step improvement and optimal value. Next, we show this approach also leads to theoretical convergence
guarantees. To that end, we delve into the theoretical properties of PI. Since 1-step improvement yields γ contraction while h-step
improvement gives γh, h-PI converges h times faster than standard PI [2]. Importantly, this contraction is with respect to the L∞
norm; i.e., the states with the smallest contraction determine the convergence rate. This behavior is the source of weakness of fixed
lookahead. The example in Section 2 shows that one state may slow down convergence, but it also hints at an elegant solution: use a
larger lookahead value in states with small contraction. We leverage this observation and present two new algorithms: TLPI which
aims to achieve a fixed contraction in all states in reduced computational cost, and QLPI which aims to achieve maximal contraction in
every iteration within a fixed computational budget. While both algorithms seek to optimize a similar problem, their analysis differs
and sheds light on the problem from different perspectives: TLPI depends on the actual value of the contraction per state, while QLPI
considers the ordering with respect to the contraction factors of all states. Our vanilla algorithms assume knowledge of V⋆. This is a
strong assumption. However, we make it only for the basis of our theoretical analysis. In the full version of the paper, we provide
analysis after relaxing this assumption while in Sections 4 and 5 we present experiments that use alternative warm-start value functions.

Threshold-based Lookahead Policy Iteration. TLPI (Algorithm 1) takes as input the optimal value function V⋆ and a desired
contraction factor κ. It ensures that in each iteration, the value in every state contracts by at least κ. This is achieved by first performing
1-step improvement in all states, and then performing h(κ)-improvement in states whose measured contraction is less than κ, where h(κ)

is the smallest integer h such that γh ≤ κ. The following result states that TLPI converges at least as fast as (h(κ) – 1)-PI with improved
computational complexity. To measure the trade-off between contraction factor (that determines convergence rate) and computational
complexity needed to achieve it, Definition 3.1 presents θ(κ) as the fraction of states in which we perform a large lookahead.
Definition 3.1. Let {πt}T

t=1 be the sequence of policies generated by TLPI. Let κ ∈ (0, 1), and define Xt = {s : |V⋆(s) – T[Vπt ](s)| ≤
κ∥V⋆ – Vπt∥∞} as the set of states contracted by κ after 1-step improvement in iteration t. Then, denote by θ(κ) = max1≤t≤T |S \ Xt|/S
the largest fraction of states with contraction less than κ, observed along all policy updates.

Theorem 3.2. TLPI converges in ⌈
(
(h(κ) – 1) log 1

γ

)–1
S(A – 1) log 1

1–γ ⌉ iterations, and S ·
(
c(1) + θ(κ)c(h(κ))

)
per-iteration complexity.

Quantile-based Lookahead Policy Iteration. QLPI (Algorithm 2) resembles TLPI, but instead of a contraction coefficient κ, it
takes as input a vector of quantiles (budgets) (θ1, . . . , θH) ∈ [0, 1]H for some predetermined maximal lookahead H. QLPI attempts
to maximize the contraction in every iteration while using ℓ-step lookahead in at most θℓ · S states. This is achieved by performing
ℓ-step improvement on the θℓ portion of states that are furthest away from V⋆. Note that QLPI is a generalization of h-PI, obtained by
setting θh = 1 and θl = 0 for all ℓ ≠ h. The following result is complementary to Theorem 3.2: instead of choosing the desired iteration
complexity (via κ in TLPI), we choose the desired computational complexity per iteration via budgets (θ1, . . . , θH). For the resulting
iteration complexity, we define the induced contraction factor κ(θ) – the effective contraction obtained by QLPI.
Definition 3.3. Let {πt}T

t=1 be the sequence of policies generated by QLPI. Let hθt (s) be the largest lookahead applied in state s in
iteration t when running QLPI with quantiles (θ1, . . . , θH). For a given κ, define Yt(κ) = {s : |V⋆(s) – Thθt (s)[Vπt ](s)| ≤ κ∥V⋆ – Vπt∥∞}
as the set of states contracted by κ in iteration t. The induced contraction factor κ(θ) is defined as the minimal κ such that Yt(κ) = S ∀t.
Theorem 3.4. QLPI converges in ⌈(log 1

κ(θ) )–1S(A – 1) log 1
1–γ ⌉ iterations, and S ·∑H

h=1 θhc(h) per-iteration computational complexity.

To illustrate the merits of TLPI and QLPI, consider the chain MDP in Section 2. For TLPI set κ = γh for some h. In every iteration,
the states not contracted by κ after 1-step improvement are the h states closest to the end of the chain that have not been updated yet.
Thus, θ(κ) = h/S and the per-iteration computational complexity is S · c(1) + h · c(h). For QLPI set θ1 = 1 and θ2 = · · · = θh = 1/S
for some h. In every iteration QLPI first performs 1-step lookahead in all states, and then, for each ℓ = 2, . . . , h, it performs ℓ-step
lookahead in exactly one state – the state that is ℓ steps behind the last updated state in the chain. The induced contraction is thus
κ(θ) = γh and QLPI converges in n/h iterations with optimal per-iteration complexity of S · c(1) +

∑h
ℓ=2 c(ℓ).

2

RLDM 2022 Camera Ready Papers 537

537



1 2 3 4 5 6 7
Lookaheads

0

5
Num

ber
 of 

sim
ula

tor 
que

ries 1e6Fixed lookahead

^2 ^3 ^4 ^5 ^6 ^7
Thresholds

0

5

1e6 TLPI

0.3-0.2-0.1
0.2-0.15-0.05

0.2-0.05-0.02
0.1-0.05-0.02

Quantiles

0

5

1e6 QLPI

2*2 3*3 4*4 5*5
Aggregations

0

5

1e6
QLPI with state aggregation

Figure 1: Number of queries to the simulator until convergence. Lower is better. The results are averaged across 10 runs and the error
bars represented standard deviation. QLPI is run with lookaheads 1, 2, 4, and 8, where the quantiles in the x-axis represent θ2, θ4, θ8.

Figure 2: Average and std of training reward of QL-DQN (in red) and DQN with fixed tree-depths 0, 1, 2, 3 in Atari environments.

4 Maze Experiments

In a first set of experiments, we evaluate our adaptive lookahead algorithms on a grid world with walls. Specifically, we used a 30× 30
grid world that is divided to four rooms with doors between them. The agent is spawned in the top left corner and needs to reach one
of four randomly chosen goals where the reward is 1, while avoiding the trap that incurs a reward of –1. There are four deterministic
actions (up, down, right, left). Upon reaching a goal, the agent is moved to a random state. We set γ = 0.98. In short, the experiments
show that with adaptive lookahead, we manage to reach the solution with better sample complexity compared to fixed-horizon h-PI.
More importantly, our methods are robust to hyperparameter choices: improved results are obtained uniformly with all various tested
parameters of TLPI and QLPI. This alleviates the heavy burden of finding the best fixed horizon for a given environment.

More specifically, we first test fixed-horizon h-PI with values h = 1, 2, . . . , 7. In Figure 1, we compare the overall computational
complexity, and not only the number of iterations. To measure performance, we count the number of queries to the simulator
(environment) until convergence to the optimal value. More efficient lookahead horizons will require fewer overall calls to the
simulator. Beginning with the fixed lookahead results in the leftmost plot, we see the trade-off when picking the lookahead. For a
lookahead too short, convergence requires too many iterations such that even the low computational complexity of each iteration is
not sufficient to compensate. Note that standard PI (i.e., h = 1) evidently performs worse than the best fixed lookahead although it is
overwhelmingly the most popular version of PI. On the other extreme of very large lookahead, each iteration is too computationally
expensive, despite the smaller number of iterations. Next, we run TLPI with κ = γ2, γ3, . . . , γ7. The results are given in Figure 1,
second plot. By Theorem 3.2, when setting κ = γh, we expect the same number of iterations until convergence as h-PI but with
better computational complexity. In fact, the results reveal even stronger behavior: TLPI(γh) for all h = 1, 2, . . . , 7 achieves similar
computational complexity compared to the best fixed lookahead witnessed in h-PI. Then, we run QLPI with θ3 = θ5 = θ6 = θ7 = 0
and θ1 = 1 in all our experiments. For (θ2, θ4, θ8) we set the following values: (0.3, 0.2, 0.1), (0.2, 0.15, 0.05), (0.2, 0.05, 0.02) and
(0.1, 0.05, 0.02), which respectively depict decreasing weights to depths 2, 4, 8. The results are presented in Figure 1, third plot. Again
we can see that for all the parameters, QLPI performs as well as the best fixed lookahead. Moreover, notice that for some choices of θ
vectors, the performance significantly improves upon the best fixed horizon. Finally, we again run QLPI with (0.1, 0.05, 0.02), but
replace V⋆ with an approximation we obtain with state aggregation. Namely, we merge squares of k × k into a single state, solve the
smaller aggregated MDP, and use its optimal value as an approximation for V⋆. We perform this experiment with k = 2, 3, 4, 5 and
include the aggregated MDP solution process as part of the total simulator query count. This way, our final algorithm does not have
any prior knowledge of V⋆. The results are presented in Figure 1, last plot. As expected, the performance is slightly worse than the
original QLPI that uses the accurate V⋆, but for all different aggregation choices, the algorithm still performs as well as the best fixed
lookahead in h-PI.

5 QL-DQN and Atari Experiments

In this section, we extend our adaptive lookahead algorithm QLPI to neural network function approximation. We present Quantile-based
Lookahead DQN (QL-DQN): the first DQN algorithm that uses state-dependent lookahead that is dynamically chosen throughout the
learning process. To extend QLPI to QL-DQN, we introduce three key features: First, we need to compute the quantile of the current
state s in order to determine which lookahead h to use. However, we cannot go over the entire state space to find the position of h in

3
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the ordering as in the tabular case. Instead, we propose to estimate the position of s using the replay buffer. Namely, we compute qh :
the (1 – θh) ordering-based quantile of |Ṽ⋆ – T[Ṽπt ]| in the replay buffer and use lookahead of h if |Ṽ⋆(s) – T[Ṽπt ](s)| ≥ qh. For Ṽ⋆, we
use a trained agent with depth 0, which we know performs poorly compared to larger lookaheads. Second, once a lookahead h was
chosen, we need to perform h-step improvement. To implement h-step lookahead in Atari, we build upon the batch-BFS algorithm of
[6]. In short, the lookahead mechanism relies on an exhaustive tree-search that at each step spans the tree of outcomes up to depth h
from each state, done efficiently via parallel GPU emulation of Atari. Third, we introduce a per-depth Q-function. This feature is
crucial to keep online consistency and achieve convergence. Without it, values across mixed depths suffer from off-policy distortion
and the agent fails to converge. Technically, we maintain H parallel Q-networks (where H is the maximal tree depth) and use the h-th
network when predicting the value of a leaf in depth h in the tree. To improve generalization and data re-use, the H networks share the
initial layers (feature extractors). When storing states to the replay buffer, we attach their chosen lookahead depth and used it later for
the target loss. All other parts of the algorithm and hyper-parameter choices are taken as-is from the original DQN paper [7].

We train QL-DQN on several Atari environments. Since the goal of our work is to improve sample complexity over fixed-horizon
baselines, our metric of interest is the reward as a function of training time. Figure 2 presents convergence of QL-DQN versus DQN
with fixed depths 0 through 3, as a function of time. The plots consist of the average score across 5 seeds together with std values.
QL-DQN achieves better performance on VideoPinball and Tutankham, while on Solaris and Berzerk, it is on-par with the best fixed
lookahead. The conclusion is again that we obtain a better or similarly-performing agent to a pre-determined fixed planning horizon.
This comes with the benefit of robustness to the expensive hyper-parameter choice of the best fixed horizon per a given environment.

6 Discussion

In this paper, we propose the first planning and learning algorithms that dynamically adapt lookahead as a function of the state and the
current value function estimate. We demonstrate the potential of adaptive lookahead both theoretically – proving convergence with
improved computational complexity, and empirically – demonstrating their favorable performance in a maze and Atari. Our algorithms
perform as well as the best fixed horizon in hindsight in almost all the experiments, while in some cases they surpass it. Future work
warrants an investigation of whether the best fixed horizon can always be outperformed by an adaptive horizon. Theoretically, our
guarantees rely on prior knowledge of the (approximate) optimal value, which raises the question of whether one can choose lookahead
horizons adaptively without any prior knowledge, e.g., using transfer learning based on similarity between domains. Moreover, when
the forward model used to perform the lookahead is inaccurate or learned from data, the adaptive state-dependent lookahead itself
may serve as a quantifier for the level of trust in the value function estimate (short lookahead) versus the model (long lookahead). In
essence, this can offer a way for state-wise regularization of the learning or planning problem. Our work is also related to the growing
Sim2Real literature. In particular, consider the case of having several simulators with different computational costs and fidelity levels.
The lookahead problem then translates to choosing in which states to use which simulator with which lookahead.
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Abstract

In Reinforcement Learning, the performance of learning agents is highly sensitive to the choice of time discretization.
Agents acting at high frequencies have the best control opportunities, along with some drawbacks, such as possible
inefficient exploration and vanishing of the action advantages. The repetition of the actions, i.e., action persistence, comes
into help, as it allows the agent to visit wider regions of the state space and improve the estimation of the action effects.
In this work, we derive a novel operator, the All-Persistence Bellman Operator, which allows an effective use of both
the low-persistence experience, by decomposition into sub-transition, and the high-persistence experience, thanks to the
introduction of a suitable bootstrap procedure. In this way, we employ transitions collected at any time scale to update
simultaneously the action values of the considered persistence set. We prove the contraction property of the All-Persistence
Bellman Operator and, based on it, we extend classic Q-learning and DQN. We experimentally evaluate our approach in
both tabular contexts and more challenging frameworks, including some Atari games.

Keywords: Reinforcement Learning, Deep Q-Network,
Action Repetition, Persistence Selection
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1 Introduction
In recent years, Reinforcement Learning (RL, [10]) methods have proven to be successful in a wide variety of applications,
where sequential decision-making problems are typically modelled as a Markov Decision Process (MDP, [7]), a formalism
that addresses the agent-environment interactions through discrete-time transitions. Continuous-time control problems,
instead, are usually addressed by means of time discretization, which induces a specific control frequency f , or, equiva-
lently, a time step δ “ 1

f [6]. This represents an environment hyperparameter, which may have dramatic effects on the
process of learning the optimal policy [4]. Indeed, higher frequencies allow for greater control opportunities, but they
have significant drawbacks. The most relevant one is related to the toned down effect of the selected actions. In the limit
for time discretization δ Ñ 0, the advantage of each action collapses to zero, preventing the agent from finding the best
action [11] and leading to higher sample complexity. Moreover, a random uniform policy played at high frequency may
not be adequate for exploration, as it tends to visit only a local neighborhood of the initial state [6]. This is problematic,
especially in goal-based or sparse rewards environments, where the most informative states may never be visited. On the
other hand, large time discretizations benefit from a higher probability of reaching far states, but they also deeply modify
the transition process, hence a possibly large subspace of states may not be reachable.

One of the solutions to achieve the advantages related to exploration and sample complexity, while limiting the loss of
control, consists in action persistence, called also action repetition [3, 4]. When the dynamics are very rapid, repeating an
action is equivalent to acting at lower frequencies. Thus, the agent can achieve, in some environments, a more effective
exploration, better capture the consequences of each action, and, as a final consequence, learn the optimal policy faster.

In this work, we propose a value-based approach in which the agent does not only choose the action, but also its persistence,
with the goal of making the most effective use of samples collected at different persistences. The information collected at
one persistence is then used to improve the action value function estimates of all the considered possible persistences,
by decomposing the observed history in many sub-transitions of reduced length to update lower persistence values,
and by using a suitable bootstrapping procedure of the missing information for higher persistences. This procedure is
formalized with the introduction of the All-persistence Bellman Operator, which enjoys a contraction property analogous
to that of the traditional optimal Bellman operator. This new operator is then embedded into the classic Q-learning
algorithm, obtaining Persistent Q-learning (PerQ-learning). This novel algorithm, allowing for an effective use of the
transitions sampled at different persistences, let us experience a faster convergence and fosters a better exploration of the
state space. Furthermore, in order to deal with more complex domains, we consider the Deep RL scenario, extending the
Deep Q-Network (DQN) algorithm to its persistent version Persistent Deep Q-Network (PerDQN). Finally, we evaluate the
proposed algorithms, in comparison on both illustrative and complex domains, highlighting strengths and weaknesses.

2 Preliminaries
A discrete-time Markov Decision Process (MDP,[7]) is defined as a tupleM :“ xS,A, P, r, γy, where S is the state space, A
the finite action space, P : S ˆAÑ PpSq is the Markovian transition kernel, r : S ˆAÑ R is the reward function, and
γ P r0, 1q is the discount factor. A Markovian stationary policy π : S Ñ PpAq maps states to probability measures over A.
We denote with Π the set of Markovian stationary policies. The action-value function, or Q-function, of a policy π P Π is
the expected discounted sum of the rewards obtained by performing action a in state s and following policy π thereafter:
Qπps, aq “ Eπ

“
ř`8

t“0 γ
trt`1|s0 “ s, a0 “ a

‰

, where rt`1 “ rpst, atq, at „ πp¨|stq, and st`1 „ P p¨|st, atq for all t P N. The
optimal Q-function is given by: Q‹ps, aq “ supπPΠQ

πps, aq for all ps, aq P S ˆA. An optimal policy π‹ P Π is any policy
greedy w.r.t. Q‹, i.e., π‹p¨|sq P P pargmaxaPAQ

‹ps, aqq.

Q-learning The Bellman Optimal Operator T ‹ : BpS ˆAq Ñ BpS ˆAq is defined for every f P BpS ˆAq and ps, aq P

S ˆA as [1]: pT ‹fqps, aq “ rps, aq ` γ
ş

S P pds1|s, aqmaxa1PA fps1, a1q. T ‹ is a γ-contraction in L8-norm and its unique
fixed point is the optimal Q-function (T ‹Q‹ “ Q‹). When the P and r are known, the (action) value-iteration algorithm [7]
allows to retrieve Q‹ by means of the iterative application of T ‹. When the environment is unknown, Q-learning [13]
collects samples with a behavioral policy (e.g., ϵ-greedy) and then uses them to update a Q-function estimate based on the
updated rule: Qpst, atq Ð p1 ´ αqQpst, atq ` αprt`1 ` γmaxa1PAQpst`1, a

1qq, where α ą 0 is the learning rate.

Deep Q-Networks Deep Q-Network (DQN, [5]) employs a function approximator Qθps, aq, parameterized by a
deep neural network with weights θ to estimate Q‹. Interactions with the environment are stored in the replay buffer
D “ tpst, at, rt`1, st`1qunt“1. To improve stability, a target network, whose parameters θ´ are kept fixed for a certain
number of steps, is employed. The Q-Network is trained to minimize the mean squared temporal difference error
r ` γmaxa1PAQθ´ ps1, a1q ´Qθps, aq on a batch of tuples sampled from the replay buffer ps, a, r, s1q „ D.

Action Persistence The execution of actions with a persistence k P N can be modeled by means of the k-persistent
MDP [4], characterized by the k-persistent transition model Pk and reward function rk. To formally define them, the
persistent transition model is introduced: P δp¨, ¨|s, aq “

ş

S P pds1|s, aqδps1,aqp¨, ¨q, which replicates in the next state s1 the
previous action a. Thus, we have Pkp¨|s, aq “

`

pP δqk´1P
˘

p¨|s, aq and rkps, aq “
řk´1
i“0 γ

i
`

pP δqir
˘

ps, aq. This framework
eases the analysis of fixed persistences, but it does not allow the action repetition for a variable number of steps.

1
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3 All-Persistence Bellman Update
We introduce our approach to make effective use of the samples collected at any persistence. In our framework, the agent
chooses a primitive action a together with its persistence k with the introduction of the persistence option.

Definition 3.1 Let A be the space of primitive actions of an MDPM and K :“ t1, . . . ,Kmaxu, where Kmax ě 1, be the set of
persistences. A persistence option o :“ pa, kq is the decision of playing primitive action a P A with persistence k P K. We denote
with Opkq :“ tpa, kq : a P Au the set of options with fixed persistence k P K and O :“

Ť

kPKOpkq “ AˆK.

At any acting step t, the agent observes st P S, selects a persistence option ot “ pat, ktq P O and repeats the primitive
action at for kt times, observing the sequence of the states encountered and of the rewards collected. The next acting
step is then t ` kt. During the execution of the persistence option, the agent is not allowed to change the primitive
action. We now extend the policy and state-action value function definitions to consider this particular form of options. A
Markovian stationary policy over persistence options ψ : S Ñ PpOq is a mapping between states and probability measures over
persistence options. We denote with Ψ the set of the policies of this nature. The state-option value functionQψ : SˆO Ñ R
following a policy over options ψ P Ψ is defined as Qψps, a, kq :“ Eψ

“
ř`8

t“0 γ
trt`1|s0 “ s, a0 “ a, k0 “ k

‰

. In this context,
the optimal action-value function is defined as: Q‹

Kps, a, kq “ supψPΨQ
ψps, a, kq.

3.1 All-Persistence Bellman Operator
We recall that our goal is to leverage any κ-persistence transition to learn Q‹

Kp¨, ¨, kq @k P K. Suppose that κ ě k, then, we
can exploit any sub-transition of k steps from the κ-persistence transition to update the value Q‹

Kp¨, ¨, kq. Thus, we extend
the Bellman optimal operator to persistence options, introducing the operator T ‹. If, instead, κ ă k, in order to update the
value Q‹

Kp¨, ¨, kq, we partially exploit the κ-persistent transition, but then, we need to bootstrap from a lower persistence
Q-value, to compensate the remaining k ´ κ steps. To this end, we introduce the bootstrapping operator Tκ:

pT ‹fqps,a,kq“rkps,aq`γk
ż

S
Pkpds1|s,aq max

pa1,k1qPO
fps1,a1,k1q,

`

Tκf
˘

ps,a,kq“rκps,aq`γκ
ż

S
Pκpds1|s,aqfps1,a,k´κq. (1)

By combining these two operators, we obtain the All-Persistence Bellman operator Hκ : BpS ˆOq Ñ BpS ˆOq defined
for every f P BpS ˆOq as pHκfqps, a, kq “

`

p1kďκT
‹ ` 1kąκT

κqf
˘

ps, a, kq. Thus, given a persistence κ P K, Hκ allows
updating all the Q-values with k ď κ by means of T ‹, and all the ones with k ą κ by means of Tκ. The following result
demonstrates the soundness of the proposed operator.

Theorem 3.1 The all-persistence Bellman operatorHκ fulfills the following properties:

(i) Hκ is a γ-contraction in L8 norm;
(ii) Q‹

K is its unique fixed point;
(iii) Q‹

K is monotonic in k, i.e., for all ps, aq P S ˆA if k ď k1 then Q‹
Kps, a, kq ě Q‹

Kps, a, k1q.

Thus, operatorHκ contracts to the optimal action-value function Q‹
K, which, thanks to monotonicity, has its highest value

at the lowest possible persistence. In particular, it is simple to show that Q‹
Kps, a, 1q “ Q‹ps, aq for all ps, aq P S ˆA, i.e.,

by fixing the persistence to k “ 1 we retrieve the optimal Q-function in the original MDP, and consequently, we can
reconstruct a greedy optimal policy.

4 Persistent Q-learning
It may not be immediately clear what are the advantages ofHκ over traditional updates. These become apparent with its
empirical counterpart pHκt “ 1kďκ

pT ‹
t ` 1kąκ

pTκt , where:

´

pT ‹
t Q

¯

pst, at, kq “ rkt`1 ` γk max
pa1,k1qPO

Qpst`k, a
1, k1q,

´

pTκt Q
¯

pst, at, kq “ rκt`1 ` γκQpst`k, a
1, k ´ κq.

These empirical operators depend on the current partial history, which we define as: Hκ
t :“ pst, at, rt`1, st`1, rt`2, . . . , st`κq,

used by Algorithm 1 to update each persistence in a backward fashion, to allow for an even faster propagation of values.
At timestep t, given a sampling persistence κt, for all sub-transitions of Hκ

t , starting at t` i and ending in t` j, we apply
pHj´i
t to Qpst`i, at, k ` dq, for all d ď Kmax ´ k, where k “ j ´ i. With these tools, it is possible to obtain the Persistent

Q-learning algorithm (abbreviated as PerQ-learning), a persistent extension of Q-learning [13]: the agent follows a policy
ψϵQ, which is ϵ-greedy w.r.t. the option space and the current Q-function. This approach extends the MSA-Q-learning
algorithm presented in [8], by bootstrapping higher persistence action values from lower ones.
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Figure 1: Performance evaluation on tabular environments, Kmax “ 8. 50 runs (95% c.i.).

Algorithm 1 All Persistence Bellman Update

Require: Sampling persistence κt,
partial history Hκt

t , Q-function Q.
Ensure: Updated Q-function Q1

Q1
ÐQ

for j“κt,κt´1...,1 do
for i“j´1,j´2,...,0 do
kÐj´i
Q1

pst`i,at,kqÐp1´αqQpst`i,at,kq`

α pT ‹
t`iQpst`i,at,kq

for d“1,2,...,Kmax´k do
Q1

pst`i,at,k`dqÐp1´αqQpst`i,a,k`dq

α pT k
t`iQpst`i,at,k`dq

end for
end for

end for

The asymptotic convergence of Persistent Q-learning to Q‹
K directly fol-

lows from the application of the results in [9], thanks to the fact thatHκ
is a contraction, provided that their (mild) assumptions are satisfied.

5 Persistent Deep Networks
In order to deal with high-dimensional settings, we develop an extension
of PerQ-learning. It is straightforward to exploit Deep Q-Networks for
learning in the options space O. Standard DQN is augmented with Kmax

distinct sets of action outputs, to represent Q-value of the options space
O “ AˆK, while the first layers are shared. The resulting algorithm, Per-
sistent DeepQ-Network (PerDQN) is obtained by exploiting the application
of the empirical all-persistence Bellman operator. The main differences
between PerDQN and standard DQN consist in: (i) a modified ϵ-greedy
strategy, which is equivalent to the one described for its tabular version;
(ii) the use of multiple replay buffers accounting for persistence: whenever
an option ot “ pat, κtq is executed, the generated partial history Hκt

t is
decomposed in all its sub-transitions, which are stored in multiple replay
buffers Dk, one for each persistence k P K. Specifically, Dk stores tuples
in the form ps, at, s

1, r, κq, where s and s1 are the first and the last state of
the sub-transition, r is the κ-persistent reward, and κ is a parameter to

denote true length of the sub-transition, which will then be used to suitably apply pHκt .

Finally, the gradient update is computed by sampling a mini-batch of experience tuples from each replay
buffer Dk, in equal proportion. Given the current network and target parametrizations θ and θ´, the
temporal difference error of a sample ps, a, r, s1, κq is computed as pHκQθ´ ps, a, kq ´ Qθps, a, kq. Our ap-
proach differs from TempoRL DQN [2], which uses a dedicated network to learn the persistence at each
state and employs a standard replay buffer, ignoring the persistence at which samples have been collected.
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Figure 2: Performance on MountainCar. Parenthesis in
the legend denote Kmax. 20 runs (avg˘ 95% c.i.).

6 Experimental Evaluation
PerQ-learning We present the results on the experiments in tab-
ular environments, particularly suited for testing PerQ-learning
because of the sparsity of rewards. We start with the determin-
istic 6x10 grid-worlds introduced by [2]. In these environments,
the episode ends if either the goal or a hole is reached, with `1
or ´1 points respectively. In all the other cases, the reward is 0,
and the episode continues. Moreover, we experiment the 16x16
FrozenLake, with rewards and transition process analogous to
the previous case, but with randomly generated holes at the
beginning of the episode.

The results are shown in Figure 1, where we compared PerQ-
learning with TempoRL (with the same maximum skip-length J “

8) and classic Q-learning. In all cases, PerQ-learning outperforms
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the other methods, especially Q-learning, whose convergence is significantly slower. In general, PerQ-learning shows
faster rates of improvements than TempoRL, especially in the first learning iterations.

PerDQN In order to evaluate PerDQN performance, MountainCar is perhaps the most suited to evaluate the performance
of persistence options, since 1-step explorative policies usually fail to reach the goal because of their low probability to
commit to an action for long times [4]. Figure 2 shows that TempoRL and standard DQN cannot converge to the optimal
policy, while PerDQN can reach the optimal solution, which consists in obtaining the minimum loss required to reach
the top of the mountain. The algorithm is then tested in the challenging framework of Atari 2600 games. In Figure 3
we compare PerDQN, classic DQN and TempoRL. Our PerDQN displays a faster learning curve thanks to its ability of
reusing experience, although in some cases (e.g. Kangaroo) PerDQN seems to inherit the same instability issues of DQN,
we conjecture due to the overestimation bias [12].

7 Discussion and Conclusions
In this paper, we have considered RL policies that implement action persistence, modeled as persistence options, selecting a
primitive action and its duration. We defined the all-persistence Bellman operator, which allows for an effective use of the
experience collected from the interaction with the environment at any time scale. Thanks to this operator, action-value
function estimates can be updated simultaneously on the selected persistence set: low persistences (and primitive actions)
can be updated by splitting the samples in their sub-transitions; action value functions for high persistences can instead
be improved by bootstrap, a procedure that takes into account the estimation of the partial missing information. After
proving that the new operator is a contraction, we applied it to extend classic Q-learning and DQN with their persistent
version. We performed an experimental campaign on tabular and deep RL settings demonstrating the effectiveness of our
approach and the importance of considering temporal extended actions.
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Abstract

Model-based Reinforcement Learning (MBRL) holds promise for data-efficiency by planning with model-generated
experience in addition to learning with experience from the environment. However, in complex or changing environments,
models in MBRL will inevitably be imperfect, and their detrimental effects on learning can be difficult to mitigate. In this
work, we question whether the objective of these models should be the accurate simulation of environment dynamics
at all. We focus our investigations on Dyna-style planning in a prediction setting. First, we highlight and support three
motivating points: a perfectly accurate model of environment dynamics is not practically achievable, is not necessary, and
is not always the most useful anyways. Second, we introduce a meta-learning algorithm for training models with a focus
on their usefulness to the learner instead of their accuracy in modelling the environment. Our experiments show that in a
simple non-stationary environment, our algorithm enables faster learning than even using an accurate model built with
domain-specific knowledge of the non-stationarity.

Keywords: Model-based Reinforcement Learning, Planning, Model Learning,
Meta Learning, Dyna, Sample Models
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1 Introduction

A promising approach to sample efficiency in reinforcement learning is model-based RL, where an agent learns a model of
the environment. The agent uses this model to generate its own internal experience with which it can plan, reducing the
need for more expensive veridical experience, i.e., environment interactions. Learning effective models for planning remains
a challenge in complex or changing environments [6]. Models for planning are traditionally trained to accurately simulate
environment dynamics. In complex or changing environments, models will necessarily be imperfect, which can lead to
detrimental effects on the learner.

Past work has used several strategies to grapple with imperfect models. The first is to compensate in the planning process.
An imperfect model can be used selectively by estimating predictive uncertainty to avoid planning in states where it
could be detrimental [1]. Similarly, while longer sequences of internal experience can often be beneficial in planning, their
length needs to be limited due to increasing compounding model error [5]. Another strategy is to relax the requirement
for models to accurately simulate environment transitions by focusing only on accuracy in the resulting returns. This has
been formally articulated through the value equivalence principle [4, 3] and manifested in MuZero [7].

Our work questions the need for focusing on models that are concerned with accurately simulating the environment. We
specifically study Dyna-style planning [9] in a prediction setting to provide a building block towards the control setting.
We design a simple non-stationary environment that cannot be modelled perfectly without assumptions on how it changes.
Then, we use meta-learning to train a model that generates synthetic transitions for fast adaptive learning. The resulting
learning speed upon change in the environment makes it competitive even with a stable accurate model of environment
dynamics for an agent with privileged access to regions of stability.

2 Should Models Be Accurate?

An important way RL systems can learn about their environment is by anticipating the outcomes of different behaviors
using both veridical and internal experience. In the prediction setting, an RL system experiences a stream of observation
vectors ot ∈ Rd and scalar rewards rt. From this single stream of data, ht ≜ o0, r1,o2, r2,o3, · · · rt−1,ot, the learner forms
an approximate value function (i.e., a prediction) to estimate the expected sum of future discounted rewards. With linear
function approximation, predictions are made by projecting a feature vector ϕt = f(ht) ∈ Rn with weights θ:

v̂(ϕt;θt) ≜ θ⊤t ϕt, v̂(ϕt;θ) ≈ v(ht) ≜ E[Rt + γRt+1 + γ2Rt+2 + · · · |Ht = ht].

Model-based learners update their prediction weights θ by planning with internal experience produced by a model
m ∈M ⊆ P(Rn × R× Rn). In this work, models combine the selection of initial states1 with the dynamics of a forward
transition. At each planning step, the model generates an internal starting state ϕ̃, a next state ϕ̃′, and a reward r̃. Given
this transition sample (ϕ̃, r̃, ϕ̃′) ∼ m, an update rule can be applied to the prediction weights θ.

Dyna-style learning systems interleave planning steps with model-free updates on veridical experience (ϕ, r,ϕ′), which come
from the environment’s dynamics m∗ ∈M. In our work, Dyna learners apply semi-gradient updates to reduce one-step
temporal difference (TD) errors δ ≜ r+ γθ⊤ϕ′ − θ⊤ϕ, using a fixed step size α ∈ R+ at each time step: θ ← θ+ αδϕ. This
update is used with both veridical and internal experience.

In addition to learning predictions, model-based systems must also learn the planning model m. These systems are often
designed with an accuracy objective—to approximate the environment dynamics so that eventually m ≈ m∗. Using an
accurate model, the learner stands to benefit from additional transition samples that simulate the veridical experience.
Still, this raises an important question: should a learner strive for its model to be accurate? While accurate models might
represent a subset of models that can be useful for learning, they do not represent the entirety of the set. Insisting on
model accuracy, rather than model utility, can be a hindrance to fast adaptive learning. We expound on this with three
observations.

First, perfect accuracy in a model is not practically achievable. Although accuracy is a well-defined objective for model
learning, it represents a condition that cannot be achieved. Accuracy is only achieved when the planning model and
environment agree—specifically when m = m∗. In realistic environments, a learning system can never achieve this
condition, because the real world is too big and complex (including other learning agents such as itself) to be discovered
and represented with a finite amount of compute. Therefore, fully-accurate models can never be learned.

Second, even when possible, an accurate model is not necessary. In spite of the barrier to perfect accuracy, prior work
shows that other models can work just as well. For instance, the class of value-equivalent models are those which produce
all the same value updates as m∗, but may transition under different dynamics [4]. Since they predict the same values,
planning with value-equivalent models will lead to the same solution as an accurate model. Systems such as Predictron

1In Dyna-style planning the selection of an initial state (and action) for planning is sometimes called search control [9].

1
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[8] and MuZero [7] are successful examples which also show the benefit of connecting the model learning process to the
way it is used for planning and value improvement. More importantly, this line of work shows that even if accuracy could
be achieved, fully-accurate models are not necessary.

Third, an accurate model might not be the most useful. In this work, planning models are used to approximate the true
value function v ∈ V by reducing squared TD error with semi-gradient updates. Solutions to this objective come from the
set of TD fixed points ϑ ⊂ V. Fixed points can be indexed with the model whose experience produced them: θ(m) ∈ V.

Given that fully-accurate models cannot be achieved, nor are they needed to reach a fixed point, one may wonder whether
there exists models that are more useful than others, or even more useful than the environment model! A natural measure
of a model’s utility could be the number of calls required to approach a TD fixed point. With this, consider a subset of
modelsM ⊂ M with the same TD fixed point as the environment model m∗: M ≜ {m ∈ M|θ(m) ∈ ϑ}. The following
result shows that there can be models that find solutions faster than the environment model when starting from the same
point.
Theorem 1. There are domains where, for some initial θ ∈ V, a TD fixed point θ∗ ∈ ϑ can be approached with fewer calls to m ∈M
than with the domain dynamics m∗ ̸= m.

Proof Sketch. Consider a domain that contains k states, which share the same outgoing transitions and value. Suppose the
agent is employing a linear function approximator with states represented with a one-hot encoding. Consider a model
that produces internal experience from the k-hot vector containing these states, thus treating them as a single state. Clearly
m ̸= m∗, and existing results from the state aggregation literature show such aggregations exist and do not change the TD
fixed point. Therefore, m ∈M. However, it would take k calls to m∗ to produce the update produced by one call to m.

In short, a perfectly-accurate model is not practically achievable depending on the complexity of an environment, is not
necessary by the value equivalence principle, and it might not be the most useful for a learner’s objectives. A useful model
in the prediction setting is one that helps the learning system obtain an accurate value function.

3 A Demonstration of Useful Models

In this section, we demonstrate how useful models can be trained to aid fast learning. We focus on a prediction problem
in a non-stationary environment where Dyna-style planning is used to rapidly adapt to changes in the environment.
The environment is constructed so that, despite being simple, an agent’s state representation is not sufficient to build an
accurate model. We first describe the environment. Then, we present baselines that represent both model-free RL and
model-based RL with models aimed at accuracy. After that, we introduce our algorithm that uses meta-learning to train a
model aimed at usefulness. We seek to answer the question: can an algorithm that learns a useful, but not necessarily accurate
model, result in faster learning than either an accurate model or an equivalent model-free learning approach?

Non-Stationary Windy Hallway. To empirically compare the learning performance of planning models, we use a
non-stationary windy hallway: a gridworld of 6 columns and 3 rows. The last column contains 3 episode-terminating grid
cells. The starting location is in row 1 and column 0. In every timestep, an agent either moves one grid cell North-East
or South-East, each with a probability of 0.5 (or possibly just East if already in a northern or southern-most cell). Every
300 episodes, the environment switches between two different reward regimes, where the location of non-zero reward
changes. In one regime, reward is +1 for terminating in row 0, and 0 otherwise. In the other, reward is -1 for terminating
in row 2 and 0 otherwise. All algorithms use a discount factor of γ = 0.9, and planning algorithms perform 5 planning
updates per environment step. Experiments run for 75,000 steps (15,000 episodes) and each algorithm’s value-function
estimates are compared against the true expected return.

Baselines. Based on the environment, we select baselines to highlight learning speed when no planning is done and
when Dyna-style planning is done with models aiming for accuracy. For our representative algorithm without planning,
we use TD(0), which employs value updates from veridical experience only. We call this algorithm Model-free. To keep
things simple, our baseline representatives of algorithms with Dyna-style planning do not explicitly train a model at all,
but replay back veridical experience as the extreme of optimizing for accuracy. We examine two alternatives for how past
experience transition tuples are sampled. The simplest option is to store every experienced transition tuple. A model will
simply sample transition tuples proportional to how often they were experienced in the past. We call the Dyna algorithm
using this model AllExperienceDyna. If the environment were Markov in the agent’s state representation, this model would
approach a perfectly accurate model. As our environment is not Markov, this approach will result in obvious problems as
internal experience from different reward regimes can distract it from the true expected return. Our second baseline uses
domain-specific knowledge of the environment to only store and resample veridical transitions tuples that are Markov in
the agent’s state representation (i.e., the non-terminating state transitions). This experience is stable across changes in the
reward regime and we call the Dyna algorithm with this model StableExperienceDyna. This approach, in many ways, is an
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unfair comparison, as it is exploiting domain knowledge to construct a stable model. We could, though, see this as an
idealized representative of Abbas and colleagues’ approach that does selective planning based on “model inadequacy” [1],
which is analogous to using a stable model.

Algorithm 1 L : SynthDyna Meta Loss

1: input: θ, ϕ, r,ϕ′
2: θ′ ← θ
3: for 1, · · · , k do
4: ϕ̃, r̃, ϕ̃′ ∼ m(η)

5: δ̃ ← r̃ + γθ′⊤ϕ̃′ − θ′⊤ϕ̃
6: θ′ ← θ′ + ζδ̃ϕ̃
7: return: (r + γθ⊤ϕ′ − θ′⊤ϕ)2

Algorithm 2 SynthDyna for Prediction

1: input: feature transform f
2: initialize: θ0, η, D ← {}, ϕ0 ← f(h0)
3: for t = 1, 2, · · · do
4: Observe ot and rt from the environment.
5: ϕt ← f(ht)
6: D ← D ∪ {θp,ϕt−1, rt,ϕt}
7: // Update value with veridical experience.
8: δt ← rt + γθ⊤t−1ϕt − θ⊤t−1ϕt−1
9: θt ← θt−1 + αδtϕt−1

10: θp ← θt // Save θt for model training
11: // Update value with internal experience.
12: for 1, · · · , k do
13: ϕ̃, r̃, ϕ̃′ ∼ m(η)

14: δ̃ ← r̃ + γθ⊤t ϕ̃
′ − θ⊤t ϕ̃

15: θt ← θt + βδ̃ϕ̃
16: // Update SynthDyna model with metaloss L (Alg 1).
17: Sample minibatch B from D.
18: η ← Adam(η,B,L)

SynthDyna. In Algorithm 2, we propose a proof-of-
concept algorithm that we call SynthDyna. SynthDyna’s
model, unlike our planning baselines, is (i) learned, and (ii)
generates synthetic internal planning experience that does
not aim to accurately simulate environment dynamics. In
designing SynthDyna, we seek to demonstrate that giving
the model control over the representation of a transition
for planning while having a model learning objective
informed by utility to the learning system, can result in
faster adaptation in our reward switching non-stationary
environment. Like a typical Dyna architecture, SynthDyna
updates its value function parameters using both veridical
experience transitions and internal planning transitions
from its model. Unlike our other Dyna representatives,
SynthDyna’s model is a generative model, using a 2-layer
fully connected neural network with parameters η that
takes in a Gaussian noise vector as input and produces a
transition tuple (ϕ̃, r̃, ϕ̃′). SynthDyna trains this generative
model with a meta-learning procedure that uses a meta-
loss tied to the learner’s primary objective. As seen in line
6 of Algorithm 2, SynthDyna collects every experienced
veridical transition (ϕt−1, rt,ϕt) and it also collects the
value function parameters, θp from the previous step before
planning updates were performed. At a given frequency
of steps in the environment, SynthDyna samples a batch
of tuples where each is (θp,ϕ, r,ϕ′). It then uses that
batch’s samples as inputs to the metaloss; see Algorithm
1. The metaloss carries out the process of planning with
SynthDyna’s model for k steps updating θp from the batch.
It then evaluates the squared TD-error, on the stored
veridical transition (ϕ, r,ϕ′) from the batch. To prevent
the TD-target in the error from being manipulated before
this evaluation step, the value function parameters in the target are set as the initial parameters θ. The gradient of the
resulting meta-loss is then used to update the model parameters η to improve the model.

We hypothesize that the combination of SynthDyna’s meta-learned model that aims to be useful rather than accurate,
and giving the model full control over the representation of the internal planning transitions will yield a model that
can surpass the learning speed of all baselines including our strongest baseline, StableExperienceDyna, that is unfairly
informed of stable transitions in the environment.

Results. We evaluate SynthDyna against our three baselines in the the non-stationary hallway environment described
previously. Every algorithm’s hyper-parameters are selected after a comprehensive grid search. The primary metric we
focus on is the mean squared value error (MSE) per episode, which measures the average squared error of the predicted
return compared to the expected return over the timesteps in an episode. Let θ be the value function’s parameters before
an update based on a veridical transition, (ϕ, r,ϕ′), (i.e., line 9 of Algorithm 2). For an episode of length n, starting at
timestep e, the mean squared value errors per episode is computed with: MSE = 1

n

∑e+n
t=e (v(ht)− ϕ⊤t θt)2.

Figure 1a shows the MSE per episode for the last two reward-regime switches. Figure 1b highlights the average
MSEs for each algorithm for the last 600 episodes. AllExperienceDyna has the poorest performance across baselines
due to its planning process that updates the value function with old experience that could be in direct opposition
to the current reward regime. In an environment like this one, the much simpler Model-free algorithm performs
substantially better as each update to the value function is exclusively done with the present moment’s veridical experience.
StableExperienceDyna is able to surpass the performance of AllExperienceDyna and Model-free demonstrating the value
of model-based RL for fast adaptation in this domain. It can reap the benefits of planning by updating based on past
transition tuples that are stable across switching reward regimes. SynthDyna outperforms even StableExperienceDyna
with a statistically significant difference between the average MSEs over the last 600 episodes (two sample t-test, p < 0.05).
This shows that a model like SynthDyna’s can be built in a reward switching non-stationary environment to produce
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Figure 1: We ran each algorithm in the non-stationary windy hallway environment for 15,000 episodes, with 30 trials. Fig.
1a, shows the mean squared value error per episode for the last 600 episodes. Fig. 1b, shows the average MSE over the last
600 episodes. Shaded regions and error bars show 95% confidence intervals.

completely synthetic transition tuples and yet update the value function more effectively than if a stable and accurate
model of the world was used.

4 Conclusion

“All models are wrong but some are useful” [2]. In this work, we questioned whether models in MBRL should aim to
accurately simulate environment dynamics. We posited an alternative approach that models should aim to be useful to the
learning system, aiding in faster adaptation. As a proof of concept, we introduced SynthDyna, which uses meta-learning
to train a model for Dyna-style planning such that it directly reduces prediction error. In our experiments, SynthDyna
outperforms model-based baselines focused on accuracy. Focusing on model usefulness and the approach taken by
SynthDyna are promising directions for MBRL to realize its potential for general, sample efficient RL.
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Abstract

In this work we present an empirical study where we demonstrate the possibility of developing an artificial agent that
is capable to autonomously explore an experimental scenario. During the exploration, the agent is able to discover and
learn interesting options allowing to interact with the environment without any pre-assigned goal, then abstract and re-
use the acquired knowledge to solve possible tasks assigned ex-post. We test the system in the so-called Treasure Game
domain described in the recent literature and we empirically demonstrate that the discovered options can be abstracted
in an probabilistic symbolic planning model (using the PPDDL language), which allowed the agent to generate symbolic
plans to achieve extrinsic goals.

Keywords: Options, Intrinsic motivations, Planning
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1 Introduction

In this work we want to show the possibility of developing an artificial system capable of ”closing the loop” between low-
level autonomous learning and high-level symbolic planning. In a previous work [7] the authors presented a promising
approach, trying to combine learning in high-dimensional sensors and actuators spaces through the option framework
with high-level, symbol-based, decision making through planning techniques. They proposed an algorithm able to
abstract the knowledge of the system into symbols that can then be used to create sequences of operators to solve complex
tasks in both simulated and real robotic scenarios. In particular, they assumed options were already given to the agent
and then tested the capability of their algorithm to generate proper symbolic knowledge for a PDDL domain.

The general problem addressed in this paper is therefore to develop a system that effectively starts from learning op-
tions that can then be abstracted through the algorithm in [7] and used to solve through planning a task in which it is
necessary to perform a sequence of different actions. Option learning has been thoroughly studied in the literature: in
particular, when assigned with a goal, a system can leverage on this assigned task to discover or generate sub-goals that
can be learnt and encapsulated into options [16]. In the Treasure Game domain that we are considering here (see [7]),
given the assigned task of reaching for the treasure, the different passages of climbing up and down a ladder, pulling
levers, picking keys, etc., can be identified as components of the sequence of actions needed to achieve the final goal,
and thus learnt through any learning algorithm, described as options and chunked together in the proper sequence.

Figure 1: The proposed conceptual framework.

However, the perspective we take in this work is that of an
agent who has to learn autonomously to interact with the en-
vironment, without necessarily being aware of what tasks will
be later assigned to it. We make this assumption because it
forces us to develop versatile and adaptive agents that can
be used in unknown and unstructured environments. In this
perspective, the general problem described above becomes
the more specific one of autonomously identifying which op-
tions to learn. Similarly to what done in [15], we need to pro-
vide the agent with a general criterion by which it can iden-
tify states and/or events in the world that can be the target
of specific options. Given that we do not know what task the
agent will be asked to perform, we will leverage intrinsic mo-
tivations [9] to identify potentially interesting states and use
them to build options.

The field of Intrinsically Motivated Open-ended Learning
(IMOL, [13]) is showing promising results in the development
of versatile and adaptive artificial agents. Intrinsic Motiva-
tions (IMs, [10]) are a class of self-generated signals that have
been used to provide robots with an autonomous guidance
for several different processes, from state-and-action space ex-
ploration [5], to the autonomous discovery, selection and learning of multiple goals [12, 3]. In general, IMs guide the
agent in the acquisition of new knowledge independently (or even in the absence) of any assigned task: this knowledge
will then be available to the system to solve user-assigned tasks [14] or as a scaffolding to acquire new knowledge in a
cumulative fashion [11, 4] (similarly to what have been called curriculum learning [1]).

To connect this process of autonomous option discovery with the generation of high-level planning procedures, follow-
ing our preliminary works [8], we adopt a hierarchical approach aimed at developing a robotic architecture capable
of holding together the different mechanisms needed to close the loop between low and high level learning representa-
tions. In details, the idea depicted in Figure 1 highlights the necessity of three different critical capabilities (or conceptual
modules) that every robotic agent must have in order to operate autonomously.

The option discovery module combines primitives to create options and learns precondition and effect models. Then, these
collected data are used by the abstraction module to generate a PPDDL domain containing operators following the abstract
sub-goal option property. Finally, the PPDDL description can be used by an off-the-shelf planner to reach any sub-goal
which can be described with the available high-level symbols. Potentially, the robotic agent can continue to execute these
steps in a loop extending its knowledge and capabilities over time, exploitable by the human who can ask to reach a
certain goal expressed in automatically generated symbols. In the following sections we experimentally show that the
discovered options can be abstracted in a probabilistic symbolic planning model (in PPDDL language), which allowed
the agent to generate symbolic plans to achieve extrinsic goals.
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2 Option discovery

Figure 2: The Treasure Game configuration used for the ex-
perimental analysis.

Options are temporally-extended actions defined
as o(I, π, β) [17], in which π is the policy exe-
cuted, I the set of states in which the policy can
run and β the termination condition of the option.
The option’s framework revealed to be an effective tool to
abstract actions and extend them with a temporal compo-
nent. The use of this kind of actions demonstrated to im-
prove significantly the performances of model-based Re-
inforcement Learning compared to older models, such as
one-step models in which the actions employed are the
primitives of the agent [18]. Intuitively, these low-level
single-step actions, or primitives, can be repeatedly ex-
ploited to create more complex behaviours.

In this section, we describe a possible way to discover and
build a set of options from scratch. using the low-level
actions available in the Treasure Game environment (see
Fig. 2). In such environment, an agent starts from its ini-
tial position (home), moves through corridors and climbs
ladders over different floors, while interacting with a se-
ries of objects (e.g., keys, bolts, and levers) to the goal of
reaching a treasure placed in the bottom-right corner and
bringing it back home.

In order to build new behaviours, the agent can execute
the following primitives: 1)go up, 2)go down, 3)go left,
4)go right, and 5)interact, respectively used to move the
agent up, down, left or right by 2-4 pixels (the exact value
is randomly selected with a uniform distribution) and to interact with the closest object. In particular, the interaction with
a lever changes the state (open/close) the doors associated to that lever (both on the same floor or on different floors)
while the interaction with the key and/or the treasure simply collects the key and/or the treasure inside the agent’s bag.
Once the key is collected, the interaction with the bolt unlocks the last door, thus granting the agent the access to the
treasure.

Figure 3: The algorithm discovering options in the en-
vironment.

In our experiment, primitives are used as building blocks in the
construction of the option, participating to the definition of π, I
and β. In more details, we create new options from scratch,
considering a slightly different definition of option o(p, t, I, π, β)
made up of the following components: p, the primitive used by
the execution of π; t, the primitive which, when available, stops
the execution of π; π, the policy applied by the option, consisting
in repeatedly executing p until t is available or p can no longer
be executed; I , the set of states from which p can run; β, the ter-
mination condition of the action, corresponding to the availabil-
ity of the primitive t or to the impossibility of further executing
p. Consequently, this definition of option requires p, to describe
the policy and where it can run, and t, to define the condition
stopping its execution, maintaining its characteristic temporal
abstraction. For the sake of simplicity, the option’s definition
will follow the more compact syntax o(p, t) in the remainder of
the paper.

Algorithm 1 describes the process utilized to discover new op-
tions autonomously inside the simulated environment. The pro-
cedure runs for a number of episodes max eps and max steps
steps. Until the maximum of steps of the current episode is not
reached, the function keeps track of the starting state s and ran-
domly selects an available primitive p, such that p can be exe-
cuted in s (lines 8 and 9). Then, as long as p is available and
there is no new available primitives (lines 10 and 11), the option
p is executed, and the final state s′ of the current potential option
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1. go_down [to 5th floor] 2. go_left [to handle] 3. interact(handle)
4. go_right [to wall] 5. go_down [to 4th floor] 6. go_right [to handle]
7. interact(handle) 8. go_left [to key] 9. interact(key)
10. go_right [to stairs] 11. go_down [to 3rd floor] 12. go_left [to stairs]
13. go_down [to 1st floor] 14. go_left [to bolt] 15. interact(bolt, key)
16. go_right [to wall] 17. go_up [to 2nd floor] 18. go_right [to treasure]
19. interact(treasure) 20. go_left [to stairs] 21. go_down [to 1st floor]
22. go_left [to bolt] 23. go_right [to stairs] 24. go_up [to 3rd floor]
25. go_right [to wall] 26. go_left [to stairs] 27. go_up [to 4th floor]
28. go_right [to handle] 29. interact(handle) 30. go_left [to stairs]
31. go_up [to 5th floor] 32. go_left [to stairs] 33. go_up [home]

Figure 4: Plan generated by the mGPT planner with our autonomously synthesized PPDDL domain.

is updated. The function NEW AVAILABLE PRIM returns True when a primitive which was not previously executable
becomes available while executing p; the function returns False in all the other cases. For instance, if the agent finds
out that there is a ladder over him while executing the go right option, the primitive go up gets available and the func-
tion return True. In other words, NEW AVAILABLE PRIM detects the interesting event, thus implementing the surprise
element that catches the agent’s curiosity. For this reason, the primitive representing the exact reverse with respect to
the one currently being executed is not interesting for the agent, i.e., the agent will not get interested in the go right
primitive while executing go left. The same treatment applied to the (go left, go right) primitive pair is also used with
the pair (go up, go down). When the stopping condition of the most inner while is verified and s ̸= s′, a new option can
be generated according to the following rationale. In case the while exits because of the availability of a new primitive
t in the new state s′, a new option o(p, t) is created (line 17); otherwise, if the while exits because the primitive under
execution is no longer available, a new option o(p, {}) is created, meaning ”execute p while it is possible” (line 19). In
either case, the created option op is added to the list options (line 20), which is the output of the function. In our test
scenario, the algorithm generated 11 working options (see Section 3), suitable for solving the environment, and collected
experience data to be abstracted in PPDDL [19] format successively. Consequently, as we introduced above, the agent
performs two learning phases: the first, to generate options from scratch and creating a preliminary action abstraction,
and the second, to produce a higher representation partitioning the options and highlighting their causal effects. The
latter phase, producing a symbolic representation suitable for planning, is analyzed in the next section.

3 Empirical Analysis

In this section we describe the results obtained from a preliminary empirical study, carried out by testing the Algorithm
in Fig. 3 in the context of the Treasure Game domain [7]. The algorithm was implemented in Python 3.7 under Linux
Ubuntu 16.04 as an additional module of the Skill to Symbols software, using the Treasure Game Python package. As
previously stated, the Treasure Game domain defines an environment that can be explored by the agent by moving
through corridors and doors, climbing stairs, interacting with handles (necessary to open/close the doors), bolts, keys
(necessary to unlock the bolts) and a treasure. In our experimentation, the agent starts endowed with no previous
knowledge about the possible actions that can be executed in the environment; the agent is only aware of the basic
motion primitives at his disposal, as described in Section 2. The goal of the analysis is to assess the correctness, usability
and quality of the abstract knowledge of the environment autonomously obtained by the agent. The experiment starts by
using the algorithm showed in Figure 3, whose application endows the agent with the following set of learned options
(11 in total):

O ={(go up, {}), (go down, {}), (go left, {}), (go left, go up), (go left, go down), (go left, interact),
(go right, {}), (go right, go up), (go right, go down), (go right, interact), (interact, {})} (1)

The test has been run on an Intel I7, 3.4 GHz machine, and the whole process took 30 minutes. All the options are
expressed in the compact syntax (p, t) described in Section 2, where p represents the primitive action corresponding
to the action’s behavior, and t represents the option’s stop condition (i.e., the new primitive action discovered, or an
empty set). Once the set of learned options has been obtained, the test proceeds by applying the knowledge abstraction
procedure described in [7]. In our specific case, the procedure eventually generated a final PPDDL domain composed
by a set of 1528 operators. In order to empirically verify the correctness of the obtained PPDDL domain, we tested the
domain with the off-the-shelf mGPT probabilistic planner [2]. The selected planning goal was to find the treasure, located
in a hidden position of the environment (i.e., behind a locked door that could be opened only by operating on a bolt with
a key) and bring it back to the agent’s starting position, in the upper part of the Treasure Game environment. The agent’s
initial position is by the small stairs located on the environment’s 5th floor (up left). The symbolic plan depicted in Fig. 4
was successfully generated and, as readily observable, reaches the goal that has been imposed (note that the PPDDL
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operators are named after their exact semantics manually, in order to facilitate their interpretation for the reader). The
previous analysis is still ongoing work, in this respect, there are at least three research lines to investigate. The first line
entails the study of different fine-tuning strategies of all the parameters utilized in the previously mentioned Machine
Learning tools (such as DBSCAN, SVM, Kernel Density Estimator) involved in the knowledge-abstraction process. The
second line is about analyzing the most efficient environment exploration strategy used to collect all the transition data
that will be used for the classification tasks that are part of the abstraction procedure, as both the quantity and the quality
of the collected data may be essential at this stage. The third one will be the exploration of innovative iterative procedures
to incrementally refine [6] the generated PPDDL model.
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Abstract

Predicting the sensorimotor stream has consistently been a key component for building general learning agents. Whether
through predicting a reward signal to select the best action or learning a predictive world model with auxiliary tasks,
prediction making is at the core of reinforcement learning. One of the main research directions in predictive architectures
is in the automatic construction of learning objectives and targets. The agent can consider any real-valued signal as a
target when deciding what to learn, including the current set of internal predictions. A prediction whose learning target
is another prediction is known as a composition. Arbitrarily deep compositions can lead to learning objectives that are
unstable or not suitable for function approximators. This manuscript looks to begin uncovering the underlying structure
of compositions in an effort to leverage and learn them more effectively in general learning agents. Specifically, we
consider the dynamics of compositions both empirically and analytically. We derive the effective schedule of emphasis
(or discounts) of future observations with compositions of arbitrary depth, leading to informative observations about
the prediction targets. In the empirical simulations, we focus on the unintuitive behavior of compositions, especially in
cases that are not easy to analyze. Overall, predictions predicting predictions which predict predictions have interesting
properties and can add depth to an agent’s predictive understanding of the world.

Keywords: reinforcement learning; prediction; GVFs
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1 Introduction

Reinforcement learning is built on predicting the effect of behavior on future observations and rewards. Many of our
algorithms learn predictions of a cumulative sum of (discounted) future rewards, which is used as a bedrock for learn-
ing desirable policies. While reward has been the primary predictive target of focus, TD models (Sutton 1995) lay out
the use of temporal-difference learning to learn a world model through value function predictions. Temporal-difference
networks (Sutton and Tanner 2004) take advantage of this abstraction and build state and representations through predic-
tions. Sutton, Modayil, et al. 2011 and White 2015 further the predictive perspective by developing a predictive approach
to building world knowledge through general value functions (GVFs).

GVFs have been pursued broadly in reinforcement learning: Günther et al. 2016 used GVFs to build an open loop laser
welder controller, Linke et al. 2020 used predictions and their learning progress to develop an intrinsic reward, Edwards
et al. 2016 used GVFs to build controllers for myoelectric prosthetics, using gvfs for auxiliary training tasks to improve
representation learning (Jaderberg et al. 2017; Veeriah et al. 2019), to extend a value function’s approximation to general-
ize over goals as well as states (Schaul et al. 2015), and to create a scheduled controller from a set of sub-tasks for sparse
reward problems (Riedmiller et al. 2018). Successor representations and features are predictions of the state, learned or
given, which have been shown to improve learning performance (Barreto et al. 2018; Dayan 1993; Russek et al. 2017;
Sherstan et al. 2018).

Learning predictions of any real-valued signal the agent has access to also opens the possibility of asking compositional
predictive questions (White 2015). A compositional question is one whose target is dependent on another prediction
internal to the agent. Compositions expand the possible range of predictive questions we can specify as a GVF (Rafols
et al. 2006; Schlegel et al. 2021; Sutton and Tanner 2004; White 2015; Zheng et al. 2021). While this may suggest the
GVF framework is limited in what questions can be asked, the limitations are necessary so the predictions can be trained
independent of span (van Hasselt and Sutton 2015). Learning independent of span means the target can be learned us-
ing online algorithms regardless of the effective horizon of the prediction. Adding layers of compositional questions
have improved the learning in predictive representations (Rafols et al. 2006; Schlegel et al. 2021), and improved the per-
formance of deep reinforcement learning through auxiliary tasks (Zheng et al. 2021). In the automatic specification of
learning targets compositions are thought to provide a way for the agent to build complexity (Kearney 2022; Schlegel
et al. 2021; Veeriah et al. 2019; Zheng et al. 2021), but often these architectures don’t leverage compositions for stability
concerns (Schlegel et al. 2021).

As well as improving behavior empirically, compositions can provide semantic depth. An excellent example of this
can be seen in option-extended temporal difference networks (Rafols et al. 2006), and later explored again in Schlegel
et al. 2021. The example is centered in an environment where the agent has a low-powered visual sensor and needs
to learn its directionality from the painted walls. Each cardinal direction has a different colored wall. The first layer
of predictions the agent makes is to predict what color it will observe if it were to drive straight. The second layer are
myopic predictions which ask what the first layer’s prediction will be after turning clockwise (or counter-clockwise). The
second layer allows the agent to predict which walls are to its sides as well as the wall in the direction the agent is facing.
These predictions cannot be specified in the usual GVF framework, but can be easily constructed through compositions.
While this may be “repeated information” in a sense, the extra learning objectives makes the learning properties of the
predictive representation better as compared to other specifications (Schlegel et al. 2021).

As algorithms for the automatic discovery of complex question networks continue to push the boundaries of what ques-
tions are considered by the agent, the properties of compositions should be better studied. When searching for what to
learn the questions an agent eventually retains will be dependent on the agent’s ability to learn the predictions. While
it is clear questions that naturally diverge (say setting the discount γ = 1) should be avoided, other problems, such as
the scale of a target, could be equally as problematic when using function approximation (i.e. end-to-end neural net-
works). This could mean important predictions are disregarded because the agent is unable to learn the answer without
proper strategies to normalize the prediction’s magnitude. Better strategies for learning and normalizing predictive tar-
gets will come from understanding the effective discount schedule (or emphasis) compositional predictions will have on
the targets.

In this report, we consider the effect of compositions on the sequence of discounts, and relegate the effect of off-policy
importance weights to future work. We first analyze the sequence of discounts over any number of compositions and
constant discounts. We then analyze this sequence to better understand how it emphasizes parts of the data stream.
Surprisingly, the effective discount for constant discount compositions have a form which can be described analytically.
While this does not include the full spectrum of discount functions, it provides a first step towards understanding com-
positions. Next we look at simulations using more complex state-dependent discount functions using a simple consistent
sequence and two timeseries datasets. In these simulations we focus on the effect of applying the same discount function
a large number of times, looking to see if the shape of the returns become regular over the compositions. Finally, several
future directions and questions are posed.
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Figure 1: (left) The effective discount for n compositions normalized by the maximum value found in section 2. (middle,
right) The cycle world simulations, with top graph as the cumulant and subsequent plots n compositions with constant
and terminating discounts respectively.

2 Analyzing the sequence

In this section, we restrict to the setting where we have an infinite sequence of sensor readings x =
{x[0], x[1], . . . , x[t], . . . , x[∞]} where x[i] ∈ [xmin, xmax] and a constant discount γ. The return of this signal starting at
a time step t is V [t] =

∑∞
k=0 x[k]γ[k − t] where γ[k] = γk−1 for k >= 1 and 0 otherwise. This framing of the return is

slightly different from the typical presentation. Specifically, we reinterpret the return as a convolution beteween γ and x
1 and shift the discount sequence over the sensor readings. This implicitly defines an infinite sequence of predictions y[t].
In the above equation, if we replace the sequence x with the sequence of predictions y, we get a new set of predictions
and for any number of compositions n we have V n[t] =

∑∞
k=0 V

n−1[k]γ[k − t]. Expanding this equation we can define
the general sequence of effective discounts for n compositions and the corresponding return as

γn[k] =

{
0 if k < n∏n−1
i=1 (k−i)
(n−1)! γ1[k − n]

V n[t] =
∞∑

k=0

x[k]γn[k − t]

where γ1[k] = γ[k] defined above and V n[t] is the target of the nth composition at timestep t. For any value n there
are two sequences multiplied together. The original discounting shifted by the number of applications γ1[k − n] and a
diverging series

Qn[k] =

∏n−1
i=1 (k − i)
(n− 1)!

=
Γ(k)

Γ(k − n+ 1)Γ(n)

where Γ(k) = (k − 1)! for k ∈ Z is known as the Gamma function, and can be used to analyze the function with k ∈ R.

We know for any particular application of the convolution γ on a series with known domain [xmin, xmax] the value func-
tion can take values bounded by V 1[t] ∈ [ xmin

1−γ ,
xmax
1−γ ]. This extends to n compositions in a straightforward way where

the range of the value function becomes V n[t] ∈ [ xmin
(1−γ)n ,

xmax
(1−γ)n ]. While normalizing the value function to take values

within in the range [0, 1] has been used in various settings (Schlegel et al. 2021), as we add more compositions we see the
effective range of values shrinking considerably.

Given the effective discounting sequence above, we can begin to piece together the which observations are emphasized
in the predictions. The first 100 steps of the effective discount function for several values of n can be seen in figure 1.
These sequences are normalized to be in the range [0, 1] for a visual comparison. The emphasis becomes increasingly
spread as n increases, with the peak of this function moving further to the future at a consistent rate.

To find the maximum value we take the derivative of the log of the sequence with respect to k getting

δ

δk
ln γn[k] = ψ(k)− ψ(k − n+ 1) + ln γ

where ψ(z + 1) = Hz − C is the digamma function, Hz =
∑z
i=1

1
i ≤

∫ z
1

1
xdx = ln(z) is the Euler harmonic number, and

C is the Euler-Mascheroni constant. Using the approximation above, we can find where we should expect the maximal
value is (to an approximation) k = hn − (h − 1) = h(n − 1) + 1, where h = 1

1−γ is sometimes known as the horizon of
discount γ. Of course this is an approximation from above and the real value falls in k ∈ [h(n− 1), h(n− 1) + 1)].

1In digital signal processing (Oppenheim and Schafer 2010) often the convolution, in this case γ, is mirrored across t and the inifinte
sequence of sensor readings is x = {x[−∞], . . . , x[t], . . . , x[∞]}. The corresponding convolution would be V [t] =

∑∞
k=−∞ x[k]γ[t− k]

which would change how we define the sequence of γ. To be consistent with the reinforcement learning literature, we don’t follow
this here and instead implicitly define γ as the mirrored version and only consider the sequence starting at k = 0.

2

RLDM 2022 Camera Ready Papers 557

557



Ob
se
rva
tio
n

Re
tur
n

Timestep Timestep

MSO Critterbot

Timestep Timestep

n=1

n=3

n=10

n=2

n=5

n=20

n=40

n=10

n=1

n=3

n=10

n=2

n=5

n=20

n=40

n=10

Figure 2: (left two) Returns of the multiple sinusoidal oscillator (MSO) synthetic data set with constant and terminating
discount respectively. The gray vertical lines are where the return terminates. (right two) Returns of Critterbot data set
over the light3 sensor with constant and terminating discount respectively.

3 Empirical observations

While we can describe the effective discount for composing constant discount predictions, the same techniques are diffi-
cult to apply to a non time-invariant discount (i.e. state-dependent discounts (Sutton, Modayil, et al. 2011; White 2015)).
Instead, in this section we look at the ideal returns of various signals using constant discounting and a terminating dis-
counting functions. We use three datasets moving from highly synthetic to real-world robot sensori-motor data. The
goal of this section is to show the non-intuitive behavior of compositions to motivate further analysis and exploration.
All code can be found at https://github.com/mkschleg/CompGVFs.jl. Below γ = 0.9 unless otherwise stated.

The first series is based off the cycle world, where the agent observes a sequence of a single active bit followed by 9
inactive bits, where the length of the sequence is m = 10. The cumulant is the observation itself, and in this report we
learn using TD(λ = 0.9) with learning rate α = 0.1 and an underlying tabular representation where each component is
the place in the sequence. We learn two chains of compositions. The first is that of the continuous discounting described
above, and the second is a series of discounts which terminate (i.e. γ[t] = 0) when the observation is active. The
predictions of a single run can be seen in figure 1. For the constant discount, as the number of compositions increases we
see the prediction sequence converge to what looks to be a sinusoid with frequency of 10, and amplitude driven by the
analysis above. We expect this to be the case following from the central limit theorem. For the terminating discount, the
wave form is more interesting. The first layer of predictions look very similar to the constant discount with amplitude
shifted by γm

1−γm . But as there are more compositions the effect seems to be the prediction is at its height farther away
from the active bit. As the agent gets closer to the observation, the sequence of summed values is shorter leading to
smaller values. Given the sequence we use it is easy to mistake this as the agent creating a trace of the cumulant, but we
must remember the prediction is about future cumulants.

Next we use a subset of the Critterbot dataset (Modayil et al. 2014; White 2015), focusing on light sensor 3. This gives
a sequence of spikes similar to the cycle world sequence and a long pause in-between consistent saturations of the light
sensor. We are able to see with the current setting the predictions look more like shifted and spread spikes. But with
many more compositions, the return reverts to a similar form as before. The terminating discounts (with termination at
sensor saturation x[t+ 1] > 0.99) provides a nice demonstration of how the returns are predicting the signal, just with a
decaying prediction instead of the usual growing prediction. The results are similar in the multiple sinusoidal oscillator
(Jaeger and Haas 2004). We use a slightly different terminating discount where the return terminates when the previous
normalized prediction is yn−1[t + 1] > 0.9 rather than when the observation is saturated. While there are decays as the
MSO sequence peaks, as we increase the depth of the composition, these periods are less frequent. Deep compositions
may indicate parts of the sequence where there are fewer saturations in the original sequence.

4 Future Directions

This work suggests a number of interesting research directions and questions. While we mostly analyzed the sequence
on discrete steps and applications of the filter, the general form does lend itself to continuous and complex values of
n and k. In a similar vein, we focused on real valued exponential discounting while several discounting schemes exist
which could be applied to our formulation. We are particularly interested in complex discounting (De Asis et al. 2018)
and hyperbolic discounting (Fedus et al. 2019). Applying a diverse set of discounting schemes in compositions provide
an interesting way to extend the power of value functions while maintaining learnability through efficient algorithms
like temporal-difference learning.

The approach used in this paper is unable to analyze state-dependent discount functions. One way around this might be
in analyzing truncated sequences and taking an expectation over a distribution of sequence lengths. This might lead to a
expected effective discounting sequence, but how this will interact with an underlying Markov process is unclear. This
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is an important next step for understanding the effects of compositions in general value functions, and could also help
in analyzing off-policy compositions.

Finally, the return can be re-interpreted as a convolution over the infinite sequence of observations. While this inter-
pretation was only used to better the notation in this manuscript, further connections to convolutions and digital signal
processing should be explored. Better filter designs might inspire different discounting schedules to squeeze more infor-
mation from the data stream. We also have only analyzed these convolutions in the time domain. The frequency domain
might give us more insight into how consistent signals like the cycle world dataset will be effected by compositions.
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Abstract

Robotic manipulation stands as a largely unsolved problem despite significant advances in robotics and machine learning
in the last decades. One of the central challenges of manipulation is partial observability, as the agent usually does not
know all physical properties of the environment and the objects it is manipulating in advance. A recently emerging theory
that deals with partial observability in an explicit manner is Active Inference. It does so by driving the agent to act in a
way that is not only goal-directed but also informative about the environment. In this work, we apply Active Inference to
a hard-to-explore simulated robotic manipulation tasks, in which the agent has to balance a ball into a target zone. Since
the reward of this task is sparse, in order to explore this environment, the agent has to learn to balance the ball without
any extrinsic feedback, purely driven by its own curiosity. We show that the information-seeking behavior induced by
Active Inference allows the agent to explore these challenging, sparse environments systematically. Finally, we conclude
that using an information-seeking objective is beneficial in sparse environments and allows the agent to solve tasks in
which methods that do not exhibit directed exploration fail.

Keywords: Model-Based Reinforcement Learning, Robotic Manipulation, Ac-
tive Inference
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1 Introduction and Related Work

Figure 1: Robot using Active
Inference to solve a challeng-
ing manipulation task.

A common belief in cognitive science is that the evolution of dexterous manipulation
capabilities was one of the major driving factors in the development of the human
mind [1]. Performing manipulation is cognitively highly demanding, forcing the actor
to reason not only about the impact of its actions on itself but also about the impact on
its environment. This inherent complexity leaves autonomous robotic manipulation a
largely unsolved topic, despite significant advances in robotics and machine learning in
the last decades.

One of the central challenges of manipulation is partial observability. While we are
manipulating an object, we rarely know all of its physical properties in advance. Instead,
we must resort to inferring those properties based on observations and touch. To deal
with this issue as effectively as possible, humans have developed various active haptic
exploration strategies that they constantly apply during manipulation tasks [2].

A recently emerging theory from cognitive science that tries to explain this notion of
constant active exploration is Active Inference (AI) [3]. AI formulates both action and
perception as the minimization of a single free-energy functional, called the Variational
Free Energy (VFE). In doing so, Friston et al. [4] derive an objective function that consists
of an extrinsic, goal-directed term and an intrinsic, information-seeking term. The com-
bination of these two terms drives the agent to act in a way that is both goal-directed and
informative, in that the agent learns about its environment through its actions.

In this work, we show how AI can be used to learn challenging robotic manipulation tasks without prior knowledge. For
now, we assume that the environment is fully observable and only consider epistemic uncertainty1. To implement AI
in practice, we use a neural network ensemble and deploy Model Predictive Control for action selection. We show that
agents driven by AI explore their environments in a directed and systematic way. These exploratory capabilities allow the
agents to solve complex sparse manipulation tasks, on which agents that are not explicitly information-seeking fail.

Related to our approach is PETS [5], which also trains ensemble models for the transition and reward distributions and
selects actions with a Cross-Entropy Method planner. The key difference to our approach is that PETS does not use an
intrinsic term and instead greedily select the actions they predict to yield the highest reward.

An approach similar to ours is Tschantz et al. [6], who also tackle RL tasks with AI. The difference to our approach is that
they use a different free energy functional used for planning and chose a different approximation of their intrinsic term,
which requires them to make a mean-field assumption over consecutive states. They evaluate their approach on multiple
RL benchmarks, including Mountain Car and Cup Catch.

2 Active Inference

According to the Free Energy Principle (FEP) [3], any organism must restrict the states it is visiting to a manageable
amount. Mathematically, AI implements this restriction as follows: Every agent maintains a generative model p of the
world and avoids sensations o that are surprising, hence have a low marginal log-probability ln p(o). Thus, the objective
can be written as

min
π
− ln p(o) (1)

where o is generated by some external process that can be influenced by changing the policy π.

The agent’s generative model is assumed to consist of not only observations o, but also contain hidden states x, giving
p(o) =

∫
p(o, x) dx =

∫
p(o |x) p(x) dx. To make Eq. (1) tractable, we apply variational inference and obtain the ELBO

using Jensen’s inequality:

− ln p(o) = − ln

∫
p(o, x) dx = − ln

∫
qϕ(x)

qϕ(x)
p(o, x) dx ≤ DKL[qϕ(x) ∥ p(x | o)]− ln p(o) =: F (o, ϕ)

where qϕ(x) is the variational posterior, parameterized by ϕ, and F (o, ϕ) is termed the Variational Free Energy (VFE) in
the AI literature.

Minimizing F (o, ϕ) w.r.t. the variational parameters ϕ corresponds to minimizing the KL divergence between the
variational posterior qϕ(x) and the true posterior p(x | o). In other words, by minimizing the VFE w.r.t. ϕ, the agent is
solving the perception problem of mapping its observations to their latent causes.

1Epistemic uncertainty is the uncertainty the agent has over its model of the world. In contrast, aleatoric uncertainty is uncertainty
over the agent’s state.

1

RLDM 2022 Camera Ready Papers 561

561



To facilitate planning into the future, the VFE can be modified to incorporate an expectation over future states, yielding
the Expected Free Energy (EFE) Friston et al. [4]:

Gπ (ϕ) = −Eqϕ(ot+1:T ,xt+1:T |π)[ln p(ot+1:T , xt+1:T )− ln qϕ(xt+1:T |π)]
≈ −Eqϕ(x |π)[DKL[qϕ(o |x, π) ∥ qϕ(o |π)]]︸ ︷︷ ︸

intrinsic term (expected information gain)

−Eqϕ(o |π)[ln p(o)]︸ ︷︷ ︸
extrinsic term

where we omitted subscripts for readability and defined qϕ(o |x) := p(o |x), such that qϕ and p follow the same observation
model.

The minimization of the EFE w.r.t. the policy π causes the agent to act in a way that maximizes both information gain and
the extrinsic term. Here, the extrinsic term acts as an external signal that allows us to make the agent prefer or disprefer
certain observations. While it is common in RL literature to use a reward function to give the agent a notion of “good”
and “bad” behavior, in the AI framework, we define a prior distribution over target observations p(o) that we would like
the agent to make. Note that by making the reward part of the observation and setting the maximum reward as target
observation [6], we can transform any reward-based task to fit into the AI framework.

3 Method

In this work, we propose a model-based Reinforcement Learning algorithm that uses AI to efficiently explore chal-
lenging state spaces. Therefore, we assume that the environment is fully observable, governed by unknown dynam-
ics P (xτ |xτ−1, aτ ) and provides the agent with a reward P (rτ |xτ , aτ ) in every time step. We model both the dy-
namics and the reward with neural network conditioned Gaussians p(rτ |xτ , aτ , θ) := N (xτ | µxθ (xτ−1, aτ ) , σxI) and
p(rτ |xτ , aτ , θ) := N (rτ | µrθ (xτ , aτ ) , σrI), resulting in the following generative model:

p(x0:T , a1:T , r1:T , θ) = p(x0) p(a1:T ) p(θ)
T∏

τ=1

p(rτ |xτ , aτ , θ) p(xτ |xτ−1, aτ , θ)

Since the environment is fully observed, the only hidden variables are the neural network parameters θ. Thus, we are left
with the following minimization problem for selecting a policy π := at+1:T at time t:

min
π
Gπ (ϕ) := −Eqϕ(θ |π)[DKL[p(xt+1:T , rt+1:T | θ, π) ∥ qϕ(xt+1:T , rt+1:T |π)]]︸ ︷︷ ︸

expected parameter information gain

−Eqϕ(rt+1:T |π)

[
T∑

τ=t+1

rτ

]

︸ ︷︷ ︸
expected cumulative reward

(2)

where we defined the observation preference distribution such that p(oτ ) ∝ erτ , and defined qϕ(x, r | θ, π) := p(x, r | θ, π).
Hence, by this definition, q and p differ only in the marginal probability of the model parameters θ.

Similar to other methods utilizing Model Predictive Control [5], by minimizing this objective function we select a policy
that maximizes the expected cumulative reward over a fixed horizon. However, additionally we are maximizing the
expected parameter information gain, driving the agent to seek out states that are informative about its model parameters
θ. This term causes the agent to be curious about its environment and explore it systematically, even in the total absence
of extrinsic reward. The optimization of this objective can now theoretically be done by any planner that is capable of
handling continuous action spaces. In this work, similar to Chua et al. [5], we use a variant of the Cross-Entropy Method
to find an open loop sequence of actions at+1:T that maximizes Eq. (2).

A major challenge in computing Gπ (ϕ) is that neither the intrinsic, nor the extrinsic term can be computed in closed form.
While the extrinsic term can straightforwardly be approximated with sufficient accuracy via Monte Carlo, the intrinsic
term is known to be notoriously difficult to compute [7]. Thus, instead of maximizing it directly, many methods maximize
a variational lower bound of it [8]. However, due to the high-dimensional nature of θ, these approaches are too expensive
to be executed during planning in real time.

Hence, instead we propose to use a Nested Monte Carlo estimator that reuses samples from the outer estimator in the
inner estimator to approximate the intrinsic term:

IG((x, r), θ) ≈ 1

n

n∑

i=1

ln p(xi, ri | θi)− ln
1

n

n∑

k=1
k ̸=i

p(xi, ri | θk)

︸ ︷︷ ︸
inner estimator︸ ︷︷ ︸

outer estimator

Although using the same samples θ1, . . . , θn in the inner estimator as in the outer estimator violates the i.i.d. assumption,
we found this reuse of samples to increase the sample efficiency substantially. Since this estimator only requires samples
of θ, we represent qϕ(θ) by a set of particles θ1, . . . , θn, making our model a neural network ensemble.
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4 Experimental Results

Figure 2: Visualization of the two environment configurations
we test our methods on: Tilted Pushing (left) and Tilted Pushing
Maze (right). The target zone is marked in red.

A central feature that sets our method apart from other
purely model-based approaches [5, 9] is the intrinsic term,
that explicitly drives the agent to explore its environment
in a systematic manner. To evaluate the exploratory capa-
bilities of our method, we designed two hard-to-explore
manipulation tasks: Tilted Pushing and Tilted Pushing Maze.
In both tasks, the agent has to push a ball up a tilted table
into a target zone to receive reward. The agent can move
the gripper in a plane parallel to the table and rotate the
black end-effector around the Z-axis (Z-axis being orthog-
onal to the brown table and pointing up). As input, the
agent receives the 2D positions and velocities of both the
gripper and the ball, and the angular position and velocity
of the end-effector. To add an additional challenge, in the
Tilted Pushing Maze task we add holes to the table, that
irrecoverably trap the ball if it falls in. For a visualization
of these tasks, refer to Fig. 2.

There are two aspects make these tasks particularly challenging: First, the reward is sparse, meaning that the only way the
agent can learn about the reward at the top of the table is by moving the ball there and exploring it. Second, balancing the
ball on the finger and moving it around requires a fair amount of dexterity, especially given the low control frequency of 4
Hz2 we operate our agent on. Once the agent drops the ball, it cannot be recovered, giving the agent no choice but to
wait for the episode to terminate to continue exploring. Both of these aspects make solving these tasks with conventional,
undirected exploration methods like Boltzmann exploration or adding Gaussian noise to the action extremely challenging.
Consequently, the agent has to learn to balance the ball without receiving any extrinsic reward, purely driven by its own
curiosity.

As visible in Fig. 3, our method is able to solve the Tilted Pushing. Both SAC [10] and our method without an intrinsic term
fail to find the reward within 10,000 episodes. The holes of Tilted Pushing Maze make this environment significantly harder
to explore, as the ball has to be maneuvered around two corners in order to reach the target zone. In this experiment, only
our method finds the reward within 30,000 episodes. As can be seen in Fig. 4, the reason for the bad performance of the
non-intrinsic agent is its failure to explore the full state space. While our agent continues to systematically maneuver the
ball around the holes in unseen locations, the non-intrinsic agent rarely passes the lower holes and leaves the upper half of
the table unexplored.

0 2,000 4,000 6,000 8,000 10,000

0

20

40

Number of episodes

C
um

ul
at

iv
e

re
w

ar
d

pe
r

ep
is

od
e

Tilted Pushing

Ours
Non-intr.
SAC

0 10,000 20,000 30,000

0

10

20

30

Number of episodes

Tilted Pushing Maze

Ours
Non-intr.
SAC

Figure 3: Cumulative per-episode reward for two different versions of our agent (one with intrinsic term, one without)
and SAC on both variants of our environment. This graph displays the evaluation reward, which is obtained by rolling
out the learned model without considering the intrinsic reward. Both non-intrinsic configurations and SAC failed to find
the objective and converged to local minima.

These experiment show that our method is able to systematically explore a complex, contact-rich environment with many
dead-ends. Without any extrinsic feedback, our agents learned to balance the ball on the end-effector and systematically
move it around the environment until the target zone was found. The sole reason for this behavior to occur in the first

2The computation of the intrinsic term is computationally heavy, limiting us to this rather low control frequency.
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place is that our agents understood they could only explore the entire state space if they kept balancing the ball and move
it to unseen locations.

Ours

Non-intrinsic

Episodes 7000 14000 21000 28000 35000

Figure 4: Comparison of the states visited by our method and an agent using no intrinsic term, relying on Gaussian
exploration instead. The brightness of each pixel indicates how often the ball has visited the respective point of the table at
the given point in the training. The coordinate origin is at the bottom of each image, meaning that the images are rotated
180°compared to the top-down view in Fig. 2. Each configuration was run once.

5 Conclusion

In this work, we developed a method capable of applying Active Inference to complex Reinforcement Learning tasks. We
evaluated our method in two challenging robotic manipulation task, both designed to be particularly hard-to-explore.
Throughout our experiments, we showed that our method induces systematic exploration behavior and is capable of
solving even the most challenging of these environments. Neither the non-intrinsic configurations nor the maximum
entropy method SAC managed to solve the robotic manipulation tasks. Hence, we conclude that the information-seeking
behavior of our agents is beneficial for solving challenging exploration problems with sparse rewards.

Finally, in future work we plan to apply our method to a real robot and evaluate whether Active Inference can be used in
real robotic manipulation tasks.
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Abstract

Sequential decision making is the process where a player takes a decision conditioned on past observations, that will
further impact future observations and decisions. Therefore, generalization in sequential decision making cannot be em-
pirically measured with tools built on the i.i.d. (independent and identically distributed) assumption. In Reinforcement
Learning, generalization is often studied via environment overfitting, where the learning algorithm itself is overspecial-
ized to the environment. The research community has studied generalization in text-based games by creating environ-
ments aimed at training learning algorithms. TextWorld is one such environment, where a large number of text-based
games can be generated from a predefined procedure. The performance of the learning algorithm is measured via com-
pletion of novel games generated by the same procedure. In such a framework, the concept of generalization implies
that a player has learnt a procedure hidden in the environment dynamics by interacting with objects derived from the
same class.

We propose SMARTHOME, a framework with a variety of procedures related to controlling smart devices in a home
layout. Following object-oriented programming paradigm, the framework provides support for building procedures
of the following capabilities: object abstraction, task abstraction, encapsulation, and compositionality. Each class of device
contains a rich set of attributes and values. To solve these games, the player will have to interact with all objects to
understand their properties and functionalities. In addition, the player must identify the procedure for each type of tasks
and queries in order to generalize to new games with unseen objects.

We propose two baselines for the framework: an LSTM and a large-language model based DQN. We show that while
rich contextual representations improve task completion rate, they alone are not enough to achieve generalization in the
proposed framework.

Keywords: Procedural learning, Text-based games, Generalization
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1 Introduction

Generalizing to novel situations is a goal of machine
learning systems. The knowledge acquired while
learning to generalize can be divided into two types:
declarative knowledge and procedural knowledge. Declar-
ative knowledge is static and can be retrieved from
data in a one-off manner. Tasks like answer extraction
in question answering or natural language inference
fall under this category. In contrast, knowing how to do
something is called procedural knowledge and is by
nature sequential. Procedures abstract a goal-oriented
task by extracting high-level actions necessary to
complete a task.

Following Goyal et al. [6], we compare procedural
learning to object-oriented programming (OOP)
concepts: while class instances (objects) may vary
from one another, the set of methods are common
across different objects of the same class. Methods
can therefore be thought of as knowledge at the level
of class but not specific to an instance [6]. Procedures
would often share the following characteristics: i)
object abstraction: a procedure should be valid for all
objects in the same class and not specific to one in-
stance. ii) encapsulation: the internal details (attributes
and values) of an object are only accessible via get and
set methods. iii) task abstraction: a procedure orches-
trates object methods to achieve a global objective iv)
compositionality: a procedure reuses knowledge from
simpler procedure within a complex one.

Similarly, we define generalization as the ability to in-
teract with novel objects belonging to the same class,
which directly relates to a procedure’s object abstrac-
tion capabilities. During the training phase, the player
acquires class-level knowledge by interacting with
unique instances from the same class. In contrast, dur-
ing the testing phase, the player is expected to transfer
this knowledge to unforeseen objects generated from
the same class.

Objective

Hey, you are a personal assistant! There is something our customer 

needs you to do! Modify Two in One Ultra Lightweight Laptop to 40 in 

corridor.

Game 

 -= Livingroom =-     

You arrive in a livingroom. You begin to take stock of what's in  the 

room. You make out a low  table. The low table is ordinary. On the low 

table you can make out a remote. 

Hey, want to see a tv? Look over there, a tv. Looks like someone's 

already been here and taken everything off it, though. 

There is an exit to the east. Don't worry, it is unblocked. You don't like 

doors?  Try go west.

There is an Expensive C1 77 Inch 4k Smart OLED Television on the floor.                                                                                                                                                 

Agent  > Go east 

Game 

 -= Corridor =-  

You've just walked into a corridor. Let's see what's in here. There is an 

exit to the east. Don't worry, it is unblocked. You should try going west. 

There is a stylish Two in One Ultra Lightweight Laptop on the floor.

Agent  > Examine stylish Two in One Ultra Lightweight Laptop 

Game
The stylish Two in One Ultra Lightweight Laptop  is 

currently switched off.

Agent  > Turn on stylish Two in One Ultra Lightweight Laptop

Game You switch the stylish Two in One Ultra Lightweight Laptop  on.

Agent  > Examine stylish Two in One Ultra Lightweight Laptop

Game 
The stylish Two in One Ultra Lightweight Laptop is currently switched 

on. Attributes are: battery and volume. 

Agent
 > Query stylish Two in One Ultra Lightweight Laptop

about volume

Game 

The admissible values for the volume are 20 percent, 30 percent,

40 percent and 50 percent. The current value for the volume is 20 

percent. 

Agent > Set volume of stylish Two in One Ultra Lightweight Laptop to 40

Game 

You set the volume of stylish Two in One Ultra Lightweight Laptop to 40. 

Your score has just gone up by one point. 

You scored 1 out of a possible 1, in 6 turn(s).

Figure 1: A game from the SMARTHOME environment

Since learning object interactions well leads to better generalization, it is imperative that a learning environment sup-
port rich interactions with objects in the environment. To this end, we propose SMARTHOME, a novel benchmarking
environment where all procedures pertain to controlling devices in a house. The framework provides support for object
abstraction, task abstraction, encapsulation, and compositionality through rich object interactions and variety of procedures.
For example, the framework also includes information-seeking procedures, where the player needs to interact with the
user to gather information that might be missing from the given objective. A typical SMARTHOME scenario is shown in
Figure 1. Our contributions can be summarized a follows:

1. We propose SMARTHOME, a framework to test generalization in text based games.
2. We propose two baseline agents: LSTM and BERT-based DQN and we test for generalization in different config-

urations (number of rooms, devices, etc., in the house).
3. We show that when compared to representations learnt from LSTM, large language models help in improving the

task completion rate. However, they are not sufficient for achieving generalization in SMARTHOME environment,
making it a strong benchmark environment.

2 Related Work

Several interactive frameworks have been proposed, mainly in the textual and the visual modalities. In Interactive
Question Answering (IQA) [5], for example, an agent is given an initial image, a scene, and a question. The agent needs
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to plan for the goal, conditioned on the question by navigating the scene, understanding the objects through interactions.
Similarly, Chevalier-Boisvert et al. [1] introduced the BabyAI research platform to support human in the loop grounded
language learning. The framework comprises of 19 levels of increasing difficulty, with each level aimed toward acquiring
a richer synthetic language.

On the other hand, a few text-based frameworks have been proposed using Microsoft TextWorld [2], an open-source,
extensible engine that both generates and simulates text-based games. A base scenario is designed using Inform7, and
the TextWorld library creates interactive plays of similar games to train a Reinforcement Learning (RL) agent. One of the
most interesting features in TextWorld is the full control of the game generation process. Several research questions have
been addressed using the TextWorld environment. For instance, in contrast to the conventional question answering task,
Yuan et al. [8] pose a procedural learning-based task, where the agent arrives at an answer by interacting with a textual
environment. ALFWorld [7], is an interactive-visual framework, where an agent navigates the environment to satisfy a
given high-level objective such as make coffee, clean floor, etc. The authors employ the TextWorld environment
to learn low-level actions such as navigating in the environment, which will then be transferred to the visual framework.

3 The Environment

SMARTHOME environment: We developed a new text-based game environment called SMARTHOME, a family of pro-
cedurally generated games in which the player needs to satisfy a user-specified goal. The proposed framework simulates
a user formulating a smart home query to a virtual assistant (such as Alexa). Using the environment, games of different
task and query types can be created, each containing a large number of devices (objects).

The objective of a game is determined by the task type it belongs to. Currently, there are three type of tasks: simple, control
and IFTTT (If This, Then That). The tasks are compositional and are designed to be in increasing level of complexity.
Simple tasks consist of finding a device in a home layout, and turning it on/off (turn on the television). Control
tasks consist of modifying the value of an attribute for a specific device (set the washing machine cycle in
the laundry to normal). All control task objectives require that a player must first execute a simple task i.e., find
the device and turn it on. IFTTT tasks execute a simple or control task only when certain conditions are met (turn on
the lights after 9 pm). The type of query determines the amount of relevant information given in the objective.
There are currently four types of queries: complete-valid, complete-invalid, incomplete-valid, and incomplete-invalid. Complete
indicates that the query contains enough information about the task, incomplete means that the player has to retrieve the
missing information. On the other hand, valid indicates that the information from the query is correct and the player does
not need to verify it. Invalid means that some information is wrong and the player must either correct it or express that
the task cannot be done. It is important to note that the information about the completeness and validity of the games is
not made explicit to the player.

All games are procedurally generated following two steps: an objective is uniquely sampled based on the type of tasks
and queries. Given the objective, we create the corresponding device, attributes, and location. This is to ensure that the
task becomes feasible. We then randomly sample other smart objects and locations.

Complex object interaction and generalization: TextWorld engine originally comes with a few challenges imple-
mented such as the Cooking Challenge. Different scenarios were later developed [8] to test if an agent could answer
questions related to an object’s attribute. In all games, the agent must interact with the surrounding objects to learn their
functionalities. However, the interaction is limited to few actions. The objects also have limited capabilities and only
boolean attributes. In SMARTHOME, each object is uniquely identified by a tuple (adjective, name). At instantiation, an
object is assigned a list of attributes, a location in the layout and each attribute with a value.

All objects share the same functionalities: they can be queried, turned on or off, examined and the setting can be modified.
However, their location, attributes, and possible values depend on the object’s class. We believe that an agent can only
thrive in such an environment if the agent learns how to interact with complex objects. Memorizing the games will lead
to poor generalization as the agent will not be able to transfer its knowledge to a new object.

Action space: The player progresses through the game by entering text commands that differ from one game to another.
In text-based games, actions relate to navigation or object interaction. Inform7, contains default commands for check-
ing the current location look, inventory or to navigate the layout (go east, go west, go north, go south).
Players can interact with a device via turn on/off commands. In SMARTHOME, we simplified the layout to form a
straight line. The goal is to limit the influence of navigation on task completion rate and to better assess the agent’s abilities
to interact with objects. In several of the previously proposed approaches, navigation controls the most of the difficulty
of the games, while in SMARTHOME the game complexity is mostly driven by task and query types.

Additionally, we add a new set of commands. All games contain an application that lists devices grouped by location.
The player can access this list using the command examine app. The player can check for the existence of a device and
examine {device} to learn about its attributes. However, the device must first be turned on to reveal its attributes.
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The current value of an attribute can be obtained from query {device} about {attribute}. A virtual user is also
present in all games to answer questions related to the objective via the command ask {user} about {something}.
Finally, all object attributes can be modified via set {attribute} of {object} to {value}.

Procedures and task compositionality: Other major differences between existing challenges in TextWorld and
SMARTHOME are the types of procedure learned and the overall objective of the games. In Cooking Challenge, for
example, there is only one procedure (prepare a meal) and is mostly based on navigation and interaction with the object
is only done via simple actions (take pan, drop pan etc.). SMARTHOME contains several procedures all relating
to different devices, involving more complex interaction with objects and less navigation. Additionally, it supports the
learning of compositional procedures; for example, the procedure for a simple task with complete and valid queries is:
find the location of a device, turn on a device, whereas for control tasks, the procedure is given by
execute procedure for a simple task, find all attributes of the device, find admissible
attribute-values configurations, change the setting of the device. In case the query is incom-
plete and valid, the procedure requires gathering extra information from the environment: execute procedure for
simple tasks, find missing information from the user, application, or directly on the
device, execute the procedure for control task.

4 The Agent

Partially Observable Markov Decision Process (POMDP): SMARTHOME are POMDP defined by (S,A, T ,O, r), where
S is the set of environment states containing complete internal information of the game, A is the set of actions, T is
the set of state transition probabilities and O is the set of observations provided to the agent. The reward function
r : S × A → {0, 1} is a sparse binary reward assigned at task completion. The agent’s goal is to maximize its task
completion rate. SMARTHOME games are also epistemic POMDP [4]; i.e., the agent observes only limited number of
games during training and must transfer its knowledge to unseen games sampled from the same distribution.

Deep Q-Learning: We propose a neural DQN baseline agent with LSTM and BERT encoders [3]. The agent consists
of three main components: encoders, an aggregator, and a feedforward DQN network. The encoders generate hidden
representations based on environment state information, such as observation and objective, at game step t. The encoded
information is then aggregated and passed on to DQN to predict q-values. Our current game state information consists of
variable length sequences of observations including raw text, description, objective, inventory, and one action command
to evaluate. The admissible commands are received as part of metadata information from the game engine for that
particular game. We encode each of these inputs using LSTM or BERT and aggregate them into a single vector to pass
it to the DQN network. Finally, a feed-forward network predicts a single q-value for the current game state and for this
command in particular. Note that the game state doesn’t include game id information.

Type of Task Game Setting Completion Rate

Simple, complete
r5-e5-n100 50.0

r5-e5-n200 37.5

r10-e10-n200 52.5

Control, complete
r5-e5-n100 40.0

r5-e5-n200 27.5

r10-e10-n200 22.5

Control, incomplete
r5-e5-n100♢ 15.0

r5-e5-n100♡ 32.5

Table 1: Results with BERT-DQN,
Tested on control incomplete games (♢) and control complete games (♡)

Experimental Results: The training dataset is composed of games with five rooms (r5), five entities (e5) and different
number of games (n = 10, 100, 200). The test games consist of unseen games. Entities, attributes, and values however
were seen during training. We compared the training and test performance of encoders with different capacities (LSTM
and BERT based) and varied state inputs. Agents were trained under different game settings and evaluated on three sets
of 40 test games—one each for simple-complete, control-complete and control-incomplete tasks.

In all scenarios, the LSTM-based agent failed to solve more than 10% of the evaluation games. The BERT-DQN agent
is more sample efficient (requires fewer episodes to train), trains faster in terms of wall-clock time, and has a higher
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Figure 2: DQN baseline on SMARTHOME games

task completion rate for both simple and control games with complete-valid and incomplete-valid queries. Training results
are displayed in Figure 2. This performance gap can be attributed to the larger model capacity and a richer contextual
representation via the cross-attention computed between the objective and observations. However, the generalization
gap with respect to task completion rate is still large even for the BERT-DQN model (see Table 1). We observe that simple
games are easier to solve than control games and generalize better owing to the limited object interaction. We demonstrate
decent generalization performance for an agent trained on control-incomplete tasks and tested on complete queries, where
the agent can solve about 33% of the games. However, there is a performance drop when tested on incomplete games.

Conclusion: We proposed the SMARTHOME environment, interfaced with the OpenAI gym API, in which object affor-
dance are more complex than existing text-based games like Zork or TextWorld. We provided two baselines and showed
preliminary results towards generalization via learning to interact with complex objects and procedures. Further analysis
should compare the agent’s performance in existing text-based games with simpler object affordance.
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Abstract

In Multi-agent Reinforcement Learning (MARL) there has been a substantial move towards creating algorithms which
can be trained to work cooperatively with partners. In general this is done in a self play (SP) setting, where the agents
are set to play and train with copies of themselves in a Decentralized Partially Observable Markov Decision Process
setting. Agents trained with SP often result in behaviour such that arbitrary conventions, or ”handshakes”, will be
formed in order to more efficiently achieve their goal. These arbitrary handshakes can be seen as unwanted behaviours
as they creates the issue that when agents are paired with novel agents they will often not be able to complete a task
cooperatively, even when paired with different training runs of the same algorithm. A valuable architecture to help
tackle this problem is synchronous K-level reasoning with a best response (SyKLRBR), which creates agents that have
policies based on grounded information which are robust to various handshakes. Weaknesses are still shown in that
certain agents with specific handshakes still outperform this agent when paired with one another as compared with
the SyKLRBR agent. This work expands on the SyKLRBR framework by factorizing the action-observation histories to
fit a belief over a diverse set of agents created with multiple different runs of a modified SyKLRBR algorithm. These
modifications allow the algorithm to create and identify a robust set of agents with various handshakes that could exist
in potential novel partners, ultimately allowing it to take advantage of these handshakes for better results.

Keywords: Multi-Agent Reinforcement Learning
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Zero-shot Coordination
K-Level Reasoning

Acknowledgements

The authors would like to thank the members of RAIL Lab based at The University of the Witwatersrand, Johannesburg
for valuable discussion and support.

RLDM 2022 Camera Ready Papers 570

570



1 Introduction

In Multi-agent Reinforcement Learning (MARL) there has been a substantial move towards creating algorithms which
can be trained to work cooperatively with partners. This is generally done in self play (SP), where the agents are set to
play and train with copies of themselves in a decentralized Partially Observable Markov Decision Process (Dec-POMDP)
setting.

Agents trained with SP often result in behaviour such that arbitrary conventions over actions will be formed in order to
more efficiently achieve their goal. An example of such a convention can be observed in the Simplified Action Decoder
for Deep Multi-Agent Reinforcement Learning (SAD) [4] where the agents are trained to play the game Hanabi. Hanabi
is a card game comprising of cards with five different colours and five different ranks. Players take turns without
communicating, besides through allowed gameplay actions, to play cards from their hands to form five piles of cards
with matching colour and increasing rank without making more than three mistakes throughout the game. Each player
does not have full information of the contents of their own hands and has to infer what each card is from the actions
of other players. Each player may perform one of three main actions on each of their turns: give a hint about cards of
specific quality to a single player, play a card, or discard a card. It has been observed that the trained agents used hints
for purposes unintended by the game rules, such as, hinting the colour red meant the next player should play their first
card instead of just signalling the red cards. Such an arbitrary convention, which we refer to as a ”handshake”, would
be a desired and welcomed result if these agents are only to be paired with copies of themselves, or another agent with
understanding of these handshakes. However, such a constraint detracts from reality, where the agent could have formed
a handshake for any of the available colours, leading to a situation where a novel (previously unseen) partner would not
know the handshake, and possibly act on their own, differing handshake leading to an undesired outcome.

It quickly becomes obvious that agents with specific handshakes will perform poorly outside of SP, that is, paired with
novel agents. It is not even guaranteed that such an agent will perform well in cross-play (XP), where agents that are
trained by the same algorithm, but in different training runs are paired at testing time. Notably, the take away from
this is that well-trained SP agents, potentially using their own unique handshakes, will not always perform well with
other well-trained, novel partners at test time. In works such as Other Play (OP) [6], Synchronous K-Level Reasoning
with a Best Response (SyKLRBR) [3], and Off Belief Learning [5] the authors have developed methods to aid agents to be
robust to handshakes and work cooperatively with novel agents at test time, or termed otherwise, aiding them to achieve
zero-shot coordination (ZSC). These works show that agents which are robust to handshakes will perform better than
those that have been trained with specific handshakes in XP or when paired with novel agents. However, this avoids a
factor that can be taken advantage of: some of these novel partners perform better with their own handshake than with
robust agents. It should thus be a goal to have an agent that is able to learn a policy that is both robust to many different
handshakes, but also capable of identifying any known handshakes and responding to these in an optimal fashion.

In this work we take the idea that agents should be trained with a variety of agents which differ in behaviour to keep
them robust to specific handshakes, however, we also wish for the agent to play in a specific manner when paired with
an agent that has a similar behaviour to an agent it has trained with previously. To do this we propose a method to create
a diverse set of training agents, and we train our agent to identify which of these agents it is playing with so that it can
respond to their behaviour it recognizes to be a known handshake with the correct response, while still being robust to
various play patterns.

2 Background

2.1 Dec-POMDPs

In the Dec-POMDPs setting we have N agents i ∈ {1, . . . , N}. These agents receive observations oit = O(st) which are
derived from the underlying state st ∈ S for each agent at each timestep t. The agent then, at each timestep, performs
an action, uit from its policy πi ∼ π(ui|τ it ), where τ it is the action-observation history (AOH) of the agent. We define
τ it = {oi0, ui0, r1, . . . , rt−1, oit, uit}, where rt, in this work, is the shared reward of the environment at each timestep defined
by R(s, t), which is the environment’s reward function. The goal of the agents is to maximise the total expected reward,
Eτ∼P (τ |s,u)[Rt(τ)]. In this context Rt(τ) is the discounted sum of rewards for the entire AOH, Rt(τ) =

∑∞
t′=t γ

t′−trt′ ,
where γ is the discount factor. In general this could be for an infinite horizon, but in this work the environment is
bounded by a maximum timestep limit of tmax.

2.2 SyKLRBR

The method SyKLRBR is a modified combination of two previously studied ideas, Cognitive Hierarchies (CH) [1] and
K-Level Reasoning (KLR) [2], which deal with how to create a policy that will produce the best response (BR) to another
policy’s actions. The BR is the action taken by an agent which leads to the maximal reward given the other agent’s action.
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In CH k agents are trained to act in a given environment. The first of these agents is trained to act in the environment
with versions of itself and is referred to as the first of k-level agents. Each of the subsequent k-level agents are trained
with versions of themselves and a distribution of the previous k − 1-level agents. A Poisson distribution of the previous
k-level agents is commonly used. Each will then have a policy, πk, which is a best response to the all previous k-level
agents. In KLR agents are trained in a similar fashion, however they are only trained as a BR for the k-level policy directly
before it, k− 1-level. In both of these methods the agents of each k-level are trained until a predefined halting point, and
only then is the next level trained.

A Recurrent Replay Distributed Deep Q-Network (R2D2) [7] is used in SyKLRBR to train all k policies, πk, synchronously,
initializing the parameters, θ, of all policies randomly. The first policy of the k-level policies, π0, picks an action randomly
from each of the available actions each turn, with each action having the same probability. That is, the action is chosen
at random from a uniform distribution over the action space. This ensures that there is no implied handshake in any of
its actions, meaning all information it shares through its actions is grounded information. The policies for k ≥ 1 are then
trained with this as their k = 0 policy, sampling training partners from the k-levels below it using a Poisson distribution
as in CH. The synchronous training is shown to produce a more robust agent than when training the levels sequentially
as in KLR.

3 Proposed Method

Our method proposes that the policy of the agent should depend on its belief of the agent type it is playing with as well
as on the AOH. In order to have a belief over the types of agents we are playing with, we would need to have a set of
diverse agents to train with and for the environment episodes to be sufficiently long such that behaviour can be observed
to form such a belief. We thus need to produce agents which are diverse, and keep a belief over which of these agents
our agent is playing with.

In a Dec-POMDP setting the policy of an agent is dependent on its AOH, τ it . Our work proposes that this should instead
be based not only on the AOH, but with the belief of the agent type it is playing with as well. In order to infer a belief of
the type of agent we are working with, we need to fit this belief only to observations and actions the other agent executes.
Thus the belief is based on a distribution dependent on a factorized view of the AOH τ it . The specific factorization of
the AOH is into a public AOH, τ i,pubt , and private AOH, τ i,privt . The public AOH contains all information about the
trajectory which is available to be observed by all agents at each time step t, while the private AOH is the information
only observable to agent i at each time step t. Using τpubt we fit a distribution, Ψ(ψt|τpubt ), where ψt is the belief of which
of the agents we are playing playing with. This distribution is learned using an LSTM and is trained alongside the main
policy, πi ∼ π(ui|τ it , ψit) which now incorporates ψit. A visualisation of this policy can be seen in Figure 1a.

To produce the set of diverse agents with which ours trains, we trainM different SyKLRBR training cycles replacing their
policy structure with ours. That is, we train M ×K different policies πmk ∼ π(uk|τkt , ψkt ). In each training run m ∈M the
policy πm0 is set to have randomized and differing probability weights for each action in the action space resulting in M
differing sets of k-level agents. This is a particularly useful feature of the SyKLRBR training structure since for a given
policy πm0 the kth level policy will differ from the policy of another training run m, provided the initial distribution for
πm0 between the two runs m differs enough. The final policy, πk+1 is then trained uniformly with each of the sets of M
agents, each set having a Poisson distribution over its respective k-levels. This has been visually represented in Figure
1b.

(a) (b)

Figure 1: a) The structure of the policy network. Using the public AOH as the input for the belief network, we produce
the belief ψt, which is then paired with the AOH as inputs to the action network which chooses an action ui. b) The
structure of the M K-level policies with the K+1-level final policy. Each row represents a SyKLRBR policy run, with
each arrow showing a preceding level of that run. Each successive policy is trained with a Poisson distribution of the
previously connected policies, and πk+1 being uniformly paired with each of the m training runs.
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(a) (b) (c)

(d) (e)

Figure 2: The comparison in scores between our proposed method and SyKLRBR during training is shown for (a) self
play, (b) paired with WallBot, (c) paired with CatBot, and (d) paired with DogBot. (e) The per turn partner prediction
accuracy during training of our proposed method.

(a) (b) (c)
(d)

Figure 3: (a) The action response pairs of our proposed method when paired with CatBot. (b) The action response pairs
of our proposed method when paired with DogBot. (c) The action response pairs of our proposed method when paired
with WallBot. (d) Action reference table.

4 Evaluation

To evaluate this architecture and to allow for a prolonged interaction to create a belief of the player type we take a
repeated version of the toy environment from OBL [5], repeating the game 5 times for each episode. This is a team game
which involves two players with shared reward. In this game, there is a binary variable pet ∈ {dog, cat} which player
1 can observe, however player 2 cannot due to a wall between the two players. This wall can be lowered by player 1 to
reveal to player 2 which pet is with player 1. If this action is taken all reward values are halved, resulting in a maximum
reward of 5. Furthermore there is a light which can be turned on by player 1 and observed by player 2, which is provided
as a communication avenue to allow for the formation of handshakes beyond that of just lowering the wall. The goal of
the game is for player 2 to correctly guess what pet player 1 has: if they guess correctly the team of two get a reward of
10, if they guess incorrectly the team gets a reward is -10. There is also a third option of avoiding the guess and to bail
out of the game for a team reward of 1.

For the purpose of testing our algorithm on this environment we created three rules-based bots: one which always lowers
the wall, and chooses the correct option if the wall was lowered (WallBot), one which turns on the light if the pet is a cat,
and picks cat if the light is turned on (CatBot), and the third turns on the light if the pet was a dog, and picks dog if the
light is turned on (DogBot). Our training run using our proposed method had M = 4 and K = 4. We trained a SyKLRBR
version of the agent, with K = 4 for comparison. We found that both our algorithm and SyKLRBR achieved 50 points in
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SP. However, when we tested these trained agents with the rules based bot, a difference in results was apparent, as seen
in Figures 2a-d. The standard SyKLRBR agent achieves a perfect score of 50 points with either CatBot or DogBot, and
a negative score with the other, occurring with an approximately even distribution across training runs. The SyKLRBR
agent trained for this comparison, scores 50 points with CatBot, and −38 ± 5.9178 with DogBot. Our proposed method
consistently achieves 50 points with both CatBot and DogBot.

Furthermore it can be seen that when our bot accurately predicts the agent it is playing with, the action it responds with
matches the convention of that agent, as is shown in Figure 3. In Figure 3a we observe that for the CatBot, the response to
turning on the light (action A3) is guessing cat (action A2), and the response to seeing a cat is turning on the light (action
A3) with the CatBot responding by guessing cat (action A2). Similarly the correct responses can be observed for DogBot
and WallBot.

While identifying the agent type is important, there is no accurate measure of how well it can predict if it is playing
with CatBot, DogBot or WallBot. This is due to the fact that it is trained to identify which of the M × K partners it is
playing with, and the accuracy of the prediction can lower if any of those M ×K partners behave similarly at the end of
training, which is probable for an environment such as this one where there are three optimal strategies. However, if the
behaviour is similar between training partners, the best response will be similar, and thus while the measured accuracy
decreases, it does not necessarily adversely affect the final agent. The accuracy of the belief of which partner the final
agent is playing with increases over the course of the game and is shown, on a per turn basis, in Figure 2e.

In this environment we have discovered this algorithm is capable of learning to identify diverse agents created by the M
training runs of our proposed architecture, identifying their type after as little as 4 actions, which is only possible due
to the repeating version of this toy environment, which would otherwise end in 2 actions. It is important to reiterate
that, in line with the assumptions of the model, this model requires an environment in which trajectories of a minimum
sufficient length exist, to identify behaviour of these agents, acting in a similar fashion to how an agent trained by regular
SyKLRBR would until it has successfully identified the agent type it is partnered with, after which it behaves in a manner
that is able to play successfully with that agent.

5 Conclusion

By using M different distributions over the action space to initialize π0 for each of the M SyKLRBR training runs, we are
capable of creating a diverse set of agents. The addition of the belief network allows the agent to fit AOH trajectories
to specific agent types. With these features our proposed method becomes both the source and identifier of diverse
agents. These agents can then be used as training partners during the training process of this algorithm resulting in a
robust agent that is capable of identifying the type of partner it is working with. This allows it to be able to match the
handshake of an unknown agent if its behaviour mimics that of a known agent, while still maintaining a high level of
robust behaviour for agent types it has not come across. This does come with the cost of long initial training times. These
preliminary results on the toy environment presented in this paper are promising and offer an exciting avenue to apply
this to environments such as Hanabi.
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Abstract

Human beings, even small children, quickly become adept at figuring out how to use applications on their mobile de-
vices. Learning to use a new app is often achieved via trial-and-error, accelerated by transfer of knowledge from past
experiences with like apps. The prospect of building a smarter smartphone — one that can learn how to achieve tasks
using mobile apps — is tantalizing. In this paper we explore the use of Reinforcement Learning (RL) with the goal of
advancing this aspiration. We introduce an RL-based framework for learning to accomplish tasks in mobile apps. RL
agents are provided with states derived from the underlying representation of on-screen elements, and rewards that are
based on progress made in the task. Agents can interact with screen elements by tapping or typing. Our experimental
results, over a number of mobile apps, show that RL agents can learn to accomplish multi-step tasks, as well as achieve
modest generalization across different apps. More generally, we develop a platform1 which addresses several engineer-
ing challenges to enable an effective RL training environment. Our AppBuddy platform is compatible with OpenAI
Gym and includes a suite of mobile apps and benchmark tasks that supports a diversity of RL research in the mobile app
setting.
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1 Introduction

Billions of people around the world use mobile apps on a daily basis to accomplish a wide variety of tasks. Building
smarter smartphones that can learn how to use apps to accomplish tasks has the potential to greatly improve app acces-
sibility and user experience. We explore the use of Reinforcement Learning (RL) to advance this aspiration.

RL has been applied in a diversity of simulated environments with impressive results [4, 7]. However, a myriad of
challenges can prohibit the application of RL in real-world settings [1]. Learning to accomplish tasks in mobile apps
is one such setting due to the usually large action space (the agent can interact with many elements on every screen),
sparse rewards, and slow interaction with the environment (i.e., a physical phone or an emulator) that together make the
collection of a large number of experience samples both necessary and arduous.

Recent work proposed to use supervised learning techniques to train computational agents to accomplish tasks in mobile
apps [3]. A shortcoming of this approach is that it requires the creation of large training sets of labeled data. In contrast,
RL agents can learn to solve tasks without human supervision by autonomously learning from interacting with mobile
apps, and they can potentially learn better solutions than supervised learning approaches, as shown by previous work
(e.g., [8]). Closer to our work are recent efforts that use RL to solve tasks using web interfaces [5] or that test mobile
apps [2]. Coincident with the publication of the full paper describing our work and platform [6], Toyama et al. released
a related open-source platform for RL research built on top of the Android ecosystem [9]. Perhaps the most notable
difference between the two platforms is that Toyama et al.’s RL agents interact with screen pixels, whereas we exploit
Android’s view hierarchy to define the RL agent action space so that actions are interacting with different user interface
(UI) elements on the screen. While our platform is amenable to a pixel-based action space, in our experience, defining
the action space based on on-screen elements significantly improves sample efficiency for learning. This is particularly
important here because of the relatively slow execution time in a phone environment.

In this paper, we explore whether an RL agent can learn policies that consistently solve tasks in real-world mobile phone
apps. Our main contributions are as follows:

• We formulate the app learning task as an RL problem where the state and action space is derived from the
phone’s internal representation of screen elements and reward is modeled so as to incentivize intermediate task
steps, while learning policies that complete tasks.

• We construct a mobile app learning environment that is engineered to collect experiences from multiple emula-
tors simultaneously. The environment is made compatible with OpenAI Gym to support various RL algorithms.
We also build several tools for efficient provisioning of Android emulators, obtaining emulator states, and inter-
acting with the emulators.

• We experimentally evaluate our RL agent on a suite of benchmarks comprising a number of apps and tasks
of varying difficulty. Results (i) demonstrate that RL agents can be successfully trained to accomplish multi-
step tasks in mobile apps; (ii) expose the impact of design decisions including reward modeling and number of
phone emulators used in training; and (iii) demonstrate the ability of our approach to generalize to similar tasks
in unseen apps.

• We develop the AppBuddy training platform that includes the aforementioned mobile app learning environment
together with a suite of mobile app-based benchmarks, allowing researchers and practitioners to train RL agents
to accomplish tasks using various apps.

This paper represents an important step towards endowing smartphones with the ability to learn to accomplish tasks
using mobile apps. The release of the AppBuddy training platform and suite of benchmarks opens the door to further
work on this impactful problem by the broader research community.

2 System Design

Our objective is to explore whether an RL agent can learn to accomplish tasks in mobile apps by interacting with (either
a physical or an emulated) phone environment. Mobile apps are interesting and challenging real-world RL benchmarks.
Since they are optimized for accessibility, most tasks can be solved after executing a short sequence of actions. However,
the branching factor (i.e., action space) is much larger than in a standard RL benchmark, which leads to a very sparse
reward signal. Moreover, interacting with Android emulators is slow. These ingredients make mobile apps a challenging
benchmark with interesting structure that, hopefully, RL agents will learn to exploit when solving these problems.

In this section, we present the basic building blocks to use RL in mobile apps: action space, state representation and reward
specification. The overview of the system is shown in Figure 1. The agent (a neural network trained using PPO) interacts
with several Android emulators in parallel to collect experiences. At each step, for each emulator, the agent chooses
to tap on (or type into) a particular element on screen. After the agent performs the actions, the environments return
states derived from the available on-screen information, together with rewards that depend on the current task the agent
is solving.

1
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Take Actions

Rewards 

Agent Environments

…

<Element ID, Token>

States Derived from View Hierarchy

Figure 1: Overview of the proposed RL framework. The environment contains a group of emulators and the states are
derived from the view hierarchy of the current screen. In each step, the agent will choose an action, which consists of an
element ID and a token, and receive corresponding rewards based on progress made in the task.

Figure 2: An example of the view hierarchy for a given screen. The ‘+’ button with the red border on the left-hand side
directly corresponds to the highlighted element (‘Add alarm’) in the view hierarchy on the right hand side.

Some tasks might require typing some particular text. For instance, the task “add a new Wi-Fi network named Starbucks”
will require the agent to type Starbucks at some point. However, it is practically impossible for an RL agent to discover
that typing Starbucks, letter by letter, will cause it to receive a reward. To handle this issue, we follow the same standard
as in the web-based task literature [5] and provide the agent with a list of tokens to choose from when typing text. With
that, we now describe the action space, state representation, and rewards used in our work.

2.1 Action Space

The main challenge towards successfully applying RL in smartphones is the unreasonably large action space. Technically,
a user might tap on any pixel on the screen. But allowing that level of granularity would make learning infeasible.
Fortunately, we can reduce the action space to the set of elements on screen by exploiting the information from the view
hierarchy.

In Android applications, each view is associated with a rectangle on the screen. The view is responsible both for display-
ing the pixels on the screen as well as handling events in that rectangle. All the views on a particular screen are organized
in a hierarchical tree structure, which is also called the view hierarchy. We show a simple example of a view hierarchy in
Figure 2. In this figure, the left part shows a screenshot of the native Android alarm clock app. On the right, we can see
part of the view hierarchy at the top and detailed attributes for the selected view called ‘ImageButton {Add alarm}’ at
the bottom. The selected view is also highlighted in a red rectangle in the screenshot on the left.

Since the view hierarchy is always available for any Android application, we use its information to define the action
space. From this hierarchy, we automatically extract the list of user interface (UI) elements on the screen. Then, the
actions at the agent’s avail are tuples comprising a UI element index (w.r.t. that list) and a token (as shown in Figure 1).
The element index ranges from 0 to n-1, where n is a fixed upper bound for the maximum number of elements on any
screen. We say that a UI element is clickable if it reacts when tapped and that a UI element is editable if text may be typed

2
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into it. When the agent chooses to interact with some UI element, the agent will type into that element if the element is
editable and tap on that element if the element is clickable.

In addition to selecting a UI element index, the agent also chooses a single token from a set of k tokens (in our experi-
ments, k is 4) that are predefined for each task. For instance, if the task is “add a new Wi-Fi network named Starbucks,” then
Starbucks will be among the k tokens for that task. Then, the chosen token is typed into the selected UI element if that
element is editable.

2.2 State Representation

As explained above, the action space is defined by the list of UI elements in the current screen, which is extracted from
the screen’s view hierarchy. To represent the state, we use the same list of UI elements. Concretely, the state is represented
by an n×mmatrix, where each row is a vector ofm features representing a particular UI element from the list and n is an
upper bound for the maximum number of elements that we expect to see on any screen. In the matrix, each UI element is
represented using m features. These features include the textual description of the UI element (which is embedded using a
pretrained BERT model). This description is available in the view hierarchy and specifies the purpose of the UI element
(e.g., ‘Add alarm’ for the ‘+’ button in Figure 2). We also include information about whether the UI element is clickable
or editable and its relative location in the view hierarchy (defined as the element’s pre-order tree traversal index). The
relative location features help capture the spatial correlations across different UI elements.

2.3 Reward Specification

When learning to accomplish tasks in mobile apps, reward is extremely sparse if the agent is only given a positive reward
when accomplishing the task and a reward of 0, otherwise. To mitigate for reward sparsity, we specify the reward
function R such that the agent is given an intermediate reward for reaching certain states in the app that correspond to
sub-goals on the way to accomplishing the task. R is calculated as follows:

R =
k−1∑

i=0

(wi × ri) + wk × rk, (1)

where w = {w0, w1, ..., wk} indicates whether the agent has reached a certain state and r = {r0, r1, ..., rk} represents the
rewards. k is the total number of intermediate steps where the agent will receive positive intermediate rewards. The
value of k is task-specific. Note that an intermediate reward ri may only be given once in an episode and wi is set to 0
after that. rk is the reward returned by the environment when the task is complete (based on the view hierarchy extracted
from the emulator).

For example, in order to accomplish a task in the settings app in our benchmarks, an agent must add a new Wi-Fi network
named ‘Starbucks’. w0 = 1 when the agent reaches the ‘Wi-Fi settings’ screen andw1 = 1 when the agent reaches the ‘add
new Wi-Fi network’ screen. w2 = 1 if the agent has added a new Wi-Fi network called ‘Starbucks’ and it now appears on
the screen. In the next section, we discuss our experiments where we show the impact of excluding intermediate rewards
(i.e., where only wk = 1 and, hence, the agent receives a sparse reward for accomplishing the task).

3 Experimental Evaluation

The objectives of our evaluation were: 1) to show that RL can be used to learn policies that accomplish tasks in mobile
apps; 2) to expose the impact of design decisions including reward modeling and number of phone emulators used in
training; and 3) to demonstrate our approach’s potential for generalization to similar tasks in unseen apps.

We ran experiments using PPO2 (an implementation of PPO made for GPU). The emulators were provisioned using
Docker-Android with headless mode and KVM acceleration enabled. With this setup, we were able to train the agent
with tens of emulators on a single machine.

Benchmarks. We experimented with 4 mobile apps (expense splitting, shopping list, alarm clock, and settings), where
each app includes 3 tasks of varying difficulty.

Experiment Protocol. In each experiment, we ran PPO2 for some number of policy updates and evaluated the agent’s
current policy after each update. To evaluate the policy, we estimated its success rate by running the policy 100 times
and counting how many times the policy was able to accomplish the task within 25 steps.

Summary of Results. Our results indicate that RL can be used to learn policies that accomplish tasks in mobile apps.
Moreover, our results show that providing the agent with intermediate rewards was crucial in learning to accomplish
many of the tasks. Plots of our results can be found in the full paper [6].
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3.1 Applying Learned Skills to Unseen Apps

Despite our positive results, deploying our approach on real phones is still a ways away. In particular, imagine a human
user of an alarm clock app. After learning how to use alarm clock app A, the user will typically have an easier time
learning how to use alarm clock app B, assuming some similarity between the apps. We would like an RL agent to
possess similar capabilities – learn a policy that accomplishes a task on one app and then use that trained policy to
accomplish a similar task on a different, yet similar app.

To experiment with this idea, we began with a naive approach: we take a policy trained on the easy alarm clock task
in our experiments and deploy this trained policy in a different app – the native Android alarm clock app. The unseen
native app has many commonalities to the training app, both in form and in function, however, this naive approach failed
to accomplish the same task (i.e., setting an alarm clock) in the unseen app, likely because the RL agent did not learn to
focus on the appropriate features and instead memorized the element ID and token combination that should be chosen
in each state. To remedy this, we shuffled the on-screen UI elements in the state representation given to the agent during
training. In this way, the agent can no longer simply memorize the element ID that should be selected and must, instead,
learn and attend to the relevant features of each element in the state representation. We moreover hypothesized that
augmenting the accessibility text in the training app will help the agent generalize to the unseen app.

To test our hypothesis, we trained a policy on the open source alarm clock app while also shuffling the state representa-
tion, which now included relevant text in the accessibility field. Our results show that by shuffling the state representa-
tion, the agent was able to generalize to a similar task in the unseen app.

4 Concluding Remarks

Building smarter smartphones has the potential to broaden accessibility of phone applications and improve the user
experience. In this paper, we explored the use of RL to learn to accomplish tasks using mobile apps. RL agent states
were derived from the underlying representation of on-screen elements, rewards were based on progress made in the
task, and agents could interact with elements on the phone screen by tapping or typing. Our experiments showed
that our RL agents could learn to accomplish multi-step tasks in a number of mobile apps, as well as achieve modest
generalization across different mobile apps. An important contribution of our work was the development of a mobile
app RL environment that is compatible with OpenAI Gym and its provision through the AppBuddy training platform.
The release of this training platform together with a suite of benchmarks opens the door to further research into learning
to accomplish a diversity of tasks using mobile apps.
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1 Introduction 

In a changing environment, decision makers often face a choice between exploiting old but known options or 
switch to exploring lesser known but potentially more rewarding alternatives. In contrast to stable 
environments, the quality of options varies over time and exclusively choosing a known option entails the 
risk of missing alternatives that are more rewarding. Accordingly, gathering information through exploration 
enables adaptation to environmental contingencies and the potential of earning more reward than with 
exploitation. However, excessive exploration reduces long-term payoffs. By extension, agents may explore 
for distinct but hard to distinguish reasons – to maximize reward, to reduce uncertainty or simply randomly. 
While computational modeling allows to disentangle these forms of exploration to some extent (Gershman 
2018; Wilson et al. 2021; but see below), from a model-free perspective the investigator is typically only left 
with counting behavioral switches, leaving the motivation for a given switch unclear.  

Relatedly, in classical multi-armed bandit tasks used to study exploration-exploitation dilemma reward and 
information are confounded (Wilson et al. 2014). Specifically, continuous selection of the most rewarding arm 
automatically makes this arm relatively more certain (i.e., less informative) while the informativeness of less 
rewarding arms automatically increases. From a modeling perspective, this pollutes computation of the 
uncertainty bonus and impedes interpretation of whether a low uncertainty bonus reflects uncertainty 
avoidance or reward seeking. In the same vein, selection of a low value arm may reflect information seeking, 
random exploration or a simple mistake. To overcome these issues, we propose a modification of the standard 
dynamic multi-armed bandit task. In our version, only two arms per trial provide information about the 
reward gained from choosing them and thereby reduce uncertainty. A switch to a non-informative, lower-
than-maximum value option is clearly a mistake as the option is dominated in terms of reward and entirely 
uninformative and thereby can be viewed as decision noise, i.e., random behavior. Moreover, a switch to the 
bandit with highest informativeness unequivocally reflects uncertainty-driven exploration. Thus, our task 
allows identifying uncertainty-driven switches independent of models and distinguishing them from 
mistakes. 

Selecting options that are more uncertain provides more information but incurs the risk of a small reward. 
Given the well documented human aversion to uncertain gains (Ellsberg 1961), one might expect people with 
stronger uncertainty aversion to be less likely to explore highly uncertain options (Payzan-LeNestour and 
Bossaerts 2011). Indeed, several studies found that some individuals actively avoid the options with highest 
uncertainty in the multi-armed bandit task (e.g., Daw et al. 2006; Chakroun et al. 2020). However, the choices 
of these individuals were not entirely exploitative either, suggesting that not all exploration is uncertainty-
driven. One possibility is for agents to select an arm that is suboptimal in terms of estimated payoff but 
associated with less uncertainty than other bandits with more suboptimal values. This choice will allow the 
agent to find out if one high-value bandit has become the highest-value bandit without the risk of receiving a 
small reward. Thus, we aim to apply our modified multi-armed bandit task to categorize choices as value-
driven explorative (i.e., selecting the more rewarding (but not the most rewarding overall) and less uncertain 
of the two informative arms) rather than uncertainty-driven explorative or random. 

2.1 Methods: task structure 

In our modified version of the classic multi-armed bandit task, participants selected one arm and received 
points in every trial and aimed to maximize their payoffs. The number of points paid by each arm gradually 
changed from trial to trial independently from other arms. The payoff μ for the arm a on each trial t varied 
between 1 and 100 points and was generated according to the decaying Gaussian random walk equation: 

RLDM 2022 Camera Ready Papers 580

580



2 
 

Equation 1. Decaying Gaussian random walk. The decay parameter λ and the decay center θ were set at 0.9836 and 50, 
respectively. The diffusion noise ν was drawn from a zero-centered Gaussian distribution with a standard deviation σd = 2.8. 

𝜇𝜇𝑎𝑎,𝑡𝑡+1 =  𝜆𝜆 ∗  𝜇𝜇𝑎𝑎,𝑡𝑡 + (1 −  𝜆𝜆) ∗ 𝜃𝜃 +  𝜈𝜈 

Figure 1. Example trial. At trial onset, the two informative arms were denoted with an “i". After they chose an arm, participants saw 
either the number of points won (informative arm chosen) 
or a question mark (non-informative arm chosen). 

On each trial, two arms were defined as 
informative and two non-informative (Figure 1). 
The first informative arm was randomly 
determined from the two arms with currently 
the highest payoff. The second informative arm 
was set to be one of the two arms that have been 
seen (i.e., selected when it was informative) the 
least in previous trials. In case of ambiguity in 
arm categorization (e.g., on the first trial), the 
informative arms were determined randomly. 

Selection of informative arms was followed by feedback about the number of points received. Points won 
were not shown after selection of non-informative arms but contributed to the overall payout.  

2.2  Methods: computational modeling 

Whereas our task is intended to categorize choices as different forms of exploration, in a model-free way this 
separation relies on objective values (i.e., payoffs associated with each arm by design). To capture individual 
propensity to explore and exploit more precisely, one may want to compute subjective estimates about arm 
payoffs while accounting for various explorative strategies. To this end, we modeled participant's behavior 
with Bayesian Mean Tracker as value updating rule (Daw et al. 2006; Speekenbrink and Konstantinidis 2015). 
Action selection was modeled using the Softmax function and regulated by the inverse temperature 
parameter β, which captures the extent of choice stochasticity in agent’s decisions (i.e., random selection with 
regard to their subjective value estimates). Then, several models were considered with different boni added 
to the predicted value in the Softmax (Equation 2). In total, four boni were added and model fit compared (Table 
1).  The first bonus favors selection of the most uncertain arm and captures individual propensity for 
uncertainty-driven exploration (Daw et al. 2006). The second bonus boosts selection of the informative arm with 
the highest value and lowest informativeness from the two informative arms. Introduction of this bonus 
allows us to test the hypothesis that some exploratory choices cannot be explained only by a desire to reduce 
uncertainty or by random choice but rather by willingness to gather information with minimal payoff loss, 
i.e., value-driven exploration. Third, we consider uncertainty-dependent random behavior by including a 
parameter that captures the propensity to behave randomly under increasing overall uncertainty (Gershman 
2018; 2019). Finally, we include a perseveration bonus, which favors the arm selected on the previous trial 
and accounts for influence of past choices (Bornstein et al. 2017).  

Equation 2. Softmax function for action selection in the simultaneous task. The Softmax function determines the probability P of 
selecting arm a on trial t. Q corresponds to the estimated value of the payoff and V to the estimated bonus associated with arm a on 
trial t. Description of other parameters can be found in Table 1. 

𝑃𝑃𝑎𝑎,𝑡𝑡 =  
exp (𝛽𝛽 ∗ (𝑉𝑉𝑎𝑎,𝑡𝑡 +  𝜑𝜑 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 +  𝜋𝜋 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛾𝛾 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) + 𝜔𝜔 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

∑ exp  (𝛽𝛽 ∗ (𝑉𝑉𝑎𝑎,𝑡𝑡 +  𝜑𝜑 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 +  𝜋𝜋 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛾𝛾 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡
𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝜔𝜔 ∗ 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝑗𝑗
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Table 1. Model parameters.  

Parameter Behavioral strategy Scaling 

β Random selection Not applied (NB: scaling by the expected value or uncertainty worsened model fits) 

ϕ Uncertainty-driven exploration  Va,tUncDirect is calculated as σ, Kalman filter uncertainty associated with the arm  

π Value-driven exploration 
 Va,tValDirect is  = 1 when added to the informative arm with the highest value among 
the two informative arms (but not the highest one overall) and scaled by its 
uncertainty. 

γ 
Uncertainty-dependent random 

exploration 
Va,tUncRand = Qa,t/√∑σt2 where Qa,t is the value of the arm a in trial t and σa,t2 is the 
uncertainty associated with the arm 

ω Perseveration Va,tPersev = 1 if the arm chosen in the current trial was chosen in the previous trial as 
well and 0 otherwise 

3  Results 

Table 2. Expected log-predictive 
densities (ELPD), their differences 
and standard deviations with respect 
to the winning model. The winning 
model (in green) contains parameters 
accounting for perseveration as well 
as random selection, uncertainty-
driven, and value-driven exploration 
but not uncertainty-dependent 
random exploration. 

  

Figure 2. Participants employ multiple behavioral strategies. A. Categorization of trials based on the objective (i.e., model-free; left 
panel) and subjective (i.e., computed with a model; right panel) arm payoffs. Stars indicate a significant difference (two-sided t-test, 
p < 0.001, corrected for multiple comparisons with Bonferroni correction). B. Correlations between individual parameters from the 
winning model and model-free individual estimates of the frequency of use of corresponding explorative strategies. 

To identify whether participants (N = 159, one participant excluded due to non-understanding of the task) 
used different forms of exploration, we fitted six models, each with a different set of parameters (Figure 2A). 
We computed 159 expected log-predictive densities leave-one-(choice)-out (ELPD-LOO) defined as a sum of 
pointwise predictive accuracies, where each data point corresponds to a given choice from an individual 
dataset. Then, we summed up the individual ELPD-LOO measures and defined the winning model as the 
one with the smallest sum. The winning model included the inverse temperature β, which was different from 
0 and 1, suggesting that our participants exhibited some degree of random behavior without going into pure 
exploitation or purely random selection of arms. Participants’ choices were best explained by the model with 
the three bonus-associated parameters ϕ, π, and ω, which indicates that our participants presented a 
perseveration bias and used both uncertainty-driven and value-driven forms of directed exploration. 
However, the winning model did not include uncertainty-dependent random exploration, which is consistent 
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with previous reports on dynamic multi-armed bandits (Chakroun et al. 2020). 

We also categorized participant’s choices on each trial as reflection of one of three behavioral strategies: 
uncertainty-driven exploration (selecting the arm with the highest uncertainty), value-driven exploration 
(selecting the arm with the highest payoff and smallest uncertainty among the two informative arms), and 
random behavior (selecting a non-informative arm with a non-best payoff). With objectively defined payoff 
(i.e., programmed arm payoffs), participants on average used all three strategies (p < 0.001, one-sample t-test 
against 0, Figure 2A, left panel). Moreover, participants used directed exploration more often than random 
selection. Categorization based on subjective payoffs confirmed these results (Figure 2A, right panel). Finally, we 
found that individual parameters capturing different types of behavioral strategies in the winning 
computational model were significantly correlated with corresponding estimates of those strategies derived 
based on objective values in a model-free way (Figure 2B). 

4  Conclusions 

Our study introduces a new version of the classic dynamic multi-armed bandit task, which separates reward 
and information provided to the agent on each trial to minimize the reward-information confound. We show 
that human participants use both directed exploration and random selection. Moreover, we provide evidence 
that human directed exploration may be guided not only by uncertainty but also by value. However, it should 
be noted that data collection for this project has been finished only recently and all results should be 
considered as preliminary.  
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MIT CSAIL

tlp@mit.edu

Leslie Pack Kaelbling
MIT CSAIL

lpk@mit.edu

Joshua Tenenbaum
MIT CSAIL

jbt@mit.edu

Abstract

Effective and efficient planning in continuous state and action spaces is fundamentally hard, even when the transition
model is deterministic and known. One way to alleviate this challenge is to perform bilevel planning with abstractions,
where a high-level search for abstract plans is used to guide planning in the original transition space. In this paper,
we develop a novel framework for learning state and action abstractions that are explicitly optimized for both effective
(successful) and efficient (fast) bilevel planning. Given demonstrations of tasks in an environment, our data-efficient
approach learns relational, neuro-symbolic abstractions that generalize over object identities and numbers. The symbolic
components resemble the STRIPS operators found in AI planning, and the neural components refine the abstractions into
actions that can be executed in the environment. Experimentally, we show across four robotic planning environments that
our learned abstractions are able to quickly solve held-out tasks of longer horizons than were seen in the demonstrations,
and outperform the efficiency of abstractions that we manually specified. We also find that as the planner configuration
varies, the learned abstractions adapt accordingly, indicating that our abstraction learning method is both “task-aware”
and “planner-aware.”

Keywords: learning to plan, abstraction learning, relational learning, neuro-
symbolic learning, hierarchical planning
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1 Introduction

An autonomous agent should make good decisions quickly. These two considerations — effectiveness and efficiency
— are especially important, and often competing, when an agent is planning in long-horizon, continuous-space tasks.
Abstractions offer a mechanism to overcome this intractability [1, 2]. While state and action abstractions have a rich
history in AI and robotics, a major limitation of early work is the downward refinability assumption [3]: that planning
can be decomposed into first searching for an abstract plan, and then refining it into an actual plan. This is untenable in
many applications, especially in robotics, where complex geometric constraints cannot be easily abstracted. To avoid this
assumption, we consider bilevel planning, where reasoning in a high-level abstraction provides guidance for reasoning in
a low-level task [4]. Another clear limitation of early work on abstractions is the reliance on manual specification, which
requires understanding not only the environment, but also the interplay between the abstractions and the planner.

We identify three key desiderata of a system for planning with state and action abstractions: (1) These abstractions
should be learned, not manually designed. (2) Planning with the learned abstractions should be tolerant to violations of
the downward refinability assumption. (3) The abstractions should be trained to explicitly optimize both the effective-
ness and the efficiency of planning. In this paper, we develop a framework for learning abstractions for planning that
addresses all three desiderata. Specifically, we learn state and action abstractions that are explicitly optimized for effective and
efficient bilevel planning. We consider learning from demonstrations in deterministic, fully observed, goal-based planning
problems. The problems have object-centric continuous states and hybrid discrete-continuous actions, as are common in
robotics [4]. The agent knows the transition model, but it is highly intractable to plan directly using this model, motivat-
ing the need to learn abstractions to guide planning. We learn relational, neuro-symbolic abstractions, where the symbolic
components resemble STRIPS operators [5], and the neural components refine the abstractions into environment actions.

We conduct experiments in four robotic planning environments. We show that our framework is very data-efficient, and
that the resulting relational abstractions allow for effective and efficient planning in held-out tasks involving different
numbers of objects and longer horizons than were seen in the demonstrations. Interestingly, the learned abstractions
sometimes outperform ones that we manually specified. We also find that as the planner configuration varies, the learned
abstractions adapt accordingly, indicating that our learning method is both “task-aware” and “planner-aware.”

2 Problem Setting

We consider learning from demonstrations in deterministic planning problems. These problems are goal-based and
object-centric, with continuous states and hybrid discrete-continuous actions. An environment is defined by (1) a finite
set of object types, each with an associated dimensionality for the feature vector of any object with that type; (2) a set of
controllers with discrete typed parameters and a continuous real-valued vector of parameters; (3) a known, deterministic
transition model f ; and (4) a known set of goal predicates ΨG. An environment is associated with a distribution over tasks,
where a task is defined by (1) a fixed set of typed objects; (2) an initial state; and (3) a goal, a set of ground atoms over ΨG
and the objects. A state x ∈ X is a mapping from each object to a feature vector. An action a ∈ A is a controller with
objects tied to the discrete parameters and a real-valued vector θ tied to the continuous parameters (e.g., Pick(b1, θ)).

A solution to a task is a plan π, a sequence of actions such that successive application of the transition model f starting
from the initial state results in the goal holding. The agent is provided with a set of training tasks and one demonstration per
task. We assume action costs are unitary and demonstrations are near-optimal. Each demonstration consists of a training
task ⟨O, x0, g⟩ and a plan π∗ that solves the task. The agent’s objective is to learn to efficiently solve held-out tasks.

Figure 1: Overview of our framework. Given a small set of goal predicates (first panel, top), we use demonstration data to learn new
predicates (first panel, bottom). In this Blocks example, the learned predicates P1 – P4 intuitively represent Holding, NotHolding,
HandEmpty, and NothingAbove respectively. Collectively, the predicates define a state abstraction that maps continuous states x in
the environment to abstract states s. After predicate invention, we learn abstractions of the continuous action space and transition
model via planning operators (second panel). For each operator, we learn a sampler (third panel), a neural network that maps state
features to action parameters. In this example, the sampler proposes different block placements. With these learned representations,
we perform bilevel planning (fourth panel), with search in the abstract spaces guiding planning in the continuous spaces.

1

RLDM 2022 Camera Ready Papers 585

585



3 Learning Relational State and Action Abstractions for Bilevel Planning

Since the agent has access to the transition model f , one approach for optimizing the objective described in Section 2
is to forgo learning entirely, and plan directly in X and A. However, searching for a solution directly in these large
spaces is highly infeasible. Instead, we propose to learn abstractions using the provided demonstrations. We begin with
an overview of the representations that we will learn from demonstrations and use to plan for held-out evaluation tasks.

Representations. Our representations are summarized in the figure on the right. A predicate represents
a lifted relational binary state classifier (Figure 1, first panel). A predicate ground with objects induces a
ground atom, which represents a binary state classifier. A set of predicates Ψ is used to transform a state
x ∈ X into an abstract state s ∈ SΨ, which is the set of ground atoms that hold true in x. This predicate set
includes the goal predicates Ψg ⊂ Ψ and many other invented predicates (see “Learning” below). A set
of operators Ω establishes the basis for abstract actions. These are STRIPS operators augmented with abstract
controllers, where the discrete parameters of a controller are tied to the operator parameters (Figure 1,
second panel). Given task objects, the set of ground operators Ω defines the abstract action space, and
induces an abstract transition model F : SΨ × Ω → SΨ, which is a partial function determined via add
and delete effects, and defined when preconditions hold in the given state. Each operator is tied to a
sampler σ ∈ Σ, which is lifted over the same parameters as the operator. When the operator is ground, the sampler σ is
ground using the same objects, inducing a ground sampler σ, which is a distribution over the continuous parameters of
the operator’s controller, conditioned on a state x ∈ X . This ground sampler serves to stochastically refine the ground
operator, suggesting a ∈ A that, when executed in x, should achieve the ground operator effects (Figure 1, third panel).

Planning. To use the components of an abstraction — predicates Ψ, operators Ω, and samplers Σ — for efficient planning,
we build on bilevel planning techniques [4, 6]. We conduct an outer search over abstract plans using the predicates and
operators, and an inner search over refinements of an abstract plan into a task solution π using the predicates and
samplers. An abstract plan π̂ for a task is a sequence of ground operators ω ∈ Ω that achieves the task’s goal under the
abstract transition model F . Note that an abstract plan induces a sequence of abstract states, starting from the abstract
initial state, which we call the expected abstract state sequence. Because downward refinability does not hold in our setting,
an abstract plan is not guaranteed to be refinable into a solution π for the task, which necessitates bilevel planning.

For the outer search that finds abstract plans π̂, we leverage the STRIPS-style operators and predicates [5] to automatically
derive a domain-independent AI planning heuristic [7] such as hAdd or LMCut. We use this heuristic to run an A∗ search
over the abstract state and action spaces. This A∗ search is used as a generator of abstract plans, outputting one at a time.
Parameter nabstract governs the maximum number of abstract plans that can be generated before the planner terminates
with failure. For each abstract plan π̂, we conduct an inner search that attempts to refine it into a solution π. While
various implementations are possible [6, 8], we perform a backtracking search over the abstract actions. Recall that each
ωi ∈ Ω includes a partially specified controllerCi((o1, . . . , ov)i,Θi) and has an associated ground sampler σi. To begin the
search, we initialize an indexing variable i to 1. On each step of search, we sample continuous parameters θi ∼ σi(xi−1),
which fully specify an action ai = Ci((o1, . . . , ov)i, θi). We then check whether xi = f(xi−1, ai) obeys the expected
abstract state sequence. If so, we continue on to i← i+ 1. Otherwise, we repeat this step. Parameter nsamples governs the
maximum number of times we invoke the sampler for a single value of i before backtracking to i ← i − 1. Refinement
succeeds if the goal g holds when i = |π̂|, and fails when i backtracks to 0. If refinement succeeds, the planner terminates
with success and returns the plan π = (a1, . . . , a|π̂|). Crucially, if refinement fails, we continue the abstract search.

Learning. Our prior work [8, 9] has shown how to learn operators Ω and samplers Σ given a full set of predicates Ψ. That
previous work learns STRIPS operators via inductive logic programming, and neural network samplers via supervised
regression. Now, we focus on the problem of how to learn a good state abstraction Ψ from demonstrations D.

Inspired by prior work [10, 11, 12], we approach the predicate invention problem from a program synthesis perspective.
First, we define a compact representation of an infinite space of predicates in the form of a grammar. We then enumerate
a large pool of candidate predicates from this grammar, with simpler candidates enumerated first. Next, we perform a local
search over subsets of candidates, with the aim of identifying a good final subset to use as Ψ. The crucial question in this
step is: what objective function J(Ψ) should we use to guide the search over candidate predicate sets? Ultimately, we want
to find a set of predicates that will lead to effective and efficient bilevel planning. However, planning is too expensive to
be used in the objective function, which must be called many times during local search. There are two speed bottlenecks:
neural sampler learning and the repeated attempts to refine abstract plans. Therefore, we propose to use a proxy objective
that assumes an analytical model for refinement cost: Jproxy(Ψ) ≜

∑
(O,x0,g,π∗)∈D[ESTIMATEPLANTIME(x0, g,Ψ,Ω, π

∗)].

To implement ESTIMATEPLANTIME, we perform the same abstract search as in planning, using the operators Ω learned
from the candidate predicates Ψ. We keep track of the number of nodes created as a processor-independent proxy for the
time spent on abstract search. For each abstract plan π̂, instead of trying to refine it, we estimate how long refinement
would take using two approximations: (1) that the probability of refining π̂ is drawn from a geometric distribution with
parameter equal to the absolute value difference between the lengths of π̂ and the demonstration π∗, and (2) that the time
spent trying to refine any candidate π̂ is a constant, representing the time it takes to run exhaustive backtracking search.

2

RLDM 2022 Camera Ready Papers 586

586



Ours Manual Down Eval No Invent Bisimulation Branching Boltzmann GNN Random
Environment Succ Time Succ Time Succ Time Succ Time Succ Time Succ Time Succ Time Succ Time Succ Time
PickPlace1D 98.6 0.006 98.4 0.045 98.6 0.008 39.6 1.369 98.4 0.006 98.4 0.006 98.4 0.005 100.0 0.436 19.2 0.004
Blocks 98.4 0.296 98.6 0.251 98.2 0.318 3.2 1.235 19.0 0.158 98.4 0.284 64.8 0.954 27.8 0.138 0.6 0.006
Painting 100.0 0.470 99.6 0.464 98.8 0.208 0.0 – 0.0 – 20.2 4.186 88.6 0.600 59.2 2.077 0.0 –
Tools 96.8 0.457 100.0 0.491 42.8 0.060 0.0 – 26.2 0.699 75.8 0.109 64.2 0.247 25.6 0.311 0.0 –

Table 1: Main results. Percentage of 50 evaluation tasks solved under a 10-second timeout (Succ), and average planning time in
seconds over successful tasks (Time). All numbers are averages over 10 seeds, which vary the training and evaluation tasks, random
initializations during learning, and tiebreaking during planning. Our learned abstractions (Ours) perform extremely well compared to
all baselines (rightmost four columns), and can even lead to more efficient planning than with the hand-designed abstraction (Manual).

We use Jproxy to run a local hill climbing search over ngrammar = 200 candidate predicates drawn from a grammar. For this
grammar, we consider both the given goal predicates ΨG and single-feature inequality classifiers, which are less-than-or-
equal-to expressions that compare a constant with an individual feature dimension, for some object type. We also allow
negations and universal quantifications of predicates. See Figure 1 (first panel) for examples. Following prior work [12],
we prune out candidate predicates if they are equivalent to any previously enumerated one, in terms of all groundings
that hold in states inD. This grammar associates each generated predicate with a cost, which we use to regularize Jproxy.

4 Experiments and Discussion

We evaluate nine methods across four robotic planning environments. All experiments are averaged over 10 random
seeds. For each seed, in all four environments, we sample a set of 50 evaluation tasks from the task distribution T , with
hyperparameters chosen to involve more objects and harder goals than were seen at training. Our key measures of
effective and efficient planning are (1) success rate and (2) wall-clock time. The timeout for planning is always 10 seconds.

Environments. We now briefly describe the environments. The first three environments were established in our prior
work [9], but with manual state abstractions (we use the same state abstractions for our Manual baseline below).

• PickPlace1D. In this toy environment, a robot must pick blocks and place them onto target regions along a table
surface. All pick and place poses are in a 1D line. Evaluation tasks require 1-4 actions to solve.

• Blocks. In this environment, a robot in 3D must interact with blocks on a table to assemble them into towers. This is
a robotics adaptation of the blocks world domain in AI planning. Evaluation tasks require 2-20 actions to solve.

• Painting. In this challenging environment, a robot in 3D must pick, wash, dry, paint, and place widgets into either a
box or a shelf, as specified by the goal. Evaluation tasks require 11-25 actions to solve.

• Tools. In this challenging environment, a robot operating on a 2D table surface must assemble contraptions by
fastening screws, nails, and bolts, using a provided set of screwdrivers, hammers, and wrenches respectively. This
environment has physical constraints outside the scope of our predicate grammar, and therefore tests the learner’s
ability to be robust to an insurmountable lack of downward refinability. Evaluation tasks require 7-20 actions to solve.

Methods. The methods we evaluate are: ours, a manually designed state abstraction, 2 ablations, and 5 baselines.

• Ours. Our main approach, which learns abstractions and uses them to guide planning on the evaluation tasks.
• Manual. An oracle approach that plans with manually designed state abstractions (predicates) for each environment.
• Down Eval. An ablation of Ours that uses nabstract = 1 (Section 3, “Planning”) during evaluation only.
• No Invent. An ablation of Ours that uses Ψ = ΨG, i.e., only goal predicates are used for the state abstraction.
• Bisimulation. A baseline that learns abstractions by approximately optimizing the bisimulation criteria, as in prior

work [12]. Specifically, this baseline learns abstractions that minimize the number of transitions in the demonstrations
where the abstract transition model F is applicable but makes a misprediction about the next abstract state.

• Branching. A baseline that learns abstractions by optimizing the branching factor of planning. Specifically, this baseline
learns abstractions that aim to minimize the total number of applicable operators over states in the demonstrations.

• Boltzmann. A baseline that assumes the demonstrator is acting noisily rationally. Specifically, for any candidate
abstraction in our search, we compute the probability of the demonstration under a Boltzmann policy, with the AI
planning heuristic used as a proxy for the true cost-to-go; we seek to maximize this probability.

• GNN. A baseline that trains a graph neural network policy via behavior cloning. This GNN takes in the current state
x, abstract state s, and goal g. It outputs an action a, via a one-hot vector encoding which controller to execute, one-
hot vectors over all objects at each discrete argument position, and a vector of continuous arguments. At evaluation
time, we sample trajectories by treating the outputted continuous arguments as the mean of a Gaussian with fixed
variance. We use the transition model f to check if the goal is achieved, and repeat until the planning timeout.

• Random. A baseline that simply executes a random controller with random arguments on each step. No learning.

Additional details. All sampler neural networks are fully connected, with two hidden layers of size 32 each, and trained
with the Adam optimizer for 10K epochs using learning rate 1e-3. Unless otherwise specified, the AI planning heuristic
is LMCut. We use nabstract = 1000 for Tools and 8 otherwise, and nsamples = 1 for Tools and 10 otherwise.
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Results. Main results are in Table 1. Comparing Ours to the right five columns (baselines), we see that the proxy objective
we use in our abstraction learning performs very well compared to more typical objectives such as bisimulation or
optimizing rationality. Furthermore, compared to Manual, the learned abstractions are often more efficient from a planning
time perspective, with very little reduction in success rate. Next, we consider ablations of our main approach (Table 1,
middle two columns). Results for No Invent show that, as expected, using the goal predicates as a standalone state
abstraction is completely insufficient for most tasks. Comparing Ours to Down Eval shows that assuming downward
refinability at evaluation time works for PickPlace1D, Blocks, and Painting, but not for Tools. We were surprised by this
result because the manually designed abstractions for PickPlace1D and Painting are not downward refinable [9].

We also assess the data efficiency of our system. In the figure on the right, each point
shows a mean over 10 seeds, with standard deviations shown as vertical bars. Recall that
there is one demonstration per training task. In most environments, the figure shows
very good evaluation performance within just 50 demonstrations, and this performance
typically improves smoothly as the number of demonstrations increases. Generally, pro-
viding more demonstrations helps the following aspects of our system: (1) inventing
fewer extraneous, overfitted predicates; (2) learning more accurate operator precondi-
tions; (3) allowing the sampler neural networks to be trained on a larger amount of data.

Ours Manual
Heuristic Succ Time Node Succ Time Node
LMCut 98.4 0.296 2949 98.6 0.251 2941
hAdd 98.6 0.115 121.6 97.8 0.235 3883

The table on the right shows an additional experiment we conducted
in the Blocks environment, where we varied the AI planning heuristic
used in predicate invention and evaluation. The Node column shows
the number of nodes created during abstract search. While the gap
in performance is limited with LMCut, our system shows a substan-
tial improvement with hAdd. In the latter case, our approach invents four unary predicates with the intuitive mean-
ings Holding, NothingAbove, HandEmpty, and NotOnAnyBlock, to supplement the given goal predicates On and
OnTable. Comparing these to Manual, which has the same predicates and operators as those in the International Plan-
ning Competition (IPC), we see the following differences: Clear is omitted, and NothingAbove and NotOnAnyBlock
are added. We observed that the latter are logical transformations of predicates used in the standard IPC blocks world
representation, which motivated us to run a separate, symbolic-only experiment, where we collected IPC blocks world
problems and transformed them to use these predicates and associated learned operators. We found that using A∗ and
hAdd, planning with our learned representations is much faster than planning with the IPC representations. For exam-
ple, using Fast Downward [7] on a problem from IPC 2000 with 36 blocks, planning succeeds with our representations in
12.5 seconds after approximately 7,000 expansions, whereas it fails within a 2 hour timeout with the standard encoding.

Altogether, our experimental results affirm the promise of our approach for learning abstractions that are both “task-
aware” and “planner-aware,” leading to effective and efficient bilevel planning.
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Abstract

Tracking a turbulent plume to locate its source is a complex control problem requiring robust multi-sensory integration
in the face of intermittent odors, changing wind direction, and variable plume shape. This task is routinely performed
by flying insects, often over long distances, in pursuit of food or mates. Several aspects of this remarkable behavior have
been studied in detail in many experimental studies. Here, we take a complementary in silico approach, using artificial
agents trained with reinforcement learning to develop an integrated understanding of the behaviors and neural compu-
tations that support plume tracking. Specifically, we use Deep Reinforcement Learning (DRL) to train Recurrent Neural
Network (RNN) based agents to locate the source of simulated turbulent plumes. Interestingly, the agents’ emergent be-
haviors resemble those of flying insects, and the RNNs learn to represent task-relevant variables, such as head direction
and time since last odor encounter. Our analyses suggest an intriguing experimentally testable hypothesis for tracking
plumes in changing wind direction—that agents follow local plume shape rather than the current wind direction. While
reflexive short-memory behaviors are sufficient for tracking plumes in constant wind, longer timescales of memory are
essential for tracking plumes that switch direction. At the level of neural dynamics, the RNNs’ population activity is low-
dimensional and organized into distinct dynamical structures, with some correspondence to the uncovered behavioral
modules. Our in silico approach provides key intuitions for turbulent plume tracking strategies and motivates future
targeted experimental and theoretical developments.

Keywords: deep reinforcement learning, recurrent neural networks, neural
dynamics, computational neuroscience, olfactory search, compu-
tational ethology, infotaxis
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Figure 1: (a-b) An agent’s plume tracking trajectories, each starting at a filled black circle and ending at dotted crosshairs
indicating the plume source. Plume in dull grey color. Wind-direction shown by arrow in dotted circle. Successful
tracking episodes in (a) a constant wind-direction plume, and (b) a plume that switches directions multiple times; (c)
Agent course-direction (CD), measured counter-clockwise from ground x-axis, is the direction the agent actually moves
taking into account slip due to wind-advection; (d) Empirical distribution of CD across multiple successful trajectories in
plumes with switching wind-direction suggests that agents track with respect to local plume centerline rather than with
respect to the wind; (e) An agent is a Recurrent Actor-Critic Network [1] trained using Deep Reinforcement Learning;
(f) Neural activity across multiple episodes colored by time elapsed since agent last encountered plume (25 steps = 1.0s),
shows how this task-relevant variable which has been previously reported in the Entomological literature [2], is clearly
represented in the agent’s neural data.

Detail: We implement a particle-based 2D plume simulation model that replicates the statistics of real-world turbulent
plumes [3]. Our agents are actor-critic networks [4], each comprising a vanilla Recurrent Neural Network (RNN) followed
by a pair of 2 consecutive feedforward layers corresponding to the Actor and Critic heads of the network (Fig. 1e). All
layers are 64 units wide with tanh nonlinearities. At each time step, agents receive real-valued 3-tuple inputs comprising
egocentric wind velocities (x, y) and odor concentration at their current location, and output continuous valued turn and
forward-movement actions matched to the capabilities of real flying insects [5, 6]. We train 14 agents with independently
randomly initialized networks using policy gradient (PPO) [4] on a 2-stage curriculum of progressively complex plumes.
We describe 1 of the top-5 best performing agents (measured by fraction of successful trajectories) here.

Results: Trained agents can track plumes across a variety of plume simulator configurations (Fig. 1a-b) using a set
of emergent 3 behavior modules (Fig. 2a-b). These emergent behaviors are reminiscent of upwind surging, zig-zagging,
crosswind casting and U-turn behaviors previously reported in the literature for flying insects [5, 7, 8]. Our analyses
suggest an intriguing experimentally testable hypothesis for tracking plumes in changing wind direction—that agents
follow local plume shape rather than the current wind direction. (Fig. 1c). Simultaneously, we find that the RNN learns
to represent task-relevant variables such as the time elapsed since the last odor encounter (Fig. 1f). Neural activity is
low-dimensional (Fig. 2f), and exhibits a signature structure for 2 of the 3 behavior modules (Fig. 2c-d), organized in
overlapping but distinct regimes (Fig. 2e) at a macroscopic level. Using standard notation [9], we linearize the RNN
update rule, ht = F (ht−1,xt) = tanh(Whht−1 +Wxxt + b), around an arbitrary expansion point (hexe) on the agent’s
trajectory, to get the approximate linear system [9, 10], ht ≈ F (he,xe)+ Jrec| (he,xe) ∆ht−1+ Jinp

∣∣
(he,xe)

∆xt. Like in [10],
we then use τi = |(1/ ln |λi|)| to obtain the stimulus integration timescales τi associated with stable eigenvalues λi of the
RNN recurrence Jacobian Jrec| (he,xe) over multiple tracking trajectories. The bulk of these timescales are within ≈ 0.5s,
suggesting that the plume tracking task predominantly needs short-timescale memories (Fig. 2g). Finally, DRL training
appears to produce unstable eigenmodes in the RNN connectivity matrix Wh (Fig. 2h).

Discussion: Our normative RNN-based agent model enables an abstract yet interpretable understanding of the behav-
iors and neural computations that support turbulent plume tracking. Compared to the Infotaxis algorithm [11, 12], our
learned policies produce trajectories with a stronger semblance to biology, react to changing wind conditions, and use
a neural implementation that does not make any (potentially biologically implausible) assumptions about which vari-
ables are implemented and how inference is performed. Our findings motivate future neuroethological experiments and
theoretical investigation of such DRL-trained RNNs.
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Figure 2: (a-b) Agent’s plume tracking trajectories, colored by emergent behavior modules, namely: track, where agent
stays inside, skims or zig-zags close to the boundary of the plume; lost where, after an extended duration of plume loss,
it spirals in place (with slow drift); and recover, where, after brief periods of plume loss, it makes large (usually) cross-
wind movements to find the plume. Trajectories start at filled circle (black) and plumes (dull grey) originate at dotted
crosshairs. Wind-direction shown by arrow in dotted circle. (c-d) Neural activity corresponding to each row’s trajectory,
projected onto their respective top-2 Principal Components. Quivers indicate neural activity gradient. (c) A ‘funnel’ like
structure (in green) associated with the rack, and a limit-cycle (in red) associated with the periodic lost behavior modules;
(e) Neural dynamics from multiple trajectories shows distinct structures associated with track and lost, but an amorphous
intermediate region for the recover behavior; (f) Like biological recordings, artificial neural activity is low dimensional,
with 90% variance explained by top-5 PCs; (g) Time-averaged stimulus integration timescales τ associated with stable
eigenmodes of recurrence Jacobian Jrec show a bulk of relatively short (within 12 timesteps, 25 steps = 1.0s) timescales.
(Top 5 τs are 56.5, 13.0, 7.7, 6.8 & 5.8 timesteps). Before training, τs associated with Wh’s eigenmodes can be large,
even exceeding the length of the training/evaluation episodes (300 steps); (h) Eigenvalue spectra of the RNN recurrence
matrix Wh before and after training show how training generates unstable eigenmodes.
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Abstract

Machine learning algorithms are increasingly being used to make decisions in critical situations, such as in banking and
healthcare. To better understand these algorithms, there has been increased interest in the fairness, transparency and
accountability of these algorithms. While there are a few online learning contextual bandit algorithms that address these
concerns, most are computationally inefficient and do not learn policies that are fair during the course of learning. We
devise a process-fair algorithm that aims to find an equitable policy at all time steps, and we validate our algorithm
through a set of experiments, performed using a healthcare transport dataset.

Keywords: contextual multi-armed bandits, reinforcement learning, fairness
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1 Introduction

Recently, a surge of automated statistical and machine learning techniques have been developed and used to inform
decisions in high-stakes situations, such as in banking for loan decisions [3], hiring [5], and even criminal sentencing
[2]. With the increased use of machine learning algorithms, comes an increased interest in fairness, transparency and ac-
countability of these algorithms. Specifically, there has been an increased interest in understanding how these algorithms
work and how to make them less biased.

However, most of the fairness work has been limited to supervised machine learning, focused on the predictions learned
by the algorithm rather than how the algorithm is learning. The limited work that we have seen in the sequential
decision-making space incorporate fairness but have a few limitations. We see work that deals with offline policy
learning with fairness and safety constraints; however, they do not incorporate budget constraints and do not handle
the exploration-exploitation tradeoff necessary for online learning [6]. We see a few online learning contextual ban-
dit algorithms that have budget constraints. However, they are either computationally inefficient [1] or do not have
a multi-objective optimization [7] which is important for equitable decision making. Also, we see the multi-objective
optimization problem in Learning to be Fair which primarily focuses on trying to quickly learn a fair policy. [4].

In this work, we consider the extent to which fairness is compatible with learning in a multi-arm bandit setting, when
we consider fairness constraints at every time step while the agent is learning. In this setting, the agent is a sequential
decision-maker that must choose which decision to make from a finite set of k arms at each time step t. Based on the arm
chosen, the agent observes a stochastic reward. Over time, the agent is optimizing to find the maximum total reward by
learning the relationships between arms and rewards. Moreover, we are using contextual multi-arm bandits, in which
the agent observes a context for a given individual, and the expected reward is some unknown function of the context.

Throughout this paper, we will be using the motivating application from the healthcare transport dataset, described in
section 4.1.

2 Preliminaries/ Background

2.1 Contextual Bandits

We study the contextual multi-armed bandit setting, defined by a finite state space of domain X and a set of arms
[k] := 1, ...k. An algorithm then chooses an arm, or action ak, based on the input context and observes stochastic reward
for the arm it chooses, rtak . Each action is then associated with a potential outcome, Yi(ak), where taking action π(Xi)
results in the outcome Yi(π(Xi)).

For example, in our motivating application Yi(a2) may indicate whether the ith individual would attend their appoint-
ment if offered a free ride, Yi(a1) may indicate the outcome if offered a transit voucher, and Yi(a0) may indicate the
outcome if assistance were not provided.

2.2 States and Action Space

Each arm represents a different action that the agent can take. In our motivating application, we have three possible
actions: a free ride, a free transit voucher, or no transportation assistance.

At each time step, the agent observes a vector of covariates Xi drawn from a distribution DX , supported on X . In
our motivating application, Xi might encode an individual’s demographics, medical status, transportation access, and
history of appearance. For considerations of algorithmic fairness, we pay attention to groups defined by legally-protected
characteristics, such as race and gender. We allow individuals to be associated with a set of identities s(Xi) ⊆ G, where
for example, s(Xi) can specify combinations of the legally-protected characteristics.

2.3 Learning to Be Fair [4]

In our paper, we compare process fairness with the formulation in [4]. In [4], they work on a multi-objective equitable
decision-making task, where they balance between optimizing the reward and ensuring that the spending disparity
between k groups is minimized, using a fairness term F , as described in Section 3.3. They formulate their policy, as
follows:

π∗ltbf = argmax
π

∑

x

px
∑

a

πxarxa − λF (π, r, c)

s.t. 0 ≤ πxa ≤ 1 ∀x, a
∑

x

px
∑

k

πxacxa ≤ bk ∀k
(1)
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3 Process Fairness

3.1 Optimization Problem

Building on the formulation from section 2.3, we define a policy that is process-fair, as follows:

π∗pf = argmax
π

∑

x

px
∑

a

πxarxa − λF (π, r, c)

s.t. 0 ≤ πxa ≤ 1 ∀x, a
∑

x

px
∑

a

πxacxa ≤ bk ∀k

F (π, r, c) ≤ γ

(2)

where π is the policy, rxa is the reward for a particular context x and action a, cxa is the associated cost, and budget
parameter bk is a parameter bounding the cost for each arm k, and parameter γ is a parameter bounding the dispar-
ity in fairness between groups. The auxiliary form of fairness F (π, r, c) can take on different forms of fairness, such
as allocation, budget, or outcome fairness. We define allocation fairness to be the splitting of material resources (e.g.
transit vouchers) equally amongst groups. Budget fairness refers to the splitting of the budget (e.g. money) amongst
groups. Outcome fairness refers to the final result, e.g. Yi(ak) being equally observed between groups. In addition, the
policy optimization can account for different forms of fairness by adding or modifying the constraints. We use both a
regularization term and constraint on F to more easily compare with the formulation from [4].

3.2 Algorithm

We present our algorithm to learn a process-fair policy, . Note, the algorithm is very similar to the one presented in [4].
The differences are in the optimization problem, specifically in step 14 of Algorithm 1.

Algorithm 1 Process Fair Bandit Learning Algorithm
1: Input: Actions ak, budget b, parity preferences λ, reward function r, fairness bound γ, covariate distribution P(X =
x), group membership function s, bandit algorithm, ℓ

2: Initialize: Randomly first treat ℓ people.
3: for t = 1 to T do
4: Set Di := (Xj , Aj , Yj)

t−1
j=1 where X, A, and Y denote the covariates, actions, and outcomes of individuals seen at

previous time steps.
5: Estimate f(x, a) with a parametric family of functions g(x, a; θ) fit on Di

6: if bandit algorithm == ϵ-greedy then
7: f̂(x, a) := g(x, a; θ̂i) where θ̂i is the MLE
8: else if bandit algorithm == Thompson Sampling then
9: f̂(x, a) := g(x, a; θ̂∗i ) where θ̂∗i is drawn from the posterior of θ̂i

10: else if bandit algorithm == UCB then
11: f̂(x, a) := the α-percentile of the posterior of g(x, a; θ̂i)
12: end if
13: Adjust b∗k,i using equation 3.
14: Find solution π∗i of the LP in Equation 2 with input values f̂(x, a), s, λ, b∗k,i, γ, and P(X = x).
15: if ϵ-greedy and Bernoulli(ϵ) == 1 then
16: Take random action Ai where P(Ai = ak) ∝ b∗k,i
17: else
18: Take action Ai ∼ π∗i (Xi)
19: end if
20: Observe outcome Yi
21: end for

Similar to [4], we perform budget adjustment at each time step because the policy π∗i evolves over time.

b∗k,i = bk

∑i−1
j=1 b

∗
k,j∑i−1

j=1 I(Aj = ak)
(3)

where Aj is the action taken by the jth individual and bk is the target budget for action ak.
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3.3 Different Forms of Process Fairness

3.3.1 Treatment Allocation Fairness

Treatment allocation fairness corresponds to treatment parity across the population. For example, it may be advanta-
geous to prefer policies in which a similar proportion of individuals receive the same types of treatments across neigh-
borhoods. We would encode neighborhood membership into groups. More formally, we define allocation fairness as
follows:

F (π, r, c) = FTA(π) =
∑

g

||D(π(X))−D(π(X)|g ∈ s(X))||1

=
∑

g

∑

a

|Pr(π(X) = a)− Pr(π(X) = a|g ∈ s(X))|

=
∑

g

∑

a

|
∑

x

pxπxa −
∑

x|s(x)=g

px∑
x|s(x)=g px

πxa|.

(4)

3.3.2 Budget Allocation Fairness

Budget allocation fairness corresponds to budget parity across the population. For example, given a budget for the
entire population, we would want to ensure that the budget is equally split between groups, proportionally based on the
number of individuals in the group. We define budget allocation fairness, as follows:

F (π, r, c) = FBA(π, c) =
∑

g

∑

k

|Eπ[c(X,A)]− Eπ[c(x,A)|G = g]|

=
∑

g

∑

a

|
∑

x

pxπxacxa −
∑

x|s(x)=g

px∑
x|s(x)=g px

πxacxa|.
(5)

3.4 Theorem

Theorem 3.4.1. In order to validate whether process fairness will learn the optimal policy, the oracle F (π, r, c) value = γ given a
specific λ value in Equation 1 is computed. Using γ as input into Equation 2, process fairness will learn the same optimal policy as
learning to be fair. If γ = F (π, r, c)∗ then U(π∗pf ) = U(π∗ltbf ), where U is the utility function.

Proof. Since the optimal policy still lies If π∗ = argmax(U(π)|π ∈ S) and π∗ ∈ A then argmax(U(π)|π ∈ A) = π∗ where
A ⊆ S. S represents the set of policies which respect the budget constraint from Equation 1 and A is the set of policies
which respect both the budget and fairness constraints from Equation 2.

4 Experiments and Simulations

4.1 Healthcare Transport Dataset

To evaluate our learning approach, we conducted a simulation study, using a patient transportation dataset simulator.
For this simulation study, patients can receive one of three mutually exclusive treatments: a free ride, a transit voucher,
or no transportation assistance. The budgets for the transit vouchers is fixed at 20% of the population and for free rides
at 5% of the population. The simulated population consists of two demographic groups.

4.2 Simulations

To evaluate our process fairness learning approach, we conducted a simulation study using the datasets described in
Section 4.1. To efficiently learn decision policies in the real world, we integrate the LP formulation from Section 3.1 with
the upper confidence bound (UCB), a common contextual bandit approach, as described in Algorithm 1. For the UCB
approach, we compute the optimal policy π∗i using an optimistic reward estimate of r(x, k) (e.g. using the 95th percentile
of the posterior of r̂(x, k)).

In order to obtain γ for the process-fairness simulations, we first learned policies inputting specific λg values into the
[4] algorithm. With these optimizations, we obtained oracle policies that balance between maximizing appearances and
achieving parity in the distribution of transportation assistance across groups. These policies had an optimal fairness
value that we used as input into our process-fairness simulations as γ. Using this approach, we could better understand
how the process fairness constraint directly affects learning.

3
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Additionally, we compare our approach against an oracle under the process fairness constraint that observes the true
expected appearance probabilities.

5 Results and Discussion

5.1 Plots

A) B) C) D)

Figure 1: Transportation Allocation Fairness. This figure shows the comparison between learning to be fair (red) and
process fairness (blue) at different fairness constraints. The dotted lines represent the fairness value of the oracle policies
under the different constraints. B and D demonstrate the learned reward values of the policies at the corresponding
fairness constraints from A and C.

5.2 Discussion

In Figure 5.1, the fairness value in plots A and C correspond to the plot of the second term of the objective, specifically
F (π, r, c), and the reward value in plots B and D correspond to the plot of the first term of the objective, specifically∑
x px

∑
a πxarxa. As we can see in both plots A and C, the fairness values from the process-fair policies (blue) are

consistently below the threshold, indicated by the dashed lines, whereas for the learning to be fair policies the policies
(red) do go above the threshold in some cases. The plots in A and B correspond to policies learned with a larger lambda
and smaller γ threshold for process fairness, whereas the plots in C and D are the result of policies learned with smaller
lambda values and larger γ threshold for process fairness. We see that the oracle policies under both process fairness
and the learning to be fair constraints perform the same when the fairness bound constraint is looser or the same as
the lambda penalty term on fairness, as demonstrated by the dashed lines in Figure 5.1. Moreover, when we compare
process fairness with learning to be fair oracle performance, we mostly see that process fairness does worse than learning
to be fair performance demonstrating that the process fairness constraint does cause a reduction in performance.

6 Future Work

In the future, we would like to better understand how process fairness affects other domains, where critical decisions
need to be made. From the learning standpoint, we would like to further examine how process fairness impacts explo-
ration when learning the optimal policy.
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Abstract

In order to understand the structure of the world, agents must make causal inferences based on temporal relationships.
However, standard value-based approaches in reinforcement learning learn estimates of temporally discounted average
future reward, leading to ambiguity about reward timing and magnitude. To resolve such ambiguity, it has been pro-
posed that a population of neurons corresponding to distinct parallel value channels that differ in reward and temporal
sensitivity can facilitate the learning about distributions of reward amount over time. Here we present a population cod-
ing model that can optimally represent such information when faced with limited neural resources by adapting to the
temporal statistics of experienced rewards. Furthermore, we derive a biologically plausible learning rule that converges
to the information-theoretically optimal code. We then show that this code outperforms a non-adapting one and suggest
how several features of animal behavior may be explained as resulting from adaptation to temporal reward statistics.
Lastly, if the brain implements such a code, neural reward prediction errors should 1) express variable sensitivity to the
timing of future reward and 2) adapt this sensitivity to changes in the temporal statistics of reward. We are testing these
predictions by recording the responses of optogenetically identified midbrain dopamine neurons in mice to conditioned
stimuli that predict rewards at varying delays. We present preliminary data consistent with the predictions of the theory.

Keywords: distributional reinforcement learning, efficient coding, time, re-
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1 Introduction

Extracting temporal structure from the world forms the basis for learning to behave adaptively in complex, dynamic
environments. Relatedly, knowing when behaviorally relevant events such as rewards will occur is often critical for sur-
vival. For example, crossing a desert to reach an oasis is only advisable if you won’t perish before you get there. Recently
it has been shown that an extension of temporal difference learning can be used to create a distributional map of future
events [4]. This approach relies on a multiplicity of factors by which future rewards are temporally discounted. However,
it is not specified how those factors should be chosen. Artificial and biological agents have implementational constraints,
namely limited channel capacity, creating pressure to adapt coding mechanisms to the statistics of the environment so
as to preserve information. Recently, an adaptive distributional code has been proposed for reward amounts [1]. At
the behavior level, a swath of evidence strongly suggests that discounting behavior is plastic. For example, the rate at
which humans discount the value of delayed rewards decreases with age and, in contexts in which a single exponential
discounting rate is optimal, humans can learn to match that factor [5]. In the brain, there is evidence that a variety of
discounting processes may underlie that plasticity in discounting behavior. Midbrain dopamine neurons, thought to
encode a form of reward-prediction error, discount future reward heterogenously [3] and value-related signals are or-
ganized topologically in the ventral-dorsal axis of the striatum in a gradient of delay discounting [7]. Finally, there is
some evidence that serotonin may modulate the dynamic nature of such discount factors. We propose an adaptive neural
population code that optimally updates the prediction time range of rewards to match the statistics of the environment
through adaptation of temporal discount factors. Moreover, we present a biologically plausible set of learning rules that
might underlie its implementation. We confirm that the adaptive code outperforms the non-adaptive code suggested
previously in predicting the temporal evolution of expected rewards and hypothesize that it can explain several fea-
tures of animal behavior. Lastly, we present preliminary evidence that expressed discounting-related signals in midbrain
dopamine neurons of mice qualitatively match the predictions of our theory. Specifically, the discount factors associated
to the dopamine neurons adjust in response to changes in the temporal distribution of reward in the environment.

2 Multiple temporal discounts code

The value at time step t is the expected sum of discounted future rewards Vt = E
[∑∞

j=0 γ
jrt+j

]
and γ ∈ [0, 1) is the

temporal discount factor that determines how much delayed reward is devalued relative to immediate reward. The
value can be learnt using the temporal-difference (TD) algorithm that updates, at each time step, the current estimate
using a reward prediction error (RPE) δ, weighted by a learning rate α, Vt ← Vt + αδ with δ = r+ γVt′ − Vt. In the brain,
the basal ganglia (BG) are a candidate biological substrate for implementing reinforcement learning (RL) algorithms.
Cortex provides information about the state of the world and available actions to the striatum, which is thought to learn
their corresponding value. Such value is updated by a RPE conveyed by midbrain dopamine neurons. As mentioned
before, evidence suggests that canonically identified parallel circuits within the BG might compute different temporally
discounted values Vγ . In parallel, it has been shown that the value is the Laplace transform of the expected reward at
future time steps with parameter s = − log γ [8], that is,

Vt = E
[ ∞∑

j=0

γjrt+j

]
=
∞∑

j=0

γj r̄(t+ j) =
∞∑

j=0

e−j(− log γ)r̄(t+ j) = F (− log γ). (1)

We represent the expected rewards at time t by r̄(t) = E[rt]. There are well known methods for inverting the Laplace
Transform that, given a set of temporal discounts γ1, . . . , γN and values Vγ1 , . . . , VγN , reconstruct the expected reward
at all future time steps {r̄(t + 1), . . . , r̄(t + N)}. At the circuit level, this suggests that by integrating the information of
multiple parallel circuits in the BG it is possible to infer the temporal evolution of expected rewards. Specifically, Post’s
formula uses k-order derivatives over the s-space, that can be thought as center-surround receptive fields in neighbor-
hood of points in the s-space, to estimate the expected future rewards at time steps t, ˆ̄r(t) = limk→∞ sk+1F (k)(ks),

where F (k) is the kth-derivative of F (s). We assume each dopamine neuron encodes the RPE relative to a exponentially
discounted value with a decay of s and a temporal discount of γ = e−s. To decode the expected reward at time t the re-
sponses of neuron with γ = e−1/t and its k neighbors are used (Figure 1i). Values with associated low temporal discount
factors, discriminate short reward times, those with associated high temporal discount factors discriminate longer times
on a wider range (Figure 1a,e). Therefore the mapping from time to γ is monotonically increasing and biased to higher
temporal discount factors (Figure 1i). k is an hyper-parameter that is tuned to trade off accuracy and system complexity,
that linearly scales the population temporal discounts. Importantly, a network model implementation for this decoder
has been proposed, highlighting a biologically plausible solution for its implementation.

3 Adaptive multiple temporal discounts code

We use an efficient population coding framework [2] to derive the distribution of tuning functions that optimally repre-
sent the temporal evolution of future rewards. Whereas in previous work, efficient coding has been typically deployed
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Efficient coding framework Distributional RL learning rules
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Figure 1: In the leftmost panel a set of temporal discounted values as a function of time to reward are shown (a). Low
temporal discount factors discriminate short times to reward, high wider ranges, as shown by the derivatives in (e).
The mapping between time to discount factors is represented in (i). In the middle panel, (b) shows the initial tuning
functions and we confirm in (f) that they approximately tile the time space in the range of interest. In (d) the inset shows
d(time), the cumulative integral D(time), changes the spacing between the times learnt ti. These are then mapped to a
set of temporal discount factots (g), and the optimal tuning functions are represented in (k). In (j) we compare the fisher
information for the initial and optimized population, and confirm that initially it is approximately constant in the range
of interest, and for the optimized population it is redistributed and higher for more frequent occurring reward times. In
the rightmost panel, in (h) we represent the learning rules for ti, and in (l) the distribution of t′is learnt.

in order to embed natural stimulus statistics within the neural response functions for the purposes of accurate stimulus
estimation, here our objective is to develop a neural population code optimized to make predictions of future rewards.
In particular, we seek to maximize the mutual information I(r̄(t), ˆ̄r(t)), between the true r̄(t) and that encoded from neural
population responses, ˆ̄r(t). We assume independent Poisson noise and consider a set of N tuning functions that approxi-
mately tile the future reward times (Figure 1f) and have constant Fisher information (Figure 1j), represented in Figure 1b.
We parameterize the population with the density of tuning curves d as a function of time. Constraining on the number
of neurons N , the solution that optimally represents r̄(t) is given by d(t) ∝ Np(r̄(t)) (Figure 1d). Using the mapping
defined in the Laplace decoder (Figure 1g), the optimal tuning curves are represented in Figure 1k. Interestingly, the
set of parameters we arrive at are quantiles of r̄(t), that are the expectiles of r(t) [4]. If we assume the reward function
is either 0 or 1, p(r(t)) collapses to the probability distribution of reward times, that we represent as p(r|t). There is
evidence that dopamine neurons signal the RPE relative to different expectiles of the probability distribution of reward
amount, and TD-learning rules have been derived to learn these expectiles [1]. Similar learning rules can be used to learn
the expectiles of the probability of rewards in time (Figure 1h,l).

4 Simulations

4.1 Classical conditioning task

We study a classical conditioning task, where a cue predicts reward with distinct delays sampled from a given probability
distribution, and compare how well the adaptable and non-adaptable codes predict the temporal evolution of expected
rewards at the cue. We consider a unimodal and a bimodal probability distribution and represent the optimized tuning
functions and decoded temporal evolution of expected rewards at the cue in Figure 2. For the non-adaptable code, we
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considered exponential decay parameters distributed uniformly in the interval (0, 1/tmax ] and also uniformly distributed
in the range of the adaptable code. N=200 neurons were considered and derivatives of order k = 20 were used in
the decoder for the unimodal distribution and k = 40 for the bimodal distribution. In both cases, the adaptable code
outperforms the non-adaptable code.

(a) (b) (c) (d)

Figure 2: In (a) and (c) the decoded expected future rewards are represented and in the insets the total variation distance
(TV) between the decoded and true functions are shown. In (b) and (d) the tuning functions for the adaptable code are
shown.

4.2 Intertemporal choice task

Intertemporal choice tasks are used to determine the influence of time delays on reward evaluation. There is evidence
that pigeons, rodents, monkeys and humans discount hyperbolicaly delayed reward, i.e. the discounting of rewards in
the future decreases constantly with time. We compute the distribution over reward delays that leads to a hyperbolic dis-
counting (Figure 3a). We hypothesize that hyperbolic discounting can be a consequence of having this representation of
probability of reward delays. Two closely related primates: marmosets and tamarins, were submitted to a intertemporal

(a) (b)
(c)

(d) (e)

Figure 3: In (a) the distribution over reward delays that generates hyperbolic discounting is represented. In (b) we
confirm that the generated value is hyperbolic. In (c) the distributions of reward delay in the environment of tamarins
and marmosets are represented. The mean delay of indifference for these two species are represented in (e) and the one
predicted by our model is in (d).

choice task. The marmosets waited significantly longer for food than tamarins ([6], Figure 3e). In their natural envi-
ronment, marmosets rely on gum, a food product acquired by waiting for exudate to flow from trees, whereas tamarins
feed on insects, a food requiring fast actions. We hypothesize that in an evolutionary perspective, the tamarins were
submitted to shorter delays to get food, and therefore the set of temporal discount factors are biased to smaller values
and the marmosests on the other hand are biased to larger. We consider two distributions of delay to reward (Figure 3c),
shifted by a fixed amount, and show how this shift generates the observed difference in indifference values (Figure 3d).

5 Preliminary data

Currently, we are testing predictions of our model by recording the responses of optogenetically identified midbrain
dopamine neurons in mice to conditioned stimuli that predict rewards at different delays: 1.5s, 3s and 6s. Critically, in
the middle of each recording session there is a context switch and we remove either the condition associated with the
longest reward delay (6s) or the shortest delay (1.5s). The theory predicts that when the longest delay is removed, neurons
decrease their temporal discount factor and when the shortest delay is removed, neurons increase their temporal discount
factor. Dopamine neurons show different sensitivities for the timing of rewards (Figure 4a), and a clear adaptation to
lower discounts when the longest delay is removed (Figure 4b). However, when the shortest delay is removed, we do
not observe an adaptation of the population discounts. We suggest that this temporal asymmetry in neural adaptation
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may be due to a rational bias in the neural code towards ensuring that predictions for the very near future are accurately
encoded regardless of the temporal reward distribution in the environment. The model can generate this asymmetry
if a prior over time p(t) biased to short delays is included such that the optimal distribution of tuning curves becomes
d(t) ∝ Np(r̄(t))p(t).

(a) (b)

Figure 4: In (a) we show the population of dopamine neurons’ FR normalized to the shortest delay FR. In (b) the measured
discount rate before and after context switches are plotted. In the inset we show the histogram of the difference to the
unity for the two sets of points and confirm that the red set of points is biased to negative values and the blue has zero
mean. We estimated these temporal discount factors using the FR at only two delays, and therefore do not rely on the
absolute estimated values that may be subject to noise, and that in some cases are greater than one, but on the relative
adaptation pattern.

6 Discussion

We propose a neural population code that optimally updates the prediction time range of rewards to match the statistics
of the environment through adaptation of temporal discount factors. In simulations, we show that this code outper-
forms the non-adaptable code and that hyperbolic discounting and environment dependent temporal discounting can
be explained by this theory. Lastly, we present preliminary dopamine data that qualitatively match the predictions of the
theory. As future steps, we aim to derive an efficient code for jointly representing reward delay and amount.
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Abstract

To convey desired behavior to a Reinforcement Learning (RL) agent, a designer must choose a reward function for the
environment, arguably the most important knob designers have in interacting with RL agents. Although many reward
functions induce the same optimal behavior (Ng et al., 1999), in practice, some of them result in faster learning than
others. In this paper, we look at how reward-design choices impact learning speed and seek to identify principles of
good reward design that quickly induce target behavior. This reward-identification problem is framed as an optimization
problem: Firstly, we advocate choosing state-based rewards that maximize the action gap, making optimal actions easy
to distinguish from suboptimal ones. Secondly, we propose minimizing a measure of the horizon, something we call the
“subjective discount”, over which rewards need to be optimized to encourage agents to make optimal decisions with less
lookahead. To solve this optimization problem, we propose a linear-programming based algorithm that efficiently finds
a reward function that maximizes action gap and minimizes subjective discount. We test the rewards generated with
the algorithm in tabular environments with Q-Learning, and empirically show they lead to faster learning. Although we
only focus on Q-Learning because it is perhaps the simplest and most well-understood RL algorithm, preliminary results
with R-max (Brafman and Tennenholtz, 2000) suggest our results are much more general. Our experiments support three
principles of reward design: 1) consistent with existing results, penalizing each step taken induces faster learning than
rewarding the goal. 2) When rewarding subgoals along the target trajectory, rewards should gradually increase as the
goal gets closer. 3) Dense reward that’s nonzero on every state is only good if designed carefully.

Keywords: Reward design, Q-Learning, Machine Learning as Program-
ming, Inverse Reinforcement Learning, Interactive Reinforcement
Learning
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Problem Setting

We formulate the RL problem as a Markov Decision Process, modeling the environment in terms of states S, actions A,
reward function R(s), discount factor γ, and transition function T (s, a, s′). Reward functions are often defined on state–
action pairs (Puterman, 1994), but we limit ourselves to the simpler case in which a reward function depends only on
the states (Russell and Norvig, 1994). To further simplify reward specification, states are described in terms of a vector
of features F (s, i) and rewards are computed as a linear combination of these features (Ng and Russell, 2000). We seek
to encourage, via rewards on state features, a target policy π+ (Abel et al., 2021) mapping states to actions. An optimal
policy π∗R is one that maximizes the cumulative discounted expected reward from all states. We say a reward function R
is correct if π∗R = π+.

To evaluate the ease of learning for a given correct reward function, we count the number of discrete timesteps where the
learner’s preference matches the target policy. We stray away from the usual benchmark of cumulative reward achieved
because reward is misleading in our case; designing a reward function that has across-the-board higher reward is not
necessarily better at the task of encouraging the target behavior. Specifically, we define

correct actions =
T∑

t=1

1[argmaxaQ(st, a) = π+(st)].

We start by examining the diversity of correct reward functions for a given target policy. Consider the grid world example
from Russell and Norvig (1994), described in Figure 1. To assess desirable aspects of different reward functions, we
sample a collection of random reward functions that set R(s) ∈ [−1, 1] for each state s ∈ S. Of the approximately
10, 000, 000 randomly-generated reward functions, 5, 000 (0.05%) were correct, and we ran Q-Learning on these reward
functions for 10,000 steps. The right margin of Figure 2 shows the distribution of cumulative number of correct actions
these rewards induce. The distribution shows that although each of these reward functions produce the target policy
when fully optimized, they differ significantly in the speed with which Q-Learning aligns itself with this target policy.

Figure 1: Russell/Norvig
grid: The agent tries to get to
the goal while avoiding the
lava. At each step, the agent
can choose to move in four
cardinal directions, each of
which has probability 0.8 to
transition in that direction,
and probability 0.1 to slip into
the two orthogonal directions.
The target policy is illustrated
with arrows.

Figure 2: Cumulative correct actions of
random reward functions vs. their subjec-
tive discount, Russell/Norvig grid, aver-
aged over 1, 000 runs. Regression in red.

Figure 3: Learning performance (with 99%
confidence interval averaged over 5,000
runs) of linear-program-designed rewards
and their action gap. The objective action
gap is computed at γ = 0.95, and the sub-
jective action gap at γ̃. The purple cir-
cle marks the cumulative correct actions at
threshold δ̃ = 0.01.

Subjective Discount

In trying to understand the properties of reward functions that lead to faster learning, we leverage the following insight:
The convergence of algorithms like Q-Learning and R-Max and even value iteration depends on the discount factor.
Smaller discount factors lead to faster convergence.

In our setting, we cannot simply adopt a smaller discount factor because we consider it to be part of the environment.
As such, we adopt an idea from Jiang et al. (2015) and differentiate between two kinds of discount factors: the objective
discount γ of the environment and a subjective discount γ̃, the latter of which is a property of the reward function. γ is
used by the Q-Learning agent to estimate returns during learning, and γ̃ to design rewards.

1
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Given a reward function R, we define πγR to be the policy of an agent optimizing R in an environment with discount
γ. The subjective discount for reward function R and target policy π+ is the smallest γ̃ such that πγ

′

R = π+,∀γ′ ∈ [γ̃, γ].
That is, we want to know how small the discount factor could get while still encouraging the target policy. In our
implementation, we use a binary search to efficiently compute the subjective discount.

Even though the learning agent does not have direct access to γ̃, it still seems to be a useful marker for good reward
functions. Returning to Figure 2, the x-axis plots the subjective discount against the cumulative number of correct actions
that match our target policy. Although the two measures are not perfectly correlated, low subjective discounts are reliable
estimators of fast learning.

Reward Construction via Linear Programming

To aid our exploration of the relationship between subjective discount and rewards for fast learning, we created an
efficient algorithm for identifying correct reward functions with minimal subjective discounts. Whereas our random
reward-function search was able to identify reward functions with subjective discounts of around 0.55 for the Russell/
Norvig grid, our linear-programming-based optimization process can push this value down to effectively zero. The gen-
erated reward for step cost, goal reward, and lava penalty, respectively, was (−0.0223,+0.6119,−1), which outperforms
the original rewards (−0.04,+1,−1), with 88,364 vs. 83,666 correct actions, after 100k steps, averaged over 100 runs.

We make use of the discounted expected feature expectation (Abbeel and Ng, 2004) D(s, i) and state–action feature
expectations Da(s, i) for state s, action a, and feature i. They are defined using the feature value F (s, i) and target policy
π+ at discount γ:

D(s, i) = F (s, i) + γ
∑

s′

T (s, π+(s), s′) ·D(s′, i)

Da(s, i) = F (s, i) + γ
∑

s′

T (s, a, s′) ·D(s′, i)

Similarly, we also define the same quantities D̃(i, s) and D̃a(s, i) using subjective discount γ̃. It has been shown (Syed
et al., 2008) that the state value function and Q-value of the target policy can be expressed as V π

+

(s) =
∑
iD(s, i) · R(i)

and Qπ
+

(s, a) =
∑
iDa(s, i) ·R(i), where R(i) is the reward function based on the feature i.

The goal of our optimizer is to construct a reward function that induces the target policy π+ at the objective discount and
the lowest possible subjective discount. Our linear program is then formulated as:

choose δ, R(i) to maximize δ

subject to
∑

i

D(s, i) ·R(i) ≥
∑

i

Da(s, i) ·R(i) + δ

∑

i

D̃(s, i) ·R(i) ≥
∑

i

D̃a(s, i) ·R(i) + δ

− 1 ≤ R(i) ≤ 1

∀ i, s ∈ S, a ∈ A \ {π+(s)}

In words, choose the reward function such that, for each state, the target policy’s action in that state is at least δ better
than any other action (for both the objective and subjective discount factors). The role of the δ variable here is to make
sure that the target policy’s action is truly better (δ > 0) than the other actions.

Next, we more closely evaluate the rewards constructed. For a range of γ̃ ∈ [0, 1], we ran the linear program to construct
a range of reward functions, one for each γ̃. Figure 3 plots the cumulative correct actions taken in 10, 000 steps for these
rewards. The result shows that the best learning performance is achieved at an intermediate value of subjective discount,
and we hypothesize that the reason is a kind of policy optimization regularization (Jiang et al., 2015).

Action Gap

Although the maximization objective δ was included as a mathematical convenience, it measures a property that has been
recognized as significant in the literature. The difference between the value of the optimal action and the second best
action is known as the action gap (Farahmand, 2011). It is commonly believed that a large action gap is beneficial for learn-
ing, mitigating effects of estimation errors (Lehnert et al., 2018), improving policies derived from Q-values (Bellemare
et al., 2015), and achieving faster convergence rates (Farahmand, 2011). To hedge against action gap being optimized to
0 as subjective discount decreases, we add the constraint δ ≥ 0.01.

2
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Principles of Good Reward Design

Advice: Penalize Steps

In a first-of-its kind result, Koenig and Simmons (1993) analyzed the time complexity of Q-Learning in a deterministic
goal-based task, where they considered two two-featured correct reward functions: (1, 0) and (0,−1). The first, the goal-
reward representation, provides the agent with a reward of +1 when the goal is reached and 0 while en route. The second,
the action-penalty representation, penalizes the agent for each step taken, ending when the agent reaches the goal.

From a zero-initialized Q-function, they argued that the time to learn a good behavior in the goal-reward representation
can grow exponentially with the size of the state space, while in the action-penalty representationO(|A||S|2) steps suffice.
Essentially, the zero-initialization and the zero rewards means the agent has no guidance and explores randomly until
the goal is encountered by accident. With action penalties, the agent tries to avoid actions it has already taken, resulting
in much more directed exploration.

We replicate this finding experimentally in a simple 60-state chain MDP with objective discount 0.95. It is a one-
dimensional environment where the agent starts at the leftmost state, and needs to take rightward actions to arrive
at the goal state on the opposite side. The two available actions transition the agent deterministically left or right.

We compare the performance of the two reward functions just described with one that our linear program generates. For
this environment, our linear program chooses (1,−1), which we call “combo” as it combines the penalty and the reward.

At the objective discount of 0.95, the action gaps for the three reward functions are approximately 0.0024 (goal reward),
0.0485 (action penalty), and 0.0509 (combo). Since we use an action-gap threshold of 0.01, goal reward doesn’t have
a well defined subjective discount, while action penalty achieves a subjective discount of 0.9249, and combo 0.9238,
approximately. The subjective discounts suggest that combo and action penalty will be similar, and both better than goal
reward. Figure 4 confirms this hypothesis.

Advice: Reward Subgoals

In the context of hierarchical reinforcement learning (Parr and Russell, 1998), long-horizon tasks are broken into smaller
tasks. Commonly, policies for the subtasks have their own pseudorewards that encourage subtask completion. In the
context of a long-horizon goal, how should rewards be assigned to subtasks to encourage fast and accurate learning?

In naturally occurring problems, subtasks can break up goal-seeking sequences into heterogeneous chunks. In the sim-
plified setting we study here, subtask completion states are spaced evenly along the 60-state chain and each has its own
feature (and therefore can receive its own reward value).

Figure 4: Comparison of reward functions on the 60-state
chain.

Figure 5: Two reward functions that place rewards on in-
termediate subgoals

We consider subgoal states placed every three states along the chain. The natural design choice would be to reward each
of the resulting 19 subgoals the same reward value r, the goal +1, and all other states a step penalty −1, as suggested
by the last section. However, it is not immediately obvious how to arrive at a value for r such that the more frequently
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spaced rewards induce the target policy. One example that we have found is r = −0.7, a small advantage over the −1
rewarded non-subgoal states.

We compared the constant subgoal reward above to a subgoal reward profile generated by our linear program. The
reward functions are shown in Figure 5. The constant subgoal reward has a subjective discount of 0.9510, while the
subgoal profile has a much lower subjective discount of 0.8232. The learning results are in Figure 4.

From Figure 4, we observe significant differences in learning time; the subgoal profile reward learns significantly faster
than the constant subgoal reward, and, the goal-only “combo” reward from the last section is included, which actu-
ally learns faster than the constant subgoal reward. This result suggests that only appropriate subgoal rewards speed
learning, while inappropriate ones may actually lead to slower learning.

We find that, when defining subgoal rewards, it helps to gradually increase rewards as the agent gets closer to the goal
state. This design helps counteract the effect of discounting, but also continually spurs the agent forward, much like an
annual salary raise is considered to be a good motivator in the commercial sector.

Advice: Use Dense Rewards

It is widely recognized that the kind of sparse rewards that come from rewarding only the goal is inferior to “dense”
rewards like the subgoal rewards discussed in the previous section (Smart and Kaelbling, 2002).

Here, we look at the limiting case where every state has its own reward value. Figure 5 shows the reward function found
by the linear program. It has a subjective discount of 0.2128. Organizing rewards in a jagged shape lets the reward
function have the largest possible state-by-state increase while still remaining in the required−1 to +1 range. Notice that
the intermediate rewards are all negative in value—that’s to prevent the agent from finding the intermediate rewards
more attractive than reaching the goal.

Figure 4 compares the Q-Learning performance on this LP-produced dense reward to the spare rewards from the previ-
ous section. We also included a second fully dense reward function selected to have a low action gap of near 0, which
performs much worse. An important lesson here is that sparse rewards are indeed difficult to learn from, but not all
dense rewards are equally good.
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Abstract

Trust Region Policy Optimization (TRPO) is an iterative method that simultaneously maximizes a surrogate objective
and enforces a trust region constraint over consecutive policies in each iteration. The combination of the surrogate
objective maximization and the trust region enforcement has been shown to be crucial to guarantee a monotonic policy
improvement. However, solving a trust-region-constrained optimization problem can be computationally intensive as
it requires many steps of conjugate gradient and a large number of on-policy samples. In this paper, we show that
the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising
the underlying monotonic improvement guarantee. The key idea is to generalize the surrogate objective used in TRPO
in a way that a monotonic improvement guarantee still emerges as a result of constraining the maximum advantage-
weighted ratio between policies. This new constraint outlines a conservative mechanism for iterative policy optimization
and sheds light on practical ways to optimize the generalized surrogate objective. We show that the new constraint can
be effectively enforced by being conservative when optimizing the generalized objective function in practice. We call the
resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) as it is free of any explicit trust region constraints.
Empirical results show that TREFree outperforms TRPO and Proximal Policy Optimization (PPO) in terms of policy
performance and sample efficiency.

Keywords: policy optimization; deep reinforcement learning
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1 Introduction

Trust Region Policy Optimization (TRPO) [9] is an iterative method that optimizes stochastic policies with a trust region
constraint. One of the key ideas in TRPO is to simultaneously optimize a surrogate objective and enforce a trust region
constraint over consecutive policies at each iteration. The use of surrogate objectives stems from the seminal work of [6],
which modifies the policy gradient (PG) objective [12] by substituting the on-policy state distribution with a distribution
induced by the policy from the preceding iteration. [9] show that, despite the mismatch between what the policy update
should optimize, i.e. the PG objective, and what is optimized in practice, i.e. the surrogate objective, a monotonic
improvement guarantee for policy performance can still emerge from constraining the policy update at each iteration.
The resulting TRPO algorithm thus strictly enforces a Kullback-Leibler (KL) divergence constraint between consecutive
policies, and seeks to solve a KL-constrained surrogate objective optimization at each iteration. This combination of
the surrogate objective maximization and the trust region enforcement has also been shown to be crucial for policy
improvement in practice [9, 2].

However, solving a KL-constrained optimization problem can be computationally intensive [10]. In particular, TRPO
use a quadratic approximation of the KL that augments natural policy gradients [7] with a line-search step that critically
ensures KL enforcement [9]. This procedure requires many steps of conjugate gradient and a large number of on-policy
samples making it both computationally intensive and sample inefficient [13]. Many follow-up studies attempt to im-
prove TRPO, for example by leveraging Kronecker-factored approximated curvature to approximate the trust region [13],
solving the KL-regularized optimization analytically via Expectation-Maximization [1, 5], transforming TRPO into an
unconstrained optimization by policy space projections [3] or integrating the constraint into differentiable layers [8].

In this paper, we propose simplifying policy optimization by completely removing the trust region constraint, without
compromising the underlying monotonic improvement guarantee. Specifically, instead of the framework of surrogate
objective optimization [6, 9], we generalize the surrogate objective used in TRPO in a way that a monotonic improvement
guarantee still emerges as a result of constraining the maximum advantage-weighted ratio between policies. This new
constraint is different from the trust region constraint in TRPO in that it does not seek to impose any divergence constraint
over consecutive policies. Instead, it outlines a conservative mechanism to bound the maximum advantage-weighted
ratios in each iteration, and sheds light on practical ways to directly optimize the generalized surrogate objective. We
show that the new constraint can be simply enforced by being conservative when optimizing the generalized objec-
tive function in practice. Furthermore, we present Trust-REgion-Free Policy Optimization (TREFree), a practical policy
optimization method for optimizing stochastic policies. Empirical results show that TREFree is effective in optimizing
policies, outperforming TRPO and PPO in both performance and sample efficiency.

2 Preliminaries

Markov decision process (MDP). Single-agent RL can be modelled as an infinite-horizon discounted Markov decision
process (MDP) {S,A, P, r, d0, γ}, where S is a finite set of states, A is a finite set of actions, P : S × A × S → R is the
transition probability distribution, r : S × A → R is the reward function, d0 : S → R is the initial state distribution and
γ ∈ [0, 1) is the discount factor. Let π denote a stochastic policy π : S × A → [0, 1], the performance for a stochastic
policy π(a|s) is defined as: J(π) , Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)

[∑∞
t=0 γ

tr(st, at)
]

The action-value function Qπ and

value function Vπ are defined as: Qπ(st, at) , Et
[∑∞

l=0 γ
lr(st+l, at+l)

]
, Vπ(st) , Eat∼π(·|st)

[
Qπ(st, at)

]
. Accordingly, the

advantage function is defined as Aπ(s, a) , Qπ(s, a)− Vπ(s).

TRPO. Define the discounted state distribution as: dπ(s) ,
∑∞
t=0 γ

tP (st = s|π, d0). The following equation is useful [6]:

J(π̃) = J(π) +
∑

s

dπ̃(s)
∑

a

π̃(a|s)Aπ(s, a). (1)

The complex dependency of dπ̃(s) on π̃ makes the right hand side (RHS) difficult to optimize directly. [9] proposed to
consider the following surrogate objective:

Lπ(π̃) , J(π) +
∑

s

dπ(s)
∑

a

π̃(a|s)Aπ(s, a), (2)

where dπ̃ is replaced with dπ . TRPO introduces the idea of bounding the distribution change via the policy divergence.
Specifically, define Dmax

TV (π, π̃) , maxsDTV

(
π(·|s), π̃(·|s)

)
, where DTV is the total variation (TV) divergence.

Theorem 2.1. ([9]) Let α , Dmax
TV (π, π̃), then the following bound holds: J(π̃) ≥ Lπ(π̃)− 4εγ

(1−γ)2α
2, where ε = maxs,a|Aπ(s, a)|.

Since the TV divergence and the Kullback-Leibler (KL) divergence are related as follows: D2
TV(π, π̃) ≤ 1

2DKL(π, π̃),
we then have the following J(π̃) ≥ Lπ(π̃) − 2εγ

(1−γ)2D
max
KL (π, π̃), where Dmax

KL (π, π̃) , maxsDKL(π, π̃). This forms the

1
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foundation of many policy optimization methods, including TRPO [9] and Proximal Policy Optimization (PPO) [10].
The KL divergence imposed over the consecutive policies, π and π̃, is also called the trust region. In practice, TRPO
adopts a robust way to take large update steps by using a constraint (rather than a penalty) on the KL divergence, and
also considers using the expected KL divergence, instead of the maximum over all states:

max
π̃

E(s,a)∼dπ

[ π̃(a|s)
π(a|s)Aπ(s, a)

]
, s.t. Es

[
DKL(π(·|s), π̃(·|s))

]
≤ δ, (3)

where δ is a hyperparameter to specify the trust region. PPO with ratio clipping further simplifies such trust region
constraint by leverage ratio clipping and considers the following optimization problem:

max
π̃

Edπ
[
min

( π̃(a|s)
π(a|s)Aπ, clip(

π̃(a|s)
π(a|s) , 1− ε, 1 + ε)Aπ

)]
, where ε is the clipping hyperparameter. (4)

3 Conservative policy optimization

We show in this section that the trust region constraint over policies can be safely substituted by a trust-region-free con-
straint when we consider a generalized form of the surrogate objective function. We also present a monotonic improve-
ment guarantee for stochastic policies with the generalized surrogate objective and the trust-region-free constraint.

3.1 Optimization of stochastic policies

Definition 3.1. Define state-action function: A(s, a) , r(s, a) +Es′∼P (·|s,a)[f(s′)]− f(s), where f is a function f : S → R.

Consider updating a stochastic policy from π to π̃ via policy gradients. The following proposition from [2] is useful.
Proposition 3.2. For any stochastic policies π̃, π, and the state-action function defined above,

J(π̃)− J(π) = Es∼dπ̃(s),a∼π̃[A(s, a)]− Es∼dπ(s),a∼π[A(s, a)]. (5)

This proposition generalizes (1) to a broader family of functionsA(s, a). One can easily verify that the advantage function
of π, i.e., Aπ(s, a), satisfies the definition with f function as the value function. In this case, (5) is equivalent to (1).
Furthermore, this proposition implies that the performance difference between any two policies can be described by
their state-action distribution shift, i.e., dπ̃(s)π̃(a) − dπ(s)π(a), weighted by a function A(s, a). In practice, it would be
very unlikely to have access to dπ̃(s). We thus leverage the same trick used in TRPO to substitute dπ̃(s) with the state
distribution induced by policy π, i.e., dπ(s), and consider the following objective:

Gπ(π̃) , Es∼dπ(s),a∼π(·|s)
[( π̃(a|s)
π(a|s) − 1

)
A(s, a)

]
. (6)

This new objective generalizes the surrogate objective in (3) to any function defined in 3.1. We have the following bound,
Theorem 3.3. For any two stochastic policies π̃ and π, the following bound holds:

J(π̃)− J(π) ≥ Gπ(π̃)−
2γ

1− γ (δ + ε), where δ = max
s,a

∣∣∣∣
( π̃(a|s)
π(a|s) − 1

)
A(s, a)

∣∣∣∣ and ε =

∣∣∣∣∣
∑

a

π(a|s)A(s, a)
∣∣∣∣∣ .

To simplify further analysis, we call
( π̃(a|s)
π(a|s) − 1

)
the ratio deviation. This theorem states that the policy improvement gap

can be effectively bounded by the maximum product of the ratio deviation
( π̃(a|s)
π(a|s) − 1

)
and the state-action function

A(s, a). Moreover, as this product also appears in the definition of Gπ(π̃) in (6), one can thus consider constraining it
when optimizing Gπ(π̃). This is what we call the conservative policy optimization. We discuss how this conservative policy
update can be implemented in practice in the next section.

Theorem 3.3 differs from Theorem 2.1 in two respects. First, it presents a lower bound for the performance improvement
with respect to a state-action function defined in Definition 3.1. ThisA(s, a) does not necessarily need to be the advantage
function. Second, instead of imposing the TV constraint over the policies as in Theorem 2.1, the above theorem considers
the maximum product of the ratio deviation and the state-action function. According to [11], the TV constraint between
any two policies can be equivalently translated into a constraint over ratio deviations. In this sense, TRPO is essentially a
special case of Theorem 3.3 by leveraging the TV to bound the ratio deviations under the assumption that the advantage
function should be small. Namely, TRPO optimizes the policy regardless of how the magnitude of the advantage might
change throughout optimization. Consequently, TRPO may fail to optimize the policy when the advantage function is
large in magnitude at some state-action sample even though the TV divergence is well bounded at one iteration.

3.2 Practical policy optimization methods

2
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Algorithm 1 TREFree algorithm
for iterations i = 1, 2, ... do

for actor = 1, 2, ..., N do
Run policy π in environment
Compute advantage estimates Âπ

end for
for epoch = 1, 2, ...,K do

Sample M samples {(s, a)} from previous rollouts.
Compute L(θ) , 1

M

∑
s,a

min
(( π̃θ(a|s)

π(a|s) − 1
)
Âπ(s, a), δ

)
.

Maximize L(θ) w.r.t θ via gradient descent.
end for
π ← π̃θ.

end for

We now present the practical policy optimization meth-
ods for stochastic policies. We first offer intuitions to un-
derstand the underlying idea of conservative policy opti-
mization in the above theorems.

Theorem 3.3 is closely related to some existing policy opti-
mization methods. For example, optimizing Gπ(π̃) with-
out any conservative constraint is equivalent to the policy
gradient method [12]. Also, there are two ways to impose
such conservative constraints: the ratio-conservative and
the objective-conservative, which refer to removing the in-
centive of increasing the ratio deviations (corresponding
to PPO [10]) or the objective, respectively, when optimiz-
ing the objective function.

Non-conservative With no consideration of the conser-
vative policy update principle, one can directly optimize
Gπ(π̃) with the state-action function chosen as the advantage function of π. Such policy optimization is performed by
policy gradient methods [12]: maxθ E(s,a)∼dπ

[ π̃θ(s,a)
π(s,a) Aπ(s, a)

]
. Theorem 3.3 implies that optimizing the above objective

with the same set of sampled data for multiple times (i.e., multi-epoch optimization as in [10]), could incur a significant
degradation in policy performance, since the product between the ratio deviation and the advantage can be large. Thus,
applying policy gradients for multiple epoch optimization does not guarantee policy improvement [6].

Ratio-conservative One can take into account the conservative policy update rule by constraining the ratio devi-
ations. Specifically, when optimizing Gπ(π̃) with the state-action function as the advantage, one can clip the ra-
tio deviations to remove the incentive of inducing unexpected large deviations (i.e., ratio-conservative), as follows
maxθ E(s,a)∼dπ

[
clip
( π̃θ(s,a)
π(s,a) − 1,−λ, λ

)
Aπ(s, a)

]
, where λ > 0 is a hyper-parameter for ratio deviation clipping. This

new objective resembles the ratio clipping objective (4) used in PPO [10], which has been shown to be effective in practice,
especially with a normalized advantage function. However, such ratio clipping scheme ignores the potential effect of the
advantage function on the ratio deviation, and thus can fail to monotonically improve the policy performance when the
advantage is large at some state-action point and dominates

( π̃θ(s,a)
π(s,a) −1

)
Aπ(s, a) for a small ratio deviation. Furthermore,

solely bounding the divergence between policies, as used in trust region methods for policy optimization [9, 2], may not
be a good option in practice, as it is not sufficient for policy improvement when the advantage function fluctuates greatly
across state-action samples.

Objective-conservative We can instead apply the clipping scheme to the objective. Namely, we can clip the objective
directly to achieve this conservative update principle, as follows:

max
θ

E(s,a)∼dπ

[
min

(( π̃θ(s, a)
π(s, a)

− 1
)
Aπ(s, a), δ

)]
,

where δ > 0 is a hyper-parameter to control the conservativeness when optimizing the objective. The δ operates as a
threshold beyond which the objective quantity have no contribution to the optimization. We call it objective conserva-
tive, and the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) as it is free of any explicit trust region
constraint. TREFree is detailed in Algorithm 1.

4 Experiments

In this section, we compare TREFree with TRPO and PPO across the Mujoco continuous control tasks. We adopt the
same strategy as in TRPO [9] and PPO [10] to normalize the observations, rewards, and advantages. Specifically, the ob-
servations, rewards and advantages are normalized to zero mean and unit variance using a running mean and standard
deviation. Both observations and rewards are normalized using a running mean and standard deviation per-timestep
over the whole training process, while the advantages are normalized only within a training batch. Moreover, we lever-
age the actor-critic framework by parameterizing the actor and critic with 2-layered perceptrons, each of which has 64
hidden units and is activated with tanh. Also, the actor and critic share parameters by reusing the first layer of their
neural networks, which has been reported to stabilize the training and improve performance [9, 10, 4]. The policy is
modeled as a Gaussian distribution, with mean and variance parameterized by the actor neural network.

We now compare TREFree with TRPO and PPO across the Mujoco continuous control tasks with different control com-
plexity [4], We used the publicly available and widely used repository (https://github.com/openai/baselines) as the base-
line implementation. For TRPO and PPO, we use the default hyper-parameters given in [9, 10]. We also sweep over

3
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Figure 1: Contrasting TREFree with TRPO and PPO on Mujoco benchmark tasks; training with a margin size 0.01.

the clipping range for PPO and use the best performing value as the baseline. Furthermore, we heuristically decay the
learning rate of TREFree and PPO linearly from 0.0003 to 0, as we found this annealing strategy stabilizes training for
both PPO and TREFree. We heuristically set δ in TREFree to 0.01 as it is found to perform well across all tasks.
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Figure 2: Contrasting ratio ranges.

The performance comparison on the Mujoco continuous con-
trol tasks is presented in Figure 1. Overall, TREFree per-
forms better than the baselines on all the tasks except Hop-
per. TREFree outperforms TRPO and PPO by a large mar-
gin in terms of the final policy performance on tasks Ant,
HalfCheetah, Humanoid, HumanoidStandup and Walker2d.
These five Mujoco environments are more complicated than
Hopper. The training curves in Figure 1 also show how TRE-
Free often outpaces other baselines in improving policy per-
formance. Though TREFree is outperformed by PPO and
TRPO on Hopper, the performance curves of all these meth-
ods in this specific environment fluctuates greatly over time,
and overlap each other.

We also report the ratio ranges of different methods in Fig-
ure 2 to show the underlying differences between TREFree
and the baseline methods. The probability ratios π̃(a|s)

π(a|s) are
an important indicator in TRPO and PPO training as they are
closely related to the total variation divergence [10]. Figure 2
shows that the ratios in both TRPO and TREFree are better
bounded than in PPO, where the ratios grow without bound.
However, TREFree constrains ratios in a dramatically differ-
ent way from TRPO: TRPO bounds ratios between [−2, 1]
(log-scale) in a symmetrical way, while TREFree bounds ra-
tios between [0, 1], which implies that the policy is most often
updated to increase the probability at empirical samples. This
contrast in ratio ranges suggests that TREFree is fundamen-
tally different from trust region methods.
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Abstract

Offline reinforcement learning (ORL) methods have shown impressive performance on a range of benchmark tasks, but
the problem of dataset generation in ORL is still relatively understudied. While recent work in this area has focused on
the use of task-agnostic unsupervised reinforcement learning to generate data for ORL, in many potential applications
(e.g., robot navigation), we have a priori knowledge of the kinds of downstream tasks the learning agent will have to solve.
In this paper, we seek to exploit that knowledge by exploring the application of a recent class of reinforcement learning
methods based on the occupancy information ratio (OIR) [11] for ORL dataset generation. Specifically, we hypothesize
that OIR can be brought to bear on ORL by providing a new method for obtaining data generation policies anywhere
on the spectrum between purely unsupervised (e.g., exploratory) policies and completely task-oriented policies. We
experimentally validate our hypothesis by first showing how OIR policies can be used to explicitly control the ratio of task
learning to exploration, then comparing the robustness of several offline RL algorithms to downstream task changes on
datasets generated using OIR. When used in this way, OIR provides a novel method for training a class of semi-supervised
data generation policies for ORL that strike a user-specified balance between exploration and solving downstream tasks.
This provides a useful new tool for researchers interested in studying the best ways to do data generation for ORL.
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1 Introduction

Offline reinforcement learning (ORL) – a machine learning paradigm in which reinforcement learning (RL) is used on a
set of pre-collected data – has recently enjoyed a great deal of interest within the research community. Broadly speak-
ing, ORL seeks to remove the cost of agent-environment interaction for learning new tasks by leveraging the advances in
computational power and data efficiency that have led to successes in the supervised learning community. This is accom-
plished by first generating and storing a large, static dataset of interactions with a given environment, then labeling each
individual transition with a scalar reward, and finally applying ORL algorithms to the relabeled dataset in an attempt to
learn an optimal policy. In a robotic exploration task, for example, the data generation phase could consist of logging the
position, velocity, and sensor data of a robot as it explores a building. Then, after the data has been collected, an objective
such as “go to the southeast corner of the building” is specified, and a scalar reward corresponding to that objective is
applied to the data. Finally, an ORL algorithm is applied to the relabelled data to learn a policy to achieve the objective.
A large number of ORL techniques have been proposed (see [10] for a comprehensive survey), and many have shown
good performance when applied to popular ORL benchmark datasets [3, 5]. However, up until recently these datasets
have been generated by using an ad hoc variety of data generation policies, such as random policies, optimal policies for
some underlying task, expert demonstrations, and others.

This ad hoc approach to data collection in offline RL naturally raises the question: what is the best way to generate
data for subsequent ORL? As demonstrated in [13], effective data generation policies can be trained by using methods
from the field of unsupervised reinforcement learning (URL) [9]. URL comprises a range of techniques for learning
policies that maximize intrinsic rewards, rather than the extrinsic rewards commonly associated with a Markov decision
process (MDP). By learning to maximize a certain intrinsic reward, the hope is that the resulting policy will provide a
good “warm start” with which to initialize a standard RL algorithm before resuming online training on a downstream
task. A prototypical example of an intrinsic reward is the entropy of the state occupancy measure, or state marginal
distribution, induced by the current policy, which measures how well the policy covers the state space. The idea is that,
when state entropy is maximized, the policy does a good job exploring the environment; this results in a policy that
understands how to navigate the environment, which is a valuable precursor skill to have when subsequently learning
to solve downstream tasks. The recent work [13] addresses the question of data generation for ORL by leveraging
techniques from the URL literature with the Exploratory Data for Offline RL (ExORL) scheme, which generates data for
ORL using policies learned using URL. Extensive experiments are provided illustrating the results of using several of the
best-known URL algorithms in combination with several prominent ORL algorithms.

Though URL is clearly effective when generating data for ORL, URL methods typically focus solely on intrinsic rewards,
i.e., without any downstream tasks in mind. This raises a further question: what data generation methods are best
when we have some prior over the type of downstream tasks that we might need to solve using ORL? In the robotic
exploration task above, for example, it would be useful if we could incorporate a priori knowledge about likely goal
locations or dangerous areas that the robot should avoid into the data generation process. This interesting problem is
almost unstudied in the literature, though its potential importance is mentioned in the recent [13], where, in addition
to purely URL data generation, the authors discuss the utility of “semi-supervised” data generation for subsequent
offline training. In this situation, the data generation policy learns using some mixture of extrinsic and intrinsic rewards,
potentially improving task transfer on problems where there exists some prior over the class of possible downstream
reward functions. Importantly, this type of semi-supervised data generation may also result in datasets that are more
robust to perturbations of the downstream reward function, as discussed in the experiments section below.

Orthogonal to the ORL and URL literatures, the recent work [11] developed a new tool, called the occupancy information
ratio (OIR), for addressing the trade-off between exploration and task learning in RL. In the present paper, we hypothesize
that the inherently semi-supervised OIR policy search techniques proposed in [11] provide a promising new framework
for training data generation policies that allow the user to implicitly specify the desired balance between exploration
and task prioritization. OIR is semi-supervised in the sense that it explicitly balances the desire to solve a representative
extrinsic task drawn from some class of possible downstream tasks with the intrinsic goal of maximizing exploration. In
addition to enjoying strong theoretical guarantees and promising empirical performance, we aim to show that policies
trained using OIR may be used to obtain datasets for ORL with a user-controlled level of robustness to changes in the
downstream reward function. 1

In this paper, we explore the application of the OIR and entropy maximization methods developed in [11] to data gen-
eration for ORL. First, we describe the problem setting underlying the OIR optimization problem. Second, we present
the entropy gradient and OIR policy gradient theorems for this setting, then provide an actor-critic algorithm for min-
imizing the OIR, called Information-Directed Actor-Critic (IDAC). Next, we describe how one might use OIR methods
to learn semi-supervised data generation policies for ORL that strike a user-specified balance between exploration and

1As an aside, OIR methods rely on the entropy gradient theorem (Theorem 3.1) given below; as discussed in [11], this theorem
provides a simple expression for the gradient of the state entropy of a policy that can be used to develop straightforward policy
search algorithms for entropy maximization. This is likely of independent interest to the URL and ORL communities, since it provides
additional tools for developing unsupervised and semi-supervised data generation methods.

1
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task prioritization. Finally, we provide experiments that (i) illustrate how OIR policies can be used to explicitly control
the ratio of task learning to exploration, and (ii) compare the effect of varying this ratio during OIR data generation on
the robustness of several offline RL algorithms to downstream task changes. Our results illustrate that OIR methods
provide a new class of semi-supervised data generation policies on the spectrum between purely unsupervised policies
and completely task-oriented policies, yielding a flexible new tool for ORL.

2 Problem Formulation

In this section we describe our problem setting and formulate the OIR objective. We first define an underlying MDP, then
formulate the OIR as an objective to be optimized over it.

Markov Decision Processes. Consider an average-cost MDP described by the tuple (S,A, p, c), where S is the finite state
space, A is the finite action space, p : S × A → D(S) is the transition probability kernel mapping state-action pairs to
distributions over the state space, and c : S ×A → R+ is the cost function mapping state-action pairs to positive scalars.
In this setting, at time-step t, the agent is in state st, chooses an action at according to a policy π : S → D(A) mapping
states to distributions overA, incurs cost c(st, at), and then the system transitions into a new state st+1 ∼ p(·|st, at). Since
we are primarily interested in policy gradient methods, we give the following definitions with respect to a parameterized
family {πθ : S → D(A)}θ∈Θ of policies, where Θ ⊂ Rd is some set of permissible policy parameters. Note that analogous
definitions apply to any policy π. For any θ ∈ Θ, let dθ(s) = limt→∞ P (st = s | πθ) denote the steady-state occupancy
measure over S induced by πθ, which we assume to be independent of the initial start-state. Furthermore, let J(θ) =∑
s dθ(s)

∑
a πθ(a|s)c(s, a) denote the long-run average cost of using policy πθ. Finally, given θ, define the entropy of the

state occupancy measure induced by πθ to be H(dθ) = −
∑
s dθ(s) log dθ(s). This quantity is a measurement of how well

πθ covers the state space S in the long run.

Occupancy Information Ratio. In this paper we consider the OIR objective ρ(θ) = J(θ)
κ+H(dθ)

, where κ > −minθH(dθ) is
user-specified constant that, at an intuitive level, allows the user to control the ratio of task learning to exploration (see
Remark 1). When πθ and the system dynamics are such that H(dθ) = 0 is possible, restricting κ > 0 ensures that ρ(θ) is
well-defined. Under suitable conditions, however, H(dθ) > 0 is guaranteed, so κ = −minθH(dθ) is allowed. Given an
MDP (S,A, p, c), our goal is to find a policy parameter θ∗ such that πθ∗ minimizes ρ(θ) over the MDP, i.e., subject to its
costs and dynamics.
Remark 1. Since κ scales the relative importance of H(dθ) in ρ(θ), it can be viewed (and used) as a regularizer. When
minimizing a function f(x), one frequently considers a regularized objective function f(x) + κ ∥x∥, where κ is some
positive scalar. Here, the larger κ becomes, the more important the regularization term becomes with respect to the
objective function. In contrast, for ρ(θ), the relative importance of the entropy term actually diminishes as κ becomes
larger: when κ is small, even minor changes in the value of H(dθ) can have a large effect on the value of ρ(θ); when κ is
large, on the other hand, even significant perturbations of the value of H(dθ) have little effect on the value of ρ(θ). As we
will see in Figure 1, for the problem of using OIR for subsequent ORL, κ controls the extent to which the learner cares
about learning an optimal policy versus finding maximally-diverse data.
Remark 2. Though we stipulated that κ > −minθH(dθ) in the definition of the OIR above, letting κ < −maxθH(dθ)
has a very important interpretation as well. When κ < −maxθH(dθ) and J(θ) ≥ 0, for all θ ∈ Θ, clearly the OIR ρ(θ)
will always be non-positive. Because of this, minimizing the OIR will in fact minimize the ratio of −J(θ) to the absolute
value |κ + H(dθ)|. This means that the expected cost J(θ) of the underlying MDP is instead treated as an expected
reward to be maximized, and any algorithm for minimizing the OIR will therefore balance maximizing the reward J(θ)
with maximizing the shifted entropy |κ + H(dθ)|. This allows the OIR framework to accommodate rewards by simply
replacing the cost function c in the MDP with a reward function r, and choosing κ < −maxθH(dθ).

3 Actor-Critic for the OIR

In this section we present the Information-Directed Actor-Critic (IDAC) algorithm, which minimizes the OIR, ρ(θ). IDAC
will be the OIR-based tool that we use in what follows for ORL data-generation. Throughout this section, we will assume
that an average-cost MDP (S,A, p, c) is fixed, though we note that the average-reward setting can be accommodated with
minor changes by Remark 2. We start by first presenting the policy gradient results from [11] upon which IDAC is based.
Theorem 3.1. Let an MDP (S,A, p, c) and a differentiable parametrized policy class {πθ}θ∈Θ be given. Fix a policy parameter
iterate θt at time-step t. The gradient ∇H(dθ)|θ=θt with respect to the policy parameters θ of the state occupancy measure entropy
H(dθ), evaluated at θ = θt, satisfies∇H(dθ)

∣∣
θ=θt

= Eπθt [− log dθt(s)−H(dθt)∇ log πθt(a|s)].

With Theorem 3.1 in hand, we have the following OIR policy gradient theorem:
Theorem 3.2. Let an MDP (S,A, p, c), a differentiable parametrized policy class {πθ}θ∈Θ, and a constant κ ≥ 0 be given. Fix a
policy parameter iterate θt at time-step t. The gradient ∇ρ(θt) with respect to the policy parameters θ of the OIR ρ(θ), evaluated at

2
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Figure 1: The state occupancy measures of optimal OIR policies for various values of κ on a maze environment. This is a cost-based
environment, so values κ > −minθH(dθ) were chosen. The state occupancy measure represents the frequency with which the agent
visits the various regions of the state space. Larger numerical values represent higher visitation frequencies. The start state is in the
upper left-hand corner, while the goal state is in the bottom right. Episodes are fixed-length at 1000 timesteps. Agent can move up,
down, left, right, or stay. Agent receives costs of 1 for occupying the goal state, 10 for occupying a non-goal state, and 100 for choosing
an action that runs into a wall. The figure illustrates how the ratio of task completion (i.e., reaching the goal state) to exploration of
OIR policies changes as a function of κ in the cost setting: for small values of κ, OIR policies tend to be highly exploratory, paying less
attention to reaching the goal state; as κ increases, OIR policies explore less and concentrate more on reaching the goal state.

θ = θt, satisfies∇ρ(θt) = Eπθt

[
δJt

(
κ+H(dθt )

)
−J(θt)δHt

[κ+H(dθt )]
2 ψt

]
, where we define the temporal value difference δJt = c(s, a)− J(θt), the

temporal entropy difference δHt = − log dθt(s)−H(dθt), and ψt = ∇ log πθt(a|s).

Algorithm 1 IDAC

1: Initialization: Set rollout length K, stepsizes
{αt}, {βt}, {τt}, policy class {πθ}θ∈Θ, critic class
{vω}ω∈Ω, constant κ ≥ 0. Sample s0, θ0, ωJ0 , ωH0 ,
select µH−1, µJ−1 > 0, and set t← 0.

2: repeat
3: Generate trajectory {(si, ai)}i=1,...,K using πθt
4: µJt = (1− τ)µJt−1 + τ 1

K

∑K
i=1 c(si, ai)

5: dθt = DENSITYESTIMATOR(θt)

6: µHt = (1− τ)µHt−1 + τ 1
K

∑K
i=1 (− log dθt(si))

7: for i = 1, . . . ,K do
8: Set vωJt (sK+1) = vωHt (sK+1) = 0

9: δJi = c(si, ai)− µJt + vωJt (si+1)− vωJt (si)
10: δHi = − log dθt(si)−µHt +vωHt (si+1)−vωHt (si)
11: ψi = ∇ log πθt(ai|si)
12: end for
13: ωJt+1 = ωJt + α 1

K

∑K
i=1 δ

J
i ∇vωJt (si)

14: ωHt+1 = ωHt + α 1
K

∑K
i=1 δ

H
i ∇vωHt (si)

15: ∇̂ρ(θt) = 1

[κ+µHt ]
2

1
K

∑K
i=1

[
δJi

(
κ+ µH

t

)
− µJ

t δ
H
i

]
ψi

16: θt+1 = θt − β∇̂ρ(θt)
17: t← t+ 1
18: until convergence

Information-Directed Actor-Critic. IDAC is an OIR-
based method providing a new semi-supervised data-
generation technique for ORL. The algorithm is a vari-
ant of the classic actor-critic scheme [7, 2] with two crit-
ics: the standard critic corresponding to average cost J(θ),
and an entropy critic corresponding to the shadow MDPs
(S,A, p, rt), t ≥ 0, where rt(s, a) = − log dθt(s). The role of
the shadow MDPs is to enable us to estimate H(dθt) and
its gradient, at each timestep t. We assume access to an
oracle, DENSITYESTIMATOR, which returns the state occu-
pancy measure dθ = DENSITYESTIMATOR(θ) induced by
the policy πθ, for any θ ∈ Θ. In our experiments we used
a counting-based density estimator, though this can be re-
placed with kernel density estimation or other techniques
in practice. At timestep t, the algorithm computes two dif-
ferent TD errors: one corresponds to the critic for the MDP
(S,A, p, c), while the other corresponds to the critic for the
shadow MDP (S,A, p, rt). Note that the entropy critic TD
error computation requires a call to DENSITYESTIMATOR.
Next, the cost and entropy critic TD errors are used to up-
date their respective critics, which are in turn combined to
perform the actor update. Pseudocode for IDAC is pro-
vided in Algorithm 1.

4 Semi-Supervised OIR Data Generation
for Offline Reinforcement Learning

In this section we explore the application of OIR to data generation for ORL. We first describe how OIR methods can be
used to obtain semi-supervised data generation policies for ORL that lie on the spectrum between purely unsupervised
and completely task-oriented policies. We illustrate this point with Figures 1 and 2, which show how the OIR parameter
κ can be used to explicitly control the ratio of task learning to exploration. Second, we experimentally evaluate the effect
of varying this ratio during data generation on the robustness of offline algorithms to downstream task changes. Figure 3
illustrates that, as we vary the downstream task over OIR-generated offline datasets, the performance of ORL algorithms
on these datasets depends greatly on the value of κ, since it controls the ratio of task learning to exploration. For ease
of experimentation and since our focus was on data-generation instead of IDAC performance, the global optimal OIR
policies in this section were obtained using the concave programming techniques described in [11] instead of IDAC. For
an in-depth discussion of how IDAC has been used to solve these and more complicated problems, see [11].

3
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Figure 2: The state occupancy measures of optimal OIR policies for various values of κ on a gridworld environment. This is a reward-
based environment, so values κ < −maxθH(dθ) were chosen. The start state is in the upper left-hand corner, while the goal state is in
the center. Agents receive a large reward for reaching the goal state, a small bonus for choosing an action that moves it closer to the goal
state, and 0 otherwise. The episode ends once the agent enters the goal state. The figure illustrates how the ratio of task completion
to exploration of OIR policies changes as a function of κ in the reward setting: for very negative values of κ, OIR policies tend to be
highly task-oriented, performing significantly less exploration; as κ increases, OIR policies become increasingly exploration-oriented,
focusing less on task completion.

Figure 3: Performance of several offline algorithms on data generated using optimal OIR policies for different values of κ and different
downstream tasks on the gridworld environment from Figure 2. Plots are of normalized cumulative reward as a function of distance
of the downstream goal state from the original goal state. The OIR data generation policies were obtained for the original problem
depicted in Figure 2 with goal state in the center, then used to general offline datasets. We obtained new offline datasets from these
by varying the distance of the downstream goal state from the original goal state. We subsequently trained behavioral cloning (BC) as
a baseline, then compared the offline RL algorithms batch-constrained deep Q-learning (BCQ) [4] and conservative Q-learning (CQL)
[8], as well as offline versions of the off-policy double deep Q-learning (DoubleDQN) [12] and soft actor-critic (SAC) [6] algorithms.
For offline training we used the d3rlpy library [1]. The figure illustrates how performance of the offline algorithms changes as the
ratio of task completion to exploration – controlled by choice of κ – varies. When κ = −8.0, the OIR policy is primarily focused on
reaching the central square. BC and the ORL algorithms BCQ and CQL consequently perform well when the downstream goal state
is in the center, while performance decreases as distance increases. When κ = −4.8, the OIR policy is primarily exploratory. Here
BC, CQL, and SAC perform roughly the same at all goal state distances. When κ = −5.45, the OIR policy is more evenly balancing
reaching the goal with exploration. As a result, the corresponding ORL policies appear to exhibit behavior somewhere between these
two extremes. It is interesting to note that: BCQ does poorly on the more exploratory datasets, while CQL tends to do better; DQN’s
performance degrades with increasing distance, while SAC’s actually improves. This suggests that fixed OIR datasets may effect
offline algorithms differently and merits further study.
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The Quest for a Common Model of the Intelligent Decision Maker
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Abstract

The premise of the Multi-disciplinary Conference on Reinforcement Learning and Decision Making is that multiple disciplines
share an interest in goal-directed decision making over time. The idea of this paper is to sharpen and deepen this premise
by proposing a perspective on the decision maker that is substantive and widely held across psychology, artificial intel-
ligence, economics, control theory, and neuroscience, which I call the common model of the intelligent agent. The common
model does not include anything specific to any organism, world, or application domain. The common model does in-
clude aspects of the decision maker’s interaction with its world (there must be input and output, and a goal) and internal
components of the decision maker (for perception, decision-making, internal evaluation, and a world model). I identify
these aspects and components, note that they are given different names in different disciplines but refer essentially to the
same ideas, and discuss the challenges and benefits of devising a neutral terminology that can be used across disciplines.
It is time to recognize and build on the convergence of multiple diverse disciplines on a substantive common model of
the intelligent agent.

Keywords: decision making, multi-disciplinary, common model, intelligence
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1 The Quest

The premise of the Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) is that
there is value in all the disciplines interested in “learning and decision making over time to achieve a goal” coming
together and sharing perspectives. The natural sciences of psychology, neuroscience, and ethology, the engineering sci-
ences of artificial intelligence, optimal control theory, and operations research, and the social sciences of economics and
anthropology—all focus in part on intelligent decision makers. The perspectives of the various disciplines are different,
but they have common elements. One cross-disciplinary goal is to identify the common core—those aspects of the deci-
sion maker that are common to all or many of disciplines. To the extent that such a common model of the decision maker
can be established, the exchange of ideas and results may be facilitated, progress may be faster, and the understanding
gained may be more fundamental and longer lasting.

The quest for a common model of the decision maker is not new. One measure of its current vitality is the success of
cross-disciplinary meetings such as RLDM and the Conference on Neural Information Processing Systems (NeurIPS), and
journals such as Neural Computation, Biological Cybernetics, and Adaptive Behavior. There have been many scientific
insights gained from cross-disciplinary interactions, such as the now-widespread use of Bayesian methods in psychology,
the reward-prediction error interpretation of dopamine in neuroscience (Schultz, Dayan & Montague 1997), and the long-
standing use of the neural-network metaphor in machine learning. Although significant relationships between many of
these disciplines are as old the disciplines themselves, they are still far from settled. To find commonalities among
disciplines, or really even within one discipline, one must overlook many disagreements. We must be selective. We must
look for the big picture without expectation that there will be no exceptions.

In this short paper I hope to advance the quest for a model of the intelligent decision-maker that resonates across dis-
ciplines in the following small ways. First, I explicitly identify the quest as distinct from fruitful cross-disciplinary
interaction. Second, I highlight the formulation of goals as the maximization of a cumulative numerical signal as highly
inter-disciplinary. Third, I highlight a particular internal structure of the decision maker—as four principal components
interacting in a specific way—as already being common to multiple disciplines. Finally, I highlight terminological dif-
ferences that obscure the commonalities between fields and offer terms that instead encourage the multi-disciplinary
mindset.

2 Interface Terminology

The decision-maker makes its decisions over time, which may be divided into discrete steps at each of which new in-
formation is received and a decision is made that may affect the information that is received later. That is, there is an
interaction over time with signals exchanged. What terminology shall we use for the signals and for the entities ex-
changing them? In psychology, the decision maker is the “organism,” receiving “stimuli” and sending “responses” to its
“environment.” In control theory, the decision-maker is termed the “controller,” receiving “state” and sending “control
signals” to the “plant.” Other fields use still other terms, but these illustrate the challenge—to find terms that do not
prejiduce the reader towards one field or the other, but rather facilitate thinking that crosses disciplinary boundaries.

A good way to start in establishing terminology is to clarify the ideas that the words are meant to convey—and not
convey. The latter is particularly significant for us, as we do not want our terms to evoke intuitions that are specific to
any particular discipline. For example, calling the decision-maker an “organism” would interfere with thinking of it as
a machine, as we would in artificial intelligence. The essence of a decision maker is that it acts with some autonomy,
is sensitive to its input, and has an purposeful effect on its future input. A good word for this is agent, for which my
dictionary offers the following definition: “a person or thing that takes an active role or produces a specified effect.”
The word is commonly used this way within artificial intelligence for decision-makers that could be either machines or
people. The term “agent” is also preferable to ”decision maker” because it connotes autonomy and purposiveness.

ActionObservation

Agent

Reward

decision-making

World
rest of the

What then does the decision-making agent interact with? One answer is that it
interacts with everything that is not the agent, which might be termed its “envi-
ronment” or “world.” Either term is good for our purposes—not strongly linked
to a specific discipline—but let’s go with world for this paper just because it is sim-
pler and shorter while also being evocative in a way not linked to any specific
discipline. To complete the picture of the agent–world interaction (right) we must
give names to the signals passing in each direction. Without belaboring the points,
it is natural to say that the agent takes actions, and receives “sensations” or “obser-
vations.” Let us use observations because it is an established term for this purpose
and avoids metaphysical discussions about whether a machine can have “sensa-
tion.” In its standard usage, “observations” means information about the state of
the world that is potentially incomplete. Reward will be discussed shortly.

1
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3 Ground Rules

The preceding discussion exemplifies the ground rules and the steps that I attempt to follow regarding terminology:
1) identify the discipline-independent idea that the word is meant to connote, and 2) find a commonsense word that
captures that meaning without being unduly biased toward one discipline or another. And finally: 3) repeat the first two
steps until consensus has been found across disciplines.

A second kind of ground rule that I follow is not about terminology, but about content. As we attempt to develop a
common model of decision making, what aspects should we include and which exclude? The rule I attempt to follow is
to include the intersection of the fields rather than the union. That is, in order for a aspect to be included it is not enough
for it arise in just one of the fields. There must be at least be an argument that it is pertinent to many if not all of them.
The aspects of the common model must be general to all decision making over time to achieve a goal.

Moreover, there should be nothing in the common model that is specific to our world—for example, nothing about vision,
objects, 3D space, other agents, or language. Simple examples of what we exclude are all the things that make people
special and distinct from other animals, or all the special knowledge that animals have built into them by evolution to fit
to their ecological niches. These things are vitally important topics in anthropology and ethology, and genuinely improve
our understanding of naturally intelligent systems, but have no place in the common model. Similarly, we exclude all
the domain knowledge that is build into artificial intelligent systems by their human designers in order to make a more
useful application that requires less extensive training. All of these things are important within their discipline separately,
but are not relevant to a common model intended to apply broadly across disciplines.

A common model of decision making could have utility beyond facilitating cross-disciplinary interaction. It is relatively
easy to see the benefits within each each discipline, when they occur, of a common model because the existing disciplines
and their value are already established. Understanding natural systems has clear scientific value. Creating more useful
engineered artifacts has clear utilitarian value. But there is also scientific value in understanding the process of intelligent
decision making independent of its relationship to natural decision making, and independent of the practical utility of
its artifacts. I think so. It is not a currently established science, but one day perhaps there will be established a science of
decision making independent of biology and of its engineering applications.

4 Additive Rewards

We turn now to the decision-making agent’s goal. Today most disciplines formulate the agent’s goal in terms of a scalar
signal generated outside the agent’s direct control, and thus we place its generation, formally, in the world. In the
general case this signal arrives on every time step and the goal is to maximize its sum. Such additive rewards may be used
to formulate the goal as a delay-discounted sum, as a sum over a finite horizon, or in terms of average reward per time
step. Many other names have been used for reward, such as “payoff,” “gain,” “utility,” and, when minimized rather than
maximized, “costs.” Formulation in terms of “costs” and minimization is formally equivalent if the costs are allowed to
be negative, but just a little more complicated. A simpler but still popular notion of goal is as a state of the world to
be reached. The goal-state formulation is sometimes adequate, but less general than additive rewards. For example, it
cannot handle goals of maintenance, or specify how time-to-goal and uncertainty are traded off, all of which are easily
handled with additive frameworks.

Additive rewards have a long inter-disciplinary history. In psychology “reward” was used primarily for external ob-
jects or events that were pleasing to the animal, and even if that pleasing-ness was derived from an association of the
object with something that was rewarding in a more basic way—a “primary reinforcer.” Today’s usage of “reward” in
operations research, economics, and artificial intelligence is restricted to that more primary signal, and is also more ex-
plicitly a received signal rather than being tied to external objects or events. That usage appears to have been established
with the development of Markov decision processes within optimal control and operations research in the 1960s. It is
now standard in an impressively wide range of disciplines, including economics, reinforcement learning, neuroscience,
psychology, operations research, and multiple subfields of artificial intelligence.

5 Standard Components of the Decision-Making Agent

We turn now to the internal structure of the agent. This may be the topic on which it most difficult to obtain multi-
disciplinary consensus. I have opted to include in the agent only the most essential elements for which there is
widespread (albeit not universal) agreement within and across disciplines, and to describe them only in general terms.
Even so, I hope that my selections and descriptions may be useful for communication across disciplines and that even
those who disagree with them will see my choices as representative of a plurality of researchers in the field. Even if a
view turns out to be wrong, it can still be a contribution to make it clear.
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The proposed common model of the internal structure of the agent has four principal components—perception, reactive
policy, value function, and transition model—shown in the figure below as boxes interconnected by a central signal, the
“subjective state.” Although the four components are each common to many disciplines, it is rare for all to be present in
fully developed form within a single agent, and of course specific agents may have additional components beyond these
four. Let us consider each component of the common model in turn.

Action
Subjective

state
Perception

Reactive 
policy

Reward

Observation

Value
function

Agent

Last 
action

Transition 
model 

Learning

Planning

The perception component processes the stream of obser-
vations and actions to produce the subjective state, a sum-
mary of the agent–world interaction so far that is useful
for selecting action (the reactive policy), for predicting fu-
ture reward (the value function), and for predicting future
subjective states (the transition model). The state is subjec-
tive in that it is relative to the agent’s observations and ac-
tions and may not correspond to the actual internal work-
ings of the world. Often the construction of subjective
state is a fixed pre-processing step, in which case the agent
is assumed to receive the subjective state directly as an ob-
servation. For example, in Atari game playing, the subjec-
tive state may be the last four video frames together with
the most recent action. In Bayesian approaches the subjec-
tive state does have a relationship to the internal workings
of the world: the subjective state is intended to approximate the probability distribution over the latent states that the
world uses internally (as in Partially Observable Markov Decision Processes, or Kalman filters). In predictive state meth-
ods (e.g., Littman et al. 2002) the subjective state is a set of predictions. In deep learning, the subjective state is typically
the transient activity of a recurrent artificial neural network (e.g., Hochreiter & Schmidhuber, 1997). In control theory, the
computations of the perception component are often referred to as ‘state identification,” or “state estimation.” In general
(and in many of these examples) the perception component should have a recursive form allowing the subjective state
to be computed efficiently from the preceding subjective state, the most recent observation, and the most recent action,
without revisiting the lengthy history of prior observations and actions. Processing in the perception component needs
to be fast, that is, completed well within the time interval between successive time steps of the agent–world interaction.

The perception component is not just about short-term memory, but also about representation. For example, it includes
any domain-dependent feature construction processes such as are commonly used in classical pattern recognition sys-
tems. More generally, when a person observes a complex visual image and re-represents it in terms of objects and
relationships, or observes a chess position and then re-represents it in terms of threats and pawn structure—these things
too are done in the perception component. The perception component converts the stream of observation–action events
into a summary representation that is relevant to the current moment. Such examples suggest the ways in which the term
“perception” is appropriate here: one dictionary definition of perception is “the neurophysiological processes, including
memory, by which an organism becomes aware of and interprets external stimuli.” Generalizing that beyond biology,
perception is an entirely appropriate name for the recursive updating of the agent’s state representation.

The reactive policy component of the common model maps the subjective state to an action. Like perception, the reactive
policy must be fast; the speed of perception and the reactive policy together determine the overall reaction time of
the agent. Sometimes perception and the reactive policy are treated together, as in end-to-end learning, but still both
functions are generally identifiable. Separating overall action generation into these two parts—perception and policy—
is common in many disciplines. In engineering it is common to assume that perception is given, not learned, and not
even part of the agent. Engineering clearly has the idea of a reactive policy, usually computed or derived analytically.
Artificial intelligence systems more often assume that substantial processing is possible before acting (e.g., chess-playing
programs). Classical psychology has its Stimulus-Response associations. In psychology it is common to view perception
as some that supports but precedes action and can be studied independently of its effects on particular actions.

The value function component of the common model maps the subjective state (or state–action pair) to a scalar assessment
of its desirability, operationally defined as the expected cumulative reward that follows it. This assessment is fast and
independent of its justification (like an intuition) but may be based on long experience (or even on expert design or gen-
erations of evolution) or from extensive computations that are effectively stored or cached. In either way, the assessments
are such that can be called up quickly to support processes that alter the reactive policy.

Value functions have a very broad multi-disciplinary history. They were first extensively developed, in optimal control,
operations research, and dynamic programming, as “cost-to-go” functions satisfying Bellman equations and, in contin-
uous time, Hamilton-Jacobi-Bellman equations. In economics they are called “utility functions” and appeared initially
as inputs to economic calculations capturing consumer preferences. In psychology, they are related to old ideas of sec-
ondary reinforcers and to newer ideas of reward prediction. The terminology of value functions came initially from
dynamic programming and was then taken up within reinforcement learning, where value functions are used exten-
sively as critical components of the theory and of almost all learning methods. Artificial intelligence and operations
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research also have a long history of search methods that operate on approximate cost-to-go functions. In neuroscience,
the error in the value function, or “reward-prediction error,” has been hypothesized as an interpretation of the phasic
signal of the neurotransmitter dopamine (Schultz, Dayan & Montague 1997). The theory has explained a wide range of
puzzling empirical results and has been extremely influential (e.g., see Glimcher 2011).

The fourth and last component of the common model of the agent, the transition model, takes in states and predicts what
next states would result if various actions were taken. The transition model could be termed a “world model,” but this
would overstate its role, as much of what constitutes a model of the world is actually in the perception component and
its state representations. The transition model is used to simulate the effects of various actions and, with the help of
the value function, evaluate the possible outcomes and change the reactive policy to favor actions with predicted good
outcomes and disfavor actions with predicted poor outcomes. When this process is done without actually taking the
actions, possibly even without visiting the states, then it is appropriate to call it “planning,” or even “reason.”

Transition models play important roles in many disciplines. In psychology, internal models of the world such as provided
by the transition model together with perception have been prominent models of thought since the work of Kenneth
Craik (1943) and Edward Tolman (1948). Tolman showed that the results of many rat experiments could be interpreted
as the rat forming and using a “cognitive map” (i.e., transition model) of its world. In neuroscience, the hippocampus
is now widely seen as providing such a map, and theorists including Karl Friston and Jeff Hawkins have extensively
developed brain theories based on this idea. More recently, in psychology, Daniel Kahneman (2011) has proposed the
idea of two mental systems, System 1 and System 2. The first three components of the common model of the agent fit
squarely in System 1, and model-based prediction and planning are naturally interpretted as important parts of System 2.
In control theory and operations research it has always been common to use transition models of many forms, including
differential equation models, difference equations, and Markov models. Models of the world are a common assumption
in classical artificial intelligence, such as in single-agent and game-tree search. In reinforcement learning, model-based
approaches in which the model is learned have long been proposed and are now beginning to be effective in large
applications (e.g., Schrittwieser et al. 2020). In modern deep learning, prominent researchers such as Yoshua Bengio,
Yann LeCun, and Jürgen Schmidhuber all place predictive models of the world at the center of their theories of the mind.

6 Limitations and Assessment

This has been a short treatment of the quest for a common model of the intelligent agent. All the points briefly made here
deserve elaboration and a deeper treatment of the history. Nevertheless, the main points seem clear. We have presented
a prominent candidate for the common model. Its external interface—in terms of agent, world, action, observation, and
reward—is general, natural, and widely assumed in both natural sciences and engineering. The four internal components
of the agent also each have a long and broad multi-disciplinary tradition.

The proposed common model could be criticized because of what it leaves out. For example, there is no explicit role
in it for predictions of observations other than reward, and there is no treatment of exploration, curiosity, or intrinsic
motivation. And all of the the four components must involve learning, but here we have described learning only in
the reactive policy, and that only in general terms. Many readers are no doubt disappointed that the common model
fails to include their favorite feature, whose importance is underappreciated. I, for example, feel that auxiliary sub-tasks
posed by the agent for itself (as in Sutton et al. 2022) are an important and under-appreciated means by which the agent
developes abstract cognitive structure. Yet, precisely because auxiliary subtasks are not widely appreciated, they should
not appear in the common model of the agent; they are not sufficiently agreed upon across disciplines.

The ambition of the common model of the intelligent agent proposed here is not to be the latest and best agent, but to
be a point of departure. It seeks to be a straightforward design that is well and broadly understood in many disciplines.
Whenever a researcher introduces a novel agent design, the common model is meant to be useful as a standard that can
be pointed to in explaining how the new design differs from or extends the common model.
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Abstract

Attention and reinforcement learning (RL) are intertwined. While previous work has primarily focused on how your at-
tentional state impacts and shapes RL, how the dynamics of learning might impact your attentional state on a moment-
to-moment basis is an open question. Here, we leverage reinforcement learning theory to investigate the moment-to-
moment influence of rewards and reward prediction errors on sustained attention. Specifically, we ask how trial-by-trial
reward prediction errors might affect ongoing attentional vigilance. Using a task that simultaneously queried people’s
sustained attention and RL performance, we demonstrate that attentional state is influenced by the magnitude and va-
lence (positive or negative) of recent reward prediction errors. This finding highlights the influence of RL computations
on one’s attentional state, and provides preliminary evidence for a potential role of the dopaminergic system in meditat-
ing the relationship between learning and attentional control.

Keywords: vigilance, sustained attention, reward prediction error
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1 Introduction

The interplay between attention and learning is a crucial aspect of human behavior. Consider learning to play a new song
on piano: If you want to play the new piece well, you must be able to sustain your attention as you read and practice
the notes. However, inevitably, your attentional state will naturally fluctuate over time [1], waxing and waning between
higher and lower attentional states. One possibility is that sustaining a vigilant attention state better will improve learn-
ing. But is this interaction a one-way street? That is, can the moment-to-moment dynamics of learning also affect the
dynamics of sustained attention?

Previous work indicates that reward and sustained attention do interact such that offering rewards or incentives to par-
ticipants can substantially boost performance on a sustained attention task [2–5]. For example, Esterman and colleagues
[6] found that participants who were incentivized with money or a shortened task duration were more accurate and
consistent in their performance on a continuous performance task that taxed sustained attention. While work in this vein
broadly suggests that reward can influence sustained attention, it compares aggregate performance between rewarded
versus unrewarded blocks of trials, pointing to general motivation as the key factor. This leaves open critical computa-
tional questions concerning the interaction of RL and sustained attention in real time: How might trial-by-trial learning
outcomes (rewards, prediction errors) modulate sustained attention on a moment-to-moment basis? Do the dynamics of
RL computations have a lawful relationship to ongoing attentional vigilance?

In the following study, we integrate a continuous performance task with a probabilistic RL task. The design of our ex-
periment was chosen to assess the impact of core constructs of RL – reward and reward prediction error (RPE) – on
moment-to-moment sustained attention. We used RL models to explore how computations in the brain’s RL system
may influence sustained attention. We tested two potential lawful relations between RPE and sustained attention. One
possibility is that especially large unsigned RPEs boost sustained attention performance. In other words, surprise – un-
expected rewards (positive RPEs) or unexpected omissions of rewards (negative RPEs) – could boost sustained attention,
consistent with the role of surprise in boosting memory encoding [7]. Alternatively, the magnitude and valence (positive
or negative) of RPEs could jointly affect sustained attention, such that positive RPEs increase sustained attention relative
to negative RPEs. Some straightforward null hypotheses are that RPEs and sustained attention do not dynamically inter-
act, or that RPEs act to distract subjects, perhaps leading to an inverted relationship between (signed or unsigned) RPEs
and sustained attention. Our computational approach allows us to test all of the above hypotheses. Behavioral evidence
of interactions between RPEs and sustained attention can inspire future investigations into the neural mechanisms that
mediate the relationship between RL processes and attention.

2 Hybrid sustained attention/RL task

Thirty participants (N = 19 female; mean age = 20, range = 18-21) were recruited through the subject pool at Yale Univer-
sity and took part in the study for course credit (1 credit/hour).

...

+1

frequent infrequent

choice feedback

...
RL

A

B

F D J

Figure 1: A) Task schematic, depicting frequent and infrequent sustained attention trials, as well as
RL trials (choice and feedback). The left hand was used for attention trials and the right hand for RL
trials. B) Schematic of trial sequence. Frequent sustained attention trials in red, infrequent sustained
attention trials in blue, and RL trials in black.

The task was a combina-
tion of a sustained atten-
tion task [8] and a proba-
bilistic RL task (to elicit pre-
diction errors; Figure 1A).
During a sustained atten-
tion task trial, participants
saw two adjacent shapes on
the screen that were either
both orange or both blue.
Participants used their left
hand to indicate the color
of the shapes and were
instructed which key cor-
responded to orange and
which to blue at the on-
set of the task (this assign-
ment was counterbalanced
across participants). Each
trial was 800ms in duration,

regardless of whether the participant responded sooner than that. For this task, on 90% of the trials the shapes were one
of the two colors (“frequent” trials) and on the remaining 10% of trials they were the other color (“infrequent” trials).
Thus, participants were responding with one button press on the vast majority of trials but occasionally had to inhibit
this frequent response to respond correctly on infrequent trials. Participants were not explicitly told about the imbalance
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in the color frequencies. Following previous work [8, 9], we used accuracy on the infrequent trials to operationalize
sustained attention.

Sustained attention trials occurred in pseudorandomized blocks of 17-27 consecutive trials, and the length of each block
was not predictable. At the end of a given block, participants would be presented with an RL trial (a probabilistic two-
arm bandit task; Figure 1). Here, the shapes would turn black and participants used their right hand to choose one of the
two shapes (Figure 1A). There was no cue dissociating the trial types other than the change of stimulus color to black.
On RL trials, participants had 1.5 s to make a choice. After they made their response, they received feedback on whether
or not they received a reward on that trial (+1 or +0). One shape was associated with an 80% chance of reward and the
other was associated with a 20% chance of reward. There were 100 RL trials in total (and thus 100 blocks of attention
trials), and the reward probabilities associated with each shape were reversed three times, after 25, 50, and 75 trials. We
inserted these reversals so that participants had to continually update the value of the two shapes throughout the task.
The task started with a short practice block for each individual task, and then two short blocks of the two tasks combined.
Participants then began the main task, which lasted approximately 50 minutes.

3 Computational modeling

1
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Figure 2: A) Accuracy on frequent and infrequent sustained at-
tention trials. B) learning curve for RL task. Green lines indicate
value reversal points. C) Binned RPE quantiles and mean-centered
sustained attention performance (i.e., changes in average accuracy
on infrequent sustained attention trials following RPEs of various
sizes). Inset: regression betas reflecting the impact of RPEs on sub-
sequent sustained attention accuracy. Error bars = 1 SEM.

We were interested in examining the moment-to-moment
relationship between sustained attention and RL compu-
tations. To that end, we fit a simple RL model to partic-
ipants’ choices in the probabilistic learning task [10]. We
used a standard RL model:

Qt+1(s) = Qt(s) + αδt (1)

p(s) =
eQ(s)β

ΣieQ(si)β
(2)

Where Q represents the value of stimulus s on trial t, δ
represents the reward prediction error (rewardt–Qt(s)), α
represents the learning rate, and β the softmax tempera-
ture. During fitting, α was constrained on [0,1] and beta
on [0,50], and a Gamma (2,3) prior distribution was used
to discourage extreme values of beta (following [11]). We
fit two variants of this model, one where a single alpha
was used for all trials, and another that allowed asym-
metric learning rates for non-rewarded versus rewarded
trials. We used the MATLAB function fmincon to find pa-
rameter values that maximized the log posterior proba-
bility of participants’ choice data given the model. Fitting
runs were conducted 100 times for each model to avoid lo-
cal minima during optimization, using different random-
ized starting parameter values over each iteration. The
resulting best fit model was used in all further analyses.
Model fit quality was evaluated using the Akaike infor-
mation criteria [12].

4 Results

Participants exhibited typical performance on the sustained attention task, being significantly more accurate on frequent
trials (M = 94%, SD = 7.6%) as compared to infrequent trials (M = 52%, SD = 15%; t(29) = 15.71, p < .001; Figure 2A; [8,
9]). In addition, on RL trials, participants learned to select the stimulus most likely to reward them throughout the task
(Figure 2B).

Our primary interest was assessing whether RPE modulated sustained attention performance. To do this, we first fit an
RL model to each participant’s choice data and obtained participant-specific learning rates and temperature parameters
(see Methods). We could then extract trial-by-trial RPEs, yielding 100 such values for each subject. Both model vari-
ants we tested fit the data well, though we observed a slight advantage for the variant with asymmetric learning rates
(summed AIC for single learning rate model = 3407, summed AIC for two learning rate model = 3360; t-test on difference
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in AIC values; t(29) = -2.12, p= .043). We note that the key results described below were comparable when using the
worse-fitting single-rate model.

We performed a linear regression analysis that included all modeled trial-by-trial RPEs as a predictor variable and the
mean performance on infrequent sustained attention trials in the subsequent blocks as the dependent variable. Across
subjects, we observed a significant effect of RPE on sustained attention (Figure 2C inset; B = 0.026, one sample t-test: t(29)
= 4.80, p < .001), providing preliminary evidence that signed RPE modulates sustained attention.

To further examine the relationship between RPE and sustained attention, and dissociate it from more basic effects of
reward, we binned RPEs into four quantiles (large, negative RPEs, small negative RPEs, small positive RPEs, large
positive RPEs) for each subject and compared average sustained attention changes (i.e., relative to the mean sustained
attention performance) on the attention task blocks that followed those RPEs. We performed paired t-tests on sustained
attention performance between bins of RPEs (Bonferroni correction: α = .05/6 = .0083). The results of this analysis are
depicted in Figure 2C. Overall, we found that participants were significantly more accurate on the sustained attention
task after large, positive RPEs (ts(29) > 3.01, ps < .0055), as compared to small positive or negative RPEs. While we also
found that participants were more accurate on the attention task after small positive RPEs versus large negative RPEs
(t(28) = 2.86, p = .0079). Contrasts between the two middle bins (t(28) = 0.47, p = .64) or the two negative bins (t(29) = 1.3, p
= .20) were not significant. We note here that infrequent sustained attention trials never occurred immediately following
RL outcomes – at least three frequent attention trials intervened after RL trials before any given infrequent trial within a
block. This precludes a localized post-error slowing interpretation of our results. Taken together, these results provide
evidence for the hypothesis that signed RPEs influence sustained attention performance, particularly for positive RPEs.

To investigate a more global relationship between RL and sustained attention, we also correlated modeled RL learning
rates with average sustained attention performance. We found that sustained attention performance was significantly
correlated with learning rates for negative RPE trials (Spearman correlation: ρ = .47, p = .010), and marginally correlated
with learning rates for positive RPE trials (Spearman correlation: ρ = .35, p = .055).
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Figure 3: Correlation of learning rate and sustained attention per-
formance. Left: learning rate for rewarded trials, Right: learning
rate for unrewarded trials.

Finally, exploratory hypotheses initially included addi-
tional predictions of bidirectional effects of sustained at-
tention on RL. That is, we also hypothesized that sus-
tained attention might influence ongoing RL, whereby ele-
vated sustained attention predicts better choice and learn-
ing behavior on RL trials. We tested this hypothesis with
a logistic regression analysis with accuracy on infrequent
attention trials as the predictor variable and accuracy on
the subsequent RL trials (operationalized as choosing the
shape associated with 80% chance of reward) as the de-
pendent variable. We did not observe a significant effect
in this direction (B = .12, t(29) = 0.98, p = .333). Thus, at
least in the context of our task, the influence of RL on sus-
tained attention was robust while effects in the opposite
direction were not detected.

5 Discussion and Conclusions

In this study, we sought to investigate the interplay of RL and sustained attention. Overall, we found evidence that
signed RPE modulates sustained attention performance in a near-linear manner, such that increasing signed RPEs led to
concomitant increases in the agent’s attentional state.

This result builds on previous work suggesting that performance-based incentives (rewards) improve sustained atten-
tion performance (e.g., [6]). This previous work primarily contributes to debates about theoretical causes of sustained
attention lapses. Specifically, the fact that reward can reduce lapses in sustained attention appears to provide evidence
against pure “resource” theories of sustained attention (i.e., that lapses in sustained attention are caused by the depletion
of limited attentional resources), and is more aligned with “underload” models of sustained attention (i.e., that boredom
or lack of motivation causes lapses in sustained attention [6]). We build on this work, showing how reward might boost
sustained attention on a moment-to-moment timescale. Critically, our result makes a useful advance by linking sustained
attention to reward prediction error, not just reward, providing a more tractable computational explanation.

The fact that signed RPE, rather than unsigned RPE, was related to sustained attention provides initial clues concerning
the neural processes that might mediate this relationship. In the context of RPE and memory, effects that correlate with
unsigned RPE are thought to be modulated by norepinephrine [13], whereas effects related to signed RPE are thought to
be modulated by dopamine [14]. Our results therefore indirectly suggest that the increased phasic dopamine underlying
RPEs could boost sustained attention. Of course, the current results do not preclude the involvement of other neuro-
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transmitters in linking attention and RL, such as norepinephrine and acetylcholine. Future work using pharmacological
tools is necessary to clarify how each of these systems might interact.

While this work contributes to a mechanistic understanding of the impact of reward on sustained attention, there are a
number of limitations to be addressed in the future. First, our results suggest that positive RPE can cause a global boost
in sustained attention, considering that the sustained attention and RL tasks used here were unrelated. That is, the RPEs
that appeared to impact sustained attention were not directly relevant to the actual sustained attention task. Future work
should address whether boosts in sustained attention after RPEs influence any task a subject is performing, or if these
effects are more constrained. Second, we curiously did not detect an effect of sustained attention performance on RL.
This result is somewhat surprising given the context of previous work on RL and selective attention demonstrating that
selective attention significantly impacts both choice and updating processes in a similar RL task [11, 15, 16]. It is possible
that the structure of our task, or the context changes between sustained attention and RL trials, attenuated effects of
sustained attention on RL. Alternatively, the RL system may be robust to fluctuations in sustained attention.

Overall, our findings demonstrate a tight link between reinforcement learning and moment-to-moment attentional vig-
ilance. This link might be mediated by dopamine [14, 17], the currency of the RL system. How exactly changes in
phasic dopamine could induce more tonic effects on sustained attention, and the neural and computational processes
supporting this interaction, make for exciting future directions.

References
1. Esterman, M. & Rothlein, D. Models of sustained attention. Current Opinion in Psychology. Attention & Perception 29,

174–180 (2019).
2. Esterman, M. et al. Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement. PLOS ONE 11. Pub-

lisher: Public Library of Science, e0159741 (2016).
3. Robison, M. K., Unsworth, N. & Brewer, G. A. Examining the effects of goal-setting, feedback, and incentives on

sustained attention. Journal of Experimental Psychology: Human Perception and Performance 47, 869–891 (2021).
4. Esterman, M., Poole, V., Liu, G. & DeGutis, J. Modulating Reward Induces Differential Neurocognitive Approaches

to Sustained Attention. Cerebral Cortex 27, 4022–4032 (2017).
5. Esterman, M., Reagan, A., Liu, G., Turner, C. & DeGutis, J. Reward Reveals Dissociable Aspects of Sustained Atten-

tion. Journal of experimental psychology. General 143 (2014).
6. Esterman, M., Rosenberg, M. D. & Noonan, S. K. Intrinsic Fluctuations in Sustained Attention and Distractor Pro-

cessing. Journal of Neuroscience 34, 1724–1730 (2014).
7. Rouhani, N., Norman, K. A. & Niv, Y. Dissociable effects of surprising rewards on learning and memory. Journal of

Experimental Psychology: Learning, Memory, and Cognition 44, 1430–1443 (2018).
8. deBettencourt, M. T., Keene, P. A., Awh, E. & Vogel, E. K. Real-time triggering reveals concurrent lapses of attention

and working memory. Nature Human Behaviour 3. Publisher: Springer US (2019).
9. deBettencourt, M. T., Norman, K. A. & Turk-Browne, N. B. Forgetting from lapses of sustained attention. Psycho-

nomic Bulletin & Review 25, 605–611 (2018).
10. Rescorla, R. & Wagner, A. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and

nonreinforcement. Classical conditioning II: Current research and theory, 64–99 (1972).
11. Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic Interaction between Reinforcement Learn-

ing and Attention in Multidimensional Environments. Neuron 93. Publisher: Cell Press, 451–463 (2017).
12. Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19. Conference

Name: IEEE Transactions on Automatic Control, 716–723 (1974).
13. Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10. Number:

3 Publisher: Nature Publishing Group, 211–223 (2009).
14. Schultz, W., Dayan, P. & Montague, P. R. A Neural Substrate of Prediction and Reward. Science 275, 8 (1997).
15. Daniel, R., Radulescu, A. & Niv, X. Y. Intact Reinforcement Learning But Impaired Attentional Control During

Multidimensional Probabilistic Learning in Older Adults (2020).
16. Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. Journal of

Neuroscience 35, 8145–8157 (2015).
17. Nieoullon, A. Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 31 (2002).

4

RLDM 2022 Camera Ready Papers 626

626



Achieving Zero-Shot Task Generalization
with Formal Language Instructions†

Pashootan Vaezipoor∗
Department of Computer Science

University of Toronto & Vector Institute
Toronto, Ontario, Canada

pashootan@cs.toronto.edu

Andrew C. Li∗
Department of Computer Science

University of Toronto & Vector Institute
Toronto, Ontario, Canada

andrewli@cs.toronto.edu

Rodrigo Toro Icarte
Department of Computer Science
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Abstract

We address the problem of generalization of deep RL agents to very large sets of compositional instructions. We employ
a well-known formal language – linear temporal logic (LTL) – to specify instructions and propose a novel learning ap-
proach that exploits the compositional syntax and semantics of LTL. Leveraging the expressive power of LTL, our agents
are tasked to perform diverse and complex temporally extended behaviours including conditionals and alternative re-
alizations. Experiments on discrete and continuous domains demonstrate the strength of our approach in a zero-shot
setting, allowing us to tackle unseen instructions up to 3x larger than observed in training.
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1 Introduction

A long-standing aspiration of artificial intelligence is to build agents that can understand and follow human instructions
to solve problems. Recent advances in RL have made it possible to learn a policy that decides the next action conditioned
on the current observation and a natural language instruction. Such approaches, while demonstrating some degree
of generalization to unseen instructions, require manually building a large training set comprised of natural language
instructions with their corresponding reward functions. Instructing RL agents using structured or formal languages, on
the other hand, allows RL practitioners to (automatically) generate massive training data, thanks to the unambiguous
semantics and compact compositional syntax that these languages offer.

In this work, we focus on solving complex, temporally-extended tasks with compositional instructions expressed in a
formal language. Many previous works have proposed decomposing such tasks into smaller subtasks that are solved
independently, an approach which we refer to as myopic. This can lead to individual policies that are optimal on subtasks,
but suboptimal in aggregate. We use linear temporal logic (LTL)* over domain-specific vocabulary to instruct RL agents
to learn policies that generalize well to unseen instructions without compromising optimality guarantees. Our learning
algorithm exploits a semantics-preserving rewriting operation, called LTL progression, that allows the agent to identify
aspects of the original instructions that remain to be addressed in the context of an evolving experience. This enables
learning policies in a non-myopic manner, all the while preserving optimality guarantees and supporting generalization.

Our contributions are as follows:

• We propose a novel approach for teaching deep RL agents to follow LTL instructions with theoretical advantages
over existing methods [3, 4]. This leads to better generalization when extrapolating to unseen instructions with more
complex structure across both continuous and discrete action-space domains.

• We show that encoding LTL instructions via a neural architecture, viz. GRU, LSTM and GNN, equipped with LTL
progression yielded higher reward policies relative to myopic approaches.

• We propose an environment-agnostic LTL pretraining scheme to improve sample efficiency on downstream tasks.

2 Multitask Learning with LTL

In order to instruct RL agents using language, the first step is to agree upon a common vocabulary between us and the
agent. Here, we use a set of propositional symbols P as the vocabulary, representing high-level events or properties
whose occurrences in the environment can be detected by the agent. For instance, in a smart home environment, P
could include events such as opening the living room window, activating the fan, turning on/off the stove, or entering
the living room. Then, we use LTL to compose temporally-extended occurrences of these events into instructions. Two
possible instructions that can be expressed in LTL (but described here in plain English) are (1) “Open the living room
window and activate the fan in any order, then turn on the stove” and (2) “Open the living room window but don’t enter
the living room until the stove is turned off”.

Linear Temporal Logic (LTL): LTL extends propositional logic with two temporal operators: ⃝ (next) and U (until), from
which additional operators □ (always), ♢ (eventually) are defined and often included for convenience. Given a finite set
of propositional symbols P , the syntax of an LTL formula is defined as follows:

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | ⃝ φ | φUψ | □φ | ♢φ where p ∈ P
In contrast to propositional logic, LTL formulas are evaluated over sequences of observations (i.e., truth assignments to
the propositional symbols in P). For brevity we omit the formal definition of satisfiability, but intuitively, the formula
⃝φ (next φ) holds if φ holds at the next time step; φUψ (φ until ψ) holds if φ holds until ψ holds; □φ if φ holds at every
time step in the sequence; ♢φ holds if φ holds at some point in the future.

Example: Consider the MiniGrid environment in Figure 2. There are two rooms – one with a blue and a red square, and
one with a blue and a green square. The agent, represented by a red triangle, can rotate left and right, and move forward.
Suppose that the set of propositions P includes R, G, and B, which are true iff the agent is standing on a red/green/blue
square (respectively) in the current time step. Then, we can define a wide variety of tasks using LTL:

• Single goal: ♢R (reach a red square).
• Goal sequences: ♢(R ∧ ♢G) (reach red and then green).
• Disjunctive goals: ♢R ∨ ♢G (reach red or green).
• Conjunctive goals: ♢R ∧ ♢G (reach red and green in any order).
• Safety constraints: □¬B (do not touch a blue square).

*LTL is an expressive formal language that combines temporal modalities such as eventually, until, and always with binary predi-
cates that establish the truth or falsity of an event or property (e.g., have-coffee), composed via logical connectives to support specifica-
tion of goal sequences, partial-order tasks, safety constraints, etc.
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We can also combine these tasks to define new tasks, e.g., “go to a red square and then a green square but do not touch a blue
square” can be expressed as ♢(R ∧ ♢G) ∧□¬B.

From LTL Instructions to Rewards: So far, our discussion about LTL instructions has been environment-agnostic (the
syntax and semantics of LTL are independent of the environment). Now, we show how to reward an RL agent for
realizing LTL instructions via an MDP. We accomplish this by using a labelling function L : S×A→ 2P that assigns truth
values to the propositions in P given the current state s ∈ S of the environment and the action a ∈ A selected by the
agent. One may think of the labelling function as having a collection of event detectors that fire when the propositions in
P hold in the environment. In our running example, R ∈ L(s, a) iff the agent is on top of the red square.

Given a labelling function, the agent automatically evaluates whether an LTL instruction has been satisfied or falsified.
Note that the satisfaction of many LTL formulas can be ensured after a finite number of steps — e.g., ♢R (eventually red) is
ensured once R is true. If the instruction is satisfied (i.e., completed) we give the agent a reward of 1 and if the instruction
is falsified (e.g., the agent breaks a safety constraint) we penalize the agent with a reward of −1. The episode ends as
soon as the instruction is ensured to be satisfied or falsified. Note that this reward function might be non-Markovian, as
it depends on sequences of states and actions, making the overall learning problem partially observable. We discuss how
to deal with this issue below.

Instructing RL Agents using LTL: We now formalize the problem of learning a policy that can follow LTL instruc-
tions. Hereafter, LTL instruction/task may be used interchangeably. Given an MDP without a reward function
Me = ⟨S, T,A, p, γ, µ⟩, a finite set of propositional symbols P , a labelling function L : S × A → 2P , a finite (but po-
tentially large) set of LTL formulas Φ, and a probability distribution τ over those formulas φ ∈ Φ, our goal is to learn
an optimal policy π∗(at|s1, a1, ..., st, φ) w.r.t. Rφ(s1, a1, ..., st, at) for all φ ∈ Φ. To learn this policy, the agent samples a
new LTL task φ from τ every episode and is rewarded according to Rφ. The episode ends when the task is completed,
falsified, or a terminal state is reached.

Since the reward is non-Markovian, an optimal policy π∗(at|s1, a1, ..., st, φ) has to consider the whole history of states
and actions. To handle this issue, Kuo et al. [3] proposed to encode the policy using a recurrent neural network. However,
we show that we can overcome this complexity by exploiting a procedure known as LTL progression [2].

LTL progression is a semantics-preserving rewriting procedure prog(σ, φ) that takes an LTL formula φ and current la-
belled state σ ∈ 2P as input and returns a formula that identifies aspects of the original instructions that remain to be
addressed. Progress towards completion of the task is reflected in diminished remaining instructions. For instance, the
task ♢(R∧♢G) (go to red and then to green) will progress to ♢G (go to green) as soon as R holds in the environment. We use
LTL progression to make the reward function Rφ Markovian. We achieve this by (1) augmenting the MDP state with the
current LTL task φ that the agent is solving, (2) progressing φ after each step given by the agent in the environment, and
(3) rewarding the agent when φ progresses to true (+1) or false (−1). We theoretically show that this procedure preserves
the optimal policy for the original non-Markovian reward function.

Similar Works: Two recent works have explored how to teach RL agents to follow unseen instructions using temporal
logic [3, 4]. Here we discuss the theoretical advantages of our approach over theirs. Kuo et al. [3] proposed to learn a
recurrent policy π∗(at|s1, a1, ..., st, φ) using a recurrent neural network, by solving a partially observable problem (i.e.,
a POMDP). In contrast, we propose to learn a stationary policy π∗(at|st, φ). Since solving MDPs is easier than solv-
ing POMDPs (MDPs can be solved in polynomial time whereas POMDPs are undecidable), this gives our approach a
theoretical advantage which results in better empirical performance (as shown in Section 4).

Leon et al. [4] instructed agents using a fragment of LTL and defined a reasoning module which decides the next propo-
sition to satisfy. Thus, the agent only needs to learn a policy π(a|s, p) conditioned on the state s and a proposition p ∈ P .
However, this approach is myopic – it optimizes for solving the next subtask without considering what the agent must
do after and, as a result, might converge to suboptimal solutions. This is a common weakness across recent approaches
that instruct RL agents. As an example, consider the MiniGrid from Figure 2. The two red doors at the entrance to each
room automatically lock upon entry so the agent cannot visit both rooms. Suppose the agent has to solve two LTL tasks,
uniformly sampled at the beginning of each episode: ♢(B∧♢G) (go to a blue square and then to a green square) or ♢(B∧♢R)
(go to a blue square and then to a red square). For both tasks, a myopic approach will tell the agent to first achieve ♢B (go to
blue), but doing so without considering where the agent must go after might lead to a dead end (due to the locking doors).
In contrast, an approach that learns an optimal policy π∗(a|s, φ) can consistently solve these two tasks (Figure 2(b)).

3 Model Architecture

In this section, we build on the RL framework with LTL instructions from Section 2 and explain a way to realize this
approach in complex environments using deep RL.

In each episode, a new LTL task φ is sampled. At every step, the environment returns an observation, the event detectors
return a truth assignment σ of all propositions in P and the LTL task is automatically progressed to φ′ := prog(σ, φ). The
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Figure 1: (a) Our RL framework for solving LTL tasks (b) Possible representations
of an LTL formula. Top: standard LTL syntax. Middle: abstract syntax tree. Bottom:
prefix notation.
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agent then receives both the environment observation and the progressed formula and emits an action via a modular
architecture consisting of three trainable components (see Figure 1): (1) Env Module: an environment-dependent model
that preprocesses the observations (e.g., a convolutional or a fully-connected network). (2) LTL Module: a neural encoder
for the LTL instructions (discussed below). (3) RL Module: a module which decides actions to take in the environment,
based on observations encoded by the Env Module and the current (progressed) task encoded by the LTL module.

LTL Module: LTL formulas can be encoded through different means, the simplest of which is to apply a sequence model
(e.g., LSTM) to the input formula. However, given the tree-structured nature of these formulas, Graph Neural Networks
(GNNs) may provide a better inductive bias. We represent an LTL formula φ as a directed graph Gφ, as shown in Figure
1(b). This is done by first creating φ’s parse tree, where each subformula is connected to its parent operator via a directed
edge, and adding self-loops for all the nodes. The GNN performs T message passing steps over Gφ. Due to the direction
of the edges in Gφ, the messages flow in a bottom-up manner and after T steps we regard the embedding of the root
node of Gφ as the embedding of φ.

We experimented with both sequence models and GNN. In each case we first create one-hot encodings of the formula
tokens (operators and propositions). For sequence models we convert the formula to its prefix notation pre(φ) and then
replace the tokens with their one-hot encodings. For GNN, these encodings serve as input node features x(0)

v .

Pretraining the LTL Module: Simultaneous training of the LTL Module with the rest of the model can be a strenuous
task. We propose to pretrain the LTL module, taking advantage of the environment-agnostic nature of LTL semantics
and the agent’s modular architecture. Specifically, the pretraining task is to progress formulas φ ∼ τ(Φ) to true in as
few steps as possible by setting a single proposition to true at each step. Hence our scheme is: (1) pretrain the LTL
module with formula set Φ and task distribution τ ; (2) use the learned LTL Module in the downstream task. While
many pretraining schemes are possible, this one involves a simple task which can be viewed as an abstracted version of
the downstream task. Since pretraining does not require interaction with a physical environment, it is more wall-clock
efficient than training the full model on the downstream environment. In Section 4 we demonstrate the empirical benefits
of pretraining the LTL Module.

4 Experiments

We designed our experiments to investigate whether RL agents can learn to solve complex, temporally-extended tasks
specified in LTL. We answer the following questions: (1) Performance: How does our approach fare against baselines
that do not utilize LTL progression or are myopic? (2) Pretraining: Does pretraining the LTL Module result in more
rapid convergence in novel downstream environments? (3) Upward Generalization: Can the RL agent trained using
our approach generalize to larger instructions than those seen in training? Environments: We experiment with a discrete
7×7 grid environment, similar to [1], with objects appearing on some of the squares. Furthermore, we experimented on
a similar environment with continuous actions based on MuJoCo.

Tasks: Every episode, the agent faces some i.i.d-sampled LTL task via procedural generation from a large set of tasks.
We consider two LTL task spaces: Partially-Ordered Tasks, where multiple sequences of goals can be solved in parallel,
however, the goals within each sequence must be satisfied in order (∼5×1039 possible tasks); Avoidance Tasks, similar to
P.O. tasks but also includes objects which must be avoided (∼970 million possible tasks).

Our Method: Our method exploits LTL progression and uses PPO for policy optimization. We experimented with three
architectures for the LTL Module: GNN, GRU and LSTM. We refer to these as GNNprog, GRUprog and LSTMprog.

Baselines: We compared our method against three baselines: (1) No LTL: ignores the LTL instructions, but learns a
non-stationary LSTM-based policy; (2) GRU: based on Kuo et al. [3], this approach learns a non-stationary policy that
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Figure 3: Our approaches using LTL progression (marked
by •prog) outperformed other baselines. We report dis-
counted return over the duration of training (averaged over
30 seeds, with 90% confidence intervals).

0 5 10 15 20
0.2

0.0

0.2

0.4

0.6

0 5 10 15 20

0.1

0.2

0.3

0.4

           
           

           
           

           
           

Avoidance Tasks Partially-Observable Tasks

D
is

co
un

te
d

re
tu

rn

Frames (millions)

GNNprog

GRUprog

LSTMprog

Myopic
GRU

No LTL

Table 1: Trained RL agents are evaluated on the training
distribution of tasks, as well as out-of-distribution tasks
with increased depth of sequences, and increased number
of conjuncts. In each entry, we report total reward and dis-
counted return (in parentheses) averaged over 30 seeds and
100 episodes per seed.

I.I.D ↑ Depth ↑ Conjuncts

(a) Avoidance Tasks

GNNprog (ours) 0.98(0.66) 0.98(0.33) 0.57(0.14)
GRUprog (ours) 0.89(0.63) 0.42(0.07) 0.58(0.25)
GRU 0.32(0.22) -0.03(-0.01) -0.35(-0.16)
Myopic 0.88(0.50) 0.71(0.07) 0.58(0.11)

(b) Partially-Ordered Tasks

GNNprog (ours) 1.0(0.47) 0.97(0.0074) 0.98(0.0340)
GRUprog (ours) 1.0(0.46) 0.29(0.0005) 0.99(0.0252)
GRU 0.87(0.24) 0.03(0.0000) 0.54(0.0075)
Myopic 1.0(0.40) 0.94(0.0042) 0.99(0.0221)

encodes the LTL instructions with a GRU, but does not progress the formula over time; (3) Myopic: inspired by Leon
et al. [4], uses a reasoning technique to tell the agent which propositions to achieve next in order solve the LTL task.
Specifically, the agent observes whether making a particular proposition true would (a) progress the current formula, (b)
have no effect, or (c) make it unsatisfiable. Given these observations, the agent then learns a stationary policy. Note that
this approach might converge to suboptimal solutions as discussed at the end of Section 2.

4.1 Results

Performance: Figure 3 shows the grid environment results for Partially-Ordered and Avoidance Tasks: (1) LTL progres-
sion significantly improved i.i.d. generalization; (2) A compositional architecture such as GNN learned to encode LTL
formulas better than sequential ones like GRU and LSTM; (3) The myopic baseline initially learned quickly, but was
eventually outperformed by all our methods. Similar results were observed for the continuous MuJoCo environment.

Pretraining: We investigated the effects of pretraining the LTL Module. We observed that pretraining the LTL Module
converged to better policies, often several times faster on both tasks (results omitted due to space limitations).

Upward (Out-of-Distribution) Generalization: We evaluated trained agents on Partially-Ordered and Avoidance Tasks
with: (a) several times longer sequences, and (b) many times more conjuncts (i.e., more tasks to be completed in parallel)
than seen in training. Table 1 shows that our approaches using LTL progression generalized well to more complex
formulas, with GNN generally outperforming GRU.

5 Conclusion

Creating learning agents that understand and follow open-ended human instructions is a challenging problem with sig-
nificant real-world applicability. Part of the difficulty stems from the need for large training sets of instructions and
associated rewards. In this work, we trained an RL agent to follow temporally extended instructions specified in the
formal language, LTL. The compositional syntax of LTL allowed us to generate massive training data, automatically.
We proposed a novel approach to multitask RL which exploits LTL progression, allowing us to learn Markovian poli-
cies while preserving optimality guarantees. We realized our approach via deep RL, exploring several neural methods
to encode LTL formulas and developing an environment-agnostic pretraining scheme which accelerated learning. Our
experiments on discrete and continuous domains demonstrated robust generalization across different tasks, while out-
performing a prevalent myopic approach.
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Abstract

Multi-agent reinforcement learning (MARL) has widespread potential applications in real-world cooperative scenarios
such as multi-robot coordination, smart grid optimization and autonomous driving, to name a few. Since each agent’s
policy changes while learning, multi-agent environments are non-stationary with respect to each agent. Challenges
arising from non-stationarity make learning difficult in environments where only a portion of the true state is visible
to the agents (partially observable). High-dimensional inputs further complicate learning, as learning effective policies
requires first learning good compact representations of the inputs. Thus, MARL tasks are associated with very high
sample complexity. Despite recent advances in MARL, ensuring sample-efficient policy optimization through efficient
representation learning remains a challenging question, rendering model-free MARL algorithms sample-inefficient. This
limits their applicability in scenarios where it is costly to collect real-world data.

We propose Latent Variable Models for Multi-Agent Reinforcement Learning (LaVa), a novel, sample-efficient approach
that utilizes an explicitly and efficiently learned model of environment dynamics to perform policy optimization using
latent state representations. Efficient learning of dynamics is ensured using an exploration scheme that operates in the la-
tent space to seek out expected future novelty of states. By separating representation learning from policy optimization,
LaVa reduces environment interactions and accelerates learning. We perform empirical evaluation on complex, con-
tinuous control multi-agent tasks showing that our algorithm outperforms state-of-the-art model-free and model-based
baselines in sample efficiency and final performance. Furthermore, our approach can be used with any multi-agent
reinforcement learning algorithm.

Keywords: Reinforcement Learning; Multi-agent Systems;
Representation Learning
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1 Introduction

Multi-agent reinforcement learning (MARL) provides a flexible and adaptive learning framework for modeling com-
plex multi-agent problems such as social dilemmas, multi-robot control and smart grids using RL. We deal with MARL
tasks where agents have to learn cooperative behaviors to achieve a common goal in an environment where only a part
of the environment state is visible (partially observable). The underlying environment dynamics are non-stationary with
respect to each agent since the behaviors of other agents keep changing [5].

Further, these tasks involve learning low dimensional, generalizable representations from high-dimensional input spaces
which become significantly larger as the number of agents increases, as the inputs are joint observations, i.e., the concate-
nated observations of all agents. Recent model-free MARL approaches have attempted to address these issues by using
centralized critics [5] and factored critics [7] that have access to joint observations and the true global state, respectively.
However, the challenge remains that a great deal of data is needed, or in other words, these approaches suffer from
high sample complexity. Similar to humans learning representations [6] for tasks, learning effective policies requires
first learning good representations of high-dimensional inputs. Model-free MARL algorithms perform representation
learning and policy optimization simultaneously due to their end-to-end training procedure. As a result, a considerable
amount of data is required for training [9]. This issue limits the applicability and widespread acceptance of current
MARL approaches to solve real-world problems where data is not widely available and data collection is costly.

In this paper, we make two major contributions. First, to address the challenges associated with sample efficiency and
representation learning in MARL, we separate representation learning from policy optimization. For doing this, we
propose Latent Variable Models for Multi-Agent Reinforcement Learning (LaVa), a novel MARL approach that learns
environment dynamics using a sequential latent variable model, and then generates multi-agent trajectories of compact
latent state representations with this model. LaVa then trains an MARL algorithm purely using these trajectories, thus
combining a learnt dynamics model with a model-free MARL algorithm. An intuitive analogue to the model would be a
device that allows multiple humans share a ”dream” to learn a coordinated task.

This allows efficient policy optimization, as it is separated from representation learning and as data generated for policy
optimization now consists of compact, already information-rich, latent states. Furthermore, generating data also reduces
interactions with the environment, which speeds up training and improves sample efficiency. We use an exploration
scheme which explicitly seeks out latent states with high expected future novelty. As a result, agents visit states with
highest model uncertainty in predictions during an initial exploration phase of training. This ensures efficient model
learning and also ensures good quality representations for policy optimization.

Second, focusing on fully cooperative Markov games [4], we perform empirical analysis comparing LaVa against state-
of-the-art model-free and model-based MARL algorithms. We show that (i) LaVa outperforms all baselines in sample
efficiency and final performance; (ii) our exploration scheme leads to much better exploration of the joint observation
space; and (iii) our latent variable model is able to accurately learn environment dynamics in complex multi-agent tasks.

2 Preliminaries

We consider MARL in partially observable, fully cooperative settings where a team of agents interacts with the environ-
ment to achieve a common goal with a team reward. Our problem setting can be modeled as a fully cooperative Markov
game consisting of a tuple G = ⟨N,S,A, P,R, {Oi}, {Oi}, γ⟩. N ≡ {1, ..., n} is the set of agents. s ∈ S represents the true
global state. A ≡ ΠiA

i is the joint action space, where Ai is the action space for player i.

At each step, each agent i∈N receives a private observation oi ∈Oi according to the observation functionOi(s) : S → Oi.
It then chooses an action ai ∈ Ai. The environment then transitions to the next state according to the state transition
function P (s′|s, a) : S × A × S → [0, 1], where a is the joint action. All agents receive the same reward and share the
reward function R : S × A → R. The discount factor is γ ∈ [0, 1]. Each agent’s policy πi(ai|τ i) is conditioned on its
action-observation history τ i ∈ Hi ≡ (Ai × Oi)∗. The joint stochastic policy is represented by π and induces the joint
action-value function Qπ(st, at) = Est+1:T ,at+1:T

[
∑T
j=0γ

j(rt+j |st, at)] where rt is the agent’s reward at step t.

We follow the Centralized Training Decentralized Execution (CTDE) [5] paradigm where each agent can access the global
state and joint action while training, but can access only its individual observation-action history during execution.

3 Proposed Architecture

First, we explain how LaVa efficiently learns environment dynamics in a fully cooperative Markov game. We then explain
in detail, our proposed exploration scheme and describe our training framework.

1
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Figure 1: LaVa algorithm pipeline

Learning Environment Dynamics: We use a sequential latent variable model to learn environment dynamics by maxi-
mizing the marginal likelihood p(o1:τ+1|a1:τ ) where o1:τ+1 and a1:τ represent the joint observations and joint actions over
τ + 1 timesteps, respectively. The prior distribution over the latent variables z1:τ+1 can be factorized as p(z1:τ+1|a1:τ ) =∏τ
t=0 p(zt+1|zt, at). The posterior distribution can be factorized as q(z1:τ+1|o1:τ+1, a1:τ ) =

∏τ
t=0 q(zt+1|ot+1, zt, at). Using

this posterior, we obtain the following Evidence Lower Bound (ELBO) [2] (DKL is the KL-Divergence):

log p(o1:τ+1|a1:τ ) ≥ Ez1:τ+1∼q

[ τ∑

t=0

log p(ot+1|zt+1)−DKL(q(zt+1|ot+1, zt, at)∥p(zt+1|zt, at))
]

(1)

We learn a reward predictor as part of our model since learning to predict rewards that correlate with observations and
vice-versa, is likely to improve the model. To predict terminal states dt (Boolean), we also learn a termination function
predictor. We use a neural network with parameters ϕ to represent the model which maximizes the objective LM (ϕ):

LM (ϕ) = Ez1:τ+1∼qϕ

[ τ∑

t=0

[
log pϕ(ot+1|zt+1) + log pϕ(rt+1|zt+1, zt, at) + log pϕ(dt+1|zt+1, at+1)

−DKL(qϕ(zt+1|ot+1, zt, at)∥pϕ(zt+1|zt, at))
]]

(2)

Exploration scheme: To learn the dynamics model efficiently, and to prevent overfitting of the model to certain parts of
the state space early on in the training process, we require an exploration policy that seeks out such states as to bring
about greatest improvement to the model. To perform such exploration is to seek out states with greatest uncertainty
in model predictions. To quantify uncertainty, we use a measure of ensemble disagreement, which has been empirically
shown to be effective [8]. We use an ensemble E of k smaller models ej(zt+1|ot, at), j ∈ [1 : k], that take as input the
joint observation and action to predict ŝt+1, the latent model’s representation of the next global state. We compute the
variance over the means of ŝt+1 predicted by the ensemble. This variance is used as the reward rexp for training the
exploration policy. Once the uncertain states have been visited by the exploration policy, rexp for these states decreases.

ej(zt+1|ot, at) = N (µj , 1) ; rexp = V ar(µj |j ∈ [1 : k]) (3)

LaVa: As shown in Fig. 1, LaVa consists of the following steps performed iteratively:

1. The model learns environment dynamics by encoding the joint observation-actions to compact latent states.
2. The model generates multi-agent trajectories starting from real joint observations drawn from a replay buffer

shared by all agents. These trajectories are used to train the MARL algorithm and exploration ensemble.
3. Individual agent policies interact with the environment and real trajectories are stored in the replay buffer.

Any model-free MARL algorithm can be used with LaVa. We use Multi-Agent Soft Actor Critic (MASAC) [1] for policy
optimization. The critic loss for each agent i is calculated using temporal difference learning as follows:

LQ(ψi) =
Nb∑

i=0

E∼D
[
(Qψii (zt, at)− yi)2

]
; yi = βrexp + κrt + γEat+1∼π̄

[
(Qψ̄ii (zt+1, at+1)− α log πiθ̄i(a

i
t|oit))

]
(4)

where θi refers to the parameters of the actor i, ψi refers to the parameters of the critic i. θ̄i and ψ̄i are the target actor and
critic parameters. The s used for training is the global state predicted by the model andD is the replay buffer. β, κ ∈ [0, 1]
are used to balance model learning and policy learning. Nb is batch size. Each actor is then updated as follows:

∇θiJ (πiθi) = Eo∼D,a∼π(∇θi log(πiθi(ait|oit))
(
Qψii (zt, at)− α log(πiθi(a

i
t|oit))

)
(5)
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Episodes: 1250 2500 3750 5000
MADDPG -181.3 -165.5 -151.2 -143.1
MASAC -165.1 -143.6 -132.9 -127.7
MASAC-MIX -168.5 -155.6 -146.5 -141.4
Attn-MIX -164.1 -150.4 -142.0 -136.4
MAMBPO -156.6 -132.5 -127.5 -124.2
LaVa-NE-1-step -156.6 -131.2 -127.5 -125.3
LaVa-1-step -148.8 -130.2 -127.1 -125.1
LaVa-10-step -140.0 -129.1 -126.9 -124.2

Episodes: 1250 2500 3750 5000
MADDPG 10.1 18.9 62.3 109.1
MASAC 14.1 22.4 32.3 51.8
MASAC-MIX 16.8 36.4 68.4 111.9
Attn-MIX 11.5 34.3 82.7 122.0
MAMBPO 15.6 112.6 120.5 115.7
LaVa-NE-1-step 12.33 27.82 113.6 127.1
LaVa-1-step 8.83 32.5 110.2 153.5
LaVa-10-step 13.5 57.5 131.7 154.3

Table 1: Average returns on Cooperative Navigation (left) and Predator Prey (right)

The input to each actor is oit. We do not condition policies on latent states to prevent over-optimistic behavior due to
learning Q-values for policies with full access to latent states [3]. This would also violate CTDE.

4 Experiments and Results

We tested performance on the fully cooperative continuous control tasks Cooperative Navigation (3 agents and 3 land-
marks) and Predator Prey (3 predators, 2 landmarks and 1 prey) from the Multi-agent Particle Environment (MPE) [5].
As baselines, we used (i) MASAC[1]: To provide a direct comparison without a dynamics model (ii) MADDPG[5]: A
state-of-the-art, model-free, deterministic, off-policy MARL algorithm (iii) MASAC-MIX: MASAC with a factored critic
[7] for monotonic value function decomposition (iv) Attention(Attn)-MIX[1]: We added the attention module used in [1]
to MASAC-MIX, (v) MAMBPO[10]: MAMBPO uses a non-Markovian dynamics model to generate synthetic samples in
the real observation space, using MASAC for MARL, and (vi) LaVa-NE: LaVa without the exploration ensemble.

We used a Variational Auto Encoder (VAE) [2] for implementing our latent variable dynamics model. We set β to 1 and
κ to 0 for the first 3000 timesteps. During this phase, the joint policy is essentially a joint exploration policy, receiving a
team reward of rexp. After this, we decreased β to 0, while increasing κ to 1 so that the dynamics model adjusted to the
MARL task. Each task was run for 5000 episodes, with each episode running for T = 25 timesteps.

For a fair comparison with MAMBPO, we ensured that both LaVa and MAMBPO used MASAC for policy optimization.
As with our model-free baselines, for each environment step, we ran a version of LaVa that performed 1 policy update
(LaVa-1-step). MAMBPO performed 10 policy updates per environment step. For comparison, we also ran LaVa-10-step
that performed 10 policy updates per environment step. Each algorithm was trained across 5 independent runs.

Performance of LaVa: As seen in Table 1, LaVa outperformed all baselines in terms of final returns and sample effi-
ciency. LaVa-10-step was about 2x faster on Cooperative Navigation and over 3x faster on Predator Prey than MASAC,
its corresponding model-free MARL algorithm. Addressing representation learning separately using a dynamics model
did indeed accelerate sample efficiency and performance, as evidenced by LaVa-1-step coming second-best. LaVa-10-step
perfoming best showed that training using more synthetic data improved performance even further.

Effectiveness of Exploration Scheme: We collected joint observations from states visited during environment interaction
by LaVa and LaVa-NE over 350 episodes on both tasks. For LaVa, β, κ = 1,0 and for LaVa-NE, β, κ = 0,1. The data was
visualized in Fig. 2 (left), where the orange region represents joint observations from states visited by LaVa-NE while the
blue region represents joint observations from states visited by LaVa. With our exploration scheme, we visited a much
larger region of the joint observation space in both tasks.

Figure 2: (Left) Joint observations visited by LaVa(blue) vs LaVa-NE(orange); (Right) A reconstructed sample trajectory.
The columns represent joint observations while rows show timesteps

3

RLDM 2022 Camera Ready Papers 635

635



Figure 3: t-SNE plots of joint observations (left) and latent states (right) over 1000 episodes on Cooperative Navigation

Analysis of Dynamics Model: Figure 2 (right) shows a Cooperative Navigation trajectory of 10 timesteps and visualizes
the ground truth joint observation, decoder reconstruction of samples from the posterior, conditioned prior (posterior is
used in the first timestep) and prior distributions. LaVa generated highly realistic samples using all the distributions.
We used the conditioned prior for trajectory generation in our experiments. We see from Fig. 3 left and right that LaVa
learnt latent states in such a way that similar latent states also corresponded to similar joint observations, essentially
learning environment dynamics in such a way that it could generate fairly accurate ”latent versions” or ”shared dreams”
of the real world. Each color corresponds to 5 timesteps of an episode.

5 Conclusion

We presented a novel algorithm, LaVa, that used a latent variable dynamics model in conjunction with a CTDE explo-
ration scheme and an MARL algorithm. We trained a dynamics model that learnt accurate models of environments in
complex multi-agent tasks. We showed that our exploration scheme led to improved exploration and better model learn-
ing. Using LaVa, we were able to improve sample efficiency by 2x and 3x on our tasks and outperform state-of-the-art
baselines. We also find it interesting that LaVa learnt cooperative behaviors by training purely using latent trajecto-
ries generated by the model. An interesting future direction would be to perform detailed empirical analysis on visual
tasks with large numbers of agents, which will lead to extremely high-dimensional image inputs.
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Abstract
Equivariant neural networks enforce symmetry within the structure of their convolutional layers, resulting in a substantial improve-
ment in sample efficiency when learning an equivariant or invariant function. Such models are applicable to robotic manipulation
learning which can often be formulated as a rotationally symmetric problem. This paper studies equivariant model architectures in
the context of actor-critic reinforcement learning. We identify equivariant and invariant characteristics of the optimal Q-function and
the optimal policy and propose Equivariant SAC algorithm that leverages this structure. We present experiments that demonstrate
that our Equivariant SAC can be significantly more sample efficient than competing algorithms on an important class of robotic
manipulation problems.
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1 Introduction

A key challenge in reinforcement learning is to improve sample efficiency – that is to reduce the amount of environmental interactions
that an agent must take in order to learn a good policy. This is particularly important in robotics applications where gaining expe-
rience potentially means interacting with a physical environment. One way of improving sample efficiency is to create “artificial”
experiences through data augmentation [1, 2, 3]. These approaches implicitly assume that the transition and reward dynamics of the
environment are invariant to affine transformations of the visual state.

Recent work in geometric deep learning suggests that it may be possible to learn transformation-invariant policies and value functions
in a different way, using equivariant neural networks [4]. The key idea is to structure the model architecture such that it is constrained
only to represent functions with the desired invariance properties. In principle, both this approach and the data augmentation ap-
proaches aim at improving sample efficiency by introducing an inductive bias. However, the equivariance approach achieves this
more directly by modifying the model architecture rather than by modifying the training data. Since with data augmentation, the
model must learn equivariance in addition to the task itself, more training time and greater model capacity are often required. While
equivariant architectures have recently been applied to reinforcement learning, this has been done only in toy settings (grid worlds,
etc.) where the model is equivariant over small finite groups, and the advantages of this approach over standard methods is less clear.

Our work [5] explores the application of equivariant methods to more realistic problems in robotics such as object manipulation. We
make several contributions. First, we define and analyze an important class of MDPs that we call group invariant MDPs. Second,
we introduce an equivariant variation of SAC [6]. Finally, we show that our methods convincingly outperform recent competitive
data augmentation approaches [1, 2, 3]. Our Equivariant SAC method, in particular, outperforms these baselines so dramatically
(Figure 5) that it could make reinforcement learning feasible for a much larger class of robotics problems than is currently the case.
Our on-robot learning experiments demonstrate that Equivariant SAC can learn several non-trivial manipulation tasks from scratch
in less than an hour of wall clock time

2 Background

Figure 1: Illustration of how an element g ∈ Cn acts on the feature map by
rotating the pixels and transforming the channel space through ρ0, ρ1, and ρreg.
Left: Cn acts on the channel space of a 1-channel feature map by identical
mapping. Middle: Cn acts on the channel space of a vector field by rotating
the vector at each pixel through ρ1. Right: Cn acts on the channel space of a
4-channel feature map by permuting the order of the channels by ρreg.

Cn actions: The group Cn is the discrete subgroup
of SO(2): Cn = {Rotθ : θ ∈ { 2πin |0 ≤ i < n}}.
We are interested in actions ofCn which formalize
how vectors or feature maps transform under rota-
tion. The group Cn acts in three ways that concern
us:

1. R through the trivial representation ρ0. Let
g ∈ Cn and x ∈ R. Then ρ0(g)x = x. For
example, the trivial representation describes how
pixel color/depth values change when an image is
rotated, i.e. they do not change (Figure 1 left).

2. R2 through the standard representation ρ1. Let g ∈ Cn and v ∈ R2. Then ρ1(g)v =
( cos g − sin g
sin g cos g

)
v. This describes how elements

of a vector field change when rotated (Figure 1 middle).

3. Rn through the regular representation ρreg. Let g = rm ∈ Cn = {1, r, r2, . . . , rn−1} and (x1, x2, . . . , xn) ∈ Rn. Then
ρreg(g)x = (xn−m+1, . . . , xn, x1, x2, . . . , xn−m) cyclically permutes the coordinates of Rn (Figure 1 right).

Cn actions on vectors and feature maps: Cn acts on vectors and feature maps differently depending upon their semantics. We for-
malize these different ways of acting as follows. Let F : R2 → Rm be an m-channel feature map and let V ∈ Rm×1×1 = Rm be a
vector represented as a special case of a feature map with 1× 1 spatial dimensions. Then g is defined to act on F by

(gF)(x, y) = ρj(g)F(ρ1(g)−1(x, y)). (1)

For a vector V (considered to be at (x, y) = (0, 0)), this becomes: gV = ρj(g)V . In the above, ρ1(g) rotates pixel location and
ρj(g) transforms the pixel feature vector using the trivial representation (ρj = ρ0), the standard representation (ρj = ρ1), the regular
representation (ρj = ρreg), or some combination thereof.

Equivariant convolutional layer: A Cn-equivariant layer is a function h whose output is constrained to transform in a defined way
when the input feature map is transformed by a group action. Consider an equivariant layer h with an input Fin : R2 → R|ρin| and an
output Fout : R2 → R|ρout| , where ρin and ρout denote the group representations associated with Fin and Fout, respectively. When
the input is transformed, this layer is constrained to output a transformed version of the same output feature map:

h(gFin) = g(h(Fin)) = gFout. (2)

where g ∈ Cn acts on Fin or Fout through Equation 1, i.e., this constraint equation can be applied to arbitrary feature maps F or
vectors V . A linear convolutional layer h satisfies Equation 2 with respect to the group Cn if the convolutional kernel K : R2 →

1
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R|ρout|×|ρin| has the following form: K(ρ1(g)v) = ρ−1out(g)K(v)ρin(g). Since the composition of equivariant maps is equivariant, a
fully convolutional equivariant network can be constructed by stacking equivariant convolutional layers that satisfy the constraint of
Equation 2 and together with equivariant non-linearities.

3 Problem Statement

3.1 Group-invariant MDPs

In a group-invariant MDP, the transition and reward functions are invariant to group elements g ∈ G acting on the state and action
space. For state s ∈ S, action a ∈ A, and g ∈ G, let gs ∈ S denote the action of g on s and ga ∈ A denote the action of g on a.
Definition 3.1 (G-invariant MDP). A G-invariant MDP MG = (S,A, T,R,G) is an MDP M = (S,A, T,R) that satisfies the
following conditions:

1. Reward Invariance: The reward function is invariant to the action of the group element g ∈ G, R(s, a) = R(gs, ga).

2. Transition Invariance: The transition function is invariant to the action of the group element g ∈ G, T (s, a, s′) = T (gs, ga, gs′).

A key feature of a G-invariant MDP is that its optimal solution is also G-invariant (proof in [5]):
Proposition 3.1. LetMG be a group-invariant MDP. Then its optimal Q-function is group invariant, Q∗(s, a) = Q∗(gs, ga), and
its optimal policy is group-equivariant, π∗(gs) = gπ∗(s), for any g ∈ G.

3.2 SO(2)-invariant MDPs in Robotic Manipulation

(a) (b)

Figure 2: The manipulation scene (a)
and the visual state space (b).

We focus exclusively on an important class of SO(2)-invariant MDPs in robotic manipu-
lation. We approximate SO(2) by its subgroup Cn. We express the state as a depth image
Fs : R2 → R centered on the gripper position where depth is defined relative to the grip-
per. The orientation of this image is relative to the base reference frame – not the gripper
frame. We require the fingers of the gripper and objects grasped by the gripper to be visible
in the image. Figure 2 shows an illustration. The group operator g ∈ Cn acts on this image
as defined in Equation 1 where we set ρj = ρ0: gFs(x, y) = ρ0(g)Fs(ρ1(g)−1(x, y)),
i.e., by rotating the pixels but leaving the depth values unchanged. The action is a tuple,
a = (aλ, axy, az, aθ) ∈ A ⊂ R5, where aλ ∈ Aλ denotes the commanded gripper aper-
ture, axy ∈ Axy denotes the commanded change in gripper xy position, az ∈ Az denotes
the commanded change in gripper height, and aθ ∈ Aθ denotes the commanded change in
gripper orientation. Here, the xy action is equivariant with g ∈ Cn, aequiv ∈ Aequiv = Axy , and the rest of the action variables are
invariant, ainv ∈ Ainv = Aλ ×Az ×Aθ. Therefore, the rotation operator g ∈ Cn acts on a ∈ A via ga = (ρ1(g)aequiv, ainv) where
ainv ∈ Ainv and aequiv ∈ Aequiv. Notice that the transition dynamics are Cn-invariant (i.e. T (s, a, s′) = T (gs, ga, gs′)) because
the Newtonian physics of the interaction are invariant to the choice of reference frame. If we constrain the reward function to be
Cn-invariant as well, then the resulting MDP is Cn-invariant.

4 Equivariant SAC

Figure 3: Illustration of the equivari-
ant actor network (top) and the invariant
critic network (bottom).

In SAC [6], we learn the parameters for two networks: a policy network Π (the actor)
and an action-value network Q (the critic). The critic Q : S × A → R approximates Q
values in the typical way. However, the actor Π : S → A × Aσ estimates both the mean
and standard deviation of action for a given state. Here, we define Aσ = Rk to be the
domain of the standard deviation variables over the k-dimensional action space defined in
Section 3.2. Since Proposition 3.1 tells us that the optimal Q is invariant and the optimal
policy is equivariant, we must model Q as an invariant network and Π as an equivariant
network.

Policy network: First, consider the equivariant constraint of the policy network. The state
is encoded by the image Fs. However, we must express the action as a vector over Ā =
A×Aσ . FactoringA into its equivariant and invariant components, we have Ā = Aequiv×
Ainv × Aσ . In order to identify the equivariance relation for Ā, we must define how the
group operator g ∈ G acts on aσ ∈ Aσ . Here, we make the simplifying assumption that
aσ is invariant to the group operator. This choice makes sense in robotics domains where
we would expect the variance of our policy to be invariant to the choice of reference frame.
As a result, we have that the group element g ∈ G acts on ā ∈ Ā via:

gā = g(aequiv, ainv, aσ) = (ρequiv(g)aequiv, ainv, aσ). (3)

2
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(a) Block Pulling (b) Object Picking (c) Drawer Opening

(d) Block Picking (e) Clutter Grasping (f) Block Pushing (g) Block in Bowl

Figure 4: (a)-(c): The simulated experimental environments implemented in PyBullet simulator. (d)-(g): Our on-robot learning
environments. The left image in each sub figure shows an initial state of the environment; the right image shows the goal state.

We can now define the actor network π to be a mapping Fs 7→ ā (Figure 3 top) that satisfies the following equivariance constraint
(Equation 2):

π(gFs) = g(π(Fs)) = gā. (4)

Critic network: The critic network takes both state and action as input and maps onto a real value. We define two equivariant networks:
a state encoder e and aQ network q. The equivariant state encoder, e, maps the input stateFs onto a regular representation s̄ ∈ (Rn)α
where each of n group elements is associated with an α-vector. Since s̄ has a regular representation, we have gs̄ = ρreg(g)s̄. Writing
the equivariance constraint of Equation 2 for e, we have that e must satisfy e(gFs) = ge(Fs) = gs̄. The output state representation
s̄ is concatenated with the action a ∈ A, producing w = (s̄, a). The action of the group operator is now gw = (gs̄, ga) where
ga = (ρequiv(g)aequiv, ainv). Finally, the q network maps from w onto R, a real-valued estimate of the Q value for w. Based on
proposition 3.1, this network must be invariant to the group action: q(gw) = q(w). All together, the critic satisfies the following
invariance equation:

q(e(gFs), ga) = q(e(Fs), a). (5)

This network is illustrated at the bottom of Figure 3. For a robotic manipulation domain in Section 3.2, we have Aequiv = Axy and
Ainv = Aλ ×Az ×Aθ and ρequiv = ρ1.

5 Experiments

We evaluate Equivariant SAC in the manipulation tasks shown in Figure 4. These tasks can be formulated as SO(2)-invariant MDPs.
All environments have sparse rewards (+1 when reaching the goal and 0 otherwise).

5.1 Simulation Experiment

(a) Block Pulling (b) Object Picking (c) Drawer Opening

Figure 5: Comparison of Equivariant SAC (blue) with baselines. The plots show
the evaluation performance of the greedy policy in terms of the discounted re-
ward. The evaluation is performed every 500 training steps. Results are aver-
aged over four runs. Shading denotes standard error.

In this experiment, we evaluate the performance
of Equivariant SAC in the simulation experiments
shown in Figure 4 (a)-(c). We compare against the
following baselines: 1) CNN SAC: SAC with con-
ventional CNN rather than equivariant networks.
2) RAD Crop SAC [1]: same model architecture
as CNN SAC with random crop data augmentation
when sampling transitions. 3) DrQ Shift SAC [2]:
same model architecture as CNN SAC with ran-
dom shift data augmentation when calculating the
Q-target and the loss. 4) FERM [3]: a combina-
tion of SAC, contrastive learning, and random crop
augmentation. All methods use a SO(2) data aug-
mentation buffer, where every time a new transi-
tion is added, we generate 4 more augmented transitions by applying random continuous rotations to the transition. Prior to each
training run, we pre-load the replay buffer with 20 episodes of expert demonstration.
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Task Block Picking Clutter Grasping Block Pushing Block in Bowl

Number of training steps 2000 2000 2000 4000

Approximate time for training 45 minutes 45 minutes 1 hour 2 hours 40 minutes

Evaluation success rate 100% (50/50) 96% (48/50) 92% (46/50) 92% (46/50)

Table 1: The number of training steps, approximate time for training, and the revaluation success rate of the trained policy of our
on-robot learning.

Figure 5 shows the comparison among the various methods. Notice that Equivariant SAC outperforms the other methods significantly.
Without the equivariant approach, Object Picking and Drawer Opening appear to be infeasible for the baseline methods. In Block
Pulling, FERM is the only other method able to solve the task.

5.2 On-robot Experiment

Figure 6: Our experimental set up for on-robot learning. The ob-
servation (bottom right) is generated by first acquiring point clouds
from two depth cameras above the workspace then creating an
orthographic projection at the gripper’s position. The gripper is
drawn at the center of the observation (in yellow) with its current
aperture and orientation.

This section evaluates the Equivariant SAC in on-robot learn-
ing. Our experimental setup is shown in Figure 6. Two bins in
front of the robot make up the workspace. We experiment with
four tasks (Block Picking, Clutter Grasping, Block Pushing and
Block in Bowl in Figure 4 (d)-(g)). In tasks that involve a single
object (Block Picking and Block Pushing), the robot will only
use one bin as the workspace. In tasks involving multiple objects
(Clutter Grasping and Block in Bowl), the robot will iteratively
use one of the two bins as the active workspace and use the other
bin to reset the environment.

Table 1 shows the statistics of our on-robot learning. In Block
Picking, Clutter Grasping, and Block Pushing, the Equivariant
SAC only requires 2000 steps for learning the policy, which is
approximately 45 minutes in total, including the time required
for resetting the environment. In Block in Bowl, Equivariant
SAC takes 4000 steps to converge, which is 2 hours and 40
minutes. We evaluate our trained policy for each task for 50
episodes. In Block Picking, the robot succeeds in all trails. In
Clutter Grasping, the robot reaches a 96% success rate. In Block
Pushing and Block in Bowl, the robot demonstrates a 92% test success rate.

6 Discussion

We define a class of group-invariant MDPs and identify the invariance and equivariance characteristics of their optimal solutions. We
further propose Equivariant SAC that encodes the equivariance in the structure of the actor and critic networks. We show experimen-
tally in the robotic manipulation domains that our proposal substantially surpasses the performance of competitive baselines. A key
limitation of this work is that our definition ofG-invariant MDPs requires the MDP to have an invariant reward function and invariant
transition function. Though such restrictions are often applicable in robotics, they limit the potential of the proposed methods in other
domains like some ATARI games. Furthermore, if the observation is from a non-top-down perspective, or there are non-equivariant
structures in the observation (e.g., the robot arm), the invariant assumptions of a G-invariant MDP will not be directly satisfied.
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Abstract

Recent research has shown that seemingly fair machine learning models, when used to inform decisions that have an
impact on peoples’ lives or well-being (e.g., applications involving education, employment, and lending), can inadver-
tently increase social inequality in the long term. This is because prior fairness-aware algorithms only consider static
fairness constraints, such as equal opportunity or demographic parity. However, enforcing constraints of this type may
result in models that have negative delayed impact on disadvantaged individuals and communities. We introduce ELF
(Enforcing Long-term Fairness), the first algorithm that provides high-confidence fairness guarantees in terms of delayed
impact, using importance sampling techniques similar to those in the offline reinforcement learning literature. We prove
that ELF will not return an unfair solution with probability greater than a user-specified tolerance. Furthermore, we
show (under mild assumptions) that given sufficient training data, ELF is able to find and return a fair solution if one
exists. We show experimentally that ELF can successfully mitigate long-term unfairness.

Keywords: Fair machine learning, delayed impact, fair classification
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1 Introduction

The use of machine learning for high-stakes applications such as lending, hiring, and criminal sentencing has the poten-
tial to harm historically disadvantaged communities [5, 3, 2]. For example, software meant to guide bank decisions in
lending has been shown to exhibit racial bias [2]. Consequently, extensive research has been devoted to designing algo-
rithms that promote fairness and ameliorate concerns of bias and discrimination for socially impactful applications. The
bulk of this research has focused on the classification setting, in which static fairness definitions, i.e., fairness definitions
that rely on statistical metrics such as true and false positive rates, are studied. However, it has been shown that model
decisions that appear fair with respect to static fairness measures can nevertheless negatively affect the community they
aim to protect in the long-term. For example, consider a bank lending setting, where the repayment predictions influence
lending decisions and can change the future financial stability of different groups (e.g. by not getting a loan, the financial
stability of a person may decay drastically). When a subset of the population is disadvantaged, instead of maximizing
profit, the bank may want (or be required by law) to maximize profit subject to a fairness constraint that considers the
delayed impact of model predictions in terms of the borrowers’ future financial stability. Work that enforces long-term,
or delayed-impact (DI) constraints when the relationship between predictions and DI is known has been proposed [7], but
designing algorithms that mitigate negative delayed impact when the relationship between predictions and DI is not
known has remained an open problem.

In this paper, we develop the first classification algorithm that can ensure with high probability that the classifiers it
learns are fair with respect to delayed impact when the relationship between predictions and DI is not known a priori. To
accomplish this, we simultaneously formulate the fair classification problem as both a classification and reinforcement
learning problem—classification for optimizing the primary objective (a measure of classification loss) and reinforcement
learning when considering DI. Specifically, we use importance sampling techniques similar to those in the offline rein-
forcement learning literature [8], and make use of confidence intervals for the mean [9] to derive a method for computing
high probability bounds on DI fairness.

2 Problem Statement

We now formalize the problem of classification with delayed-impact fairness guarantees. As in the standard classification
setting, a dataset consists of n data points, the ith of which contains Xi, a feature vector describing a person, and a
label Yi. Each data point also contains a set of sensitive attributes, such as race and gender. Though our algorithm
works with an arbitrary number of such attributes, for brevity our notation uses a single attribute, Ti. We assume
that each data point also contains a prediction Ŷ βi made by a stochastic model β. We call β the behavior model, defined
as β(x, ŷ) := Pr(Ŷ βi =ŷ|Xi=x). The predictions made by a model deployed in the real-world can have long-term, or
delayed, impact. For example, by influencing who gets a loan, a model’s predictions can affect applicants’ long-term
net worth. Formally, let Iβi be a measure of the delayed impact resulting from deploying β for the person described by
the ith data point. We assume that larger values of Iβi correspond to better delayed impact. We append Iβi to each
data point, and thus define the dataset to be a sequence of n independent and identically distributed (i.i.d.) data points
D := {(Xi, Yi, Ti, Ŷ

β
i , I

β
i )}ni=1. For notational clarity, when referring to an arbitrary data point, we write X,Y, T, Ŷ β and

Iβ without subscripts to denote Xi, Yi, Ti, Ŷ
β
i and Iβi , respectively.

Given a dataset D, the goal is to construct a classification algorithm that takes as input D and outputs a new model
πθ that is as accurate as possible while enforcing constraints on delayed impact. This new model πθ is of the form
πθ(x, ŷ) := Pr(Ŷ πθ=ŷ|X=x), where πθ is parameterized by a vector θ ∈ Θ , for some feasible set Θ, and where Ŷ πθ is the
prediction made by πθ given X . Like Iβi , let Iπθi be the delayed impact if the model outputs the prediction Ŷ πθi .

We model the setting in which a classification model’s prediction depends only on the feature vectorX , formalized by the
assumption that for all x, t, y, and ŷ, Pr(Ŷ πθ=ŷ|X=x, Y=y, T=t) = Pr(Ŷ πθ=ŷ|X=x). We also assume that regardless of
the model used to make predictions, the distribution of delayed impact given a prediction remains the same: ∀x, y, t, ŷ, i,
Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ) = Pr(Iπθ=i|X=x, Y=y, T=t, Ŷ πθ=ŷ).

Our problem setting can alternatively be described from the reinforcement learning perspective, where feature vectors
are the states of a Markov decision process (specifically, a contextual bandit), predictions are the actions taken by an
agent, and DI is the reward received after the agent takes an action (makes a prediction) given a state (feature vector).
From this perspective, the latter assumption asserts that regardless of the strategy (model) used to choose actions, the
distribution of rewards given an action remains the same.

We consider k delayed-impact objectives gj : Θ → R, j ∈ {1, ..., k} that take as input a parameterized model θ and return
a real-valued measurement of fairness in terms of delayed impact. We adopt the convention that gj(θ) ≤ 0 iff θ causes
behavior that is fair with respect to delayed impact, and gj(θ) > 0 otherwise. To simplify notation, we assume there

1
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exists only a single DI objective (i.e., k = 1). We focus on the case in which each DI objective is based on a conditional
expected value, having the form g(θ) := τ − E[Iπθ |c(X,Y, T )], where τ ∈ R is a tolerance, and c(X,Y, T ) is a Boolean
conditional relevant to defining the objective. Consider an example in which a bank determines whether to provide a
loan to an applicant. We assume that each individual in the population of loan applicants is associated with type A or
B, e.g., A and B can represent different genders. The bank is interested in enforcing a fairness definition that protects
type A applicants. Specifically, the bank would like to ensure that, for a model πθ being considered, the future financial
status of applicants of type A impacted by πθ’s lending predictions does not decline relative to those induced by the
previously deployed model, β. In this case, Iπθ is the financial status of an applicant t months after the loan application
and c(X,Y, T ) is the Boolean event that an applicant is of type A. Lastly, τ could represent a threshold on which the bank
would like to improve, e.g., the average financial status of applicants in the disadvantaged group given the historical
data collected using β. The bank is therefore interested in enforcing the following DI objective: E[Iπθ |T = A] ≥ τ . Then,
defining g(θ) = τ − E[Iπθ |T = A] ensures that g(θ) ≤ 0 iff the new model πθ satisfies the DI objective. Note that an
additional constraint of the same form can be added to protect group B.

Algorithmic properties of interest. We would like to ensure that g(θ) ≤ 0, where θ is the model returned by a classi-
fication algorithm. However this is often not possible, as it requires highly accurate assumptions of prior knowledge
about how predictions influence delayed impact. Instead, we aim to create an algorithm that uses data to reason about
its confidence that g(θ) ≤ 0. That is, we desire a classification algorithm, a, where a(D) ∈ Θ is the solution provided by
the algorithm when given dataset D as input, that satisfies DI constraints of the form

Pr(g(a(D)) ≤ 0) ≥ 1− δ, (1)

where δ ∈ (0, 1) limits the admissible probability that the algorithm returns a model that is unfair with respect to the DI
objective. Algorithms that satisfy (1) are called Seldonian [10]. In practice, there might be constraints that are impossible
to enforce [6] or the amount of data may be insufficient to ensure fairness with high confidence. In such cases, instead of
returning a solution the algorithm does not trust, the algorithm should return “No Solution Found” (NSF). Let NSF ∈ Θ
and g(NSF) = 0, indicating that it is always fair for the algorithm to say “I’m unable to ensure fairness with the required
confidence.”

3 Methods for Enforcing Delayed Impact

The distribution of delayed impacts inD is a result of using the model β to make predictions. However, we are interested
in evaluating the DI of a different model, πθ. This presents a challenging problem: given data that includes the DI when
a model β was used to make predictions, how can we estimate the DI if πθ were used instead?

We solve this problem using techniques from the reinforcement learning literature called off-policy evaluation methods—
methods that use data from running one policy (decision-making model) to predict what would happen (in the long-
term) if a different policy were used to make decisions. Specifically, we use an off-policy evaluation method called
importance sampling [8] to obtain a new random variable Îπθ , constructed using data from β, such that E[Îπθ |c(X,Y, T )]=
E[Iπθ |c(X,Y, T )]. For each data point, the importance sampling estimator, Îπθ , weights the observed delayed impacts Iβ

based on how likely the prediction Ŷ β is under πθ. If πθ would make the label Ŷ β more likely, then Iβ is given a larger
weight (at least one), and if πθ would make Ŷ β less likely, then Iπθ is given a smaller weight (positive, but less than one).
Formally, the importance sampling estimator is Îπθ = πθ(X, Ŷ

β)
(
β(X, Ŷ β)

)−1
Iβ , where the term πθ(X, Ŷ

β)/β(X, Ŷ β) is
called the importance weight. This particular weighting scheme is chosen to ensure that Îπθ is an unbiased estimator of Iπθ ,
which can be proven under the assumption that the model πθ can only select labels for which there is some probability of
the behavior model selecting.

Bounds on delayed impact. Given unbiased estimates of Iπθ , computed according to the scheme discussed above, we
can construct unbiased estimates of g(θ) by subtracting each estimate of Iπθ from τ , the user-defined tolerance. We
now discuss how to use these estimates of g(θ), along with confidence intervals for the mean, to derive high confidence
upper bounds on g(θ). Given a vector of m i.i.d. samples (Zi)

m
i=1 of a random variable Z, let Z̄ = 1

m

∑m
i=1 Zi be the

sample mean, let σ(Z1, ..., Zm) =
√

1
m−1

∑m
i=1(Zi − Z̄)2 be the sample standard deviation (with Bessel’s correction), and

let δ ∈ (0, 1) be a confidence level. From Student [9], we have the property that if
∑m
i=1 Zi is normally distributed,

then Pr
(
E[Zi] ≥ Z̄ − σ(Z1,...,Zm)√

m
t1−δ,m−1

)
≥ 1 − δ, where t1−δ,m−1 is the 1 − δ quantile of the Student’s t distribution

with m − 1 degrees of freedom. We can use this property to obtain a high-confidence upper bound for the mean of
Z : Uttest(Z1, . . . , Zm) = Z̄ + σ(Z1,...,Zm)√

m
t1−δ,m−1.

Let ĝ be a vector of i.i.d. and unbiased estimates of g(θ) such that the sample mean of ĝ is normally distributed. These esti-
mates can be provided toUttest to derive a high-confidence upper bound on g(θ): Pr(τ−E[Îπθ |c(X,Y, T )] ≤ Uttest(ĝ)) ≥
1− δ.
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Complete algorithm. Our algorithm (Algorithm 1) has three main steps. In the first step, the dataset D is divided into
two datasets, Dc and Df (line 1). In the second step (line 3), which we refer to as candidate selection, Dc is used to find and
train a model, called the candidate solution, θc. The last step (lines 4–9) is the fairness test, in which Df is used to compute
a (1−δ)-confidence upper bound on g(θc) and determine whether NSF or the candidate solution should be returned.

In particular, in the fairness test, unbiased estimates of g(θc) are calculated using the importance sampling method
described previously (lines 4–7). These estimates are used to calculate a high-confidence upper bound, U , on g(θc) using
Student’s t-test (line 9). Finally, if U is below 0, then the solution θc is returned. If not, the algorithm returns NSF.

Algorithm 1 ELF(D, c, δ, τ, β)

1: Dc, Df ← partition(D)
2: nDf = length(Df ); ĝ ← ⟨ ⟩
3: θc ← argminθ∈Θ cost(θ,Dc, c, δ, τ, β, nDf )
4: for i ∈ {1, ..., n} do
5: if c(Xi, Yi, Ti) is True then

6: ĝ.append
(
τ − πθc (Xi,Ŷ

β
i )

β(Xi,Ŷ
β
i )

Iβi

)

7: end if
8: end for
9: if Uttest(ĝ) ≥ 0 then return NSF else return θc

In candidate selection, a similar strategy is used to calcu-
late the cost of a potential solution θ. Again, unbiased
estimates of g(θ) are calculated (Algorithm 2 lines 2–6),
this time using Dc. Instead of calculating a high confi-
dence upper bound on g(θ) using Student’s t-test, we cal-
culate an inflated upper bound (Algorithm 2 lines 7–8).
Our choice to inflate the confidence interval is empirically
driven and was first proposed for other Seldonian algo-
rithms [10]. Finally, if the inflated upper bound is higher
than a small negative constant (−ξ/4), the cost associated
with the loss of θ, ℓ̂(θ,Dc), is returned. Otherwise, the cost
of θ is defined as the sum of the inflated upper bound and
the maximum loss that can be obtained using Dc (Algo-
rithm 2 lines 9–10). This discourages candidate selection
from returning models unlikely to pass the fairness test.

4 Empirical Evaluation

To empirically evaluate our method, we consider a classifier tasked with making predictions about people in the United
States foster care system; for example, whether youth currently in foster care are likely to get a job in the near future.
These predictions may have a delayed impact on the person’s life if, for instance, they influence whether that person
receives additional financial aid. Here the goal is to ensure that a trained classifier is fair with respect to delayed impact
when considering race. Our experiments use two data sources from the National Data Archive on Child Abuse and
Neglect [4]: (i) the Adopting and Foster Care Analysis and Reporting System—a dataset containing demographic and
foster care-related information about youth; and (ii) the National Youth in Transition Database (Services and Outcomes)—
a dataset containing information about the well-being, financial, and educational status of youth over time and during
their transition from foster care to independent adulthood. We wish to guarantee with high probability that the DI caused
by a new classifier, πθ, is better than the DI resulting from the currently-deployed classifier, β. This guarantee should
hold simultaneously for both races: White (instances where T = 0) and Black (instances where T = 1). In the following
experiments, the confidence levels δ0 and δ1, associated with these objectives, are both set to 0.1.

Algorithm 2 cost(θ,Dc, c, δ, τ, β, nDf )

1: ĝ ← ⟨ ⟩
2: for i ∈ {1, ...,m} do
3: if c(Xi, Yi, Ti) is True then

4: ĝ.append
(
τ − πθ(Xi,Ŷ

β
i )

β(Xi,Ŷ
β
i )
Iβi

)

5: end if
6: end for
7: Let λ = 2; nĝ = length(ĝ)

8: U+ = 1
nĝ

(∑nĝ
ι=1 ĝι

)
+ λ σ(ĝ)√

nDf
t1−δ,nDf−1

9: ℓmax = maxθ′∈Θ ℓ̂(θ′, Dc)

10: if U+≤− ξ4 return ℓ̂(θ,Dc) else return (ℓmax + U+)

Preventing Delayed-Impact Unfairness. We first eval-
uate whether ELF can prevent DI unfairness with high
probability, and whether existing algorithms fail. We com-
pare ELF with a fairness-unaware algorithm (logistic re-
gression (LR)) and three state-of-the-art fairness-aware al-
gorithms: (i) Fairlearn [1], (ii) Fairness Constraints [11],
and (iii) quasi-Seldonian algorithms (QSA) [10] designed
to enforce static fairness constraints. We consider five
static fairness constraints: demographic parity (DP),
equalized odds (EqOdds), disparate impact (DisImp),
equal opportunity (EqOpp), and predictive equality (PE).

In this comparison, we investigate how often each
fairness-aware algorithm returns an unfair model (with
respect to the DI constraints) as a function of the amount
of training data. We refer to the probability that an algorithm returns an unfair model as its failure rate. To measure the
failure rate, we compute how often the classifiers returned by each algorithm are unfair when evaluated on a signifi-
cantly larger dataset, to which the algorithms do not have access during training time. Figures 1a and 1b present the
failure rate of each algorithm as a function of the amount of available training data. We computed all failure rates and
corresponding standard errors over 500 trials. Notice that the solutions returned by ELF are always fair with respect to
the DI constraints.1 Existing methods that enforce static fairness criteria, by contrast, either (i) always fail to satisfy both

1ELF does not return solutions if trained with n < 1,000 data points because it cannot ensure DI fairness with high confidence.
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DI constraints, independently of the amount of training data; or (ii) always fail to satisfy one of the DI constraints—the
one related to delayed impact on Black youth.

The Cost of Ensuring Delayed-Impact Fairness. The previous analyses show that ELF is capable of satisfying DI
constraints with high probability, but this often comes at a cost. First, there may be a trade-off between the amount of
training data and the confidence that a fair solution has been identified. Recall that some algorithms (including ours)
may not return a solution if they cannot ensure fairness with high confidence. Therefore, we study how often each
algorithm identifies and returns a candidate solution as a function of n. Figure 1c shows that as the amount of training
data increases, the probability of ELF returning solutions increases rapidly. Although some competing techniques always
return solutions, or may require less training data than ELF, these solutions never satisfy both DI constraints.

Secondly, there may be a trade-off between satisfying fairness constraints and optimizing accuracy. Figure 1d presents
the accuracy of classifiers returned by different algorithms as a function of n. Even though there is an accuracy gap
of approximately 10% in the limit, ELF always returns fair solutions, while other methods fail to satisfy at least one DI
constraint. While there is a cost to enforcing DI constraints, ELF succeeds in its main objectives: to ensure DI fairness with high
probability, without requiring unreasonable amounts of data, and with no significant loss of accuracy.
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Figure 1: Algorithms’ failure rates with respect to the DI constraints associated with White people (a) and Black people
(b), as a function of n. The black horizontal lines indicate the maximum admissible probability of unfairness, δ0 =
δ1 = 10%. In (c) we show the probability that algorithms (subject to different fairness constraints) return a solution as a
function of n. Finally, in (d) we show the accuracy of the solutions returned by algorithms (subject to different fairness
constraints) as a function of n. All plots use the following legend: ELF LR QSA with DP QSA with
EqOdds QSA with EqOpp QSA with PE QSA with DisImp Fairlearn with DP Fairlearn with
EqOdds Fairness Constraints.
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Abstract

Reinforcement Learning (RL) can benefit from a warm-start where the agent is initialized with a pretrained behavioral
policy. However, when transitioning to RL updates, degradation in performance can occur, which may compromise the
agent’s safety. This degradation, which constitutes an inability to properly utilize the pretrained policy, is attributed
to extrapolation error in the value function, a result of high values being assigned to Out-Of-Distribution actions not
present in the behavioral policy’s data. We investigate why the magnitude of degradation varies across policies and why
the policy fails to quickly return to behavioral performance. We present visual confirmation of our analysis and draw
comparisons to the Offline RL setting which suffers from similar difficulties. We propose a novel method, Confidence
Constrained Learning (CCL) for Warm-Start RL, that reduces degradation by balancing between the policy gradient and
constrained learning according to a confidence measure of the Q-values. For the constrained learning component we
propose a novel objective, Positive Q-value Distance (CCL-PQD). We investigate a variety of constraint-based methods
that aim to overcome the degradation, and find they constitute solutions for a multi-objective optimization problem
between maximimal performance and miniminal degradation. Our results demonstrate that hyperparameter tuning for
CCL-PQD produces solutions on the Pareto Front of this multi-objective problem, allowing the user to balance between
performance and tolerable compromises to the agent’s safety.

Keywords: Reinforcement Learning, Warm Start, Degradation, Extrapolation
Error, Offline RL
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Abstract

Humans have the ability to craft abstract, temporally extended and hierarchically organized plans. For instance, when
considering how to make a pasta dish for dinner, we typically concern ourselves with useful ‘subgoals’ in the task, such
as cutting onions, boiling pasta, and cooking a sauce, rather than particulars such as how many cuts to make to the
onion, or exactly which muscles to contract. A core question is how such decomposition of a more abstract task into
logical subtasks happens in the first place.

Previous research has shown how neural responses and reaction times can be sensitive to hierarchical structure in the
environment. It remains to be seen how such learned structure can be put toward goal-directed behavior. To investigate
this, we developed a novel goal-directed navigation task in a hierarchical environment. Goal locations vary throughout
the environment, so participants had to learn its structure. Participants had agency over the general direction they
would move in, but the actual progression through the environment was still partially random. Participants were never
given an overview of the environment, so they had to learn through observation and plan their moves using an internal
model. Using Bayesian model comparison, we found that participants are sensitive to the hierarchical organization of the
environment, and that the Successor Representation can explain their behavior better than perfect model-based agents
or explicitly hierarchically structured internal models.

These results open up the possibility to use this novel task to investigate hierarchically structured prediction errors and
representations in future neuroimaging work.

Keywords: Sequential decision-making, Behavioral modeling, Successor rep-
resentation, Community structure, Statistical learning
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1 Introduction

Temporally extended tasks often consist of several subtasks that need to be completed in succession. Previous research
has shown that participants are sensitive to the subtask-structure of certain problems [5] [8] [10]. One question this
left open, is how exactly this structure is learned. From the perspective of statistical learning, decomposing an entire
task into several subtasks corresponds to finding abstract structure within a large and complex space of possible actions
and sensory observations. Learning such structure can be formalized as ’higher-order graph learning’ [3]. Innovative
research has shown certain parts of the brain are sensitive to exactly such higher-order learning [7], as well as its influence
on reaction times in simple motor sequencing tasks [4]. However, to our knowledge, no single study so far has linked
the learning signals required for higher-order graph learning directly to its behavioural relevance for task execution.
We designed a novel sequential decision-making task where the behavioural strategy can be informed differently by
a lower-level or a higher-level task representation. The outcomes are not fully deterministic, so we can investigate
prediction-error like effects while participants are learning and executing the task.

2 Methods

2.1 Task Design

(a) Layout of the museum, following the
graph as used by Schapiro et al (2013) [7]

(b) Illustration of possible outcomes when
pressing <m>. The outcomes for <z> will be

the mirror image of this.

Figure 1: Illustrations of task environment
and action-outcome mapping.

We developed a novel hierarchical goal-directed task where the participant
has to explore and navigate through a virtual museum consisting of multi-
ple rooms. Each room contained a single unique painting. Because some of
the rooms are clustered together into ’wings’ of the museum, subjects can
learn there is a hierarchical structure. Participants were given a cover story
telling them they were a tour guide in this museum and had to guide visi-
tors to specific paintings they requested to see. In total there were 15 rooms
in the museum, following the layout of the graph used by [7] shown in Fig-
ure 1a. The experiment was divided into ’miniblocks’ where the participant
had to find a specific painting for each miniblock. The timeline of a typical
miniblock is shown in Figure 2. The participant could navigate through the
rooms by pressing the <z> or <m> key to indicate in which direction to
move next. Once the participant reached the current goal painting, they had
to indicate this by pressing <space>. If they did this correctly, they would
receive a reward of £0.15. If they did this incorrectly, either by pressing
<space> before they reached the goal, or by pressing <z> or <m> when
they were at the goal, they would lose £0.02. The miniblock would always
and only end when the current goal was reached, regardless of the keys that
were pressed. The end of a miniblock also served as the start of the next
miniblock, so the participants experienced one continuous walk throughout
the museum over the course of the entire experiment.

Each of the two keys mapped to two edges per node, and the mapping is
symmetrical across the 3 different clusters. The mapping for a single cluster
is shown in Figure 1b. When the participant selects a key, the next state is
sampled with 50% chance by following one of the two edges mapped to that
key. Critically, the mapping was designed to afford a hierarchical choice
policy, as each key only allows for wing-transitions in one direction (the
green arrows). This allows for directed ’rotation’ through the wings of the
museum, but without direct control over which precise rooms would show
up. Always selecting the key that points in the correct rotation is much bet-
ter than following a random policy, but an optimal model-based agent with
perfect knowledge would follow a policy of higher complexity and reach
the goal faster. This allows us to distinguish contributions of lower-order and higher-order graph learning at the level
of choices. Main predictions rest however in the domain of reaction times: Specifically, we expected participants to
slow down upon between-wing transitions compared to within-wing transitions. Also, we expected the proximity to the
current goal to slow down participants reaction times, so as not to miss the goal and forget to press <space>.

Data of 27 participants were collected online through Prolific. Participants first went through a ’training phase’ of 75
miniblocks, where we exactly balanced the presentation of each possible start-goal combination, so no model-free prefer-
ences would arise. Then, participants were given a ’budget’ of 1000 transitions to find as many goals as possible, where
they were always allowed to finish the ’final’ miniblock on which they exceeded the 1000 steps. During the testing phase,
goals were sampled randomly from any of the 10 rooms outside the wing the participant was currently in. Only data
from the testing phase was used in further analyses. After the testing phase, the participants were shown ’free-sort’ trial.
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Figure 2: Illustration of a single miniblock. The first image is the goal cue (a), showing the participant is looking for the
’lamp’. They initiate the miniblock by pressing<space>, and then start in the same room as where the cue was given (b).
From there on, they must select either the <z> or the <m> key to move on (c, d), and use <space> to indicate that they
have reached the goal (e), after which they will receive a reward (f). As illustrated, pressing <space> in a non-goal room
leads to a ’wrong goal’, giving a small punishment (g). Similarly, pressing <z> or <m> in the true goal room leads to a
’goal miss’ and a small punishment (h). The miniblock always ends with a ’goal miss’ (h) or a ’reward’ (f) screen.

An empty grid and the 15 paintings that hung in each room were shown. Participants were asked to place the paintings
on the grid, so that they would resemble what they thought was the spatial layout of the museum.

2.2 Cognitive Models

We fitted and compared 4 cognitive models to the reaction time (RT) data. These models correspond to a null model, only
capturing ’nuisance’ regressors which are not of theoretical interest, a model-based model assuming perfect knowledge
of the layout of the museum, an explicit model which only knows about the wing-layout of the museum, and a Suc-
cessor Representation (SR) model which learns the structure of the museum associatively. Models were fitted in Stan.
The approximate leave-one-out cross-validation score was computed for each model for each participant using Pareto
Smoothed Importance Sampling, and relative model evidence was computed as Pseudo-BMA+ weights. Participant-
level model evidences were then submitted to Group Bayesian Model Selection (GroupBMS; [6]). This allowed us to
compute a Bayesian Omnibus Risk (BOR) which indicates whether any model among a set of models is more likely than
the others. It also allowed us to compute a Protected Exceedance Probability (pxp) for each model, which is an estimate
of how likely that model is to best describe participants’ behavior.

The SR learns a matrix M of expected future (discounted) state visits. A separate matrix can be learned for each available
action. If there are A different actions and S different states in the environment, M ∈ RA×S×S . Each entry Ma,s,s′ =
E[
∑∞
t=0 γ

tIst=s′ |s0 = s, a0 = a] where a and s are the previous action and state and s′ is the next state. This can be
learned with the SARSA update rule. Starting M out as an identity matrix for each action, updates follow M[at, st, :] ←
M[at, st, :] + λ(Ist + γM[st+1, at+1, :] −M[at, st, :]). The SR introduces two parameters to estimate: The discount factor
γ and the learning rate λ. We fix λ = 0.1 in our model fitting, while the discount factor γ ∼ Beta(1, 1) is always given a
uniform prior.

We fit a regression onto the mean parameter of a lognormal distribution in order to model reaction times, specified
as (yij − ndti) ∼ lognormal(αim + βimxijm, σim), where i indexes the relevant participant, j the relevant trial, and m
the relevant cognitive model. For each participant we will fit a separate non-decision time ndti which has a uniform
prior between 0 and the minimum reaction time for that participant. The intercept aim ∼ N (6, 1.5) is set to match a
realistic range of typical reaction times. The regression slopes βim ∼ N (0, 0.1) will capture small deviations in response
to specific task events captured by the independent variables xijm which differ between the different cognitive models
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and are described below. Each participant is also fitted with their own variance parameter σim, as some might be more
variable in their RTs than others.

We excluded trials with RT > 5s, as these were considered outliers. There were three nuisance regressors, which fully
specify the null model, but were also included in all other models. The first is the (log-transformed) number of trials
that the current miniblock has been active, as we hypothesized participants might speed up as they get frustrated with
not progressing. The second is the (log-transformed) recency of encountering the current room, simply counting how
many trials ago the current room was last visited. The third was a binary regressor indicating if the current response was
different from the last response, as response switching might lead to slower responses.

For the Model-Based agent, we computed 3 specific regressors. EVs were calculated by iterating the Bellman equation
until convergence, assuming a completely accurate transition model of the environment and reward vector r of size S
where every entry was a small cost value (-0.08) except for the current goal, which was set to 1. Secondly, we computed
reward prediction error (RPE) as the difference between the EV of the current trial minus the EV of the previous trial.
Thirdly, we computed conflict as the absolute difference between the EV of the two currently available actions, which we
call EVdiff .

For the explicit hierarchical agent, we computed 3 specific regressors. Firstly, we included a binary regressor that would
indicate whether the current room allowed for a transition to an adjacent wing (a ’boundary’ room) to model increased
conflict between the two possible actions. Secondly, we included a binary regressor that indicated whether a transition
between two wings was just made, to capture slowing based on surprise. Thirdly, we included a binary regressor that
indicated whether the current room was in the same wing as the goal room, to model proximity to the goal.

For the SR agent, we computed 4 specific regressors. Firstly, we computed the SR prediction error (SRPE) for trial j as the
angular distance between M[aj , sj , :] and M[aj−1, sj−1, :] to model surprise. Secondly, we computed EV as M[aj , sj , :] · r
to model proximity to the goal. Thirdly, we computed the RPE by subtracting the EV of the previous trial from the EV of
the current trial. Fourthly, we computed the EVdiff between the two possible actions for each trial.

For the choices we only analyzed the trials outside the goal wing, as there is no correct ’rotation’ inside a goal wing. We
fit logistic regressions for the 4 different models. The priors for the intercept and regression slopes were set to N (0, 2).
The null model only included an intercept, capturing any bias participants might have to prefer responding <z> or
<m>. The three other models all contained one additional regressor. The model-based agent computed the expected
value (EV) of <m> minus the EV of <z>. For the explicit hierarchical agent we computed a binary regressor which was
1 when <m> was the current ’correct rotation’, meaning it allowed for the direct between-wing transition into the goal
wing and 0 otherwise. For the SR model, we compute M based on the posterior mean of the discount factor from the
fitted RT model for each participant. We then computed a similar EV difference as for the model-based agent.

In order to compute the Bayes factor evidence in favour of a relationship between a regressor and a variable of interest
(i.e. RT or choice), we always compare models that freely estimate population-level parameters and include varying
effects for each participant (H1) to models that fix the population-level parameters to zero, but still include varying
effects for each participant (H0) [11]. Marginal likelihoods will be computed with the R package bridgesampling [1]. In
the case of multiple regressors we will compute the marginal likelihoods of all possible combinations of models that do
and do not estimate each population parameter, so if there are O regressors, we will fit 2O models. Let µo ∈ M indicate
that that the population effect was included in a model, and µo /∈M indicate that the population effect of variable o was

fixed to 0. We can then compute an inclusion Bayes factor [2] for each parameter as BF inclusion10 =
∑
µo∈M p(y|M)∑
µo /∈M p(y|M) .

3 Results

All results presented here come from an exploratory data analysis. With respect to the RTs, GroupBMS including all
4 models shows a significant preference for the SR model (BOR = 0.001, pxpSR = 0.999). We show the posterior
model probabilities in Figure 3A, the participant-level posterior distributions of the regression slopes for the SR model in
Figure 3B with below them in Figure 3C the population level posterior distributions. We compute inclusion Bayes factors
BF incl10 for each regressor and show these in Table 1. With respect to the choices. Data and posterior predictions incl 95%
Highest Density Interval (HDI) for the mean between-wing RT minus the mean within-wing RT are shown in Figure 4.

With respect to the choices, GroupBMS shows a significant preference for the model of explicit structural hierarchy
(BOR = 0.001, pxpexplicit = 0.992). We find strong evidence that participants are more likely to select the key that rotates
in the direction of the current goal wing (BF10 = 30.028, HDI95% = [0.582, 1.679]).

Additionally, we asked whether the distances between the final locations of the paintings during the free-sort trial were
smaller for paintings from the same wings than from different wings. A linear regression was set up with yfree−sortij as
the Euclidean distance between two sorted paintings standardized within participant. We find strong evidence that par-
ticipants prefer to group paintings from the same wing together (BF inclusion10 = 14.735,HDI95% = [−0.557,−0.142]). Our
data are inconclusive on whether participants prefer to place paintings that connect between wings (boundary rooms)
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Figure 3: Results from the RT cognitive modeling. A: Posterior model probabilities
for each participant. All participants favour the SR model except for participant 8,
who favours the Null model. B: Posteriors of the regression slopes of the SR model
for each participant. Density below 0 is colored red and density above 0 is colored
blue. C: Posterior of the population level effects for each regression slope in the SR
model. Note that the scale of the x-axis is different than in B. Single asterisks indicate
a BF incl10 ≥ 3 or ≤ 1

3 . Double asterisks indicate a BF incl10 ≥ 10 or ≤ 1
10 .

Regressor BF incl10 HDI95%
Steps 0.142 [-0.026,0.030]
Hand switch 0.906 [-0.007,0.077]
Recency 2.516 [0.004,0.022]
SRPE 10.228 [0.008,0.021]
EV 11.192 [0.016,0.034]
RPE 10.786 [-0.058,-0.026]
EVdiff 0.185 [-0.002,0.021]

Table 1: Inclusion Bayes factor of
population effects for each regressor
in the SR RT model, posterior distri-
butions shown in Figure 3C.

Figure 4: Data and SR model pos-
terior predictions of mean RT for
between-wing transitions minus
within-wing transitions.

closer together (BF inclusion10 = 0.617, HDI95% = [−0.548, 0.040]). Our data are also inconclusive whether participants
place unconnected paintings from the same wing further apart (BF inclusion10 = 0.335, HDI95% = [−0.055, 0.429]).
4 Conclusion

The results from cognitive modeling yield evidence for associative learning of task structure in accordance with an
SR model. Sensibly, participants seem to slow down relatively to how close they are to the goal. Most interestingly,
participants seem to slow down specifically when their SR prediction error is higher, which is most pronounced for
transitions between different wings. While reaction times show evidence for sensitivity to SR effects, choices seem to
reflect an explicit understanding of the hierarchical ’rotational’ structure of our task. It has been shown before that
explicit hierarchical knowledge can be derived from a learned SR representation by taking its’ eigendecomposition [9].
Our data confirm task representation at both levels of abstraction, with evidence for explicit hierarchical knowledge
triangulated with the results from our free-sort trial, where participants seem to group paintings from the same wing
closer together.
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Abstract

When to explore and when to exploit is a fundamental decision problem that all biological agents must face. One ecolog-
ical explore-exploit problem, patch foraging, provides a touchstone for artificial intelligence where biological intelligence
is successful, adaptive, and sometimes optimal. Here we show deep reinforcement learning agents that can successfully
and adaptively forage in a patchy three-dimensional environment. Agents learn to tradeoff exploration and the exploita-
tion of patches, and strike this balance differently in scarce and plentiful environments similar to biological foragers.
However, these agents tend to overstay in patches relative to the optimal solution from the marginal value theorem in
behavioural ecology, suggesting potential key differences in how artificial and biological agents make tradeoffs during
foraging.
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1 Foraging in biological and artificial agents

When to explore and when to exploit is a fundamental decision problem that all biological agents must face. Foraging
at its core is one such explore-exploit problem, where biological agents must tradeoff the exploitation of resources they
currently have access to with the exploration for more resources. In patch foraging theory, spatial patches are frequently
modeled as exponentially decaying in resources, with areas outside of patches as having no resources (Charnov, 1976).
Agents are faced with a fundamental decision about when to cease foraging in a depleting patch in order to begin
travelling some distance to a richer patch. Research has shown that many animals are adaptive patch foragers in this
context, intelligently staying in patches for longer when the environment is resource scarce, and staying a shorter time in
patches when the environment is resource rich (Cowie, 1977; Hayden, Pearson, & Platt, 2011; Krebs, Ryan, & Charnov,
1974).

Foraging is so important to the survival of biological agents that theorists argue that the foraging behaviour of animals
should not only be adaptive, but should approach optimal in natural environments because of strong selective pressures
(Stephens & Krebs, 2019). In patch foraging, the marginal value theorem (MVT) offers a solution to optimal patch forag-
ing behaviour (Charnov, 1976). In short, the MVT states that the optimal solution is to cease foraging within a patch and
search for a new patch when the reward rate of the current patch drops below the average reward rate of the environ-
ment. Many animals, including humans, have been shown to behave optimally in patch foraging tasks in the wild and
in the laboratory. For example, human mushroom foragers (Pacheco-Cobos et al., 2019), non-human primates (Hayden
et al., 2011), and birds, fish, and bees (Cowie, 1977; Krebs et al., 1974; Stephens & Krebs, 2019) have all shown to behave
consistent with the MVT solution of optimal patch foraging.

Many computational models of patch foraging are agent-based models with fixed decision rules (Tang & Bennett, 2010),
although recent work has involved the use of tabular reinforcement learning models (Constantino & Daw, 2015; Gold-
shtein et al., 2020; Miller, Ringelman, Eadie, & Schank, 2017; Morimoto, 2019). Neural networks have also displayed
foraging behaviour in ecological tasks such as patch selection (Coleman, Brown, Levine, & Mellgren, 2005; Montague,
Dayan, Person, & Sejnowski, 1995; Niv, Joel, Meilijson, & Ruppin, 2002). Foraging behaviour has also been shown in
deep reinforcement learning agents searching environments for rewarding collectibles like apples while avoiding ob-
stacles and/or enemies (Lin, 1991; Platanios, Saparov, & Mitchell, 2020). However, these deep reinforcement learning
environments often significantly differ from those in theoretical and experimental ecological research.

Here, we first ask if deep reinforcement learning agents can learn to forage in a 3D patch foraging environment inspired
by experiments from behavioural ecology. Next we ask whether these agents forage intelligently—adapting their be-
haviour to the environment in which they find themselves. Finally, we investigate if agent foraging behaviour in these
environments approaches the gold standard—the optimal solution determined by the marginal value theorem (Charnov,
1976). This paper provides the first investigation of deep reinforcement learning agents in an ecological patch foraging
task, and adds to a literature suggesting that current reinforcement learning methods may fall short of foraging solutions
in biological agents (Constantino & Daw, 2015; Miller et al., 2017). These experiments are described not as a performance
benchmark for artificial agents, but rather as an empirical investigation into the emergence of complex patch foraging
behaviour, and the potential limits of discounted reinforcement learning algorithms in ecological environments.
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Figure 1: Task. a) Mock-up of the 3D foraging environment and agent with LIDAR rays. b) Overhead view. An agent
starts each episode between two equidistant patches. c) The agent receives exponentially decreasing reward on every
step it is within a patch. When the agent enters one patch, the opposite patch is refreshed to its starting reward state. d)
Overhead spatial trajectories of a representative trained agent in each evaluation environment.
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2 Experiments

Environment. A continuous 2D environment was selected to approximate the rich sensorimotor experience involved in
ecological foraging experiments, as well as for future extensions into multi-patch foraging. The environment consisted
of a 32 x 32 m flat world with two patches (i.e., half spheres) equidistant from the center of the world (Figure 1a; see
Cultural General Intelligence Team et al., 2022). Patches always had a diameter of 4 m. Agents started each episode
at the middle of the world, facing perpendicular to the direction of the patches. Each episode terminated after 3600
steps. Agents received a reward of zero on each step they were outside of both patches. When an agent was within a
patch, it received reward according to the exponentially decaying function, r(n) = N0e

−λn, where n is the number of
non-consecutive steps the agent has been inside a patch without being inside the alternative patch. In this way, as soon
as an agent entered a patch, the alternative patch was refreshed to its initial reward state (i.e., n = 0). As such, agents are
faced with a decision about how long to deplete the current patch before traveling toward a newly-refreshed patch. For
all experiments, the initial patch reward, N0, was set to 1/30, and the patch reward decay rate, λ, was set to 0.01 (Figure
1c). The surface color of each patch changed proportional to the reward state of the patch in RGB space. Patches changed
color from white (i.e., [1, 1, 1]) to black (i.e., [0, 0, 0]) following the function, r(n)/N0. In this way, agents had access
to the instantaneous reward rate of the patch through patch color, rather than having to estimate patch reward rate by
estimating the decay function and keeping track of steps spent within a patch.

Agents. Agents had a LIDAR-based observation space—a common sensory modality for physical robots (Malavazi,
Guyonneau, Fasquel, Lagrange, & Mercier, 2018), and agents in other simulated environments (e.g., Baker et al., 2019;
Cultural General Intelligence Team et al., 2022). The current agents had eight horizontal LIDAR rays evenly spaced
throughout 90◦, and 3 vertical rays evenly spaced throughout 60◦, extending from the front center of the agent. Each
LIDAR ray coded for distance (max distance 128 m; normalized), one-hot encoded object type, and RGB colour of the
first object it intersected with. LIDAR inputs were convolved (24 output channels, 2x2 kernel shape), before they were
concatenated with the reward and action taken on the previous step. These values were then passed through a MLP (3
layers of 128, 256, and 256 units) and a LSTM layer (256 units). Finally, LSTM outputs were passed to an actor and a critic
network head. Agents were given a continuous action space that included strafing forward/backward and left/right,
looking up/down and left/right, jump/crouch, and a grasp and use action that were not relevant for this environment.
Actions were taken by sampling from Gaussians parameterized by the policy network head output for each action di-
mension. Agents were trained in a distributed manner, each interacting with 16 environments in parallel. Experience
was saved in a buffer and agent parameter updates were accomplished via the MPO learning algorithm (Abdolmaleki
et al., 2018). A neural network was chosen over tabular methods because of the complexity of the environment, and the
potential for future comparisons of internal network dynamics to neural recordings in biological agents.

Three agents were trained in each of four discount rate treatments (N = 12), selected on the basis of MVT simulations
(Figure 3d). Agents were each initialized with a different random seed, and trained for 12e7 steps using the Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 3e−4. On each training episode, patch distance was drawn from a
random uniform distribution between 5 m and 12 m, and held constant for each episode. Trained agents were evaluated
on 50 episodes of each evaluation patch distance (i.e., 6, 8, 10, and 12 m). If an agent was within a patch at the end of an
evaluation episode, this final patch encounter was rejected from all analyses, as no distinct patch leave behaviour could
be verified to determine the total steps in this patch.

3 Results

Trained agents displayed behaviour consistent with successful patch foraging—agents learned to leave patches before
they were fully depleted of reward (mean leaving step = 121.7), and traveled for several steps without reward in order
to reach a refreshed patch (mean travel steps between patches = 57.7). Agents also achieved a higher score on episodes
where patches were closer together (b =−5.82± 0.21, p = 3.96x10−166).

In patch foraging, it is not only important to balance the exploitation of patches with exploration to find new patches, but
also to intelligently adapt this balance when in more plentiful or more scarce environments. This adaptive behaviour is

Sc
or

e

Steps0 3600

60

0 0
0 3600

Steps

Sc
or

e

60
 Out of patch  In patch 1  In patch 2 In patch 1  In patch 2  Trained agent  Random policy

6 m
8 m
10 m
12 m

a b

Figure 2: Performance. a) Agent behaviour from a representative evaluation episode. Shaded regions define when the
agent is outside of any patch (white), inside patch 1 (red), or inside patch 2 (blue). b) Episode score for a trained agent
(solid lines), and a random agent (dashed lines) in each evaluation environment. Shaded regions denote standard errors.

2

RLDM 2022 Camera Ready Papers 655

655



present in the current agents; trained agents adapted their patch leaving times to the environment, leaving patches later
when travel distance is higher (b = 9.60± 0.87, p = 4.03x10−28; Figure 3a).

Above we show that trained agents are able to successfully forage, and intelligently adapt their foraging behaviour to the
environment in accordance with patch foraging theory (Charnov, 1976; Stephens & Krebs, 2019), and animal behaviour
(e.g., Cowie, 1977). However, do these agents adapt optimally according to the marginal value theorem (MVT), like
many animals (Stephens & Krebs, 2019)? As stated above, the MVT provides a simple rule for when to leave patches
optimally (Charnov, 1976). That is, an agent should leave a patch when the reward rate of the patch drops below the
average reward rate of the environment. For each agent and evaluation environment (e.g., 6 m), we can estimate the
average reward rate of the environment by calculating the average reward per step for each evaluation episode. Over all
evaluation episodes, this provides an estimate of the optimal patch leaving step (Figure 3c). Comparing the difference
between average observed and optimal patch residence times, agents tend to overstay in patches relative to the optimal
solution, t(11) = 5.60, p = 1.60x10−4 (Figure 3e). Bonferroni-corrected t-tests show that agents significantly overstayed
relative to the MVT solution in all evaluation environments (ps < 0.0015), except for 12 m (p = 0.047).

The current agents however use temporal discounting methods, which exponentially diminish rewards in the future.
Given that agents are effectively asked to compare the values between the current patch reward on the next step relative
to a refreshed patch reward after several travel steps, temporal discounting encourages longer patch residence times.
The difference between observed and optimal behaviour is modulated by the temporal discounting rate, where agents
trained with higher temporal discounting rates tend to behave closer to optimal (b = −2784.01± 992.19, p = 0.019; Figure
3f). Are agents then optimal after accounting for temporal discounting rates in the MVT solution? We accounted for the
temporal discounting rate by simulating individual stay and leave decisions at many patch residence steps. Agents could
either stay for an additional step of reward before leaving a patch, or immediately leave the patch, where the subsequent
5000 steps were simulated as alternating between a fixed number of steps in a patch and a fixed number of steps traveling
between patches. Over a grid of fixed subsequent patch and travel steps, the difference in the discounted return (sum of
discounted rewards) between each stay/leave decision provided an indifference curve, where the 5000-step discounted
return was equal for staying relative to leaving. Where this stay/leave indifference step matched the fixed patch steps
provided an approximation of an average patch time where the value of leaving is about to exceed the value of staying.
After accounting for each agent’s temporal discounting rate in the MVT (Figure 3d), agent patch residence times were
closer to the optimal solution (Figure 3h). Bonferroni-corrected t-tests show that agents significantly overstayed in the 6
and 8 m evaluation environments (ps < 0.0067), understayed in the 12 m (p = 0.0023), and were not significantly different
from optimal in the 10 m environment (p = 0.30).

4 Discussion

Here we tested deep reinforcement learning agents in a foundational decision problem facing biological agents—patch
foraging. We find that these agents successfully learn to forage in a 3D patch foraging environment. Further, these
agents intelligently adapt their foraging behaviour to the resource richness of the environment in a pattern similar to
many biological agents (Stephens & Krebs, 2019).
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Many animals, including humans in the wild (Pacheco-Cobos et al., 2019), have been shown to be optimal patch foragers.
The deep reinforcement learning agents investigated here are adaptive, yet sub-optimal foragers. These results are similar
to those from humans in computerized patch foraging tasks, where they tend to overstay relative to the MVT solution
(Constantino & Daw, 2015). We find that agents trained with higher temporal discounting rates tend to display patch
leaving times closer to the MVT solution (Figure 3f). Further, in a human behavioural study, Constantino and Daw
(2015) found that reinforcement learning methods that estimate cumulative long-term discounted rewards are a poor fit
for human foraging behaviour in a lab setting, relative to methods which estimate the average reward per step. Overall,
these findings suggest potential key differences in how many artificial and biological agents make tradeoffs during
foraging, which may be reconciled with further work on average reward reinforcement learning (Sutton & Barto, 2018).

Biologists and behavioural ecologists may benefit from reinforcement learning approaches to agent-based modelling
(Frankenhuis, Panchanathan, & Barto, 2019). Further, tasks from behavioural ecology, such as patch foraging, provide
insights into fundamental decision problems facing intelligent biological agents. At its core, foraging is an explore-exploit
tradeoff, and taking cues from how biological agents (often optimally) solve this dilemma may provide novel methods
for artificial agents to do the same.
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Abstract

Can robots navigate in unseen environments using rough maps (e.g., a coarse floor plan or a hand-drawing floor draft)?
In robot navigation, it is always important for mobile robots to perform quick generalization to unseen environments.
Traditional simultaneously localization and mapping (SLAM) methods are impractical for such task because obtaining
accurate occupancy maps is computationally expensive. Recent progress in map-free methods show promising results,
requiring billions of data to train a good policy. For other map-based methods, mapping errors and local optima issues
also affect the robot to reach the long-distance goals, revealing the importance of having correct global information as
guidance. This study exams the usage of 2-D rough maps and proposes a framework that achieves robust generalization
in unseen environments. The framework consists of a graph-structured 2-D rough map, a deep local map predictor, a
noisy Bayesian filter and a heuristic planner. Unlike map-based methods, our framework neither requires a global map
identical to the real environment nor builds an occupancy map from scratch. Unlike map-free methods, our framework
uses less training data and achieves robust navigation performance. We compare our framework against one of the state-
of-the-art map-based methods in Habitat, a photo-realistic house environment. The preliminary results show that the
rough-map-based framework achieves a mean success 93.7% in seen environments and 91.0% in the unseen environments.

Keywords: Robot navigation, Generalization, Rough maps, Planning

1 Introduction

Mobile robots have become ubiquitous in our society and frequently encounter novel scenarios, suggesting the quick
generalization to novel cases is critical. Traditional SLAM methods [3] are widely used. However, building accurate
metric maps of unseen environments is computationally expensive and time intensive, especially if the robot only has to
reach a goal location once in a novel environment.

Instead of building such maps, deep learning-based map-free navigation algorithms [9, 11] are proposed and achieve
appealing generalization performance. However, those methods require billions of training data and months of GPU
hours to learn a good policy, causing the training prohibitive on computers with limited resources. Besides, during long-
distance navigation tasks, the local optima issues still affect the performance of map-free methods because of the absence
of global information. Unlike the map-free approaches, map-based methods [4, 2, 6], aim to learn the SLAM behaviors using
deep neural networks. In particular, these methods learn to build 2-D occupancy maps from onboard sensor inputs (e.g.,
cameras, odometry). Given the progressively built map, these methods plan actions towards the goal, achieving more
stable navigation performance. Compared with traditional SLAM benchmarks that build global occupancy maps first
and use them for planning later, map-based methods plan the action based on the latest occupancy map, capturing only
partial information at the beginning of the navigation. Planning on the partial map might be problematic because the
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Figure 1: Example of using rough maps. When a
new student first arrives at Northeastern University and
wants to go to the target building marked at the red star.
Given a campus map, he can plan a path, marked as dash
lines, from his start location to the target building. Al-
though the campus map is rough and animated, the stu-
dent can still find the correct direction (i.e., the heuristic
vector in our case) to go after he estimates his location on
the map. Then, he simply takes the action that results in
heading in the same direction as the map indicated.

Figure 2: The 2-D rough mapM is first converted to the
graph-structured 2-D rough map GM. At time step t, the
agent receives a panoramic observation ot and predicts
the local rough map m̂t. The noisy Bayesian Filter takes
in the GM and m̂t and estimates the agent’s location. A
heuristic vector vt is computed based on the estimation.
The heuristics planner uses vt and finds the optimal at.
The agent executes at and the environment outputs an
observation ot+1.

planned action might be locally optimal, causing agents stuck in some local regions or explore unrelated areas, especially
for long-distance goals.

The limitations of map-free and map-based methods motivate the usage of the global information during decision-making
processes, especially for reaching long-distance goals. Having the global information helps to avoid the local optima issue
and unnecessary exploration behaviors. Although obtaining the accurate global information (e.g., the 2-D occupancy
maps) in unseen environments is impractical, it is much easier to obtain rough maps (e.g., a rough floor plan, a hand-
drawing floor daft etc.). Such rough maps might be coarse in many aspects. For example, they might have different scales
or contain partial information. However, rough maps capture the global geometry and provide useful global information
to guide navigation. For example, a new student can easily find the target building at Northeastern University as long
as the student has a campus map, which only contains rough information (See Figure 1 for example).

In this work, we exam the usage of the 2-D rough maps for the visual PointGoal navigation task in unseen environments
and propose a framework. We compare the proposed framework against a SLAM-based baseline in a photo-realistic
house environment [7]. Empirical results show that our method outperforms the SLAM-based baseline in both seen and
unseen cases and achieves a robust navigation generalization performance, demonstrating the effectiveness of using the
2-D rough maps with the proposed framework.

2 Problem Statement

We exam the PointGoal navigation problem as described in [1, 7]. In particular, the agent is initialized randomly in an
unseen environment and asked to navigate to random goal coordinates specified relative to the agent location. The agent
navigates using its onboard sensors - in our case the Depth camera, Odometry sensor (use orientation only), and a 2-D
rough map (see Figure 2). When one episode begins, we assume only the rough goal location on the 2-D rough map is
known.

We first formulate the PointGoal navigation in a single environment problem as a partially observable Markov deci-
sion process (POMDP)[5], represented by a tuple ⟨S,A, T ,R,Ω,O⟩, where S, A, and Ω are finite sets of states, actions,
and observations respectively, T and O specify transition and observation probabilities, and R is the reward function.
In PointGoal navigation, states s consist of 2-D location and orientation (x, y, θ) relative to the start location, whereas
observations o are Depth images corresponding to the panoramic view at the given state s. To specify PointGoal nav-
igation in one environment with arbitrary distance, we define ρ0 and ρg as the distributions for start states s0 ∈ S
and goal states g ∈ G, where S and G is identical. Furthermore, we define the reward function as r(s, a, g) = 0 if
s = g and r(s, a, g) = −1 otherwise. Given the start s ∼ ρ0 and goal g ∼ ρg locations, the objective is to find a policy
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Figure 3: An example for
the training environment in
Replica 15

Figure 4: An example for the
testing environment in Gib-
son 45

Figure 5: Effect of map roughness.
Our method achieves the mean suc-
cess rate (unseen) ≥ 70% (Neural-
SLAM: 77.6%) with different map
roughness.

π : O∗S×SG → A that maximizes the expected accumulative rewards for all the start and goal pairs Es0∼ρ0,g∼ρg [V (s0, g)],

where V (s0, g) = E
[∑T−1

t=0 r(st, at, g)|s0, g
]
.

Similarly, we can formulate the PointGoal navigation in multiple unseen environments using 2-D rough maps as finding
a policy π : O∗S × SG ×M → A that maximizes the expected accumulative rewards for all the start and goal pairs in all
unseen environments Es0∼ρ0,g∼ρg,e∼ENV s,m∼M [V (s0, g, e,m)], where V (s0, g, e,m) = E

[∑T−1
t=0 r(st, at, g)|s0, g, e,m

]
, e

is one unseen environment, and m is the corresponding 2-D rough map.

3 Method

We propose a rough-map-based method to solve the PointGoal navigation tasks. Figure 2 shows a diagram of the proposed
framework. In a nutshell, the framework consists of four essential components as follows:

The graph-structured 2-D rough maps Instead of learning a global rough 2-D mapM interpreter, we propose to predict
the local rough patches, which are more likely to be shared among the environments. Specifically, we decompose a 2-
D rough map into local rough patches and build a graph GM. There are two advantages: 1) The graph decomposes
the global 2-D rough map into shareable local rough patches, allowing for solutions for perception models with better
generalization performance. 2) The graph still preserves the global information by maintaining the connectivity between
two adjacent local patches with edges. Similar to the human’s common sense of using maps, we use the graph-structured
2-D rough map to compute a rough direction towards the goal location. The rough direction is represented as a vector
vt, called the heuristic direction vector, and is generated for every time step t.

The deep local map predictor To compute the heuristic direction vector on the graph-structured 2-D rough map, we
first need to estimate the location of the agent on the map. Since the initial agent’s location on the map is unknown,
we use a Bayesian filter to estimate the location of agent. However, using the Bayesian filtering on a 2-D rough map
raises two key issues: 1) The agent observes images in the real environment while the observations on the 2-D rough
map should be 2-D local patches; 2) The 2-D map is not identical to the real environment. In other words, there exists
a mismatch between the local details the maps and the environments. For example, when the agent moves forward in
the real environment, this action can change the agent’s location in the real environment. But, on the 2-D rough map, the
agent might still ends up within the same map location. The local map predictor is proposed to map the observations
from image-based space to local occupancy map space (See Figure 2). In other words, the model predicts the 2-D local
occupancy patch m̂t from panoramic observations ot.

The noisy Bayesian Filter We propose a noisy Bayesian filter to deal with the mismatch between the maps and the
real environments. In particular, we assume the local map predictor model is informative and is powerful to correct
the errors caused by the first Bayesian update (i.e., computing the predictive belief). Therefore, instead of updating the
predictive belief using the ground truth transition probability, we sample a random noise from a uniform distribution
between (0, 1). Then, in the observation update, we hope the observation probability will correct those errors. Empirical
results in Figure 5 show such design works for rough maps within a range of map roughness.

The heuristic planner Given the heuristic direction vector vt, we propose a simple heuristic planner to find the best
action to execute. In particular, vt indicates the global direction heading to the final goal. Therefore, the planner only has
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to find the action resulting in the same direction as vt. Note that, our planner does not require the ground truth of agent’s
location. Instead, we design a function to generate the ∆ change of the location after taking an action. The function
can be easily programmed in a few code lines or modeled as a simple neural network learned from a small number of
experiences. In the current version, we implement a tree-structured planner to find the action based on vt.

4 Experiment

We compare our method against a strong SLAM-based baseline in Habitat [7], a photo-realistic simulator. To evaluate
the performance, we randomly sample N navigation trials in each testing environment and report the mean success rate,
defined as SR = 1

N

∑N
i=1 Si, where Si = 1 for a successful navigation trial, and 0 otherwise; N is the total number of trials.

Table 1: Main results for the seen Replica
15 environments and unseen Gibson 45
environments (%)

Mean success rate Seen Unseen

Neural-SLAM 92.4 77.6
Our 93.7 91.0

In Habitat, we use the Replica dataset [8], containing 15 houses, for training
and use the Gibson dataset [10], containing 45 houses, for testing. We com-
pare our method against Neural-SLAM [2], a state-of-the-art SLAM-based
method. Preliminary results in Table 1 show that our method achieves better
performance than Neural-SLAM but uses much less data for training, which
highlights the importance of using the 2-D rough maps and also demon-
strates the effectiveness of our method in visual realistic domains.

5 Discussion

In this work, we present a rough-map-based framework for visual PointGoal
navigation in unseen environments. Unlike other work, we propose to use
rough 2-D maps instead of 2-D maps identical to the real environments. The
proposed framework consists of a graph-structured rough 2-D map, a deep local map predictor, a noisy Bayesian fil-
ter, and a heuristic planner, achieving robust generalization performance in unseen environments. Empirical results in
Habitat show that our method can be effectively applied to realistic environments using rough 2-D maps.
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Abstract

Humans use an internal model to predict and navigate through a series of decisions in reinforcement learning (RL)
tasks, referred to as planning. Studies show that planning predicts performance in such tasks, but they only provide
a partial description because they do not separate local deliberation (i.e., online planning) from using plans made
ahead of time (i.e., offline planning). To address this gap, we introduce a variant of the canonical two-stage task (TST),
called the multinomial TST, that discourages planning beforehand by increasing state-space complexity (SSC). Here, we
report behavioral results from three versions of multinomial TST with increasing SSC, in addition to the canonical TST
(total N = 418). Consistent with the hypothesis that increasing SSC would lead to an increase in online planning,
we found that increasing SSC induced longer response time (RT) during first-stage (but not second-stage) choices. We
next decomposed RT into separable components of pre-trial and on-demand evaluation by fitting a novel variant of a
reinforcement learning diffusion decision model (RLDDM). Model fits revealed that first-stage drift rate and starting
point both showed influence of model-based values, but that, as SSC increased, this influence was stronger in drift rate
and weaker in starting point. Further, we used a timeseries analysis to observe that the model-based contribution to
starting point and drift rate were negatively correlated within each subject, suggesting that experience within each task,
as well as task complexity, mediates the relative contribution of online and offline planning. Taken together, these results
suggest that while planning without decision-time deliberation (offline planning) suffices for tasks with low SSC, online
planning becomes more necessary with increasing SSC, and that our task and model could be a framework for further
investigation of human online planning.

Keywords: Reinforcement learning, Planning, Model-based decision making,
Online planning
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1 Introduction

Planning is one of the most fundamental functions for not only natural but also artificial agents’ learning and decision-
making. In the realm of reinforcement learning (RL), planning refers to deciding with internal models - a transition
function and a reward function - of the environment, thereby being interchangeably referred to as model-based (MB)
RL. Utilizing the knowledge of the model to look forward avails efficiency and flexibility of making decisions but
comes at a computational cost. Model-free (MF) RL could be seen as a system that is opposite to planning in that it
is computationally cheap but inflexible to adapting changes.

MB and MF systems have been found to complement each other in RL. The standard task for measuring this relationship
is the two-stage task (TST) that consists of two consecutive decisions, where first-stage decisions stochastically lead to
the second-stage decisions [1, 2]. Since the reward is given in the second-stage decision, the best decision to take in
the first stage involves using the information of the second stage - in other words, the model. In this framework, a
person’s tendency to plan can be captured into a parameter w that directly weighs the tendency to use MB vs. MF value,
defined by the following formula, Q = wQMB + (1 − w)QMF , where w = [0, 1]. Here, MB Q-values (QMB) are derived
by multiplying the transition probability and second-stage values, and MF Q-values (QMF ) are updated via temporal
difference (TD) learning upon direct experience. However, a distinction left uninterrogated by this approach is whether
plans are constructed offline – that is, prior to the trial start – or online, after the presentation of options in the moment.

(a) Canonical TST (SSC=2). (b) Multinomial TST (SSC 3).

(c) Time course of one trial.

Figure 1: Experimental paradigm. (Figures 1a-1b) Each experiment consists of 300 trials and has 5 catch trials at random
sequence. (Figure 1a) Experimental design of the canonical TST (equivalent to SSC-2). Note that the same first-stage state
appeared on every trial, which allows for precomputation of plans in the intertrial interval (ITI). (Figure 1b) Experimental
design of our proposed multinomial TST. The number of SSC corresponds to the number of rockets in the 1st stage,
where each rocket mainly leads to its associated 2nd stage (planet). Therefore, each 1st-stage state varies according to the
combination of the rockets. (Figure 1c) Temporal order of TST. Both the first and second stage decisions have a 2-second
response window, followed by a feedback phase of 1 second. ITI lasted for 2 seconds with a fixation cross.

This distinction is materially relevant in multiple domains. Recently, it has been shown that artificial MB RL agents rely
heavily on offline planning vs. online planning, likely because they can benefit from very large numbers of training
examples that can be acquired without direct experience [4]. However, it remains an open question the degree to which
humans can similarly eschew online planning, given that they tend to make decisions based on fewer experiences. Eye-
and mouse-tracking studies using TST suggest that subjects plan before the trial onset [5, 6], thereby making the direct
comparison between online vs. offline planning elusive within the TST paradigm. Here, we propose a novel variant of the
TST, the multinomial TST, to delineate behavioral patterns of online planning by time-locking the availability of decision-
relevant information to the first-stage stimulus onset [3]. This is achieved by increasing the number of possible first-stage
options, and selecting combinations of them randomly at each trial, thereby making it difficult for agents to predict
and plan the first-stage decisions beforehand. We increase the state-space complexity (SSC) in three levels (3, 4, and 5
first-stage options; Figure 1b), and compare it with the canonical TST which has 2 first-stage options (Figure 1a). Like
the original TST, two options are presented on first- and second-stage decisions and the first-stage option stochastically
leads to the second-stage state associated with the unchosen first-stage option. We recruited 110 participants between
age 18-40 each for every variant - 2-, 3-, 4-, and 5-SSC tasks - via Amazon Mechanical Turk. We excluded 8, 4, 5, and 5
subjects from each experiment, due to one of the following criteria: responding with the same key on more than 95% of
the trials, responding implausibly fast (RT below 150 ms) on more than 10% of the trials [9], choosing more than 90% to
either option, failing to respond within the response window on more than 20% of the trials, below chance-level model
fit, pressing certain button or choosing certain option consecutively for more than 10% of the trials, responding with RT
of 0 for more than 5 trials (this indicates that the button was pressed before the onset of the trial), and scored less than 2
out of 5 catch trials. We hypothesized that increasing SSC will evoke online planning; behaviorally, we expected this to
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be reflected in an increase in participants’ response times (RT) in the first-stage decision, since precomputing the plans
before trial onset would be more difficult, and an increased dependency in using trial-specific MB-information on each
decision. Our main measures of interest to compare behavioral patterns across SSC come from two models - w from the
choice model used by previous TST studies [1, 2] and the non-decision time (NDT; t), drift rate (v), and starting-point
bias (z) parameters in a reinforcement learning diffusion decision model (RLDDM; [8]), here extended to incorporate
the multiple value timeseries (MB and MF) available in the TST. Specifically, we measure online planning with the MB
evidence accumulation rate (vMB), since the drift rate stands for evidence accumulated at each given timepoint. In
contrast, we hypothesize that the MB evidence already accumulated before the start of the trial (zMB) represents offline
planning.

2 Results

First, we tested the hypothesis that complex environments recruit online decision evaluation by analyzing the response
time of first-stage states as a function of SSC (Figure 2). The first-stage RT indeed increased as a function of SSC; a one-
way ANOVA yielded a significant difference between SSC (F(3,412) = 26, p < .001), and a post-hoc t-test revealed that
the RT of SSC-2 are significantly lower than other conditions (SSC-2 vs. SSC-3: t(203) = −6.69, p < .001, SSC-2 vs. SSC-4:
t(201) = −6.17, p < .001, SSC-2 vs. SSC-5: t(205) = −9.01, p < .001), and 1st-stage RT in SSC-5 were also significantly
slower than other conditions (SSC-3 vs. SSC-5: t(210) = −2.66, p = .009, SSC-4 vs. SSC-5: t(208) = −2.98, p = .003; Figure
2a). It is also notable that neither the mean score (Figure 2c) nor mean w (Figure 2d) are different across conditions (all
p > 0.3). This suggests that the differences in first-stage RT cannot be explained by the difficulty of the task per se or the
degree of model use in each task. Further evidence in favor of this point is that second-stage RT, which also involves
binary choice but not planning into the future, was invariant among conditions (F(3,412) = 1.86, p > .13; Figure 2b).

(a) Mean first-stage RT (b) Mean second-stage RT (c) Mean score (d) Mean w

Figure 2: Behavioral analyses across conditions. Error bars indicate standard error. Significant results of pairwise t-tests
are indicated with asterisks: ∗ = p < .05, ∗∗ = p < .01, ∗ ∗ ∗ = p < .001) (a-b) Mean first- and second-stage RT across
different SSC. Prior to statistical tests such as one-way ANOVA and t-tests, each participant’s mean RTs for 1st- and
2nd-stage decisions were log-transformed and normalized. (a) First-stage RT of SSC-2 was significantly shorter than the
rest conditions, while the opposite was true for SSC-5. There was no significant difference between 1st-stage RT of SSC-3
and SSC-4 (t(206) = .38, p > .7). (b-d) A one-way ANOVA indicated no significant difference between groups in mean
second-stage RT, mean score, and mean w across groups (all p > .13).

Next, we analyzed the data using an RLDDM to identify the within-trial pattern of planning. Our model inherited
features of the original RLDDM [8], but augmented to model the TST. Specifically, in order to delineate the use of the MB
vs. MF values at each 1st-stage decision, we added additional parameters to the original drift rate and the starting-point
bias reflecting the trial-by-trial variation in these quantities, according to the following specification:

v = v0 + vMBδ(QMB) + vMF δ(QMF ) + vintδ(QMB)δ(QMF ) (1)

z = z0 + zMBδ(QMB) + zMF δ(QMF ) + zintδ(QMB)δ(QMF ) (2)

, where δ(QMB) and δ(QMF ) stand for the MB or MF Q-value differences of the two first-stage options, respectively.
In our RLDDM, the decision threshold (a) was fixed to 1 for a straightforward interpretation of v and z, and a sigmoid
function was applied to z so that the starting point was bounded to [0, 1]. The model was fitted to the data via the HDDM
package [10], where each SSC was estimated by 5 chains of 15,000 samples with 2,000 burn-in samples.

In line with the overall RT, the 1st-stage NDT significantly increased as a function of SSC (F(3,412) = 14.03, p < .001; mean
tSSC−2 = .34 s, mean tSSC−3 = .4 s, mean tSSC−4 = .39 s, mean tSSC−5 = .43 s; Figure 3a), while the 2nd-stage NDT
did not differ among conditions (Figure 3b). This may reflect that in order to plan online in higher SSC environments,
participants must spend a longer time identifying the options present on the screen (ostensibly to establish the current
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(a) Posterior distribution of first-
stage NDT (t)

(b) Posterior distribution of
second-stage NDT (t) (c) Posterior distribution of vMB (d) Posterior distribution of zMB

Figure 3: Posterior distribution of parameters estimated from RLDDM. For each SSC, the RLDDM model was estimated
via HDDM on 5 chains that iterated for 15,000 samples, of which 2,000 were burn-in samples. The results show
distribution of samples concatenated from all 5 chains. (a-b) The unit for NDT (t) is seconds.

Figure 4: The distribution of the online planning index (OPI), defined by the ratio of vMB to zMB . (First row) The
histogram of OPI for each condition. (Second row) A stem plot of OPI for each condition, with OPI=1 as the baseline.

decision tree) at each trial, which would have been unnecessary for the original TST. Importantly, after accounting for
this condition-wise shift in RT using the NDT parameter, we examined how trial-varying MB and MF values affected
both the starting point (z) and drift rate (v) differentially in each condition. Supporting the hypothesis that participants’
dependency on using online, relative to offline, planning should increase as a function of SSC, we found a significant
increase of vMB and decrease of zMB as a function of SSC through one-way ANOVA (F(3,412) = 2373.11, p < .001; Figure
3c; F(3,412) = 55.18, p < .001; Figure 3d). Post-hoc pairwise t-tests revealed that while all distributions of vMB were
significantly different among SSC (all p < .001), all pairs but SSC-4 vs. SSC-5 were significantly different for zMB (rest
p < .001).

Next, we examined whether online and offline planning traded off within each subject. Specifically, we calculated an
online planning index (OPI), given by OPI = (1− zMB)/(1− vMB). The first and second row of Figure 4 show that as SSC
increases, so does the proportion of subjects adopting online planning (F(3,412) = 140.61, p < .001), where subjects in SSC-
2 and SSC-3 heavily rely on offline planning while the majority of participants in SSC-4 and SSC-5 uses online planning
(OPI = 1 indicates equal use of online and online planning). To determine the extent to which general planning could
be explained by online planning, we correlated w from the choice model and OPI from the RLDDM. Again supporting
the hypothesis that online planning becomes more relevant as SSC increases, only SSC-5 showed a significant correlation
between the two parameters (Pearson’s r = .25, p = .009), indicating that planning in SSC-5 is heavily driven by online
planning. Finally, to examine the tradeoff between online and offline planning over the course of task experience, we
performed a sliding-window RLDDM with a window size of 50 trials to obtain the timeseries of vMB and zMB . We then
correlated the timeseries of vMB and zMB for each subject, and (Figure 5) shows that all SSC yields significant, medium
to strong negative correlations between vMB and zMB . Entering the z-transformed correlation coefficients into pairwise
t-tests against zero yielded significant differences for all conditions (all p < .001).
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Figure 5: The distribution of the correlation coefficient (Pearson’s r) between the timeseries of vMB and zMB for each
subject. The timeseries is generated by applying the RLDDM model to a window of 50 trials, and sliding the start of the
window from the first trial to the 250th trial.

3 Conclusion

The TST framework has been an important method for investigating planning, but a key limitation of this framework is
that it prevents evaluating the online deliberation process directly in behavior. Here, we introduce a multinomial TST
which sets aside this limitation, and across four experiments, demonstrate that response time patterns reflect a sensitivity
to both each task’s differing state complexity and also trial-wise learned values. The preliminary results reported here
suggest that our novel multinomial TST can provide a useful foundation for investigating online planning patterns in
humans. Importantly, we have shown that although plans could be made in advance in simplistic environments, this
is gradually hampered with complexity and thus recruits decision-time planning. This trade-off relationship between
online and offline planning is observed across both SSC and experience within the task. Together with this trade-off,
the correlation between OPI and w in the most complex environment may provide an explanation for the invariant
general planning (w) across contexts, also shown in previous studies [7]. Also, OPI, which directly compares the
relationship between the two planning mechanisms, could be used as a new individual-difference measure with potential
clinical relevance. We also anticipate that bringing this decision-time activity under behavioral control and experimental
manipulation will allow us to interrogate the algorithmic structure of model-based decisions, to understand the balance
between online and offline control in humans performing novel tasks, and will allow for evaluating online deliberation
activity using neuroimaging measures.
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Abstract

Animals such as rabbits and birds can instantly generate locomotion behavior in reaction to a dynamic, approaching
object, such as a person or a rock, despite having possibly never seen the object before and having limited perception of
the object’s properties. Recently, deep reinforcement learning has enabled complex kinematic systems such as humanoid
robots to successfully move from point A to point B. Inspired by the observation of the innate reactive behavior of animals
in nature, we hope to extend this progress in robot locomotion to settings where external, dynamic objects are involved
whose properties are partially observable to the robot. As a first step toward this goal, we build a simulation environment
in MuJoCo where a legged robot must avoid getting hit by a ball moving toward it. We explore whether prior locomotion
experiences that animals typically possess benefit the learning of a reactive control policy under a proposed hierarchical
reinforcement learning framework. Preliminary results support the claim that the learning becomes more efficient using
this hierarchical reinforcement learning method, even when partial observability (radius-based object visibility) is taken
into account.

Keywords: locomotion, reactive control, hierarchical reinforcement learning
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1 Introduction

Animals have the ability to command their body—a complex kinematic system—quickly in response to environment
stimuli [Pavlov, 2010]. When being approached by a person from an unexpected direction, a rabbit can immediately run
away, even if the rabbit has never seen a person before. When being thrown a rock, a bird can very quickly fly away to
avoid being hit, even if the rock is moving very fast and the bird does not notice until near collision.

Our work draws a connection to both this observation of nature and the progress of deep reinforcement learning (RL),
where we noticed remarkable progress in using deep RL for locomotion [Peng et al., 2016, 2020; Tassa et al., 2018].
Many of the existing works in deep RL for locomotion control only consider controlling the agent from point to point.
Works that do consider controlling an external object (e.g. dribbling) assume full observability of the object’s properties
permitted for the application of animation [Peng et al., 2017]. Other works present empirical evidence for the viability of
training end-to-end locomotion policies directly from pixel input [Tassa et al., 2018], but they typically use third-person
images with high sample complexity, which creates challenges for practical implementation. In this work, we focus on
learning a reactive locomotion policy, which contrasts the settings in prior works where the agent is typically trained to
proactively complete some task.

Our goal is to extend the success of deep reinforcement learning for locomotion control to settings where the agent must
react to external objects under partial observability. As a first step, we consider a task where the agent must react to avoid
being hit by an approaching ball (the “Dodge Ball Task”). The only reward signal the agent gets is a negative reward
when being hit by the ball. Although reinforcement learning has achieved great improvements in domains such as games
[Mnih et al., 2015] and continuous control for robotics [Gu et al., 2017], learning a policy in the continuous control setting
with sparse rewards is still a major challenge in RL [Li et al., 2019]. Hierarchical Reinforcement Learning (HRL), with
its structured policy and decomposition of problems into smaller subproblems [Levy et al., 2019], not only has shown
strength under these challenging settings, but also provides a solution to reuse low-level skill modules on different tasks
[Li et al., 2019]. Therefore, we investigate the benefits of having prior locomotion experience for this task under an HRL
framework. Our preliminary results have shown that a two level feudal hierarchical agent with pre-trained low-level
controller can solve the task with high sample efficiency while the end to end agent completely fails to learn with even
five times the training samples.

2 Hierarchical Reinforcement Learning for Legged Reactive Control

A legged reactive control task can be formulated as a partially observable sequential decision-making problem. The
environment state s can be broken into two parts, that is, s = [so, sh], where so represents the fully observable internal
state of the agent, and sh represents the state of the external object hidden to the agent. At each time step, the agent
executes an action a to control its joint velocities, and it receives an observation, denoted z = [so, ϕ(sh)], as a function
of the state as a result of the action. The task is specified via a reward function R(s). We are interested in the standard
reinforcement learning objective, where the agent needs to maximize the cumulative reward as it interacts with the
environment.

In our preliminary investigation of the reactive control setting, the objective is to minimize the expected number of
collisions E[n] by developing an optimal policy π∗(a|z) for an agent in a world with a single object, which takes in the
current state, and outputs joint velocities for the robot. To this end, we develop the Dodge Ball Task, shown in the
center of Figure 1, implemented in MuJoCo. The agent (an 8 degree of freedom ant) must learn to dodge a ball which
continuously re-spawns from different locations before being shot at the agent along a linear path. In the environment,
we define a sparse reward function for our task based on whether a collision happens. Negative reward is only assigned
when the robot is hit by the projectile. One episode lasts 1000 steps and a new ball is spawned randomly in a position
that is 5 meters away from the agent and fired at the agent at a speed of 2 meters/second every 100 steps. An agent
following the optimal policy will be able to dodge all balls and thus will have a final cumulative reward close to 0.

R(s) =

{
-5 agent hit by ball
0 otherwise

We propose a two level Feudal Reinforcement Learning agent shown in Figure 2. Feudal Reinforcement Learning (Feudal
RL) is a type of Hierarchical Reinforcement Learning where a high-level controller sets a subtask that is executed by a
lower-level controller [Dayan and Hinton, 1992; Pateria et al., 2021]. The state space S = Sh×So consists of the positions
and velocities of the agent’s joints as well as the position and velocity of the projectile ball. Both high-level and low-level
controllers use SAC (soft-actor critic) [Haarnoja et al., 2018] as a base learning algorithm for the task objective.

The high-level controller receives the observation z = [so, ϕ(sh)] and outputs a subgoal g to the low-level controller. A
subgoal is a 2D point with coordinates relative to the agent. The low-level controller then receives this intent along with
the fully observable part of the state so and outputs an action consisting of joint velocities for the 8-DOF agent.
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Field of view

Reach Target Task (Low Level) Dodge Ball Task (Fully Observable) Dodge Ball Task (Partially Observable)

Figure 1: Left: The environment used to train the low-level controller. A target location is defined randomly near the
agent (every 100 steps). The agent will gain reward proportional to the distance it traveled toward the goal. Center: In the
dodge ball task, a single ball is spawned randomly in the environment (every 100 steps) and shot toward the agent along
a linear trajectory. The agent receives a −5 reward every time it gets hit by the ball. Right: in the partially observable
version of the dodge ball task, the agent does not receive information about the ball until it is within the field of view (a
circle with 4 meter radius ).

Similar to how animals possess prior locomotion skills such as running or flying, we first train the low-level controller in
a different environment to gain basic locomotion skills for the agent. This environment, shown on the left side of Figure 1,
requires the agent to move along a randomly specified direction vector within 300 steps, receiving reward proportional
to the distance travelled in this direction. The agent receives an observation consisting of the internal configuration
(joint positions and velocities) along with a subgoal g with the normalized direction vector. After training, the low-level
controller is able to move the agent forward along an arbitrary direction specified by g.

high-level 
Controller

Environment

low-level 
Controller

g

a

[so,Φ(sh)]

so

r

Figure 2: The high-level con-
troller receives a state s from
the environment and outputs
a subgoal g to the low-level
controller consisting of the di-
rection vector it wants the
agent to move along. The
low-level controller takes in
this subgoal and the internal
state so and outputs a primi-
tive action for execution in the
environment.

Next, the low-level controller is ”attached” to the high-level controller in the sense that
the high-level controller outputs latent intents (similar to a subgoal direction g) which
are passed into the low-level controller to compute the primitive action a. Note, because
the low-level controller is trained agnostic to the high-level task, this module can be
re-used – all that needs to be re-trained is the high-level controller.

3 Preliminary Experiments

3.1 Experiment Setup

We evaluate the performance of our algorithm in both fully and partially observable
settings (Figure 1). In the fully observable setting, the agent will receive the complete
information of the state s, including [so, sh]. The full state of the ball sh is a 6D vector
that contains the 3D position (relative to the agent) and velocity of the ball (relative to the
world frame). In the partially observable setting, the observation function ϕh is defined
such that the agent can only ”see” the ball once it is within a 4-meter radius (in all other
circumstances 0 is populated for the elements corresponding to the obstacle in the low-
dimensional state sh). We use a standard SAC end-to-end trained agent (no low-level
controller) as a baseline for comparison. Each agent is trained for 3 seeds (each lasting
2000 epochs on both environments). In each epoch, the agent collects 2000 samples of
interaction from the environment and performs 200 gradient update steps.

3.2 Results and Discussion

Our results in Figure 3 show that under sparse reward, feudal HRL agents in both the
fully observable and partially observable settings are able to learn reactive behavior well.
We observe that the high-level controller learns to assign the direction it wants to go in
as a subgoal to the low-level controller, and the low-level controller moves the robot
toward the desired direction based on the subgoal, which allows the agent to avoid the
ball. It’s worth noting that the behavior of the HRL agent is slightly different between
the partially observable setting and fully observable setting. Under the fully observable setting, the agent tends to react
earlier to the ball when it is approaching compared to the agent under partial observability (Figure 4). This matches our
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intuition since under partial observability, the agent can not ”see” the ball until it is within 4 meters. As a result, the
HRL agent under partial observability converges to a slightly lower average return. End-to-end agents struggle to learn
anything meaningful under the sparse reward setting and end up with jittering policies for locomotion after extensive
training.
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Figure 3: All agents are trained on 3 seeds. The results show that the HRL agents converged within the first 250 epochs
to a cumulative reward close to 0, indicating that the agents are able to dodge most balls. Meanwhile, the agents trained
end-to-end in both the partially observable and fully observable setting were not able to learn a reactive policy.

HRL

Partial-HRL

Partial-end-to-end

Figure 4: It takes less time for the HRL agent in the fully observable environment (1st row) to react when the ball is
approaching compared to the HRL agent in the partially observable environment (2nd row), while the end-to-end agent
fails to learn an effective policy in both environments. (3rd row)
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3.3 Conclusion and Future Work

To study the task of reactive control, we developed a ball-dodging environment in MuJoCo that involves a subset of
the challenges real world robots face such as learning a locomotion policy and acting under partial observability. We
also presented a two level feudal hierarchical reinforcement learning framework for the environment and empirically
demonstrated significant improvements over an end-to-end trained RL agent. We plan to extend our HRL framework to
tasks that involve a variety of kinematic systems with more realistic assumptions of the agent’s perception capabilities
in the partial observable setting (e.g. optical flow). We also hope to increase the complexity of approaching objects
(increasing the number and changing the dynamics) to create a more challenging domain. Eventually, we hope to realize
our framework on a real quadrupedal robot.
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Abstract

We consider an improper reinforcement learning setting where a learner is given M base controllers for an unknown
Markov decision process, and wishes to combine them optimally to produce a potentially new controller that can
outperform each of the base ones. This can be useful in tuning across controllers, learnt possibly in mismatched or
simulated environments, to obtain a good controller for a given target environment with relatively few trials. Applications
of this paradigm include the Sim2Real problem – simulators are typically (crude) approximations to real world scenarios,
so optimal strategies devised for them may need further tweaking to perform well in reality.

Towards this, we propose an algorithm that can switch between a simple Actor-Critic (AC) based scheme and a Natural
Actor-Critic (NAC) scheme depending on the available information. Both algorithms operate over a class of improper
mixtures of the given controllers. For the AC-based approach we provide convergence rate guarantees to a stationary
point. We provide sample complexity guarantee to achieve ε−(local) optimality of O

(
M
ε2 log(1/ε)

)
. For NAC, we

provide sample complexity guarantee for achieving ε− global optimality of O
(
M
ε3 log(1/ε)

)
. We validate our theory on

two experimental setups (1) stabilizing the standard inverted pendulum, and (2) scheduling in constrained queueing
networks. Numerical results show that that our improper policy optimization algorithm can achieve stability even
when the base policies at its disposal are unstable, and when the optimal policy is one of the base controllers, our
algorithm finds it. Further, even when the packet arrival rates to the queueing network are time-varying (i.e., the
underlying MDP is non-stationary), our algorithm is able to track the optimal mixture of base controllers. Link to full
paper:www.dropbox.com/s/pt1n7cw5zm1foaz/Improper_RL_AC_State_dependent.pdf?dl=0

Keywords: policy gradient, model-free reinforcement learning, improper learn-
ing, actor-critic methods, sample complexity, interpretability in
learning.
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1 Introduction

A natural approach to designing effective controllers for large, complex systems is to first approximate the system using a
tried-and-true Markov decision process (MDP) model, such as the Linear Quadratic Regulator (LQR) [4] or tabular MDPs
[1], and then compute (near-) optimal policies for the assumed model. Though this yields favorable results in principle, it
is quite possible that errors in describing or understanding the system – leading to misspecified models – may lead to
‘overfitting’, resulting in subpar controllers in practice.

Moreover, in many cases, the stability of the designed controller may be crucial and more desirable than optimizing a
fine-grained cost function. From the controller design standpoint, it is often easier, cheaper and more interpretable to
specify or hardcode control policies based on domain-specific principles, e.g., anti-lock braking system (ABS) controllers
[8]. For these reasons, we investigate in this paper a promising, general-purpose reinforcement learning (RL) approach
towards designing controllers given pre-designed ensembles of basic or atomic controllers, which (a) allows for flexibly
combining the given controllers to obtain richer policies than the atomic policies, and, at the same time, (b) can preserve
the basic structure of the given class of controllers and confer a high degree of interpretability on the resulting hybrid
policy.

Overview of the approach. We consider a situation where we are given ‘black-box access’ to M controllers (maps from
state to action distributions) {K1, . . . ,KM} for an unknown MDP. By this we mean that we can choose to invoke any of
the given controllers at any point during the operation of the system. With the understanding that the given family of
controllers is ‘reasonable’, we frame the problem of learning the best combination of the controllers by trial and error.
We first set up an improper policy class of all randomized mixtures of the M given controllers – each such mixture
is parameterized by a probability distribution over the M base controllers. Applying an improper policy in this class
amounts to selecting independently at each time a base controller according to this distribution and implementing the
recommended action as a function of the present state of the system. The learner’s goal is to find the best performing
mixture policy by iteratively testing from the pool of given controllers and observing the resulting state-action-reward
trajectory.

Note that the underlying parameterization in our setting is over a set of given controllers which could be potentially
abstract and defined for complex MDPs with continuous state/action spaces, instead of the (standard) policy gradient (PG)
view where the parameterization directly defines the policy in terms of the state-action map. Our problem, therefore, hews
more closely to a meta RL framework, in that we operate over a set of controllers that have themselves been designed using
some optimization framework to which we are agnostic. This has the advantage of conferring a great deal of generality,
since the class of controllers can now be chosen to promote any desirable secondary characteristic such as interpretability,
ease of implementation or cost effectiveness. We corroborate our theory using extensive simulation studies in two different
settings (a) a scheduling task in a constrained queueing system and (b) the well-known Cartpole system (see the full version
of the paper:www.dropbox.com/s/pt1n7cw5zm1foaz/Improper_RL_AC_State_dependent.pdf?dl=0).

2 Motivating Example – Scheduling in Constrained Queueing Networks

We consider a system that comprises two queues fed by independent, stochastic arrival processes Ai(t), i ∈ {1, 2}, t ∈
N. The length of queue i, measured at the beginning of time slot t, is denoted by Qi(t) ∈ Z+. A common
server serves both queues and can drain at most one packet from the system in a time slot. The server, there-
fore, needs to decide which of the two queues it intends to serve in a given slot (we assume that once the server
chooses to serve a packet, service succeeds with probability 1). The server’s decision is denoted by the vector
D(t) ∈ A := {[0, 0], [1, 0], [0, 1]} , where a “1” denotes service and a “0” denotes lack thereof. Let EAi(t) = λi,
and note that the arrival rate λ = [λ1, λ2] is unknown to the learner. We aim to find a (potentially random-
ized) policy π to minimize the discounted system backlog given by Jπ(Q(0)) := EπQ(0)

∑∞
t=0 γ

t (Q1(t) +Q2(t)) .

λ1

λ2

(0, 1− ε)

(1− ε, 0)
(0, ε)

(ε, 0)

A

B

C

C2

C2

extra capacity
achieved
through

improper
learning λ1 + λ2 = 1

Figure 1: K1 and K2 by themselves can
only stabilize C1 ∪ C2 (gray rectangles).
With improper learning, we enlarge the
set of stabilizable arrival rates by the tri-
angle ∆ABC shown in purple, above.

Any policy with Jπ(·) <∞, is said to be stabilizing (or, equivalently, a stable policy).
It is well known that there exist stabilizing policies iff λ1 + λ2 < 1 [9]. A policy
πµ1,µ2

that chooses Queue i w.p. µi in every slot, can provably stabilize a system
iff µi > λi,∀ i ∈ {1, 2}. Now, assume our control set consists of two stationary
policies K1,K2 with K1 ≡ πε,1−ε, K1 ≡ π1−ε,ε and sufficiently small ε > 0. That is,
we have M = 2 controllers K1,K2. Clearly, neither of these can, by itself, stabilize a
network with λ = [0.49, 0.49]. However, an improper mixture of the two that selects
K1 and K2 each with probability 1/2 can. In fact, as Fig. 1 shows, our improper
learning algorithm can stabilize all arrival rates in C1 ∪ C2 ∪∆ABC, without prior
knowledge of [λ1, λ2]. In other words, our algorithm enlarges the stability region
by the triangle ∆ABC, over and above C1 ∪ C2. We will return to these examples
in Sec. 5, and show, using experiments, (1) how our improper learner converges
to the stabilizing mixture of the available policies and (2) if the optimal policy is
among the available controllers, how our algorithm can find and converge to it.

1
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3 Problem Statement and Notation

A (finite) Markov Decision Process (S,A, P, r, ρ, γ) is specified by a finite state space S , a finite action space A, a transition
probability matrix P, where P (s̃|s, a) is the probability of transitioning into state s̃ upon taking action a ∈ A in state s,
a single stage reward function r : S × A → R, a starting state distribution ρ over S and a discount factor γ ∈ (0, 1). A
(stationary) policy or controller π : S → P(A) specifies a decision-making strategy in which the learner chooses actions (at)
adaptively based on the current state (st), i.e., at ∼ π(st). π and ρ, together with P, induce a probability measure Pπρ on the
space of all sample paths of the underlying Markov process and we denote by Eπρ the associated expectation operator. The
value function of policy π (also called the value of policy π), denoted by V π is the total discounted reward obtained by
following π, i.e., V π(ρ) := Eπρ

∑∞
t=0 γ

tr(st, at).

Improper Learning. We assume that the learner is provided with a finite number of (stationary) controllers C :=
{K1, · · · ,KM} and, as described below, set up a parameterized improper policy class Isoft(C) that depends on C. The aim
therefore, is to identify the best policy for the given MDP within this class, i.e.,

π∗ = argmax
π∈Isoft(C)

V π(ρ). (1)

We now describe the construction of the class Isoft(C).
The Softmax Policy Class. We assign weights θm ∈ R, to each controller Km ∈ C and define θ := [θ1, · · · , θM ]. The
improper class Isoft is parameterized by θ as follows. In each round, the policy πθ ∈ Isoft(C) chooses a controller drawn

from softmax(θ), i.e., the probability of choosing Controller Km is given by, πθ(m) := eθm/
(∑M

m′=1 e
θm′
)
.Note, therefore,

that in every round, our algorithm interacts with the MDP only through the controller sampled in that round. In the rest of
the paper, we will deal exclusively with a fixed and given C and the resultant Isoft. therefore, we overload the notation
πθt(a|s) for any a ∈ A and s ∈ S to denote the probability with which the algorithm chooses action a in state s at time t.
For ease of notation, whenever the context is clear, we will also drop the subscript θ i.e., πθt ≡ πt. Hence, we have at any
time t > 0 : πθt(a|s) =

∑M
m=1 πθt(m)Km(s, a). Finally, let for any event E, I{E} denote the indicator that event E is true.

Comparison to the standard PG setting. The problem we define is different from the usual policy gradient setting where
the parameterization completely defines the policy in terms of the state-action mapping. One can use the methodology
followed in [6], by assigning a parameter θs,m for every s ∈ S,m ∈ [M ]. With basic calculations, it can be shown
that this is equivalent to the tabular setting with S states and M actions, with the new ‘reward’ defined by r(s,m) :=∑
a∈AKm(s, a)r(s, a) where r(s, a) is the usual expected reward obtained at state s and playing action a ∈ A. By following

the approach in [6] on this modified setting, it can be shown that a vanilla policy gradient approach can converge for each
s ∈ S , πθ(m∗(s)

∣∣ s)→ 1, for every s ∈ S , which is the optimum policy. However, we address the problem to select a single
controller (from within Isoft, the convex hull of the given M controllers) , which would guarantee maximum return if one
plays that single mixture for all time.

4 Actor-Critic based Improper Learning

We begin by noting that V πθ , as described in Section 3, is nonconcave in θ for both direct and softmax parameterizations,
which renders analysis with standard tools of convex optimization inapplicable.
Lemma 4.1. (Non-concavity of Value function) There is an MDP and a set of controllers, for which the maximization problem of the
value function (i.e. (1)) is non-concave for both the SoftMax and direct parameterizations, i.e., θ 7→ V πθ is non-concave.

In this section, we provide an algorithm based on an actor-critic framework for solving our problem. Actor-Critic methods
are well-known to have low variance than their Monte-carlo counterparts [5].

We begin by proposing modifications to the standard Q-function and advantage function definitions. Recall that we wish
to solve for the following optimization problem: maxπ∈Isoft Es∼ρ[V π(s)], where π is some distribution over the M base
controllers. Let Q̃π(s,m) :=

∑
a∈AKm(s, a)Qπ(s, a). Let Ãπ(s,m) :=

∑
a∈AKm(s, a)Aπ(s, a) =

∑
a∈AKm(s, a)Qπ(s, a)−

V π(s), where Qπ and Aπ are the usual action-value functions and advantage functions respectively. We also define the
new reward function r̃(s,m) :=

∑
a∈AKm(s, a)r(s, a) and a new transition kernel P̃ (s′|s,m) :=

∑
a∈AKm(s, a)P (s′|s, a).

Then, following the distribution π over the controllers induces a Markov Chain on the state space S . Define νπ(s,m) as the
state-controller visitation measure induced by the policy π: νπ(s,m) := (1− γ)

∑
t>0 γ

tPπ(st = s,mt = m) = dπρ (s)π(m).
With these definitions, we have the following variant of the policy-gradient theorem. For the gradient ascent update of the
parameters θ we need to estimate Ãπθ (s,m) where (s,m) are drawn according to νπθ (·, ·). We recall how to sample from
νπ. Following [5, 2] and casting into our setting, observe that νπ is a stationary distribution of a Markov chain over the
pair (s,m) 7→ (s′,m′) with transition kernel defined by P̄ (s′|s,m) := γP̃ (s′|s,m) + (1− γ)ρ(s′) and m′ ∼ π(.).

Algorithm Description. We present the algorithm in detail in Algorithm 1 along with a subroutine Alg 2 which updates
the critic’s parameters. ACIL is a single-trajectory based algorithm, in the sense that it does not have to be reset along

2
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the run. We begin with the critic’s updates. The critic uses linear function approximation Vw(s) := ϕ(s)>w, and uses
TD learning to update its parameters w ∈ Rd. We assume that ϕ(·) : S → Rd is a known feature mapping. Let Φ be the
corresponding |S| × d matrix. We assume that the columns of Φ are linearly independent. Next, based on the critic’s
parameters, the actor approximates the Ã(s,m) function using the TD error: Ew(s,m, s′) = r̃(s,m) + (γϕ(s′)− ϕ(s))

>
w.

Algorithm 1 Actor-Critic based Improper RL (ACIL)

Input: ϕ, actor stepsize α, critic stepsize β, regular-
ization parameter λ, ’AC’ or ’NAC’
Initialize: θ0 = (1, 1, . . . , 1)M×1, s0 ∼ ρ
flag = I{NAC} {Selects AC or NAC}
for t← 0 to T − 1 do
sinit = st−1,B (when t = 0, sinit = s0)
wt, st,0 ← Critic− TD(sinit, πθt , ϕ, β, Tc, H)
Ft(θt)← 0.
for i← 0 to B − 1 do
mt,i ∼ πθt , at,i ∼ Kmt,i(st,i, ·)
st,i+1 ∼ P̄ (.|st,i,mt,i)
Ewt(st,i,mt,i, st,i+1) = r̃(st,i,mt,i) +

(γϕ(st,i+1)− ϕ(st,i))
>
wt

Ft(θt)← Ft(θt) + 1
Bψθt(mt,i)ψθt(mt,i)

>

end for
if {flag} then
Gt := [Ft(θt) + λI]

θt+1 = θt+G
−1
t

α
B

(∑B−1
i=0 Ewt(st,i,mt,i, st,i+1)ψθt(mt,i)

)

else
θt+1 = θt +
α
B

∑B−1
i=0 Ewt(st,i,mt,i, st,i+1)ψθt(mt,i)

end if
πθt+1 = softmax(θt+1)

end for
Output: θT̂ with T̂ chosen uniformly at random
from {1, . . . , T}

In order to provide guarantees of the convergence rates
of Algorithm ACIL, we make the following assumptions,
which are standard in RL literature [5, 3, 10].
Assumption 4.2 (Uniform Ergodicity). For any θ ∈ RM ,
consider the Markov Chain induced by the policy πθ, and
following the transition kernel P̄ (.|s,m). Let ξπθ be the
stationary distribution of this Markov Chain. We assume
that there exists constants κ > 0 and ξ ∈ (0, 1) such that

sup
s∈S
‖P (st ∈ ·|s0 = s, πθ)− ξπθ (·)‖TV 6 κξt.

Further, let Lπ := Eνπ [ϕ(s)(γϕ(s′) − ϕ(s))>] and vπ :=
Eνπ [r(s,m, s′)ϕ(s)]. The optimal solution to the critic’s TD
learning is now w∗ := −L−1

π vπ .
Assumption 4.3. There exists a positive constant ΓL such
that for all w ∈ Rd, we have 〈w − w∗, A(w − w∗)〉 6
−ΓL ‖w − w∗‖22 .
Based on the above two assumptions, let LV :=

(2
√

2Cκξ + 1)/(1− γ), where Cκξ =
(

1 +
⌈
logξ

1
κ

⌉
+ 1

1−ξ

)
.

Theorem 4.4. Consider the Actor-Critic improper learning al-
gorithm ACIL (Alg 1). Assume sups∈S ‖ϕ(s)‖2 6 1. Under As-
sumptions 4.2 and 4.3 with step-sizes chosen as α =

(
1

4LV
√
M

)
,

β = min {O (ΓL) ,O (1/ΓL)}, batch-sizes H = O
(

1
ε

)
, B =

O (1/ε), Tc = O
(√

M
ΓL

log(1/ε)
)

, T = O
( √

M
(1−γ)2ε

)
, we have

E[
∥∥∇θV (θT̂ )

∥∥2

2
] 6 ε + O(∆critic). Hence, the total sample

complexity is O
(
M(1− γ)−2ε−2 log(1/ε)

)
.

Here, ∆critic := maxθ∈RM Eνπθ

[∣∣∣V πθ (s)− V w
∗
πθ

∣∣∣
2
]

, which equals zero, if the value function lies in the linear space spanned

by the features.

Algorithm 2 Critic-TD Subroutine

Input: sinit, π, ϕ, β, Tc, H
Initialize: w0

for k ← 0 to Tc − 1 do
sk,0 = sk−1,H (when k = 0, sk,0 = sinit)
for j ← 0 to H − 1 do
mk,j ∼ π(.), ak,j ∼ Kmk,j (sk,j , ·), sk,j+1 ∼ P̃ (.|sk,j ,mk,k)

Ewk(sk,j ,mk,j , sk,j+1) = r̃(sk,j ,mk,j) + (γϕ(sk,j+1)− ϕ(sk,j))
>
wk

end for
wk+1 = wk + β

H

∑H−1
i=0 Ewk(sk,i,mk,i, sk,i+1)ϕ(sk,i)

end for
Output:wTc , sTc−1,H

Next we provide the global optimality guarantee for the Natural-Actor-Critic version of ACIL.

Theorem 4.5. Assume sups∈S ‖ϕ(s)‖2 6 1. Under Assumptions 4.2 and 4.3 with step-sizes chosen as α =
(

λ2

2
√
MLV (1+λ)

)
,

β = min {O (ΓL) ,O (1/ΓL)}, batch-sizes H = O
(

1
ΓLε2

)
, B = O

(
1

(1−γ)2ε2

)
, Tc = O

(√
M

ΓL
log(1/ε)

)
, T = O

( √
M

(1−γ)2ε

)
and

λ = O(∆critic) we have V (π∗) − 1
T

T−1∑
t=0

E [V (πθt)] 6 ε + O
(√

∆actor

(1−γ)3

)
+ O(∆critic) + O(∆critic). Hence, the total sample

complexity is O
(

M
(1−γ)4ε3 log 1

ε

)
. Here ∆actor := maxθ∈RM minw∈Rd Eνπθ [[ψ>θ w −Aπθ (s,m)]2] and ∆critic is same as before.

3
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(a) Arrival rate:(λ1, λ2) =
(0.4, 0.4)

(b) Arrival rate:(λ1, λ2) =
(0.35, 0.35)

(c) (Estimated) 2 queue system
with time-varying arrival rates

(d) Path Graph Network setting
with 4 links (queues)

Figure 2: NACIL algorithm applied to various queuing networks show convergence to the best mixture policy.

5 Numerical Results
We perform some queueing theoretic simulations on the natural actor critic version of ACIL, which we will call NACIL.

Stationary arrival rates. Recall the example that we discussed in Sec. 2. We consider the case with Bernoulli arrivals
with rates λ = [λ1, λ2] and are given two base/atomic controllers {K1,K2}, where controller Ki serves Queue i with
probability 1, i = 1, 2. As can be seen in Fig. 2(a) when λ = [0.4, 0.4] (equal arrival rates), NACIL converges to an improper
mixture policy that serves each queue with probability [0.5, 0.5]. Next in Fig 2(b) shows a situation where one of the base
controllers, i.e., the “Longest-Queue-First” (LQF) is the optimal controller. NACIL converges correctly to the corner point.

Non-stationary arrival. Next, Fig. 2(c) shows a setting where the scheduler is now given two base/atomic controllers
C := {K1,K2}, i.e. M = 2. Controller Ki serves Queue i with probability 1, i = 1, 2. As can be seen in Fig. 2(d),
the arrival rates λ to the two queues vary over time (adversarially) during the learning. In particular, λ varies from
(0.4, 0.3) → (0.3, 0.4) → (0.35, 0.35). The transition of (λ1, λ2) occur precisely at t = 75000 and at t = 2 × 105 which is
unknown to the learner. We show the probability of choosing K1. NACIL successfully tracks the changing arrival rates.

Path Graph Network. The scheduling constraints in the first network we study dictate that Queues i and i + 1
cannot be served simultaneously for i ∈ [N − 1] in any round t > 0. Such queueing systems are called path
graph networks [7]. We work with N = 4. Therefore, sets of queues which can be served simultaneously are
A = {∅, {1}, {2}, {3}, {4}, {1, 3}, {2, 4}, {1, 4}}. The constituents of A are called independent sets in the literature. In
each round t, the scheduler selects an independent set to serve the queues therein. Let Qj(t) be the backlog of
Queue j at time t. We use the following base controllers: (i) K1 : Max Weight (MW) controller [9] chooses a set
st := argmaxs∈A

∑
j∈sQj(t), i.e, the set with the largest backlog, (ii) K2 : Maximum Egress Rate (MER) controller chooses

a set st := argmaxs∈A
∑
j∈s I{Qj(t) > 0}, i.e, the set which has the maximum number of non-empty queues.We also

choose K3,K4 and K5 which serve the sets {1, 3}, {2, 4}, {1, 4} respectively with probability 1. We fix the arrival rates as
(0.35, 0.35, 0.35, 0.35). The plot in Fig. 2(d) show NACIL converges to a improper mixture of the 5 base controllers.
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Abstract

Reinforcement learning (RL) can help agents learn complex tasks that would be hard to specify using standard imperative
programming. However, end users may have trouble personalizing their technology using RL due to a lack of technical
expertise. Prior work has explored means of supporting end users after a problem for the RL agent to solve has been
defined. Little work, however, has explored how to support end users when defining this problem. We propose a tool
to provide structured support for end users defining problems for RL agents. Through this tool, users can (i) directly
and indirectly specify the problem as a Markov decision process (MDP); (ii) receive automatic suggestions on possible
MDP changes that would enhance training time and accuracy; and (iii) revise the MDP after training the agent to solve
it. We believe this work will help reduce barriers to using RL and contribute to the existing literature on designing
human-in-the-loop systems.
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1 Introduction

Reinforcement learning (RL) is applicable to a variety of domains [Sutton and Barto, 1998, Barto et al., 2017, Kober et al.,
2013], but end users without sufficient technical expertise may have trouble applying it to their own needs. They may face
challenges such as determining how to train the RL agent efficiently and how to define and administer rewards. Existing
work has attempted to support end users by incorporating user feedback through policy shaping, guided exploration,
and augmented value functions [Arzate Cruz and Igarashi, 2020].

While most work supports end users in training the RL agent on a defined task, little work has attempted to address end-
user challenges in defining that task. It may appear straightforward to define an RL task as a Markov decision process
(MDP) with a set of states, a set of actions, and a set of rewards. However, users might find it difficult to anticipate
the appropriate state space and action space. Specifying too many states or actions can cause the agent to learn over an
excessively long period of time. Specifying too few, on the other hand, may cause the agent to learn a suboptimal policy.

We propose a tool for assisting end users in defining and refining RL problems. Our tool consists of a graphical in-
terface that guides the user in defining RL problems both before and after training an agent. Using built-in primitives,
users will first directly or indirectly specify the states, actions, and rewards of the MDP. The tool will generate recom-
mendations for refining this MDP, which the user can accept or reject. The RL agent will then train on the resulting MDP.
(For our tool, we assume a Q-learning agent.) The interface shows the policy at each timestep to help the user evaluate
whether their MDP appropriately captures the intended task. When training terminates, the user can accept the final
policy, revise it, or revise the MDP definition and try again.

Our work focuses on RL applications in Human-Robot Interaction (HRI), which concern social interactions between
people and robots. In HRI tasks, robots must behave in a socially appropriate manner by adapting to personal prefer-
ences, cultural norms, and other context-specific factors [Andrist et al., 2015, Wang et al., 2010, Lee et al., 2012, Leyzberg
et al., 2014]. One example in HRI is the issue of robot abuse. Multiple public incidents have occurred in which people
purposefully blocked the robots’ path or sensors, hurled obscenities against them, or resorted to violent behaviors like
kicking and hitting [Nomura et al., 2015, Brščić et al., 2015, Salvini et al., 2010]. Robots designed to accomplish tasks
unsupervised must somehow mitigate these incidents.

How can a user help the robot navigate complex social interactions, such as avoiding or pacifying incidents of robot
abuse? Programming languages like Python for the Pepper robot1 require substantial technical knowledge. End-user
programming paradigms and systems, such as Choreographe [Pot et al., 2009], demands less technical knowledge but
still requires the user to anticipate the ideal robot behavior under a specific circumstance for all possible circumstances.
A similar problem arises for Learning from Demonstration (LfD).

In contrast, an RL approach can help the robot adapt to the many scenarios it will encounter without requiring the user
to detail each possibility, making it especially well suited to those with minimal programming and domain expertise.
Unfortunately, to leverage RL for this problem, the user still needs advanced knowledge of the environment. In our
example, users may neglect to realize that states related to bystanders may affect the likelihood of robots being bullied,
choosing instead to only consider states that relate to the bullies and the robot. Our tool seeks to address this gap, with
a focus on HRI tasks but may also be extended to other applications.

2 Vision for the Interaction

We envision a multi-stage interaction between the user and the RL system. Via a graphical interface, the user will first
specify the states, actions, and rewards of the MDP (Figure 1) by selecting from a set of system-defined choices (Figure 2).
However, some users may find it difficult to think about RL tasks in the terms of MDP. The interface will offer these users
the option to, instead, define the task by predicting parts of the optimal policy. They will describe these predictions in the
form of IF-THEN (trigger-action) statements, and the system will extract a potential MDP based on these statements. For
example, if the user writes “IF a person starts hitting the robot THEN the robot should run away,” the system will infer
that “whether there is a person hitting the robot” is a relevant state and “robot running away from people” is a relevant
action for the MDP overall.

The system will review the MDP and recommend possible changes to improve the training efficiency and accuracy. These
recommendations may include removing redundant state features and actions, or adding those that seem relevant to the
task. The user accepts or rejects these recommendations based on their understanding of their intended task, producing
a tentative MDP on which to train the robot.

Training the robot will produce information for debugging the MDP. During training, the interface will show the policy
of the robot at each timestep. The user can monitor this to understand the trends in the robot’s learning, such as how
quickly they acquire the right behaviors. When the robot has completed learning, the interface visualizes the final policy.

1https://www.softbankrobotics.com/emea/en/pepper
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Figure 1: Design sketches showing selected stages of the user interaction with our graphical interface. Left: The user can
specify outcomes and assign reward values as part of the MDP. Right: The user can specify states and actions as well as
review recommendations from the system.

State Features
• Person’s Location: their position

and distance relative to the robot;
• Person’s Mood: how happy, en-

gaged, and/or frustrated they
are;

• Person’s Actions: whether they
are looking at the robot or speak-
ing, what they are saying, or
other user-specified actions;

• Miscellaneous: what the robot is
doing, is the environment noisy,
is there trash around the robot.

(Robot’s) Actions
• Gaze: look at a specific person,

object, or somewhere elsewhere;
• Speech: say a specified sample of

text, stop speaking;
• Gesture: exhibit, touch, present,

point to, sweep over, or group
(an) object(s);

• Navigate: start traveling a spec-
ified distance toward a specified
direction at a specified speed,
stop traveling;

• Miscellaneous: rest, shut down.

Outcomes to Reward
• Person’s Mood: whether they

are happy, engaged, and/or frus-
trated;

• Person’s Speech: whether they
refer to the robot positively,
whether they respond to it and
whether this response matches a
specified sample of text;

• Person’s Actions: whether they
acknowledge or ignore the robot;
whether their actions match a
specified action (e.g. if the robot
is giving directions).

Figure 2: A work-in-progress list of interface primitives we plan to support, deduced from reviewing existing tasks
studied in HRI literature (e.g. [Sauppé and Mutlu, 2014]). “Person” refers to a single individual interacting with the
robot, such as a conversation partner.

The user may even choose to see the robot execute this policy, either in simulation or in a real-world deployment. The
user can modify this final policy, or return to the beginning to revise the MDP and repeat the process.

To illustrate a use case of our proposed tool, we walk through the following example. Suppose a robot is deployed
at a store and tasked with maximizing average customer satisfaction, as measured by an in-store exit survey. A user
who is comfortable with the ideas of MDP might use our interface to specify state features related to the mood of the
customers. They might specify actions such as greeting customers and approaching customers to offer assistance. They
might consider each customer to be an episode, and the positive or negative survey rating of the customer to be the
reward for that episode. A different user might choose to to define the tasks by writing IF-THEN statements such as “IF
a customer begins to get frustrated THEN approach the customer to offer assistance,” allowing the system to extract a
similar MDP as above.

Based on the MDP, the tool might recommend additions to the states, actions, and rewards to account for potential robot
abuse. For example, it might recommend the age of the customer as a state feature since children might be more unruly
and more likely to hinder the robot, and the ability to run away as a possible action. The user decides to accept these
changes, and then train the robot. When training has concluded, suppose the user sees that the final policy has the robot
walk away from people intentionally blocking its path. The user wants to know if it will be more effective in raising
customer moods and reducing antagonistic encounters if the robot instead asks the customer to politely move, which
was not an action included in the original MDP. They can, therefore, return to the starting MDP, modify it to add this
new action, and re-train the robot.

2

RLDM 2022 Camera Ready Papers 679

679



3 Development and Evaluation

Our development road map consists of low-fidelity prototyping, an implementation stage, and then a final user study
evaluation. We will first hold remote, moderated sessions with participants of various levels of technical expertise to
prototype our designs with them. After iterating on the designs based on participants’ feedback, we will implement
them. We evaluate the implemented system with a user study.

In the user study, participants will use our tool to train a robot for a set of HRI tasks. We may select tasks applicable to
either the NAO2 or the Stretch3 robots. There may be a baseline condition in which participants use a simplified version
of tool, without receiving automatic support in the form of MDP recommendations or policy visualizations. We will ask
participants to rate the difficulty of the tasks, the convenience of the tool, and the confidence in their answers. We will
administer the System Usability Scale and ask participants to describe their thought process during the experience.

4 Related Work

In this section, we review selected existing work on applying RL to HRI and on RL tools for end users.

4.1 HRI Applications for RL

Hemminghaus and Kopp [2017] explored how Q-learning can help a robot learn when and how to provide assistance to
the user without overwhelming them or distracting them from the task at hand. Park et al. [2019] designed a robot for
expanding childrens’ language skills by using Q-learning to determine the complexity of the stories it tells to children.
Ramı́rez et al. [2016] used inverse RL to train robots to approach humans in a socially appropriate manner. In these
works, the authors defined the RL problem for the robot to solve, rather than asking novices to determine the problem,
which our work will enable.

4.2 RL Support for End Users

A large body of work has investigated the potential for interactive RL, in which the user is able to adjust the reward
function and state features during the agent’s learning process [Amershi et al., 2014, Arzate Cruz and Igarashi, 2020].
Thomaz and Breazeal [2006] found that study participants used rewards to provide feedback on the robot’s past actions
and provide guidance on future actions. Incorporating these reward variants helped RL non-experts efficiently train
a virtual robot to successfully bake a cake. In addition, Thomaz et al. [2006] found that study participants preferred
giving positive rewards, and often adapted their reward behavior as they became more knowledgeable about the robot’s
training process. MacGlashan et al. [2017] showed that people construe the reward they deliver as being a critique relative
to the agent’s recent behavior. Judah et al. [2010] explored means of combining agent exploration with end-user critique
after each session to label certain actions as “good” or “bad.” These studies largely focus on end-user involvement during
the training process. Our work instead enables users to explicitly define the problem being learned, thus allowing them
to dictate the purpose of the training and to do so before training starts.

5 Conclusion

A large body of work has examined supporting end users and experts in improving their RL system after it is deployed,
yet little has attempted to help at the very beginning of this lifecycle. We propose supporting end users in defining RL
problems through structured templates, automatic recommendations, and iterative debugging. We will prototype these
designs, implement them, and then evaluate the system by conducting a user study with HRI tasks.
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Abstract

We study the action generalization ability of deep Q-learning in discrete action spaces. Generalization is crucial for effi-
cient reinforcement learning (RL) because it allows agents to use knowledge learned from past experiences on new tasks.
But while function approximation provides deep RL agents with a natural way to generalize over state inputs, the same
generalization mechanism does not apply to discrete action outputs. And yet, surprisingly, our experiments indicate that
Deep Q-Networks (DQN), which use exactly this type of function approximator, are still able to achieve modest action
generalization. Our main contribution is twofold: first, we propose a method of evaluating action generalization using
expert knowledge of action similarity, and empirically confirm that action generalization leads to faster learning; second,
we characterize the action-generalization gap (the difference in learning performance between DQN and the expert) in
different domains. We find that DQN can indeed generalize over actions in several simple domains, but that its ability
to do so decreases as the action space grows larger.

Keywords: Action Generalization, Deep Reinforcement Learning, Action Ab-
straction, Deep Q Learning
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Introduction

In reinforcement learning, generalization (Ponsen et al., 2009) is crucial for achieving efficient learning and leads to better
performance over unseen data. Generalization allows agents to extrapolate from environment data they have observed
and to adapt to unseen situations. It is well known that deep learning supports generalization (Kawaguchi et al., 2017),
and deep reinforcement learning agents, which use deep learning to maximize reward, can therefore be expected to
generalize as well. However, this kind of generalization is assumed to come from parameter sharing in the function
approximator, and thus only provides a natural way of generalizing over inputs.

In discrete-action domains, deep reinforcement learning (DRL) agents typically only use states as inputs, because incor-
porating actions as inputs becomes computationally expensive as the size of the action space grows. Therefore, such
agents, typified by DQN (Mnih et al., 2015), cannot rely on the same parameter sharing mechanism for generalizing over
actions. And yet, many of the domains on which DQN has been shown to perform well have action spaces where gen-
eralization is not only possible, but essential. In particular, many of the Atari 2600 games (Machado et al., 2018) include
multiple actions with identical effects or actions (e.g. RIGHTFIRE) that combine the effects of two or more other actions
(e.g. RIGHT and FIRE). DQN’s ability to cope with such action spaces is therefore surprising, given that it is unclear
exactly how it is generalizing over these kinds of “similar” actions.

In this work, we seek to better understand DQN’s (arguably counter-intuitive) ability to generalize over actions. We first
empirically confirm the widely-held belief that action generalization leads to faster learning. We introduce an oracle for
characterizing “perfect” action generalization with DQN using expert knowledge: when it is known which actions lead
to the same transition effects, all action values for that subset are updated in one Q-update. Our experiments indicate
that such generalization indeed improves learning speed. Next, we study action generalization in unmodified DQN by
measuring its learning performance against the oracle; the difference is what we term the action-generalization gap. We
experiment on classic Gym control environments (Brockman et al., 2016) and Atari 2600 games, and find that DQN’s
ability to generalize over actions depends on the size of the action space. In small action spaces, DQN performs nearly as
well as the expert; however, when the action space gets large, DQN performs poorly because of its inability to generalize.

Expert Action Generalization

One way of achieving action generalization is through action abstraction. In the context of reinforcement learning, ab-
straction is a method to map the representation of the original problem to a new, simpler representation where irrelevant
properties are filtered and only properties relevant to decision-making are kept (Abel, 2020; Ponsen et al., 2009). Action
abstraction, in particular, is the technique of grouping similar actions together into one abstract action, ignoring their
small differences that are not relevant to decision-making. It facilitates generalization by abstracting similar experiences,
and allowing information about one experience to apply to related (unseen) experiences.

We introduce an oracle for characterizing perfect action generalization that uses expert knowledge to abstract over actions
that are similar to each other. More precisely, in a Markov Decision Process with state space S, action space A, reward
function R, and discount factor γ, the expert knowledge is a symmetric |A| × |A| similarity matrix K, where each index
K(i, j) is a value between 0 and 1 indicating the similarity score of actions ai and aj . A score of 1 means two actions
are fully similar, and 0 means fully different. Given this expert knowledge, we can adjust the Q-update process during
Q-learning: for an experience tuple (s, a, r, s′), we update

Q(s, ã) = Q(s, ã) + α ∗K(a, ã) ∗ [(r + γV (s′))−Q(s, ã)] ∀ ã ∈ A.
In words, during each update step, we not only update Q(s, a) from the experienced action a, but also Q(s, ã), propor-
tionally to how similar a and ã are. So, a fully similar action ã will get a full Q update, and a fully dissimilar action ã
will not be updated at all, and those in between will be updated proportionally. This process allows generalization to ã
despite only experiencing a in the environment.

This oracle provides a way of measuring the degree of action generalization through learning performance. To see
how much action generalization DQN can do, we can simply compare it with the oracle, which represents a best-case
performance ceiling for action generalization methods. Since it is hard to quantify action generalization directly, we
compare learning performance instead, using it as a proxy for generalization. We define this performance difference
between the oracle and a DRL agent to be the action-generalization gap. The rest of this paper aims to characterize the
action-generalization gap for DQN.

Action Space Augmentation for Evaluation

In order to evaluate action generalization, we need environments with action spaces where actions may be similar to
each other, so that it makes sense for actions to generalize. To that end, we propose to augment the action space of a base
environment to include additional similar actions. We propose three such “action augmentation” methods:
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1. Duplicate actions (N×): augment the original action set N − 1 times, so the new action space contains N copies of
every action in the original action space.

2. Semi-duplicate actions: augment the original action set with 4 sets of reduced-magnitude actions, |A| in each set
(where |A| is the size of the original action space), for a total of 5 · |A| actions. Each set of these semi-duplicate
actions has similar transition effects to the original action set, differing only in the magnitude. The magnitude
similarity is controlled by a similarity score h ∈ [0, 1], where h = 1 corresponds to the same-magnitude action
and h = 0 corresponds to a zero-magnitude action (No-op). For example, in the Pendulum environment, we can
apply a 0.8 torque to the left, or 0.5 torque to the right, etc.

3. Random actions: augment the original action set with 4 · |A| stochastic actions for a total of 5 · |A| actions. Each
stochastic action is a uniform random distribution over the actions in the original action space.

Here we are concerned with discrete action spaces, so we take discrete-action versions of CartPole, Pendulum, and
LunarLander as the base environments for our experiments, and apply the three action augmentation methods to expand
the action space.

Because the action-augmentations above are artificially created, we can supply the oracle with knowledge of which sim-
ilar actions should be abstracted together. For the “duplicate actions” augmentation, all duplicate copies of each actions
are fully similar (K(i, j) = 1) to each other, and not to anything else. For the “semi-duplicate actions” augmentation,
K(i, j) = h if ai and aj are semi-duplicates of each other, else K(i, j) = 0. For the “random actions” augmentation, all
the random actions are fully similar to each other, and nothing else is similar. For all augmentations, K(i, i) = 1. The
oracle uses this information to guide its Q updates.

Evaluating Performance

We now experimentally characterize the action-generalization gap between DQN and the oracle. In addition to the
augmented action space, we provide the original action space as a baseline for comparison, which we call “baseline”.
For the “duplicate actions” augmentation in this section, we set N = 5. For the semi-duplicate augmentation, we use
similarity scores h ∈ {0.2, 0.5, 0.8}.
In the “duplicate actions” environments, having duplicate actions slows down learning, with the exception of Pendulum,
where 5x duplicate actions performs about the same as the baseline (Figure 1). By contrast, the oracle is unaffected by
the larger action space and performs just as well as the baseline. This confirms the hypothesis that action generalization
does help speed up learning.

Figure 1: Action-generalization gap for DQN with 5x duplicate actions on CartPole, Pendulum, and LunarLander

The experiment also provides evidence that DQN is doing some implicit action generalization. Notice the difference in
performance between the oracle and unmodified DQN in Figure 1: DQN takes at most twice as long as the oracle to
learn with 5x duplicate actions. This is a bit surprising given that the oracle performs the same as the unaugmented
environment (baseline), whose action space is one-fifth as large. If DQN isn’t doing any action generalization, then
learning time should scale linearly with the size of the action space. The fact that it scales sub-linearly suggests that DQN
is able to generalize over actions to some degree.

These 5x duplicate action results are somewhat surprising, because even though there are more actions to choose from,
the probability of choosing the optimal action under a uniform random policy remains the same. So why does the learn-
ing problem become harder? We hypothesize two potential explanations. First, it could be a result of the overestimation
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Figure 2: (Left) Action-generalization gap for DQN with 5x semi-duplicate actions, for similarity score h ∈ {0.2, 0.5, 0.8},
on Pendulum. (Right) Action-generalization gap for DQN with 5x random actions on CartPole, Pendulum, and Lu-
narLander.

bias in Q-Learning (Thrun and Schwartz, 1993), which increases with the size of the action space. Second, it could be
that a larger action space means greater opportunity for noise in neural network parameters to produce noisy gradient
updates. We leave a full investigation of these hypotheses for future work.

For the semi-duplicate action augmentations, all the experiments take about twice as long to converge, even the ones
using an oracle (Figure 2, left). This indicates that semi-duplicate actions form a harder learning problem than exactly-
duplicated actions, as expected. But still, we can note here that there is basically no action-generalization gap. This is
more evidence to suggest that DQN is able to generalize over actions in small action spaces.

The “random actions” (Figure 2, right) results tell a more complicated story: when random actions are introduced,
the learning performance is worse than “baseline”, regardless of whether the oracle is used. This shows that having
random actions makes learning substantially harder, which is expected because this stochasticity is hard to account
for during learning. What’s surprising is that in Pendulum and LunarLander the action-generalization gap is actually
negative: the oracle performs worse than unmodified DQN. We suspect this may be due to an incorrect assumption:
the oracle treats all random actions as similar to each other. However, the random actions are not always similar; in
fact, they frequently select from original actions that have completely opposite effects. Performing Q-updates with the
assumption that all random actions are fully similar may at times lead the function approximator to incorrectly update
shared internal parameters governing the Q-values of the non-stochastic actions. If we instead assume the random actions
are fully dissimilar, we simply recover the baseline performance. So, in the case of random actions, “baseline” is a better
performance ceiling because none of its “abstract” actions contains actions with opposite effects. Using this ceiling, the
action-generalization gap is quite noticeable, indicating that DQN is not good at generalizing over stochastic actions.

Evaluation on Large Action Spaces

The experiments from the last section suggest that DQN has some robustness to action augmentation in domains with
small action spaces. Here we investigate whether that robustness extends to environments with larger action spaces, and
find that, for both Pendulum and Atari 2600 games, it does not.

For Pendulum, we again augment with duplicate actions, and increase N to discover the point at which learning perfor-
mance starts to degrade (see Figure 3, left). When N = 5, we do not observe any action-generalization gap, but when
N ∈ {15, 50}, the gap becomes quite noticeable. Moreover, when N = 50, learning is not just slow, but converges to
worse final performance. This deterioration in DQN’s performance is not due to the inherent hardness of the domain,
because the oracle continues to match the performance of learning on the unaugmented environment. This suggests that
the large action-generalization gap must come from DQN’s inability to generalize over actions is large action spaces.

For Atari 2600, we chose six commonly-used games to evaluate the action-generalization gap: Beam Rider, Breakout,
Pong, Ms Pacman, Qbert, and Space Invaders. Our experiments use three types of action augmentation:

1. Full action set: There are 18 legal actions that are shared across all Atari games. However, since some of the
actions are not meaningful in certain games, the default action space of each game is usually pruned to only
leave the meaningful action space (which we refer to as the “baseline” actions). In the full action set setting, we
use all of the 18 legal actions in Atari games as the action space, which increases the size of the action space for
all the games we investigate.

2. Duplicate actions: augment the baseline actions with N − 1 sets of duplicate actions. Here we use N = 5.

3. Noop actions: augment the baseline actions with N · |A| noop actions. Here we use N = 2.
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Figure 3: (Left) Action-generalization gap for DQN with 5x, 15x, and 50x duplicate actions on Pendulum. (Right) Action-
generalization gap for DQN on six Atari games.

In Atari games, we don’t have expert knowledge of which actions are similar, because such information is game-specific
and often highly state-dependent. Fortunately, we can still use the unmodified baseline action space as a performance
ceiling, similar to the oracle in the preceding experiments. Even though this is not a perfect oracle because Atari ac-
tions are context-dependent and can’t simply be treated as one abstract action group, we can still use this approach to
characterize the action-generalization gap.

Figure 3 (right) shows a large action-generalization gap for the duplicate and full action set augmentations, across the
majority of games. We hypothesize that this degradation occurs because 1) Atari games are more complicated domains
and 2) Atari games have a larger action space to begin with, both of which make it harder for DQN to generalize over
actions. Surprisingly, the noop augmentation only leads to an action-generalization gap on Ms Pacman. We suspect that
which specific actions lead to worse performance may be game-dependent, and that in the other games, noop actions
may more frequently be the optimal choice.

Conclusion

Overall, we have obtained preliminary evidence suggesting that DQN has some ability to do action generalization in
small to medium action spaces, but for the most part that ability does not extend to large action spaces. However, given
enough time, DQN may still be able to recover the optimal policy in those large spaces. A direction for future work is
to pinpoint the exact reason for DQN not being able to generalize over actions in large action spaces and to provide a
remedy that improves performance.
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Abstract

Human adaptive decision-making recruits multiple cognitive processes for learning stimulus-action (SA) associations:
reinforcement learning (RL) represents gradual estimation of values of choices relevant for future reward-driven deci-
sions, episodic memory (EM) stores precise event information for long-term retrieval, and working memory (WM) serves
as flexible but temporary, capacity-limited storage. However, we have limited understanding of how these systems work
together. Here, we designed a new one-shot RL task to disentangle their respective roles: 144 human adult participants
used one-shot rewards to learn SA associations across independent training blocks. The first half of each block provided
one chance to obtain feedback for pressing one of two keys for each stimulus, followed by a chance in the second half
of the block to use this feedback to choose the correct key in a short-term association task, primarily targeting WM.
In a subsequent testing phase designed to assess long-term retention through RL or EM, all stimuli were shown again
in randomized order and subjects were asked to press the correct key for each. Training block performance revealed
WM-dependent strategy effects on choice accuracy, as well as a role for both RL and EM when WM is overwhelmed.
Testing phase performance depended on feedback interacting with presentation order, revealing signatures of both RL
and EM in learning from one-shot rewards. Computational modeling suggests that a mixture model combining RL and
EM components best fitted group-level testing phase behavior. Our results show that our new protocol can identify
signatures of each of the three memory systems’ contributions to reward-based learning. With this approach, we create
new possibilities to better understand how each integrates a single bit of information, what their exact contributions to
choice are, and how they interact.

Keywords: Human reinforcement learning; episodic memory; working mem-
ory; computational cognitive modeling
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1 Introduction

Learning is often studied under the framework of Reinforcement Learning (RL) (Sutton & Barto, 2018; Eckstein,
Wilbrecht, & Collins, 2021), which posits that agents learn from past outcomes of their actions to inform future deci-
sions. However, recent work has shown important additional contributions to RL from other cognitive processes like
working memory (WM) (Collins, 2018; Yoo & Collins, 2021) and episodic memory (EM) (Bornstein, Khaw, Shohamy, &
Daw, 2017). WM is a temporary, capacity-limited, effortful, yet extremely flexible form of short-term memory storage.
EM stores high-precision memories for long-term retrieval and is associated primacy and recency effects that improve re-
trieval at the beginning or end of an episode, respectively (Ebbinghaus, 1913). Previous studies have demonstrated load
and temporal effects, characteristic of WM capacity limitation and EM respectively, on learning associations (Bornstein
et al., 2017), but the precise information stored and used in WM or EM during learning remains unclear. Furthermore,
these systems interact with one another, (Collins, 2018; Poldrack & Packard, 2003; Wimmer, Braun, Daw, & Shohamy,
2014), but the nature of those interactions remains unclear.

We designed a new experiment to simultaneously identify contributions of all three systems in a single learning context
to better qualify them individually and in interaction (Fig. 1). Participants learned stimulus-action (SA) associations
from a single instance of feedback, and we manipulated trial-features (e.g. reward, load, and temporal order) known
to impact RL, WM, and EM to assess their effects on recall. We predicted that RL, WM, and EM would play roles in
short-term memory performance, while long-term memory performance will be predominantly RL- and EM-driven, and
can be captured by computational modeling.

2 Methods

Participants: The research was approved by UC Berkeley’s Institutional Review Board. Following exclusion criteria, our
final sample consisted of 66 MTurk participants (22 female, 31.8±5.42 years) and 78 online undergraduate students (RPP;
59 female, 20.8±2.68 years).

Figure 1: Participants performed a one-shot RL task
comprising a training phase and a testing phase. The
training phase contained 16 categorically independent
blocks; in each block, participants used one-shot re-
wards to learn 4 new SA associations across 8 trials.
On trials 1–4, participants saw 4 distinct images se-
quentially, pressed either “J” or “K” for each, and im-
mediately received a truthful, positive (+1) or negative
(0) feedback (FB) for their action. Using this FB, par-
ticipants had to press the correct key when they saw
these images again on trials 5–8, albeit in different or-
der and receiving no immediate FB. A trial was con-
sidered correct if a rewarded action was repeated or
an unrewarded action was avoided, and incorrect oth-
erwise. In the testing phase, participants saw all 64
stimuli in a randomized order, and had to press the
correct key again (immediate FB was withheld).

Task design: The training phase incorporated and counterbalanced critical features of each system—valenced feedback
to target RL’s asymmetrical learning mechanism, stimulus presentation order for EM’s temporal sensitivity, and a load
around the WM limit—to measure their individual contributions to and interactions in trial-by-trial learning. Further-
more, participants could adopt different choice policies on trials 1–4 to learn the correct key. For example, if only one key
was pressed (henceforth called as the same-key strategy), an unrewarded outcome would always signal pressing the other
key; pressing different keys, however, would require WM to track the initial key press and FB, then compute a switch if
the initial action was wrong. The same-key strategy thus reduces WM load, and this potential variation in WM use would
further affect the system’s interactions with RL and EM. The testing phase assessed how FB-sensitive RL and temporally-
sensitive EM contributed to long-term retention; we assumed randomization and delay in stimulus presentation would
wash out WM effects.

Computational models: As a preliminary step, we modeled testing phase behavior using 4 computational models cap-
turing different assumptions about separate or mixed contributions of RL and EM. Assuming no WM effect, we fitted
datasets of only participants who predominantly used the same-key strategy (i.e., solely using the strategy after block 9 or
earlier) to reduce effects from varying WM engagement.
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RL. We implemented a classic delta-rule learning algorithm, where the expected value Q at time t of an action a for
a stimulus s is updated by the reward prediction error—the difference between outcome r and prior expectations of
Q(a, s)—scaled by learning rate α (0 < α < 1):

Qt(a, s) = Qt−1(a, s) + α(rt−1 −Qt−1(a, s)) (1)

Q-values were initialized at 0.5 and converted to action probabilities via softmax:

p(a|s) = exp(t(a, s))

exp(β
∑
i(Qt(ai, s))))

(2)

We assumed that Q-values are updated following explicit feedback on trials 1–4 of training blocks. We also considered a
variant model RL2a, which separates learning rates for gains and losses (α when rt = 1 and αneg when rt = 0) (Katahira,
2018). In both RL models β was fixed at 10 becauseα and β are not jointly recoverable as their product uniquely influences
choice policy. We also tested other RL models, such as one that iteratively updates Q(s, a) of previous trials to account
for RL potentially exhibiting temporal order effects, but they were excluded since they failed to capture key behaviors.

EM is a descriptive model that quantitatively implements a memory process of probabilistic storage and retrieval of a
trial’s information. We assumed that the probability of retrieving a memory of a trial, p(ret), decreases exponentially
with trial position within block (capturing within-block primacy effect), parameterized by time constant τ :

p(ret) = exp(−τ(s− 1)) (3)

We note that this EM implementation does not account for experiment-wide memory effects (specifically recency effects).
When we implemented a variant EM model with such a global recency mechanism, however, it failed to capture key
behaviors in simulation, and was thus excluded.

We also assumed imperfect encoding and retrieval accuracies, parameterized by 0 < mFB < 1 (where FB=1/0). We used
Bayes rule to combine the probability of correct encoding mFB with p(ret) to compute the final probability of accessing
the knowledge of the correct action, p(cor). We assumed random key choice (0.5) if the memory was not stored or
retrieved, to translate into the EM policy:

p(cor) = mFBp(ret) + 0.5(1− p(ret)). (4)

The model’s policy pEM is defined by p(cor) for the correct action (as defined by FB on trials 1–4), and 1−p(cor) otherwise.
Note that values of mFB < 0.5 indicate worse-than-chance memory encoding, capturing the possibility that participants
stored the wrong memory. This could happen, especially in the FB=0 case, if EM stored SA instead of SAO (stimulus-
action-outcome) associations, reflecting an outcome-independent memory of a performed action.

RLEM assumes that RL and EM processes jointly contribute to testing phase behavior. The model’s policy is a mixture
of the RL2a model’s policy pRL and the EM model’s policy pEM , with mixture weight (0 < ω < 1):

p(a|s) = ωpRL(a|s) + (1− ω)pEM (a|s) (5)

Model fitting: We used standard maximum likelihood estimation to fit individual participants’ data with each model
(Wilson & Collins, 2019). Because we had very few trials per participant, we also fit our models at the group level,
combining all participant data into one dataset. We used AIC scores for model comparison, and validated parameter
identification and the model comparison procedure with simulation studies (Wilson & Collins, 2019), and calculated ex-
ceedance probabilities to further evaluate model selection (Rigoux, Stephan, Friston, & Daunizeau, 2014). We simulated
10 datasets per set of parameters and qualitatively compared their experimental result patterns to those of participant
data (Palminteri, Wyart, & Koechlin, 2017).

3 Results

3.1 Behavioral Results

Participants’ learning improved over blocks (Fig. 2a, block regressor β = 0.0363, p < 0.001), likely reflecting a general
adoption of the the same-key strategy (Fig. 2b). A mixed effects logistic regression on training phase accuracy (trials 5–8;
Fig. 2d) revealed significant main effects of strategy (β = 1.71, p < 0.001), presentation order (order; β = 0.0806, p =
0.0323), and feedback (FB; β = 0.757, p < 0.001), and two interactions of strategy with FB (β = −0.788, p < 0.001) and
with order (β = −0.147, p = 0.008) (Fig. 2c; Fig. 2e, red). Main effects of FB and order were only observed in non-same-key
blocks (Fig. 3a), whereas same-key blocks showed performance consistent with near-perfect WM use.

Extending the same analysis to the testing phase revealed significant effects of FB (β = 1.44, p < 0.001), order (β =
0.100, p < 0.001), and their interaction (β = −0.307, p < 0.001) (Fig. 2d; Fig. 2e, blue). Controlling for training phase
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Figure 2: Behavioral results. A) Participants from both groups successfully learned the task, and B) adopted the same-key
strategy over training blocks. Both groups achieved similar performance in both the training and the testing phase and
were combined into one sample for subsequent analyses. C) In the training phase, choice strategy interacted with initial
feedback (FB) received and presentation order. D) In the testing phase, there were main effects of choice strategy, FB,
and order, and a significant interaction between FB and order. E) Regressor weights from linear mixed effects models
predicting accuracy in training (red) and testing (blue) phases. Points represent estimates of main effects and interactions,
bars represent standard error. All effects are significant (at p < 0.05).

accuracy of a given stimulus (Train Correct; β = 0.336, p < 0.001), training phase choice strategy still had a small
yet significant effect on testing phase performance (strategy; β = 0.281, p < 0.001), hinting at deep interactions between
WM-dependent strategies and the long-term memory systems RL and EM. Critically, testing phase performance revealed
signatures of both RL and EM. Despite the fact that correct and incorrect FB provided the same information, accuracy
was higher for rewarded SA pairs, reflecting a feedback valence sensitivity often associated with RL involvement. The
performance difference between rewarded and unrewarded stimuli on trial 1 and trial 4 indicates a FB-dependent primacy
effect, suggesting reward-independent, long-term EM storage of performed SA associations.

3.2 Modeling results

We fit all models on data from same-key strategy participants (N = 75; see methods). Subject-level AIC comparisons show
that the EM model (3 parameters) performed best while the mixture model RLEM (6 parameters) performed the worst
(Fig. 3a). We suspected that RLEM’s poor performance was due to overfitting of insufficient trial data at the subject
level. Indeed, EM model simulations could not capture the key FB-order interaction in testing phase (Palminteri et al.,
2017). Group-level model comparison confirmed that RLEM was previously disadvantaged by a shortage of trials (Fig.
3b). In future work, we will use hierarchical modeling to overcome this issue while accounting for individual differences
(Baribault & Collins, 2021).

Figure 3: A) and B) show AIC score differences between the winning model and the other models fit at the subject-
level and group-level, respectively. C) Model validation; RLEM simulation replicates qualitative trends observed in
experimental data (blue lines) at the group and subject-level. D) Confusion matrix of exceedance probabilities.

RLEM’s simulations best captured the qualitative trends observed in the participants’ data, replicating the main effects
of FB, order, and their interaction (Fig. 3c). Parameter recovery was also successful for the RLEM model, and verified
via a model recovery study. Group fit model parameters confirmed an asymmetrical learning rate bias (α = 0.55 vs.

3

RLDM 2022 Camera Ready Papers 690

690



αneg = 0.33). They revealed that the EM process was more likely to encode SA associations than SAO associations when
FB=0 (m1 = 0.75 vs. m0 = 0.41), and that the EM process contributed more than RL after a single feedback (ω = 0.36);
individual parameter fits showed similar findings.

4 Discussion

Our model-independent analyses suggest that our task is able to identify distinct contributions of RL, WM, and EM in
a one-shot reward learning paradigm. WM effects emerged strongly in the training phase via an efficient choice policy
that minimized FB- and order-sensitive effects reflecting RL and EM involvement. While WM’s role should have been
limited (in both capacity and temporal range) during the testing phase, WM-efficient choice policy appeared to still
mildly improve testing phase performance.

In the testing phase, FB effects led to better performance for rewarded stimuli than unrewarded stimuli, supporting the
positivity bias often seen in previous studies measuring RL-based learning (Katahira, 2018; Master et al., 2020). Within-
block primacy effects amplified this effect at trial 1, suggesting outcome-blind EM storage of SA associations. Our mod-
eling results support our behavioral findings: the mixture model RLEM, which captured both RL’s FB sensitivity and
EM’s FB and temporal sensitivity, best fit the data and replicated these qualitative features.

The main limitation to our study was insufficient data at the subject-level, resulting in minimal ability to consider in-
dividual differences. Future steps include implementing modeling under a Bayesian hierarchical framework to capture
both subject- and group-level information, and designing follow-up experiments with more training phase trials. We
will also develop the modeling to include the training phase and incorporate WM contributions in the testing phase.

In conclusion, we showed evidence of three systems contributing distinct characteristics to learning from one-shot re-
wards, as well as evidence for interactions between them. Disentangling how multiple systems contribute to adaptive
decision-making is essential to better understanding where individual differences come from, in healthy individuals,
across development, and in clinical populations. Our study offers an important step in this direction.
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Abstract 
Deciding how long to keep waiting for uncertain future rewards is a complex problem. Previous research has 
shown that opting to stop waiting is the result of a rational value-maximizing process that pits the subjective 
value of quitting against the subjective value of waiting. As such, brain regions known to compute context-
dependent value track the dynamics of this trade-off. Here, we provide causal evidence of the necessity of 
these brain regions for successful performance in a willingness-to-wait task. Patients with lesions to value-
responsive areas of the brain (ventromedial and dorsomedial parts of the prefrontal cortex as well as the 
anterior insula) show deficits in their ability to adaptively calibrate persistence based on the temporal statistics 
of reward delivery. Conversely, patients with lesions to brain regions implicated in self-control but not value 
computation perform similarly to healthy controls. These findings support the idea that failures of persistence 
are driven by sophisticated cost-benefit analyses rather than unfortunate lapses in self-control. 
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1     Introduction  
 
Not all rewards are worth waiting for. Although the ability to delay gratification has often been touted as 
indicative of discipline and self-control [1,2,3], this line of research often fails to consider that in the pursuit 
of value maximization, waiting is not always more rewarding. Rather, contextual features of the environment 
can modulate the value of waiting such that the adaptive regulation of persistence, not persistence no matter 
what, should be the ultimate goal.  
 
Previous research has shown that humans learn the temporal characteristics of reward delivery in order to 
adaptively calibrate their waiting behavior [4]. If the distribution of wait durations is heavy-tailed, such that 
reward is likely to arrive either almost immediately or not for a long time, people engage in a rational 
cost/benefit analysis and (rightfully) conclude that the financially optimal wait duration is short. Conversely, 
in a temporal environment that favors persistence, humans are more likely to wait longer, again in line with 
the predictions of a normative model. Performance on these sorts of willingness-to-wait (WTW) tasks thus 
appears to reflect the results of a dynamic comparison between the value of quitting and the value of waiting. 
To define failures of persistence as the outcomes of a rational computation that maximizes reward contradicts 
their characterization as unfortunate lapses in self-control.  
 
Neural evidence further corroborates this idea: activity in areas of the brain known to be sensitive to subjective 
value, such as the vmPFC [5], evolves differently depending on the temporal environment participants are in 
[6]. If the distribution of wait durations favors persistence no matter what, the subjective value signal ramps 
up progressively as time goes by and the wait shortens. Conversely, if the distribution of wait times is such 
that the value of waiting decreases after a certain point, activity in the vmPFC is flat and then subsequently 
decays. Furthermore, a variety of brain regions – including the insula and dorsal regions of the prefrontal 
cortex – seem to track dynamic estimates of the value of quitting vs. the value of waiting, and show a ramping 
up of activity before the decision to quit is made [6]. Beyond providing insight into the neural mechanisms 
that underlie persistence in willingness-to-wait tasks, these findings are important because they reflect 
computations that feed into estimates of subjective value.  
 
Although the fMRI analyses described thus far provide compelling evidence that value-responsive brain 
regions are involved in adaptive persistence, they cannot address the question of whether these regions of the 
brain are necessary for such behavior. Here, we provide the first instance of causal evidence in favor of 
subjective value maximization underlying performance in a WTW task: patients with lesions to parts of the 
brain known to track either the subjective value of waiting (vmPFC) or the relative value of quitting 
(dmPFC/AI) were significantly impaired in calibrating their waiting behavior to the temporal environment. 
Crucially, lesions to areas of the prefrontal cortex known to underlie self-control but not valuation [7,8] did 
not affect performance. 
 
2     Methods 
 
2.1  Participants 
 
A total of 18 healthy controls and 31 patients with brain lesions were recruited from the University of 
Pennsylvania and McGill University to participate in this study. We further separated the patients into 
subgroups according to the localization of their lesions. To establish these groupings, we used a combination 
of the Automated Anatomical Labeling atlas (AAL) [9] and the results of the fMRI analyses reported in 
McGuire & Kable (2015) [6], which employed a similar willingness-to-wait task. We first assessed the overlap 
between each patient’s lesion and the regions of the anterior insula (AI) that exhibited differential activation 
for “quit” vs. “reward” trials in McGuire & Kable (2015). We then calculated the conjunction of the brain areas 
identified in the paper and those labeled as belonging to the AI in the AAL atlas. The resulting brain map was 
used to define the anterior insula group, and any patient whose lesion comprised > 25% of the region of 
interest was classified as belonging to it (n = 6). For the remaining 25 participants, we first assessed whether 
at least 50% of each patient’s lesion affected the frontal lobe, as defined by a combination of regions in the 
AAL atlas. This resulted in the exclusion of 3 participants whose lesions did not meet the threshold. We then 
assessed whether the localization of the remaining 21 participants’ lesions significantly overlapped with the 
vmPFC as defined by the atlas. On the basis of this analysis, 10 participants were classified as belonging to 
the vmPFC group. Finally, we identified a dmPFC group, whose lesion significantly overlapped with regions 
of the dmPFC sensitive to “quit” vs. “reward” trials [6] and with the dmPFC as defined by the atlas. This 
procedure resulted in 6 patients in AI group, 10 frontal controls (FC) whose lesions only met the frontal lobe 
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cut off, 10 vmPFC patients, and 2 dmPFC patients. Because the relevant regions of the AI and dmPFC were 
both shown to be differentially active for “quit” vs. “reward” trials, we grouped the AI and dmPFC patients 
together to result in a combined sample of 8 dmPFC/AI patients (see Figure 1a). 
 

2.2.  Task 
 

For this experiment, we used a willingness-to-wait task similar to the one described in McGuire & Kable 
(2015) [6] (Figure 1b). At the start of a trial, participants were shown a coin worth 0¢ on the center of the 
screen. They were told that after a certain amount of time, the length of which was not made explicit, the coin 
would mature and become worth 10¢. At that point, which was signaled by a change in the coin’s color, they 
could sell the coin by pressing the space bar, leading to a 10¢ reward. However, participants were also told 
that at any point in the trial, they could elect to press the space bar and sell the coin, even if it had not yet 
matured. In that case, they would not receive 10¢, but they would move on to the next coin. Whenever 
participants decided to sell the coin, the word ‘SOLD’ would appear in red on the center of the screen for 1 
second. A progress bar on the bottom of the screen indicated how long they had left in the block. 
 
The blocks were defined according to the distribution of wait durations and each lasted a total of 12 minutes. 
In the high-persistence block (HP), wait times were sampled according to a uniform distribution of up to 20s. 
In this condition, the coin was equally likely to mature at any time within the 20-second period, and the 
optimal strategy was to always wait until it matured. Conversely, wait times in the limited-persistence (LP) 
environment were sampled according to a heavy-tailed generalized Pareto distribution truncated at 40 
seconds. As is illustrated in Figure 1B, the optimal strategy in the limited-persistence environment was to 
wait only 2.3 seconds for the coin to mature.  
 
The experiment was conducted over two sessions, with the order of the blocks held constant across 
participants so as to highlight individual differences. Session 1 began with a high-persistence block followed 
by a limited-persistence block. The next day, participants returned for session 2, which began with a limited-
persistence block followed by a high-persistence block. The first blocks of each session (HP from session 1 
and LP from session 2) were, because no task preceded them, taken as instances “uncontaminated” learning 
and are the focus of the upcoming analyses. Participants were able to tell the difference between the two 
blocks because the color of the coin varied, but they were not explicitly told about the characteristics of each 
distribution of wait times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3   Results 
 
Replicating previous findings [4,6,10], we found that healthy controls were able to differentiate between the 
two temporal environments and adapt their waiting behavior accordingly. As predicted by the difference in 
ideal quit times (Figure 1b), participants waited longer for the coin to mature in the high than the limited-
persistence environment (mean wait time: 7.8 ± 0.14 in the HP environment vs. 4.1 ± 0.12 in the LP 
environment). To further quantify this effect, we ran a mixed effects Cox proportional hazard model 
predicting the likelihood that a participant “survived” until time t in each temporal environment, assuming 
the coin had not yet matured. The results of this survival analysis corroborated the finding that healthy 
controls waited longer in the HP than the LP condition, as is in line with normative predictions (β = 0.79; p = 

Figure 1. a. Graphical illustration 
of the pipeline used to separate 
lesion patients into subgroups. 
Groups were defined on the 
basis of the localization of the 
patient’s lesion with respect to 
the AAL atlas and fMRI results 
from McGuire & Kable (2015). b. 
Structure of the willingness-to-
wait task. High- and limited-
persistence conditions were 
defined on the basis of the 
distribution of wait times. At any 
point during the waiting period, 
participants could decide to quit 
and move on to the next trial. 

Sample (n = 31)

Assess insular 
involvement

n = 25

> 50 % of lesion 
in frontal lobe

n = 22

Insula 
n = 6

VMPFC 
n = 10
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n = 3

Insula 
n = 6
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n = 2
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n = 6

FC 
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a. Lesion Groups
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b. Task Design

McGuire & Kable (2015)  

/ AAL Atlas 
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0.023*). Finally, we found that the Area Under the Curve (AUC), an estimate of how many of the first 20s a 
participant is likely to keep waiting for on any given trial, was significantly higher in the HP than the LP 
environment in the healthy control group (t = 4.61; p = 0.0002*, Figure 2b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Frontal Control (FC) group exhibited waiting behavior that was quantitatively similar to that of the 
healthy controls (Figure 2a and b). Much like the control group, FC patients waited longer in the HP than the 
LP condition (mean wait time: 8.01 ± 0.17 in the HP environment vs. 4.01 ± 0.13 in the LP environment). In a 
mixed effects proportional hazard model that included a term for the interaction between environment and 
lesion group as well as separate main effects, there was no significant difference between the frontal controls 
and the healthy participants (βFC = 0.018; p = 0.80; βFC*env=0.30; p = 0.58). Further mirroring the behavior of the 
healthy controls, participants in the FC group waited for more of the first 20 seconds in the HP than the LP 
condition (difference in AUC: t = 5.3; p < 0.0001*).  
 
Unlike the healthy controls and the patients whose lesions did not include our regions of interest, the 
remaining patients showed deficits in their ability to adaptively calibrate their waiting behavior. The results 
of the proportional hazard model suggest that both the vmPFC and the dmPFC/AI group behaved in a way 
that was significantly different from the healthy controls (βvmPFC=1.09, p < 0.0001; βdmPFC/AI=0.91, p < 0.0001, 
Figure 2a). Further analyses suggest that although both groups were suboptimal in their decisions to persist, 
they exhibited different biases with respect to their sensitivity to environmental differences vs. overall reward. 
In the case of the vmPFC group, participants retained some sensitivity to the difference between the HP and 
LP conditions (βvmPFC*env (compared to controls) = -0.46; p = 0.38; difference in AUC: t = 2.23; p = 0.056*, Figure 
2b). However, their overall tendency to wait was greatly reduced (mean wait time: 4.9 ± 0.13 in the HP 
environment and 3.19 ± 0.12 in the LP environment). Conversely, participants in the dmPFC/AI group waited 
an average of 5.48 ± 0.15 seconds across the two conditions (compared to an overall mean wait time of 5.54 
± 0.10 for the healthy controls), but they did not calibrate their waiting behavior based on the characteristics 
of the temporal environment. This reduced sensitivity to the demands of the high- and limited-persistence 
conditions was evident in the effect on wait duration of the interaction between environment and dmPFC/AI 
lesion group compared to controls (βdmPFC/AI*env = -1.15; p = 0.049*). Finally, there was no significant difference 
across environments in the AUC for the dmPFC/AI group (t = 0.74, p = 0.49, Figure 2b).  
 
Thus far, we have focused on trial-wise analyses of waiting behavior that collapse across the entirety of the 
learning block. While it is clear that lesion location modulates willingness-to-wait overall, the process by 
which it might affect how temporal environments are learned remains unclear.  Figure 3 shows a local WTW 
estimate, averaged across 1s timepoints and across participants, as it evolves throughout learning. This 
estimate is dynamically updated based on participants’ trial-wise quitting behavior, or if they wait for a 
reward that took longer to appear than their current WTW estimate. By the end of the 12 minutes, both the 
healthy participants and the frontal controls had learned to wait longer in the high- than the limited-
persistence environment (tC = 11.01; p < 0.001; tFC = 17.1; p < 0.001). The evolution of WTW for the dmPFC/AI 
and vmPFC groups followed a more unusual pattern, however – for the dmPFC/AI patients, learning 
appeared to be somewhat erratic, with many reversals and no sensitivity to temporal environment by the end 

Figure 2. Within-trial willingness-
to-wait for each group of lesion 
patients and healthy controls. a. 
Mean survival curves averaged 
across participants within each 
group. Purple lines correspond to 
the LP environment while green 
lines correspond to the HP 
environment. b. AUC for each 
group of participants in the high- 
and limited- persistence 
environments. Filled circles 
indicate the mean across the group 
and each open circle represents a 
participant. 
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(t = -0.13; p = 0.89). There was little evidence of learning across the block for the vmPFC group: as is also 
implied by Figure 2b, the WTW estimates remained significantly lower than the controls’ throughout. 
 

 
 
 
 
4.   Discussion  
 
The goal of this study was to establish a causal role for the computation of subjective value in performance 
on a willingness-to-wait task. Patients with lesions to areas of the brain known to compute context-dependent 
estimates of value were impaired in their ability to adaptively curtail persistence. Conversely, patients with 
lesions to other regions of the frontal lobe performed similarly to healthy controls. These findings suggest 
that failures of persistence may be governed by principles of rational value-maximization rather than lapses 
in patience or self-control. 
 
Although we have shown that lesions to certain areas of the brain result in clear deficits on a willingness-to-
wait task, the underlying mechanisms by which these deficits emerge remains unclear. To this end, ongoing 
work that fits reinforcement learning models to WTW data [11] may help systematically uncover where in 
the learning process lesion patients and healthy controls diverge.  
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Figure 3. Mean estimate of running WTW sampled at 1s intervals, and collapsed into 60-second bins for 
legibility. Ribbon corresponds to the standard error of the mean and asterisk denotes significantly different 
WTW in each environment by the last minute of the learning block (t-test on the last 60 seconds, p < 0.05). 
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